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ARTICLE INFO ABSTRACT

Keywords: Vital to the economy, culture and landscape of many regions around the world, the olive sector faces significant
Olea europaea challenges, including rising production costs, labour shortages, climate change impacts, water scarcity, quality
Olive

control issues and market demands for transparency and authenticity. Digital and other Industry 4.0 technologies
offer transformative potential to address these pressures. This article provides a comprehensive review of recent
applications and future prospects of technologies such as the Internet of Things, Artificial Intelligence, Machine
Learning, Robotics and Automation, Big Data Analytics, Advanced Sensing, Remote Sensing, Nanotechnology
and Blockchain across the olive value chain, from cultivation to supply chain management. Using a literature
review methodology to identify key application areas, it synthesises evidence on how these innovations increase
resource efficiency, optimise farm management, automate labour-intensive tasks, improve pest and disease
control, ensure product quality and authenticity, facilitate traceability and add value through by-product val-
orisation. Key benefits include improved yields, reduced environmental impact, enhanced quality control, fraud
deterrence and increased consumer confidence. Future prospects include deeper integration of technologies,
more sophisticated Al-driven decision support, advanced robotics, widespread adoption of rapid sensing tech-
niques, development of circular economy models and nanotechnology applications, while recognising the need
for safety assessments. Overcoming barriers related to cost, digital literacy, data interoperability and equitable
access, especially for smallholder farmers, is critical. This review highlights the strategic importance of
embracing digital transformation to strengthen the resilience, sustainability and competitiveness of the global
olive industry.

Digital transformation
Agri-food technology
Precision agriculture
Smart farming

landscape and cultural heritage of many countries, particularly in the
Mediterranean region where the tree originated [2]. Today, olive

1. Introduction cultivation has expanded to other regions with similar climates around
the world (Fig. 1), reflecting its global importance [3,4].

The olive tree (Olea europaea L.) is one of the oldest cultivated The olive sector is a cornerstone of the global agrifood industry. It

plants, with a history spanning more than 6000 years [1]. Olive culti- covers over 10 million hectares and supports the livelihoods of millions

vation and olive oil production are integral to the economy, agricultural
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List of acronyms and abbreviations

Al Artificial Intelligence
ANNs  Artificial Neural Networks
AS Advanced Sensing

BDA Big Data Analytics

CNNs  Convolutional Neural Networks

CPS Cyber-Physical System

CRISPR Clustered Regularly Interspaced Short Palindromic

Repeats
ddPCR Droplet Digital Polymerase Chain Reaction
DL Deep Learning
DSC Differential Scanning Calorimetry
EEM Excitation-Emission Matrix
EVOO  Extra Virgin Olive Oil

FTIR Fourier Transform Infrared

GCMS- Gas Chromatography/Mass Spectrometry
GIS Geographic Information Systems

GPS Global Positioning System

HSI Hyperspectral Imaging

IMS Ion Mobility Spectrometry

10C International Olive Council

IoT Internet of Things

K-NN k-Nearest Neighbours

LIBS Laser-Induced Breakdown Spectroscopy
MIR Mid-Infrared
ML Machine Learning

MLP Multilayer Perceptron

MPE Mean Prediction Error

MUFA  Monounsaturated Fatty Acids
NFC Near Field Communication
NIR Near-Infrared

NMR Nuclear Magnetic Resonance
OMWW Olive Mill Wastewater

00SC  Olive Oil Supply Chain

PA Precision Agriculture
PARAFAC Parallel Factor Analysis

PDO Protected Designation of Origin
PGI Protected Geographical Indication

PHAs  Polyhydroxyalkanoates
PLS-DA Partial Least Squares Discriminant Analysis
QR Quick Response

RA Robotics and Automation

RF Random Forest

RFID Radio Frequency Identification
RS Remote Sensing

SF Smart Farming

UAS Unmanned Aerial Systems
UAVs Unmanned Aerial Vehicles
UGVs Unmanned Ground Vehicles
UV-Vis Ultraviolet-Visible

VOO Virgin Olive Oil
YOLO  You Only Look Once

of people, particularly in rural areas [5]. Not only does olive growing
drive economic growth, it also significantly supports rural employment,
sustains livelihoods, promotes community resilience, and mitigates rural
depopulation by strengthening social and territorial cohesion [6,7]. In
particular, extra virgin olive oil (EVOO), which is valued for its sensory
qualities and health benefits, is a significant economic contributor and a

8.25M

4.95M

1.65M

0.0

Fig. 1. Distribution of world olive production (tonnes per year).

key component of the Mediterranean diet [8-10].

Despite its global importance, the olive sector is facing a number of
urgent challenges. Producers are under economic pressure due to rising
production costs, labour shortages during the harvest season, and mar-
ket price volatility [11,12]. The high value of EVOO also makes it a
prime target for fraud and adulteration, which erodes consumer trust

Source: https://www.atlasbig.com/en-gb/countries-by-olive-production (based on FAO data).
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[13]. The sector is often structurally fragmented and dominated by small
family farms and cooperatives. This can lead to inefficiencies in pro-
duction and throughout the entire Olive Qil Supply Chain (OOSC) [11,
14]. In addition, traditional practices still dominate olive growing [15,
16]. This leads to low productivity and abandonment in some traditional
and marginal areas [17].

In addition, climate change poses a multifaceted environmental
threat. It increases water scarcity, causes crop stress and alters the
patterns of pests and diseases such as Xylella fastidiosa [18-22].
Furthermore, the intensive use of inputs such as fertilisers and pesticides
affects costs and exacerbates environmental concerns [16,23]. More-
over, the olive oil industry produces large quantities of olive mill
wastewater (OMWW) and solid residues that can be toxic to the envi-
ronment if not treated properly [24].

In response to these pressures, the agriculture and agrifood sector
isundergoing a transformative phase in the context of Industry 4.0,
characterised by the integration of digital and other advanced technol-
ogies into agricultural and industrial practices [25-27]. Technologies
such as the Internet of Things (IoT), Artificial Intelligence (AI), Machine
Learning (ML), Robotics and Automation (RA), Big Data Analytics
(BDA), Advanced Sensing (AS), Remote Sensing (RS) are enabling a shift
towards more precise, efficient and sustainable agriculture and food
industry [28,29]. Digital technologies are at the heart of this 4.0 revo-
lution, but they are complemented by other advanced technologies such
as nanotechnology and genomics. For the olive sector, digital trans-
formation has emerged as a powerful catalyst with the potential to
revolutionise growing and processing practices, improving the effi-
ciency, sustainability and competitiveness [6,14,30].

In this respect, previous studies have focused on specific technologies
or singular aspects of olive growing and processing. For example, Mar-
ques, Padua, Sousa and Fernandes-Silva [31] reviewed the application
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of RS imagery in olive cultivation, while Perez-Ruiz, Gonzalez-de--
Santos, Ribeiro, Fernandez-Quintanilla, Peruzzi, Vieri, Tomic and
Agueera [32] explored RA in olive cultivation, mainly in the context of
general crop protection. Research in this area tends to focus on specific
technological areas, such as precision agriculture [33-36], Al and ML
[37], AS and monitoring techniques [31,38,39], digital traceability
using blockchain systems [40] and sustainable waste management
practices [41,42]. However, a holistic overview of the synergistic po-
tential of multiple Industry 4.0 technologies across the entire olive value
chain is lacking.

In this context, the aim of this article is to address this gap. Through a
comprehensive analysis, it explores the integration of digital technolo-
gies in olive farming and the wider industry. It highlights the role of
these technologies in addressing challenges, optimising productivity,
and promoting sustainable practices. Examining current research,
technological advances and practical applications, it identifies oppor-
tunities, barriers and future pathways for innovation in olive growing,
processing and supply chain management. By doing so, it provides
stakeholders with actionable insights and a strategic roadmap for
embracing digital transformation, thereby improving the productivity,
sustainability and competitiveness of the olive sector.

2. Methodology

A comprehensive literature review was conducted (Fig. 2) to identify
recent studies and applications in the olive sector of a wide range of
recognised digital technologies in the agri-food sector [26]. The Web of
Science and Scopus databases were searched using specific queries for
olive and digital technologies. 2860 records were identified in
November 2024.

After an initial analysis of the literature and current research trends

Initial literature search & identification

* Databases: Web of Science, Scopus
* Search in: Topic / Article title, Abstract, Keywords

* Query: (olive) AND (“digital” OR “4.0” OR "artificial intelligence" OR “Al” OR "big data" OR "blockchain" OR "digital

twin*" OR "internet of things" OR “loT” OR “nanotech*” OR "remote sens*" OR "robot*" OR "smart sensor*" OR
"virtual reality" OR "augmented reality” OR "3D print*" OR "cloud computing" OR “edge computing” OR "drone*"

OR “unmanned aerial vehicle*” OR “UAV*” OR “cyber -physical system*” OR “CPS*” OR “autonomous vehicle*”

OR “mobile technolog*")

(2860 records)

|

Identification of application areas based on
clustering the thematic of references identified

*Six application areas

\ /

Manual screening of references
for each application area based
on relevance and timeliness

Il
N

Final selection of references by application area

(144 records)

Fig. 2. Literature review process.
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in the olive sector, six main application areas were identified where
digital technologies have a significant impact or potential: Precision
agriculture and smart farming in olive cultivation; Al and ML in olive
agriculture and industry; robotics and automation in olive harvesting
and processing; spectroscopic techniques, hyperspectral imaging and
biosensors for olive oil quality control; nanotechnology applications in
olive oil preservation and enhancement; and supply chain management
and traceability. These areas were selected based on their relevance to
the most pressing challenges facing the olive industry, their integration
of cutting-edge technologies and their comprehensive coverage of the
entire olive value chain, from cultivation to supply chain management.
The publications were then manually screened for their focus and
timeliness on the application of digital technologies in the olive sector
and classified into the six application areas. The final pool of references
consisted of 144 records, which form the basis of this article.

3. Recent applications of digital/4.0 technologies in the olive
sector

This section looks at recent applications of modern digital and other
4.0 technologies in the olive sector. From precision agriculture and Al
optimising farm management and quality control, to robotics auto-
mating harvesting and processing, these innovations are improving ef-
ficiency and yields. In addition, sophisticated sensing techniques and
nanotechnology are improving oil quality analysis and preservation,
while blockchain and IoT are ensuring greater transparency and trace-
ability throughout the supply chain. This is discussed in detail in the
following sections and summarised in Table 1.

3.1. Precision agriculture and smart farming in olive cultivation

There are a number of terms used to refer to agricultural practices
that use digitalisation technologies. Precision Agriculture (PA) and
Smart Farming (SF) are terms used to describe the use of innovative
technologies to collect large amounts of data and use it to make
informed decisions. This modern form of agricultural production has the
advantage of making more efficient use of agricultural inputs (mainly
fertilisers, pesticides and water), reducing losses and increasing yields. It
can also facilitate more accurate planning of different agricultural ac-
tivities, as demand for food products can be more accurately predicted.
These benefits are achieved by using technologies to monitor variables
such as soil moisture, nutrient levels and pest presence with high spatial
and temporal resolution. This enables precise, data-driven interventions
to be carried out, such as applying water or fertiliser only when and
where needed. This reduces input costs, minimises environmental
impact and optimises crop health and yield.

Indeed, a considerable amount of research has been devoted to
investigating the potential of PA and SF in the olive oil sector. For
example, it has been shown that PA facilitates the prediction of the ni-
trogen content in olive tree leaves using hyperspectral data [43], which
is significant given that nitrogen is the main limiting factor for olive
trees after water. Nappa, Quartulli, Azpiroz, Marchi, Guidotti, Staiano
and Siciliano [44] tested their PA approach based on neural networks for
predicting olive phenology, providing important data on the life cycle of
olive trees. Similarly, SF approaches have demonstrated benefits in the
olive sector, including the improvement of irrigation systems through
the use of IoT [45] and unmanned aerial vehicles (UAVs) [46], and
disease control based on deep learning [47] and linear mixed effects
models [48]. SF has also been shown to reduce the environmental
impact of olive growing and harvesting [49].

In recent years, there has been a significant increase in the use of
sensors in agriculture in general and in the olive oil sector in particular.
Digital sensors have been shown to facilitate the acquisition of more
accurate data compared to conventional systems, offering significant
advantages in the assessment of olive tree health and olive quality. For
example, a nitrogen-doped nanocrystalline electrochemical graphite

Table 1
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Summary of recent applications of digital/4.0 technologies in the olive sector.

Application area

Key technologies

Applications

Key benefits/
outcomes

Precision
agriculture
and smart
farming

Artificial
intelligence
and machine
learning

Robotics and
automation

Spectroscopy,
HSI and
biosensors

Precision
Agriculture (PA);
Smart Farming
(SF); Sensors
(Hyperspectral,
Electrochemical);
IoT; UAVs
(Drones); Remote
Sensing
(Satellites); GIS;
Big Data Analytics

Artificial
Intelligence (AID);
Machine Learning
(ML); Predictive
Modelling; Deep
Learning (DL);
Image Recognition;
ANNs; YOLO

Robotics &
Automation (RA);
Shakers (Trunk,
Canopy); UAVs;
Autonomous
Systems; Sensors
(Laser, Infrared);
Machine Vision; Al
(YOLO, CNNs);
Remote sensing

Spectroscopy (NIR,
MIR/FTIR,
Fluorescence,
Raman, NMR,
LIBS, UV-Vis);
Hyperspectral

Prediction of leaf
nitrogen, olive
phenology;
Improvement of
irrigation systems;
Disease control;
Detection of
oleuropein (quality
control); Real-time
data transmission &
automation
(irrigation,
fertilisation, pest
control); Ripening,
health, soil, water
stress monitoring;
Site suitability
assessment;
Autonomous
spraying; Managing
& analysing large
data sets (irrigation
efficiency,
agroclimatic
influence, genetics,
milling/harvest
optimisation)

Yield estimation/
forecasting; Early
disease detection &
diagnosis; Olive
ripeness assessment
(counting, staging);
Optimisation of
processing
parameters & oil
blending; Quality
assessment & fraud
detection
(authenticity,
adulteration)

Automated
harvesting &
transport;
autonomous
guidance &
navigation in
groves; real-time
defect detection &
quality assessment
(size, ripeness,
bruising);
fermentation
monitoring;
automated tree
counting & yield
estimation; robotic
pest & disease
monitoring (traps,
xylella detection);
automated sorting
& logistics
Chemical
Composition
Analysis (Fatty
Acids,
Polyphenols);
Quality & Purity

More efficient
use of inputs
(water, fertiliser,
pesticides);
reduced losses,
increased yields;
accurate
planning,
reduced costs;
environmental
benefits;
improved data
accuracy &
quality control;
improved supply
chain
performance;
effective large
scale
monitoring;
optimal resource
management

Data-driven
decision
making;
accurate
forecasting &
planning;
optimised
production &
resource
management;
reduced
chemical use;
Improved oil
quality &
consistency;
Improved fraud
detection &
authenticity
verification
Increased
efficiency &
productivity;
Reduced labour
requirements &
costs; Improved
harvesting
efficiency;
Improved
quality control
& accuracy;
Accurate yield
estimates;
Improved pest &
disease
management;
Sustainability
benefits

Detailed
chemical
insights; Rapid,
non-destructive
analysis High
accuracy in

(continued on next page)
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Table 1 (continued)
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Table 1 (continued)

Application area  Key technologies Applications Key benefits/ Application area  Key technologies Applications Key benefits/
outcomes outcomes

Imaging (HSD); Assessment; quality control access to verifiable certifications;
Computer Vision; Adulteration & product history Reduced
Biosensors Detection & authentication; information
(Electrochemical, Authenticity On-site & asymmetry
Enzymatic, DNA- Verification; Grade industrial
based); E-Noses; & Geographical applicability;

Nanotechnology

Supply chain
management
and
traceability

Chemometrics; ML

Nanoparticles
(Chitosan, Lipid
Carriers, Silver);
Nanoemulsions;
Nanophytosomes;
Nanocapsules;
Cellulose
nanocrystals;
Nano-fertilisers

Blockchain; IoT;
Sensors; Mobile
interfaces (apps,
web); Smart
contracts; RFID/
NFC; QR codes;
GPS; DNA-based
technology;
Analytical
techniques (NMR,
DSC)

Differentiation;
Shelf Life &
Oxidation
Monitoring;
Automated
Monitoring (HSI);
Physical Defect
Detection
(Computer Vision);
Real-Time
Detection of
Bioactive
Compounds
(Oleuropein);
Volatile Profile
Analysis (e-Nose)
Enhancing the
bioavailability of
nutraceuticals
(polyphenols);
Targeted drug
delivery (health
applications:
(health
applications:
psoriasis,
cholesterol, cancer);
antimicrobials
(plant & human
health); improving
stability/taste of
compounds;
remediation of toxic
elements; cosmetics
(anti-aging, hair
care); plant
protection &
disease resistance;
improving plant
yield & growth
(nano-fertilisers);
decontamination of
micropropagation;
improving animal
growth
(aquaculture); Food
packaging (safety
concerns identified)
Create secure,
immutable records
of O0SC activities;
Real-time
monitoring
(cultivation,
transport, storage);
Automated
verification
(quality,
conditions) via
smart contracts;
Batch tracking &
identification
(RFID/NFC/QR);
Verification of
origin (geographic,
varietal) via GPS,
DNA; Provide
consumers with

Effective fraud
detection; High
sensitivity for
key compounds;
Reduced
reliance on
traditional
laboratory
methods;
Potential for
large-scale
screening

Value added
from olive
products/waste;
Improved
efficacy of
beneficial
compounds;
Novel health &
cosmetic
applications;
Sustainable
alternatives to
agrochemicals
Improved plant
health &
productivity;
Potential for
improved food
preservation;
Requires careful
safety
assessment

Increased
transparency,
security,
efficiency;
Improved
traceability from
grove to
consumer;
Improved food
safety & quality
assurance;
Increased
deterrence of
fraud &
adulteration;
Increased
consumer trust
& brand value;
Support for
regulatory
compliance &

sensor has been used to detect oleuropein, a natural compound found
mainly in olive leaves, olives and olive oil [50]. The detection of
oleuropein and other compounds is crucial in the olive oil quality con-
trol process, which was previously based on chemical analysis and
organoleptic evaluation. The use of sensors for olive oil quality control
has also been advocated by other authors [51,52].

The integration of sensors into IoT systems (networks of inter-
connected physical devices that collect and exchange data) facilitates
the interconnection of these systems, allowing the recording and
transmission of data in real time. This development has significant im-
plications for the automation and precise management of irrigation,
fertilisation and pest control in olive cultivation [53]. IoT has been
shown to offer significant benefits not only in olive farms, but also in the
olive oil industrial sector, for example by controlling olive pitting,
slicing and stuffing machines with IoT systems [54]. Overall, the
implementation of IoT in the olive oil sector has the potential to improve
the performance of the entire OOSC by integrating it into supply chain
activities such as demand planning, manufacturing, transportation,
customer service, warehousing and inventory management [55]. The
benefits of IoT can be enhanced by integrating it with other digital
technologies, such as blockchain, to increase transparency and reduce
fraud risks in the olive oil market, which would support consumer
confidence and promote regulatory compliance [56].

Sensors can also be integrated into UAVs, such as drones. This will
allow effective monitoring of the ripening stage and health of olive trees
and their soils with higher spectral and energy efficiency [46,48,57,58].
This is of particular interest in the context of climate change, which is
already significantly affecting the water status of olive orchards [33], as
olive trees are mostly grown in drought-prone regions. The use of RS
techniques, using satellite-based multispectral imaging (which captures
image data at specific frequencies across the electromagnetic spectrum),
holds great promise for extending the scope of field monitoring to a
much larger scale, so that entire olive orchards can be monitored
continuously [59-61]. The data collected in this way can be managed
and analysed using Geographic Information Systems (GIS), which are
specialised systems for capturing, storing, analysing, and displaying
geographically referenced data. This approach facilitates the assessment
of potential olive grove sites, allowing informed decisions to be made
about their suitability [62,63]. For example, GIS systems, RS and other
technologies can be used together to assess water stress [64], which
facilitates the implementation of optimal irrigation strategies [65]. In
addition to RS, UAVs have the potential to act as autonomous sprayers in
olive orchards, with high phytosanitary efficiency, reduced water con-
sumption, reduced soil compaction [66], increased spraying precision
and reduced air drift, thus reducing environmental exposure to pesti-
cides and fertilisers [67].

The significant amount of data that these sensors can collect may
require the implementation of BDA (the process of examining large and
varied data sets to uncover patterns and insights) to facilitate the
effective storage, analysis and sharing of information. However, there is
a paucity of research focusing on the use of BDA in the olive oil sector.
Examples of research include an assessment of irrigation efficiency for
optimal olive production [68] and a study of daily agroclimatic data and
its influence on the fatty acid profile of olive oil [69]. Furthermore,
recent projects have investigated the potential applications of BDA in
the olive oil and table olive industries. For example, the EU H2020
project GEN4OLIVE (www.gen4olive.eu) uses BDA and Al to analyse the
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genetic information of olive trees for breeding and conservation pur-
poses. The Spanish operational group GO STOW 4.0 (www.encom
aquinaria.com/stow-4-0/) aims to transform the table olive industry
into an Industry 4.0 model by optimising resource use and improving
product quality through the IoT and BDA. The Spanish SMART-O-LIVE
R&D project (https://datalab.upo.es/project/smart-olive/) aims to
modernise the entire olive oil supply chain (from the field to the mill and
the packaging line) by integrating BDA, Al, and other digital technolo-
gies. The EU H2020 project DataBio (www.databio.eu) supports the
development of a sustainable bioeconomy by applying big data to
agriculture, including olive production. Some solutions have reached
commercial maturity. These include AI- and BDA-based predictive and
optimisation tools developed by the Citoliva technology centre (www.ci
toliva.es) to improve harvest timing and milling efficiency, and by the
engineering firm Pastrana Ingenieria (www.pastranaingenieria.com),
which uses BDA and ML to enhance olive harvesting and milling
processes.

3.2. Artificial intelligence and machine learning in olive agriculture and
industry

The application of AI, which involves the simulation of human in-
telligence processes by machines, and ML, a subfield of Al, in the olive
sector is driving a paradigm shift towards data-driven decision making,
enabling accurate forecasting, optimised production and improved
resource management. Al and ML provide advanced analytical tools to
process vast amounts of agricultural data, helping farmers and industry
stakeholders to make informed, data-driven decisions in many areas,
such as yield estimation, disease detection, quality control, etc.

Yield estimation is a critical aspect of olive growing, influencing
supply chain management, resource allocation and market planning.
Traditional methods rely on manual assessments and historical aver-
ages, often failing to capture dynamic environmental variables. Al-based
predictive modelling improves accuracy by using ML algorithms that
process multiple datasets. For example, Cubillas, Ramos, Jurado and
Feito [70] developed a predictive yield forecasting model for olive or-
chards in Andalusia, Spain. Using eight years of historical yield data and
more than twenty meteorological parameters automatically retrieved
from public web services, the model enables early predictions, made at
the beginning of the year, with a margin of error of less than 20 %. The
novelty of this approach lies in its timing; unlike traditional models that
rely on post-pollination data from May or June, this early forecast pro-
vides crucial information before significant financial commitments are
made for the season. Consequently, this allows farmers to make
better-informed strategic decisions, such as adjusting the intensity and
cost of tillage based on the expected yield or securing more favourable
prices by pre-negotiating sales contracts. This demonstrates the practical
impact of Al-driven predictive analytics in optimising farm management
and economic planning.

Otherwise, olive production faces significant challenges from pests,
weeds and diseases (e.g. olive scab and olive leaf spot) that negatively
affect yield and olive oil quality. Accordingly, early disease detection is
essential to prevent significant yield losses and minimise chemical in-
terventions [71]. Traditionally, growers rely on visual inspection or
laboratory tests. However, these methods can be time-consuming, prone
to human error, often detect diseases only after significant damage has
occurred, and are difficult to implement in large-scale intensive agri-
culture [72]. Accordingly, Al-driven image recognition systems and
predictive models facilitate proactive management of olive diseases. For
example, with advances in Al and deep learning (DL), automated disease
detection systems such as optimised artificial neural networks (ANNs)
offer a faster, more accurate and scalable alternative, enabling early
diagnosis and improved crop management, as observed in Saudi Arabia
[73] and Jordan [74].

Al can also be used to assess and measure the ripeness of olives,
providing valuable insights for optimising harvest timing, oil quality and
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extraction techniques. Identifying the ripening stage of olives adds value
for producers and consumers by optimising harvest timing, oil quality
assessment and extraction techniques. In this regard, Mendes, Lima,
Costa, Rodrigues, Leitao and Pereira [75] present an Al-based method
using deep learning algorithms You Only Look Once (YOLO) (YOLOv7
and YOLOVS8) to identify and count olives entering the mill, while
determining their maturation stage. The results show the feasibility of
implementing this system in real-world environments, with YOLOv8
achieving a 79 % mAP across five ripening stages at 16 FPS, while
YOLOV7 increased the processing speed to 36.5 FPS with a 66 % mAP.

Otherwise, the production of high quality olive oil depends on
several processing parameters, such as harvesting time, malaxation
conditions, extraction methods and storage protocols [76]. Al technol-
ogies can play a crucial role in optimising these factors. For example, Al
models can analyse chemical composition data to formulate optimal
olive oil blends, ensuring consistency in taste, flavour and quality.
Aroca-Santos, Cancilla, Pariente and Torrecilla [77] developed a simple
Al-based method using visible spectroscopy and artificial neural net-
works (ANNs) to both identify the EVOO varietal and quantify the level
of adulteration in blends containing refined olive oil. A multilayer per-
ceptron (MLP) model achieved 100 % varietal identification accuracy
and a mean prediction error (MPE) of 2.14 % for quantifying blends
containing 0-20 % refined oil. This low-cost, user-friendly approach
provides a reliable online screening tool for olive oil characterisation.

Al also plays a crucial role in assessing and ensuring the quality of
olive oil and in detecting fraud. Edible oils are among the most adul-
terated food products in the world, and olive oil is no exception. It is
estimated that 75-80 % of the EVOO sold in the United States is adul-
terated, while in Italy, EVOO fraud is a multi-billion euro industry,
valued at around 16 billion euros [78]. Therefore, several Al-driven
innovations can improve fraud detection and ensure greater accuracy,
efficiency and reliability in identifying adulterated olive oils. For
example, Brazil, the world’s second largest importer of olive oil, has
recently started small-scale production in two regions. Brilhante, Bizzo,
Caratti, Squara and Cordero [79] used Al-driven volatilome analysis to
ensure authenticity and detect fraud, identifying 51 key volatile com-
pounds that serve as a chemical fingerprint. The results of this complex
chemical analysis were then represented using computer vision-based
visualisation techniques, allowing the AI to successfully differentiate
between the two olive cultivars under study (Arbequina and Koroneiki)
from Brazil’s main producing regions, marking the first successful
detection of mislabelled products.

3.3. Robotics and automation in olive harvesting and processing

RA, which involves the use of machines to perform tasks automati-
cally, play an important role when it comes to digitalisation, and they
are a key component of the Industry 4.0/5.0 industrial revolution in the
agri-food sector. There are several reasons for integrating RA in olive
harvesting and processing. First, incorporating RA into agri-food supply
chains increases efficiency and productivity, and this is true for the olive
sector. For example, automated harvesting systems such as trunk
shakers [80], which remain the most widespread technology [81],
canopy shakers [82] and UAVs [83,84] support navigation and optimise
the olive harvesting process, reducing the time and labour required.
Autonomous service systems also enhance manual harvesting by trans-
porting olives and tracking yields, which in turn improves efficiency by
up to 45 % [85]. Penizzotto, Slawinski and Mut [86] presented a laser
radar-based autonomous guidance system for mobile robots in olive
groves, using an extended Kalman filter for state estimation and
odometry-based rotation. Colmenero-Martinez, Blanco-Roldéan,
Bayano-Tejero, Castillo-Ruiz, Sola-Guirado and Gil-Ribes [80] devel-
oped an automatic trunk detection system using infrared sensors for
olive harvesting with trunk shakers, reducing operator dependency and
improving efficiency by 27.3 %, achieving a 91-92.9 % success rate in
trunk grabbing. In terms of path tracking and navigation, Auat Cheein,
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Scaglia, Torres-Torriti, Guivant, Prado, Arno, Escola and Rosell-Polo
[85] developed an algebraic path tracking controller for an automated
service unit to support manual olive harvesting, improving efficiency by
42-45 %, while Sola-Guirado, Ceular-Ortiz and Gil-Ribes [82] devel-
oped an automated canopy contact system for lateral canopy shakers in
olive harvesting, using distance measurement and hydraulic pressure
sensing to optimise shaker positioning. Compared to manual control,
automation increased removal efficiency by 5.9 %.

There is a growing problem of labour shortages in olive harvesting
and processing, a key driver for mechanisation across the sector [81,87].
Many producing regions, such as Chile and Argentina, face a decline in
available agricultural labour, making robotic solutions that reduce
dependence on manual labour and lower operational costs increasingly
vital [88]. These authors reviewed the state of the art in agricultural
robotics and proposed human-robot collaboration strategies for tasks
such as harvesting, balancing automation and labour integration. On the
other hand, Fountas, Mylonas, Malounas, Rodias, Hellmann Santos and
Pekkeriet [89] presented a systematic review of agricultural robotics for
field operations, highlighting advances in harvesting and weeding,
while identifying gaps in disease detection and seeding automation.
They emphasised the need for faster algorithms, improved communi-
cation and AS for future optimisation.

The automation of harvesting and quality control relies heavily on
machine vision and AI models to guide robotic actions. For instance,
models such as YOLO [83,90] and Convolutional Neural Networks
(CNNs) [91] can detect defects in olives in real time, which can ensure
good quality of olives and olive oil and improved accuracy.
Sola-Guirado, Bayano-Tejero, Aragon-Rodriguez, Bernardi, Benalia and
Castro-Garcia [92] developed an affordable, field-based smart system
using computer vision to automatically assess the quality of green olives,
including size, ripeness and bruising, providing farmers with instant
assessments to aid decision making. Some researchers presented a ma-
chine vision-based method using RGB image analysis and k-nearest
neighbours (K-NN) classification to determine olive ripeness in real time
[93]. Others presented an automated monitoring device for tracking key
fermentation parameters in table olive brine to ensure product quality
and stability. The low-cost, sensor-equipped system demonstrated high
reliability, allowing continuous monitoring to improve sustainability
and process control in olive fermentation [94]. Cano Marchal, Satorres
Martinez, Gomez Ortega and Gamez Garcia [95] presented an auto-
mated defect detection system using infrared imaging and image pro-
cessing techniques to identify damaged olives in oil mills. Some
researchers developed a fast and automated olive quality assessment
system using RGB imaging and YOLO-based CNNs to classify olives by
defects and ripeness [91].

RA has also helped to optimise yield estimation and resource man-
agement in the olive sector. For example, automated tree counting and
fruit detection using RS and UAVs provide accurate yield estimates,
supporting better planning and inventory management [96]. Multi-
spectral imagery and vegetation indices also help to monitor crop health
and optimise irrigation and fertilisation [97]. Aljaafreh, Elzagzoug,
Abukhait, Soliman, Alja’Afreh, Sivanathan and Hughes [90] developed
a real-time olive fruit detection system for harvesting robots using
YOLOVS5 deep learning models to improve yield estimation. Waleed, Um,
Khan and Ahmad [96] presented an automated RS method for olive tree
detection and counting using image processing techniques on red band
images. The system achieved high accuracy with an estimation error of
only 1.27 %. Similarly, Aquino, Ponce and Anddjar [98] presented a
CNN-based method for automatic olive fruit identification in intensive
orchards using night-time field images and the OLIVEnet dataset. The
best performing CNN achieved 83.13 % accuracy for olive detection and
99.12 % for non-olive classification, marking a significant step towards
automated yield estimation in olive production. Karabatis, Lin, Sanket,
Lagoudakis and Aloimonos [99] presented a novel approach to olive
detection using a mixture of synthetic and real data, using a photo-
realistic 3D model to generate automatically labelled images,
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significantly improving detection accuracy while reducing the need for
manual labelling.

RA has also contributed to improved pest and disease monitoring in
olive harvesting and processing. Pest control strategies such as robotic
monitoring of insect traps can minimise damage to olive crops, partic-
ularly for Bactrocera oleae [83,84]. Similarly, the integration of RS, Al
and UAVs can help in the early detection of Xylella fastidiosa and prevent
the spread of the disease [100]. Berger, Teixeira, Cantieri, Lima, Pereira,
Valente, Castro and Pinto [83] developed a cooperative robotic system
using Unmanned Aerial Systems (UAS) and Unmanned Ground Vehicles
(UGVs) for autonomous insect trap monitoring in olive groves. Using
YOLO-based vision and fuzzy control algorithms, the system enables
efficient navigation, inspection and UAS-UGV coordination, and dem-
onstrates feasibility through real-world simulations. XF-ROVIM, a
low-cost field robot equipped with thermal, spectral, and structural
sensors for early detection of Xylella fastidiosa in olive groves, was
developed by Rey, Aleixos, Cubero and Blasco [100]. Some researchers
evaluated UAV-assisted semi-autonomous navigation for insect trap in-
spection in olive groves, using fiducial markers (Ar_Track_Alvar) as vi-
sual reference points. Experimental tests with a DJI Tello drone
demonstrated the feasibility of computer vision-based marker tracking
for efficient UAV navigation in both indoor and outdoor environments
[84]. Similarly, Arvaniti, Rodias, Terpou, Afratis, Athanasiou and
Zahariadis [101] reviewed smart agriculture technologies such as RS
and monitoring algorithms for pest and disease management.

RA also offers significant sustainability and traceability benefits.
Environmentally, automated systems improve resource management by,
for example, monitoring fermentation to reduce waste [94] and enabling
PA approaches that minimise agrochemical use. In terms of traceability
and optimisation, technologies such as DNA-driven authentication
[102] and computer vision for batch sorting [103] enhance supply chain
integrity and production efficiency. Gila, Puerto, Garcia and Ortega
[103] presented an automated computer vision-based system for clas-
sifying olives prior to oil production, using image histograms and
Fisher’s discriminant analysis to differentiate between tree-harvested
and ground olives, achieving 100 % classification accuracy for
improved milling efficiency. In addition, automated logistics and
tracking approaches streamline post-harvest handling, processing and
distribution, reducing waste and inefficiencies. In terms of supply chain
traceability, Auat Cheein, Scaglia, Torres-Torriti, Guivant, Prado, Arno,
Escola and Rosell-Polo [85] explored the role of unmanned robotic
service units in PA, highlighting their potential for autonomous task
execution in weed detection, agrochemical application, irrigation and
terrain levelling. It emphasised the shift from manned to autonomous
agricultural vehicles, enabling continuous field monitoring and
data-driven decision making.

3.4. Spectroscopic techniques, hyperspectral imaging and biosensors for
olive oil quality control

Spectroscopic techniques are fundamental to the analysis of the
chemical composition of olive oil, providing detailed insights into
quality and purity. These methods work by measuring the interaction
between matter and electromagnetic radiation. Near-infrared (NIR),
mid-infrared (MIR), Raman and fluorescence spectroscopy are widely
used due to their ability to detect and quantify chemical markers related
to the quality and authenticity of olive oil [104].

NIR spectroscopy is a non-destructive method that is effective in
determining fatty acid profiles, polyphenol content and detecting
adulterants. Its rapid analysis makes it ideal for industrial quality con-
trol. Studies highlight the ability of NIR to differentiate EVOO from
inferior grades, thus ensuring product authenticity [105-107]. Portable
and miniaturised NIR instruments coupled with advanced models
accurately predict quality parameters such as acidity with high co-
efficients of determination (R?) [108,109]. NIR spectroscopy is also
valuable for detecting adulteration of olive olil with other seed oils,
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achieving high R? values in quantification [110]. It can detect adulter-
ation even at low levels (2.7 %) when combined with chemometric
techniques, demonstrating its usefulness for rapid fraud detection [111].

MIR spectroscopy provides comprehensive information about mo-
lecular vibrations, which is crucial for identifying specific chemical
bonds and functional groups [112]. This technique is valuable for
authentication by identifying unique spectral fingerprints. Fourier
Transform Infrared (FTIR) spectroscopy, a type of MIR, combined with
ML, specifically Random Forest (RF) algorithms, effectively differenti-
ates EVOO from lower quality oils [113]. Characteristic spectral bands,
such as carbonyl groups and fingerprinting regions, contribute to high
classification accuracy, demonstrating the robustness of FTIR for olive
oil authentication.

Fluorescence spectroscopy uses the natural fluorescence of com-
pounds to assess antioxidant capacity and overall quality. Its high
sensitivity allows detection of low concentrations of fluorescent com-
pounds called fluorophores. Innovations in portable fluorescence spec-
troscopy instruments facilitate on-site quality assessment. Fluorescence
spectroscopy is effective in monitoring the shelf life of virgin olive oil,
correlating fluorescence components with oxidation parameters to pre-
dict quality deterioration [114]. Combined with ML, it quantifies
oxidation effects during EVOO ageing [115]. In addition, fluorescence
spectroscopy with chemometric tools accurately detects and quantifies
olive oil adulteration [116]. Excitation-emission matrix (EEM) fluores-
cence spectroscopy enhanced with parallel factor analysis (PARAFAC)
effectively quantifies adulterant levels, demonstrating its practical
application in food safety [117]. Fusion of EEM fluorescence and NIR
spectroscopy data further improves the accuracy of EVOO authentica-
tion, confirming the synergistic benefits of combined spectroscopic ap-
proaches [118].

Raman spectroscopy offers high sensitivity to molecular vibrations,
enabling the detection of minor components and adulterants. Its versa-
tility increases its applicability in olive oil analysis. Raman spectroscopy
has been studied alongside fluorescence spectroscopy for olive oil
quality classification, although fluorescence often shows superior per-
formance [119]. However, Raman spectroscopy is effective in classi-
fying olive oils by geographical origin, with high accuracy (94.37 %)
using partial least squares discriminant analysis (PLS-DA) with spectral
bands related to fatty acid vibrations [120]. Combining Raman with NIR
spectroscopy improves the accuracy (over 97 %) of geographical iden-
tification of EVOO [121]. Raman and NIR spectroscopy were found to be
less effective than FTIR for screening virgin olive oils, with FTIR being
more relevant for lower quality oils due to its sensitivity to carbonyl and
polar groups [122].

Other spectroscopic techniques, such as nuclear magnetic resonance
(NMR), are used to predict nutritional parameters, assess oxidation and
verify the authenticity of olive oils [123,124]. For example,
high-resolution 'H NMR with multivariate analysis detects adulteration
with high sensitivity [125]. Laser-induced breakdown spectroscopy
(LIBS) is gaining traction for rapid adulteration detection by analysing
elemental composition in real time. LIBS and ultraviolet-visible
(UV-Vis)-NIR spectroscopy show comparably high accuracy in detect-
ing adulteration (up to 97 %), with LIBS offering faster results [126]. In
addition, ML based LIBS shows exceptional classification performance,
approaching 100 % accuracy in discriminating between pure and mixed
EVOOs [127].

Otherwise, the rise of Industry 4.0 is driving the development of
automated monitoring systems such as hyperspectral imaging (HSI) and
computer vision. HSI captures detailed chemical and spatial informa-
tion, while computer vision identifies defects, colour, shape, size and
textura [105,112,128]. HSI with PLS-DA has shown superior classifi-
cation accuracy in detecting EVOO adulteration compared to FTIR,
Raman, UV-Vis spectroscopy and gas chromatography/mass spectrom-
etry (GC-MS) [129]. Fluorescence HSI may be slightly less accurate than
FTIR, but offers greater efficiency for large-scale industrial screening
[130]. Computer vision applications in olive oil analysis have shown
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potential in estimating impurity content with high classification rates
(87.66 %) using methods such as kernel principal component analysis
and support vector machines [131].

Finally, biosensors and electronic sensing devices, which use bio-
logical components or synthetic mimics to detect specific chemical
substances, are advancing olive oil quality assessment by providing
rapid, cost-effective and portable solutions. These tools facilitate real-
time detection of bioactive compounds, adulteration and authenticity
verification, reducing the reliance on traditional methods [132]. Elec-
tronic noses (e-noses) are used to authenticate olive oil by analysing
volatile profiles, achieving high accuracy in verifying the status of
Protected Designation of Origin [133] and differentiating EVOO and
Virgin Olive Oil (VOO) based on fruitiness [134]. E-noses integrated
with chemometric models also classify olive oils according to perceived
fruitiness [135]. Electrochemical and enzymatic biosensors detect key
bioactive compounds such as polyphenols and oleuropein.
Tyrosinase-based enzymatic biosensors show high sensitivity and allow
accurate quantification of oleuropein in EVOOs [136]. DNA-based bio-
sensors offer a specific approach for detecting adulteration of olive oil by
other vegetable oils, effectively detecting adulteration at low levels
(5-10 %) [1371].

3.5. Nanotechnology for value-addition and enhancement of olive
products and by-products

Nanotechnology, the manipulation of matter on an atomic and mo-
lecular scale, can be related to many parts of olive production: oil, leaves
and waste. Olive oil production produces a lot of waste, rich in
hydroxytyrosol and secoiridoid derivatives (phenolic compounds or
polyphenols), which are associated with health benefits. Oleuropein and
verbascoside, important for their antimicrobial potential, are also pre-
sent, along with elenolic acid, an antimicrobial and antiviral agent
resulting from the degradation of oleuropein [138].

There is considerable interest in nanotechnologies for the treatment
of many types of human diseases and conditions. One of the major
problems associated with the consumption of polyphenols as nutra-
ceuticals is bioavailability. This includes low absorption and poor
penetration across biological barriers such as the skin [139]. Nano-
particle encapsulation strategies for hydroxytyrosol are chitosan nano-
particles and poly-p-1-lactide-co-glycolic-co-acrylic acid nanoparticles,
while oleuropein is commonly used with lipid nanostructured carriers
and chitosan nanoparticles [140].

Lipid nanostructured carriers can be used for a variety of applica-
tions. Liquid lipids from natural vegetable oils that contain numerous
antioxidant compounds, such as olive oil, can be used to deliver anti-
oxidants across the gastrointestinal barrier [141]. Olive oil has been
used in the preparation of lipid nanostructured carriers as an innovative
natural treatment for psoriasis [142]. An olive oil-based lipid nano-
structure carrier containing atorvastatin was investigated to help control
high lipid levels, especially bad cholesterol, to reduce the prevalence of
obesity [143]. Olive oil-based liquid nanocapsules have been developed
as nanocarriers for lipophilic drug delivery targeting pancreatic cancer
stem cells with enhanced antitumour efficacy [144].

There are many other olive-derived nanotechnology strategies
related to human health. Silver nanoparticles synthesised from olive leaf
extracts have shown potential as antimicrobial agents - inhibiting the
growth of yeast, gram-positive and -negative bacteria [145]. An olive oil
nanoemulsion containing curcumin was investigated as a viable
approach for the treatment of bacterial infections caused by
multidrug-resistant K. pneumoniae [146]. Ozonated olive oil, which has
the disadvantages of limited water solubility and poor transdermal
penetration, has been used with nanocarrier host molecules to improve
these shortcomings for use as a melanoma treatment [147]. Olive leaf
extract, mainly containing oleuropein and rutin, has been loaded into
nanophytosomes to evaluate its anti-colon cancer activity as a passive
tumour-targeted therapy due to its improved stability and efficacy
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[148]. Hydroxytyrosol-loaded nanocapsules have been investigated for
use in pharmaceutical and nutraceutical products to combat low water
solubility, bitter taste and instability to oxidation in the atmosphere for
the treatment of several diseases based on oxidative-inflammatory en-
vironments [149]. Nanotechnology has also been proposed as a reme-
diation method for toxic trace elements in food [150]. Specifically, toxic
trace elements may be introduced into olive oil during the
manufacturing process and may also be absorbed into the plant from the
soil.

The cosmetics industry is also exploring nanoformulations for
nanocosmeceuticals. Conventional anti-aging products for the skin have
a large particle size, making them less effective. Nanotechnological
approaches for topical anti-aging products show promise for olive oil as
a skin conditioner and antioxidant, with a number of commercial
products already on the market [151]. Nanoemulsions also have po-
tential applications in hair products. A study of the hair treatment effi-
cacy of coconut, olive and Abyssinian oils found no significant difference
between them in terms of combing efficacy [152].

Similarly, nanotechnologies can be used to benefit plants. The copper
salts currently used to prevent bacterial plant diseases are dangerous to
ecosystems and have favoured the selection of resistant strains. Nano-
technology could provide an alternative to traditional agrochemicals.
Cellulose nanocrystals obtained from olive tree pruning waste show
promise as a sustainable plant protection strategy against, for example,
olive knot disease (Pseudomonas savastanoi pv. savastanoi), while
reducing the use of traditional agrochemicals [153]. A novel nano-
structured formulation was proposed and shown to be fully biocom-
patible and able to increase transcript levels of the major systemic
acquired resistance-responsive genes in olive plants [154]. Olive leaf
spot, a widespread disease in all olive growing areas that can cause se-
vere yield losses, may be treatable with nanotechnology [155]. Foliar
application of nano-chelated nitrogen fertiliser to olive trees improved
yield and mineral composition, especially in the first year [156].
Replacing half the recommended dose of mineral fertiliser with sprayed
nanofertiliser on olive seedlings was found to positively promote vege-
tative growth parameters without deficiency symptoms [157]. Olive
micropropagation was also studied to determine the efficacy of nano-
particles as microbial decontamination agents, finding effective in vitro
disinfection and good effects on the development and multiplication rate
of olive shoots [158]. Other studies of nanoparticles on in vitro olive
shoot growth dynamics support these findings (e.g., [159,160].

Animals can also benefit from nanotechnologies based on olive
production, but there is comparatively little research compared to
human and plant studies. A nanoemulsion of curcumin-loaded olive oil
on shrimp was found to be a promising strategy for improving growth
performance, feed utilisation and size of shrimp - improving economic
performance while promoting sustainable practices [161].

Another key application of nanotechnology is in food packaging
materials. However, this application raises important safety questions.
For instance, studies using olive oil as a food simulant have evaluated
the potential for silver nanoparticles to migrate from packaging into
food [162]. This is a significant concern, as research shows that nano-
materials can potentially damage human cells by altering mitochondrial
function [163] or inducing immune modulation [164]. The challenge is
compounded by a lack of specific regulations for nanomaterials in the
food industry [165]. Therefore, while nanotechnology offers many po-
tential benefits, a consensus in the literature highlights that the chal-
lenges of rigorous safety assessment must be addressed to ensure
consumer protection [166].

3.6. Supply chain management and traceability

The OOSC, which involves multiple stages from cultivation to con-
sumption, often lacks transparent information sharing and documented
proof of handling, leading to opacity and significant risks related to
product quality, spoilage and authenticity, including fraud [167,168].
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This complexity makes traceability a critical yet challenging require-
ment, essential for ensuring food safety, verifying origin claims such as
Protected Designation of Origin (PDO), meeting regulatory re-
quirements and, crucially, building consumer confidence, which is often
undermined by fraud and adulteration scandals prevalent in the
high-value EVOO market [169-171].

Digital transformation, led by technologies such as blockchain, IoT
and mobile interfaces, offers a promising paradigm shift that enables
improved security, transparency, and efficiency across the OOSC [172,
173]. In particular, blockchain technology serves as a foundational
element, acting as a decentralised, distributed, and immutable digital
ledger where transactions and critical data points are securely and
transparently recorded across a network of participants [40,102,174].
This inherent resistance to tampering provides a single, verifiable source
of truth that reduces information asymmetry and fosters trust among
stakeholders, from farmers to consumers [56,168,169].

Research and pilot projects have explored different blockchain
platforms in the olive sector, including permissioned systems such as
Hyperledger Fabric [175] and public ledgers such as Ethereum [176],
sometimes in multi-chain architectures that include private chains such
as Quorum to balance confidentiality with public accessibility [177].
The integration of smart contracts further enhances this framework by
automating verification processes based on pre-defined rules, such as
checking temperature thresholds during transport or validating quality
parameters of olive oil, thus reducing manual errors and potential dis-
putes [56,168].

The integration of IoT devices and sensors serves as the primary
mechanism for capturing and recording reliable, real-time operational
data on a secure blockchain ledger, enabling the enhanced traceability
demonstrated in the systems proposed by Arena, Bianchini, Perazzo,
Vallati and Dini [175], Vitaskos, Demestichas, Karetsos and Costopoulou
[56], and Tang, Tchao, Agbemenu, Keelson, Klogo and Kponyo [178].
These technologies bridge the physical reality of the olive oil journey
with its digital representation. Specifically, IoT sensors deployed in olive
groves monitor critical environmental conditions that affect cultivation,
such as soil moisture, temperature, and humidity, capturing the type of
real-time data that is fundamental to PA [176,179]. During harvesting,
processing, transport and storage, IoT sensors track vital parameters. For
example, temperature sensors ensure optimal conditions for quality
preservation [56,168]. The data captured by this sensor network is
transmitted, often via gateways such as Raspberry Pi [176,177], and
immutably recorded on the blockchain, creating a verifiable audit trail
[56,175].

Otherwise, Radio Frequency Identification (RFID) or Near Field
Communication (NFC) tags attached to crates, tanks or bottles allow for
seamless tracking of batches throughout the chain [170,180,181]. In
addition, technologies such as Global Positioning System (GPS) provide
precise location information that is critical for verifying geographic
origin [176], while DNA-based technologies are key for authenticating
varietal origin [102]. Furthermore, advanced analytical techniques such
as Nuclear Magnetic Resonance (NMR) [171] and Differential Scanning
Calorimetry (DSC) [182] are used for quality control and authenticity
checks, such as verifying geographic or varietal origin, and generate
detailed data profiles suitable for compilation into databases to support
traceability systems.

The successful implementation of such systems depends on making
the wealth of traceability information easily accessible to all stake-
holders, especially the end consumer. Mobile technologies, especially
smartphones, are the main channel for this interaction [181,183]. By
scanning QR codes [180] or tapping NFC tags [181] on EVOO bottle
labels, consumers can access detailed product histories via user-friendly
mobile apps or web interfaces [175,183]. This includes verifiable details
about the origin of the oil, the specific varieties used, processing
methods, quality analyses, certifications (such as PDO/PGI (Protected
Geographical Indication) or organic), and the journey through the
supply chain. This direct link to verified information enables consumers
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to make more informed purchasing decisions and significantly increases
their trust in the brand [168,169,184]. The EVO NFC system demon-
strates how standard smartphone NFC capabilities can facilitate this
interaction seamlessly across the chain [181]. At the same time, supply
chain operators can use similar interfaces for efficient data entry, batch
tracking and process management [170,183].

The synergistic combination of the secure ledger of blockchain, the
real-time data collection of IoT, the automation of smart contracts, and
the user-friendly access of mobile/web technology offers a potentially
transformative ecosystem for OOSC traceability. This integrated digital
approach offers significant benefits: it increases transparency and visi-
bility from grove to consumer [40,56,168]; improves food safety and
quality assurance through continuous monitoring and immutable re-
cords [56,167,168]; significantly deters fraud and adulteration by
making product history verifiable [40,56,168]; increases operational
efficiency by automating processes such as quality control and reducing
manual intervention [56,168]; builds consumer trust and adds brand
value by demonstrating authenticity and quality [56,169,184]; and can
support compliance with regulations and certifications through robust,
documented evidence [40,167,171].

While implementation challenges related to cost, standardisation,
scalability and stakeholder adoption remain [40,174,178], the
compelling benefits demonstrated in numerous studies and pilot projects
strongly support the continued exploration and deployment of these
digital tools for a safer, more transparent and ultimately more trusted
olive oil industry.

4. Future outlook

The olive sector, steeped in tradition yet facing contemporary pres-
sures, is on the cusp of a significant transformation, driven by the
continued integration of digital and other 4.0 technologies. While the
recent applications outlined in the previous section show considerable
progress, the future trajectory points towards deeper integration,
enhanced intelligence and a stronger focus on sustainability and resil-
ience to address the multiple challenges outlined above, such as climate
change impacts, resource scarcity, market demands for quality and
transparency, and the need for economic viability, especially for smaller
producers.

4.1. Improved precision, automation and resilience in farming

The development of PA and SF in olive groves is expected to accel-
erate, moving beyond current monitoring capabilities towards more
predictive and prescriptive management. Future developments are
likely to involve the synergistic fusion of data from different sources,
including advanced RS platforms (satellites, UAVs) providing high-
resolution spatial and temporal data [31,185,186], proximal sensors
directly measuring plant physiological status [22,187,188] and IoT
networks relaying real-time environmental data. The integration of
proximal and RS data holds particular promise for more accurate,
multi-scale assessments of water status [187], which is critical for
optimising irrigation in the face of increasing drought stress exacerbated
by climate change [18,189-191].

Al and ML will play a key role in translating this wealth of data into
actionable insights. Future AI systems are expected to provide more
sophisticated decision support to predict yield with greater accuracy
[192], optimise inputs (water, nutrients) and enable earlier and more
accurate detection and management of pests and diseases [31]. While Al
shows promise for disease detection at the leaf level, significant ad-
vances are needed for reliable detection at the field level amidst envi-
ronmental complexity [193]. Tackling devastating threats such as
Xylella fastidiosa will require integrated approaches combining
advanced RS (hyperspectral, thermal) with Al for early, pre-visual
detection and epidemiological modelling to optimise surveillance and
containment [37,39,194], alongside an understanding of vector ecology
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[21]. Similarly, smart monitoring systems for pests such as Bactrocera
oleae will become more sophisticated [101].

RA will move beyond current harvesting aids (e.g. shakers) to more
autonomous and complex operations. Future research is likely to focus
on developing robots capable of selective harvesting based on maturity,
precision pruning, targeted pest/disease treatment (reducing the use of
chemicals) and autonomous navigation in difficult terrain [36,89]. In-
novations such as endo-therapy, possibly combined with precision de-
livery systems, offer targeted treatment options for plant vascular
diseases [195]. In addition, artificial pollination technologies could be
used in specific scenarios to ensure fruit set [196]. The development of
robotic orchard systems, such as narrow orchard designs, will facilitate
the adoption of these technologies [197].

4.2. Improving quality control, authenticity and traceability

Ensuring the quality and authenticity of olive oil remains paramount,
driven by consumer demand and the prevalence of fraud [13,78]. The
future will see the continued development and deployment of rapid,
non-destructive analytical techniques. Spectroscopic methods (NIR,
MIR, Raman, fluorescence) and hyperspectral imaging will become
more powerful, portable and integrated into online/inline monitoring
systems within processing plants [104,109]. Al and chemometrics will
be essential to extract meaningful information from the complex spectral
data generated to improve the accuracy of quality assessment,
geographical origin verification and adulteration detection [118,198,
199]. Electronic sensing technologies, including e-noses and biosensors
(potentially using nanotechnologies such as graphene [200]), will pro-
vide low-cost, real-time analysis capabilities for volatile profiles and
specific biomarkers [132,133,201]. Techniques such as ion mobility
spectrometry (IMS) also show potential for rapid analysis in food ap-
plications [202].

Traceability systems will evolve beyond simple record keeping to
fully integrated, transparent and secure platforms. Blockchain technol-
ogy, combined with IoT sensors for real-time monitoring and smart
contracts for automated verification, is likely to become more wide-
spread, although challenges related to scalability and adoption remain
[40,56,174]. The integration of advanced analytical data (spectroscopy,
DNA) on these platforms will provide robust, multi-layered proof of
authenticity and quality from grove to consumer [102,203,204].
Advanced DNA-based techniques such as Droplet Digital Polymerase
Chain Reaction (ddPCR) and Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR) systems may offer improved accuracy for
variety identification and fraud detection [204].

4.3. Driving sustainability, circularity and value creation

Addressing the environmental footprint of olive growing and pro-
cessing is a critical future direction. Digital technologies will support
efforts to optimise the use of resources (water, energy, agrochemicals)
through precision management. A major focus will be the transition to a
circular economy model for the olive sector [205]. This includes the
comprehensive valorisation of by-products that are currently considered
waste, such as olive mill wastewater (OMWW), olive pomace, leaves and
pruning residues [24]. Future research will intensify efforts to efficiently
extract high-value bioactive compounds (polyphenols such as oleur-
opein, hydroxytyrosol) from these streams for use in functional foods,
nutraceuticals, pharmaceuticals and cosmetics [8,9,140,206]. These
by-products also have potential for the production of biofuels, bio-
polymers (such as Polyhydroxyalkanoates (PHAs)), feed components,
soil amendments and even building materials (e.g. olive stone ash in
concrete) [207-209].

Nanotechnology offers promising ways to increase the value and
application of olive derived products and by-products. This includes the
development of nano-delivery systems to improve the bioavailability
and efficacy of olive polyphenols for health applications [138,140,210,
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2111, the creation of nano-formulations for targeted plant protection or
enhanced nutrient delivery (nano-fertilisers) [153,157,195], and the
potential development of advanced food packaging materials [162].
However, the widespread adoption of nanotechnology requires a
rigorous assessment of the potential environmental and health risks
associated with nanomaterials, which calls for further research and clear
regulatory frameworks [166,212,213].

4.4. Overcoming barriers to integration and adoption

Realising the full potential of these technologies depends on over-
coming significant barriers to integration, data management and adop-
tion (Fig. 3). Future efforts must focus on developing interoperable
systems and common data standards to enable seamless communication
between different technologies and platforms across the value chain
[214]. In addition, handling the large datasets ("big data") common in
PA requires advanced analytical tolos [68] and increasingly relies on ML
and Al to process information and support management decisions
through analysis and interpretation systems [36]. Robust data gover-
nance frameworks are needed to deal with the massive datasets being
generated [215].

A key challenge is to ensure equitable access and adoption, especially
for the many smallholders and cooperatives that dominate the sector,
especially in traditional regions [11,14]. High investment costs, the
need for digital literacy and technical skills, and potential resistance to
change are significant barriers [40]. Future strategies must include the
development of affordable and user-friendly solutions, the provision of
targeted training and support, and the promotion of collaborative
models (e.g. through cooperatives) to share costs and expertise [7,216].
Addressing cybersecurity risks, ensuring data privacy and the ethical use
of Al will also be critical [35,172]. Ultimately, successful digital trans-
formation will require a concerted effort involving researchers, tech-
nology providers, farmers, industry stakeholders and policymakers to
create an enabling ecosystem that fosters innovation while ensuring
sustainability, inclusivity and resilience for the future of the olive sector.

5. Conclusions

The olive sector, a globally significant industry with deep roots in
tradition and culture, is at a critical juncture, facing a confluence of
economic, environmental and market challenges. This review provides a
comprehensive overview of the burgeoning role of digital and other 4.0
technologies in addressing these pressures and reshaping olive farming
and industry. From cultivation to consumption, the integration of in-
novations such as PA, SF, IoT, AI/ML, robotics, AS (spectroscopy, HSI,

Overcoming Barriers to
Integration and Adoption

INTEROPERABLE
SYSTEMS
Developing common
data standards

|
| VK | @
L 278

EQUITABLE ACCESS AFFORDABLE
Supporting smallholders SOLUTIONS
and cooperatives Providing training and
user-friendly tools

DATA MANAGEMENT
Handling "big data”
and ensuring security

Fig. 3. Overcoming key barriers to digital transformation.
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biosensors), nanotechnology and blockchain offer transformative
potential.

The analysis shows that these technologies are already delivering
tangible benefits across the value chain. PA and SF tools are increasing
resource efficiency (water, nutrients, pesticides), improving monitoring
capabilities and enabling data-driven decision making in olive groves. Al
and ML are proving instrumental in yield forecasting, early detection of
pests and diseases, optimisation of processing parameters and, crucially,
quality control and fraud detection. RA are beginning to alleviate labour
shortages and improve the efficiency of harvesting and processing op-
erations, while advanced spectroscopic and sensing methods are
providing rapid, non-destructive tools to ensure the quality, authenticity
and traceability of olive oil. Nanotechnology offers new ways to add
value to olive products and by-products, particularly in nutraceutical
and biomedical applications. In addition, blockchain integrated with IoT
offers unprecedented levels of transparency and security, strengthening
supply chain integrity and building consumer trust in a market often
plagued by adulteration.

The future outlook points to accelerated adoption and deeper inte-
gration of these technologies. Synergistic approaches that combine data
from multiple sources (RS, proximal sensors, IoT) and use sophisticated
Al analytics will lead to more predictive, prescriptive and resilient
agricultural systems that can adapt to the impacts of climate change and
resource scarcity. Automation is likely to extend to more complex tasks,
while quality control and traceability systems will become increasingly
sophisticated, incorporating real-time data and advanced analytical
fingerprints on secure platforms. An important future direction is to use
these technologies to promote a circular economy within the sector,
maximising the valorisation of by-products and minimising environ-
mental impacts.

Despite the compelling potential, there are significant barriers to
widespread adoption. High implementation costs, the need for increased
digital literacy and technical skills, challenges related to data interop-
erability and management, and ensuring equitable access for small-
holders and cooperatives remain critical barriers. Overcoming these will
require concerted efforts focused on developing affordable, user-friendly
solutions, providing targeted support and training, promoting collabo-
rative models, and establishing robust data governance and cyberse-
curity frameworks.

In summary, digital and 4.0 technologies represent a paradigm shift
for the olive sector. While not a panacea, their strategic and integrated
application holds great promise for improving productivity, sustain-
ability, quality and transparency throughout the value chain. Realising
this potential will require continued research, innovation, investment
and collaboration among all stakeholders to address the challenges and
foster an inclusive transition towards a more resilient, competitive and
trusted future for the global olive industry.
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