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Formal Local Implication Between Two Neural Networks
Anahita Baninajjar a,*, Ahmed Rezine b and Amir Aminifar a

aDepartment of Electrical and Information Technology, Lund University, Sweden
bDepartment of Computer and Information Science, Linköping University, Sweden

Abstract. Given two neural network classifiers with the same in-
put and output domains, our goal is to compare the two networks
in relation to each other over an entire input region (e.g., within a
vicinity of an input sample). To this end, we establish the foundation

of formal local implication between two networks, i.e., N2
D
=⇒ N1,

in an entire input region D . That is, network N1 consistently makes
a correct decision every time network N2 does, and it does so in an
entire input region D . We further propose a sound formulation for
establishing such formally-verified (provably correct) local implica-
tions. The proposed formulation is relevant in the context of several
application domains, e.g., for comparing a trained network and its
corresponding compact (e.g., pruned, quantized, distilled) networks.
We evaluate our formulation based on the MNIST, CIFAR10, and two
real-world medical datasets, to show its relevance.

1 Introduction
Quantitative comparison of neural networks, e.g., in terms of per-
formance, is a fundamental concept in the Machine Learning (ML)
domain. One common example is when a network is pruned, quan-
tized, or distilled to run the compact networks on edge devices or
smart sensors. In the medical domain, for instance, neural networks
can enable implantable and wearable devices to detect myocardial
infarction [26] or epileptic seizures [1] in real time. However, due
to their limited computing resources, such devices often adopt the
compact networks corresponding to the original medical-grade net-
works. It is vital for the compact network to reliably detect cardiac
abnormalities/seizures, as lack of reliable decisions can jeopardize
patients’ lives. Therefore, reasoning about the decisions made by the
compact network and their relation to the decisions made by the origi-
nal/reference network is vital for the safe deployment of the compact
networks.

In this work, we focus on compatible neural networks, i.e., two
neural networks trained for the same learning/classification task,
with the same input and output domains, but not the same weights
and/or architectures. We define an input region as the region in
a vicinity of a given input sample, e.g., captured by the absolute-
value/Euclidean/maximum norm centered around the input sample.
Given the two networks and an input region, we investigate whether it
is possible to prove that, in the entire input region, one network (N1)
consistently makes a correct decision every time the other network

(N2) does. That is, N2
D
=⇒ N1, in an entire input region D . This is

the definition of implication that is valid in an entire input region D
(i.e., local), hence referred to as local implication.
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Figure 1: Two binary classifiers (red and blue) learn to capture the
black/white classes ⊕ and ⊖. Formal local implication captures,
despite robustness violations of both red and blue classifiers, that the
blue classifier makes the right decision each time the red one does
within δ3 perturbations of sample s.

Formal local implication can capture, as illustrated in Figure 1,
that despite possible violations of local robustness, one network (the
blue classifier in Figure 1) makes the correct decision (with respect
to ground truth as captured by the black/white ⊕ and ⊖ in the figure)
each time the other network does (the red classifier in the figure).
Tracking the decisions of the two networks separately cannot capture
local implication. Instead, outputs of both networks need to be com-
pared for each single input sample throughout the whole considered
input region. To this end, we define the notion of Local Relative Out-
put Margin (LROM). LROM not only enables us to reason about the
given input samples, but also to reason about the entire region in the
vicinity of the samples.

In this paper, we propose a formulation to establish safe (provably-
correct) bounds on LROM and formal verification guarantees on the
decisions made by the two networks in the entire input region. LROM
enables us to formally prove that a network consistently makes a
correct decision every time the other network does, and it does so
in the entire input region. We evaluate our proposed formulation
extensively on several datasets to show its relevance, including two
real-world medical applications for detection of cardiac arrhythmia or
epileptic seizures. Our main contributions are summarized below:

• We establish the foundation of formal local implication between

two networks N1 and N2, i.e., N2
D
=⇒ N1.

• We propose a sound formulation for establishing such formally-
verified (provably correct) local implications.
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• We conduct extensive experiments to compare the decisions made
by pre-trained classifiers and their corresponding pruned, quantized,
knowledge-distilled, or verification-friendly counterparts, on the
MNIST dataset [18], CIFAR10 dataset [17], CHB-MIT epilepsy
dataset [24], and MIT-BIH arrhythmia dataset [10].

2 Formal Definitions and Notations

In this section, we formally describe Deep Neural Network (DNN)
classifiers. Moreover, we introduce and formalize the notion of Rela-
tive Output Margin (ROM) and its extension to an entire input region,
i.e., LROM. Finally, we connect the notion of LROM to formal local
implications.

2.1 Deep Neural Networks (DNNs)

In this work, we mainly consider DNN classifiers. A DNN clas-
sifier is a nonlinear function N : Rn

N
0 → Rn

N
N consisting of a

sequence of N layers followed by a softmax layer. Each layer is
a linear transformation followed by a nonlinear activation function.
Here, nN

k is the number of neurons in the kth layer of network N.

Let fN
k (·) : Rn

N
k−1 → Rn

N
k be the function that derives values of the

kth layer from the output of its preceding layer. The values of the kth

layer, denoted by x(k), are given by:

x(k) = fN
k (x(k−1)) = actNk (W (k)x(k−1) + b(k)),

where W (k) and b(k) capture weights and biases of the kth layer, and
actNk represents an activation function. The last layer uses softmax as
the activation function. For each class ci in the last layer N + 1, the
softmax function value is: x(N+1)

ci = σci(x
(N)).

2.2 Local Relative Output Margins (LROMs)

We consider two DNNs N1 with N1 + 1 layers with val-
ues x(0), . . .x(N1+1) and N2 with N2 + 1 layers with values
y(0), . . .y(N2+1). Suppose nN1

0 = nN2
0 and nN1

N1
= nN2

N2
. Such

networks are said to be compatible as their inputs and outputs have
the same dimensions.

Let us now introduce the notions of Output Margin (OM) and of
Relative Output Margin (ROM).

Definition 1. Output Margin (OM) πN1

x(0)(ci, cj) of classes (ci, cj)

for DNN N1 and input x(0) is the ratio πN1

x(0)(ci, cj) =
σci

(x(N1))

σcj
(x(N1))

of the outcome being ci by the one of being cj .

Recall classifiers decide on the class with a maximum softmax
value. Let us consider binary classification for simplicity. Assuming
the predicted class is ci, we know σci(x

(N1)) ≥ σcj (x
(N1)) and, in

turn, πN1

x(0)(ci, cj) =
σci

(x(N1))

σcj
(x(N1))

≥ 1.

Definition 2. Relative Output Margin (ROM) ΠN1|N2

x(0) (ci, cj) of class
pair (ci, cj) for N1 w.r.t. compatible N2, and for common input
x(0) = y(0), is the quotient of the Output Margin (OM) in N1 by the
one in N2:

Π
N1|N2

x(0) (ci, cj)=
πN1

x(0)(ci, cj)

πN2

y(0)(ci, cj)
=

σci(x
(N1))· σcj (y

(N2))

σcj (x
(N1))· σci(y

(N2))
.

We use ΠN1|N2

x(0) (ci, cj) to compare output margins between ci and
cj in DNNs N1 and N2 for the same input x(0).

To explore formal local implication, we establish in this paper
bounds on ROM values in entire input regions, e.g., in the vicinity
of an input x̃(0) or in a δ-neighborhood of an input x̃(0), defined as
Dδ

x̃(0) =
{
x(0) s.t. ∥x(0) − x̃(0)∥∞ ≤ δ

}
.

Definition 3. Local Relative Output Margin (LROM) of classes
(ci, cj) for N1 w.r.t. its compatible network N2 in Dδ

x̃(0) is the set{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

}
.

Remark 1. If min
{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

}
≥ 1, then

πN1

x(0)(ci, cj) ≥ πN2

x(0)(ci, cj), for all x(0) in the entire input re-
gion Dδ

x̃(0) . If N2 makes a correct decision, i.e., πN2

x(0)(ci, cj) =

σci
(x(N2))

σcj
(x(N2))

≥ 1, then πN1

x(0)(ci, cj) =
σci

(x(N1))

σcj
(x(N1))

≥ 1, assuming the

predicted class is ci. This, in turn, means that, in the entire input
region Dδ

x̃(0) , N1 will make a correct decision every time N2 does,

i.e., N2

Dδ

x̃(0)
=⇒ N1. We say that N2 implies N1 on Dδ

x̃(0) .

3 Method

In this section, we introduce an optimization problem to bound
LROMs for two compatible DNNs and establish formal local implica-
tion between two networks. We also describe how we introduce and
handle an over-approximation of the two networks in order to soundly
solve the optimization problem and derive a (provably-correct) veri-
fied bound.

Assume two compatible DNNs N1 and N2 with respectively
N1 + 1 and N2 + 1 layers, a common input x̃(0) in the do-
main D of N1 and N2, and a perturbation bound δ. Our goal
is to find, for any class pair (ci, cj), a tight lower bound for

min
{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

}
and a tight upper bound for

max
{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

}
.

The above optimization problem involves the softmax func-
tion. Therefore, to solve this optimization problem, we look
into ln

(
Π

N1|N2

x(0) (ci, cj)
)

and observe it coincides with (x
(N1)
ci −

x
(N1)
cj )−(y

(N2)
ci −y

(N2)
cj ). Hence, we can characterize LROM bounds

by reasoning on inputs to the softmax layers (i.e., networks’ logits).
As a result, our optimization objective is simplified to:

ln
(
min

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
=

min
x(0)=y(0)∈Dδ

x̃(0)

(
(x(N1)

ci − x(N1)
cj )− (y(N2)

ci − y(N2)
cj )

)
,

ln
(
max

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
=

max
x(0)=y(0)∈Dδ

x̃(0)

(
(x(N1)

ci − x(N1)
cj )− (y(N2)

ci − y(N2)
cj )

)
.

Let us now formulate the optimization problem based on the above
objective function and the constraints imposed by the neural networks



and input region, as follows:

min
x(0)

(x(N1)
ci − x(N1)

cj )− (y(N2)
ci − y(N2)

cj ), (1)

s.t. y(0) = x(0), x̃(0) ∈ D, (2)

∥x(0) − x̃(0)∥∞ = ∥y(0) − x̃(0)∥∞ ≤ δ, (3)

x(k) = fN1
k (x(k−1)), ∀k ∈ {1, . . . , N1}, (4)

y(l) = fN2
l (y(l−1)), ∀l ∈ {1, . . . , N2}. (5)

Let MN1|N2

x̃(0),δ
(ci, cj) be the exact value obtained as solution to this

problem. Equation (1) introduces the objective function used to cap-
ture the (logarithm of the) minimum ROM of the class pair (ci, cj)
for N1 w.r.t. N2 in the input region Dδ

x̃(0) .1 Note that x(N1)
ci −x

(N1)
cj

captures the difference between the logit values associated to classes
ci and cj in network N1. Similarly, y(N2)

ci − y
(N2)
cj captures the dif-

ference between the logit values associated to the same classes in N2.
The objective function is then to minimize the difference between
these two quantities.

Let us consider Equations (2)–(5). Equation (2) enforces both that
y(0) (the perturbed input to network N2) equals x(0) (the perturbed
input to network N1), and that the original input x̃(0) belongs to the
dataset D of the two networks. Equation (3) enforces that the per-
turbed inputs x(0) and y(0) are in the δ-neighborhood of x̃(0). Equa-
tion (4) characterizes values of the first N1 layers of network N1 as it
relates the values of the kth layer (for k in {1, . . . , N1}) to those of its

preceding layer, using the nonlinear function fN1
k : Rn

N1
k−1 → Rn

N1
k .

The same is applied to network N2 using the nonlinear functions

fN2
l : Rn

N2
l−1 → Rn

N2
l for each layer l as captured in Equation (5).

Equations (4) and (5) involve activation functions, hence result
in nonlinear constraints. As such, finding the exact global optimal
solution is intractable. To address this, we consider a sound over-
approximation of nonlinearities. In particular, we consider Rectified
Linear Unit (ReLU) activation function and adopt existing relaxations
for it [8, 25, 2], to over-approximate the values computed at each layer
using linear inequalities (see the appendix of [5]).

These over-approximations result in a relaxed optimization problem
that can be solved using Linear Programming (LP). The solution
of the relaxed optimization problem is denoted by RN1|N2

x̃(0),δ
(ci, cj).

Because the relaxed optimization over-approximates the exact one in
Equations (1)–(5) and that we are able to find the optimal solution to
the LP relaxed formulation, any lower bound obtained for the relaxed
problem is guaranteed to be smaller than a solution for the original
minimization problem, i.e., RN1|N2

x̃(0),δ
(ci, cj) ≤ MN1|N2

x̃(0),δ
(ci, cj).

Theorem 1. Let (ci, cj) be a pair of classes of compatible DNNs N1

and N2. Assume a neighborhood Dδ
x̃(0) and let RN1|N2

x̃(0),δ
(ci, cj) (resp.

RN2|N1

x̃(0),δ
(ci, cj)) be a solution to the relaxed minimization problem

corresponding to LROM of N1 w.r.t. N2 (resp. N2 w.r.t. N1). Then,

1 The objective function captures a stronger condition than mere implication, as
it ensures that the margin does not shrink. While our framework is designed
for margin preservation, it can be easily adapted to verify only implication
by changing the objective to x

(N1)
ci − x

(N1)
cj and moving the second part

of the original objective into the constraints as y(N2)
ci − y

(N2)
cj > 0.

we have:

RN1|N2

x̃(0),δ
(ci, cj) ≤ MN1|N2

x̃(0),δ
(ci, cj) =

ln
(
min

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
≤

ln
(
max

{
Π

N1|N2

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
=

− ln
(
min

{
Π

N2|N1

x(0) (ci, cj) | x(0) ∈ Dδ
x̃(0)

})
=

−MN2|N1

x̃(0),δ
(ci, cj) ≤ −RN2|N1

x̃(0),δ
(ci, cj).

Based on Theorem 1, the solutions to relaxed optimization problems
provide safe lower/upper bounds for LROMs, i.e., RN1|N2

x̃(0),δ
(ci, cj) ≤

MN1|N2

x̃(0),δ
(ci, cj) ≤ −RN2|N1

x̃(0),δ
(ci, cj).

Corollary 1. Let (ci, cj) be a pair of classes of compatible DNNs
N1 and N2. Assume a neighborhood Dδ

x̃(0) and let RN1|N2

x̃(0),δ
(ci, cj)

be a solution to the relaxed minimization problem corresponding to
LROM of N1 w.r.t. N2. If RN1|N2

x̃(0),δ
(ci, cj) > 0, then for all perturbed

inputs x(0) ∈ Dδ
x̃(0) for which N2 correctly classifies x(0), then N1

also correctly classifies x(0). That is, N2 implies N1 on Dδ
x̃(0) , i.e.,

N2

Dδ

x̃(0)
=⇒ N1.

Joint vs Independent Analysis Our original optimization problem
and its linear relaxation compute ROMs bounds for a common input
across both networks, ranging over the considered neighborhood. An
alternative approach is to reason based on independently obtained
ranges of Output Margins (OMs) for each network. However, while
independently computing and combining the ranges of OMs for each
network leads to sound approximations of ROMs, it results in a sig-
nificant loss of precision, as it does not consider a common input
to both networks. This is formalized by the theorem below, and is
witness by our experiments where we evaluate the corresponding loss
in precision.

Theorem 2. Let MN1|0
x̃(0),δ

(ci, cj) denote the value of the objective

function in Equation (1), i.e., (x(N1)
ci − x

(N1)
cj )− (y

(N2)
ci − y

(N2)
cj ),

under the choice of a constant second network N2 that assigns uni-
form probabilities to all outcomes. In this case, the second term
becomes zero, and the expression simplifies to x

(N1)
ci − x

(N1)
cj , corre-

sponding to computing minimum OMs for N1 on its own. Similarly,
MN2|0

x̃(0),δ
(ci, cj) equals y

(N2)
ci − y

(N2)
cj , and M0|N2

x̃(0),δ
(ci, cj) corre-

sponds to its negation. This leads to the following inequality, express-
ing that the sum of the independently obtained OMs is less than or
equal to the ROM value when both networks are considered together:

MN1|0
x̃(0),δ

(ci, cj) +M0|N2

x̃(0),δ
(ci, cj) ≤ MN1|N2

x̃(0),δ
(ci, cj).

Transitivity Property of LROMs Here, we show that LROMs has
the transitivity property, which can extend the results to more than
two compatible networks.

Theorem 3. Let (ci, cj) be a pair of classes of compatible DNNs N1,
N2, and N3. Assume a neighborhood Dδ

x̃(0) and let RN1|N2

x̃(0),δ
(ci, cj)

be a solution to the relaxed minimization problem corresponding to
LROM of N1 w.r.t. N2. Similarly, let RN2|N3

x̃(0),δ
(ci, cj) be a solution

to the relaxed minimization problem corresponding to LROM of N2

w.r.t. N3. If we know RN1|N2

x̃(0),δ
(ci, cj) > 0 and RN2|N3

x̃(0),δ
(ci, cj) > 0,

then we can conclude RN1|N3

x̃(0),δ
(ci, cj) > 0.



Proof. Proof sketches of Theorems 1–3, as well as Corollary 1, are
presented in the appendix of [5].

4 Evaluation
We evaluate our proposed formulation for formal local implication
and investigate the ranges of LROMs across various datasets and
DNN structures.2 Experiments are executed on a MacBook Pro with
an 8-core CPU and 32 GB of RAM using the Gurobi solver [12].

4.1 Datasets

We use the following datasets for evaluation:
MNIST dataset [18] contains grayscale handwritten digits. Each

digit is depicted through a 28×28 pixel image. We consider the first
100 images of the test set, similar to [28] and [25].

CIFAR10 dataset [17] comprises 32×32 colored images catego-
rized into 10 different classes. In alignment with [28] and [25], we
focus on the first 100 images from the test set.

CHB-MIT Scalp EEG database [24] includes 23 individuals
diagnosed with epileptic seizures. These recordings are sampled in
the international 10–20 EEG system, and our focus is on F7-T7 and
F8-T8 electrode pairs, commonly used in seizure detection [27].

MIT-BIH Arrhythmia database [10] involves 48 individuals with
2-channel ECG signals. To establish a classification problem, we
consider a subset of 14 cardiac patients who demonstrated at least two
different types of heartbeats.

4.2 Neural Networks

In this section, we describe the neural network architecture for each
dataset. Detailed information, e.g., accuracy of these DNNs, is avail-
able in the appendix of [5].

4.2.1 Original Networks

For the MNIST and CIFAR10 datasets, we use fully-connected DNNs
from [28], all of which have undergone robust training as outlined
in [6]. We also employ convolutional DNNs described in [28], with
results provided in the appendix of [5]. For the CHB-MIT dataset, the
personalized DNN for each patient has 2048 input neurons, convolu-
tion layers followed by max-pooling, and ends with a dense layer [3].
For the MIT-BIH dataset, the DNN has 320 input neurons, a convolu-
tion layer, and a dense layer [3].

4.2.2 Compact Networks

Our experiments involve various techniques to derive compact DNNs.
These techniques derive compact DNNs enabling energy-efficient
inference on limited resources.

Pruned Networks are created through a pruning procedure applied
to DNNs, where certain weights and biases are selectively nullified.
For the MNIST and CIFAR10 datasets, we use pruned networks
generated by [28] via post-training pruning. Each pruned network
removes the smallest weights/biases in each layer, a process called
Magnitude-Based Pruning (MBP), resulting in nine pruned networks
with pruning rates ranging from 10% to 90%. For the CHB-MIT and
MIT-BIH datasets, we apply MBP pruning by setting values below
10% of the maximum weight/bias to zero.

2 The code is available [4].

Verification-friendly Neural Networks (VNNs) are generated by
optimizing weights and biases to maintain their functionality while
reducing the number of non-zero weights, as described in [3], and are
subsequently used for all networks.

Quantized Networks are obtained by reducing the precision of
network weights, converting them from 32-bit floating-point to lower
precision. The MNIST and CIFAR10 networks are quantized using
post-training float16, int16, int8, and int4 methods provided by [28].
The same quantization methods are applied to the DNNs trained on
CHB-MIT and MIT-BIH datasets.

Distilled Networks are networks trained via knowledge distillation
to mimic teacher networks’ behavior. We consider nine temperatures,
i.e., T = 1, . . . , 9, and produce distilled networks for all datasets
following [13].

4.3 Results and Analysis

We conduct several experiments with our proposed method for as-
sessing local implications by establishing bounds on LROMs. We
exclusively focus on correctly classified samples within each test set.
We consider the widths and depths of the networks when defining
perturbations. We use δ = 0.001 and δ = 0.01 for the MNIST and
CIFAR10 datasets and experiment with several values for the CHB-
MIT dataset (δ up to 0.002) and the MIT-BIH dataset (δ up to 0.4).
We say we establish local implication of N1 w.r.t. N2 on sample

vicinity Dδ
x̃(0) (i.e., N2

Dδ

x̃(0)
=⇒ N1), if we show RN1|N2

x̃(0),δ
(c, cj) ≥ 0

for all pairs (c, cj), where c is the correct class. We omit sam-
ples and vicinities when they are clear from the context and write
N2 =⇒ N1 for short. Observe that RN1|N2

x̃(0),δ
(c, cj) ≥ 0 im-

plies MN1|N2

x̃(0),δ
(c, cj) ≥ 0, since RN1|N2

x̃(0),δ
(ci, cj) ≤ MN1|N2

x̃(0),δ
(ci, cj)

by soundness of our method. Here, we use zero as a threshold in
RN1|N2

x̃(0),δ
(c, cj) ≥ 0 as it corresponds to checking increases or de-

creases of OM from one network to the other. However, our approach
can easily accommodate other thresholds.

Given two compatible networks N2 and N1 to be compared on the
δ-vicinities of a set of samples, we state that N1 has more established
implications if there are more samples for which we could show
N1 is implied by N2 on the corresponding vicinities (i.e., we could
establish N2 =⇒ N1) than those for which we could establish
N2 is implied by N1 (i.e., N1 =⇒ N2). In this context, if N1 has
more established implications than N2, then the number of samples
with vicinities where we could establish N1 made the correct decision
each time N2 did is larger than the number of samples with vicinities
where we could establish N2 made the correct decision each time N1

did. In other words, we could establish formal local implications for
N1 w.r.t. N2 more often than we could establish it for N2 w.r.t. N1.

4.3.1 Analysis of Formal Local Implication

Here, we explore formal local implications between original and
compact DNNs using LROM.

MNIST Dataset. Figures 2a– 2c present the results of formal local
implication for DNNs trained on the MNIST dataset when δ = 0.001.
In this figure, the y-axis represents the percentage of samples in the
dataset, referred to as established implication, showing the propor-
tion for which the compact network implies the original network on
δ-vicinity of considered samples, and the reverse. Compact =⇒
Original means that whenever the compact network makes a correct
decision for a sample, the original network does the same. Figure 2a
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(d) CIFAR10, Pruned [28], [3]
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Figure 2: Stacked bar plots illustrate the established implication of fully-connected DNNs trained on the MNIST and CIFAR10 datasets with
δ = 0.001. The y-axis represents the percentage of samples in the dataset, referred to as established implication, showing the proportion for
which the Compact network implies the Original network (Compact =⇒ Original) and vice versa. Compact =⇒ Original means that
whenever the Compact network makes a correct decision for a sample, the Original network does as well.

shows an increase in the established implication as the pruning pro-
portion rises, when investigating how pruned networks imply the
behavior of the original networks (Pruned =⇒ Original). There are
two potential explanations for this phenomenon. First, the similarity
between the original and less-pruned networks may lead to no network
having a higher established implication across the entire perturbation
neighborhood. Second, our method may establish implication of more
samples in more-pruned networks, due to their sparsity.

The last column of Figure 2a presents the results of investigating the
established implication of the VNN generated using [3]. The results
show that the VNN is comparable to that of the original network, as
both the implication of the VNN by the original network and vice
versa are close to zero.

Established implications of quantized networks are depicted in
Figure 2b, with quantization precision on the x-axis. Results show
original networks are more likely to be implied by the quantized
ones than vice versa; i.e., there are more cases where we could estab-
lish Quantized =⇒ Original than cases where we could establish
Original =⇒ Quantized.

Figure 2c illustrates established implication of distilled and original
networks implied by each other. The x-axis denotes the temperature of
the distilled network, and the y-axis indicates the established implica-
tion. This figure demonstrates that the likelihood of distilled networks
being implied by original networks increases as temperatures rise,
rather than the other way around. The patterns of established implica-
tion exhibited by distilled networks differentiate them from pruned
and quantized networks, making them a favorable option for creating
compact and energy-efficient networks.

The processing time for each sample in the dataset depends on the
perturbation, i.e., the value of δ, and the architecture of the original
and compact networks. The processing time (µ ± σ) is 15.0 ± 0.7
seconds when δ = 0.001 and 18.3 ± 5.2 seconds when δ = 0.01
for pruned and quantized networks. The processing time for distilled
networks is 6.7± 0.1 seconds for δ = 0.001 and 6.9± 0.2 seconds
for δ = 0.01.

CIFAR10 Dataset. Figures 2d– 2f show the results of investigating
formal local implication of DNNs trained on the CIFAR10 dataset
when δ = 0.001. Although the general patterns in the results of the
CIFAR10 DNNs are similar to those of the MNIST DNNs, a few
differences are observed. In Figure 2e, the quantized network with
int8 precision is more likely to be implied by the original network
rather than the reverse. This suggests that the reduction in precision
does not significantly impair the network’s ability to make the correct
decision each time the original one does. Moreover, in Figure 2f,
distilled networks consistently exhibit a higher established implication
across different temperatures. This behavior indicates that, in this set
of experiments, despite fewer parameters, distilled networks tend to
better make the correct decision each time the original network does
than those obtained with other compaction schemes.

The processing time of DNNs trained on the CIFAR10 dataset is
higher than that of the MNIST DNNs, as the number of parameters is
larger due to the input size. The processing time (µ±σ) is 33.1± 2.1
seconds when δ = 0.001 and 43.9 ± 8.1 seconds when δ = 0.01
for pruned and quantized networks. The processing time of distilled
networks is 15.0 ± 0.9 and 18.1 ± 2.6 seconds for δ = 0.001 and
δ = 0.01, respectively.



Table 1: The minimum, maximum, and range (µ± σ) of LROMs for scenarios where implications of Original networks by Compact ones are
investigated using independent and joint analyses at δ = 0.001 and δ = 0.01 on MNIST and CIFAR10. Our joint analysis results in a tighter
range, with improvement calculated as

(
1− Rangejoint

Rangeind.

)
× 100, indicating the percentage reduction in range.

MNIST [18] CIFAR10 [17]
Pruned Quantized Distilled VNN Pruned Quantized Distilled VNN

δ
=

0
.0
0
1

Min (↑) Ind. 1.424±1.519 −0.485±0.296 −19.456±23.286 −0.460±0.322 0.000±0.043 −0.026±0.028 −5.927±5.049 0.120±0.301

Joint 1.875±1.680 0.010±0.016 −19.237±23.317 −0.167±0.191 0.025±0.046 0.001±0.002 −5.907±5.040 0.128±0.304

Max (↓) Ind. 2.391±1.898 0.517±0.314 −18.118±23.399 0.469±0.330 0.055±0.065 0.029±0.030 −5.471±4.849 0.162±0.315

Joint 1.940±1.706 0.023±0.019 −18.338±23.367 0.176±0.197 0.030±0.049 0.002±0.002 −5.491±4.858 0.154±0.311

Range (↓) Ind. 0.967±2.431 1.002±0.432 1.338±33.011 0.929±0.461 0.055±0.078 0.055±0.041 0.456±7.000 0.042±0.436

Joint 0.065±2.394 0.013±0.025 0.899±33.011 0.343±0.274 0.005±0.067 0.001±0.003 0.416±7.000 0.026±0.435

Improvement (↑) 93.3% 98.7% 32.8% 63.1% 90.9% 98.2% 8.8% 38.1%

δ
=

0
.0
1

Min (↑) Ind. −3.141±2.357 −5.165±3.112 −25.995±22.597 −4.828±2.923 −0.257±0.268 −0.287±0.294 −8.088±6.097 −0.079±0.305

Joint 1.058±1.547 −0.649±0.595 −23.917±22.870 −2.113±1.322 −0.044±0.086 −0.070±0.088 −7.906±5.991 −0.011±0.293

Max (↓) Ind. 6.836±4.243 5.197±3.129 −12.368±23.812 4.662±2.815 0.314±0.321 0.290±0.296 −2.966±4.091 0.351±0.433

Joint 2.635±1.941 0.681±0.600 −14.496±23.462 1.935±1.211 0.102±0.115 0.073±0.089 −3.144±4.145 0.286±0.381

Range (↓) Ind. 9.977±4.854 10.362±4.413 13.627±32.827 9.490±4.058 0.571±0.418 0.577±0.417 5.122±7.342 0.430±0.530

Joint 1.577±2.482 1.330±0.845 9.421±32.764 4.048±1.793 0.146±0.144 0.143±0.125 4.762±7.285 0.297±0.481

Improvement (↑) 84.2% 87.2% 30.9% 57.3% 74.4% 75.2% 7.0% 30.9%

4.3.2 Comparison with Independent Analysis

Table 1 shows the minimum, maximum and range (µ± σ) of LROMs
for the scenario where we assess if compact networks imply original
ones using independent and joint analyses at δ = 0.001 and δ = 0.01
for MNIST and CIFAR10 datasets. Results show that our proposed
joint analysis consistently produces higher minimum values and lower
maximum values, resulting in a tighter range for LROMs. This occurs
because considering two networks in the same setting, as in joint anal-
ysis, removes unrealistic scenarios that would not occur in reality, thus
preventing a minimum lower than the true minimum and a maximum
higher than the true maximum.

Here, range refers to the difference between the minimum and
maximum values of each method (Max − Min), where the range
calculated by our joint analysis method is consistently lower than
that of the independent analysis. Improvement is calculated using(
1− Rangejoint

Rangeind.

)
× 100, which measures the percentage reduction in

range from the independent to the joint analysis. For example, for
MNIST with δ = 0.01, we have 9.977 for the independent and 1.577
as the joint value, the improvement is

(
1− 1.577

9.977

)
× 100 ≈ 84.2%.

This formula standardizes the measurement of relative improvement,
indicating that the range of LROMs in the joint analysis is 84.2%
narrower than in the independent analysis. This demonstrates that the
joint analysis provides a tighter, more consistent range, highlighting
its improved precision and reliability.

4.3.3 Adversarially-Trained Models

As discussed earlier, our proposed formulation is applicable to any two
neural networks. In this section, we analyze three neural networks, two
of which are adversarially-trained models designed to defend against
adversarial attacks, specifically Projected Gradient Descent (PGD),
using different values of ϵ [25]. The PGD-trained networks have ϵ
values of 0.1 and 0.3, denoted as PGD1 and PGD3, respectively.

Table 2 presents the results of examining the established implica-
tions and certified accuracy of the original (non-defended), PGD1,
and PGD3 DNNs. In the established implication section, the column
=⇒ row indicates, for example, that in 42% of the samples of the
dataset, PGD3 makes a correct decision whenever PGD1 does. The
results demonstrate that PGD1 and PGD3 consistently achieve higher
established implications than their original counterpart.

These results become even more intriguing when compared to the
outcomes of evaluating the robustness of the neural networks using

formal verification techniques. For δ = 0.001, the certified accuracy
of the original, PGD1, and PGD3 DNNs is 100% when each network
is evaluated individually using verification tools. Our formulation re-
veals that, although robustness evaluations might yield similar results,
this does not necessarily imply that the networks behave identically.
For example, under a higher perturbation of δ = 0.01, the certified
accuracy of the original DNN drops to 89%, whereas the PGD-trained
DNNs maintain a certified accuracy of 99%. This demonstrates that
the results produced by our formulation accurately capture the differ-
ences in the networks’ behaviors. Further investigations reveal that
increasing δ to 0.04 leads to a more pronounced drop in the certified
accuracy of PGD1 compared to PGD3, with PGD1’s accuracy falling
to 29%, while PGD3’s remains at 87%. This is also reflected in the
established implication results for δ = 0.001, where PGD1 has 20%
verified LROM with respect to PGD3, compared to 42% for PGD3
with respect to PGD1.

Table 2: Comparison of established implication and certified accuracy
of the original, PGD1, and PGD3 DNNs. In the established
implication section, the column =⇒ row shows that, e.g., in 42% of
the samples, PGD3 makes a correct decision whenever PGD1 does.

Established Implication Certified Accuracy
Org. PGD1 PGD3 δ = 0.001 δ = 0.01 δ = 0.04

Org. - 0% 1% 100% 89% 17%
PGD1 57% - 20% 100% 99% 29%
PGD3 57% 42% - 100% 99% 87%

4.3.4 Two Real-World Medical Datasets

In this section, we explore the established implication of DNNs trained
on two real-world medical datasets, the CHB-MIT and MIT-BIH.

CHB-MIT Dataset: We explore the established implication of con-
volutional DNNs trained on the CHB-MIT dataset to categorize EEG
signals of patients with epileptic seizures as captured in Figure 3a– 3d.
Here, the x-axis shows different perturbation values applied to the
input of a pair of original and compact networks. The general pattern
of the established implication of pruned, quantized, and distilled net-
works is that we observe original DNNs have a higher established
implication than their compact counterparts. Moreover, the number of
established cases decreases with increasing perturbation. This can be
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Figure 3: Box plots illustrate the established implication of convolutional DNNs trained on all patients in the CHB-MIT [24] and MIT-BIH [10]
datasets for Original and Compact networks. For each patient in the dataset, we evaluate the implication between an Original and a Compact
network using the patient’s own data and aggregate the results across all patients to present them in the box plots.

caused by an actual decrease in LROM over a neighborhood, or by ex-
acerbated over-approximation generated by the formulation. However,
Figure 3b shows that the average established implication of VNNs is
comparable to that of their original counterparts.

MIT-BIH dataset: In this section, we assess the established im-
plication of convolutional DNNs trained on the MIT-BIH dataset to
categorize ECG signals from patients with cardiac arrhythmia, as
demonstrated in Figures 3e– 3h. Similar to DNNs trained on the CHB-
MIT dataset, the number of established samples drops as perturbation
increases, either due to reduced LROM across a range of perturbed
inputs or increased over-approximation generated by the formulation.
The behavior of MBP-pruned and quantized networks is also similar
to that of CHB-MIT DNNs, with the established implication of orig-
inal networks being higher than that of their corresponding pruned
and quantized ones. However, the results of VNN-pruned networks
are slightly different, as the established implication is closer to that
of their original counterparts. Moreover, distilled networks display a
different pattern, where their established implication is higher than
that of their corresponding original networks.

5 Related Work

Evaluating and comparing the performance of networks is crucial
in machine learning. For instance, both verification and adversarial
techniques have been used to compare robustness of networks and
their compacted versions. The previous studies by [19] and [15] for
pruning, and by [7] for quantization used established verification
techniques [14, 30] to separately assess local robustness of a network
and its compacted version.

On the other hand, the work in [29] applies two white box attacks
including Fast Gradient Sign Method (FGSM) [11] and PGD [20] to
assess local robustness. None of the previous approaches can formally

establish, even in the presence of adversarial examples, that a network
makes a correct decision each time the other network does.

In this context, ReLUDiff [22] and NeuroDiff [23] present valuable
techniques for analyzing functional differences between neural net-
works, focusing on verifying whether two models behave identically.
As noted by Paulsen et al. [22], many tools focus on single-network
behavior, limiting their ability to verify relational properties. In con-
trast, we establish an implication property that ensures one network is
at least as correct as another. Instead of neuron-wise tracking like Re-
LUDiff and NeuroDiff, our method directly optimizes the final-layer
difference, allowing comparison between different architectures.

Kleine Büning et al. [16] use MILP over clustered input regions
to verify symmetric neural network equivalence, but does not capture
directional correctness needed for comparing original and compact
models. Unlike Narodytska et al. [21], who verify single binarized
networks via SAT, and Eleftheriadis et al. [9], who perform sym-
metric equivalence checking with SMT over the entire input space,
our approach targets local directional guarantees between networks,
enabling asymmetric verification.

6 Conclusions
In this work, we propose a formulation to compare two networks in
relation to each other over an entire input region. Specifically, we
establish the foundation for formal local implication between two

networks, i.e., N2
D
=⇒ N1, within an entire input region D . In this

context, network N1 consistently makes a correct decision every time
network N2 does in the entire input region D . The proposed formu-
lation is relevant in the context of several application domains, e.g.,
for comparing a trained network and its corresponding compact (e.g.,
pruned, quantized, distilled) network. We evaluate our formulation
using the MNIST, CIFAR10, and two real-world medical datasets, to
show its relevance.
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