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Populärvetenskaplig sammanfattning

Det nu berömda oljedroppsexperimentet, utfört år 1909 av Millikan och Fletcher var
det experimentella arbetet som först bevisade att elektronisk laddning var kvantiserad
i form av antal elektroner. Idag har teknologins utveckling gått så långt att vi kan ut-
föra experiment där rörelsen av enstaka elektroner faktiskt spelar en roll, till exempel
som den minsta beräkningskomponenten i en kvantdator, eller som resultatet av en
interaktion, så som absorption av en foton. För att kunna genomföra dessa experi-
ment behöver man kunna detektera närvaron av en enstaka elektron i en komponent.
Detta görs tack vare kvantkomponenter vars ledningsförmåga är starkt beroende av
den elektrostatiska omgivningen, bland annat så kallade kvantprickar som används i
den här avhandlingen. Dessa komponenter fungerar som transistorer, som kan visa
ett binärt resultat: 1 eller 0, beroende på om en elektron befinner sig i eller utanför den
önskade komponenten. För att ta del av den här transistorns resultat så måste man
därför genomföra en mätning av transistorns ledningsförmåga.

Det enklaste sättet att mäta ledningsförmågan är att mäta en ström genom kvant-
pricken. Då strömmen som genereras i dessa små kvantkomponenter är väldigt liten
tar en sådan mätning dock lång tid. För att göra detta snabbare gör man istället en
indirekt mätning genom att ansluta en högfrekvent resonator till kvantpricken. Re-
sonatorn fungerar lite som en mikrovågsugn som ser till at den högfrekventa signalen
(mikrovågorna) hålls inom en välbestämd volym där den kan studsa ända tills den
interagerar med kvantpricken (maten). Med hjälp av en liten öppning i resonatorn
kan man studera hur mycket av signalen som absorberas av kvantpricken, vilket beror
på kvantprickens ledningsförmåga. Med den här avläsningsmetoden kan man göra
mätningarna snabbare, med en hastighet proportionell mot frekvensen av mikrovågs-
signalen.

Denna avhandlingen innehåller resultat från två artiklar däri vi studerar mikrovågsre-
sonatorer med en frekvens mellan 4 och 8 GHz och hur dessa interagerar med kvant-
prickar. I den första artikeln visar vi att vid mikrovågsfrekvenser kan energin lagrad i
resonatorns oscillationer leda till ytterligare ledningsfenomen som inte har betydelse
vid lägre frekvenser. I den andra artikeln studerar vi en icke-linjär resonator och vi-
sar att dess interaktioner med kvantprickarna leder till kvalitativt olika förändringar i
den utlästa signalen från resonatorn, vilket resulterar i en bättre förmåga att urskilja
kvantprickens tillstånd med kort mättid. Arbetet presenterat i avhandlingen hjälper
således till att öka förståelsen för interaktionerna som tar plats i utläsningen av ele-
mentärladdningen, och kan användas för att genomföra dessa mätningarna snabbare
än tidigare genomfört.
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Popular science summary

Thenow famous oil-drop experiment, performed in year 1909 byMillikan and Fletcher
was the experimental work that first proved that electric charge was quantized in the
form of a whole number of electrons. Today, the advancement of technology has pro-
gressed far enough that we can perform experiments where the motion of individual
electrons actually matters, for example as the smallest computational component of
a quantum computer, or as the result of an interaction such as the absorption of a
photon. In order to perform these experiments, one needs to be able to detect the
presence of a single electron within a component. This is accomplished with the use
of small quantum devices whose conductivity depends strongly on the electrical sur-
roundings, for instance a quantum dot. These devices work as transistors that can
show a binary result: 1 or 0, depending on if an electron is in or out of the measured
component. In order to know the result of this device, however, one must perform a
measurement of its conductivity.

The easiest way to measure conductivity of a quantum dot is to pass a current through
it. However, as the current generated in these small quantum devices is very small,
such a measurement takes a long time. In order to perform this readout faster, one
instead makes an indirect measurement by connecting the quantum dot to a high-
frequency resonator. This resonator works like a microwave oven that ensures that the
high-frequency signal (the microwave) is contained within a specified volume where it
can bounce back and forth until it interacts with the quantum dot (the food). Thanks
to a small opening in the resonator, one can study how much of the signal is absorbed
by the quantum dot, which depends on how well it conducts. With this readout
method, one can make the measurements faster, with a speed proportional to the
frequency of the microwave signal.

This thesis contains the results of two scientific papers where we study microwave
resonators with a frequency between 4 - 8 GHz, and how these interact with quantum
dots. In the first paper, we show that in this frequency range, the energy stored within
the oscillations of the resonator can lead to additional conduction phenomena that are
not present at lower frequencies. In the second paper we study a nonlinear resonator
and show that its interactions with the quantum dot leads to qualitative differences
in the readout signal from the resonator that result in a better ability to distinguish
the two states of the quantum dot. The work presented in this thesis thus helps to
increase the understanding for the interactions that take place in the readout of the
elemental charge, and can thus be used to perform these measurements faster than
previously accomplished.
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Chapter 1

Introduction

The detection of single electrons in solid state materials has applications such as read-
out in Qubit systems [1–7], single shot microwave photodetection [8–11], metrologi-
cal standards [12,13], studying cooper pair breaking [14–16] and nanothermodynamics
and fluctuations [17–23]. To perform the charge readout on these systems of inter-
est (SOI), a capacitive connection to a sensor, typically based off of single electron
device such as quantum point contacts (QPCs) [24–28], single electron transistors
(SETs) [29, 30] or quantum dots (QDs) [31–33] is implemented. A change in the
charge on the SOI is then reflected in the current of the sensor which is to be mea-
sured. However, the high resistance set by the resistance quantum R > 25.8 kHz of
the sensor along with the C ≈ 0.1 pF/m capacitance of the coaxial cable connecting
it to the amplifier typically results in a measurement bandwidth typically below tens
of kiloherz [34–36]. This can be improved toMHz bandwidths by moving the ampli-
fication to the mK stage, which instead adds an experimental difficulty of increasing
the necessary cooling power at the mixing chamber stage.

In 1998, an alternative detection method was proposed by Shoelkopf et. al. [37].
This detection scheme utilizes an electrical resonating circuit coupled to the sensor.
As the sensor conductance acts as a source of dissipation in the microwave cavity, a
measurement of the reflected signal from the cavity reveals the state of the sensor. The
resonator here acts as an impedance matching network, allowing the high impedance
of the sensor system to be coupled to a low impedance environment, where the readout
speed is instead set by the linewidth of the resonator. This detection scheme has
been heavily utilized in the past with resonators in the 100MHz - 1 GHz frequency,
enabling readout bandwidths ranging from 10 - 100 MHz range [38–50].

In addition to the large bandwidth, one needs the resonator to match the impedance
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of the sensor to the input impedance of the transmission line [35, 48, 51] to extract a
large signal from the sensor for the fast readout. More precisely, the sensor dissipation
κs needs to match the input coupling rate κc, which is responsible for determining
the bandwidth of the resonator [49]. As the sensor dissipation depends on the con-
ductance of the sensor, the bandwidth of the resonator cannot be set arbitrarily high as
this would reduce the signal strength of the readout. Fortunately, both the input cou-
pling and the sensor dissipation become more prominent with increasing resonance
frequency. With the implementations based off of external matching networks, how-
ever, the parasitic capacitance used to form the resonant mode cannot be reduced
further, preventing any increase to the resonance frequency.

In this thesis we study implementations to the resonance circuit based on the cavi-
ties used in circuit QED experiments [52] with resonance frequencies in the 4-8 GHz
radio frequency (RF) band to extend the bandwidth of the resonator. At this fre-
quency range, the photon energy in the cavity exceeds the electronic thermal energy
in typical low-temperature transport experiments. This leads to additional ways for
the microwave signal to dissipate into the quantum dot.

This is studied in Paper I where we use a coplanar waveguide resonator [53] to study
the interaction between the sensor and the resonator. We find that the energy of
the microwave photon enables dissipation for a larger range of energies than low fre-
quency transport would permit, as photon absorption into the quantum dot becomes
permitted. Furthermore, this photon absorption depends on the spin configuration
of the quantum dot, leading to plateaus in the resonator response with respect to the
energy level of the quantum dot which could be used for stable multi-level charge
readout, as well as a reduction in the charge noise of the sensor. Additionally, we find
that the dissipation for quantum dots with asymmetric barriers also greatly exceeds
the low-frequency result.

Next, in paper II we use a resonator based on arrays of Josephson junctions [54, 55].
These provide a large kinetic inductance, allowing to make a high impedance device
for larger coupling to the sensor. In addition to this, we show that the strongly non-
linear Josephson junctions [56, 57] operated with a dissipative charge sensor lead to a
frequency shift across the steep slope in the nonlinear response as is used for the read-
out of superconducting qubits with an inherently dispersive readout [58–62]. Using
this we avoid the matching condition, achieving a near-unity signal with a resonator
with large internal losses and a small sensor dissipation. This opens up the use of
higher bandwidths without sacrificing signal strength, which may enable high fidelity
charge readout with 10 ns measurement times. Additionally, we see that the nonlin-
earities may enable protection against charge noise and backaction effects.
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Chapter 2

Low Frequency Quantum Dot
Transport

Quantum dots (QDs) are nanoscopic systems made from semiconductors¹ where the
conducting electrons are prevented from moving freely in all three dimensions. By
confining the electrons in all three dimensions theQD is effectively a zero-dimensional
object which, just like in atoms, provides a discrete density of states, arising in part
due to quantum mechanical confinement, and in part due to the coulomb repulsion
between the negatively charged particles [64]. This discrete level spacing can be used
to interact with light, with applications such as display technology [65], single-photon
sources [66], lasing [67,68], bio-imaging [69,70] or solar cells [71]. Additionally, the
QD can be electrically connected to an environment, where the discrete level spacing
can be used as an energy filter for current transport, allowing for applications within
quantum computation [5,6], nano thermodynamics [19] or charge detection [72–75].
This chapter will focus on this last application of quantum dots, starting with a phe-
nomenological description of electrically connected quantum dots.

2.1 Phenomenological Description

We consider the quantum dot as in Fig. 2.1 (a), where the electron island is connected
to the environment via tunnel barriers with some capacitance CL(R) resulting in a
tunnel couplingΓL(R) to the left (right)metallic lead. The third terminal is an external

¹Quantum confinement only becomes noticeable when the confinement is on the order of the wave-
length of the electrons. Semiconductors have a notably longer wavelength as compared to metals, mak-
ing this choice of material a necessity for quantum effects [63].
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voltage source, called the gate voltage VG which is also capacitively coupled to the
island via a (weaker) capacitance CG. With this, the total capacitance of the island,
also called the self-capacitance is CΣ = CL + CR + CG, which sets the charging
energy for adding a single electron

EC =
e2

CΣ
. (2.1)

With this, Fig. 2.1 (b) shows an energy diagram of the quantum dot with the two
leads having filled electron states up to the chemical potential µL(R).

This is typically achieved by confining a conducting area from the surroundings using
some potential barriers through which electronic transport is classically forbidden,
but quantum mechanically permitted through tunneling [30].

L R

G

QD
CL CR

CG

ΔE

ΓRΓL

μL

μR

(a) (b)

Vb

VG

eVb

Figure 2.1: Schematic of a quantum dot with transport through the left (right) tunnel barrier of the quantum
dot mediated by the tunnel coupling ΓL (ΓR). A voltage bias Vb between the two contacts defines
a direction of transport, while the potential of the quantum dot is altered using the gate voltage
VG which is coupled to the dot via a capacitor.

Considering a quantum dot illustrated in Figure 2.1 with the tunnel barrier ΓL (ΓR)
connecting it to the left (right) electron reservoir (henceforth referred to as ”lead”) we
effectively end up with a three-level system where the electrons in the left (right) lead
have chemical potential µL (µR) and the nearest available energy level in the quantum
dot has energy ε. For an electron to enter from the left (right) lead it must have an
energy equal to the energy of the available state in the quantum dot, and similarly for
an electron to tunnel out of the dot, it must have an energy equal to some available
state in the left (right) lead.

We can then control the transport through the quantumdot using two voltage sources:
The gate voltage VG is capacitively coupled to the quantum dot and is used to change
the energy ε of the dot by an amount ε = αGVG where αg = CG/CΣ. The bias
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Figure 2.2: (a)Measurement data of the coulomb diamonds in a quantum dot. The vertical line shows the bias
voltage required to add the next electron∆E/e, while the horizontal line shows the corresponding
gate voltage ∆VG. The axis on top shows the level shift ε = αg(VG − VG,0) (b) Illustration of the
nine highlighted points from (a) showing schematically the energies of the left/right leads and the
quantum dot.

voltage introduces a difference in energy between the two leads µR − µL = eVb,
which can be used to define a direction of transport through the dot.

A typical measurement to show the presence of quantum dots is to sweep both the gate
voltage and bias voltage while measuring the current to produce the so-called charge
stability diagram, and is shown for a real device in figure 2.2. From this measurement,
we can find the charging energy ∆E as the vertical height of the diamonds as well
as the corresponding gate voltage required to add another electron ∆VG. The ratio
between these gives the lever arm, αg and the slope of the diamonds gives the relative
ratio of the capacitances. Finally, we see evidence of some excited states, which are
visible as additional diagonal lines within the conducting region of the measured data.

2.2 Zero-Bias Conductance

Instead of considering the current, we can study the differential conductance dI/dVb
of the quantum dot, which tells how much the quantum dot current changes in re-
sponse to a small bias voltage. Figure 2.4 (a) shows the differential conductance from
the previously presented coulomb diamonds. We see that the conductance appears
as sharp lines outlining the diamond pattern, with additional lines within the regions
of finite current. These additional lines correspond to excited states, and will not be
further elaborated on herein, but are discussed in more detail in Ref. [76].
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(b) (c)

Figure 2.3: Transport through the quantum dot occurs for a range of energies due to (a) the Fermi-Dirac dis-
tribution in the leads (b) the lifetime broadening of the quantum dot due to the large tunnel rates
Γ or (c) both of these simultaneously.

Describing the conductance mathematically in general is a quite difficult task, how-
ever near zero bias, the current depends linearly on the bias voltage in what is known
as the linear response regime. Here, mathematical descriptions of the conductance
are easier to derive as a function of the tunnel couplings in the quantum dot. Taking
a higher resolution measurement conductance at zero bias voltage, as in figure 2.4 (b)
with respect to the gate voltage reveals that it rises from zero in coulomb blockade
to some maximum value after which it diminishes again, producing a line with some
height Gmax and width σ. The finite width of the line arises due to one or both of
the following: First, the temperature of the system causes the electron distribution in
the leads to not be perfectly sharp, but instead follow the Fermi-Dirac distribution,
f =

(
1 + eε/kBT

)−1, which leads to a range of energies on the order of kBT for
which there are electrons and holes accessible for tunneling transport. Second, as the
electrons confined on the quantum dot only remain there for a finite time τ , after
which they tunnel out via the barriers, the energy of the confined state is smeared
by the Heisenberg uncertainty principle, giving a linewidth of Γ ∝ ℏ/τ . Whichever
of these broadening energy scales dominates, typically sets the transport properties of
the quantum dot, which will now be discussed in more detail.

2.2.1 Weakly Coupled Quatum Dot

In the weak-coupling limit the tunnel couplings Γ are much smaller than the ther-
mal energy kBT , meaning that the quantum dot level can be treated effectively as a
delta function. The transport here can be analyzed microscopically as the system is
well-described by a particle current of electrons tunneling across the barriers with a
rate Γ/ℏ, and theories treating this limit are hence called ”sequential tunneling” the-
ories. By studying the system around zero bias in the so-called linear regime, where
the current varies linearly with the applied bias voltage, analytical solutions for the
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Figure 2.4: (a) The differential conductance of the quantum dot as a function of the gate and bias voltage.
(b) an example of the zero bias conductance in the lifetime broadening limit with Γ1 = 60 µS and
Γ2 = 2.3 µS. The linewidth σ and maximum conductance Gmax are indicated.

conductance can be derived [29], [77]. In the limit where only one level contributes
to the current, i.e. kBT ≪ e2/CΣ, the conductance is

G0
π

2

ΓLΓR

kBT (ΓL + ΓR)
f(ε/kBT )f(−ε/kBT ) (2.2)

where ε is the level shift of the electronic state contributing to the current. From this
equation, we can find analytical values forGmax = e2

4kBTℏ
ΓLΓR
ΓL+ΓR

and σ ≈ 3.52kBT

2.2.2 Coherent transport theory

As the tunnel rates increase, sequential tunneling models considering only one simul-
taneous tunneling event become unreliable as co-tunneling events become more fre-
quent [78]. In this limit, the transport can be understood through Landauer-Büttiker
theory [79,80] which provides another avenue to calculate the zero-bias conductance
given the tunnel couplings ΓL, ΓR of the QD.This approach considers the electrons
as non-interacting elastic scatterers where the conductance is given by the transmis-
sion of the system. These are not trivial assumptions to make as quantum dots are
described by electron-electron interactions, but end up describing the zero bias con-
ductance well, while completely ignoring the effects of charging energy.

To begin, we consider the quantum dot as a resonant system coupled to the two
leads, with tunnel rates ΓL/ℏ, ΓR/ℏ and a single non-interacting transport channel.
As there is some finite lifetime for any state on the dot, this can be seen as a decaying
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system with a finite lifetime broadeningΓ = ΓL+ΓR. The Breit-Wigner formula [81]
gives the transmission of the QD as energies ε, given the dot energy εi

T (ε) =
ΓLΓR

(ε− εi)2 + (Γ/2)2
. (2.3)

For transport to occur, we need an available state in the left lead, and an empty state
in the right lead at an energy E or vice versa. The electron flow at this energy will
then be proportional to the difference in filling between the two leads, as well as the
transmission of the dot, while the total flow will then be given by the sum of the flows
at all different energies, or

I(ε) =
e

h

∫ ∞

−∞
T (ε)f(ε− µL)(1− f(ε− µR))dε. (2.4)

At low bias (µL, µR ≈ µ), the current is linear with respect to the bias, and the
conductance G = dI/dV can be written as

G(ε) =
e2

h

∫ ∞

−∞
T (ε)

df(ε− µ)

dε
dε (2.5)

for each non-interacting transport channel ². This equation can be fitted to find the
tunnel couplings ΓL and ΓR of the system, but it can also be further treated in the
two limits of low temperature and high temperature.

Lifetime Broadening Limit: For low temperatures such that kBT ≪ Γ, the Fermi
distributions are sharp in comparison to the lifetime of the dot, which in the limit
T → 0 results in the analytic solution of the integral

G(ε) = −e
2

h
T (ε)

∫ ∞

−∞

df(ε)

dε
dε =

e2

h

ΓLΓR

(ε− εi)2 + (ΓL + ΓR)2/4
. (2.6)

In this limit, the conductance through the quantum dot is thus only dependent on
the barriers and the tunnel couplings for each barrier can be uniquely determined,
given a measurement of the conductance.

High Temperature Limit: In the high temperature limit, the Fermi distribution is
smeared such that it is constant in the neighborhood of εi. The integral of equation

²Typical quantum systems have two transport channels as there are two electron states (spin up vs
down) at each energy. The overall conductance is thus multiplied by an additional factor of two.
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(2.5) then yields

G(ε) =
e2

h

∫ ∞

−∞
T (ε′)

df(ε′)

dε′
dε′ =

=
e2

h

∫ ∞

−∞
T (ε′)

df(ε′)

dε′
|ε′=ε−εidε

′ =

=
e2

4kBTℏ
ΓLΓR

ΓL + ΓR

1

cosh2( ε−εi
2kBT

)
,

which is the same expression as in the weak coupling limit presented previously.

2.3 Charge Detection

In order to use the quantum dot as a charge detector, we measure the current as a
function of gate voltage at some fixed bias voltage. In figure 2.5 we see ISD(VG) for
a finite (positive) bias voltage, where we observe clear periodic steps in the current as
we successively access higher charge states of the quantum dot. In these steep slopes,
the current thus changes quickly for a small change in gate voltage.

If we now consider a secondary system of interest (SOI) which is capacitively coupled
to our quantum dot, the charge state on the SOI will cause an effective gate voltage
shift ∆VG to the quantum dot. If the quantum dot is then tuned to one of these
sensitive points and the charge configuration on the SOI changes, we will as a result
see a changing current flowing through the quantum dot, granting us information
about what caused this change. By then measuring the current as a function of time
we can observe electron tunneling events in real time.

The bandwidth (temporal resolution) of this charge detection is typically set by the
amplification circuit, as some finite averaging time is required in order to determine
the current with sufficient precision to make a measurement, and is typically on the
order of some kHz, but this can be improved by moving to high frequency readout
methods which will be discussed in the following chapters.

2.4 Double Quantum Dots

2.4.1 Charge Configuration

By placing twoQDs in series, connected to each other, as illustrated in Fig. 2.6, we end
up with a double quantum dot (DQD). In these systems, we have two bound states
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Figure 2.5: Illustration of the charge detector operation. (a) The quantum gate voltage VG is set to where
there is a large slope in the current. (b) An electron (blue circle) is added to the sensed system (gray
ellipse). The additional charge offsets the gate voltage, resulting in a reduced current I through
the sensor.

where we can tune the energy difference between the states to make qubits [82, 83],
information engines [19, 84], photon emitters [85, 86] or absorbers [8, 10]. Within
this thesis, we have used the charge sensitive quantum dot to probe a DQD. This
section will thus introduce the charge configuration seen in the experiments, following
Ref. [87].

We begin by viewing the DQD as two single-level systems that are controlled by
external gate voltages. The total electrostatic energy of the double quantum dot is
then

U =
1

2

(
ECLN

2
L + ECRN

2
R

)
+NLNRECm + f(VGL, VGR).
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Figure 2.6: Schematic illustration of a double quantum dot. The coupling between the two dots takes the
form of an additional interdot tunnel barrier with capacitance Cm and corresponding tunnel rate
Γm.

Here, EC,L(R) is the charging energy of the left (right) quantum dot given by

ECL =
e2

CΣ,L

 1

1− C2
m

CΣ,LCΣ,R


ECR =

e2

CΣ,R

 1

1− C2
m

CΣ,RCΣ,L

 ,

ECm is the energy shift on the left (right) due to the addition of an electron in the
right (left) dot

ECm =
e2

Cm

 1
CΣ,LCΣ,R

C2
m

− 1

 ,

and f(VGL, VGR) is the energy shift due to the external gate voltage

f(VGL, VGR) =
1

e
[CGLVL (NLECL +NRECm) + CGRVR (NRECR +NLECm)]

+
1

e2

[
1

2
C2
GLV

2
LECL + C2

GRV
2
RECR + CGLCGRVLVRECm

]
We see that the charging energy terms are the same as those of a single dot, with a
correction term due to the cross-capacitance Cm. Removing this cross capacitance,
we end up with two separate quantum dots, as illustrated in Fig. 2.7 (a). Here, an
increase in the left (right) gate voltage only changes the number of electrons on the left
(right) quantum dot. If we instead increase the coupling between the two dots, the
left (right) gate voltage instead changes the energy of both dots equally. In this case,
the DQD acts essentially as a single quantum dot with two separate gate voltages, as
in Fig. 2.7 (b). The corresponding charge stability diagrams, shown in Fig. 2.7 (c),
and (d) show the regions of fixed charge that result from varying the gate voltages in
these two cases.
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Figure 2.7: Two extreme cases of the value of Cm illustrated. (a) shows the case where Cm = 0, resulting
in two fully separated quantum dots whereas (b) shows the case where Cm → ∞ such that the
two dots are fully coupled into one larger quantum dot. (c) and (d) show then the corresponding
charge stability diagrams, with the number of electrons labeled as (L, R) in (c) and with the total
number of electrons in (d).

(0,0) (0,1) (0,2)

(1,1)(1,0)

(2,0)

VGR

VGL

Figure 2.8: The charge stability diagram of a double quantum dot with an intermediate value of Cm with the
number of electrons on the left and right dot indicated by the numbers (L,R).

With an intermediate value of Cm instead, the additional cross-coupling results in an
additional energy required to add pairs of electrons. This separates the corners of the
square stability diagram from each other, resulting in a hexagonal pattern as in Fig. 2.8
(a). We also note that increasing the gate voltages now have an effect on the number
of electrons in the opposite dot, leading to the hexagonal pattern being slanted.
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2.4.2 Finite-Bias Transport

Thus far, we have only consider the unbiased DQD, adding a bias voltage across
the DQD will, just as for the QD allow current to flow only in some energy level
configurations. Just as for the single QD, we can make an energy diagram where we
see that for current to flow, we need to let an electron tunnel sequentially from one
lead to another via the two dots. In Fig. 2.9 we show energy diagrams for a set bias
voltage, with our gate voltages tracing the edge of electron transport. Starting with
case 1, we here have a large detuning between the two gates, such that both energy
levels just barely fit within the bias window. As we move down within the figure,
the detuning shrinks, allowing us to shift both energy levels higher / lower in energy
while still remaining within the current transport window. At the bottom, both levels
are aligned, allowing the gate voltage to sweep the entire biasing window. Notably,
shifting the detuning direction of the quantum dots (such that the right dot is lower
in energy than the left in this case), the electron transport becomes blocked, as the
electron would get stuck in the lower-energy dot without opportunity to tunnel out.

This results in the triangle-shaped region of current transport in the charge stability
diagram of Fig. 2.9, which emerges at each of the triple points. The solid lines here
indicate the boundaries of the charge regions, which compared to the dotted lines for
the unbiased transport shows that the charge regions have shifted as a result of the
applied bias voltage. Notably, we know that the width of the base (tracing the points
4-6) corresponds in energy to the applied bias voltage. This allows us to establish an
energy scale in the direction of the interdot transition line. Similarly, a horizontal
(vertical) line from point 1 will at the intersect with the interdot transition line gives
the lever arm for the right (left) gate voltage.
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Figure 2.9: (a) Six energy diagrams showing the edge states for which current transport is permitted in a DQD
with a finite bias across it. (b) The emerging finite bias triangle in the charge stability diagram.
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Chapter 3

Linear Resonators

Resonating systems in general are systems in which a signal with a specific frequency
will oscillate back and forth. This resonance comes as a consequence of two dispersive
elements which enable an internal transfer of energy with minimal losses. Springs
or pendulums are examples of mechanical resonators in which a mass is raised and
lowered in a periodic fashion, as the energy is transferred between being entirely po-
tential to being entirely kinetic. Electrical resonators typically transform energy in
the form of accumulated charge on a capacitor to current through an inductor. This
chapter will cover the essential details needed to understand the input/output trans-
port properties of microwave resonators that make them useful as readout circuits for
dissipative quantum systems.

3.1 Coplanar Waveguide Resonators

In the work presented in this thesis, microwave resonators have been coupled to quan-
tum dots in order to study the dissipative response at the microwave frequency range
for the purpose of fast charge readout. These are constructed using a long floating
superconducting strip as pictured in figure 3.1 (a), with capacitors defined by gaps in
the transmission line. These coplanar waveguide cavities do not have single ”lumped”
elements where all of the circuit capacitance, inductance, or conductance are located.
Instead, the line is better understood as a continuous line with some distributed pa-
rameters Ls, Cs, Rs, and Gs as shown in figure 3.1 (b). At resonance the electric field
and current in the resonator oscillates in a standing wave. This allows the mapping
of Ls, and Cs into their lumped-element equivalences L = 2Lsl

π2 , C = Csl
2 that

describe the resonator response close to the fundamental resonance frequency [53].
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Figure 3.1: (a) Composite pictures from an optical microscope showing the geometry of a bare, two-port copla-
nar waveguide. The light gray areas are the Niobium which constitutes the waveguide and the
ground plane, while the dark gray areas are the gaps. (b) The distributed element representation
of the waveguide. (c) The equivalent lumped element circuit.

The loss terms Rs and Gs result in a total loss term captured by the lumped element
conductance G. In the coming sections, we will mathematically describe the system,
ending up in an expression for the reflection coefficient r of the resonator ¹. We will
do this first by considering a quantized LC oscillator, followed by a two-port network
approach.

3.2 Hamiltonian Solution

3.2.1 Quantization of an LC circuit

The simplest form of electrical resonator is the lumped element LC resonator, which
consists of closed circuit with a capacitor and inductor. An illustration of this circuit is
shown in Figure 3.2. In this system, the energy moves from being stored as a charge on
the capacitor with capacitance C, to a magnetic field in the inductor with inductance
L. This shift of energy oscillates back and forth with a resonance frequency ωr.

Conventionally, the energy stored in the oscillator is pictured as arising from the
movement of electric charge q, such that the electrons in the conductor form a po-
tential energy by charging up the capacitor Epot = 1

2C q
2. This potential energy is

then transformed into kinetic energy as the capacitor discharges and creates a current

¹The words ”reflection coefficient” are to describe the amplitude reflection coefficient r, the mag-
nitude of this quantity |r|, and its square - the power reflection coefficient R = |r|2 depending on
context. I try to make it clear which definition is considered at any point within this thesis.
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Figure 3.2: The simplest electrical oscillator consisting of only a single inductor L and capacitor C.

flow through the inductor where Ekin = L
2 I

2 = L
2 q̇

2. However, one can just as
well consider the magnetic flux ϕ stored in the inductor as the variable, such that
the potential energy is given by Epot = 1

2Lϕ
2. The corresponding kinetic energy

is then Ekin = C
2 ϕ̇

2, where the time-derivative of the flux gives rise to a voltage
V = Lİ = ϕ̇. Despite being a less intuitive picture, the choice of using the flux as
the variable becomes convenient later on when we will introduce non-linearities to
the inductance L.

We write the Hamiltonian of the LC oscillator

H =
1

2C
Q2 +

ϕ2

2L
, (3.1)

and we can promote the variables Q and ϕ to quantum operators by enforcing the
canonical commutation relation [

Q̂, ϕ̂
]
= −iℏ. (3.2)

Although the oscillations in energy are readily viewed as a collective motion of elec-
trons in the resonator, the quantized excitations herein can just as well be viewed as
photons with creation- and annihilation operators

â† = −i 1√
2Cℏωr

Q̂+
1√

2Lℏωr
ϕ̂ (3.3)

â = i
1√

2Cℏωr
Q̂+

1√
2Lℏωr

ϕ̂. (3.4)

Here we see as a sanity check that the product of the two ladder operators yields the
photon number

â†â =
Epot + Ekin

ℏωr
= n, (3.5)

which enables us to write the Hamiltonian

ĤLC = ℏωr(â
†â+

1

2
). (3.6)
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This is the familiar solution to a quantum harmonic oscillator with eigenstates cor-
responding to an integer number of photons with energy En = ℏωr residing in the
cavity.

3.2.2 Input-Output Theory

So far, the Hamiltonian only describes the energy of the oscillating mode within the
cavity. However, this is an experimentally boring system, as there is no way to probe
and study its dynamics. In order to do this, we need to couple the cavity to the
environment. Physically, we do this by introducing a capacitive [53, 88] or inductive
[88,89] coupling to the current or voltage antinodes respectively. This forms an input-
output port for the photons in the cavity. In order to model this system theoretically,
I will follow closely Refs. [90,91], where we model the environment as a Bosonic bath.

3.2.2.1 One-Port Resonator

We begin by considering our oscillator to be coupled via a single port to an environ-
ment made from a large number of independent Bosonic modes with Hamiltonian

Ĥbath =
∑
q

ℏωq b̂
†
q b̂q, (3.7)

where b and b† are the creation and annihilation operators of the bath, and q labels
the different (orthogonal) modes. We next consider the interaction Hamiltonian for
energy-conserving intcoperactions where a photon is transferred from the oscillator
and into the bath or vice versa

Ĥint = −iℏ
∑
q

(fqâ
†b̂q − f∗q b̂

†
qa), (3.8)

with fq representing the amplitude of the interaction for mode q.

Together with the Hamiltonian of the bare LC oscillator we find the system Hamil-
tonian

Ĥ = ĤLC + Ĥbath + Ĥint (3.9)

from which we can find the equation of motion (EOM) for a bath mode

˙̂
bq =

i

ℏ

[
Ĥ, b̂q

]
= −iωqbq + fqâ, (3.10)

which is the EOM of a forced linear oscillator that has an exact solution

b̂q(t) = e−iωq(t−t0)b̂q(t0) +

∫ t

t0

dτe−iωq(t−τ)f∗q â(τ) (3.11)
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where t0 represents a time long before the interaction of any wave-packet with the
cavity.

Similarly, the EOM for the LC oscillator is

˙̂a = −iωrâ−
∑
q

fq b̂q. (3.12)

Inserting (3.11) into the second term now yields

∑
q

fq b̂q =
∑
q

(
fqe

−iωq(t−t0)b̂q(t0) +

∫ t

t0

dτ |fq|2e−iωq(t−τ)â(τ)

)
. (3.13)

We will aim to make this expression a bit more palatable starting by noting that the
decay rate from a simple harmonic oscillator of frequency ωc is given by the Fermi
Golden Rule expression

κ(ωc) = 2π
∑
q

|fq|2δ(ωc − ωq) (3.14)

from which it follows that∫ ∞

−∞
dν
κ(ωc + ν)

2π
e−iν(t−τ) =

∑
q

|fq|2e−i(ωq−ωc)(t−τ). (3.15)

Making the Markov approximation that κ(ν) = κ is constant for a frequency range
relevant to the cavity, we find that∑

q

|fq|2e−i(ωq−ωc)(t−τ) = κδ(t− τ) (3.16)

where we now can multiply by the factor 1 = eiωr(t−τ)e−iωr(t−τ) to insert

∑
q

∫ t

t0

dτe−iωq(t−τ)f∗q â(τ) =

∫ t

t0

dτ
∑
q

|fq|2e−i(ωq−ωr)(t−τ)âe−iωr(t−τ)(τ)

=

∫ t

t0

dτκδ(t− τ)âe−iωr(t−τ)(τ) =
κ

2
â (3.17)

where the final equality is given by∫ x0

−∞
dx δ(x− x0) =

1

2
. (3.18)
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Inserting this into our equation of motion (3.12) we find

˙̂a = −iωrâ−
κ

2
â−

∑
q

fqe
−iωq(t−t0)b̂q(t0), (3.19)

where the second term is a linear damping of the cavity under the implemented ap-
proximations.

We now apply the Markov approximation to the coupling strength fq, stating that
the interaction amplitude f ≡

√
|fq|2 is constant for all relevant modes q, and define

the constant density of states

ρ =
∑
q

δ(ωc − ωq) (3.20)

such that
κ = 2πf2ρ. (3.21)

with this, the third term in the Eq. (3.19) above can be described as a simple ”input
mode”

b̂in ≡ 1√
2πρ

∑
q

e−iωq(t−t0)b̂q(t0) (3.22)

giving the final EOM for the cavity

˙̂a = −iωrâ−
κ

2
â−

√
κb̂in(t). (3.23)

By changing the limits on the integral in (3.11), to instead consider the time until the
distant future t1, we similarly define an output mode

b̂out ≡
1√
2πρ

∑
q

e−iωq(t−t1)b̂q(t1) (3.24)

and equation of motion

˙̂a = −iωrâ+
κ

2
â−

√
κb̂out. (3.25)

where the sign difference in the second term here arises from changing the integration
bounds.

By subtracting Eq. (3.23) from Eq. (3.25) and rearranging, we end up with

b̂out =
√
κâ+ b̂in(t). (3.26)

The interpretation of this equation is that the outgoing mode at the boundary of
interaction is given by the reflected incoming mode, and whatever is radiated from
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the cavity. Now, finally we describe the spectral domain of â by taking the Fourier
transform of Eq. (3.23):

â(ω) =
i
√
κ

(ω − ωr) + iκ/2
b̂in(ω) (3.27)

By using Eq. (3.26), we see that we can write this as

b̂out(ω) =

(
1− iκ

(ω − ωr) + iκ/2

)
b̂in(ω) ≡ r(ω)b̂in(ω) (3.28)

where r(ω) is the reflection coefficient of the microwave cavity. We see that with only
a single input/output port, the reflected signal is equal in magnitude to the input
signal, with only a phase difference depending on the frequency. At the resonance
frequency, the signal is reflected with a phase shift of π, such that r = −1.

3.2.2.2 Two-Port Resonator

Next, we consider a system with two input/output ports. Doing this, we will treat
the second port in exactly the same manner as before, with an additional bath and
interaction Hamiltonian for the new Bosonic modes described by the creation- and
annihilation operators ĉ and ĉ†. With this additional second port, Eq. (3.23) and
(3.25) turns into

˙̂a(t) = −iωrâ(t)−
κ

2
â(t)−

√
κ1b̂in(t)−

√
κ2ĉin(t) (3.29)

˙̂a(t) = −iωrâ(t) +
κ

2
â(t)−

√
κ1b̂out(t)−

√
κ2ĉout(t), (3.30)

where κ1 and κ2 are the coupling rates to each respective bath, and κ = κ1 + κ2 is
the total coupling rate. Again, Fourier transforming the above equations, we find

â(ω) = −i

( √
κ1b̂in(ω)

(ω − ωr) + iκ/2
+

√
κ2ĉin(ω)

(ω − ωr) + iκ/2

)
. (3.31)

Looking at the output from port 1, andmaking again the substitution fromEq. (3.26),
we find

b̂out =

(
1− iκ1

(ω − ωc) + iκ/2

)
b̂in +

(
−i√κ1κ2

(ω − ωc) + iκ/2

)
ĉin (3.32)

where we thus have the reflection- and transmission coefficients

r1 = 1− iκ1
(ω − ωc) + iκ/2

(3.33)

t =
−√

κ1κ2
(ω − ωc) + iκ/2

(3.34)
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If we instead were interested in the output from port 2, we would simply exchange
1 ↔ 2 in the indices above. The transmission coefficient of course is identical with
this transformation, whereas the reflection coefficient depends on which port the re-
flection occurs from.

3.2.2.3 One-Port Resonator with Internal Losses

One consequence of making experiments is that the system is not only coupled to the
environment via the intended input/output ports. Spurious leakage of the resonance
mode can occur due radiation, coupling to two-level fluctuators in the substrate, or
imperfections in the resonator leading to internal resistance [92,93]. All of these lead
to additional losses which can be treated as an additional port to the environment. A
system with one input/output port by design, is thus equivalent to a two-port system,
where the second port is the accumulated coupling of the environment. We can thus
use all of our expressions derived for a two-port resonator but with a helpful relabeling
of 1 → c for the coupling port and 2 → i for the internal losses. The equation for
the reflection coefficient then reads

r = 1− iκc
iκ/2− (ω − ωr)

, (3.35)

where κ = κc + κi.

3.2.2.4 Photon Number

Finally, we will consider the number of photons ⟨n⟩ = ⟨â†â⟩ stored inside the cavity
as a result of some number of incident photons ⟨b̂†inb̂in⟩, which corresponds to an
input power P0 as

P0 = ℏω⟨b̂†inb̂in⟩, (3.36)

where we have assumed that ĉin = 0. Next, we use Eqs. (3.26) and (3.31) to find an
expression for the number of photons in the cavity

⟨â†â⟩ =
κc⟨b̂†inb̂in⟩

(ω − ωr)2 + κ2/4
=

κc
(ω − ωr)2 + κ2/4

P0

ℏω
(3.37)

Assuming that we drive the resonator at the resonance frequency ω = ωr we find

⟨n⟩ = 4κc
κ2

P0

ℏωr
. (3.38)
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3.3 Circuit Solution

Alternatively, one can consider resonator as a circuit, for which the reflection coeffi-
cient is defined as

r =
Z − Z0

Z + Z0
(3.39)

where Z is the impedance of the resonator and Z0 is the impedance of the environ-
ment, which is typically set to Z0 = 50 Ω. For the simple LC oscillator of Fig. 3.2,
we find the impedance

Z =

(
iωC +

−i
ωL

)−1

. (3.40)

We see that this impedance is imaginary for all frequencies, aside from the resonance
frequency

ωr =
1√
LC

(3.41)

where the LC oscillator has a vanishing impedance, resulting again in the reflection
coefficient r = −1 for an undamped resonator². Before proceeding, we also define
the characteristic impedance

Zr =
√
L/C, (3.42)

as the ratio of the voltage to current oscillations in the resonator.

By treating the resonator this way, we no longer capture the quantum properties of
the resonator, however, we will instead gain insight into the connection between the
the circuit elements and the resonator parameters which we defined in the previous
sections. Just as before, however, we aim to discuss slightly more involved systems
than the bare uncoupled resonator. To make these calculations convenient, we will
nowmove see the system as a two-port network where each component in the network
is represented by a transmission matrix.

3.3.1 Transmission Matrices

The transmission matrix (ABCD parameters) [94] relates the incoming (V1, I1) and
outgoing (V2, I2) voltage and current signals for a two-port system as shown in figure
3.3 with a matrix of the form [

V1
I1

]
=

[
A B
C D

] [
V2
I2

]
. (3.43)

²Note here that the resonance frequency depends on the total inductance and capacitance of the
circuit. Adding input/output ports will therefore change the frequency correspondingly.
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Figure 3.3: Two-port network with input parameters V1, I1 and output parameters V2, I2 related by a trans-
mission matrix.

This transmission matrix representation easily treats cascading system each with trans-
mission matrix Ti as

TΣ =
∏
i

Ti (3.44)

allowing a more complex system to be easily represented by its smaller components,
where the smallest units have tabulated solutions commonly presented in textbooks
[94]³.

For the purposes of calculating the reflection coefficient we are more interested in the
voltage waves being transmitted or reflected, so we additionally define a matrix[

V +
i

V −
i

]
=

1

2

[
1 Z0

1 −Z0

] [
Vi
Ii

]
(3.45)

which we can use to transform between the two bases, which will yield us a voltage
transmission matrix T such that[

V +
1

V −
1

]
= T

[
V +
2

V −
2

]
. (3.46)

3.3.2 Two-port resonator

Now, we consider a resonator with inductance L, capacitance C and conductance G
coupled to the environment using two capacitors, C1 and C2, as illustrated in figure
3.4.

The system can be seen as three cascading systems where the input / output capacitors
are seen as series impedances

Z =
1

jωC
, (3.47)

³or on Wikipedia.
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Figure 3.4: A circuit diagram of a two-port resonator with an internal inductance L, capacitance C and con-
ductance G

while the resonator is seen as a shunt admittance

Y = G+ jωC +
1

jωL
(3.48)

From the aforementioned tables, we can find the corresponding transmission matri-
ces, which in our voltage basis look like

TZ =

[
1− Z

2Z0

Z
2Z0

− Z
2Z0

1 + Z
2Z0

]
(3.49)

TY =

[
1 + Z0Y

2
Z0Y
2

−Z0Y
2 1− Z0Y

2

]
(3.50)

Defining the unitless quantities

zi =
Zi

2Z0
, y = Y Z0/2.

gives the transmission matrix for the resonator

T =

[
1 + z1 −z1
+z1 1− z1

] [
1 + y y
−y 1− y

] [
1 + z2 −z2
+z2 1− z2

]
. (3.51)

Now, assuming that V −
2 = 0 (i.e. we do not have any incoming voltage signals from

the output port), we can find the reflection amplitude as

r ≡ T21
T11

=
(z1 + z2 − y) + 2(z1 − z2)y + 4z1z2y

1 + (z1 + z2 + y) + 2(z1 + z2)y + 4z1z2y
(3.52)

yielding the power reflection coefficient of the circuit

R = |r|2. (3.53)
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3.3.3 Single-Port Resonator

Noting from the previous discussion that a vanishing C2 still allows for matching to
occur, we will consider the case where C2 → 0 ⇒ z2 → ∞. From equation (3.52)
we then find a simplified expression for the reflection coefficient

r =
(1− 2y) + 4z1y

(1 + 2y) + 4z1y
= 1− 4y

(1 + 2y) + 4z1y
. (3.54)

1−
−C2

cω
2Z0

CΣ

Y
ωCc

−
(
C2

cω
2Z0

2CΣ

Y
ωCc

+ iG
2CΣ

)
− (ωr − ω)

, (3.55)

Here we have defined ωr = 1/
√
LC, and assumed that ω ≈ ωr such that (ω2 −

ω2
r ) ≈ 2ωr(ω − ωr) and ω/ωr ≈ 1.

We recognize from this the same form as Eq. (3.35), where we can then define

κi =
G

CΣ
= GZrωr (3.56)

and

−iκc =
C2
cω

2Z0

CΣ

Y

ωCc
. (3.57)

Expanding the last term here, we find that

Y

ωC
=

(
G

ωCc
+ i

C

Cc
− i

ω2
rCΣ

ω2Cc

)
≈
(

G

ωCc
− i

)
(3.58)

with our previously implemented assumption that ω ≈ ωr. Additionally, the first
term can be compared to the internal losses of the resonator G/Cc > G/CΣ = κi.
Assuming that the internal losses are small compared to the resonance frequency, this
term is then small compared to unity, allowing us to safely ignore it. Thus, we find
that

κc =
C2
cω

2
rZ0

CΣ
. (3.59)

3.4 Input Matching

From inspection of Eq. (3.35) we find the reflection coefficient at the resonance fre-
quency

r(ωr) = 1− 2κc
(κc + κi)

, (3.60)
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Figure 3.5: (a) The value of the reflection coefficient at the resonance frequency ω = ωr as a function of the
ratio κi/κc. Three points are indicated at the ratios κi/κc = 0.1 (blue), 1 (green) and 10 (red). (b)
The full response of the three indicated cases plotted in the complex plane. The arrow indicates
the direction of increasing frequency

which is shown for various ratios of κc/κi in Fig. 3.5. We see that for both small
and large κi, the magnitude of the reflected signal is the same |r| = 1, however, the
phase of the reflected signal is different in the two cases. For small internal losses, the
interaction with the cavity causes the signal phase to shift by π, whereas large internal
losses lead to no phase shift whatsoever. This is highlighted in Fig. 3.5 (b) where we
show the full complex response of the resonator as the frequency is varied for the three
cases indicated by colored points in Fig. 3.5 (a). Here we see that, when the internal
losses equal the input coupling κi = κc, none of the signal is reflected as all of the
ingoing signal is absorbed by the cavity. In this case, the resonator is said to bematched
as the resonator impedance equals the input impedance Z0. Next, if κc ≫ κi (blue),
the response is clearly distinct from the background due to the large phase shift despite
not varying much in magnitude. Finally, if κc ≪ κi (red), however, the resonator
response is nearly indistinguishable from that of the off-resonant reflected signal as
everything is reflected at the input port. As these two cases depend on the magnitude
of the input coupler, we label these cases as over- and undercoupled respectively.

3.5 Resonator Reflectometry

In resonator reflectometry, the resonator is connected to an additional system that
causes a change in the resonator response in one or both of the following ways. First,
dispersive systems, such as superconducting qubits [58–62] lead to a shift in the fun-
damental resonance frequency δf as one would achieve by adding a capacitance (or
inductance) to the system. Second, the system can add dissipation κs = Gs/CΣ

through a conductance Gs added to the resonator, such as from an SET [49, 95–97],
quantum point contact [26, 38, 98] or quantum dot [44].

27



0.01 1 100
0.01

1

100

In
te

rn
a
l 
Lo

ss
e
s 

i/
c

Linear
Max Signal SLin

0.5

1.0

1.5

Sensor Dissipation s/ c

Figure 3.6: The maximum signal |∆r| possible to achieve using a linear resonator as a function of κi/κc and
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3.5.1 Signal strength and the matching condition

For the dissipative case, the signal difference at ω = ωr between a reference state with
κs = 0 and one with a finite dissipation is

|∆r(ωr)| = 2κc

(
1

κc + κi
− 1

κc + κi + κs

)
=

2κc
κ

(
κs

κ+ κs

)
, (3.61)

where κ = κi + κc. We see from the equation that there are two conditions that
should be satisfied to achieve a large readout signal. The first term tells us that the
input coupling should be large relative to the linewidth of the resonator, or equiv-
alently: we need small internal losses κi ≪ κc. The second term tells us that the
added dissipation κs should be large compared to the linewidth κs ≥ κ. In Fig. 3.6
we visualize this matching condition by plotting Eq. (3.61) as a function of κs/κc
and κi/κc. We see exactly this matching condition appear as the signal is maximized
in the lower right corner - corresponding to κs ≫ κc ≫ κi.

3.5.2 Measurement Time

For real time resolved experiments, the aim to distinguish the signal difference be-
tween two (or more) states as soon as possible [38, 99]. For this, we need to have
a high signal to noise ratio (SNR) and a large signal bandwidth. By satisfying the
matching condition above, the signal is maximized, enabling a high SNR, provided
that the noise level is sufficiently small ⁴.

The bandwidth of the measurement, then, is set by the linewidth κ of the resonator
[49, 100]. We see this as the rate with which the resonator reaches equilibrium in the

⁴This is achieved by ensuring that the signal is amplified at the low temperature stages of the dilution
refrigerator.
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amount of cavity photons (and thus the rate of escaping photons) after its properties
change. To increase the bandwidth then, we need κc to be sufficiently large, which
according to the above matching condition sets a minimum dissipation κs that can
be used. The measurement speed attainable is thus directly set by the conductance of
the sensor.
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Chapter 4

High Frequency Quantum Dot
Transport

Typical implementations for the reflectometry readout rely on the use of tank circuits
with resonance frequency of 100 MHz − 1 GHz, enabling readout bandwidths in
the 10 MHz range [35]. By instead implementing the microwave resonators used in
circuit QED experiments, we can access the 4− 8 GHz microwave band. Here, the
energy of the microwave photons Eph = ℏωr ≈ 15 − 30 µeV exceeds the thermal
energy arising from the electronic bath temperature kBT ≈ 5 µeV typically achieved
in dilution refrigerator units at T = 50 mK [52]. This leads to additional transport
properties that changes the nature of the dissipation to not be determined directly by
the low-frequency conductance of the quantum dots, that is otherwise typical [37].

4.1 Single Port Resonator coupled to quantum dot

The system introduced in Paper I, shown in Figure 4.1 consists of a half-wavelength
resonator coupled on one end to the input port with a capacitor Cc and the output
port being a quantum dot with admittance Y (ω) to ground. The coplanar waveguide
is made with Nb using a lift-off method with optical lithography and has a strip width
W = 10 µm and spacing S = 5 µm, with the total length of the strip l = 9.66
mm and a finger capacitor coupling the waveguide to the input port. This resonator
geometry yields the estimated distributed capacitanceCs = 178 pF/m and inductance
Ls = 402 nH/m, resulting in an impedance Zr =

√
Ls/Cs = 47 Ω and resonance

frequency fr = 1/(2l
√
LsCs) = 6.11 GHz. Also defined in the same lithographic

step are all of the DC lines which connect to the quantum dot system. The waveguide

31



Figure 4.1: The device used in Paper I. (a) An optical micrograph of the full device. The resonator line is high-
lighted in red alongwith the source DC contact ”S” for bias voltage, which connects to E-field node
of the resonator. The drain contacts ”D” (blue) are connected in the measurement setup to mini-
mize noise from the unused double quantum dot. (b) A scanning electron micrograph showing the
nanowire and the how the connections aremade to it. (c)An illustration of themeasurement setup.
The RF drive is coupled into the resonator via a capacitanceCc, realized with a finger capacitor ge-
ometry, and the reflected signal is measured using a heterodyne detection scheme which records
the amplitude and phase of the signal. (d) The equivalent LC circuit for the fundamental resonator
mode which constitutes the basis for the mathematical analysis of the reflected microwave power.

and DC lines terminate at the edge of the 100 µm2 write field in which the nanowire
is deposited manually from a growth chip. The location of the quantum dots in the
nanowire are determined using a scanning electron micrograph [101], after which the
nanowire shell is etched and the DC contacts are defined with Ti/Au evaporation
on an electron beam defined pattern. The device is wire bonded using Al wires and
measured in a dilution refridgerator with electronic temperature T = 50 mK.

RF measurements are performed using coherent microwave drives where we can set
the output frequency and power. The signals from these are fed via RF cabling into the
dilution refrigerator where a circulator separates the incoming and reflected signals.
The reflected signal is measured using a heterodyne detection scheme, as described in
Appendix B with a local oscillator frequency offset ∆f = 1 kHz. As we tune the
frequency of the coherent drives, we probe the reflection coefficient as a function of
the drive frequency.

Following Eq.(3.35), the coefficient of reflected power can be calculated as

R = |r|2 = 1− (κs + κi)κc
(κ/2)2 + (ω − ωr − δωs)2

, (4.1)
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where κ = κs + κc + κi is the linewidth of the resonance and ωr = 1/
√
LC is

the resonance frequency of the cavity. κc = Z0ω2
rC

2
c

CΣ
, κs = Re(Y (ω))/CΣ is the

coupling strength of the coupling capacitor and quantum dot respectively, and κi is
the internal loss dissipation rate. An additional parameter, δωs = Im(Y (ω))/2CΣ

capturing the dispersive frequency shift caused by the imaginary component of Y (ω)
has also been introduced here. Although the internal losses do not need to be resistive
in nature they can be modeled as an additional parallel conductance in the circuit
model of Figure 4.1 d).

The internal losses in the resonator can come from a variety of sources, e.g. substrate
losses that can be minimized by using highly resistive substrates. Additionally, the
resonators exhibit additional losses when connecting it to the other components in
our measurement chip. These additional losses can be due to e.g. the use of normal
conducting wires to connect the resonator to the nanowire, radiative losses from the
endpoints of the resonator acting as an antenna, or leakage through the midpoint
contact. In making our devices we attempt to minimize these losses for instance by
making the nanowire connections wide, such that the sheet resistance of these lines
is minimized, and by shunting all of our DC lines to the ground plane via a large
capacitor made with 30 nm thick Al2O3, which covers the area shown in white of
figure 4.1 a) [102].

A measurement of the reflection coefficient at the resonance frequency of the cavity
R(ωr) as we sweep Vb and VG is shown next to the DC current and conductance in
Figure 4.2. The clearly visible lines in the reflectometry measurement coincide well
with the measured lines in the conductance, indicating that the resonator response
aligns with the high-conductance states of the quantum dot.
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Figure 4.2: Three measurements of a Coulomb diamond, (a) shows the current, (b) shows the conductance and
(c) shows the reflection coefficient at resonance frequency
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4.2 Measuring the finite frequency admittance

Now, we move towards comparing the zero bias conductanceG at DC with the corre-
sponding finite frequency admittance Y (ω) for the quantum dot. To do this, we set
the gate voltage to a value in Coulomb blockade and measure the current as we per-
form a small sweep of the bias voltage within the linear response regime (|Vb| ≪ kBT )
with the coherent microwave drive turned off. We then set the DC bias to zero, turn
on the microwave drive and sweep the frequency across the resonance frequency while
measuring the reflected power and repeat at a new gate voltage point, until we have
crossed the conductance resonance and entered the Coulomb blockade for the next
electron.

At DC, the measurement yields a zero-bias conductance peak, as shown in Figure
2.4 (b), from which the tunnel couplings of the system can be extracted by fitting
the data to the Landauer Büttiker theory. From the measurement of the reflection
coefficient, shown in Figure 4.3 we can find the resonance frequency, linewidth and
amplitude of the resonator as a function of the gate voltage. We first fit the resonator
response when the quantum dot is in Coulomb blockade to find κi and κc, while
κs = 0. Then, keeping κi and κc constant, we fit the linewidth of the resonator
to the remaining gate voltage points. Changes in the linewidth of the resonance are
then attributed to the quantum dot coupling, from which the admittance is easily
calculated as Re(Y (ω)) = κsC.

When comparing the reflected power in Coulomb blockade with the one when we
are resonant with the quantum dot, we see that both the amplitude of the response
as well as the linewidth has changed while the resonance frequency is relatively un-
perturbed. This is in line with an increasing conductance as shown in the discussion
about matching in Chapter 3.5.1.

6.775 6.780
Gate Voltage VG (V)

6.26

6.30

6.34

Fr
eq

ue
nc

y 
f (

GH
z)

6.26 6.30 6.34
Frequency f (GHz)

0.5

0.75

1.0

Re
fle

ct
io

n 
Co

ef
fic

ie
nt

 R

6.775 6.780
Gate Voltage VG (V)

0

10

20

30

Co
up

lin
g 

St
re

ng
th

 
 

/2
 (M

Hz
)

c + i

a) b) c)

Figure 4.3: (a) the measurement of the reflection coefficient as a function of the quantum dot gate voltage
and drive frequency. (b) Three line cuts in frequency showing the amplitude and linewidth of the
resonator response for the three dashed lines in a. (c) The linewidth of the resonator as a function
of the gate voltage, the dotted black line indicates the constant coupling strength of the cavity
κc + κi, the changes are due to the quantum dot coupling κs
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We performed the above measurements for two devices with resonator 1 (2) having
ωr/2π = 6.315 (6.829) GHz, κc/2π = 26 (2.5) MHz, and κi/2π = 0.6 (5.9)
MHz, determined frommeasurements when the quantum dot was tuned to Coulomb
blockade. The two quantum dots also vary in their asymmetry, with quantum dot 1
(2) having less (more) asymmetric barriers resulting in different measurement regimes
for the two devices, although both devices have ΓL < ΓR.

In both devices, we make a measurement at two different gate voltage points, tun-
ing the tunnel couplings through the gating. The measurement results for device 1
are presented in Figure 4.4. In panel a), we show the measurement of the DC con-
ductance at a gate voltage VG,0 = 6.78 V, with a fit produced by Eq. (2.6) yielding
the tunnel couplings ΓL = 6 µeV, ΓR = 55 µeV. The measurement of the finite
frequency admittance is shown in panel b) and follows closely the DC conductance
within measurement tolerance. In this regime, a finite frequency extension to the
Landauer-Büttiker theory introduced in Appendix 2 (Eq. A.20) of Paper I is used to
produce a prediction of the response based off of the tunnel couplings measured at
DC, which is in close agreement with the data.

Figure 4.4 d) - f ) shows the same measurement performed at a different gate voltage
point VG,0 = 4.72 V. The DC peak is here thermally broadened, and a fit to the DC
data only yields the smaller tunnel coupling. The finite frequency admittance displays
a qualitatively different response, showing a factor two difference in admittance be-
tween the negative and positive level shift directions, as well as a broadening of ℏω
in either direction. The aforementioned finite frequency Landauer Büttiker theory
(solid line) now fails to predict the response, although still predicting a broadening
due to the photon energy.

This admittance is attributed to a photon assisted tunneling effect illustrated in Figure
4.5 b) where a photon can excite an electron into the dot up to a QD energy level shift
of ϵ = ℏω. If we instead shift the energy level of the dot to below the energy of the
leads, the photon can now excite an electron out of the quantum dot into the lead.
Since any one level of the quantum dot can be filled with two spins, the relative
rate of these two processes depend on the filling of the quantum dot. We consider
the process which involves the N = 1 ↔ N = 2 transitions. In the case when
−ℏω ≤ ε ≤ 0, the quantum dot has one electron with a specific spin on it, meaning
that excitations into the dot can only be achieved with the remaining spin electron.
When ε is increased such that 0 ≤ ε ≤ ℏω, both electrons now occupy the dot,
meaning that the absorbed photon can excite either of the two electrons out of the dot.
Theoretically, the above process is modelled using sequential tunneling approaches,
both by considering a time periodic drive coupled to the QD as in Ref. [103], or using
P(E) theory which considers the probability of photon absorption events in the cavity
[104, 105], yielding the dashed line of Figure 4.4.
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Figure 4.4: The measurement results for device 1. (a) The DC conductance as a function of the level shift
ε = αGVG (circles) along with a fit to find the tunnel couplings (line, Eq.(2.6)). (b) The measured
finite frequency admittance at the same gate voltage points as in a) (circles), prediction from finite
frequncy Landauer Büttiker theory, Eq. A.20 of Paper I (line). (c) The measurement of the reflection
coefficient fromwhich the result in b) is found. (d)-(f) The samemeasurement as above for a second
transition in which the DC conductance is thermally broadened such that ℏω > kBT > Γ. The
finite frequency admittance is in this regime broadened due to photon assisted tunneling, as well
as showing a factor two difference attributed to spin effects on the quantum dot. The dashed
line in (e) shows a calculation based on finite frequency sequential tunneling, Eq. A.35 of Paper I,
where the larger tunnel coupling in (d) has been used as a fitting parameter.

Figure 4.5: An illustration of the process leading to the factor two difference in admittance. We consider the
transition where N = 1 ↔ 2, such that for a positive level shift ε as in (a), the orbital is filled, and
the photon can excite an electron with either spin up or spin down out of the dot. In (b)where the
ε < 0, the photon supplies the energy to add the second electron. This process can only happen
for electrons with the correct spin, meaning that the process fails half of the time. For transitions
going from N = 0 ↔ 1, the two-level structure is thus expected to be mirrored with respect to ε.

An additional measurement performed on device 1 with VG,0 = 4.72 V is shown
in Figure 4.6 where the linewidth of the DC conductance and RF admittance are
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measured as the input power P0 is increased. At low input powers, the linewidth
approaches those measured in Figure 4.4 d) and e). We see that for high input powers
the linewidth is additionally broadened by the amplitude of the voltage oscillation
amplitude, as reported in Refs. [11, 106].
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Figure 4.6: Measurement of the quantum dot resonance of Figure 4.4 (d) - (f) as the microwave input power
P0 is increased as the DC conductanceG (a), and the RF amplitude (b) are measured. Two mea-
surements with different level shift ranges are combined. The horizontal lines appear as a result
of extending the edge data to fill the color plot. (c) The measured linewidth of the two measured
quantities as a function of input power. At low powers they each saturate to the limits discussed in
Figure 4.4, while at high power the linewidth is additionally broadened by the voltage amplitude
of the cavity.

We see that for high input power P0 the quantum dot becomes smeared, with a
linewidth ∝ P

1/2
0 . This arises due to the voltage amplitude of the microwave mode

biasing the quantum dot, resulting in additional dissipation [107]. The broadening
can be calculated by considering the maximum voltage within the resonator, which is
attained as all the stored energy lies across the capacitance

E = ℏωr⟨n⟩ =
1

2
CΣV

2
MW. (4.2)

Inserting eq. (3.38), we find then that

VMW =

(
8κcZrωrP0

κ2

)1/2

. (4.3)

This result is different by a factor of two from that reported in previous literature [107]

VMW =

(
4κcZrωrP0

κ2

)1/2

. (4.4)
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The discrepancy here could possibly be due to the electric energy being split between
the two antinodes of the resonator.

A fit of the high-power data to the above equation yields a cavity impedance Zr =
53 Ω, matching the typical value for coplanar waveguide resonators [53].

The measurements for the second device are presented in Figure 4.7. Again, the trans-
parent configuration, with large tunnel couplings shows that finite frequency admit-
tance is explained well by the DC conductance. However, for the second measure-
ment with a lower gate voltage the DC transport is suppressed as the smaller tunnel
coupling limits the transport while the finite frequency admittance is two orders of
magnitude larger. This can be qualitatively understood by the photon assisted tunnel-
ing picture again, where the more transparent barrier allows for tunneling in and out,
providing dissipation to the cavity, while the opaque barrier blocks DC transport.
However, as the quantum dot is still lifetime broadened, it cannot be treated with
sequential tunneling theories, and thus needs more refined theory to quantitatively
explain the transport.
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Figure 4.7: The same measurements for Device 2 show again that for Γ > kBT, ℏω (a-c) the finite frequency
admittance is well-understood with the DC conductance alone. For the second measurement point
(d-f), we have that ΓL ≪ kBT, ℏω but ΓR > kBT, ℏω. The asymmetry leads to the DC conductance
being limited by the smaller tunnel coupling, while the finite frequency admittance is two orders
of magnitude larger. The weak response in RF is partially due to lower quantum dot admittance
compared to device 1, as well as the resonator internal losses being larger Gint ≈ 4.5 µS.
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Chapter 5

Nonlinear Resonators based on
Josephson Junctions

Until now, we have considered only resonators with a coplanar geometry made from
regular superconducting materials. As discussed in Ch. 3, these form a resonance
mode due to the geometric inductance L and capacitance C, which depend on the
geometry of the coplanar waveguide. Now, we will be considering resonators made
from arrays of Josephson junctions (JJs) [108, 109] . These give rise to a kinetic induc-
tance, that arises due to the phase difference of the superconducting state across a weak
link, such as a tunnel junction [110, 111]. This allows the creation of high-impedance
devices, which enable a strong coupling to quantummechanical components [54,112].
This chapter will begin by discussing the Josephson junction as a single component,
followed by considering what happens when connecting several junctions in series to
form an array.

5.1 Josephson Junctions

In superconductors, the dissipation-less current is arises due to an effective attractive
coupling between electrons in the conductor, forming so-called Cooper pairs which
move without resistance [113]. These pairs of electrons inhabit states described by
the Ginzburg-Landau order parameter ψ(r) = |ψ(r)|eiϕ(r), which is akin to the
wavefunction, with |ψ(r)|2 giving the density of cooper pairs, and with ϕ(r) the
phase of the order parameter.

In a Josephson Junction, illustrated in Fig. 5.1, we consider two superconductors that
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ϕA
ϕB

Josephson Junction

I = IC sin(ϕA - ϕB)

Figure 5.1: An illustration of an superconductir-insulator-superconductor (SIS) Josephson junction. The gray
sections are superconductors with the red region being the barrier, making the JJ. Despite the
interruption in the superconductor, a supercurrent arising from tunneling of Cooper pairs can be
sustained through the junction, depending on the difference in Ginzburg-Landau phase ϕA − ϕB

between the two superconductors.

are connected via a weak link such as an insulator [114], metal [115–117], or constriction
[118]. The system can be described as two separate superconductors A, B with the
corresponding order parameter with phase ϕA, ϕB. From the Schrödinger equation
of this system, one finds the two Josephson equations [119, 120],

I(t) = IC sin(φ(t)) (5.1)

V (t) =
ℏ
2e

∂φ

∂t
=

Φ0

2π

∂φ

∂t
(5.2)

where IC is called the critical current, φ = ϕA − ϕB is the phase difference between
the two superconductors and Φ0 = h/2e is the magnetic flux quantum. The super-
conducting junction thus permits a dissipation-free current, which is bounded by the
critical current IC, after which the current transport becomes resistive. Additionally,
a voltage across the Josephson junction implies a constant changing phase, resulting
in an alternating current with frequency V/Φ0.

For JJs made with insulating barriers (SIS junctions), the magnitude of the critical
current depends on the thickness of the barrier, with more resistive junctions having
a lower critical current, obeying the Ambegaokar-Baratoff relation

IC =
π

2

∆

RN
(5.3)

where RN is the resistance of the junction in the normal state, and ∆ is the energy
gap in the density of states of the superconductor [121]. At the critical current, we
thus have a voltage drop across the junction of U(IC) = π

2
∆
e , as the current now

consists of normal electrons being taken across the gap by the applied voltage bias.

We see from the two Josephson equations that a time-varying current will give rise to
a voltage, akin to an inductor

∂I

∂t
= IC cos(φ(t))

2eV (t)

ℏ
=

1

LJ
V (t), (5.4)
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Where we define the Josephson inductance

LJ =
Φ0

2πIC cos(φ)
. (5.5)

Unlike a typical inductor, however, this relationship is not due to a buildup of a
magnetic field in which the stored energy largely depends on the geometry of the
inductor (which is thus called geometrical inductance). Rather it is due to the kinetic
energy of the Cooper pairs being transmitted through the junction, and is therefore
called a kinetic inductance.

5.1.1 Superconducting Quantum Interference Devices

Magnetic flux

Josephson 
junction

Current

Field-induced
current

Figure 5.2: A superconducting quantum interference device (SQUID) has two parallel Josephson junctions in
a loop geometry. The hole left in the middle permits a magnetic flux which can induce additional
currents to flow inside the SQUID, leading to a variation in the phase across the junction.

A Superconducting Quantum Interfering Device, or SQUID is constructed by plac-
ing two Josephson Junctions in parallel in a loop geometry, such as in Figure 5.2. We
consider such a SQUID with a current I going through it, evenly split between the
two junctions. In the presence of a small external magnetic field, a screening current
IB is induced in the SQUID to counteract the external field [122]. As a superconduct-
ing loop can permit integer numbers of the flux quanta Φ0 = h/2e to be enclosed
by the loop, the circulating current switches direction when the external field reaches
Φ0/2 to instead let in a whole flux quanta. Further increases to the field instead de-
creases the magnitude of the screening current as the external field approaches Φ0,
after which point the cycle repeats. Since the current in the two branches is no longer
the same, we have a different phase φ across each junction that depends on the exter-
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nal field Φ¹
φ2 − φ1 = 2πn+

2πΦ

Φ0
(5.6)

which gives the total current

I = 2IC cos

(
πΦ

Φ0

)(
φ1 +

πΦ

Φ0

)
(5.7)

We see thus that the maximum current in the SQUID, found when the second term
is maximized, oscillates with the applied magnetic field

Imax = 2Ic

∣∣∣∣cos(πΦΦ0

)∣∣∣∣ . (5.8)

The magnetic field dependent maximum current allows the SQUID to work as an
effective magnetometer, and for our interests it allows us to modulate the inductive
properties of the SQUID. As we intend to use Josephson junctions to form the in-
ductance of a resonator, this will allow us to tune its resonance frequency.

5.2 JJ-array resonators

As each Josephson Junction contributes an inductance Lj , by making an array of
N junctions, the total inductance of the array L = NLj can be used to form the
inductance of a lumped-element resonator, as shown in Fig. 5.3. The capacitance for
the resonance mode CΣ = Cc +C is provided by an input coupling capacitance Cc

and the stray capacitanceC, which together with the inductance defines the resonance
frequency ωr = 1/

√
LCΣ

Since the kinetic inductance Lj is much greater than the geometric inductance of a
regular coplanar waveguide, one canmake devices with larger characteristic impedance
Zr =

√
L/CΣ [55]. Looking back at the equations (3.59), (3.56) for the input cou-

pling κc and sensor dissipation κs, we note that these scale with a larger impedance.
Intuitively, this is explained by the impedance corresponding to the ratio of the volt-
age oscillations to the current oscillations, with a larger impedance corresponding to
larger voltage. As both the coupling capacitance and sensor dissipation couples via
electric fields, a larger impedance results in a stronger interaction. The result of this is
that the linewidth of the resonator is increased, leading to a larger bandwidth for the
resonator, allowing faster measurements.

¹We have here assumed that the self-inductanceL of the SQUID is sufficiently small that IBL ≪ Φ
which would otherwise need to be taken into account.
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Figure 5.3: Circuit diagram of the JJ-array oscillator with input voltage signal V (t) through a transmission line
with characteristic impedance Z0. The resonator has a coupling capacitance Cc, self-capacitance
C and conductance G, the inductance arises from the array of Josephson junctions.

5.2.1 Hamiltonian solution to the nonlinear resonator

Although the inductance of the Josephson junction should allow us to make a res-
onator, the nature of this inductance is not the same as that for a regular coil. No-
tably, we have a phase-dependent term which introduces a non-linearity that affects
the inductance as the phase across the junction changes. This can occur as we increase
the amplitude of the oscillations within the resonator. In order to derive the effects
of this non-linear inductance, we will now construct the Hamiltonian of the JJ-array
resonator, beginning by considering the system with only a single Josephson junction.
This system is a so-called Cooper pair box (CPB) [123, 124], which is considered to be
a superconducting island coupled to the environment via a single Josephson junction.
Such a CPB has a charging energy given by its self-capacitance CΣ

EC =
q2

2CΣ
(5.9)

which is the required energy to add a single particle of charge q to the island. As the
charge of n Cooper pairs is Q = n 2e, we find that the corresponding energy stored
on the island is

U = 4ECn
2 (5.10)

Next, in order to calculate the energy of the supercurrent flowing through the Joseph-
son junction, we consider the energy difference∆E as the phase difference φ changes
with time. This energy difference is given by the time-integral of the work done to
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the junction

∆E =

∫ t2

t1

IV dt =

∫ t2

t1

IC sin(φ(t))V dt (5.11)

using now the second Josephson relation, we can make a variable transformation to
instead integrate over the phase difference φ.

∆E =
ℏ
2e

∫ φ2

φ1

IC sin(φ)dφ = − ℏ
2e
IC(cos(φ2)− cos(φ1)) = −EJ∆cos(φ)

(5.12)
Where EJ is the Josephson energy

EJ =
ℏIC
2e

= LJI
2
C. (5.13)

Finally, we use the second Josephson relation, along with the definition of the node
flux ϕ, to realize that the phase difference can be expressed as

φ = 2π
ϕ

Φ0
(5.14)

Following the same arguments as in Chapter 3, we can now construct theHamiltonian
of a single Josephson junction

H =
1

2C
Q2 − EJ cos (2π

ϕ

Φ0
) (5.15)

We note that for small values of ϕ, the cosine term varies like ϕ2, such that the Hamil-
tonian is equivalent to that of the linear harmonic oscillator. However, for large ϕ, i.e.
large amplitudes of the resonant mode, the lowest-order approximation is no longer
valid, as we will have to take into account higher order terms as well. In this section,
we evaluate the next order terms to find aHamiltonian describing the resonance mode
up to the first nonlinear term.

We begin by Taylor expanding the cosine term to the first anharmonic term

EJ cos 2π
ϕ

Φ0
= EJ

(
1− 1

2

(
2π

ϕ

Φ0

)2

+
1

24

(
2π

ϕ

Φ0

)4

+O(ϕ6)

)
, (5.16)

From here, we ignore the constant offset term, and note that the Hamiltonian is then

H =
1

2C
Q2 +

1

2L
ϕ2 − EJ

(
1

24

(
2π

ϕ

Φ0

)4

+O(ϕ6)

)
. (5.17)
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The first two terms here are the same that we find for a linear resonator, leaving the
third term to be evaluated. We do this by rewriting the phase ϕ̂ in terms of the ladder
operators

ϕ̂ =

√
ℏZ
2

(
â+ â†

)
(5.18)

which obey the commutation relation[
â, â†

]
= ââ† − â†â = 1 ⇒ ââ† = 1 + â†â. (5.19)

We then focus on the quartic term

4

ℏ2Z2
ϕ̂4 =

(
â+ â†

)4
=(

â2 + ââ† + â†â+ â†2
)2

=

=
(
ââââ+ ââââ† + âââ†â+ âââ†â†

)
+
(
ââ†ââ+ ââ†ââ† + ââ†â†â+ ââ†â†â†

)
+
(
â†âââ+ â†âââ† + â†ââ†â+ â†ââ†â†

)
+
(
â†â†ââ+ â†â†ââ† + â†â†â†â+ â†â†â†â†

)
We enforce energy conservation to drop all terms which don’t preserve the photon
number in the cavity, and then utilize the commutation relation to swap terms(

â+ â†
)4

≈ âââ†â† + ââ†ââ† + ââ†â†â+ â†âââ† + â†ââ†â+ â†â†ââ

= 6â†â†ââ+ 12â†â+ 3

We note three terms, first we have the nonlinear term which increases proportional
to n2, describing the lowest-order nonlinear dynamics of the resonator. Second, we
have a term proportional to n of the same form as in a regular Harmonic oscillator.
This term will result in a correction to the bare resonator frequency, with magni-
tude depending on the ratio of EC/EJ. Assuming that the resonator is closer to the
transmon-regime than the charge-qubit regime however, we are free to neglect this
correction. Third, we have an offset in the total energy of the junction, which we are
also free to ignore. With these considerations, we insert the above into the Hamilto-
nian

H ≈ ℏωrâ
†â− EJ

(
2π4

3Φ4
0

ℏ2Z2

4

(
6â†â†ââ

))
= ℏωrâ

†â− EC

2
â†â†ââ. (5.20)
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Here, we note that the prefactor corresponds to the Kerr nonlinearity with coefficient
EK = −EC.

In a JJ-array resonator, we have a series of N such Josepshon junctions. This means
that the voltage in the array is divided evenly across the N junctions. Therefore, in
order to reach the same voltage amplitude across a single junction, the total voltage
amplitude in the resonator has to be increased by a factor of N Since the number of
photons in the cavity is proportional to the stored energy which in turn is proportional
to V 2, the required energy in the cavity to reach the same non-linearity is proportional
to 1

N2 . For the N -junction resonator, the Hamiltonian is thus

H = ℏωrâ
†â− EC

2N2
â†â†ââ. (5.21)

5.2.1.1 Frequency Shift

Just as a linear Harmonic oscillator, the above Hamiltonian has eigenstates corre-
sponding to the number of photons n, with eigenenergies

En = ℏωrn
2 − EC(n

2 − n). (5.22)

We consider now the energy for the nth photon

En − En−1 = EK(n− 1), (5.23)

and find that as EK < 0, the resonator energy decreases with the number of photons.
This means that the resonance frequency shifts away from the low-power result by

ωK =
EK

ℏ
(n− 1) (5.24)

towards lower frequencies². Assuming that n ≫ 1 and inserting Eq. (3.38) for the
photon number, we find

ωK

ωr
=
EK

ℏωr
n =

4πZrκc
RQN2κ2

P0

ℏωr
, (5.25)

Furthermore, we find that for a specific frequency shiftωr there is a set photon number

n =
N2

π

RQ

Zr

−ωr

ωr
(5.26)

depending on the number of junctions in series N and the characteristic impedance
Zr of the resonator.

²As the frequency of the resonator is decreasing with increasing power, we say that the resonator is
softening. In the opposite case, we would say that the resonator was hardening if the frequency increased.
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5.2.2 Numerical Solution to the Nonlinear Resonator

With the Hamiltonian solution method we have managed to show that the resonator
reduces its resonance frequency as the input power is increased. However, we have no
knowledge of the frequency response of the resonator. Calculating this would require
to now add a coupling to an environment and solve the Hamiltonian of this shared
system with an interaction term. However, this is a far too complicated problem for
this thesis. Instead, we will now solve the full system numerically by considering the
reflection coefficient of the circuit shown in Fig. 5.3. For this, we will need to calculate
the impedance of the resonator Z = (V1 + V2)/I .

We begin by assuming a sinusoidal input tone

V (t) = V0 sin(ωt) =
V0
2

(
eiωt − e−iωt

)
, (5.27)

corresponding to an input power P0 = (V0/2
√
2)2/Z0, where the additional fac-

tor 2 is due to the voltage division across the input impedance. Now, we consider
Kirchhoff’s current continuity law for the circuit which gives

VZZ0 = Cc
∂V1
∂t

= C
∂V2
∂t

+ V2G+ IC sin(φ), (5.28)

Recalling the Josephson equations (Eq (5.1) and Eq (5.2)), we see that we can write
the current IL and the voltage V2 in terms of the Josephson phase φ as{

IL(t) = IC sin(φ(t))

V2 =
ℏN
4eπ

∂φ
∂t

, (5.29)

which upon insertion into Eq (5.28) gives

C
∂V1
∂t

= C
ℏN
2e

∂2φ

∂t2
+

ℏN
2e

∂φ

∂t
G+ IC sin(φ). (5.30)

Now, applying the second of Kirchhoff’s laws, we demand that the voltages in the
circuit add up to the input voltage

∂V

∂t
=
∂VZ
∂t

+
∂V1
∂t

+
∂V2
∂t

= Z0
∂I

∂t
+
∂V1
∂t

+
∂V2
∂t

=Z0IC cos(φ)
∂φ

∂t
+ Z0C

ℏN
2e

∂3φ

∂t3
+ Z0G

ℏN
2e

∂2φ

∂t2
+
∂V1
∂t

+
ℏN
2e

∂2φ

∂t2
.
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Using Eq. (5.30) to substitute the expression for V1, we find

Cc
∂V

∂t
=Cc

(
Z0IC cos(φ)

∂φ

∂t
+ Z0C

ℏN
2e

∂3φ

∂t3
+ (1 + Z0G)

ℏN
2e

∂2φ

∂t2

)
+ C

ℏN
2e

∂2φ

∂t2
+G

ℏN
2e

∂φ

∂t
+ IC sin(φ)

=IC sin(φ) +

(
Z0ICCc cos(φ) +G

ℏN
2e

)
∂φ

∂t

+

(
(C + Cc(1 + Z0G))

ℏN
2e

)
∂2φ

∂t2
+

(
Z0CCc

ℏN
2e

)
∂3φ

∂t3
.

Next, we make the assumption³ that Z0G ≪ 1, define CΣ = C + Cc and rewrite
the equation as

∂2φ

∂t2
+

2e

ℏN
IC
CΣ

sin(φ) +

(
G

CΣ
+

2e

ℏN
Z0ICCc

CΣ
cos(φ)

)
∂φ

∂t

+

(
Z0CCc

CΣ

)
∂3φ

∂t
=
Cc

CΣ

2e

ℏN
∂V

∂t
. (5.31)

Since the system receives a sinusoidal input signal, we make the ansatz that the phase
takes on an oscillating solution φ(t) = φ1e

iωt + φ∗
1e

−iωt. This lets us rewrite

∂3φ

∂t3
= −ω2∂φ

∂t

and by substituting in the Josephson inductance for the array L = ℏN
2eIC

, and defining
the resonance frequency ωr = 1/

√
(LCΣ) we arrive at the equation of motion for

the phase.

∂2φ

∂t2
+

(
G

CΣ
+
Z0ω

2
rC

2
c

CΣ

(
CΣ

Cc
cos(φ)− ω2

ω2
r

CΣ

Cc
− ω2

ω2
r

))
∂φ

∂t

+ ω2
r sin(φ) =

2e

ℏN
Cc

CΣ

∂V

∂t
(5.32)

In order to solve the above system, we approximate the sinusoidal term in the coor-
dinate position sin(φ) = φ−φ3/6, while ignoring the nonlinearity in the damping

³The input impedance Z0 is typically set to 50 Ω, meaning that a conductance of G > 200 µS
would be needed to make an error in the 2nd decimal. Seeing as this already exceeds the conductance
quantumG0 ≈ 77.5 µS by more than a factor of 2. Assuming that the circuit conductance arises from
a single-channel sensor such as a QD or QPC which does not exceed this conductance quantum, we are
therefore very safe in this assumption.
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term⁴ cos(φ) = 1.

∂2φ

∂t2
+ (κi + κc)

∂φ

∂t
+ ω2

rφ− ω2
r

6
φ3 =

2e

ℏN
Cc

CΣ
ωV0 cos(ωt) (5.33)

where κi = G/CΣ is the internal losses and κc = ε(ω)Z0ω
2
rC

2
c /CΣ the external

coupling strength as found in Ch. 3 with an additional correction factor ε(ω), which
is near unity as ω ≈ ωr.

Written on this form, the equation of motion is the duffing equation

φ̈+ κφ̇+ αφ+ βφ3 = γ cos(ωt) (5.34)

with system parametersκ = κi+κc,α = ω2
r , β = −ω2

r /6, γ = (2eCcω/ℏNCΣ)V0.

We solve this system using the harmonic balance method, where we insert our ansatz
from above into the equation

− ω2
(
φ1e

iωt + φ∗
1e

−iωt
)
+ iκ

(
φ1ωe

iωt − φ∗
1ωe

−iωt
)

+ α
(
φ1e

iωt + φ∗
1e

−iωt
)
+ β

(
φ1e

iωt + φ∗
1e

−iωt
)3

= γ cos(ωt).

We evaluate the cubic expression and discard terms of higher harmonics, then rear-
range the expression to arrive at

(−φ1ω
2 + iκωφ1 + αφ1 + 3β|φ1|2φ1 − γ/2)eiωt

+ (−φ1ω
2 − iκωφ1 + αφ1 + 3β|φ1|2φ1 − γ/2)e−iωt = 0. (5.35)

As the second term is simply the complex conjugate of the first, the above condition
is non-trivially true only if

φ1 =
γ/2

α− ω2 + iκω + 3β|φ1|2
(5.36)

which in terms of the system parameters is

φ1 =

e
ℏN

Cc
CΣ
ωV0

ω2
r − ω2 + iκω + ω2

r
2 |φ1|2

. (5.37)

⁴This assumption may not seem initially justified, as we are already including a higher-order term in
the coordinate position. However, this term belongs to the damping coefficient of the resonator, and is
thus responsible for the linewidth of the resonator, not for the frequency evolution of the mode, making
this term less important to preserve if one is interested in the frequency shift of the resonator as we are.
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Figure 5.4: Solutions to Eq. (5.36) showing the Josephson phase φ as a function of the drive frequency ω with
the system parameters α = ω2

r , β = −ω2
r /6, κ = 0.02ωr, γ/(ωωr) = 0.02, 0.016, 0.01, and 0.002

counting from the top. Unstable solutions are shown with a dashed line of the same color. The
black dotted line shows the backbone curve φbb =

√
2(1 − (ω/ωr)2 of the response.

This self-consistent equation can be solved with a numerical iterative method in order
to find stable solutions of φ1. Figure 5.4 shows the magnitude of the phase |φ| as a
function of the frequency at three different drive amplitudes γ. We see that at low
powers (blue curve) the phase has a response centered around the resonance frequency
ωr, but that for larger drive amplitudes γ (red line) the response tends towards lower
frequencies, climbing along the backbone curve indicated by the black dashed line

φbb =

√
ω2 − α

3β
=

√
2(1− (

ω

ωr
)2) (5.38)

where the second equality holds for our system parameters. After some critical input
amplitude, there begins to exist multiple solutions to Eq (5.37), resulting in a bifur-
cation of the resonance mode, which we will discuss in more in detail in the next
section.

Now that we know the phase Josephson phase φ, we can calculate the impedance of
the junction array We begin by considering the voltage across the array

V2 =
ℏN
2e

∂φ

∂t
=

ℏN
2e

iω
(
φ1e

iωt − φ∗
1e

−iωt
)

(5.39)

and the current through the array I as

I = Cc
∂V1
∂t

= Cc
∂

∂t
(V (t)− V2 − VZ) = Cc

∂

∂t
(V (t)− V2 − Z0I) (5.40)

again, assuming that the current is of a sinusoidal form

I = I1e
iωt + I∗1e

−iωt
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we rearrange the expression into(
iωCc

V0
2

+
ℏN
2e

Ccω
2φ1 − (1 + iωCcZ0)I1

)
eiωt

+

(
−iωCc

V0
2

+
ℏN
2e

Ccω
2φ1 − (1− iωCcZ0)I1

)
e−iωt = 0

which, following the same argumentation as for the superconducting phase above,
results in

I1 =
iωCc

V0
2 + ℏN

2e Ccω
2φ1

1 + iωCcZ0
. (5.41)

Finally, we can calculate the impedance of the resonator as

Z =
V1 + V2
I1

=
V0
2 − ℏN

2e CcZ0ω
2φ1

iωCc
V0
2 + ℏN

2e Ccω2φ1

. (5.42)

5.2.3 Reflection response

With the results from Eqs. (5.37) and(5.42) we can numerically calculate the reflection
response of the resonator as

r =
Z − Z0

Z + Z0
. (5.43)

In this section, we will study the outcome of the numerical calculations in order to
understand how the nonlinearities impact the resonator with a large input amplitude
V0.

We begin by verifying that the low-frequency response is retained. Figure 5.5 shows
the resonator response calculated with the linear reflection coefficient of Eq. (3.35) as
well as with the numerical method. we see that the numerical method agrees quite
well with that of the linear resonator, although there is a very slight deviation in the
imaginary component.

Next, Fig. 5.6 (a) shows the frequency response of the resonator as the input amplitude
γ/(ωωr) is increased. Here we see the same behavior of the reflection coefficient as
we did for the superconducting phase of Fig. 5.4, with the frequency of the resonator
decreasing as the input power is increased. As the frequency shift of the resonator
exceeds

∆ωr = −3

4
κ (5.44)
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Figure 5.5: The reflection response of the resonator as the drive frequency is varied. The black lines show the
low-power solution, Eq (3.35). The blue dashed lines show the result from the numerical calculations,
Eq. (5.42) with P0 = 1 aW. (a): The amplitude reflection coefficient, |r|. (b): The phase of the
reflected signal ∠r. (c): The real- and imaginary components of the solution.
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Figure 5.6: The amplitude (a), phase (b) and full complex response (c) of the reflected signal in the nonlinear
resonator at increasing input amplitudes γ/(ωωr) with κ = 0.02ωr.

the bifurcation of the resonator begins [57,125,126], after which three solutions exist to
the duffing equation. One of the three solutions is unstable, and is indicated with the
dashed line. A measurement of the reflection coefficient of the resonator will result
in one of the two remaining stable solutions, depending on the sweep direction and
the amount of noise acting on the system.

In Fig. 5.7 we consider the γ/(ωωr) = 0.02 case from above, showing the two sta-
ble solutions. For a system with no external noise perturbing the resonator, the res-
onator will only switch at the jump-up and jump-down frequencies, indicated by solid
markers [127]. With external perturbations, however, the resonator can switch spon-
taneously between the two states with increasing rate as the frequency approaches the
jump-up/jump-down frequency [109]. If the measurement time exceeds the switching
time, the measurement will thus result in an average of the two solutions, weighted
by the corresponding switching rates.

Figure 5.8 shows the (high-amplitude solution) reflected amplitude a function of the
input frequency f and power P0, with the dashed line indicating the resonance fre-
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Figure 5.7: The two stable solutions in the nonlinear regime indicated by the solid blue lines. The switching
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indicates the region in which switching can happen if external perturbations are present.
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Figure 5.8: The resonator amplitude |r| as a function of the drive power P0 and frequency f . The dashed line
indicates the frequency shift as calculated from Eq (5.25).

quency shift, as predicted by the Hamiltonian solution in ch. 5.2.1.1. We note that
the two methods for calculating the response of the resonator agree well with each
other for reasonable input amplitudes, where the resonance frequency only shifts on
the order of a few linewidths⁵.

⁵For very large input powers, the two methods do not agree. The Hamiltonian method predicts a
frequency shift proportional to the square of the voltage, whereas the Duffing solution gives the solution
as following a circular arc. This limit, however, is likely exceeding the approximation that only the first
nonlinear term is relevant.
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5.2.4 Onset of Bifurcation

As the aim of using a resonator to read out a charge sensor is to perform time-resolved
measurements, the switching dynamics of the nonlinear resonator would interfere
with any such measurements. However, in order to make the readout signal larger
we will want to drive the resonator at a high input power P0. It is therefore useful to
consider the input power P0 at which the bifurcation is onset, as this will set a limit
to the device performance.

The onset of bifurcation occurs first for the low-frequency tail of the response at ωr =
−
√
(3/4)κ [57], and reaches the peak at ωr = −κ. From Eq. (5.26) we thus find

that the number of photons in the resonator as the peak enters bifurcation is

n =
N2

π

RQ

Zr

κ

ωr
(5.45)

which, upon insertion into Eq (3.38) yields the critical power

Pc =
N2Φ2

0κ
3

2π2Zrκc
(5.46)

where the resonator becomes bifurcated at the peak.
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Chapter 6

Dissipation in Nonlinear
Resonators

Now that the response of a nonlinear resonator is well-understood, we will proceed
with adding dissipation to the system by coupling such a resonator to a quantum dot.
This chapter will present the experimental measurements on a device where a SQUID-
array resonator was coupled to a QD charge sensor probing a DQD. We will begin
in Sec. 6.1 by presenting the device geometry, and proceed with the measurements
forming the basis for Paper II in Sec. 6.2. Finally in Sec. 6.3 and 6.4 we will consider
the prospects and limitations to using this type of resonator for the charge readout.

6.1 Device Geometry

Figure 6.1 shows scanning electron micrographs of the measured device. The nonlin-
ear resonator is made from an array of N=13 SQUIDs in series (blue inset) coupled to
the input/output port via a capacitor on one end forming the antinode of oscillations,
and directly connected to ground on the other end. The SQUIDs are formed via dou-
ble angle shadow evaporation [128–130] and have a resistance of R300 K = 1.25 kΩ
per SQUID as measured at room temperature. The central loop for the SQUIDs in
this resonator array is formed by a rectangular area of size 4.5 µm2. The antinode of
the resonator is additionally connected to the source of a quantum dot embedded in a
nanowire (red inset), with the drain defined by an ohmic contact. This drain contact
is shared with a DQD residing in the other half of the nanowire. A second resonator
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Figure 6.1: Scanning electron micrograph of the device (top) containing the nanowire with the quantum dots
(red) and the resonator SQUID array (blue). The two shadows of the SQUID array have been colored
in green and pink, showing the overlapping regions which form the Josephson junctions.

with N = 31 junctions and loop area 4 µm2 ¹ is present on the DQD side, but is not
used for the studies presented herein. Additionally, a set of plunger gates enable us to
tune the electron number on each of the three dots in the system semi-independently,
apart from some crosstalk that can be compensated for. Finally, the QD is electro-
statically coupled to the DQD via a coupler that extends from the QD over the drain.
This coupler is directly connected to the QD in order to increase its sensitivity to the
electrostatic environment of the DQD ². Further details on the device processing for
this device are presented in Appendix A, and the details on the dilution refrigerator
used for the measurements are presented in Appendix B

6.2 Measurement Results

6.2.1 Basic Characterization

Now we present the basic characterization of the device. We begin by measuring
the DC transport of the quantum dot. Figure 6.2 (a) shows the current through the
quantum dot as a function of the bias voltage and gate voltage. As before, we see
the repeating pattern of coulomb diamonds with sharp conductance features. The

¹The difference in loop area allows us to distinguish the two resonators by how quickly they oscillate
with the magnetic field.

²This direct connection makes our quantum dot less ”quantum” as the coupler is metallic / super-
conducting, and thus has a much shorter electronic wavelength compared to the size of the dot, meaning
that coulomb interactions dominate. It would thus be more correct to call this device a ”single electron
transistor” [29].

56



conductance of one of the oscillations is shown in Figure 6.2 (b), where we select
two points. The first is within coulomb blockade (CB) where the conductance of the
quantum dot is minuscule, and one point at the coulomb degeneracy (CD) where the
conductance is 0.4 µS.
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Figure 6.2: DC measurements of the QD. (a) The source-drain current ISD of the QD measured as the bias
voltage Vb and gate voltage VG are varied. (b) The conductance of the coulomb oscillation near
VG 5.14 V, along the dashed black line in (a). The two points labeled CB and CD are the points used
for subsequent measurements.

We now turn to the resonator, where we measure the reflected amplitude |r| from
the device while varying the frequency and an external magnetic field B. Figure 6.3
(a) shows two resonating modes oscillating in frequency as a function of the applied
magnetic field, as expected from the magnetic field changing the phase ϕ across the
junctions. The two modes correspond to the two resonators present on the device,
with the higher maximum resonance frequency belonging to the resonator coupled to
the quantum dot. Themeasurement here is normalized by the background amplitude,
shown in Fig. 6.3 (b) ³. We find this background amplitude as the median value of
the reflected amplitude for each frequency. This method ignores account outliers such
as the reflection dips, while also averaging away the noise.

We now fix the magnetic field such that the resonator attains a resonance frequency
of fr = 6.75 GHz, with the local oscillator frequency offset δf = 12.5 MHz and
measure the reflection coefficient |r| at a low input power P0 = 0.66 fW. Figure 6.4
shows the reflected amplitude |r| (a), phase ∠r (b) of the resonator as a function of
the drive frequency f . The blue dots shows the measured data in CB, from which
we can fit eq. (3.35) to extract the bare resonator parameter values κc = 62 MHz,
κi = 60 MHz, ωr = 6.75 GHz. The red data instead shows the resonator response
at CD, where the QD has a large conductance. We see, that just as previously, the
resonator response attains a larger linewidth, consistent with an added dissipation of
κs/2π = 28 MHz, shown by the solid lines of the corresponding color. Lastly, in

³The amplitude of the background signal is decreasing because higher frequencies are attenuated
stronger by the cabling
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Figure 6.3: (a) The reflection response of the resonator as we vary the magnetic field. The signal has here been
normalized with a background shown in (b) which we find from the median value of the reflected
amplitude for each frequency.

Fig. 6.4 (c) we show the same data plotted instead in the complex plane showing the
signal difference between the two states |∆r| = 0.2. We see that due to the large
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Figure 6.4: The low-power response of the resonator, measured with input power P0 = 0.66 fW as the fre-
quency f is varied. (a) shows the normalized reflected amplitude |r|, (b) the phase ∠r and (c) the
full complex response. The points in blue are the data measured at CB while the red is data mea-
sured at CD, while the lines are fits to eq. (3.35).

internal losses in the device, we are far from the ideal matching condition that would
yield a maximized signal, where κs ≈ κc and κi ≪ κc. Instead, the maximum signal
difference between CB and CD here is |∆r| = 0.2.

6.2.2 Nonlinear Response

Now we begin varying the input power P0 of the resonator to bring it into the non-
linear regime. Figure 6.5 (a) shows this power- and frequency sweep of the resonator
where we see it softening, just as in the numerical simulations.

From the measured resistance at room temperature R300 K = 1.25 kΩ we can esti-
mate the normal state resistance asRN = 1.5 kΩ, taking into account a 20% increase

58



1 10 100 1000
Input Power (fW)

6.4

6.6

6.8

7.0

Fr
eq

ue
nc

y 
f (

GH
z)

Reflection Coefficient |r| (Exp.)

0.2

0.4

0.6

0.8

1.0

1 10 100 1000
Input Power (fW)

6.4

6.6

6.8

7.0

Fr
eq

ue
nc

y 
f (

GH
z)

Reflection Coefficient |r| (Num.)

0.2

0.4

0.6

0.8

1.0
(a) (b)

Figure 6.5: (a)Measurement of the reflection coefficient as we sweep the frequency f and input power P0. (b)
Numerical calculations of the system based on the device parameters found from themeasurement.

in resistance as the temperature decreases [131]. Along with the resonator parameters
found from the low-power measurements, this lets us calculate the inductance of the
array along eq. (5.5) as L = 20 nH. With this value known, we can calculate the
capacitance of the resonator as CΣ = 1/(ω2

r,0L) = 25 fF, giving us the character-
istic impedance Zr = 900 Ω. Here, ωr,0 = 7.1 GHz is the maximum frequency
of the resonator in the magnetic field sweep where the inductance of the SQUID is
unchanged due to the applied magnetic flux. Finally, using the input coupling κc,
we can solve for the input capacitance Cc =

√
κcCΣ/(Z0ω2

r ) = 10 fF. With these
parameter values along with the number of junctions, Fig. 6.5 shows the numerically
calculated resonator response. We see that our model is in good agreement with our
experimental data, with the resonance frequency softening at the same rate ⁴.
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Figure 6.6: The high-power response of the resonator, measured with input power P0 = 66 fW as the fre-
quency f is varied. (a) shows the normalized reflected amplitude |r|, (b) the phase ∠r and (c) the
full complex response. The points in blue are the data measured at CB while the red is data mea-
sured at CD. The solid blue and red lines are solutions of the numeric calculations of eq. (5.42), while
the gray line is showing the low-power CB response.

Now we fix the input power to P0 = 66 fW, where the resonator is in the nonlinear

⁴There is a small discrepancy of 0.8 dB between the experiments and theory after taking into account
the attenuation of the cryostat, however, as this is well within a reasonable error margin we adjust our
attenuation estimate to include this discrepancy in the presented figures.
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Figure 6.7: (a) The signal |∆r| as a function of the input frequency at the powerP0 = 66 fW. (b) Themaximum
such signal measured for each input power in the experiment. The dashed arrow indicates PC

where the resonator enters the bifurcation. The points indicate the experimental values, and the
lines show the result of the numerical calculations.

regime and measure again the resonator response in both CB and CD. Figure 6.6
shows the resulting measurement. We see here a qualitative difference between the
low-power and high-power measurements. Notably, there is a frequency shift between
CB and CD as a result of the added dissipation in the nonlinear response that does
not appear in the linear regime. In Fig. 6.6 (c) we show the complex plane, with
the black dots indicating two points in the CB and CD measurements at the same
frequency, shown by the arrow in panel (a). From this we clearly see that the signal
difference |∆r| = 0.8 is greatly increased compared to the low power linear response.

Figure 6.7 (a) shows this signal as a function of the frequency for a power P0 = Pc

right at the onset of the bifurcation. We see here that the maximum signal depends
strongly on the operating frequency f , increasing sharply from a low (near-zero) signal
to the maximum of |∆r| = 0.55 (0.75) in the experiments (numerical calculations).
Repeating this for each input power in the measurement yields Fig. 6.7 (b). The data
shows that indeed, the low-power signal remains at 0.2 until the resonator enters the
nonlinear regime, at which point the signal strength increases, reaching the threshold
at which bifurcation occurs, indicated by the dashed black line. Further increases
to the power appears to yield a greater signal in the numerical calculations. This,
however, is due to the switching not being taken into account.

Furthermore, we can consider eq. (5.25) for the frequency shift of the resonance mode
as the power is increased. Here we see that the added dissipation decreases the ratio
κC/κ

2, reducing the shift of the resonant mode. We can quantify this difference as

∆ωK =
4πZrωrκcP0

RQN2κCBℏωr

(
1−

κ2CB

(κCB + κs)2

)
≈ 8πZrωrκcP0

RQN2ℏωr

κs
κCB

(6.1)

where κCB = κc + κi is the linewidth of the bare resonator.
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Figure 6.8: (a) The signal |∆r| as a function of the gate voltage VG on the sensor dot. The point indicates
the point that the sensor was fixed to during the charge stability diagram measurement on the
DQD shown in (b). Here, two points are chosen in different charge regions for the subsequent
measurements.

Intuitively, following eq. (5.45), we see that the resonator becomes nonlinear for a set
number of photons. As the dissipation is increased, the lifetime for the photons in the
cavity is decreased, resulting in a corresponding reduction to the photon number. This
makes the resonator less nonlinear, and thus shifts the frequency. Since the nonlinear
response has a steep slope at the low-frequency side, one attains a large signal difference
for a relatively small frequency shift.

6.2.3 Charge Detection

Nowwe will use the device in order to probe the charge state of the DQD.We begin in
Fig. 6.8 (a) by tuning the QD into the coulomb degeneracy point (CD) by measuring
the reflected amplitude as the gate voltage of the sensor dot is varied. We then fix the
QD to this state, while tuning the gate voltages on the DQD ⁵. Figure 6.8 (b) shows
the resulting charge stability diagram of the DQD as measured by the sensor, showing
four different charge regions. We will now move to evaluating the readout speed of
the charge sensor when using it in the linear regime and in the nonlinear regime

Here we choose two points in different charge regions, labeled in the charge stability
diagram as 1 and 2. We then place the charge detector in each of these points to
repeatedly measure the detector signal as a function of time, with the resonator tuned
to the linear and nonlinear regimes respectively for a total of 100 measurements. The
measurement retrieves a 2 ms long time trace of the detector signal with points every
20 ns, from which we find the in-phase and quadrature components as described in
Section B.2. We then use the first N periods to calculate the time dependent signal

⁵Due to the cross-coupling, changing the DQD gate voltages will impose a change to the QD gate
voltage, shifting the QD away from the degeneracy point. We correct for this by applying a compensa-
tion voltage that counteracts this effect.
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Figure 6.9: Scatter plots of the resonator signal taken (a) in the linear regime, P0 = 0.66 fW, and (b) in the
nonlinear regime P0 = 66 fW. The red (blue) data corresponds to the gate voltage set to point 1
(2) in the charge stability diagram of 6.8, while the different markers indicate the integration time
for the data.

with integration time τ = 80N ns. Figure 6.9 shows scatter plots for the resonator
in the linear (a) and nonlinear (b) regime. The red (blue) data are measured at point 1
(2) from Fig. 6.8. We see here the data measured for three different integration times
in each case, chosen to show the timescales for which the two different settings allow
for clear separation of the two states.

Since there is a two orders of magnitude difference in the input power between the
two cases, the linear regime naturally operates two orders of magnitude slower. De-
spite this inherent difference, however, we see a clear increase in performance when
operating the resonator in the nonlinear regime, due to the much larger signal that
we can utilize.

We can now calculate the noise σ =
√
R(r)2 + I(r)2, and the signal S = |r̄1− r̄2|

as a function of the integration time τ . From this, we find the signal to noise ratio
which we show in Fig. 6.10 (a). Here, we make a fit to the data following SNR =√
τ/τ0. From this, we find the minimum integration time τ0 where the SNR = 1

[49]. These data show the nonlinear resonator achieving an SNR of 1 at a minimum
integration time of τ0 = 10 ns, which is within the same order of magnitude as some
of the faster charge detectors in the literature [49, 99, 132]. In the linear operating
regime, this is only achieved at τ0 = 25 µs. Taking into account the two orders of
magnitude difference, we see that this still corresponds to a speedup of 25 times due
to the increased signal strength ⁶. Next, we define the fidelity of the charge readout as
the probability of correctly determining the charge state from the measurement. This
is calculated by defining a threshold line and counting the number of data points on
the correct side of the line. This quantity is shown in Fig. 6.10 (b) where we see

⁶The expected value for the improvement would be 16, since the signal increased by a factor 4. The
deviation between these two values is likely either due to the sensor not going fully from CD to CB, or
noise in the calibration resulting in the setpoint being offset slightly in the linear case.
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Figure 6.10: (a) The signal to noise ratio and (b) Fidelity as a function of the integration time τ . The red
data shows the data gathered with the resonator in the nonlinear regime with P0 = 66 fW,
whereas the blue data shows the corresponding data measured in the linear regime measured
at P0 = 0.66 fW. The red triangles show a subsequent measurement where the intermediate
frequency of the local oscillator was increased to δf = 125 MHz, resulting in measurement times
of 8 ns. The solid lines are fits as described in the text. An additional copy of the linear fit line
has been reproduced at two orders of magnitude shorter integration times, corresponding to the
two orders of magnitude difference in input power used between the two cases.

that the fidelity exceeds 90 % for τ = 80 ns. Using the same parameters as for the
SNR, we fit these data to F = 1− 1/(1 + e

√
τ/τ0), showing good agreement to the

experimental data.

Finally, we present in Fig. 6.11 a measurement of the charge configuration on the
DQD with a measurement time of τ = 80 ns per data point⁷. We see that the (1,0)
state in blue is easily distinguishable from both the (0,0), and (0,1) states, which both
appear in red. The lack of contrast between the two remaining states here arises as
the result of the nonlinear response. As the frequency shift occurs across the steep
edge of the frequency response (as we see in Fig. 6.6), the continuously changing
dissipation in the sensor leads to a steep change in response in the readout. After this
point, further increases to the sensor dissipation leads only to a minimal change in
the signal. In the presented charge stability diagram, the (0,0) state corresponds to a
sensor dissipation above the threshold, the (1,0) state corresponds to a dissipation just
above the threshold, and the (0,1) state corresponds a near-zero sensor dissipation,
below the threshold.

⁷This would correspond to a total measurement time of 0.8 ms to retrieve the whole measurement.
The actual experiment time is much longer as there is a significant time delay introduced in the com-
munication time between the measurement script and the hardware. With proper optimization of this
process, however, real-time video of the DQD charge configuration is possible, as was done in Ref. [132].
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Figure 6.11: Measurement of the resonator signal |∆r| as a function of the DQD gate voltages VGL and VGR

using an integration time of τ = 80 ns per point.

6.3 Prospects

In this section, we will discuss the potential benefits of performing the charge detec-
tion with a nonlinear resonator. These are all items which would benefit from further
experiments to understand in better detail.

6.3.1 Increased Signal

We have experimentally demonstrated that the signal due to the added dissipation
κs is increased in the measured device. The logical question to consider next then is
for which range of parameters this signal increase can be found. To address this, we
make use of the numerical calculations where, we now vary the sensor dissipation κs
and internal losses κi while calculating the maximum signal difference. We do this by
numerically calculating both the upper and lower branch of the resonator response,
and excluding those frequencies for which two solutions exist. Thenwe find the largest
signal difference between the two cases for a range of frequencies around ωr − κ at
the input power P0 = 0.95Pc.

In Fig. 6.12 (a) we show the maximum signal for the linear resonator, as we found in
Ch. 3, and in (b) we present the result of the above calculation. We see that using
the nonlinearities allows us to maintain the large signal at a dissipation one order of
magnitude lower than when using a linear resonator. This results in a region where
the signal is increased, shown in Fig. 6.12 (c) where the nonlinear resonator provides
a signal increase. We note that even for a device with κs = κc, there is a small
improvement in the signal, corresponding to a 30 % increase in the reflected signal.
Even a device which is otherwise well matched, would thus yield nearly a factor 2

64



0.01 1 100
0.01
0.1

1
10

In
te

rn
al

 L
os

se
s 

i/
c

Linear
 Max Signal SLin

0.0

0.5

1.0

1.5

2.0

0.01 1 100
Sensor Dissipation s/ c

0.01
0.1

1
10

Nonlinear
 Max Signal SNL

0.0

0.5

1.0

1.5

2.0

0.01 1 100
0.01
0.1

1
10

Signal Increase
 SNL SLin

0.5

0.0

0.5

(a) (b) (c)

Figure 6.12: Calculations for varying sensor dissipation and internal losses. (a) The maximum signal possible
in a linear resonator. (b) Maximum signal from the numerical calculations outside the switching
regions with P0 = 0.95 Pc. (c) The signal increase from using the nonlinear operating mode over
the linear operating mode.

increase in readout speed from the signal increase by using a nonlinear resonator.

6.3.2 Charge Noise Sensitivity

Next, we consider the effect of charge fluctuations, e.g. due to trapped states switching
between being populated and empty of electrons [133]. The result of such changes in
the charge environment is a small shift in the sensor, of the same character as that of
the desired charge movement in the system of study. This leads to noise in the readout
signal in magnitude proportional to the derivative of the sensor signal with respect to
a small shift in the sensor voltage.

As the nonlinear operating regime relies on a frequency shift across the steep edge
of the nonlinear response, the readout signal rapidly increases until the steep slope
has been crossed, after which point further adding dissipation has little effect. In
Fig. 6.13 (a) we calculate the signal for the resonator studied in paper II as a function
of the sensor dissipation and input frequency f at P0 = 0.95Pc. We see that at the
frequency corresponding to driving the resonator just at the edge of the steep reflection
response, the signal increases sharply to a maximum after which it saturates to a fixed
value for further increases in the dissipation. As we increase the drive frequency away
from the edge, the dissipation required to reach the maximum signal is increased.
Figure 6.13 (b) shows this clearly, as we plot the signal along the indicated horizontal
cut lines, as a reference, the linear response, calculated from Eq. (3.61).

From the figure, we see that fluctuations in the dissipation thus have little effect in
the high signal above a certain maximum dissipation. Provided that this value can be
reached, one could then operate the sensor with reduced charge noise in the high con-
ductance state. The tradeoff here, however, is that the low conductance state instead
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becomes more sensitive to the same noise, as seen by the steeper signal increase for low
dissipation compared to that of a linear resonator. However, an additional protection
exists for all sensors of this time provided that the capacitive coupling to the system of
interest is strong enough compared to that of the fluctuating charges. In this case, the
sensor can be set such that the low conductance state lies firmly within the Coulomb
blockade. Small changes to the sensor level will then not add any dissipation to the
system, effectively eliminating the charge noise also for this state. This would be an
interesting regime to study further as eliminating high-frequency charge noise could
improve the noise level of the charge readout.

6.3.3 Bandwidth increase

As we saw in Ch. 3, the need to match the input coupling κc to the magnitude of
added dissipation κs to reach a large signal sets a limit to the maximum bandwidth
of the resonator. By using the nonlinear operating mode, however, we have seen that
we can achieve the large signal difference even for smaller κs/κc. This implies that
for a sensor of a set κs, a resonator operating within the nonlinear regime could use a
higher κc to achieve the same readout signal, allowing for faster measurements within
the resonator bandwidth. With the reported device, the bandwidth was 120MHz in
coulomb blockade, enabling sub-10 ns measurement times.

6.3.4 Backaction Protection

Finally, as the detector now relies on a frequency shift, there is a further benefit to con-
sider to the backaction effects of the detector. Typically, the resonator in a dissipative
sensor is always on resonance. When the quantum dot is in its conducting state, the
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input power from the resonator is thus dissipated into the sensor which can disturb
the system of study [134–138]. With the nonlinear resonator, however, the resonance
frequency shifts away from the drive frequency when the sensor is conducting. As the
resonator is no longer driven on resonance, the transmitted power is thus reduced also
in the conducting state, which may therefore reduce the backaction from the sensor.

6.4 Limits

In this section, we consider the limits to the performance of the nonlinear readout
method.

6.4.1 Input Power Limit

In order to maximize the signal to noise ratio of the measurements, we want to operate
the device at a high input power. Within this thesis, we have discussed two factors
that sets a limit to this power⁸. First, we have the voltage amplitude of the resonator

VMW =

(
4κcωrZrP

κ2

)1/2

(6.2)

which should not greatly exceed the linewidth of the sensor, VMW ≲ Γ/e. This sets
a voltage-limited input power

PV =
κ2Γ2

4e2κcωrZr
, (6.3)

depending on the linewidth of the sensor. Second, we have the critical power at which
the resonator bifurcation reaches the peak

PC =
N2Φ2

0κ
3

4π2Zrκc
, (6.4)

which depends on the number of junctions N . This is also the power at which the
nonlinear advantage is the greatest.

For an optimal device, we can tune the number of junctions such that Pc ≈ PV ,
which gives

N =
πKJ√
2κωr

Γ

e
, (6.5)

⁸Among those left out we find the local heating of the device due to the input power [49] and the
effects of back-action on the sensed device [134, 135]
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where KJ = 2e/h is the Josephson constant. As an example: for a bandwidth
κ/2π = 100 MHz, corresponding to a rise-time of 10 ns, and a sensor linewidth
of Γ = 100 µeV, we find N = 22.

To make explicit the fact that this provides an optimal solution, we consider now
deviations of N away from the derived value. As the power PV is independent of
the number of junctions in the array, this power is constant, and sets directly the
maximum power where we would like to operate. If N is smaller than the optimal
value, we find then that the bifurcation occurs at a power P0 < PV , forcing us to
use a power such that we are not yet voltage broadened, meaning that we would not
make the sensor worse by increasing the power further. Should N instead be larger
than the optimal value, we end up not being able to reach the optimal nonlinearity
where the signal is maximized before the sensor gets smeared by the voltage amplitude
in the resonator, reducing the contrast and sensitivity of the detector.

6.4.2 Impedance Limits

Assuming that the number of junctionsN is at the optimal value, the maximum input
power we can use for the device is then set by

Pmax =
κ2Γ2

4e2κcωrZr
. (6.6)

Keeping in mind that V0, κ, κc and ωr are fixed by previous assumptions⁹ this leaves
Zr as the device parameter to minimize in order to increase the maximum power.
However, doing so will in turn reduce the input coupling κc = Ccω

3
rZrZ0 and the

sensor dissipation κs = Re(Y )ωrZr (where we have used Zrωr = 1/CΣ), which
we want to keep as large as possible. Choosing the impedance to use for the resonator
thus becomes an optimization problem depending on the properties of the sensor, the
desired resonator bandwidth and operating power.

6.4.3 High Current Limit

Another concern for driving the Josephson junction array strongly is that at some
point the current oscillations become sufficiently large to exceed the critical current in
the junctions. Themaximum current in the resonator is found when the stored energy
is entirely on the inductor, and settings this current to equal the critical current, we
find

E =
LI2C
2

= nℏωr. (6.7)

⁹Although ωr is not explicitly fixed, κc strongly depends on ωr which implicitly fixes this parameter.
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Expanding these expressions, we end up with

P0 =
NΦ0IC

2π

κ2

4κc
(6.8)

which we can insert into our Eq. (5.25) for the nonlinear frequency shift, we find that
all terms cancel, leaving only

ωK

ωr
=

1

16
(6.9)

as a maximum frequency shift that can be supported by the nonlinear resonator. The
current thus sets an upper bound for the bandwidth of the resonator at κ = ωr/16.
This conclusion, however, depends on the assumption that the equations for the pho-
ton number in a linear resonator generalize to the nonlinear case, which is not neces-
sarily true. It would thus be interesting to test this limit experimentally, as a verifica-
tion of this equivalence.
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Chapter 7

Conclusions and Outlook

To summarize this thesis we have studied the resonator-based readout method of
charge-sensitive quantum dots at microwave frequencies between 4 and 8 GHz. In
Paper I, we focused on the impact to the readout signal that is gained by operating
the resonator at these frequencies, showing that the microwave photons within the
resonator lead to additional transport possibilities. This serves both as a mechanism
to enhance the dissipation of the quantum dot, allowing a larger signal at microwave
frequencies than would be expected based on the DC transport, but also leads to a
potential broadening of the sensor state which can limit the sensitivity. Furthermore,
we also emphasize the impact of a large input power, resulting in that the wave-nature
of the resonator also leads to a sensitivity reduction.

In Paper II, we further implement a high-impedance microwave resonator based on
an array of SQUIDs. With a high impedance, a larger coupling can be achieved to
the sensor, yielding a larger bandwidth for the resonator readout. Furthermore, we
find that when driving the resonator strongly, such that we operate in the nonlinear
regime, the resonator response is qualitatively different, leading to a larger readout
signal. This allows us to achieve a near-unity readout signal from a poorly matched
resonator system, yielding further benefits to the readout bandwidth.

Finally, we highlight a number of directions in which the work within this thesis could
be continued. First, just as the sensor detects the charge on the system it is probing,
so is that system detecting the charge on the sensor. However, as noted in Paper II,
we anticipate that sensing with the nonlinear resonator offers some additional pro-
tection against backaction compared to a regular linear resonator. This is something
that can be experimentally verified e.g. as in Ref. [138], where the decoherence of a
charge qubit wasmeasured while increasing the current through a capacitively coupled
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quantum dot, acting as a sensor. Extending this study to instead consider the different
backaction achieved from using a linear, contra nonlinear resonator as the sensor con-
ductivity is varied. Furthermore, one could study the backaction as a function of the
input power of the resonator, again both in the linear and nonlinear regime. Second,
it would be interesting to study the effect of charge noise on the nonlinear readout sig-
nal. Since the response increases sharply for a range of dissipation where the frequency
shift crosses the steep slope while being insensitive to changes in dissipation outside
of this range, small fluctuations in the sensor dissipation will therefore have a corre-
sponding sensitivity. This may enable an additional protection against charge noise,
which may reduce the overall noise present in the measurement. Finally, we have
discussed the limit where the voltage amplitude in the microwave resonator broadens
the sensor state. However, breaking this limit does not fundamentally stop the device
from working as a sensor, as this only reduces the contrast in the sensor dissipation.
It would thus be interesting to study whether this effect is strong enough to offset the
benefit to the signal strength one would get for breaching the limit.
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Appendix A

Cleanroom Fabrication

This chapter exists as a record of the cleanroom processing techniques that were used
in the fabrication of the device used for Paper II. Its primary purpose is to exist as a
starting point for others who want to create similar structures.

A.1 Full Processing Procedure.

We begin with a high-resistivity 2” silicon wafer grown with the Float-Zone method.

The first processing step involves placing alignment markers and contact pads for
subsequent processes. This is done with an electron beam lithography (EBL) step,
using 950 k PMMA A6 ¹ electron beam resist spin-coated at 5000 rpm and baked
at 180 ◦C for 2 minutes. The exposure is done with a 50 kV system using a dose of
700 µC/cm2 for areas, and 14000 pC/cm for lines, and developed in 1:3 MIBK:IPA
for 60 seconds followed by rinsing in IPA for 60 seconds. We then clean the sample
in an oxygen plasma asher for 15 seconds under a Faraday cage. The pattern is then
transferred by electron beam evaporating 5 nmTi ² and 45 nmAu. We then do the lift-
off in acetone using a pipette to agitate until all resist has dissolved and the undesired
metal has released. The wafer is then rinsed in IPA for 1 minute and blow-dried with
nitrogen.

The second process step defines the Aluminium structures used for the RF input line,
the DC contact pads, and the surrounding ground structure. These are defined with

¹Poly(methyl methacrylate) polymer chains of molecular weight 950 000, dissolved to 6% in anisole.
²Titanium is used in a lot of the processes as a good sticking layer, as it easily bonds to oxygen present

in surface layers of the substrate.
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an optical lithography process using a 405 nm direct-write laser (DWL). The mask
here is a two-layered mask with LOR 3A, spin coated at 2500 rpm and baked at 150
◦C for 5 minutes followed by S1813 spin coated at 6000 rpm and baked to 115 ◦C for 90
seconds. After exposure with a dose of 200 µJ/cm2, the resist is developed in MF-319
developer for 53 seconds, followed by a 60 second rinse in de-ionized water, we then
clean the sample in the plasma asher as above. The pattern is transferred into 5 nm Ti
and 95 nm of Al using the electron beam evaporator followed by lift-off in Remover
1165. Here we use two beakers of Remover 1165, switching to the second beaker (after
approximately 10 minutes) as the majority of the resist and metal has been removed
in the first. We keep the device in this beaker until they are free of additional metal,
using an ultrasonic bath if necessary. We then rest the sample in IPA for 10 minutes
before switching to a clean beaker of IPA where we let the sample rest for another 10
minutes before drying with nitrogen³.

In the third step we repeat the above lithography process to create a large opening over
the DC lines and ground planes. This pattern is then transferred into an atomic-layer-
deposition of AlOx followed by 100 nm of electron beam evaporated Al and lift-off
with . This creates a large capacitive shunting of all DC lines to ground, shunting
high-frequency signals to prevent leakage of the microwave modes.

After this processing step, we coat the wafer with a protective layer of PMMA A6⁴
and dice the 2” wafer into 6 smaller chips. We clean the protective layer for 2 min
in Acetone and rinse it in 2 min in IPA before depositing nanowires with a micro
manipulator within the 100x100µm2 fields of alignmentmarks defined in step 1. Each
field is then inspected with an SEM to find suitable nanowires for further processing.
For this we use the alignment markers placed in a 5x5 µm2 grid pattern to discern
the location of each nanowire. The nanowires here are made from InAs with built-in
electrical barriers made by switching the crystal growth from Zinc-Blende (ZB) to
Wurtzite (WZ). In order to correctly locate these barriers, a shell of GaSb has been
grown selectively on the ZB regions. This overgrowth makes the nanowire thinner
where we have barriers, which we can see in the electron micrograph, allowing us to
align gates and ohmic contacts to the nanowire.

Next, we need to etch the GaSB shell from the nanowire. We spin coat PMMA A6
at 5000 rpm and bake at 180 ◦C and expose all but the ends of the nanowire in the
EBL. After developing as above, we then submerge the chip in MF319 for 5 minutes
to wet etch the shell. Following this, we spin coat PMMA A4 at 5000 rpm and bake

³This liftoff process is more involved than that for EBL resist, particularly the LOR is difficult to
remove, hence requiring Remover 1165, which itself can leave residues on the sample if not washed away
properly in the IPA.

⁴This layer is only here to protect the surface from the dicing process, the exact type of resist is not
important.
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at 180 ◦C. We then pattern the nanowire contacts and resonator input capacitance
structures, develop and clean all with the same exposure parameters, chemistry and
plasma ashing as in step 1. The pattern is then transferred into 5 nm Ti and 135 nm Al
to make the contacts with as low resistance as possible.

Finally, we will put the Josephson junction array onto the chip. Here we will use a
two-layer mask to create a large undercut for two-angle evaporation [128–130]. We
first spin coat MMA EL9 at 4000 rpm, and bake at 150 ◦C for 1 minute and repeat
this step for a total of three layers. Then we spin coat 950k PMMA A6 at 5000 rpm
and bake at 150 ◦C for 2 minutes. Using the 50 kV EBL system, we then expose the
sample with a dose of 700 µC/cm2 where we want to clear the PMMA, followed
by a dose of 150 µC/cm2 where we want an undercut. After developing as in step 1
without plasma ashing the sample, we then load the devices into the evaporator where
we evaporate a layer of 35 nm Al at a 30◦ angle (in the direction of the resonator array).
Next, oxygen is let into the chamber, reaching a pressure of 0.49 T after 2 minutes,
which is maintained for another 2 minutes before pumping down to a vacuum again.
The angle is then changed to -30◦ where a second layer of 70 nm Al is deposited.
Finally, the mask is removed in an acetone bath until fully dissolved, followed by a
wash in IPA.

75





Appendix B

Measurement Setup

All measurements presented in this thesis were measured in a Dilution refrigerator at
temperatures of 10mK. As the high-frequency signals are generated at room temper-
ature, they also carry high-temperature noise. However, the experiments performed
within this thesis require signals of specific (low) power levels, that

B.1 Measurement Attenuation

To minimize the amount of this noise that makes it into the cryostat, we generate a
larger signal than we need, which we then attenuate as the signal reaches the colder
parts of the dilution refrigerator, as shown in Fig. B.1.

We generate the signal at the top of the input line and passes via a total of 88.5 dB
attenuation and the two circulators into the device. The reflections from the device
then go through the circulators into the output line, where they are first amplified by
+40 dB at the T ≈ 2K stage by a high-electron mobility transistor (HEMT) ¹. The
amplification from the HEMT ensures that the noise in the measurement is limited
by the noise level of the cold signal as it was leaving the cryostat, as further thermal
fluctuations are small compared to the amplified low-temperature noise. A final set of
room temperature amplifiers are then sufficient to make the signal level large enough
to digitize it.

¹We use two circulators here as there is a risk of the signal being reflected at the HEMT. With only a
single circulator, the isolation to the device from this reflected signal is only about 20 dB (or 99 % of the
power), which could lead to errors in the measurements. Adding a second circulator further reduces this
leakage by another 20 dB, significantly reducing the risk of this process impacting the measurements.
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However, as the signal is also attenuated slightly by the high-frequency lines between
the signal generators and the device, we have to take these into account in order
to determine the signal level at the device input. We do this by assuming that the
attenuation from the input- and output line are identical, with a value of x dBm
each. The total attenuation of the setup is then given by

α = αin + αout + 2x, (B.1)

where αin = −88.8 and αout = 96.8 is the sum of attenuation from all components
inserted into the circuit. We then send a signal of known power (P = 0 dBm) into
the cryostat and determine the power at the measurement end (P = −19.6 dBm),
giving the total attenuation, from which we find the cable losses x = −13.8. Table
B.1 shows all the components included in this calibration, as done for Paper II. In
Paper I, the setup was identical to that of Ref. [10], where the corresponding power
calibration can be found.
Table B.1: Tabulated values for the attenuation / amplification of each component used in the measurement

circuitry at the f = 6.7 GHz frequency used in the measurements.

Cryostat Input Signal change
at f = 6.7 GHz (dB)

36 inch cable: 141-36SM+ −1.2
Splitter: ZX10R-14-S+ −7.16
20 dB attenuator: FW-20+ −21.27
Cryostat attenuation −59
Circulator insertion loss −0.2 dBm
Additional cable losses x = −13.8 dBm
Cryostat Output Signal change

at f = 6.7 GHz (dB)
2×Circulator: LNF-CIC4_8A (Insertion Loss) −0.2
HEMT amplifier: LNF-LNC4_8C +41.62
Cryostat attenuation −4
3×MOSFET amplifier: ZX60-83LN12+ +20.58
4× 3 dB attenuation: FW-3+ 4×−3.43
Mixer: ZMX-10G+ (Conversion loss) −4.7 a
Additional cable losses x = −13.8 dBm
Post-Mixer Signal change

at f = 12.5 MHz (dB)
2 inch cable: 141-2SM+ −0.01
3.4 GHz LPF: VLF-3400+ −0.01
80 MHz LPF: VLF-80+ −0.35
Attenuationb −2.44
Amplifier: HVA-200M-40-B +20
20 MHz Oscilloscope Bandwidth −0.86

aUpon further inspection of the data sheet, there appears to be a discrepancy with this value. The
tabulated value is 4.7 dB, however, the measured value as indicated in the figures is rather around 6.8.

bThis attenuation was unintended, but arose as a connector with a parallel grounding stub was used
on the amplifier input.
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Figure B.1: Circuitry used for the RF measurements in Paper II.
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B.2 High-Frequency Measurements

Digitizing GHz signals can be difficult due to the high frequency oscillations. How-
ever, by utilizing a frequency mixer with our signal of frequency f and that of a
local oscillator with frequency fLO = f + δf , we end up with a signal, shown in
Fig. B.2 as the gray line, containing the sum and difference of the two frequencies,
f1 = f + fLO = 2f + δf and f2 = f − fLO = δf . Provided that δf < f , we can
filter out the high-frequency signal with a simple low-pass filter, resulting in the black
line the figure. The measurement then digitizes the signal with a sampling frequency
of fs = 4δf such that we have four points per period of the oscillation. This allows
us to extract the two quadratures of the signal in Fig. B.2. From the two quadratures,
we easily calculate the amplitude A =

√
I2 +Q2 and phase ϕ = arctan(I/Q).

The phase of the signal, however, is random due to uncertainty in when the sam-

IQ

Figure B.2: The resulting signals after the frequency mixing. The gray line shows the resulting signal with a
high-frequency component f + fLO which is filtered away, the black line shows the remaining
low frequency signal f − fLO which is measured. The dots show the points that are sampled in
the digitization, with the quadratures calculated as the difference between the pairs of points as
shown by the vertical lines.

pling started. To extract the real phase information of the signal, we compare it to
a phase reference that is generated by splitting both the original signal and the local
oscillator and mixing these as above without passing them through the sample. This
makes a phase reference, which can be used to find the phase difference that the signal
accumulated by interacting with the device.
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