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Abstract

Spectral imaging allows for the simultaneous visualization of multiple different spec-
tral bands of a scene, and is a powerful tool used in a range of contexts - from the color
cameras in smart phones, to scientific imaging applications such as remote sensing
and fluorescence microscopy. The progress within these fields of research is therefore
intrinsically linked to the advances made for more efficient spectral capture.

The most common solution to achieve spectral sensitivity in snapshot is to use a filter
array which is fixed to the sensor at a manufacturing stage. This provides a compact,
stable and permanent solution, suitable for uses where the spectral bands never need to
be changed. However, in many scientific measurement scenarios, spectral flexibility -
the ability to alter the spectral bands captured - is crucial in order for efficient capture
to be possible.

This thesis presents and discusses the camera-independent image multiplexing tech-
nique FRAME, Frequency Recognition Algorithm for Multiple Exposures, and demon-
strates its ability to be used for quantitative measurements. FRAME, among other
things, enables snapshot multispectral capture using a monochrome focal-plane ar-
ray. Thanks to its camera independence, spectral bands can be tailored to fit the
specific conditions of the measurement. Furthermore, the technique can be used in
conjunction with specialized high capture-rate and intensified cameras, broadening
the use of such technology. The work presented demonstrates these uses, as well as
quantitative applications within temperature imaging and spray characterization that
utilize intensity and spatial information respectively. The impact of image quality on
neural network-based processing is also discussed, using data captured with and with-
out coded light to suppress scattering in images, and the compatibility of multispectral
FRAME and microscopic imaging is demonstrated.

These advances within the field of coded light pave the way for the continued de-
velopment of FRAME for quantitative imaging applications, assisting the progress of
adjacent, applied research.
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Populärvetenskaplig sammanfattning

Vad vore livet utan färg? Allt från hur himlen ändrar färg under dygnet, från dagens
klarblå till skymningens alla nyanser av rött, oranget och rosa, till alla de tusentals
nyanser av grönt som finns i naturen. Men färg är inte bara något som tillför skönhet
i våra liv, det innehåller också information. Har du exempelvis någon gång undrat
hur det kommer sig att jägare klär sig i orange vid älgjakten? Är inte det det absolut
sämsta valet av färg under en jakt, där man vill vara så dold för djuret som möjligt?
Faktum är att just orange är ett utmärkt val, eftersom älg och andra klövdjur saknar
den sortens tappar - sinnesceller som gör att vi kan uppfatta färger - som krävs för att
urskilja denna färg. Det gör att för älgen smälter skogens gröna och bruna ihop med
det orangea, medan det för oss människor som kan särskilja den orangea färgen är
mycket tydligt var de andra i jaktlaget befinner sig. Ett mer utvecklat färgseende ger
mer information!

Vi människor har tre sorters tappar i våra ögon, där varje sorts tapp täcker ett visst
färgintervall, och kombinerat gör dessa att vi kan se de färger som ingår i regnbågen⁶.
Lite förenklat kan vi säga att de tre olika sorters tapparna känner av rött, grönt respek-
tive blått ljus. Faktum är att det är exakt samma princip som ligger bakom en färgbild
som vi fångar med till exempel en mobilkamera⁷. När du tar en bild fångas egentligen
tre olika bilder (som vi kallar färgkanaler) samtidigt - en med bara det röda ljuset, en
med bara det gröna, och en med bara det blåa. Detta sker med hjälp av små färgfilter
som sitter påklistrade på varje pixel (bildelement) på kameran i ett mosaikmönster, så
att en specifik pixel bara nås av ljus av en viss färg. Fig. 1 visar hur denna färgfiltrering
går till. Vad du sedan ser på skärmen är dessa tre bilder sammanflätade i samma mo-
saikmönster, men där sammanflätningen är så liten att ögat uppfattar det som att det
röda, gröna och blåa ljuset kommer från samma punkt. Detta ger illusionen av den
färg som de tillsammans ger.

För en fysiker är färg en väldigt användbar egenskap hos ljus. Ljusets färg bestäms av
dess våglängd, som är direkt kopplad till hur mycket energi ljuset har. Eftersom det
finns många processer inom fysiken som skickar ut ljus så kan ljusets våglängd ofta
användas för att förstå hur mycket energi som frigjorts. Problemet med att använda en
kamera med påklistrade färgfilter är att olika processer släpper ifrån sig ljus med väldigt
olika energier, så det är sällan de färgfilter som sitter påklistrade passar för de färger
man vill fånga. Det existerar såklart kameror med olika påklistrade färgfilter, men
kameror som används för vetenskapliga mätningar är dyra, och det är inte hållbart

⁶I den synliga delen av regnbågen - den innehåller ju trots allt fler färger än de vi kan se.
⁷Detta är självklart ingen slump - kameran är ju byggd med syftet att skapa färgbilder som stämmer

överens med hur vi uppfattar färger, och kamerans “färgseende” är därför uppbyggt på samma sätt som
vårt.
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Figur 1: En gråskalesensor med färgfilter framför varje individuell pixel gör att en färgbild kan skapas. Detta är
hur de flesta färgkameror fungerar, inklusive mobilkameror, men det är oftast inte en praktisk lösning
inom forskningen.

att köpa en ny kamera varje gång man ska mäta något nytt. Dessutom är denna sorts
kameror inte så effektiva när det gäller att ta vara på allt ljus, eftersom de färgfilter som
används filtrerar bort de färger som inte passar. Det är här min forskning kommer in
i bilden.

Denna avhandling handlar om mitt arbete med att utveckla en alternativ metod för att
ta färgbilder, riktad mot vetenskapliga mätningar där färgfilter behöver kunna bytas
ut, men där man samtidigt samlar in alla färger samtidigt. Den metod som jag arbetat
med använder sig av en kamera som tar gråskalebilder, alltså bilder som inte innehåller
färginformation⁸. Genom att märka ljus av olika färger med kända mönster innan det
når kameran kan färgerna separeras i efterhand - inte för att deras faktiska färg går
att urskilja på bilden, utan för att deras mönster känns igen och kan skiljas åt. Tänk
tillbaka på älgen - den hade inte kunnat skilja på orange och grön, men om du hade
haft ett schackrutigt oranget mönster på jackan hade den stuckit ut ändå, eftersom
detta är ett väldigt onaturligt mönster. Med denna metod fångas alla färger samtidigt,
vilket är viktigt vid snabba processer, och vilken kamera som helst kan användas för
att fånga vilka färger som helst. Inte bara det, utan metoden med vilken ljuset samlas
in och märks sker utan att behöva “slänga bort” ljus på grund av färgfiltret, vilket gör
att mer av ljuset kommer till nytta. Detta hjälper oss att titta på processer som är svåra
att fånga i färg på grund av att de sker mycket snabbt eller är mycket ljussvaga.

På detta sätt har jag jobbat med att fånga bilder och filmer i färg av snabba processer.

⁸Vad som i folkmun brukar kallas för “svart-vita” bilder. Tänk dig ett gammalt fotografi eller en
gammal TV utan färg.
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Färgen hjälper oss att förstå den underliggande fysiken, till exempel vilken temperatur
ett glödande objekt har. Du har säkert sett att exempelvis järn som hettas upp till
tillräckligt hög temperatur börjar lysa, först svagt i mörkrött, och sedan starkare och
gulare allt eftersom temperaturen ökar, tills det till slut lyser väldigt starkt och nästan
vitt. Eftersom färgen som metallen lyser i är direkt kopplad till dess temperatur kan
vi med hjälp av en färgbild ta en bild av ett objekts temperaturfördelning. Detta är
en av de saker jag gjort i mitt arbete, men i stället för att titta på en stillastående
järnbit har jag undersökt hur temperaturen skiljer sig åt i olika delar av 0,5 mm stora
aluminiumpartiklar som brinner och samtidigt rör på sig, och skapat filmer av detta
med 50 000 bilder i sekunden(!). På liknande sätt har jag skapat bilder av var olika
gaser befinner sig i en plasma-urladdning - samma sorts fysik som orsakar blixtnedslag.
Sådana bilder och filmer hjälper oss att förstå vad som pågår i händelseförlopp som
annars hade varit omöjliga för oss att se, både för att de sker för snabbt för att ögat ska
kunna uppfatta dem och för att våra ögon inte har den färgkänslighet som behövs. I
förlängningen för detta forskningen för ett mer hållbart samhälle framåt.

xiii



xiv



Popular summary

What would life be without color? Everything from how the sky changes its shade
throughout the day, from the bright blue of day to the twilight’s many hues of red,
orange, and pink, to the thousands of shades of green found in nature. But color
is not only something that adds beauty to our lives, it also carries information. For
instance, have you ever wondered why hunters wear orange during the moose hunt?
Isn’t that the absolute worst choice of color for a hunt, where the goal is to stay as
hidden from the animal as possible? The fact is that orange is an excellent choice,
because moose and other hoofed animals lack the kind of cone cells - the sensory cells
that allow us to perceive color - needed to distinguish this particular color. For the
moose, the forest’s greens and browns blend together with the orange, while for us
humans who can tell orange apart, it becomes very clear where the other members of
the hunting party are. A more developed sense of color means more information!

We humans have three types of cones in our eyes, with each type covering a certain
range of colors, and combined, these allow us to see the colors that make up the
rainbow⁹. Put simply, the three types of cones are sensitive to red, green, and blue
light, respectively. In fact, this is the very same principle behind a color image captured
with, for example, a mobile phone camera¹⁰. When you take a picture, what is really
captured are three separate images (which we call color channels) simultaneously - one
with only the red light, one with only the green, and one with only the blue. This
is achieved with the help of tiny color filters attached to each pixel (picture element)
of the camera in a mosaic pattern, so that each pixel only receives light of a specific
color. Fig. 2 shows how this color filtering works. What you then see on the screen
is these three images interwoven, but blended so finely that the eye perceives the red,
green, and blue light as coming from the same point. This creates the illusion of the
combined color they produce.

For a physicist, color is a very useful property of light. The color of light is determined
by its wavelength, which is directly linked to how much energy the light carries. Since
many processes in physics emit light, the wavelength of that light can often be used
to understand how much energy has been released. The problem with using a camera
with attached color filters is that different processes emit light with very different en-
ergies, so the built-in filters rarely match the colors one wants to capture. Of course,
there are cameras with different sets of filters, but cameras intended for scientific mea-
surements are expensive, and it is not sustainable to buy a new camera every time
something new needs to be measured. On top of that, this kind of camera is not very

⁹In the visible part of the rainbow - after all, it contains more colors than the ones we can perceive.
¹⁰This is of course no coincidence - the camera is designed to create color images that correspond to

how we perceive colors, and its “color vision” is therefore built in the same way as ours.
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Figure 2: A grayscale sensor with a color filter placed in front of each individual pixel makes it possible to
create a color image. This is how most color cameras work, including mobile phone cameras, but it
is often not a practical solution in research.

efficient when it comes to capturing all the available light, since the filters block out
the colors they are not designed for. This is where my research comes into play.

This thesis is about my work on developing an alternative method for capturing color
images, aimed at scientific measurements where color filters need to be exchangeable,
but where all colors must still be recorded simultaneously. The method I have been
working on uses a camera that records grayscale images, that is, images that contain no
color information¹¹. By tagging light of different colors with known patterns before
it reaches the camera, the colors can later be separated - not because their actual color
can be distinguished in the image, but because their patterns can be recognized and
told apart. Think back to the moose - it would not have been able to tell orange from
green, but if your jacket had a checkered orange pattern, it would still have stood
out, since this is a very unnatural pattern. With this method, all colors are captured
simultaneously, which is important for fast processes, and any camera can be used to
capture any set of colors. Not only that, but the method by which the light is collected
and tagged does not require “throwing away” light because of the color filter, which
means that more of the light is actually used. This allows us to study processes that
are difficult to capture in color because they are either very fast or very faint.

In this way, I have worked on capturing images and movies in color of fast processes.
Color helps us to understand the underlying physics, for example the temperature of
a glowing object. You have surely seen that for instance iron heated to a sufficiently

¹¹What is commonly referred to as “black-and-white” images. Think of an old photograph or an old
TV without color.
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high temperature begins to glow, first faintly in dark red, and then more bright and
yellow as the temperature increases, until it eventually shines very brightly and almost
white. Since the color that the metal emits is directly linked to its temperature, we
can, with the help of a color image, record a picture of an object’s temperature dis-
tribution. This is one of the things I have done in my work, but instead of looking
at a stationary piece of iron, I have investigated how the temperature differs across
different parts of 0.5mm aluminium particles that are burning while simultaneously
moving, and created movies of this at 50,000 frames per second(!). In a similar way,
I have produced images showing where different gases are located during plasma dis-
charges - the same type of physics that cause lightning strikes. Such images and movies
help us to understand what is happening in sequences of events that would otherwise
be impossible for us to see - both because they occur too quickly for the human eye
to perceive and because our eyes lack the necessary color sensitivity. In the long run,
this advances research towards a more sustainable society.
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Chapter 1

A first look

“It’s a dangerous business, Frodo, going out your door. You step onto the road, and if you
don’t keep your feet, there’s no knowing where you might be swept off to.”

- Bilbo Baggins, The Lord of the Rings

1.1 Our vision

When you really think about it, the human sense of vision is truly staggering. We can
create a next-to-perfect three-dimensional sense of not only our immediate surround-
ings, but also the far distant world around us, using only the stereoscopic vision of
our two eyes, spaced about 10 cm apart, and the biological processing power of our
brain. It is the sense that we as a species unequivocally value the most[1], and plays a
part in almost all activities. It is hard to overestimate its importance.

Each one of our eyes produces an image of our field of vision on its inner back, called
the retina, using a lens located behind the pupil, the round opening in the center of
the iris. The shape of the lens can be altered using muscles, enabling us to focus our
vision to different distances [2], and the size of the pupil can also be changed using
the iris, to let in more or less light. Not only that, but the sensory cells used to detect
the light on the retina also come in a few varieties for extra flexibility - rod cells are
very sensitive to light but can only separate brightness from darkness, while cone cells
are less sensitive but can distinguish between different wavelengths of light, giving us
the ability to see different colors[3]. Using all these components, we can create two
images, one with each eye, of the same field of vision. Well, almost the same. As
the eyes are located at slightly different points in space, their perspective of the object
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in focus is also slightly different. This is key to be able to judge the distance to the
object¹ [4; 5]. In everyday life, our brain does a fantastic job of not involving our
conscious selves in the neurological algorithm that the brain uses to infer distance,
but the difference in position of the eyes is the hardware that makes it possible to do
this without moving your head. If you would like to test how well you would be able
to judge distances without two eyes, try the following: Close one eye, put your arms
out in front of you (not completely stretched, that is cheating) and space them about
50 cm apart. Now, point your index fingers towards each other and try to get them
to end up point-to-point. Then do it with both eyes open.

1.2 Extending our vision

It might seem strange to start a physics thesis with a lecture on the biology of the eye,
but as the subject of this thesis is imaging, I feel it is a natural starting point to go
back to the roots. After all, the eye is the technical predecessor to the camera, and
almost all modern cameras operate on the same fundamental principles as the eye.
Take the modern color camera as an example. Whereas the eye uses a single lens and
muscles to change its focusing distance by altering the shape of it, a process known as
accommodation [2], the camera instead uses a set of lenses at interchangeable distances
to produce a focused image. The aperture of the camera lens is an almost identical
mechanical replica of the iris in the eye, being able to open and close, and the sensor
is the electronic analogue to our biological sensor, the retina. The sensory cells of the
camera sensor - the color-filtered pixels - try to emulate the cone cells of the human eye
by filtering light into three different color bands [6]. This is of course no coincidence
- the purpose of the everyday consumer color camera is after all to reproduce the scene
in colors as we see them, and as the cone cells are sensitive to spectral bands roughly
centered around the colors red, green and blue (commonly referred to as RGB), so
are the pixels in a color camera. Even the lens lid can be seen as an analogue to the
eyelid. Fig. 1.1 demonstrates these analogues between the eye and the camera.

¹At least when remaining stationary. Many animals utilize for example head movement to in this way
get different perspectives. The point is that different perspectives are needed in order to judge distance,
and stereoscopic vision allows for two simultaneous perspectives at all times.
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Figure 1.1: The eye and the camera share many components in terms of functionality, such as a lens for focus-
ing, an aperture to vary the level of light entering the system, and a retina/sensor for registering
the intensities.

Before the invention of the camera, the only way we had of preserving a visual ex-
perience was art, such as painting and sculpting - an inherently subjective method.
As the medium of the creation process is a human, art is also limited by the sensory
capabilities and skill of the artist, such as the colors with which and the rate at which
they can perceive the scene, as well as the quality of and the rate at which they can
subsequently reproduce it. This limits depiction to objects within the visible region
of the electromagnetic spectrum that also remain relatively stationary over the time it
takes to finish the image, or alternatively, to rely on ones visual memory. Humans are
incredible in many aspects, but eye-witness testimony is not one of them [7]. Even
with a perfect visual memory, some timescales are simply out of the grasp of our senses
without technological aid [8]. The invention and development of the camera changed
this - it has given us the ability to perceive the world as if frozen in time, to explore
areas of vision outside our own, and to accurately share and preserve such perspectives.

At its technological dawn, the camera was a thitherto unrivaled method of objectively
and systematically capturing a visual perspective in time, which could also be shared
with others in a physical format. As development continued, frame rates increased, al-
lowing images to be captured in an increasingly rapid succession. In a similar fashion,
spectral resolution increased. At first, all light was recorded in a single color band,
known as monochrome or grayscale imaging, meaning no colors were discernable,
only luminescence. This was done by exposing photosensitive chemicals on a film
to light, and later developing the photograph using the created negative. With the
discovery of chemicals sensitive to different bands of the electromagnetic spectrum
[9], different parts of the spectrum could be captured simultaneously by layering the
chemicals on the film, and color photography was born. For the first time in human
history, a scene could be depicted in color without the filtering of a human artist.

In modern digital cameras, the analog photographic film has been replaced by digital
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sensors, consisting of a number of pixels which determine the spatial resolution of
the image. Replacing the photosensitive chemicals which gave us spectral division are
primarily color filter arrays² [10], which filter the light so that each pixel primarily
detects photons of a certain wavelength interval. The transition into electronic reg-
istration and storage of images has ushered in a new era of information gathering.
With the parallel improvement of adjacent technology, such as optics, mechanical
engineering and processing algorithms, the images we are able to capture today are
truly remarkable.

1.3 The scientific value of images

Perhaps the greatest gift brought by the invention of the camera is this: For the first
time in human history, we were not limited to our own visual capabilities and memory.
That this is a valuable property for scientific research is hardly shocking, but I want
to use this opportunity to break down some of the principal ways in which this helps
us, to really emphasize its impact.

The first aspect I want to discuss is time. Change with time is abundant in nature,
but it is the only one of the four dimensions that we experience (three spatial and
one temporal) that we have no control over. We can to a certain extent control how
we move in three-dimensional space, but not in time. Time moves on, unperturbed,
regardless of our efforts. We experience time at a sampling rate determined by our
neurobiology [11], and as previously mentioned, some timescales are simply out of the
grasp of our senses. But, with the ability to record images, we have all the time in the
world to get to the bottom of what we are seeing. We do not have to keep up with
the process in real time as it unfolds, but can instead analyze images at a leisurely pace
(with a cup of coffee) comfortably knowing that it is not going to disappear or expire,
and the event be lost in time. A video can be rewinded and watched again and again,
and be played slower or faster than we would otherwise be able to experience it. The
high frame rates of modern high-end commercially available cameras, being able to
film at ∼76 kHz at 1 MP resolution [12], also allows us to sample time at a much
higher frequency than our own vision, allowing us to explore timescales outside our
own.

The second aspect is that of spatial scale. This aspect has less to do with photography
and more to do with optics, specifically magnification, but photography plays a part,
as we will soon see. Our own vision is limited in that we cannot optically magnify
what we see - for this we would need multiple lenses in our eyes, since the distance
from the lens to the retina is small compared to the distances at which we can focus.

²Although other solutions exist, as we will later discuss.
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However, using a second lens (apart from the one in our eye) we can magnify the
image, increasing the size of the image before it reaches our eyes. Both astronomy
and microscopy are great examples of fields where this is fundamental. Magnification
alone has enabled us to understand more of the world around us, but when combined
with a camera, it becomes even better, and here we will make use of the first aspect
- time. A camera has the ability to dramatically change the exposure time of an im-
age, something that our naked eyes are not capable of. By collecting light for several
minutes in a single image, even the dimmest objects in the night sky can be visual-
ized. Similarly, but on the other side of the spectrum, a short exposure can freeze the
Brownian motion of the microscopic world [13].

The third and final aspect is color. First of all, I want to be clear with what I mean when
I refer to “color”. Color is our interpretation of the wavelength of light, as filtered and
perceived by human vision, limited to approximately 400-750 nm[14]. We divide this
range into smaller parts, with somewhat arbitrary boundaries, and assign names for
them such as “green”, corresponding to light with an approximate wavelength of 500-
570 nm. The wavelength of light is inversely proportional to its energy, and through
imaging we can recreate a spatial distribution of said energy in many processes where
photons are emitted. This fact alone makes spectral imaging very powerful, as energy
is a fundamental quantity in physics. It becomes even more useful when we consider
all the parts of the electromagnetic spectrum outside the visible range that we can
image - radio, microwave, infrared, X-rays and gamma³ [15–20]. Once again, the
camera helps us discover areas otherwise outside our grasp.

1.4 What is an image?

At its core, an image is a spatial distribution of intensity. There are many types of
images, but for this thesis I will limit the discussion to two types - an optical, physical
image and a digital, sampled image. Please make extra note of the word sampled in
the previous sentence, excluding synthetic digital images and the like, and limiting
the discussion to images depicting real-life scenes.

An optical image is a redistribution of light from an object, into an (imperfect) spatial
light distribution of the object at a different point in space - in other words, a recre-
ation of the light field of the object, seen from a certain perspective. The reason for the
addition of the word “imperfect” is that a real optical image⁴ is never perfect - various
effects, such as aberration and diffraction, prevent a perfect reconstruction. Never-

³It should be noted that some of these techniques do not directly and optically image the photons,
but rather recreate a spatial distribution of them. Nonetheless, it is imaging.

⁴“Real” in the sense that it is created in practice, not only in theory.
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theless, the object can be recognizable, and this is (to my mind) when it becomes an
image. A digitally sampled image, on the other hand, is the discretized representation
of a physical image, sampled using a digital sensor. This means that intensity has
been quantized as a function of space, by converting incident photons into electrons
in a number of photodetectors, where each photodetector corresponds to an image
element (pixel) in the final representation of the image. The combined charge of the
electrons is then measured, quantizing the intensity⁵ into “counts”. Unlike an optical
image, a digital image can be stored, and its dimensionality may vary - one could say
that the definition of a digital image is a little bit broader. A tomographic image,
an RGB-color image, and an image captured by a streak camera all have different
dimensionality, yet are all called images. The most basic form of a digital image is
a monochrome image, represented by a two-dimensional matrix. In this matrix, the
rows and columns correspond to position in space, and the value of each element
corresponds to the intensity in that position⁶, integrated over the spectral response of
the camera and the exposure time.

1.5 Multispectral images

As my work concerns itself largely with multispectral imaging, I think it fitting to
here introduce what these are and how they are represented in an image. The term
“multispectral image” refers to an image which contains spectrally resolved image in-
formation from a small number of distinct, spectrally separated bands. Multispectral
images can cover any part of the electromagnetic spectrum, and typically contain 3-15
spectral channels [21]. If the spectral resolution is further increased, with more and
narrower contiguous spectral bands, the image will move towards the “hyperspectral”
[22; 23]. I also want to make an (in my mind) important distinction here, which will
be relevant in later chapters - an RGB-image, whose purpose is to emulate human
color vision, is not a good example of a multispectral image, at least not in technical
terms. Even though it contains three color channels, the spectral responses of these
channels almost always have overlap, just as for our different cone cells. Thus, the
resulting intensities in adjacent spectral bands are codependent, which is a problem
in many technical applications. As humans, we can actually experience this problem
as well - two objects can appear to have the same color, only to look to be different
colors in other light conditions. This phenomenon is called metamerism, and is a
direct result of the overlapping spectral responses of our three cone cell types [24].
It is also what enables us to perceive a computer screen as for example yellow - even
though no light with a wavelength corresponding to yellow is actually emitted, the

⁵Intensity is of course quantized in photons in nature as well.
⁶Technically over an area, albeit incredibly small.
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relative response of the cone cell types have the same proportions as if you were to
have actually seen yellow light.

As wavelength is a property of light, the resulting colors of an optical image are deter-
mined by the continuous spectral profile of the irradiance incident on each point in
the image plane. However, when sampled by a digital image sensor, the continuous
spectrum is discretized, adding another dimension to the digital image in the form of
spectral bands. The size of the added dimension depends on the spectral resolution
with which the image is sampled. However, as spectral information such as the spec-
tral response curve of each channel is not stored in the digital version of the image, the
interpretation of the spectral channels is an intellectual construct, and without this
external information the scene cannot be properly reconstructed. Putting all three di-
mensions together, along with the spectral meta-information, the spectral image can
be described as a data cube, which will be discussed further in Chapter 2.

1.6 Quantitative imaging

Another distinction I want to make early on in this work is what constitutes a quan-
titative measurement. Some might not agree with all definitions or statements made
hereafter, but at least know that this is what I have considered when I choose to call
a measurement “quantitative”.

The essence of a quantitative measurement, whether it be imaging or something else,
is the aim to attach physical quantities to measured values⁷. We want to come as
close as possible to an objective truth - the actual value of a physical parameter. In
comparison, a qualitative measurement is more subjective, requiring interpretation.
Such measurements are also of value, for example in situations where quantitative
values do not contribute with very much, or are excessive. A good example of this
within imaging is diagnosing bone fractures using X-ray images - the doctor does not
need to know the exact intensity values of the X-ray image to understand that the
bone is fractured, the relative contrast is enough. Almost all methods start out as
qualitative, simply because it is most often the easiest to achieve. Before asking how
fast something is moving, you must first establish that it is moving. However, the
value of qualitative data is often limited, and sooner or later, most methods develop
toward the quantitative. This complicates the process of data collection, as calibration
is a requirement for correct quantitative data - independently establishing the relation
between the output values of the sensor and physical quantities. At the same time,
the potential rewards and insights also become greater.

⁷In other words: Putting numbers and units on things.
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The spectrum of quantitative to qualitative is of course also continuous. A good ex-
ample of this is classification of fluorophores, as we will see later. This process includes
collecting spectral data, creating a spectral composition of each fluorophore’s emission
spectrum, and using these to qualitatively distinguish between them. Even though
the end result is often used in a qualitative manner, some quantitative meta-data exist
in the form of spectral band intensities, which tells us something about the spectral
composition of the fluorophore.

With regards to quantitative imaging, the main hurdles occur, at least in my expe-
rience, along the optical axis. No matter which way you spin it, an optical image
is a projection of a three-dimensional space onto a two-dimensional surface, and for
this reason we can never perfectly reconstruct all three dimensions. As the integra-
tion of intensity occurs along the optical axis, the positional information along this
dimension is distorted or lost, creating a challenge when it comes to passive imaging
methods. Depending on the application and method, this can sometimes be counter-
acted by for example introducing an active illumination scheme, but this is not always
possible. However, accurate and relevant information can still be extracted from this
type of data as well, as we will see in later chapters.

1.7 Introducing the work

During the last 5 years, I have been working with developing the imaging technique
known as Frequency Recognition Algorithm for Multiple Exposures, or FRAME for
short. FRAME is an image multiplexing method, allowing several exposures to be
stored in a single camera image, and can be used in a variety of ways to expand the
capabilities of a sensor. The main focus of my research has been using this method to
create multispectral images, and developing methodology for how the resulting data
can be used for quantitative measurements. For this reason, the thesis summary that
you are now reading will have a strong focus on multispectral capture, as it constitutes
the bulk of my work. That being said, I have also been working with FRAME and
other coded light-approaches to obtain other forms of data, which will be covered at
the end.

The content of this thesis is presented in 6 chapters, including the introductory one
you have already read. Chapter 2, “Methods of spectral imaging”, provides an overview
of different techniques used to capture spectral images along with their general ad-
vantages and drawbacks, adding the context needed to understand the motivation of
the research. Chapter 3, “FRAME”, dives into the theoretical framework⁸ needed
to understand the workings of FRAME on paper, while Chapter 4, “Experimental

⁸My west coast origin could not resist.
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aspects”, provides practical “know-how” needed to actually implement it in a labo-
ratory setting. Chapter 5, “Applications and results”, discusses how the techniques
have been applied for different measurement scenarios, including application-specific
processing and similar, and highlights some of the results achieved. Finally, in Chap-
ter 6, “Outlook and Conclusion”, I give my view on the potential future of FRAME
and finish with some concluding remarks. I hope that you will find this work both
enjoyable and that it proves useful in your own endeavors!
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Chapter 2

Methods of spectral imaging

Spectral imaging involves imaging a scene at multiple unique and preferably non-
overlapping spectral bands. These are combined into a single multi-channel image,
now containing one “layer” for each spectral band, commonly referred to as spectral
channels. Such images provide spatially resolved spectral information useful in a wide
array of applications and fields. Remote sensing applications such as satellite imaging
[25] and agriculture monitoring [26] enables the monitoring of environments and
vegetation over large areas, increasing the efficiency with which for example damage to
crops can be identified. Within the biomedical field it provides tools for both the study
of the microscopic world [27; 28] as well as provides tools for medical diagnosis [29],
helping scientists understand the underlying biology of diseases and enabling better
and more efficient treatment. Spectral imaging can also be used to non-intrusively
study materials [30; 31] as well as provide insight into the composition and temperature
of celestial bodies and flames alike [32–35]. The continued development of spectral
imaging is one of the tools needed to continue to push our understanding of the
world. Fig. 2.1 shows some of these application areas of spectral imaging.

This chapter discusses different techniques of spectral image capture. I have chosen to
limit this to single-sensor techniques utilizing Focal Plane Arrays (FPAs), as including
multi-sensor techniques is a bit like comparing apples and oranges. Of course, other
solutions such as multi-sensor techniques [36] and point detectors [37] exist, each with
their own advantages and drawbacks, but the line has to be drawn somewhere, and
so this chapter will limit the comparison to single-sensor FPA techniques. I also want
to clarify that this is not an all-encompassing review of such techniques, but includes
the ones that I have found the most relevant for comparison purposes, either because
they are commonly used, or because they are closely related to the technique I have
been developing.
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Figure 2.1: Three examples of applications where spectral capture plays a crucial role. Left: Spectral microscopy
imaging in combination with fluorophore tagging help separate cellular structures. Middle: Mul-
tispectral remote sensing applications, such as satellite and aerial imaging, can be used for agricul-
tural monitoring. Right: Telescopes with spectral resolution help us investigate the composition of
celestial bodies lightyears away.

As briefly mentioned in the previous chapter, a spectral image can be described as a
data cube with two spatial dimensions and one spectral dimension, as seen in Fig.
2.2. The volume of this data cube is comparable to a total “bandwidth” (composed
of spatial and spectral bandwidths) of the spectral image. As mentioned in the pre-
vious chapter, techniques with a few spectral channels (typically less than 15-20) are
referred to as multispectral imaging. When the number of channels increase beyond
this point it is instead referred to as hyperspectral imaging, often containing hun-
dreds of contiguous spectral bands [22; 23]. Assuming the same wavelength range is
sampled, a higher number of spectral bands increases the spectral resolution, but also
leads to worse signal-to-noise ratio (SNR) and/or spatial resolution per band [38].
Most hyperspectral methods also rely on the continuous dispersion of light, rather
than optically splitting the light into separate optical channels based on wavelength,
meaning the manipulation of individual spectral bands is considerably more difficult.

The discussed techniques for obtaining spectral images will be divided into two main
categories - scanning techniques and snapshot techniques. Scanning methods gradu-
ally build the data cube in time using multiple camera images, while snapshot methods
capture the entire data cube during the exposure time of a single camera image.
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Figure 2.2: A spectral image can be described as a data cube, with two spatial dimensions (x, y) and one spec-
tral dimension λ.

2.1 Scanning techniques

Techniques that use temporal scanning to acquire spectrally resolved images either
sample different spectral bands of the entire scene at different times, or sample all
spectral bands simultaneously but only for a subsection of the scene at a time. Re-
gardless of which, the resulting image data cube is built up gradually along at least
one dimension. The common thread in these techniques are good spatial and spectral
resolution at the cost of temporal resolution - using several exposures to build the
spectral data cube means more total bandwidth available (total volume of data cube),
but also longer acquisition times.

2.1.1 Spectral scanning

As the name eludes, spectral scanning¹ refers to techniques that utilize a sequence of
camera images to build the data cube along the spectral axis [39], as shown in Fig. 2.3.
The spectral properties of each sub-image are determined by collectively changing the
spectral composition of all the light reaching the sensor. A common and economi-
cal way of manipulating the spectral composition is to use mechanical filter wheels
[40], which cycle through spectral filters in between image captures. Other solutions
include tuneable spectral filters such as Acousto-Optic Tunable Filters (AOTFs) [41]
and Liquid Crystal Tunable Filters (LCTFs) [42].

¹Also referred to as “staring” imaging.
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Figure 2.3: Spectral scanning uses multiple camera images taken in sequence to gradually build the data cube
in the spectral dimension. Between each image, the spectral band reaching the sensor is altered,
so that each camera image samples a unique spectral channel.

A major advantage of this technique is the utilization of the full resolution of the
camera for every spectral channel, both in space and intensity. No two spectral bands
have to share any aspect of the total bandwidth of the sensor [43]. Sequential cap-
ture is also very flexible regarding the spectral composition of each channel - spectral
filters are easy to tailor to the specific application, and the process of both changing
filters and capturing a sequence of images does not require complicated alignment or
reconstruction algorithms - the data cube can be assembled by concatenation of the
individual spectral channels, creating the spectral axis.

A fundamental assumption of the spectral image data cube is that each spectral chan-
nel depicts the same scene. The spectral resolution of spectral scanning methods is
therefore limited by the characteristic timescale of the scene - if the scene changes dur-
ing the capture of spectral channels, the spatial correlation is lost. This also limits the
potential spectral resolution of the method, as spectral resolution scales reciprocally
with frame rate. For a characteristic timescale T of a scene, over which no detectable
movement occurs, the number of spectral channelsNch of a single spectral image data
cube is limited by

Nch =
T

f
, (2.1)

where f is the capture rate of the camera in frames per second. The solutions pre-
viously mentioned - mechanical filter wheels and LCTF such as Thorlabs Kurios© -
typically operate on timescales on the order of 10-100 ms for wide spectral range so-
lutions (wavelength ranges of several hundred nanometers) [44], limiting the spectral
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image frame-rate fsp (the number of complete spectral data cubes per second) of such
setups to

fsp ≈
1

Nch · 10 ms
=

100

Nch
[s−1]. (2.2)

AOTFs are generally faster (μs timescale), but are limited to very narrow spectral bands
on the order of 1 nm [45] and can introduce distortions in the image [46].

A common application of spectral scanning is fluorescence microscopy [47]. Com-
binations of filters are needed to spectrally separate the broad and often overlapping
spectral emission bands of fluorophores, requiring spectral specificity and flexibility.
At the same time, spatial resolution is of importance in order to spatially resolve micro-
scopic features, as is ease of use. All of these factors combined makes spectral scanning
a viable option. However, the long acquisition times associated with it can be prob-
lematic when imaging living samples [47], or when photo-bleaching [48] limits the
total time that a tagged sample can be exposed.

2.1.2 Spatial scanning

Spatial scanning methods instead build the spectral data cube along one or both of its
spatial axes, by spectrally resolving a subregion of the entire scene, as shown in Fig.
2.4. A common example is the push-broom scanner [39; 49], which utilizes spatial
scanning with an FPA to image spectrally resolved image slices. For each scan, a
narrow slice of the scene, corresponding to a single pixel column, is captured. Using a
dispersive element such as a prism or a grating in combination with imaging elements
(lenses and/or mirrors), the image column is spectrally resolved and mapped onto the
second axis of the two-dimensional FPA, resulting in a single slice of the data cube. By
subsequently scanning over the entire scene, moving the camera relative to the scene
along the scanning dimension, the spectral data cube is completed.
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Figure 2.4: Spatial scanning uses a sequence of camera images to gradually build the spectral data cube in one
of the spatial dimensions. Scanning a region corresponding to a single pixel column of the scene
and dispersing it across one of the spatial axes of the sensor creates spatial slices of the spectral
data cube.

Spatial scanning provides excellent potential for spectral resolution, as it utilizes one of
the sampling dimensions of the FPA [50]. The maximal number of spectral channels
is determined by the number of sampling points along the spectral axis of the sen-
sor, while the total spectral range sampled (and thus the bandwidth of each spectral
channel) is determined by the spectral dispersion in the plane of the FPA. Combined,
these factors result in a dense and evenly sampled spectrum. The technique is also
very stable once aligned, with no need for moving parts. It utilizes the full sensor
resolution along the spatial axis of each sub-image, while the spatial resolution along
the scanned axis is dependent on the synchronization of acquisition and movement.
This puts extra emphasis on calibration and adds a post-process step in the form of
“stitching” - the assembling of the second spatial axis. Spatial scanning also relies on
the fundamental assumption that no detectable movement occurs over the scanning
time. The scanning method of push-broom is akin to a rolling shutter [51] which
sweeps over the field-of-view, reading pixels line by line until the entire field-of-view
is captured. Any movement during this scanning results in spatial artifacts. This is
very similar in nature to the limitations for spectral scanning, where the discrepancy
in time will be visible along one of the spatial axes, with all spectral bands having an
identically distorted scene.

An application example of this technique is remote sensing, such as satellite imaging
[52]. Spectrally resolved satellite images are an indispensable tool in the monitoring of
our environment and weather [53; 54]. As satellites move in fast and predictable orbits
relative to the surface of Earth, spatial scanning is a clever solution taking advantage
of the otherwise problematic relative movement between the sensor and the scene.
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2.2 Snapshot techniques

Snapshot spectral imaging techniques captures the entire spectral data cube in a single
camera image, circumventing the most prevalent issue of scanning techniques - the
long acquisition times. However, this also means a lower total bandwidth (smaller
data cube volume) is sampled compared to scanning techniques. The fast acquisi-
tion times of snapshot techniques, where all spectral bands are captured concurrently,
makes them suitable for capturing transient events.

The technique of combining separate signals into a single one is called multiplexing
[55]. It is a technique most often used to increase transmission efficiency when mul-
tiple signals need to be transmitted over a single medium or channel, and is achieved
by uniquely encoding each of the constituent signals using a parameter of choice.
After transmission of the combined signal, the individual constituent signals can be
separated by the receiver if the encoding pattern is known. Multiplexing is used in
a variety of applications primarily in communication technology, perhaps the most
famous example being radio which utilizes both amplitude modulation (AM) and
frequency modulation (FM) multiplexing [56]. These are two examples of coding
schemes, divided based on what signal parameter is encoded.

Assuming a single monochrome FPA with no spectral sensitivity, snapshot multi-
spectral imaging requires multiplexing - several unique signals (the individual spec-
tral channels) must be captured simultaneously in a single camera image while main-
taining separability. As the sensor is not spectrally sensitive, this property has to be
encoded using some other parameter, trading another bandwidth for spectral band-
width. The techniques covered in this chapter all use spatial bandwidth for this trade,
albeit in different ways.

2.2.1 Spatial division multiplexing

This type of multiplexed spectral imaging divides spectral channels in the spatial di-
mension, either into continuous sub-regions or (more commonly) into mosaic pat-
terns covering the entire sensor. As a direct consequence of this, each spectral chan-
nel is sampled fewer times in space, as the spatial resolution of the sensor is constant.
However, the dynamic range is not shared between different spectral channels, and
the post-processing required to produce the finished spectral data cube is most often
less complicated than the other multiplexing schemes discussed later in this chapter.
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Filter arrays

By mapping spectral channels onto different sub-regions of the FPA, all of them can
be imaged onto the sensor and captured concurrently at the cost of a lower spatial
sampling frequency. A common technique incorporating spatial division in this way
is multispectral filter arrays (MSFAs) [57–59], which consist of a mosaic of pixel-sized
spectral filters fixed to the sensor. Each spectral channel is then a sparsely sampled
image covering the entire sensor in a periodic mosaic pattern, and the final spectrally
resolved image is constructed through a demosaicking algorithm [60]. Fig. 2.5 shows
the steps of creating a spectral data cube using an MSFA. The spectral properties of
each channel are determined by the spectral filters, which are permanently fixed to the
sensor during manufacturing. The most common example of filter arrays is the Bayer
pattern used to produce spectral images emulating our own color vision. This pattern
samples three color bands - red, green and blue (RGB) - roughly corresponding to
the spectral sensitivity of the L-, M- and S-cells in our eyes [61]. However, the large
spectral overlap of these three spectral channels make them less useful in many research
applications, due to inter-channel dependency [62].

Figure 2.5: Filter array techniques use pixel-size spectral filters, which result in sparsely sampled spectral bands
being captured in a mosaic pattern on the sensor. Each spectral channel is isolated in post using a
demosaicking algorithm, and the spectral bands are concatenated along the spectral axis to create
the data cube.

Filter arrays provide great stability and ease-of-use at the cost of spectral flexibility and
discarded intensity. The calibration and demosaicking needed can be implemented at
a manufacturing level to provide a ready-to-use solution for the end user. However,
changing the spectral properties of the channels is therefore also complicated, if not
impossible. As the vast majority of filter arrays are on-chip solutions, they are perma-
nently integrated with the sensor at the manufacturing stage, preventing any spectral
division adjustments after this stage. Solutions for modular filter arrays have been
demonstrated [63], but these are still much less flexible than a camera-independent
filtering solution. Filter arrays also discard inbound light not meeting the wavelength
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criteria. Assuming perfect spectral filtering, with 100% transmission in the desired
wavelength region and 0% outside, filter arrays still only transmit

I

I0
=

1

Nch
(2.3)

of the intensity as a consequence of filtering, where I0 and I are the collective intensity
before and after the spectral filtering respectively. In reality, spectral filters are of
course not perfect, further increasing intensity losses. The mosaic patterns also impose
geometric restrictions in the form of scalability, as spectral sample points need to be
structured in a periodic fashion. This can cause spectral channels to have different
sampling frequencies, either intentionally to increase sensitivity and spatial resolution
of a certain band, or as a consequence of these restrictions.

Very similar in concept, Fabry-Perot filter arrays (FPFAs) uses Fabry-Perot etalons
for spectral filtering [64; 65], incorporating the same mosaicing concept as MSFAs.
These offer better optical throughput and spectral selectivity, at a greater cost and more
complicated alignment process. However, the drawback in common for all filter array
techniques is the spectral filtering loss illustrated in Eq. 2.3, as light is not re-directed
based on wavelength.

Other spatial division-solutions

Commercially available image doubler units allows for splitting the sensor into two
halves, projecting an individual image on each [66]. This can be combined with spec-
tral filters to simultaneously image two spectral bands using the same sensor. How-
ever, optical complexity quickly increases with an increasing number of channels,
making this type of solution limited to a low number of channels.

A multi-aperture solution [67], which instead use continuous (non-mosaicked) re-
gions of the sensor to separate spectral channels, offers better spectral flexibility and
transmission than filter arrays, but is optically complex to achieve. In such a solution,
the light can be split spatially on the criterion of wavelength using dispersive elements
or dichroic coatings, meaning losses due to spectral filtering is minimized. However,
the optical routing of each channel requires alignment close to the sensor, and in the
case of dispersive elements, there is also a spectral variation along at least one spatial
axis in each spectral channel.

Lenslet Array Tuneable snapshot Imaging Spectrometer, or LATIS [68], uses a lenslet
array to focus the light of image subregions down to lenslet spots, which are imaged
on the sensor. As the light of each subregion is focused to a single, smaller spot, void
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space is created between spots on the sensor. By introducing a prism into the optical
path between the lenslet and the sensor, the lenslet spots are dispersed into the void
space, granting spectral sensitivity in snapshot. The trade-off for this achieved spectral
sensitivity is the downsampled spatial resolution (lenslet focusing) to achieve the void
space needed for spectral dispersion.

In later years, a combination of micro-machined optical surfaces and machine learn-
ing have also emerged [69; 70]. These techniques use diffractive effects to separate
spectral channels, leveraging the adaptive capabilities of neural networks to interpret
the resulting images and reconstruct the individual spectral channels. Techniques
such as these feature high transmission but rely on the reconstruction capabilities of
the trained network. This reliance also makes changing the spectral properties of the
setup cumbersome, as it requires additional training of the neural network.

2.2.2 Compressed sensing

Compressed sensing is a collective term for techniques which sample fewer points than
the number of elements of the final data cube [71]. The underlying assumption of
these techniques is that the sampled data is sparse in at least one domain, allowing for
a solution to be found which uses this sparse representation. Spectral imaging based
on compressed sensing therefore rely on more complicated reconstruction algorithms
(compared to previously discussed methods) which enforce sparsity to isolate each
spectral channel.

The most prevalent method of compressed sensing for spectral imaging is Coded Aper-
ture Snapshot Spectral Imager [72–74], or CASSI for short. It uses a random binary
pattern mask in combination with dispersive element(s) to capture a spectrally mul-
tiplexed camera image. Fig. 2.6 shows a schematic of the CASSI technique. The
image of the scene is first spatially modulated using the binary mask, and the masked
image is subsequently dispersed over one of the spatial axes of the sensor, creating an
image of the scene on the FPA which is composed of sheared spectral channels. This
sampled two-dimensional image Y can then be described as

Y = ϕX+ η , (2.4)

where ϕ is the known encoding transformation (intensity modulation and spectral
dispersion), X is the complete spectral data cube, and η is the noise [75]. The spectral
data cube X can then be approximated by searching for the sparse representation
which best represents Y. The binary pattern ensures a known, structured pattern
which is critical to reconstruct the spectral data cube both spectrally and spatially.
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Figure 2.6: CASSI uses a binary mask and a dispersive element to create a camera image mapping both spatial
and spectral information along one of its axes. The binary mask acts as a known reference in the
reconstruction algorithm, which assumes sparsity in some domain of the image to calculate the
solution which best agrees with the sampled image.

Much like spatial scanning, CASSI uses one of the dimensions of the sensor to encode
spectral information, with the difference that CASSI also maps spatial information
on the same axis. The number of spectral channels and the spectral resolution is
determined by a combination of factors, including the number of pixels that the image
is spectrally sheared over, the spectral dispersion at the FPA, and the size of the smallest
feature in the binary mask [76]. The final spectral data cube has a spatial resolution
corresponding to Y in the direction orthogonal to the spectral dispersion. In the
direction of spectral dispersion, the spatial resolution of the reconstructed data cube
is reduced by the number of pixels the shearing occurs over [75].

As mentioned, CASSI relies on sparsity in some domain of X, making it compress-
ible. However, the method with which the final data cube is reconstructed also means
that CASSI is a product of both measurement and computational processing - some
of the intensity values in the resulting spectral data cube are not physically sampled,
but instead the result of a mathematical approximation. This results in the total band-
width of the spectral data cube being higher than those of other snapshot techniques.
The approximation is also computationally demanding, and the optical setup requires
careful alignment and calibration. Nonetheless, studies have shown that the technique
performs well, and a number of reconstruction algorithms have been developed [77].

2.2.3 Frequency division multiplexing

Instead of using the spatial domain to separate spectral signals in an image, the signals
can be separated in the frequency domain as demonstrated by Gunturk and Feldman
in 2013 [78]. This is known as frequency division multiplexing, and Frequency Recog-
nition Algorithm for Multiple Exposures (FRAME) [79–84] - the main subject of the
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research presented in this thesis - is an imaging technique belonging to this category
of multiplexing techniques. Albeit few, other techniques utilizing the same multi-
plexing scheme for spectral capture have also been demonstrated. In 2018, Deng et al.
demonstrated an imaging method combining frequency division multiplexing with
a Digital Micromirror Device (DMD) and a spectral filter wheel to achieve hyper-
spectral snapshot imaging of 31 spectral channels [85]. The technique is reminiscent
of a combination of a spectral scanning and snapshot - despite the technique being
snapshot (capturing all spectral channels in a single camera image), all spectral chan-
nels are not synchronously sampled within the camera exposure due to the use of the
spectral filter wheel.

As both the theoretical and experimental aspects of using FRAME for multispectral
imaging will be dealt with in the coming chapters, this section will only provide a brief
overview of the fundamentals of multispectral FRAME and its overarching advantages
and drawbacks.

Multispectral FRAME utilizes an optical setup to uniquely modulate image intensities
in a number of optical channels, corresponding to spectral bands. The images of each
spectral channel are spatially overlapped on the FPA and all captured in the same
camera image synchronously. Even though intensities of individual spectral channels
are overlapped in space, they are separable in reciprocal space, as the spatial carrier
frequencies used to modulate each spectral band isolate them from each other by
shifting each to a different, higher frequency band. This phenomenon is illustrated
in Fig. 2.7. Each individual spectral channel can then be isolated through sequential
spatial frequency lock-in and frequency filtering [86].

The spectral properties of each channel are determined by spectral filters and/or coat-
ings used to create the optical channels in the setup. In practice this means fewer,
spectrally wider bands, as channels need to be individually aligned, but with the
advantage of good spectral flexibility and easy access to those spectral components.
Moreover, the technique is not limited to sampling contiguous spectral bands (a con-
tinuous range of wavelengths), but can isolate specific wavelength regions of interest
and disregard intermediate spectral bands. As the method uses digital low-pass filter-
ing or truncation to isolate exposures, it trades spatial resolution for spectral resolution
just as all other techniques covered in this chapter, albeit during the post-processing
instead of directly during the sampling. The post-processing required is computa-
tionally quick thanks to optimized algorithms and transforms in combination with
an exposure only requiring four operations to be isolated - (1) a Fourier transform, (2)
a shift of the Fourier domain (frequency lock-in), (3) digital filtering, and (4) an in-
verse Fourier transform. In addition, the intensities sampled in the final spectral data
cube all originate from actual sampled intensities. As mentioned, the experimental
aspects and post-processing will be covered in greater detail in subsequent chapters.
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Multispectral FRAME has previously primarily been used for fluorescence imaging
[79; 80]. The work in this thesis expands on that work, as well as introduces new
applications and imaging setups used for quantitative measurements.

Figure 2.7: The fundamental principle of multispectral FRAME. A colorful scene (top left) is imaged by a
monochrome grayscale camera. When no intensity modulation is applied to the scene, the Fourier
spectrum of the image (bottom left) exhibits the characteristic shape of a natural image. By im-
parting a unique spatial carrier frequency onto the image in each spectral channel (top right, gray
inset showing the frequency associated with each spectral channel), the frequency information of
that image is shifted to a higher frequency band in frequency space (bottom right), isolating it from
the other exposures and the central DC-component. This is how FRAME stores each exposure. The
theoretical background for this will be discussed in Chapter 3.
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Chapter 3

FRAME

“The most beautiful part of every picture is the frame.”

- Gilbert K. Chesterton

A small foreword

I am personally not a fan of expressing ideas, whether complex or not, through math-
ematical notation. That is not to say that I do not think mathematical notation has
its place within science - it is the best way we as a species have conceived of to express
complex ideas in a compact and efficient way. However, for the same reason, it can
also be quite cryptic, and it often takes time to fully understand the underlying mes-
sage. It is my belief that if an idea can be expressed in words in a pedagogical and
fairly efficient way, that is very often preferable, even if it takes up more space on the
paper. As I want this thesis to be a rather light read, and not a book where it takes
an hour to understand the implications of a single line, I have and will continue to
do my best to express my thoughts and discussions in words rather than equations.
However, at some point it becomes impossible to continue the discussion without
bringing equations into the mix, as the subject of my work is, at least in part, inher-
ently mathematical¹. That point has now been reached. Brace yourselves².

¹Despite my best intentions.
²In all honesty, these words of encouragement are mostly aimed at myself.
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3.1 Space and frequency - two interpretations of the same im-
age

This chapter will discuss subjects related to frequency analysis of images. By far the
most common way of displaying images are in the spatial domain, mapping intensities
to positions. This is how we normally display images for example in our homes, and
what most people mean when they think of an image, as it replicates our own sense
of vision and allows us to quickly identify and locate objects in the image. However,
if the goal is to examine periodic patterns in an image, it is beneficial to examine the
image in the frequency domain instead, where the same image information is not
expressed in spatial components, but in frequency components instead. While the
spatial domain allows us to quickly locate, the frequency domain allows us to examine
properties such as the proportion of details to structures over the entire image.

When an object is imaged onto a digital sensor, it is sampled in the spatial domain,
mapping intensity to position. Therefore, in order to examine the frequency repre-
sentation of the image, this digital image must first be transformed to its frequency
spectrum. This is done using the Fourier transform, which (without a doubt) deserves
its own heading.

3.2 The Fourier transform

In the beginning of the 19th century, Joseph Fourier lay the ground works for what
would become known as Fourier analysis [87]. The fundamental realization of Fourier
was that by varying the amplitude, frequency and phase of an infinite amount of
individual sinusoids and summing them, any periodic function could be created. The
series of sinusoid functions became known as the Fourier series of the created function,
and was proposed as a means of solving the heat equation. Later work expanded on
this idea, showing that this expansion was not only possible for periodic functions, but
for a wide range of functions that are absolutely integrable and piece-wise continuous
[88]. The Fourier transform was born - enabling functions of time or space to be
described in terms of their frequency components.

The Fourier transform is essentially a change of basis functions. A digital grayscale
image consists of two spatial dimensions which uniquely identifies the position of
each image element (pixel) in the image, and associated with each pixel is an intensity
value. However, the image can also be described as a sum of unique layers, where
each layer is a two-dimensional sinusoid of intensity, with a unique combination of
frequency, amplitude and phase. Instead of describing the image as a function of
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space, as when considering individual pixels, it is now described as a function of fre-
quency components acting as orthogonal basis functions. Fig. 3.1 illustrates these two
representations of a grayscale image. When summing along the intensity dimension
to create the complete image, all frequency components contribute to the intensity
in a single pixel, in contrast to each pixel being independent as in the spatial inter-
pretation. The proportion of these frequency components are the Fourier spectrum
of the spatial image, and the Fourier transform and its inverse are the mathematical
transforms that perform the switch between basis functions, from spatial components
to frequency components and back.

Figure 3.1: A digital grayscale image can be represented in terms of spatial components (pixels) or frequency
components (layers of sinusoids). In the case of frequency components, each layer contributes
to the intensity in each pixel, meaning a summation of the layers in the intensity dimension is
performed.

By this point, it is time to formally introduce the Fourier transform. However, before
discussing the discrete version of the Fourier transform, the continuous version will
be presented. This first part will also be limited to functions of a single dimension,
but the same principles apply in a multi-variable case. The Fourier spectrum f̂(ξ) for
a real, continuous function of space f(x) can be expressed as

f̂(ξ) =

∞∫
−∞

f(x) · e−i2πξx dx, ∀ξ ∈ R. (3.1)

In other words, for each frequency ξ, the product between our original function f(x)
and the complex exponential, which is a function of ξ, is calculated over the entirety
of space. Substituting using Euler’s formula,

e−i2πξx = cos(−2πξx)− i sin(−2πξx), (3.2)
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shows that two factors are in fact included, one real and one imaginary, meaning
f̂(ξ) is complex. This leads to our final interpretation of the Fourier spectrum of
f(x) - a complex function consisting of the relation between f(x) and cosine (real)
and sine (imaginary) functions for a range of frequencies. The phase information of
each frequency is given by the proportion of cosine and sine coefficients. From the
Fourier spectrum, the amplitudes of the individual frequency components can then
be calculated by

A(ξ) = |f̂(ξ)|. (3.3)

The change of basis function, from amplitude of positional coordinates A(x) to am-
plitude of frequency components A(ξ), is thus completed. In order to revert back
to the spatial representation of the image, an inverse Fourier transform can be per-
formed, reversing the change of basis function through a similar integral across the
entirety of the frequency domain³,

f(x) =

∞∫
−∞

f̂(ξ) · ei2πξxdξ. (3.4)

3.2.1 The Discrete Fourier transform

As this thesis concerns itself with discrete (sampled) functions in the form of digital
images, no more time will be spent on the continuous Fourier transform. From this
point on, the term “Fourier transform” will instead refer to its discrete version, the
DFT. The key difference in this transition is that the original function, that is the
signal being sampled, is now sampled over a finite domain at a certain frequency in a
total ofN sampling points. This means the original function of space is now expressed
in terms of sampled points, f(xn), where n = 0, 1, 2, 3, ..., N − 1 . Replacing the
integral from Eq. 3.2 with the discrete sum and expressing the equation in terms of
this sampling gives

f̂(k) =

N−1∑
n=0

f(xn) · e−i2π kn
N , k = 0, 1, 2, ..., N − 1 , (3.5)

where f̂ is now expressed as a function of wave number k. In other words, the original
signal f(xn) is broken down into frequency components corresponding to standing

³Omitting any normalization constants.

30



waves over the sampling space, where each frequency component completes exactly k
periods over the sampling domain (illustrated in Fig. 3.3 in the coming section). Ex-
panding this for a two-dimensional signal of space corresponding to a digital grayscale
image, with second dimension y sampled M times (m = 0, 1, 2, 3, ..., M−1), gives

f̂(kx, ky) =
M−1∑
m=0

N−1∑
n=0

f(xn, ym) · e−i2π
(

kxn
N

+
kym

M

)
(3.6)

kx = 0, 1, 2, . . . , N − 1

ky = 0, 1, 2, . . . ,M − 1.

Fig. 3.2 shows a digital image of a forest and its Fourier spectrum. k = 0, known
as the DC-component or 0-frequency (corresponding to an offset), is located in the
center of the Fourier spectrum⁴. Moving outward from this point, the frequency
increases towards the edges, approaching the highest frequency that can be uniquely
sampled by the sensor in a certain direction - the Nyquist frequency - which will be
the subject of the next segment.

Figure 3.2: A natural grayscale image (left) and the absolute value of its Fourier spectrum (right).

⁴This is due to using a shift-function, making the spectrum easier to interpret. The raw output of
the DFT is formatted as described by Eq. 3.6, in rising order of k
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3.2.2 Consequences of sampling

The Shannon-Nyquist theorem states that in order for a signal to be perfectly recon-
structed, it must be sampled at a frequency twice that of the signal’s highest frequency
component [89]. Thus, for a given sampling frequency fs, there exists a highest re-
solvable frequency called the Nyquist frequency,

fN =
fs
2
. (3.7)

From an imaging perspective, this means that the highest resolvable frequency in a
single image dimension of size N is one which completes k = N/2 periods over the
sampled space, corresponding to 2 pixels per period. For higher frequency compo-
nents, such that k > N/2, the sampling will be affected by frequency folding, where
a high frequency will instead appear as a lower one [90]. Fig. 3.3 demonstrates this
effect by showing the sampling at the Nyquist frequency and its two adjacent frequen-
cies, fN and fN±1. For fN+1, the resulting sampled signal is the same as for fN−1.
This phenomenon, where a higher frequency is masquerading as a lower one, is known
as aliasing. Following the same logic for all k = (N/2) + 1, (N/2) + 2, ..., N − 1
explains the symmetry of the absolute value of the Fourier spectrum in Fig. 3.2, as all
frequency components higher than fN are folded. Something worthy of notice here
is that the Nyquist frequency along the diagonal is higher than in both x and y, as
the diagonal utilizes sampling in both x and y.

Figure 3.3: Sampling of three spatial frequencies around the Nyquist frequency fN at a constant sampling
rate. Due to frequency folding, the sampled signal of fN−1 and fN+1 appear identical.
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As captured images are rarely band-limited, meaning sampled optical images most
often contain higher spatial frequencies than the Nyquist frequency of the sensor,
aliasing frequently appears in images. A common example of this is sharp edges, such
as those of a square wave, which in theory require an infinite combination of high
frequency-components to be perfectly sampled (assuming a perfect edge)⁵. A two-
dimensional square wave with fundamental frequency f1 = k1/2π, as well as its
Fourier spectrum can be seen in Fig. 3.4. As a square wave is composed of only odd
sine terms, the harmonics (integer frequency multiples of the fundamental frequency)
are located at [k3, k5, k7, ...]. Frequency folding causes components higher than fN ,
such as harmonics ≥ k5, to fold back into the Fourier domain as indicated by the
horizontal dashed line.

Figure 3.4: Image of a two-dimensional square wave (left) and the absolute value of its Fourier spectrum
(right). The frequency folding of the higher-order harmonics have been annotated in the Fourier
spectrum.

3.2.3 Natural images

As the name suggests, natural images are a subclass of images depicting real-world
scenes. Due to the structure of such scenes, natural images has certain characteris-
tic properties. Intensity levels across the image most often change gradually due to
a combination of natural lighting and continuous surfaces, resulting in spatial cor-
relation between many pixels. This results in a much sparser Fourier representation
while maintaining most of the information in the image, something which is utilized
in image compression [91]. Another property of natural images is scale invariance,
and the associated characteristic shape of their Fourier spectrum.

⁵More on this later in the chapter. For a visual example of the Fourier series of a square wave, see
Fig. 3.10.
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Statistically, natural images exhibit similar proportions of low frequency structure to
high frequency detail at different spatial scales [92]. This is the meaning of their
scale invariance - nature has no preferred spatial scale. Details and structures exist
in roughly the same proportion no matter the scale, as a sort of statistical fractal. A
consequence of this is that most of the information in an image is contained in the
lower frequencies, with higher frequencies containing less and less of the total energy
of the image. This statistical tendency shows up as a characteristic spectrum shape
in the form of a power law - the amplitude of the frequency components of natural
images scale approximately as 1/f [93]. This can be put in perspective by comparing
them to other image types. Fig. 3.5 shows the Fourier spectrum for a natural image
(a tree in my garden) exhibiting the characteristic 1/f -shape and an artificial image
depicting different shapes of varying intensity. The latter is an example of a scale
variant image - its Fourier spectrum changes drastically when zooming in or out of
the image, while the Fourier spectrum of the tree maintains the same approximate
1/f -structure regardless of zoom-level.

Figure 3.5: Comparison of a natural image and an artificial image at different spatial scales, and their re-
spective Fourier spectra. Left: A natural image (sampled intensities of a real scene), depicting the
greenery of a tree, at three different spatial scales (levels of zoom), along with the Fourier spec-
trum at each scale. Right: An artificial image (drawn digitally), at the same levels of zoom, along
with Fourier spectra for each scale. The images have identical resolution. Digital zooming results
in the resolution decreasing for each level of zoom.
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3.3 FRAME in a nutshell

By this point, it is time to introduce FRAME - Frequency Recognition Algorithm
for Multiple Exposures. As briefly mentioned at the end of Chapter 2, FRAME is an
imaging technique built around the concept of spatial frequency multiplexing, and
uses coded light to capture multiple individual exposures in the same camera image.
The result is an image data cube containing at least one extra dimension apart from
the two spatial dimensions, like the spectral data cube example seen in Chapter 2
where the extra dimension was the spectral axis. FRAME allows the encoding of
dimensions such as time, wavelength bands and states of polarization [79; 80; 84] in
a single camera image by trading the spatial bandwidth of the sensor [43].

As discussed in Section 3.2.3, natural images have sparse high-frequency bands. This
is the fundamental fact that FRAME utilizes by shifting images copies into differ-
ent regions of the empty “frequency real estate”. This is done by modulating their
intensities using spatial carrier frequencies, a technique known as frequency division
multiplexing (covered in the previous chapter). In this way, several exposures can be
captured and stored in the same camera image, overlapped in the spatial domain but
separated in the frequency domain. Fig. 2.7 in Chapter 2 demonstrated this - it is
hard to visually distinguish between them in the raw image captured by the camera,
but the information of each exposure is isolated in the frequency domain.

These sidebands each contain the information from an individual exposure, and by
isolating that information, the individual exposure can be extracted. In order to do
so, a technique known as frequency lock-in is used [86]. This removes the carrier
frequency and isolates the underlying intensities by shifting the carrier frequency to
the center of the Fourier spectrum and filtering around it. Fig. 3.6 shows a schematic
of the FRAME process - exposures representing different spectral bands are encoded,
leading to them being stored in different frequency bands of the Fourier spectrum of
the FRAME-multiplexed image. Through lock-in analysis, they can be extracted in
post.

The physical meaning of the extra dimension in the image data cube depends on what
parameter is encoded. By exposing a scene using temporally separated pulses, where
the light of each pulse has been encoded with a unique spatial frequency, a video can
be created from a single camera image, meaning the extra dimension is time. This is
an example of “active” FRAME-encoding, where the illumination source is encoded
and interacts with a scene. “Passive” FRAME-encoding instead encodes the light
emanating from a scene, by splitting it up according to the parameter of encoding.
This is how multispectral FRAME works - the light is split into optical channels where
the image of each spectral band of interest is encoded using a unique carrier frequency.
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Figure 3.6: The process of multispectral FRAME, divided into five steps. 1. A natural scene depicting peppers
on a table, whose Fourier spectrum is also shown (produced from a monochrome capture), is being
imaged by a monochrome camera. 2. Before the light reaches the camera, it is split into optical
channels and encoded with a unique intensity modulation in the form of a spatial frequency. All
channels are then overlapped and imaged simultaneously. 3. The raw camera image is captured,
exhibiting the modulation frequencies. Zooming in and comparing with the original scene, the
encoded spectral composition can be discerned. The white garlic contains patterns from all three
channels, while the red bell pepper almost exclusively contains one pattern. When analyzing the
Fourier spectrum of the image, the effect of the spatial modulation becomes evident - the informa-
tion in each spectral band has been shifted to a separate frequency band, called sidebands. 4. By
removing the carrier frequency through frequency lock-in and filtering around it, the information
in each sideband can be isolated. 5. Through combination, the scene can then be reconstructed in
color.
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3.4 The mathematics of FRAME

Modulating the intensity of an exposure I using a spatial frequency modulation pat-
tern m (with no phase-shift) can be expressed as

Imod(x, y) = I(x, y) ·m(x, y) = I(x, y) · 1
2
(1 + cos(2π(fxx+ fyy)), (3.8)

where fx and fy are the spatial frequencies in x and y. This creates copies of the
exposure in the frequency band around the carrier frequency, as all exposure frequen-
cies are now interacting with the carrier. In the frequency domain, with the Fourier
spectrum Ĩmod = F(Imod), the point-wise multiplication of Eq. 3.8 is equal to

Ĩmod(u, v) =
1

2
Ĩ(u, v)+

1

4
eiϕĨ(u−fx, v−fy)+

1

4
e−iϕĨ(u+fx, v+fy), (3.9)

where u and v are the coordinates in the frequency domain. In this expression, the
image copies at ±(fx, fy) are clearly visible, as well as their amplitude relative to
the original image information. By varying the carrier frequency, the exposures can
be “placed” anywhere in the Fourier spectrum of the camera image, ideally evenly
spread out in the sparse frequency bands. The final multiplexed camera image Imux,
containing N individual exposures indexed as [n = 1, 2, 3, ...], can then be expressed
as

Imux(x, y) =
N∑

n=1

In ·mn. (3.10)

Depending on what quantity is encoded, the exposures can either be incident on the
sensor overlapped in time, such as for snapshot applications, or spaced out in time
over the exposure time of the sensor, enabling temporal multiplexing. No matter
the capturing method, retrieving each individual exposure In is performed in the
same way - using spatial frequency lock-in. By multiplying the image by the complex
exponential of the negative carrier frequency,

I ′n(x, y) = Imux(x, y) · e−i2π(fx,nx+fy,ny) (3.11)

its Fourier spectrum is shifted and centered around the carrier frequency (fx,n, fy,n),
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Ĩ ′n(u, v) = Ĩmux(u, v) ∗ δ(u+ fx,n, v + fy,n), (3.12)

after which a truncation or digital low-pass filter can be applied to the Fourier domain
to isolate the individual exposure,

Ĩfiltered
n (u, v) = Ĩ ′n(u, v) · exp

−

[(
u

σu

)2

+

(
v

σv

)2
]N

 , (3.13)

where the exponential describes a super-Gaussian filter of order N with standard de-
viation [σu, σv]. This process is repeatable for each exposure In, starting from Eq.
3.11. Fig. 3.7 visualizes Eqs. 3.9-3.13 in frequency space, for an image containing two
multiplexed exposures.

Figure 3.7: An image is multiplexed using spatial carrier frequencies, creating sidebands containing the in-
formation of individual exposures. By multiplying with the complex exponential of the negative
carrier frequency, one of the carrier frequencies is shifted to the center. This allows for the isola-
tion of the frequency information around the carrier by low-pass filtering, and the recreation of
the extracted exposure through the use of an inverse Fourier transform.
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Final resolution of isolated exposures

When a digital low-pass filter such as a super-Gaussian with a given radius is used
to isolate an exposure, the spatial dimensions of the output will not reflect the actual
resolution of the exposure after extraction. As such an operation does not change the
dimension sizes, but only sets the amplitude of frequencies higher than the cut-off
value (radius) to 0, the resulting image after transforming back to the spatial domain
will be oversampled. The actual resolution of the image is given by the diameter
of the filter. This leads to artifacts, such as the effect I have come to call “bag of
worms”, seen in Fig. 3.8, where spatially uncorrelated noise is oversampled, inferring
a spatial pattern where there is none. On the other hand, the smoother gradients of the
oversampled image can often be beneficial when building a qualitative understanding
of the on-going process.

Figure 3.8: FRAME-exposure from shadowgraphy imaging of a spray injection, where the “bag of worms”-
effect is visible in the zoom-in of the left, oversampled image. For comparison, a downsampled
version of the same image is displayed on the right, which does not feature the artifact.

Instead of low-pass filtering the Fourier domain, it can instead be truncated (cropped)
around the new 0-frequency (after lock-in). This leads to the dimension sizes after
an inverse Fourier transform directly reflecting the actual spatial resolution. If the
truncation is performed in the same aspect ratio as the original image, the resolution of
the resulting image is downsampled equally in all dimensions, including the diagonal.

On a related note, filter/truncation shapes affect the final resolution of the extracted
exposures. Fig. 3.9 illustrates filter types of different shapes. A rectangular filter will
utilize the extra resolution resulting from

√
k2x + k2y , while circular filters discard this

diagonal resolution. However, a circular filter shape allows for a higher packing den-
sity in the Fourier domain, which is relevant if many exposures are to be multiplexed
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without interference between exposures. An extension of this is the hexagonal filter
shape, which results in the tightest packing ratio. Exposures can also be placed in the
Fourier domain to increase resolution in a certain dimension when combined with
an elliptical filter [94]. This increases resolution in the direction of the semi-major
axis of the ellipse, and was utilized by Kornienko et al. in 2024 to help increase the
temporal resolution of multiplexed exposures from a streak camera.

Figure 3.9: Different filter types and their benefits. A rectangular filter shape in the same ratio as the aspect
ratio of the image downsamples the resolution equally in all directions, but makes for a somewhat
unpractical shape when more than a few exposures are to be multiplexed. Circular and hexagonal
filters allow for a larger packing ratio and less overlap between filters, which is beneficial when
many exposures are to be multiplexed, but sacrifices resolution in certain directions. An elliptical
filter increases the spatial resolution of an extracted exposure in the direction of its semi-major
axis, which can be beneficial in special cases.

Cross-talk

Cross-talk in FRAME occurs when frequency bands of exposures overlap, and re-
sults in image information from one exposure showing up as stray frequencies in an-
other, and vice versa. Needless to say, this deteriorates the quality of the multiplexed
exposures, and is therefore best minimized. Separation of carrier frequencies, both
from each other and from the DC-component, is the first step in avoiding this, but
the problem is further increased by aliasing. Sharp edges in the image will lead to
“streaks” in the Fourier transform for each exposure, complicating the placement in
the Fourier domain. Vertical streaking of this type is visible in the Fourier spectrum
of Fig. 3.2, caused by the sharp contrast edges in the waves. Aliasing combined with
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the harmonics created from square wave modulation further complicates placement,
as image copies are folded and can quickly fill up the available frequency bands, as
seen in Fig. 3.4.

Modulation depth

As FRAME is a lock-in method, the signal strength of each multiplexed exposure is
dependent on modulation depth - the contrast in the modulation pattern, where a
perfect modulation depth modulates the signal with a factor varying between 0 and
1. Eq. 3.8 assumes such a perfect modulation depth, resulting in each created copy
containing a 16th of the original image power (squaring Eq. 3.9). This corresponds to
the theoretical maximum signal strength for an image modulated by a sinusoid. For
an imperfect modulation depth µ = [0, 1), Eq. 3.8 instead becomes

Imod(x, y) = I(x, y) ·
[
1

2
(1 + µ · cos (2π(fxx+ fyy)))

]
, (3.14)

or in frequency terms,

Ĩmod(u, v) =
1

2
Ĩ(u, v)+

µ

4
eiϕĨ(u−fx, v−fy)+

µ

4
e−iϕĨ(u+fx, v+fy). (3.15)

In other words, the signal strength of the image copy scales linearly with modulation
depth µ. Accounting for differences in modulation depth, both locally per exposure
and globally between exposures, is therefore essential in order to correctly replicate
the original image information of the exposure, especially in the context of intensity-
based quantitative measurements. The implications of this in an applied context will
be discussed in the next chapter.

Modulation shape

As previously stated, the maximum amplitude of each sideband modulated using a
sinusoid is 1/4 (Eq. 3.9). However, the efficiency of such a frequency shift can in fact
be increased by using a square wave modulation. Modulating an image using such a
waveform gives the expression
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Ĩmod(u, v) ≈
1

2
Ĩ(u, v) +

1

π
eiϕĨ(u− fx, v − fy) +

1

π
e−iϕĨ(u+ fx, v + fy)

(3.16)

+H.O.H.,

where H.O.H. are the higher-order harmonics. This is analogous to Eq. 3.9, but using
a square wave modulation instead of a sinusoid, which increases the amplitude of the
first sideband as 1/π > 1/4. The difference in amplitude of the frequency-shifted
image copies can be explained by considering the Fourier series of a square wave, seen
in Fig. 3.10. As previously mentioned, the Fourier series of a square wave is a series
of odd sine-functions. Of particular note, the fundamental frequency component
of the square wave has a larger amplitude than the square wave resulting from the
combination of all frequency components. Comparing this to a sinusoid carrier of
the same frequency and amplitude as the square wave, this results in the square wave
modulation shifting more of the image information into the first sideband around
the fundamental carrier frequency, in turn resulting in a potential signal increase of
∼27% (1/π compared to 1/4). However, the magnitude of this signal increase is
affected by the sampling, meaning that a 27% increase is the ideal case. The signal
increase also comes at the price of the aforementioned harmonics potentially filling
up the Fourier domain and overlapping with the image frequency band around the
fundamental carrier frequencies.

Figure 3.10: The first five terms of the Fourier series of a square wave. The fundamental frequency compo-
nent (blue) has an amplitude exceeding that of the ideal square wave (black). As more terms are
included, the reconstructed wave (magenta) will approach the ideal square wave.
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Chapter 4

Experimental aspects of
multispectral FRAME

“Theory and practice are the same in theory, but not in practice.”

- Scientific adage of unclear origin

This chapter discusses the practical implementation of FRAME - how to optically
encode the image information, how to calibrate for effects introduced by the encod-
ing, and some general insights resulting from experience - with a strong focus on the
aspects of multispectral encoding.

4.1 Camera considerations

The first and most fundamental thing you are going to need for encoding images is,
surprise, a camera. FRAME works with practically any camera - there is no limiting
factor in sensor technology or similar, other than that the sensor needs to be a focal
plane array as FRAME relies on optical encoding of the image and subsequent digital
processing. That being said, FRAME benefits more from some sensor properties than
others, due to the nature of spatial frequency encoding. Building on the discussions
of the previous chapter, the following interactions between sensor parameters and
FRAME are worth mentioning:
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Pixel resolution

A higher digital resolution (large amount of pixels) of the sensor corresponds to a
higher sampling frequency, which in turn means higher spatial frequencies can be
resolved. As FRAME trades spatial resolution for the ability to multiplex exposures,
it is beneficial for the raw image to be as well-resolved as possible, as that means that
the extracted exposures are also more well-resolved.

Intensity resolution and dynamic range

The intensity resolution is also an important factor - how many levels of brightness an
individual pixel can resolve, corresponding to bit-depth in the digital representation.
Saturating a sensor means information loss, as the relative intensities of the image are
no longer comparable. As all exposures in FRAME are overlayed onto each other,
covering the entire sensor, they also have to share the available intensity resolution.
For this reason, the same argument applies as for pixel resolution - the higher the
intensity resolution of the raw image, the higher the resolution for each exposure.

Dynamic range is a more specific formulation of the same idea, taking image noise
into account, and is defined as the ratio between the highest and lowest measurable
level of signal. This makes it not only a function of the sensor, but also the imaging
conditions, as these also affect the noise level in an image. However, different sensors
have varying levels of intrinsic noise, making it worthwhile to mention the difference
between intensity resolution and dynamic range. After all, if noise absorbs half of
your intensity resolution (extremely unlikely case for illustration purposes), you are
not going to get anything out of the lower half. Dynamic range reflects this, while
intensity resolution does not.

Read-out speed and frame-rate

FRAME multiplexing is not dependent on read-out speed as it is not a temporally
scanning method. It puts no “extra strain” on the frame-rate of the camera, which
therefore only needs to be adapted to remove motion blur in the scene. In fact, as will
be discussed in Chapter 5, FRAME can be used to encode exposures in time by using
pulses of structured light, increasing the possible frame-rate of a sequence capture.
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Read-out noise

As the electronic noise introduced during read-out is spatially uncorrelated, it spreads
out evenly in the Fourier spectrum of the captured image (equally over all frequency
bands). Thus, this type of noise cannot be filtered out by shifting information into
higher frequency bands, and therefore affect the dynamic range of the extracted ex-
posures. For this reason, reducing sources of particularly high-frequency noise such
as read-out noise is a bonus, but is not a primary factor compared to the other more
important parameters mentioned. The effect of white noise on the intensity modula-
tion can be seen in Fig. 4.1. As covered in Section 3.4, this reduction in modulation
depth will decrease the signal of the extracted exposure.

Figure 4.1: Two images featuring different levels of noise. The low noise image maintains good contrast in
the modulation pattern, increasing the signal of the carried exposure.

4.2 Optical designs for multispectral encoding

In order to optically encode the light emanating from a scene¹, an optical setup is
placed as an intermediate imaging system between the scene and the camera. The
purpose of the optical setup is to perform the following actions in sequence (steps 2
and 3 are interchangeable in order):

¹Known as “passive” FRAME, as discussed in the previous chapter.
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1. Split the light into optical channels, creating an image of the scene in each using
a relay lens.

2. Manipulate the light in the manner that the encoding should reflect - for ex-
ample, if the goal is multiplexing of spectral channels, this step would be to
spectrally filter the light.

3. Impart a unique spatial frequency onto the image in each channel. This is what
enables the separation in the frequency domain in post-processing - a sort of
fingerprint which identifies the information from each channel.

4. Recombine (spatially overlap) the channels, creating an image on the sensor
of the intermediate image planes in each channel. These images are spatially
overlapped on the sensor, but will be separable due to their unique encoding.

Fig. 4.2 shows a schematic of a setup for spectral multiplexing, with the above steps
annotated in a single channel to indicate the optical component performing the ac-
tion. The Ronchi rulings used to impart the intensity modulation are low-frequency
transmission gratings - binary square wave masks which extinguish half of the image
in a periodically shadowing pattern. This design was used for spectral encoding in
Paper V, but has also been used to encode other parameters such as polarization and
different focus-depths [79].

Figure 4.2: Optical setup for spectral multiplexing utilizing cubic beamsplitters. The numbers in gray indicate
the component associated with each step in the list of actions needed for spectral encoding. The
cubic beamsplitters both split and recombine the optical channels. In between these two actions,
the light is spectrally filtered and modulated using a Ronchi ruling.
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The setup shown in Fig. 4.2 is versatile with regards to encoding different parameters -
replacing the spectral filters with polarizers enables the imaging of different directions
of linear polarization, and when performing spectral multiplexing, filters can easily
be exchanged to change the spectral properties of a channel without having to realign
the system. However, it also discards a large amount of the intensity collected from
the scene for two different reasons:

1. The light is split independently of the encoding parameter, meaning a large por-
tion of the light is discarded in the subsequent filtering. Using the example of
spectral encoding, the light first entering each channel is broadband, meaning
a lot of intensity is discarded by the spectral filtering.

2. The recombination of light is done using cubic 50-50 beamsplitters, which
transmit 50% of the incoming intensity in each direction - straight through
and reflected. This causes intensity losses for each recombination, as light is
transmitted out of the system.

Assuming perfect spectral filters, with 100% transmission in the desired band and 0%
outside of it, these two effects each cause 75% of the inbound intensity to be discarded,
resulting in only 6.25% of the intensity entering the optical multiplexing setup to be
transmitted to the camera².

To address this issue, I have been developing a more light-efficient optical setup specif-
ically for the multispectral encoding, which can be seen in Fig. 4.3. This alternative
setup increases light-efficiency (the proportion of intensity collected by the optical
multiplexing setup that is transmitted to the camera) by using dichroic beamsplitters
to split the light into optical channels. These optical components split light based on
wavelength, combining step 2 in the list of actions with steps 1 and 4. This avoids both
causes of discarded light from the setup in Fig. 4.2, and also allows for the number of
channels to be changed freely by adding or removing a set of dichroics. In the cubic
beamsplitter setup of Fig. 4.2 this is not as easy, as the number of channels have to be
increased or decreased by a factor of two, assuming equal intensity distribution in all
channels. However, this more light-efficient setup cannot be modified to multiplex
different states of polarization at the same spectral band, and changing spectral bands
often involve re-aligning the setup.

²This is assuming 4 channels, as in Fig. 4.2.
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Figure 4.3: Optical setup for spectral multiplexing utilizing dichroic beamsplitters. Just as for Fig. 4.2, the
numbers in gray indicate the component associated with each step in the list of actions needed
for spectral encoding. The dichroic beamsplitters split the light on the criterion of wavelength,
meaning that they combine step 2 with 1 and 4. This significantly decreases the amount of light
discarded.

4.3 Alignment of a multi-channel optical setup with multiple
intermediate image planes

The optical setup displayed in Fig. 4.3 is the design I have worked with for the majority
part of my research, and therefore the one I have come to know the best. This section
will discuss the alignment of this optical setup. In order to do so, a definition of “good
alignment” must first be established, which will be listed below. The system is aligned
when the following criteria are met:

1. Each intermediate image plane is in focus on the camera sensor, creating a
focused image of the scene on the sensor (alignment along the optical axis).

2. The intermediate images are spatially overlapped on the sensor (alignment per-
pendicular to the optical axis).

3. The Ronchi rulings used to impart the intensity modulation in each channel is
located in the intermediate image plane.
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The complexity of aligning this setup springs from one primary factor - the diagonal
symmetry of the setup. In order for the first alignment condition to be fulfilled,
the optical path length (OPL) from the camera to each intermediate image must be
(approximately³) equal. As a consequence of this, the OPL from each intermediate
image to the scene must also be equal, in order for all intermediate images to be in
focus in the camera. Combining this with the spectral properties of dichroics requires
the optical setup to be arranged in the diagonally symmetric way displayed in Fig. 4.3.
Each component in such an optical system has many degrees of freedom, and may
affect more than just one channel.

4.3.1 Positional alignment

Each optical component in Fig. 4.3 has degrees of freedom in the form of position
and angle. The first step in tackling the problem of aligning such a setup is to limit
these - fixing some of them in their approximately correct position and/or angle. I
solved this problem by first simulating the optical path of each channel in the system,
finding the theoretically correct position of each component assuming the optical
path reflected at right angles. Using this simulated path, I 3D-printed templates for
the layout of the optical components and incorporated precision mounts for the angle
alignment of the dichroic beamsplitters and mirrors. In this way, the positions of the
optics are fixed in the correct position, as well as roughly the correct angle, before the
manual alignment process has even begun. 3D-printing templates for optical setups
has been a game-changing tool for my research group, and has enabled very compact
multiplexing solutions to be made in a printable format [95].

4.3.2 Alignment along the optical axis

As mentioned, the diagonal symmetry of the setup is a result of the equal OPL-
requirements for each channel, which is a requirement for the second alignment con-
dition to be fulfilled. However, due to a couple of effects the intermediate image
planes do not fall on a perfect diagonal in practice, meaning the positions of the
Ronchi rulings are better kept free along the optical axis and not locked using the
3D-printed template. Firstly, chromatic aberration will affect the distance at which
the image in each channel is focused. This can be countered by introducing an iris to
the relay lens and increasing the numerical aperture, increasing the depth-of-field at
the cost of intensity, so that all channels are in focus despite the difference in optical
path length. If the effect is small, it can also be countered by introducing pieces of
transparent glass into individual channels, changing the optical path length of each

³There is some margin of error here due to the depth-of-field.
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individually. This second approach is overall less effective and much more labor in-
tensive, but has the advantage of not affecting the intensity levels of all channels col-
lectively. Secondly, the light passing through channels located further away from the
scene will be transmitted through more glass (transmission through other dichroics)
before reaching the intermediate image plane. This equates to the physical distance
along the optical path from the intermediate image plane to the first lens being shorter,
resulting in a “stretch” of the diagonal out towards the dichroics. The magnitude of
this effect depends on the number of channels and thickness of the dichroics. How-
ever, this second effect is at least partially compensated for in the next imaging stage
per the very symmetry of the setup, as channels further from the scene now have less
glass to travel through than channels closer to the scene. Given that the magnitude of
these two effects are hard to predict, the position of the Ronchi rulings are best kept
variable, and not locked by the 3D-printed template.

4.3.3 Alignment perpendicular to the optical axis

The second type of alignment is lateral alignment (perpendicular to the optical axis),
which is required for both conditions 1 and 2 to be satisfied. In the case of the first
condition, the optical path length of each channel is (of course) affected by the angles
at which the rays are reflected, which in turn affects the intermediate image planes po-
sition and rotation. Therefore, the ideal alignment is for all channels to be reflected at
right angles. When this is achieved for each channel, the second alignment condition,
the alignment of the object plane between channels, will also be fulfilled.

To achieve such a right angle alignment, assuming only an angle dependency after
having locked the position of the reflecting elements, I have been using a far-/near-
field approach. This approach is similar to beam walking when aligning a laser system,
adjusting the angles of the two dichroics of each channel, only this involves using two
reference points and switching between imaging each of them (using a camera lens as
the second lens in Fig. 4.3). The two reference points used are the object plane and
an iris adjacent to the relay lens, and when these converge on the sensor, that optical
channel is aligned. Fig. 4.4 shows these two reference planes, where spatial alignment
is good in the object plane, but not in the iris plane, showing that the three channels
have differing optical paths.

In this alignment procedure, one of the channels is established as the reference, to
which all other channels are aligned. This also means that any errors in alignment
of the reference channel will be inherited by the other channels, meaning that the
reference channel must first be aligned. Here, the 3D-printed templates play a crucial
role, as they lock the relative positions of optical components, ensuring that both
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reference planes align with the first mirror⁴ of the reference channel. By following the
optical path of the reference channel through the system, the reference channel can
be aligned at right angles.

As mentioned, the iterative far-/near-field alignment is done per channel by adjusting
the angle of the two dichroics associated with each channel. However, the diagonal
symmetry of the setup introduces complexity in the form of a channel-dependency to
this process, as the distance from the sensor to the first and second reflecting element
(dichroic beamsplitter/mirror, hereafter both referred to as “mirrors”) of each chan-
nel varies. Both mirrors affect the position in both reference planes, but to varying
degrees, which means convergence is a matter of associating the right optical element
to the right reference plane.

Figure 4.4: Example showing how the optical setup can be misaligned despite image overlap in the object
plane. All three channels spatially overlap in the object plane. However, the non-overlapping
images in the iris plane show that the optical channels have different beam paths and thus different
optical path lengths, as seen in the overview of the optical setup. This can lead to a difference in
focus in the object plane.

⁴First and second element are counted in the direction of propagation, meaning the first reflecting
element is located closest to the scene, while the second is located closest to the sensor.
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To illustrate how this affects the alignment process in practice, Fig. 4.5 provides a
step-by-step overview of the alignment of the two extreme channels in a simplified
dichroic optical setup (3 channels). In this example, the middle channel is used as
reference. Beginning with Channel 1, the intermediate image plane is located close to
the second mirror, meaning the resulting image translation from an angle-shift is low
compared to the first mirror which is located far from the intermediate image plane.
At the same time, the first mirror is closer to the iris, while the second mirror is far
from it, resulting in the opposite angle-dependency. The “sum of the cardamom”⁵ is
that controlling the first mirror when aligning the object plane and the second when
aligning the iris will lead to convergence. The blue inset illustrates this, showing
the two reference planes for the first channel. At the starting point, both planes are
misaligned, but after aligning the image plane using the first mirror, alignment is
achieved in the image plane. This action also affects the alignment in the iris plane,
but further alignment in this plane is still needed. This is done by adjusting the second
mirror, which affect the alignment in the object plane, but with an important caveat
- the translation is smaller than before the last step. By iterating between aligning
the object plane and the iris in this fashion, simultaneous alignment in both planes is
eventually achieved.

Following the same logic for Channel 3, we can deduce that the plane-to-mirror con-
nection is now the opposite. Due to the diagonal symmetry of the setup, the interme-
diate image plane is now farther from mirror 2 than mirror 1, meaning the resulting
translation in the object plane of moving mirror 1 is very small. Both mirrors have a
big impact on the translation in the iris plane, but the big difference between angu-
lar translation in the image plane dominates. This results in the second mirror now
being used to align the image plane, while the first mirror aligns the iris. In this way,
convergence and simultaneous alignment in both reference planes is achieved in this
channel as well.

⁵This is a Swedish idiom, roughly translating to “the conclusion”.
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Figure 4.5: Alignment procedure of the dichroic setup. For the first channel (1), with the intermediate image
plane located close to the second mirror, the first mirror (dichroic) is used to align in the object
plane, and the second at the iris. By iterating between the two, convergence is achieved where
both reference planes are simultaneously aligned. For the last channel (3), the mirror-to-plane
association is reversed due to the diagonal symmetry of the setup. The middle channel (2) is used
as a reference while aligning.
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4.3.4 Intensity modulation alignment and flat-field correction

The last alignment condition involves placing a Ronchi ruling in the intermediate
image plane of each channel, in order to impart a spatial frequency modulation. In my
experience, this is easiest done by creating an image of the intermediate image plane
on the sensor and manually move the Ronchi ruling back and forth along the optical
axis, maximizing the modulation depth. As shown in Section 3.4, the signal strength
of a multiplexed exposure scales linearly with its modulation depth. Different types
of misalignment and their effect on the extracted signal can be seen in Fig. 4.6. Four
cases are shown, demonstrating the effect the modulation depth has on the extracted
signal.

Figure 4.6: Four cases of Ronchi ruling alignment, demonstrating the effect of modulation depth on extracted
signal. Case 1 shows a well-aligned grating, leading to uniform and high signal after lock-in. Case
2 and 3 show a grating which is placed out of focus, decreasing the overall modulation depth and
therefore the signal after lock-in. Case 4 shows a tilted grating, where half of the grating is in
focus, and the other half not, leading to significant local differences in the extracted signal over
the field of view.

As modulation depth varies both between exposures (channel-wise, analogous to com-
paring cases in Fig. 4.6) and locally within an individual exposure (within a single
channel, most clearly displayed in Case 4), this variation needs to be calibrated for in
order for intensities to be directly comparable. This is done using a flat-field correc-
tion - imaging a surface of constant brightness, first through each individual channel
with no modulation (one image per channel), and second with a multiplexed exposure
through all channels (one image per channel after extracting each multiplexed expo-
sure). Taking the channel-wise ratio of the pairs of images produces a two-dimensional
multiplicative calibration-matrix for each channel, compensating for the effects of the
modulation depth both locally and between channels.

An experimental aspect to be aware of when designing the setup is to ensure the imag-
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ing of the Ronchi ruling is as free from aberration effects as possible. Effects such as
field curvature and radial distortion will change the modulation in different ways, af-
fecting the ability to extract an accurate exposure of the scene. Field curvature will
cause parts of the modulation pattern to be out of focus, as the focus plane will be-
come warped. Radial distortion causes local changes in the modulation frequency in
both direction and magnitude. Thus, the carrier frequency varies within the exposure,
spreading the information out in the Fourier spectrum, leading to an inaccurate re-
construction of the scene. For these reasons, using for example a thick lens or a large
optical magnification in this imaging stage is best avoided.

The square wave nature of Ronchi rulings

Ronchi rulings are square wave binary patterns which periodically shadow the image
in the intermediate image plane, imparting the spatial carrier frequency needed to
separate the exposure in post. Drawing from the discussions in the Section 3.2.2, this
also means additional image copies are created in the Fourier spectrum of the image,
as seen in Fig. 3.4. However, Fig. 3.4 is a perfectly sampled square wave (simulation).
In practice, optical resolution, imperfect focus and other sampling effects can actually
help to soften the edges of the square wave, leading to this effect not being nearly
as pronounced. To avoid the effect entirely, sinusoidal patterns can be used to mask
the image instead, but these are harder to manufacture and therefore more expensive.
As long as the folded frequencies of the image copies can be avoided, Ronchi rulings
work well to modulate exposures. Using square wave modulation can even result in
stronger signal of the multiplexed exposure due to the effect described in Section 3.4.

Choosing magnitude and direction of carrier frequencies - Placement in the fre-
quency domain

The separation between carrier frequencies in the frequency domain indirectly affects
the final resolution of the extracted exposures, as higher image frequencies can be
included without the filtering overlapping for different exposures. Fig. 4.7 illustrates
this relationship. Extracting images of as high quality as possible therefore comes
down to carrier frequency placement in the frequency domain, which is determined
by the rotational directions and magnitudes of the Ronchi rulings.
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Figure 4.7: Carrier frequency placement in the Fourier spectrum of a natural image. Left: The optimal distribu-
tion of angles in the case of few exposures (≲10) is equally over a 180◦ span. This maximizes the fil-
ter radius possible. Right: Four cases of frequency magnitude are shown. At the Nyquist frequency
(top left), the image frequencies surrounding the carrier frequency are affected by frequency fold-
ing. On the other hand, if carrier frequencies are placed too close to the DC-component, cross-talk
will occur between the two (bottom right). The optimal placement is somewhere in between (in
this case around 3 pixels/line-pair, top right), where the radius of the filter can be maximized with-
out being affected by cross-talk or frequency folding (this is assuming the optical resolution is not
limiting the system). As a rule of thumb, 4 pixels/line-pair is a good starting point (bottom left).

Maximizing the separation between carrier frequencies is a product of both direc-
tion and magnitude of each frequency. In the case of multispectral FRAME, which
uses Ronchi rulings that are manufactured in set densities such as 5, 10, or 20 line-
pairs/mm, most of the freedom when it comes to the “placement” in the frequency
domain comes in the form of frequency direction. This works well, as multispectral
FRAME does not multiplex enough exposures to make the use of different frequency
magnitudes necessary [96]. The placement of the carrier frequencies in relation to
each other is therefore fairly straight-forward from an experimental perspective - us-
ing Ronchi rulings of the same magnitude, and evenly distributing their rotations over
a 180◦ span, as illustrated in Fig. 4.7. In order to control this distribution of angles in
the Fourier spectrum of the image, I have designed and 3D-printed custom holders
for the rulings, with unique rotation angles for each holder. Examples of these can be
seen in Fig. 4.8, implemented in the optical setup. These ensure even separation of
the carrier frequencies in the Fourier spectrum by means of direction.
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Figure 4.8: 3D-printed holders allow for accurate control of the rotation angles of the imparted carrier fre-
quencies.

As mentioned, the magnitude of Ronchi rulings come in set intervals, meaning fine-
tuning of this parameter is not possible. Therefore, in experimental practice it is a
matter of choosing the best option available. This decision is weighed by balancing
frequency band isolation from the image frequencies surrounding the DC-component
(non-modulated image information) with distance from the Nyquist frequency or, in
the case of a diffraction-limited image, the optical resolution-limit. The “optimal”
placement of the carrier frequency in terms of Fourier spectrum coordinates is there-
fore right between the (somewhat arbitrary) frequency band edge of the DC-image⁶
and the highest resolvable frequency (limited either by the sampling or the optical
resolution). As a rule of thumb in the lab, I aim at a ruling density which is sampled
at a frequency close to 4 pixels/line-pair. This isolates the multiplexed exposure from
most of the frequency information around the DC-component, while still being re-
solvable in the majority of cases. Fig. 4.7 shows these two cases of carrier frequency
placement in the Fourier spectrum of an image, as well as a pour placement too close
to the DC-component and placement at the Nyquist frequency.

⁶Where this edge lies is a matter of the acceptable level of cross-talk between the sidebands and the
mainband. For an excellent discussion on this balance between specificity (the isolation of signals) and
spatial resolution of the extracted exposures, I recommend the thesis of Vassily Kornienko [97].
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Chapter 5

Applications and results

“It is better to be vaguely right than exactly wrong.”

- Carveth Read

5.1 Temperature imaging

Temperature imaging, where temperatures are mapped to a two-dimensional spatial
distribution, has applications within military, medicine, agriculture and industry [98].
Depending on the temperature range of interest, different parts of the spectrum are
targeted. For almost all temperatures with a practical application, the bulk of the ther-
mal radiation is emitted in the infra-red (IR) region of the electromagnetic spectrum,
but for very high temperatures it becomes increasingly beneficial to instead move to-
wards imaging in the visible region. The imaging discussed in this section focuses on
such high temperature applications, where the lower end of measurable temperatures
are ∼2000 K, making imaging in the visible region a viable solution.

5.1.1 Pyrometry

According to Planck’s radiation law, the spectral radiance Bλ(λ, T ) of a black-body
can be expressed as

Bλ(λ, T ) = ϵ · 2hc
2

λ5

1

ehc/(λkBT ) − 1
, (5.1)
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where ϵ is the emissivity, λ is the wavelength of light, T is the temperature of the
blackbody, h is Planck’s constant, c is the speed of causality, and kB is the Boltz-
mann constant. A consequence of this expression is that the shape of the spectrum,
disregarding absolute intensity values, is uniquely determined by the temperature T
of the object, with the peak wavelength of the spectrum being shifted according to
Wien’s displacement law,

λpeak =
b

T
, (5.2)

where b ≈ 2.9 · 10−3 [m · K] is Wien’s displacement constant. As such, the tem-
perature of a black-body radiator can be determined by fitting measured intensities
to Eq. 5.1. This non-intrusive measurement technique is called pyrometry. A perfect
black-body radiator has an emissivity of ϵ = 1, while for an imperfect black-body
radiator, called a gray-body, the emissivity takes on a constant value ϵ = [0, 1), af-
fecting only the absolute radiance of the object. Emissivity may also vary as a function
of both wavelength and temperature, which affects the spectrum shape, making it an
important factor in any calibration procedure.

As pyrometry uses intensities at different wavelengths, spectral imaging can be used
to create a two-dimensional spatial mapping of the temperature of an object. In the-
ory, measuring the absolute radiance at a single, well-defined wavelength (provided
enough signal) is enough for a unique solution for the temperature. However, this
approach requires rigorous calibration, including emissivity and transmissions of op-
tics, as it relies on absolute values. This makes it less suitable for imaging applica-
tions, which involve many components, each with their own spectral transmissions
and responses, resulting in large uncertainties. Two-color pyrometry instead uses the
proportional radiance at any two wavelengths (provided enough signal), and allows
temperature estimation based on relative values. This is commonly done by defining
a ratio, hence the alternative name “ratio pyrometry”. Two-color pyrometry is better
suited for imaging applications as it does not use absolute values, but requires a com-
bination of good signal and that the ratio as a function of temperature is steep enough
over the entire temperature range of interest. An extension of two-color pyrometry is
multi-wavelength pyrometry (sampling more than two wavelengths), increasing the
number of spectral sample points. In theory, this means that temperature can be esti-
mated over a larger range, and also allows for an estimation of the emissivity function
if its behavior is known.
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5.1.2 Temperature imaging using multispectral FRAME

Papers I and II utilize a multi-wavelength analysis approach for temperature imaging
that I have developed for the contiguous and wide spectral bands imaged using the
type of dichroic multispectral FRAME setup described in Chapter 4. Each pixel in
the resulting multispectral image is a spectral signature, consisting of the integrated
intensity transmitted through the system for each spectral band (hereafter referred to
as a spectral response vector). If a black-body radiator is imaged, these relative in-
tensities represent distorted black-body spectra, modified by the intermediate optical
system and spectral response of the camera.

An explanation of the calibration process used to compensate for these distortions
can be seen in Fig. 5.1. By simulating the spectral response of each channel through
the imaging system (including the spectral response of the camera) for a range of
temperatures and integrating the intensity, the “integrated spectral response vectors”
are calculated. The elements of these vectors can be seen plotted as a function of
temperature, creating spectral response curves for the three channels. Using a series
of calibration images taken of a blackbody emulator through the imaging system, the
simulated curves are then corrected for any effects not accounted for in the simulation.

In order to map the relative intensities of the multispectral image to a temperature,
a pixel-wise comparison is done. To quantify the similarities between the spectral
response vector of a pixel s and each temperature reference vector rT, the cosine
similarity

SC(s, rT) =
s · rT

||s|| ||rT||
, (5.3)

is used. This metric compares the direction of the two vectors inN -dimensional space
(N being the number of channels in the multispectral image), and ranges between 0
and 1, where 1 is a perfect match in direction, and 0 is an orthogonal vector. This is
analogous to comparing the relative contributions of each element, disregarding the
length of the spectral vector (absolute values of the intensities).

The relatively wide spectral bands used in this approach yields a better signal-to-noise
ratio compared to narrow-band pyrometry. However, this comes at the cost of spec-
tral specificity, requiring more rigorous calibration and analysis. It also puts more
emphasis on the choice of cut-off wavelengths between channels (spectral band divi-
sion) as the wider spectral bands can make the technique less sensitive to temperature
(as in, spectral response vectors differ less between temperatures).
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Figure 5.1: Schematic describing the calibration required for pyrometry using the spectral multiplexing setup.
Starting at the top-left, the spectral response of the system is simulated for a tungsten blackbody
at 3000 K, and the response in each spectral channel is integrated to create an integrated spectral
response vector (normalized to a length of 1). Repeating this for a range of temperatures and
plotting the values of the response vectors as a function of temperature yields simulated spectral
response curves for blackbodies of different temperatures. To compensate for any factors not in-
cluded in the simulation, the spectral response curves are corrected by being fitted to 8 measured
responses using an affine transformation (while also compensating for the emissivity of tungsten).
This gives the final spectral response curves used to calculate the temperature image. The tem-
perature of a pixel in an image is then calculated by comparing the relative angle between the
integrated spectral vector of the pixel and each reference vector. Figure adapted from Paper II.

5.1.3 Result: Temperature imaging of propane flame using multispectral
FRAME (Paper I)

Paper I features the first proof-of-concept for this type of analysis with multispectral
FRAME, demonstrating that accurate temperature imaging is possible using mul-
tispectral FRAME, given the right circumstances. The setup consists of four spec-
tral channels in the visible range of the electromagnetic spectrum, with cut-off wave-
lengths at approximately 490 nm, 550 nm and 650 nm. Fig. 5.2 shows a figure taken
from said article demonstrating the pyrometry approach, where the temperature of
the soot in a soot-rich diffusion flame is estimated. Inset (b) in the figure also shows
a plot of estimated temperatures of the same black-body emulator used to for calibra-
tion, excluding the temperature at which the setup is calibrated.

The main take-away from this result is, in my opinion, the right-hand side plot. It
shows that given an appropriate calibration source, the experimental methodology
and analysis developed for temperature imaging using multispectral FRAME works
well, with errors as small as 50 K more than 500 K from the calibration point. As for
the choice of imaging target, it was not optimal for a first try - imaging the temperature

62



of a sooty diffusion flame produced using a Bunsen burner is a challenge, albeit a
relevant object of study. First of all, the transparency of the flame means line-of-sight
affects the measured spectral intensities, as intensities are integrated along the optical
axis. I attempted to compensate for this by performing an Abel transform [99], but
due to the asymmetry of the diffusion flame this did not yield any convincing results.
Secondly, other sources of emission, such as chemiluminescence, are present in the
flame. In order to account for this, a minimum threshold value was set for the cosine
similarity to exclude points in the flame not dominated by thermal radiation, but a
better alternative to this would have been to try to filter out the effected bands during
image capture. That being said, the average temperature over the entire flame is 2170
K, which is good considering the sources of error. For reference, the approximate
temperature of a stoichiometric propane-air flame using a Bunsen burner is 2220 K
[100], while the temperature of a flame of the type imaged in Paper I is likely a few
hundred K lower.

Figure 5.2: Temperature imaging of soot-rich diffusion propane flame, using spectral multiplexing. (a) Each
pixel of the extracted multispectral image is compared to a reference library of spectral response
curves. By calculating the smallest angle between the measured and reference spectral vectors,
the closest match for a temperature is established. In effect, this corresponds to fitting the value
of the integrated spectral response in a pixel to simulated blackbody curves (gray inset, left-hand
side). The holes in the temperature mapping are due to insufficient confidence. (b) The method
was validated by measuring the temperature of a blackbody emulator lamp capable of a range
of temperatures. The system was calibrated at 3300 K and subsequently used to measure at lower
temperatures. Despite the large difference (550 K) between calibrationmeasurement temperature,
the method gives accurate results (at most ∼ 50 K difference). Figure adapted from Paper I.
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5.1.4 Result: Temperature imaging of Al-particle combustion using multi-
spectral FRAME (Paper II)

For my second attempt at temperature imaging, the same type of multispectral setup
is used, but this time using only three channels (cut-off wavelengths at 550 nm and 650
nm). The motivation behind this paper is to monitor the temperature distribution of
burning aluminium (Al) particles as a function of time. As aluminium is a promising
fossil-free fuel alternative [101], understanding its combustion process is essential to
fully utilize its potential in such applications. The multispectral setup was used in
combination with a high capture-rate camera capable of capturing at 50 kHz with a
digital image resolution of 1280x896. A field-of-view of approximately 6x4 mm2 was
imaged in the object plane, magnified in two stages (using both the relay lens and the
second lens in Fig. 4.2).

Fig. 5.3, taken from Paper II, shows the first 1-10 ms of the combustion process (from
time of ignition) of an Al-droplet with a diameter of roughly 550 μm. The droplet is
created by placing an Al-wire into a flame, which subsequently burns off (around 3
ms), temporarily suspending the droplet in the flow of the flame until it is eventually
transported out of view (typically after 20+ ms). A droplet of this size typically reaches
a somewhat stable temperature after around 19 ms [102], meaning the temperature is
steadily increasing for the duration of Fig. 5.3. A histogram of the temperatures vis-
ible are also shown above each snapshot, showing how the temperature distribution
gradually shifts towards higher temperatures with time. The temperatures were calcu-
lated using the same analysis pipeline as for Paper I, with the difference that a set of
8 calibration images spanning a temperature range between 2660 K and 3200 K were
used to correct the simulated response curves, instead of the previous 1.

Analyzing the resulting temperature mapping, a few things stand out. Firstly, there
seem to be a thin region of very high temperature around the droplet, even when sur-
rounding temperatures are very low. This may not accurately reflect temperature, and
is most likely caused by de-focusing in one of the spectral channels due to chromatic
effects, which throws off the spectral signature in these regions. Similarly to Paper I,
a minimum threshold value for the cosine similarity is used to exclude spectral signa-
tures not resembling thermal radiation, but some non-physical values can still persist
if they maintain spectral resemblance to thermal radiation. Secondly, as the main
droplet burns it pushes more material out into the surrounding reaction zone, creat-
ing two zones with very different temperatures. The pushed out nanometer-sized par-
ticles have a much higher temperature, and are partially obscuring the droplet. Their
emissivity also varies greatly with both temperature and wavelength [102], introduc-
ing uncertainties in temperature values as the image captures the combined spectral
signature of both different temperatures and emissivities along its line-of-sight. This
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is also likely the reason for the very high temperatures in the later part of the sequence,
as the nano-particles are accumulating in the reaction zone.

The first thing that needs establishing before looking at the validity of the results is
that very few comparable studies have been done. The setup used to generate the
particles is, as far as I have understood it, one-of-a-kind when it comes to enabling
repeatable experimental scenarios, and the many degrees-of-freedom in such an ex-
periment makes comparisons with other similar studies difficult¹. For this reason,
we have to use either known temperature references or previous studies done under
the same conditions in order to evaluate the results. With this in mind, as the outer
most layer of the Al-wire is a coating of Al2O3, its melting point of 2327 K [103] can
be used a reference point for the boundary region between Al starting to undergo
combustion (1 ms in Fig. 5.3, light blue) and the rest of the wire (dark blue). This
indicates that the temperatures measured in this temperature range are accurate, with
calculated temperatures in the boundary region ranging between 2300-2500 K.

Secondly, the whole sequence can be compared to previous studies done using the
same Al-combustion setup in combination with a filter array multispectral camera
[102], showing good agreement in general, but in particular regarding the tempera-
ture of the main particle. To summarize, the results of Fig. 5.3 seem to agree well
with the few comparable references we have, indicating that the method has managed
to overcome the difficult conditions of the measurement (550 μm particle, very high
temperatures, and μs dynamics). These results demonstrate the potential of multi-
spectral FRAME to be used in conjunction with highly specialized sensors, such as
intensified and high capture-rate cameras, for quantitative measurements that utilize
intensity. Moreover, the independency of the spectral setup from the sensor enables
spectral flexibility, allowing the user to tailor the spectral bands monitored to the
specific temperature range of interest.

¹I do not have a literature reference for this, but completely trust the word of my expert colleagues
working within this field.
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Figure 5.3: Sequence of temperature images, depicting the combustion process of a ∼ 550 μm aluminium
droplet, captured at 50 kHz. Over the entire sequence, the overall temperature increases from
between 2000-3000 K at 1 ms to 3000-4000 K at 10 ms. As the combustion progresses, the radius of
the reaction zone surrounding the droplet increases, while the droplet diameter decreases due to
mass loss. The different temperatures of the center particles compared to the surrounding particles
in the reaction zone can be seen from 6 ms. Figure taken from Paper II.
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5.2 Snapshot velocimetry and accelerometry imaging

Velocimetry imaging is a quantitative imaging method where by measuring the phys-
ical displacement of features between two images and knowing the time interval be-
tween them, velocities in the image plane are extracted. Extending the same logic,
three images of known time intervals can be used to calculate acceleration, hereafter
referred to as accelerometry imaging, or just accelerometry. The velocities and accel-
erations measured are then the average over the duration of the image doublet/triplet
used to calculate them. Velocimetry imaging is a common diagnostics method in
fluid dynamics, most often implemented for particles in the form of Particle Image
Velocimetry (PIV) [104].

5.2.1 Temporal FRAME

Just as FRAME can be used to multiplex spectral bands, it can also be used as a
videography technique by multiplexing exposures in time, increasing the temporal
resolution of a camera. This is done using pulses of spatially modulated illumination
(usually coherent) which are all captured within the time-gate of a single camera im-
age exposure. Sequentially, each uniquely modulated pulse interacts with the scene
and exposes the sensor, adding encoded temporal information to the resulting image.
Through the use of the lock-in procedure described in Chapter 3, the multiplexed ex-
posures can then be isolated in post, identically to how the spectral bands are isolated
in multispectral FRAME.

Pulsed illumination circumvents the electronic temporal limitations of the camera,
allowing for a higher capture-rate burst to be stored within a single camera image
independently of camera capture-rate. The multiplexed exposure capture rate and
temporal resolution have been discussed at length [95; 97], but in essence depends on
the temporal separation and temporal pulse length of the light pulses. Temporally
encoded FRAME has been used extensively and for many applications, among other
things to image the propagation of a light pulse with femtosecond resolution [105].

5.2.2 Imaging sprays using temporal FRAME to increase capture rate

As FRAME multiplexing can provide temporally resolved exposures within the gate of
a single camera image, three such multiplexed exposures enables snapshot velocimetry
and accelerometry. In Paper III, we combined three high repetition-rate pulsed lasers
with a high capture-rate camera, tracking velocities and accelerations of features in
the spray at 21 kHz camera capture-rate.

67



Optical setup

The optical setup used for temporal multiplexing of sprays can be seen in Fig. 5.4
(a). It consists of three high-repetition pulsed lasers whose beam paths are overlapped
spatially using a dichroic mirror and a polarizing beamsplitter (PBS). The lasers and
camera are triggered so that all three pulses are incident on the camera during its gate
time, with the pulses arranged in a pulse train. The beam profile of each pulse is
uniquely modulated using Ronchi rulings and focusing in combination with a spatial
filter, which encodes the temporal image information of the pulse interacting with
the spray in the object plane. The object plane is then imaged using a 4x microscopic
lens.

An example of the raw multiplexed images resulting from this optical setup are shown
in the top-left of Fig. 5.4 (b). As each spatially modulated pulse interacts with the
spray, it is partially shadowed, creating the profiles seen in the image. Zooming in re-
veals the modulation patterns, which vary throughout the image depending on where
the spray was at the time of interacting with the light pulse. Located underneath
in the same subfigure is the Fourier spectrum of the raw image, showing how the
modulation pattern of the pulses shifts the frequency information of the exposures
into higher frequency bands. Following the lock-in procedure of FRAME described
in Chapter 3, the individual exposures are extracted, showing the propagation of the
initial spray injection at three points in time, captured in the same camera image.

An added benefit of this type of imaging is the freedom to space the pulses differently
in the gate of the camera. This was demonstrated in the paper and can be used to
examine different time-scales within a single exposure. Fig. 5.5 shows examples of
this in action.
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Figure 5.4: The optical setup used to encode temporal exposures in Paper III, and the process with which the
FRAME triplets are extracted. (a) The optical setup used to temporally multiplex exposures, using
three pulsed lasers to create a pulse train that illuminates the spray at three distinct times. All three
light pulses are captured in the same camera image. (b) Thanks to the unique structure of each
light pulse, each exposure is isolated in the frequency domain. Through lock-in and filtering, each
exposure can be extracted in post. Figure adapted from Paper III.
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Figure 5.5: Three high-speed sequences of sprays, using different pulse train spacings. The manipulation of
pulse spacing allows bypassing the capture-rate of the camera for a triplet burst, now instead lim-
ited by the pulse width and temporal spacing between pulses. The temporal spacing can also be
varied within a single pulse train, allowing for the probing of different timescales in a single expo-
sure. Figure adapted from Paper III.

5.2.3 Extracting velocities and accelerations

I started my doctoral studies in September 2020, and had only been at it for a few
months before new restrictions prevented me from doing work in the optics lab. How-
ever, one of the measurements that I had been a part of before lockdown was the
images seen in Fig. 5.4. I therefore spent some time during the lockdown of winter
2020-2021 writing my own in-house algorithm for extracting velocities and acceler-
ations out of the extracted FRAME-triplets of each raw image. The algorithm was
built to work with the type of shadow imaging produced using this optical setup, and
consists of the following steps:
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1. Segmentation of the spray. This step involves different types of thresholding and
morphological operations. As holes in the spray are more difficult to track than
the edges due to the more turbulent flows (holes are often very temporary and
change shape dramatically between exposures), filling operations are used to
avoid calculating velocities in central regions of the spray. Conversely, just as
holes are hard to track, droplets formed during break-up events and separated
from the main body of the spray are relatively easy to track, due to their spatial
isolation and predictable movement. For this reason, holes in the main body
of the spray are filled, but isolated droplets are not eroded. An example seg-
mentation can be seen overlayed onto an extracted FRAME-exposure in Fig.
5.6.

Figure 5.6: The segmentation of a spray, using an extracted exposure. Figure adapted from Paper III.

2. Template matching along edges of segmentation. After a satisfactory segmenta-
tion of the FRAME-triplet is achieved, a template (square window) is traced
along the edge of the spray profile. In even intervals, a template matching is
performed to the segmentation of the subsequent exposure in the FRAME-
triplet, using normalized two-dimensional cross-correlation. In order to both
speed up processing and avoid erroneous matches, a user input in the form of
a search radius is also entered.

3. Calculating a velocity. Once the best match for the template has been found in the
search window, a pixel distance is calculated corresponding to the displacement

71



between images. Knowing what physical distance this pixel displacement cor-
responds to, and the time interval between the exposures, the velocity for that
region of the spray (the template) is calculated. The template is then moved
along the edge of the first segmentation, repeating step 2 and 3 along the edges
of the spray and droplets.

Since a FRAME-triplet consists of three exposures, this process is performed twice
(excluding step 1) - once between exposure 1 and 2, and once between 2 and 3 - result-
ing in two velocity vector fields. By matching these to each-other, accelerations can
be calculated using a final step

4. Calculating accelerations from velocity vector fields. By matching end-points of
velocity vectors from the first velocity vector field to starting points in the sec-
ond, a feature can be tracked over the entire FRAME-triplet. The two corre-
lated velocities can then be used to calculate individual accelerations of features
ax,y using

ax,y =
∆vx,y
2∆t

, (5.4)

where ∆vx,y is the difference in velocity between the second and first matched
velocity vectors in both image directions, and ∆t is the time interval between
each FRAME triplet (assuming the same time interval between exposures). The
calculated accelerations can then be used to create an acceleration vector field
for the FRAME-triplet.

5.2.4 Result: Validating the algorithm

In order to validate the algorithm used to calculate the velocities and accelerations,
a separate measurement was performed with a known force acting on a rigid body -
dropping a ball bearing, and letting gravity do its thing. The result of the measurement
can be seen in Fig. 5.7 (a). The resulting distribution of vertical accelerations has a
mean of µay = 9.74 m/s2, with a standard deviation of σay = 13.4 m/s2. This high
variance is caused by the uncertainty in the position of the edge established in the
segmentation process, and corresponds to a spatial standard deviation of σx = 2.07
pixels, demonstrating the large impact that a small error in position has on the final
calculated acceleration². The implication of this analysis is that longer inter-pulse
times leads to more consistent and therefore more accurate acceleration data, as the
displacement becomes larger. However, this also makes the template matching harder.

²For a full derivation of this, see Appendix B of Paper III.
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To verify that the acceleration variance indeed stems from the uncertainty in position,
the algorithm was also tested on synthetic data with perfect segmentation (Fig. 5.7
(b)). In this simulated case it performs very well, with all acceleration vectors showing
a value of 9.82 m/s2. This measurement and analysis confirms that the accelerations
and velocities calculated using the algorithm are reasonable.

Figure 5.7: Calibration measurement for validating the acceleration extraction algorithm. (a) A FRAME-triplet
of a falling ball bearing was processed using the algorithm to measure the gravitational acceler-
ation. (b) A simulation of the same ball bearing was also performed. The low variance in the
calculated accelerations of the simulated data show that the variance of extracted accelerations in
the experimental data is caused by an uncertainty in position. Figure taken from Paper III.

5.2.5 Result: Measuring velocities and accelerations in a spray using tem-
poral FRAME

The velocity- and acceleration vector fields resulting from multiplexed FRAME-triplets
of a spray injection are shown in Fig. 5.8, overlayed onto the extracted exposures. Also
shown are histograms of velocity- and acceleration distributions, indicating the over-
all dominating movement of the spray. At this point of the injection, accelerations at
the leading edge of the spray are relatively low, indicating some sort of equilibrium
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has set in between the force of the injection pressure and the air resistance. High
accelerations can be observed on the left-hand side of the image, where air resistance
tears apart the spray, starting a breakup event.

Figure 5.8: Extracted velocity and acceleration fields. The histograms displayed show the overall movement of
the spray - downwards and slightly to the left in the image. The zoom-in of the acceleration field
highlights the accelerations in a breakup event. Figure adapted from Paper III.

Fig. 5.9 zooms in on a breakup event (not from the same image as Fig. 5.8) generating
a few droplets. As the highlighted droplet breaks free from the main body of the spray
it can be seen to quickly decelerate due to air resistance. This deceleration is shown in
the two velocity vector fields (left, red vectors) and the acceleration vector field (right,
yellow vectors). The deceleration is on the scale of million meters per second squared
(!), a number that we had to double-check both once and twice³.

5.2.6 Movement along the optical axis

Perhaps the largest uncertainty factor in this type of analysis is the unknown move-
ment along the optical axis. Here we once again run into “ye olde” limitation that
imaging is a two-dimensional projection of a three-dimensional space. While there
are methods of countering this issue, such as imaging at different focus depths, they
would require that additional complex steps be added into an already complex imag-
ing setup. For this reason, it is hard to motivate their addition, especially since the
measurement method shown has already provided snapshot accelerometry.

³Although the acceleration is large, the mass of the droplet is quite small, leading to a force that is
reasonable, albeit still large.
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Figure 5.9: Zoom-in on individual droplets that have broken of from the main body of the spray. The dashed
vectors show individually calculated vectors, while the larger, non-dashed vector display the aver-
age over the droplet. Over the duration of the FRAME-triplet, the droplet can be seen to decelerate
due to air resistance. Figure adapted from Paper III.

The unknown movement along the optical axis likely causes artifacts in the velocity-
and acceleration vector fields, as they provide an un-mappable⁴ degree of freedom
that lead to changes in the image projection of the spray. However, a lot of valuable
information can still be extracted despite this, as the results show.

5.3 Quantifying the impact of data quality on neural network
training

Machine learning-assisted processing has rapidly become the golden standard for im-
age processing in a number of fields, including but not limited to medical imaging,
remote sensing, microscopy and bioimaging, and astronomy [106–109]. Convolu-
tional Neural Networks (CNNs) utilize trainable convolutional kernels, apt at iden-
tifying image features such as edges and textures, making them especially useful in
these scenarios. While a lot of focus in put on how to improve the networks from an
architectural point-of-view, they are also highly dependent on the quality of the data
used to train them. This section discusses work I have done to highlight the impact of
such an improvement in quality by training a well-established network architecture
on two different datasets and comparing their relative performance.

⁴I do not know if this is a real word, but I will use it anyway as I think it is understandable.
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5.3.1 Convolutional Neural Networks

Artificial Neural Networks (ANNs) are computational models that are trained on sets
of data, with the goal to detect underlying patterns that can be used to extrapolate
and make predictions on previously unseen but comparable data. They consist of
computational units called nodes or neurons (hence the “neural” in ANN) which are
organized into layers. The network learns by repeatedly adjusting trainable parameters
called weights and biases, which are located in each node. A network consists of an
input layer, into which the data is entered, a number of intermediate “hidden” layers
where most of the data processing is done, and an output layer, which outputs the
prediction of the network. Layers come in many different types, some of which will
be discussed in this chapter. The size and type of layers and how they are organized is
referred to as the network architecture, the most basic form of which is a sequential
model, in which data is fed linearly from one layer to the next.

Convolutional neural networks are a subclass of ANNs which contain layers of train-
able convolutional kernels, called convolutional layers⁵. Convolutional layers are par-
ticularly useful in image processing applications such as segmentation and object de-
tection, as the convolutional kernels can be trained to find edges, textures, and even
shapes. These features are very useful for tasks such as object detection (locating an
object of a certain type in an image, such as “find the bike in this image of a street”), as
objects in natural images are often separable by such features (change in texture, sharp
edge, etc.). CNNs most often use a combination of layer types that complement each
other well, helping to optimize the size of the network while simultaneously increasing
its efficiency.

Mechanisms in training

A neural network can be trained by using data with or without an associated “correct
answer” provided by a human supervisor. These types of training are referred to as
supervised and unsupervised training respectively. Unsupervised training is an excel-
lent tool to for example discover new dependencies in large datasets, but as this thesis
concerns itself with images and image processing, the focus for this chapter will be on
supervised learning.

Training a neural network for object detection requires correctly annotated data which
can be used to provide feedback to the network during training and assessment. Such
annotation is very often an arduous and tedious task. In order for the network to be
able to make accurate predictions, the variance of the data used to train the network

⁵Who’d a thunk it?
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need to accurately represent the data on which it will be applied. Therefore, the
more (relevant) data the network has access to during training, the better its final
performance. However, a low variance in the data also means less data is needed
compared to a high variance.

For training, the corrected dataset is divided into parts. Most of the data (commonly
around 80%) is put into a training dataset, while the remaining part is divided equally
into validation- and test datasets. During the training process, the training dataset
is given to the network in batches. After the network has made predictions for a
batch, it is provided the correct answers and updates the trainable parameters of the
network to better adjust to the new information provided. This process is called back
propagation, and how radically the parameters are changed depends on learning rate
- a parameter set by the user. Training continues in this manner, until the network
has been fed the entire training dataset. This marks the end of what is known as an
epoch, at which point the performance of the network is evaluated using the validation
dataset not previously seen by the network. This quantifies the prediction capabilities
of the trained network, but is not used for back propagation. Once training is done
(can be done over many epochs), the final test of the network’s extrapolative strength
is performed, using the hitherto unseen test dataset.

The feedback to the network is provided using a customizable loss function, whose
purpose is to quantify how wrong the network was during the last batch of samples.
The choice of loss function is important and varies depending on the ultimate goal of
the network, as it affects how weights are adjusted.

Extrapolation vs memorization, and when to end training

If the network is big enough compared to the complexity of the problem it is trying to
solve and the size of the dataset, it can achieve 100% accuracy on the training dataset
by memorizing the ground-truth of all samples in it. This is known as overfitting, and
leads to perfect accuracy for the training dataset, but very poor performance on the
two other datasets, as the network has learned the correct answers instead of the un-
derlying patterns. Therefore, the stopping point for training is generally determined
by monitoring the loss of the validation set instead, as this gives a good indication of
when the extrapolating capabilities of the network are the best. Fig. 5.10 (a) shows
the behavior of the training- and validation set when overfitting occurs. A way to
discourage the network from memorizing samples while maintaining network com-
plexity is to use dropout during training, which randomly excludes a certain portion
of nodes on a batch-by-batch basis. This makes memorizing samples much harder, as
the network never has access to all its nodes during training, and also has the effect of
discouraging redundant nodes.
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Common types of layers in a CNN trained for image processing

All layers contain a number of nodes, which may vary from layer to layer. The function
of the layer determines the operation performed in its nodes. Simpler types of layers
such as “fully connected” require less user inputs, while more complicated layers such
as convolutional layers require more user-determined inputs.

Convolutional layers contain a number of trainable convolutional kernels, which are
convolved with the input to produce the outputs of the layer, called feature maps.
They are often located early in the network, to interpret the raw image inputs before
they are distorted by any other layers. Typical user inputs for a convolutional layer
are the number of nodes (kernels to be trained), size of kernels, stride, and padding
options.

Max-pooling layers are downsampling layers which help to reduce the size of the
samples. These are commonly placed between sets of convolutional layers, gradually
reducing the complexity of the data and “boiling the problem down”. This helps to
decrease the computational load of the network. User input defines the size of the
max-pooling kernel, padding, and stride.

Dense/fully connected layers consist of a number of neurons calculating a weighted
sum from the inputs of all nodes of the previous layer. The trainable parameters of
these nodes is the weights used in the summation, as well as the bias which is added to
it. Dense layers are often located in the end of sequential CNNs as deducing layers,
interpreting the information extracted from the convolutional layers before them.

Activation function (not a layer, but strongly related) Associated with each layer is
an activation function, which is applied as a final step before output. Its function is
to enable the layer to model non-linear relationships.

Fig. 5.10 (b) shows a schematic for the architecture of a sequential CNN. In the con-
text of image analysis, this type of architecture can be used for image classification (2
classes, for example if there is a dog or a cat in the image). It utilizes a fully connected
input layer, which is fed into a combination of convolutional- and max-pooling lay-
ers. The output of the last convolutional layer is fed to a segment of fully connected
layers, resulting in two outputs of the network - the probability that the image is a
dog and a cat respectively. Choosing the maximum argument of the output generates
the prediction of the network.
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Figure 5.10: (a) Illustration displaying how the losses of the training- and validation datasets behave when a
network is overfitted. The network has memorized the training dataset, meaning its loss goes to
zero, but the loss when tested on the validation set sky-rockets due to the network’s very poor
extrapolation capabilities. (b) Schematic showing an example architecture of a Convolutional
Neural Network used for classification (2 classes).

Hyperparameter tuning

Hyperparameters are the parameters of a network defined by the user, such as the
number of layers and nodes in those layers, choice of activation functions and loss
function, learning rate and batch size, to name a few. Optimizing these parameters
gives the network the optimal conditions to succeed in its task, and is commonly
done using methods like grid-searches, running through different combinations of
parameters.

5.3.2 SILMAS

Structured Illumination Light-sheet Microscopy with Axial Sweeping, or SILMAS
[110; 111], is a tomographic microscopy technique utilizing structured light-sheets to
improve contrast and optical sectioning [112]. By shaping the excitation source into a
homogeneous light-sheet and temporally scanning over the sample, techniques such
as Axially Swept Light-sheet Microscopy (ASLM) [113] can produce three-dimensional
images of fluorescently tagged structures. However, as these optical slices are imaged
through intermediate material, the quality of imaged slices deteriorates as a function
of depth along the optical axis due to scattering. SILMAS counters this effect by sinu-
soidally modulating the light-sheet and capturing three images of each slice with a 120◦

phase-shift between each modulation. As scattered light does not conserve this spatial
structure, lock-in on the frequency of the modulation isolates the signal emanating
from the optical section illuminated, suppressing scattered light, and in extension im-
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proving contrast and optical sectioning. Each volumetric image slice I resulting from
SILMAS can be calculated from the three phase-shifted images I0,120,240 using [111]

I =

√
2

3

√
(I0 − I120)2 + (I0 − I240)2 + (I120 − I240)2. (5.5)

Experimental setup

The experimental setup used for SILMAS is shown in Fig. 5.11. First, the sinusoidal
modulation is created through interference of the first orders produced by the diffrac-
tive optical element, and the light-sheet is then formed using the final cylindrical
lens. By scanning the sheet over different heights, capturing three images of varying
modulation phase at each, the three-dimensional image is built. The ASLM data was
captured using the same setup, omitting the modulating of the light-sheet. Here I
also want to clarify that this is not a setup that I have actually used myself, but as I
have worked with the data produced with it, I think it is relevant to show how that
data was collected.

Figure 5.11: The experimental SILMAS/ASLM-setup used to capture the dataset used in the training of the two
networks. By engaging or disengaging themodulating unit (dichroic and spatial filter), the optical
setup can be used to capture either SILMAS or ASLM data. Image reused with permission from
Frantz et al. [111].

5.3.3 Result: Comparison of network performances using SILMAS and
ASLM datasets (Paper IV)

The motivation behind Paper IV was to concretize the impact that better raw data
has on neural network-based processing. The study was performed using SILMAS
and ASLM data of the same biological sample - chemically cleared mouse brain tissue
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containing fluorescently tagged alpha-synuclein (aSyn) aggregations, a pre-cursor for
Parkinson’s disease [114]. As machine-learning approaches are extensively used for
image processing in biomedical microscopy, it is important to show the impact that
data quality has on the final result. In the current research climate, a lot of focus is put
on neural networks as an almighty solution able to make use of any data, while the
truth is that their success is very much dependent on the quality of the data they are
trained on. To demonstrate this effect, two datasets consisting of three-dimensional
image subsets (253 voxels) were sampled from the same biological tissue sample using
different acquisition methods (SILMAS and ASLM). Annotating the same ground-
truth to each subset pair (based on the inspection of the same subsets of the samples
simultaneously) ensures a fair and direct comparison between them.

In order to ensure relevance within the field, the comparison was made using a U-net
architecture [115] - a well-documented and successful Fully Convolutional Network⁶
(FCN) developed specifically for biomedical image segmentation. The architecture
was adapted for three-dimensional image subsets, and can be seen in Fig. 5.12.

Figure 5.12: Network architecture and input/output of the network. The U-net architecture was adapted for
3D-image subsets. The input to the network is displayed on the left. Each subset (sample in the
dataset) consists of 253 voxel data cubes, where intensity values correspond to concentrations of
the tagged aSyn. A ground-truth segmentation shared between the capturing methods is also
inputted. The output of the network is a predicted segmentation with the same 253 volume,
directly comparable to the ground-truth value.

⁶A FCN is similar to a CNN, but does not use any fully connected layers.
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The task of the network was to segment the globular aggregations of tagged aSyn
(foreground) from the non-fluorescing cleared tissue (background). As this is a case of
two-class segmentation, a binary cross-entropy loss function was used during training.
In this loss function, the two classes were also weighted as to compensate for the
prevalence of background in relation to foreground. The performance of the two
networks⁷ was evaluated using the F1-score, defined as

F1 = 2 · precision · recall
precision + recall

=
2TP

2TP + FP + FN
, (5.6)

where TP, FP and FN are true positives, false positives and false negatives respectively⁸.
TheF1-score is a popular metric within medical research as it weighs in aspects of false
diagnosis, which is of high ethical importance.

In order to more accurately reflect a real-world application - where perfect segmen-
tation of a fluorescent cluster is not as important as correctly identifying points of
aggregation - the prediction capabilities of the network was evaluated using the F1-
score for correctly identified clusters, instead of on an individual voxel level. In this
context, a single object (point of aggregation) is defined as any group of 26-connected
voxels, and a true positive is defined as the predicted segmentation having any overlap
with the ground-truth segmentation. The precision (what fraction of predicted posi-
tives are correctly identified), recall (what fraction of the actual positives are correctly
identified) and F1-score for this type of object detection can be seen in Fig. 5.13 av-
eraged over a number of runs. These plots were produced by extracting the network
weights after each epoch, to independently evaluate the prediction capabilities as a
function of training time. The scores for the first 40 epochs are shown, after which
the training reaches a plateau.

The network trained on SILMAS data can be seen to a have a noticeable edge in
all metrics over the entire training process. Of particular notice is the difference in
precision, meaning the network trained on SILMAS data has fewer false positives. The
results in Fig. 5.13 show that the improved contrast and optical slicing of SILMAS has
a tangible impact on the prediction performances, even when golden-standard neural
network architectures are used. In a research climate where a lot of focus is put on
improving the machine learning-aspects of analysis, this highlights the importance of
parallel improvement of measurement techniques to also improve the data quality on
which the network is relying.

⁷Referring to the two instances of U-net trained on ASLM and SILMAS-data respectively.
⁸On an individual voxel level.
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Figure 5.13: Compared performance of object detection of the networks trained on ASLM and SILMAS data
respectively. The network trained on SILMAS data performs better in terms of both precision and
recall. Combining the two using the F1-score demonstrates that SILMAS data provides a “head
start” which is maintained over the duration of the training. Figure taken from Paper IV.

5.4 Spectral imaging using intensified cameras

Image intensifiers artificially increase the signal of images by converting the incident
photons to photo-electrons. These photo-electrons are passed through a microchannel
plate (MCP) which multiplies the number of photo-electrons in what is known as
an “electron avalanche”, thereby increasing the signal⁹ [116]. The electrons are then
converted back to photons using a phosphor plate, which are registered by the sensor.
Image intensifiers are useful in imaging scenarios where the photon-yield is too low
for any signal to be registered using only the native sensitivity of the sensor.

The mechanics of an image intensifier prevents the effective use of integrated mul-
tispectral solutions, such as MSFAs. Filter array solutions need to be located near
the sensor to avoid cross-talk (often also utilizing a microlens array to focus the light
on the photosite). Thus, the image intensifier needs to be located before this stage,

⁹It should also be said that just as intensifiers amplify the signal, they also amplify any photon-related
noise, as well as introduce their own sources of noise.
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which means the spectral information of the incoming photons is lost in the photon
to photo-electron conversion, and spectral filtering will not work. Consequentially,
multispectral capture with intensifiers requires other solutions. A potential solution is
to use a multi-camera setup, but this is very cost-ineffective, especially when increas-
ing the number of spectral channels. Spectral multiplexing using FRAME provides a
cost-effective single-sensor solution to this problem.

5.4.1 Multispectral FRAME and intensified cameras

The optical setup for spectral multiplexing presented in Chapter 4 provides a camera-
independent, light-conserving and spectrally flexible method of capturing wide spec-
tral bands using a monochrome sensor. All of these factors makes it suitable for ap-
plications that require intensified imaging. The optical multiplexing setup is simply
placed as an intermediate imaging step between the object and the intensified cam-
era, and the spectral channels are separated in post, as described in Chapters 3 and
4. This type of application was demonstrated in Paper I by imaging a pulsed plasma
jet, which occur on the timescale of nanoseconds, requiring a time-gated intensified
camera.

5.4.2 Result: Species imaging in a pulsed plasma jet using multispectral
FRAME and an intensified camera

Fig. 5.14 (a) shows the experimental setup used to create the pulsed plasma jet. A
steady flow of helium (He) was injected into air at ambient air pressure. A pulsed
electric field was created between the grounding plate and the He-injection nozzle by
supplying a high voltage to the electrode needle located inside the nozzle. The electric
field dissociates electrons from atoms, ionizing the gas-mixture. The subsequent re-
combination results in line emissions corresponding to specific species generating the
corona discharge seen in Fig. 5.14 (b) and (c) (false-color), which occurs on a timescale
of nanoseconds.
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Figure 5.14: (a) The experimental setup used to generate the pulsed jet plasma. (b) False-colored images of the
spatial distributions of He and N in the parameter study, using different gas flows and electrode
voltages. (c) Highlight of the [4.5 standard l/min, 60 kV] case, also showing the intensity profile
of the two species. (d) Surface plot showing the length of the jet as a function of both gas flow
and voltage. Figure adapted from Paper I.

For this measurement, the emission of neutral helium (He I) and ionized nitrogen
(N+

2 ) were spectrally separated using multispectral FRAME in combination with an
intensified camera. This results in spatial distributions of the two species, seen in Fig.
5.14 (b) and (c) captured at varying gas flows and applied voltages. The length of the
plasma jet is defined as the distance from the nozzle to when its intensity has decayed
to e−1 · Imax, where Imax is the maximum value. Using this, the surface plot of Fig.
5.14 (d) can be created, showing how the length of the plasma jet varies for the two
species as a function of both applied voltage and gas flow.
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From the perspective of somebody working with method development, the main take-
away from this measurement is, according to me, the proof-of-concept aspect: There
are no intrinsic properties of multispectral FRAME preventing it from being used
with intensified cameras. The one potential downside of frequency filtering in the
case of intensified imaging is that the hexagonal honeycomb pattern of the MCP used
to intensify the image can sometimes¹⁰ contribute with high frequency components
in the image. This leads to potential frequency band overlap between the MCP-
pattern and the multiplexed exposures in the Fourier spectra. This is primarily an
issue in darker regions of the image, and can be countered by reducing the gain of the
intensifier or at least partially be calibrated for using a flat-field measurement. That
being said, in this particular measurement it did not prove to be a major hindrance.

5.4.3 Unpublished work: Multispectral FRAME in the ultra-violet region,
using an intensified camera

As a brief side-note, I also want to mention an unpublished work that I have worked
with in this section, as it also used an intensifier in combination with multispectral
FRAME. In this project, we aimed to spectrally separate and image the ultra-violet
(UV) fluorescence of toluene and formaldehyde in a jet flame to characterize the com-
bustion. The optical multiplexing setup was reminiscent of that in Fig. 4.2, only using
two channels instead of four, and a dichroic mirror for recombination of the optical
channels¹¹. Unfortunately this work did not culminate in any publication, as the sig-
nal strength in this particular imaging scenario was not high enough. However, it was
still the first time multispectral FRAME was applied in UV, showing that there are
no intrinsic mechanisms of multispectral FRAME preventing it from being applied
in this region of the electromagnetic spectrum.

5.5 Multispectral microscopy

At the time of writing this thesis, I am also working on combining the dichroic mul-
tispectral setup with microscopy, the optical setup for which is shown in Fig. 5.15. It
uses a combination of the previously discussed dichroic design and an interchange-
able microscopic objective, and has been used with both broadband bright-field and
laser illumination. This new setup has been developed with the particular applica-
tion of fluorescence microscopy in mind. For this reason, the number of spectral
channels has also been increased to 7, increasing the maximum number of unique

¹⁰At low signal and/or high gain.
¹¹Of course, all optical components were also appropriate for UV.
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fluorophores differentiable through linear unmixing to the same. Fluorescence mi-
croscopy imaging is often performed using a spectral scanning approach, sequentially
switching between spectral filters and excitation sources [47]. Multispectral FRAME
offers spectrally flexible snapshot imaging at the cost of reduced spatial resolution,
reducing the time needed to capture the scene. Moreover, combined with modulated
illumination sources, it can be used to differentiate between fluorophores exhibiting
near identical emission spectra, as demonstrated in Paper V.

Figure 5.15: The 7 channel optical multiplexing setup used for multispectral microscopy. The setup is very
similar to Fig. 4.3, with the addition of a microscopic lens. The setup can be used with brightfield
illumination or laser excitation of the sample. Figure taken from Paper VI.

5.5.1 Linear unmixing

Linear unmixing is a mathematical method used to separate overlapping spectral sig-
natures [117; 118]. As fluorophores have broad and often overlapping emission spectra,
linear unmixing is frequently used within fluorescence microscopy to visualize the spa-
tial distribution and intensity of fluorophores when their spectra can not be separated
into different spectral bands.

Mathematically, linear unmixing is a change of spectral basis vectors, from the spectral
basis vector determined by the capturing method to the spectral signatures of each
fluorophore. For the same reason, the method cannot be used to differentiate between
more spectral signatures than spectral bands captured. To perform the basis change
and find the relative intensities f of each fluorophore in a pixel, given the intensity
values i in each spectral channel and a calibration matrix M, the equation
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f = M−1i , f =

f1f2
...

 , M =

m11 m12 ...
m21 m22 ...
... ... ...

 , i =

i1i2
...

 (5.7)

is solved, where each column in M is the spectral signature of a unique fluorophore.

5.5.2 Result: 7-channel multispectral snapshot microscopy

The microscopy setup has been used to perform both fluorescence microscopy (laser-
induced fluorescence, fluorescent beads), bright-field microscopy (broadband back-
light) and microscopy of a light-emitting display. The imaging has been performed
at two different magnifications (4x and 20x) using the interchangeable microscopy
objectives.

Laser-induced fluorescence microscopy

Two types of fluorescent beads, differentiable both by size (27 μm and 48 μm respec-
tively) and fluorophore emission spectra, were imaged at 20x magnification using the
microscopic setup. Fig. 5.16 shows the raw image and its Fourier spectrum, as well
as each extracted color channel after lock-in (false-colored according to wavelength).
Examining the response of each fluorophore in each spectral channel reveals rough
emission spectra which peak in green and blue respectively. Using these signatures as
the matrix M in the linear unmixing Eq. 5.7 reveals the relative contribution of each
fluorophore in each pixel.

Light-emitting display

Fig. 5.17 shows the spectral decomposition of a light-emitting display, imaged at 20x
magnification. The display consists of a mosaic of RGB-emitting diodes, whose spec-
tral signatures through the system can be seen to the right in the figure. The first and
last channel were omitted due to low signal-to-noise ratio. Linear unmixing using the
three spectral signatures reveals the three types of diodes, false-colored according to
wavelength.
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Figure 5.16: Multispectral image of laser-induced fluorescence in beads, captured using the multispectral mi-
croscopy setup. Using linear unmixing, the two types of beads can be separated, visualized
through false coloring (top right). Also shown in this subimage is the spectral response in each
channel for both fluorophores. Figure adapted from Paper VI.

Figure 5.17: Multispectral image of a light-emitting display, where the individual diodes are visible. Using
linear unmixing, the three types of diodes (red, green and blue) have been separated and false
colored for visualization (top right). The spectral response of each diode is also shown. Figure
taken from Paper VI.
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Bright-field microscopy

The same beads were also imaged at two different magnifications (4x and 20x) us-
ing a bright-field scheme. A broadband light-source located behind the object plane
illuminated the beads in Fig. 5.18, enabling measurements of relative absorption at
different spectral bands. The reddest channel was omitted in the analysis due to its
low signal-to-noise ratio, resulting from the weak output of the illumination source
at these wavelengths.

Figure 5.18: Bright-field multispectral image of beads at two different magnification, 4x and 20x, demonstrat-
ing the capabilities of the setup to both image at differentmagnifications andmeasure absorption
in different bands. Figure taken from Paper VI.

Blood cells (typically ∼8 μm [119]) were also imaged using the bright-field scheme to
test the system’s ability to resolve fine structures close to the optical resolution limit.
Two spectral channels were used, allowing for a larger filter radius to be used to, to test
if the blood cells could be resolved with minimal resolution impact from the FRAME
algorithm. The raw camera image as well as the two extracted exposures (500-550 nm
and 600-650 nm) can be seen in Fig. 5.19. The zoom-ins clearly show the system’s
ability to resolve these structures, demonstrating its potential for future application
within the biomedical field. The eccentricity of a few of the visible blood cells are
also measured - a precursor to pathological conditions such as infectious diseases and
blood disorders [120].
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Figure 5.19: Red blood cells imaged in two spectral bands, demonstrating the system’s ability to resolve fine
structures. The shape of three red blood cells have been isolated to measure their eccentricity.
Figure taken from Paper VI.
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Chapter 6

Outlook and Conclusion

6.1 Outlook

Looking ahead in relation to my own work with multispectral FRAME, I see a few
paths which are yet to be explored. Some are well under way, like the work currently
being done with microscopy, and others are lying in wait to be tried by somebody
else. I would like to raise three of them here, to peak the interest of readers from
other fields and inspire those that are interested in working with FRAME’s continued
development.

First, the double modulation approach to FRAME presented in Paper V, where two
parameters are simultaneously multiplexed in a single image, is not something I have
explored further, but which has a lot of potential. In the case of Paper V, it was
used to encode the response from fluorophores both as a function of excitation and
emission spectra, which helped distinguish between fluorophores with very similar
emission characteristics. The power of this technique lies in the scaling of additional
information bands. When using double modulation, the amount of exposures con-
taining unique information scales quadratically, in contrast to the linear scaling of
single modulation. The potential combinations of parameters to be encoded is also
great. Imagine combining the powers of active temporal FRAME with passive multi-
spectral FRAME, to create a spectrally resolved high-speed video sequence in a single
camera image. I believe venturing further down this path would result in technically
impressive measurements and results, and I highly encourage the continued explo-
ration of this area of FRAME.

My second point is concerning pyrometry. As I wrote in the introductory part of
Section 5.1, the bulk of the blackbody radiation is emitted in the infra-red. In my
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own work, I have used FRAME in the visible and ultra-violet region, and so maybe
the next step is to try to apply the pyrometry approach described in this work in
the infrared? The light-efficiency of the dichroic setup I have developed would come
to good use when measuring in lower temperature ranges, as the total radiance of a
blackbody decreases with temperature. Infra-red imaging of course comes with its
own set of challenges such as thermal dark noise [121], but it would be exciting to
see if it is possible in practice, as I see no theoretical limitations with regards to the
FRAME technique.

Third and last is the continuation of what I am currently working on, namely flu-
orescence microscopy. Passive FRAME has already been shown to be an effective
snapshot method for spectrally classifying and separating fluorophores [79; 80], and
we have now also shown that it is possible to combine this powerful tool with mi-
croscopy imaging. We hope that this will open up for new applications within the
field of biomedicine. One such potential application is cytometry [122], the analysis
and characterization of cells. Imaging flow cytometry [37; 123] characterizes cells in
a flow based on both spectral properties and cell morphology (shape, size, textures,
etc.) - maybe FRAME could be used to make such an imaging technique more spec-
trally flexible? The world of frequency multiplexed imaging is still in its infancy, and
personally, I can not wait to see what is next to come!

6.2 Conclusion

And so we arrive at the beginning of the end. My goal over the last 6 chapters has
been to give my own view of the work I have been doing for the last 5 years - in part
because that is what you as a reader expect and (hopefully) want from a text like this,
but also because that is the only thing I can do. As I stated at the beginning of chapter
3, before venturing into the deep abyss that is the mathematics surrounding FRAME,
I tend to prefer qualitative and practical discussions to equations. I think this trait
shines through in a lot of ways in this work, and of this I am proud. I believe the
most important task in science is making it understandable to a wider audience - that
is where its value lies. In the case of a doctoral thesis, which I guess has to be called
“cutting edge knowledge” even though it feels a little bit weird to call it that myself,
the term “wide audience” is of course relative, but the point still stands. I hope that
my ambition to make the subjects of this thesis accessible for as many as possible has
succeeded, or at the very least that the effort has been noticed.

By this point, my hope is that the title has been sufficiently motivated by the content,
but in case there is still confusion surrounding it I thought it fitting to explain it now.
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After all, this is the last chance I have¹. Beginning with the final words of the title,
the common thread in all of the work I have done is coded light. Both FRAME and
SILMAS, the experimental techniques I have worked with, use coded light to either
expand on the dimensions captured in, or improve the quality of, camera images. As
for the first two words, “Towards quantitative”, almost all measurements I have partic-
ipated in have resulted in the quantification of some physical quantity or quantitative
comparison. To add to this, both the spatial dimensions and, more importantly, the
relative intensities of exposures have been used to produce such results. To some this
might be commonplace, but considering that FRAME is (1) a technique that requires
manipulation of intensities even before light reaches the sensor in order to work, and
(2) is still very much in a development phase, this progress is significant and some-
thing to be lifted. There is still some way to go and wrinkles to be ironed out, which
is where the “towards” comes in, but the results presented demonstrate the viability
of FRAME as a quantitative method. The pyrometry measurements demonstrate that
multispectral FRAME can be used in conjunction with techniques utilizing relative
intensities for quantitative measurements, and the spectral flexibility of FRAME and
its ability turn any camera multispectral has been key to producing the temporally
well-resolved temperature images in Paper II. This step forward in the development
and application of the FRAME technique is something I am very proud of.

With this final statement, I would like to thank you for making it all the way to the
end. This work has been a journey in many aspects, and I am grateful that I have
gotten to share some of what I have learned with you. After all, what would be the
use of all this work if I did not share it?

Snipp snapp snut, så var sagan om färgavbildning slut.

¹...in writing. I can give no other guarantees.
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Hard work is not hard when done with friends.
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Paper I: A light-efficient and versatile multiplexing method for snapshot
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This paper presents a novel optical design for spectral multiplexing using FRAME,
improving the light-efficiency compared to previous iterations. Making use of this
improvement, the setup is used in combination with an intensified camera to capture
multispectral images of nano-second plasma discharges. It is also used with a high-
capture rate camera, as well as a monochrome CMOS-camera to perform pyrometry
imaging on a propane flame.
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all data used for the paper, with occasional experimental assistance from EK, YB and VK.
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Paper II: Multispectral coded light for time-resolved temperature imaging
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