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Abstract

Abstract

Perceiving and understanding human motion is a fundamental problem in com-
puter vision, with diverse applications encompassing sports analytics, health-
care monitoring, entertainment, and intelligent interactive systems. Multi-
camera systems, by capturing multiple viewpoints simultaneously, enable ro-
bust tracking and reconstruction of human poses in 3D, overcoming limitations
of single-view approaches. This thesis addresses key bottlenecks encountered
when designing and deploying multi-camera systems for 3D human and scene
understanding beyond controlled laboratory settings.

Paper I introduces a human-pose-based approach to extrinsic camera calibration
that leverages naturally occurring human motion in the scene. By incorporat-
ing a 3D pose likelihood model in kinematic chain space and a distance-aware
confidence-weighted reprojection loss, we enable accurate wide-baseline calib-
ration without calibration equipment. This allows for rapid deployment and
reconfiguration of multi-camera systems without requiring technical expertise.

The reliance on large labeled datasets presents a significant obstacle to the
widespread adoption of action recognition systems. In Paper II we propose a
self-supervised learning framework for skeleton-based action recognition. We
adapted Bootstrap Your Own Latent (BYOL) for 3D human pose sequence rep-
resentation. Our contributions include multi-viewpoint sampling that leverages
existing multi-camera data, and asymmetric augmentation pipelines bridging
the domain shift gap when fine-tuning the network for downstream tasks. This
self-supervised method reduces the need for labeled data, shortening develop-
ment time for new applications.

Paper III focuses on robust 3D human pose reconstruction, particularly in chal-
lenging real-world scenarios. Triangulation-based methods struggle in occluded
or sparsely-covered scenes. We designed an encoder-decoder Transformer model
that regresses 3D human poses from multi-view 2D pose sequences, and in-
troduced a biased attention mechanism that leverages geometric relationships
between views and detection confidence scores. Our approach enables robust
reconstruction of 3D human poses under heavy occlusion and when few input
views are available.

In Paper IV, we tackle open-vocabulary 3D object detection from sparse multi-
view RGB data. Our approach builds on pre-trained, off-the-shelf 2D networks
and does not require retraining. We lift 2D detections into 3D via monocular
depth estimation, followed by multi-view feature consistency optimization and
3D fusion of sparse proposals. Our experiments show that this approach can



produce comparable results to state-of-the-art methods in the densely sampled
setting while significantly outperforming the state-of-the-art for instances with
sparse-views.
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Popular Summary

Popular Summary

Human motion has fascinated scholars and artists since ancient times. The
advent of photography and film, allowing to capture movement accurately, paved
the way for modern scientific study of motion. Modern computer systems can
now identify where a person’s body parts are located in images, creating simple
stick-figure representations that track how people move, enabling automatic
analysis. But a single camera viewpoint provides limited information: it is
impossible to tell how far away objects are, and objects or other people may
block the view. With several cameras capturing a scene from different angles,
we can estimate true 3D information, much like how our two eyes work together
to give us depth perception. This thesis proposes methods for building practical,
robust systems that can perceive and understand human activities and scenes
in 3D using multiple cameras.

Before multiple cameras can work together, their exact positions and orienta-
tions must be known. This can be done by calibrating the cameras, a process
often involving special equipment, like checkerboard patterns, waved through
the scene following specific procedures, which often requires a trained operator
to achieve good accuracy. This can be long and expensive, making it impractical
for scenarios requiring fast installation. In this thesis, we present a new calib-
ration method that uses the people moving in the scene as calibration patterns,
enabling faster installation without equipment: all it takes is for someone to
walk around the scene for a while something that might happen naturally in a
new installation.

In controlled laboratory conditions, perfectly calibrated cameras would allow
flawless reconstruction of human poses in 3D. But real-world environments
present significant challenges. Furniture, other people, or even the environ-
ment itself may hide parts of a person, lighting conditions may vary, and the
initial position estimates can be noisy or inaccurate. Simply combining these
imperfect observations can result in distorted or absurd body poses. To recon-
struct accurate 3D human poses even under challenging conditions, we trained
a neural network to pay attention to the geometric relationships between views
and to the movements of 2D poses over time. It learns to create coherent and
accurate 3D human posture and motion even when some body parts are not
visible to any of the cameras, filling in the gaps with realistic predictions based
on how people naturally move.

Once we have accurate 3D movement sequences, we can teach computers to
recognize different activities, like "walking” or "doing push-ups”. Training com-
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puters for activity recognition usually requires large amounts of labeled data,
where humans manually mark and name each activity in thousands of motion
sequences. This is labour-intensive and very expensive. What’s more, recog-
nizing a new activity requires collecting and labeling new data from scratch.
On the other hand, just collecting unlabeled movement data is easy and inex-
pensive. We developed a self-supervised learning method that allows computers
to learn meaningful patterns from large amounts of unlabeled movement data.
For example, it learns that an action remains fundamentally the same even
when viewed from different angles, or when performed at different speeds. After
this initial learning phase, called pre-training, the system is very adaptable: it
can quickly learn to recognize new activities using just a few labeled examples,
significantly reducing the time and cost of training.

Truly understanding human behaviour requires more than just tracking body
movement. We interact constantly with our environment, and our movements
take on specific meaning depending on the context: standing in front of a refri-
gerator suggests that you will open it; moving towards a chair indicates that you
are about to sit down. Without seeing the surrounding objects, these movements
could mean almost anything. We developed a method for localizing objects in
3D using just few camera views and everyday language descriptions, like "a
blue bowl” or "an office chair”. This enables the system to find objects it has
never been trained to recognize, providing rich environmental context for human
activity.

Together, these contributions help move multi-camera 3D perception systems
from the lab to the real world, making them more accessible, efficient, and
effective for diverse applications such as sports analysis, safety monitoring, en-
tertainment, and beyond.
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Résumé en Francais

Résumé en Francais

Le mouvement humain a fasciné scientifiques, philosophes et artistes depuis
I’Antiquité. L’avenement de la photographie et du cinéma, permettant de cap-
turer les postures avec précision, a ouvert la voie & I’étude scientifique moderne
du mouvement. Les systémes d’intelligence artificielle (IA) peuvent désormais
identifier la position des parties du corps humain a partir d’images, créant des
représentations simplifiées en forme de "bonhomme allumette” correspondant a
des points clés anatomiques, permettant une analyse automatique. Mais un seul
point de vue ne fournit que des informations limitées : il est impossible de déter-
miner a quelle distance se trouvent les objets, et la vue peut étre partiellement
bloquée. En utilisant plusieurs vues de la méme scéne sous différents angles, il est
possible d’obtenir des informations en 3D, de la méme fagon que nos deux yeux
travaillent ensemble pour nous donner la perception de la profondeur. Cette
theése propose des méthodes pour concevoir des systémes pratiques et robustes
capables de percevoir et de comprendre les activités humaines et les scénes en
3D en utilisant plusieurs caméras.

Pour que plusieurs caméras puissent fonctionner ensemble, leurs positions et
orientations respectives doivent étre connues exactement. Cela peut se faire en
calibrant les caméras, un processus qui requiert un équipement spécialisé, comme
des motifs en damier, déplacés a travers la scene selon des procédures spécifiques,
ce qui nécessite souvent un opérateur expert pour obtenir une bonne précision.
Cela peut étre long et cotiteux, rendant impratiques les applications nécessitant
une installation rapide. Dans cette thése, nous présentons une nouvelle méthode
de calibrage qui utilise les personnes se déplagant dans la scéne comme motifs
de calibrage, permettant une installation plus rapide sans équipement: il suffit
que quelqu’un se promene dans la scéne pendant un moment.

Dans des conditions de laboratoire controlées, des caméras parfaitement cal-
ibrées permettraient une reconstruction parfaite des poses humaines en 3D.
Mais les environnements réels présentent des défis importants. Les meubles,
d’autres personnes, ou méme l'’environnement lui-méme peuvent occulter des
parties d’une personne, les conditions d’éclairage peuvent varier, et les estima-
tions de posture initiales peuvent étre bruitées ou inexactes. Simplement com-
biner ces observations imparfaites aboutit souvent a des postures 3D déformées
ou absurdes. Pour reconstruire des poses humaines 3D précises méme dans des
conditions difficiles, nous avons entrainé un réseau de neurones a préter atten-
tion aux relations géométriques entre les vues et a ’évolution des poses 2D au
fil du temps. Il apprend a recréer des postures et mouvements humains 3D
cohérents et précis méme lorsque certaines parties du corps ne sont visibles par
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aucune des caméras, comblant les lacunes avec des prédictions réalistes basées
sur la fagon dont les gens se déplacent naturellement.

Une fois que nous avons des séquences de mouvement 3D précises, nous pouvons
enseigner aux ordinateurs a reconnaitre différentes activités, comme "marcher”
ou faire des pompes”. Entrainer des ordinateurs pour la reconnaissance d’activ-
ités nécessite habituellement de grandes quantités de données annotées, ou
des humains marquent et étiquettent manuellement chaque activité dans des
milliers de séquences de mouvement. C’est intensif en main-d’ceuvre et tres
coliteux. De plus, reconnaitre une nouvelle activité nécessite de collecter et
d’étiqueter de nouvelles données. D’autre part, simplement collecter des données
de mouvement non étiquetées est facile et peu cotiteux. Nous avons développé
une méthode d’apprentissage auto-supervisé qui permet aux ordinateurs d’ap-
prendre des représentations significatives a partir de grandes quantités de don-
nées de mouvement non étiquetées. Par exemple, elle permet d’apprendre qu’une
action reste fondamentalement la méme alors qu’elle est vue sous différents
angles, ou lorsqu’elle est exécutée a différentes vitesses. Apres cette phase d’ap-
prentissage initial, appelée pré-entrainement, le systéeme est tres adaptable: il
peut étre entrainé a reconnaitre de nouvelles activités en utilisant seulement
quelques exemples étiquetés, réduisant considérablement le temps et le coiit
d’entrainement.

Comprendre le comportement humain nécessite plus que de simplement suivre
le mouvement du corps. Nous interagissons constamment avec notre environ-
nement, et nos mouvements prennent un sens spécifique selon le contexte: vous
tenir debout devant un réfrigérateur suggere que vous allez I’ouvrir; vous diriger
vers une chaise indique que vous étes sur le point de vous asseoir. Sans voir
les objets environnants, ces mouvements pourraient signifier presque n’importe
quoi. Nous avons développé une méthode pour localiser des objets en 3D en
utilisant seulement quelques points de vue ainsi que des descriptions en langage
courant, comme ”un bol bleu” ou ”"une chaise de bureau”. Cela permet au sys-
teme de trouver des objets qu’il n’a jamais été entrainé a reconnaitre, fournissant
un contexte environnemental riche pour 'activité humaine.

Ensemble, ces contributions aident a faire passer les systemes de perception
3D multi-caméras du laboratoire au monde réel, les rendant plus accessibles,
efficients et adaptables a diverses applications telles que 'analyse sportive, la
surveillance de sécurité, le divertissement, et au-dela.
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Chapter 1

Introduction

Perceiving and understanding human motion is a longstanding challenge in re-
search, with roots extending back to the earliest scientific studies of anatomy.
Accurate 3D motion capture and analysis has become an essential tool for many
applications such as sports analytics [7, , |, healthcare [11, 76, , 1,
and 3D content production [125, |. This thesis presents mehods for building
and deploying versatile, accessible and scalable systems for analyzing human
motion and understanding scenes in 3D from sparse multi-camera systems.

Marker-based motion capture systems such as Vicon [1], Qualisys [3] or Op-
tiTrack [2] are currently the gold standard for precise motion analysis [139].
Widely used in biomechanics research, film production, and clinical gait ana-
lysis, these systems use reflective markers placed on the body and tracked by
infrared cameras, enabling them to track movement with millimeter precision.
However, they require expensive specialized equipment and controlled environ-
ments. Wearable inertial sensors provide an alternative that is more flexible and
less expensive, as they do not require a capture rig. However, placing markers or
sensors on the subjects is intrusive, time-consuming and exact device placement
is difficult to reproduce between capture sessions [19, ]. Measuring human
movement should ideally be non-invasive and allow to capture subjects in their
natural environment, such as workplaces, sport fields or public places, without
encumbering their movements and without preparation.

Recent advances in deep learning have enabled markerless human pose estima-
tion from images [15, 80, ) , , |, paving the way for motion capture
using only cameras, which are ubiquitous, inexpensive, and unobtrusive. How-
ever, monocular approaches to human pose estimation face fundamental limit-
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ations that restrict their applicability in many practical scenarios. The most
significant limitation is the inherent depth ambiguity arising from perspective
projection: infinitely many 3D body poses can produce identical 2D projections
[168]. Occlusion presents another critical challenge for single-view systems. Self-
occlusions occur naturally during human movement as body parts move in front
of each-other, while environmental occlusions arise from furniture, equipment,
or other people in the scene. When body joints are not visible in the image,
monocular methods must rely on learned priors about human anatomy and
motion, which may fail for unusual poses or activities not well-represented in
training data. Furthermore, single-camera systems provide only limited spatial
coverage of the capture area. Subjects moving outside the camera’s field of view
are completely lost, and even within the visible area, pose estimation accuracy
typically degrades with distance from the camera center. This spatial limitation
severely constrains the types of activities that can be monitored and analyzed,
particularly in large environments or scenarios requiring freedom of movement.

Multi-camera systems offer compelling solutions to many single-view limitations
by capturing the scene from multiple viewpoints simultaneously. The funda-
mental geometric advantage lies in depth resolution: with calibrated cameras
observing the same 3D scene, accurate depth information can be recovered by
triangulation without the ambiguities inherent in monocular estimation. This al-
lows reconstruction of poses in absolute world coordinates, enabling applications
that require precise spatial measurements. The spatial redundancy provided by
multiple cameras also significantly improves robustness to occlusions. Body
parts occluded in one view may remain visible in others, allowing the system to
reconstruct 3D body poses even under challenging conditions. This redundancy
also enables more reliable pose estimation, as inconsistent observations across
views can be identified and corrected for.

While multi-view human pose estimation has achieved impressive results, the fo-
cus has mainly been on developing accurate methods in controlled environments.
Most academic research in multi-view pose estimation has been conducted us-
ing carefully designed setups to maximize system performance, such as optimal
lighting conditions, uncluttered backgrounds, and precisely calibrated camera
systems positioned to provide maximal spatial coverage with minimal occlu-
sions. The Human3.6M [63] and CMU Panoptic [07] datasets, which serve as
standard benchmarks in the field, exemplify this controlled approach with their
well-lit studio setups and marker-based motion capture ground truth. Some
high-end systems, such as Hawk-Eye [!], have taken multi-camera systems out
of the lab for accurate 3D motion analysis, but they are very expensive, their
installation is time-consuming and requires expertise, and they are designed to
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perform extremely well in very well-defined settings.

In this thesis, we present methods for developing and deploying cost-effective
and versatile multi-camera systems for human and scene understanding. They
enable fast installation and calibration without requiring dedicated calibration
equipment or expertise, flexible configurations, and robust performance across
diverse environments.

1.1 Challenges and Research Questions

The work presented in this thesis was conducted during the design and imple-
mentation of MCS, a multi-camera 3D perception platform developed at Sony’s
R&D center in Lund, which we present in Chapter 2. When designing the MCS
system, our core objective was to create a system that was not only capable
but also practical, robust enough for deployment in challenging environments,
and adaptable to diverse applications. The implementation and deployment of
MCS revealed challenges and inspired ideas that existing approaches had not
adequately addressed. These directly motivated the research questions that
structure this thesis.

A prerequisite for extracting 3D information from multiple camera views is to
calibrate the cameras to establish their relative poses. Traditional multi-view
systems require expert calibration using specialized equipment such as checker-
board patterns or structured light projectors. This process is time-consuming,
requires trained personnel, and must be repeated whenever cameras are moved.
Exploring new ideas often involves evaluating different camera situations in vari-
ous environments and collaborating remotely with domain experts who are not
always tech-savvy. This leads to our first question:

RQ1: How can extrinsic camera calibration be made more accessible while
maintaining accuracy?

This challenge motivated Paper I, where we developed a human-pose-based cal-
ibration method that uses naturally occurring human motion as calibration pat-
terns, enabling rapid deployment without specialized equipment or expertise.

Real-world deployment environments present numerous challenges that are dif-
ficult to anticipate in laboratory settings. Room layouts dictate possible camera
placement, often resulting in suboptimal viewing angles and coverage gaps. The
availability of power outlets and the practicality of running cables constrain
system architecture, frequently forcing compromises between spatial coverage
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and installation feasibility. Lighting conditions vary throughout the day and
may cause challenging conditions such as backlighting, harsh shadows, or insuf-
ficient illumination. These issues may produce noisy or missing 2D body part
detections. Traditional triangulation-based reconstruction methods fail cata-
strophically in these conditions. The question emerged:

RQ2: How can we achieve robust 3D human pose reconstruction with sparse
views and in challenging environments?

Paper III presents a learning-based approach that treats multi-view 3D recon-
struction as a regression problem, leveraging geometric constraints and temporal
continuity to handle missing and noisy observations.

Accurate 3D human pose estimation enables further processing and analysis. It
is for example possible to classify the activities of the persons moving in the
scene from sequences of 3D poses. Traditional supervised learning approaches
demand extensive datasets with labeled motion sequences. This means that,
even for exploring potential ideas, a considerable amount of time and resources
need to be spent in gathering, curating and annotating data, before the idea
can be evaluated. This is both costly and time-consuming, creating prohibitive
barriers for exploring new applications. This motivated the question:

RQ3: How can we learn effective representations for human action recognition
without extensive labeled data?

In Paper II we propose a self-supervised representation learning method for
pretraining action recognition models from unlabeled multi-view data, reducing
the requirement for labeled data when tackling new downstream tasks.

While we have thus far focused exclusively on human pose estimation and ana-
lysis, human actions gain meaning through their environmental context: seeing
someone reaching with their hand is not informative without knowing what ob-
jects are nearby. Moreover, many applications of multi-camera systems, from
facility management to retail analytics, require detecting and localizing objects
beyond humans. However, training a 3D object detector for every possible
object category would be prohibitively expensive, requiring extensive data col-
lection and annotation for each new deployment scenario. This motivates the
need for open-vocabulary detection, where the system can detect arbitrary ob-
jects specified through natural language queries without retraining. Existing
open-vocabulary 3D detection methods rely on dense point clouds from RGB-D
sensors or hundreds of images, essentially building a complete 3D reconstruction
of the scene before detection can occur. This is impractical for real-time systems
with sparse cameras. This raises our fourth research question:
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RQ4: How can we achieve open-vocabulary 3D object detection from sparse
RGB views?

In Paper IV we develop a training-free approach for open-vocabulary 3D ob-
ject detection from sparse RGB views that leverages pre-trained vision-language
models and enforces multi-view consistency through optimization of monocular
depth estimates. This enables the same camera system to provide comprehens-
ive scene understanding, detecting both humans and arbitrary objects from just
a few RGB views.

1.2 Thesis Outline

Chapter 2 describes the multi-camera system that motivated this research, de-
tailing its architecture, applications, and the challenges that informed our re-
search questions. Chapter 3 provides background on computer vision, multi-view
geometry, deep learning, and human pose estimation necessary for understand-
ing the technical contributions. Chapter 4 concludes with a synthesis of our
contributions. The second part of the thesis contains the four papers that con-
stitute the core technical contributions of this thesis.






Chapter 2

The MCS System

This thesis was conducted during the development of MCS (Multi-Camera Sys-
tem), a multi-view computer vision platform developed at Sony’s R&D center
in Lund.

The initial motivation for MCS arose from the need to explore new applications
for human and animal activity recognition. Early experiments quickly showed
that 2D analysis, including monocular 3D pose estimation, was insufficient for
robust activity understanding in unconstrained environments. We concluded
that the task would best be performed using multiple cameras capturing the
subjects from different viewpoints. However, existing multi-view solutions were
either too expensive, too complex to deploy, or too rigid to adapt to diverse
environmental constraints. We needed a versatile, cost-effective platform that
could be deployed quickly, reconfigured easily, and could be adapted to diverse
use cases.

2.1 Architecture Overview

Figure 2.1 presents an overview of MCS’ architecture. Distributed cameras
capture synchronized video streams, and 2D human poses are estimated for
each frame. During installation, multi-view pose sequences are used to calibrate
the cameras. The person detections are matched across the camera views and
3D poses are reconstructed, for example via triangulation (Sec. 3.1.5). The 3D
poses can be further processed, e.g. for activity recognition, or rendered for
visualization.



Chapter 2. The MCS System

. Skeleton-Based
ansruc :
@ Reconstruction Action —

Recognition

Estimation -
Visualize

Extrinsic
Camera
Calibration

Analyze

Figure 2.1: High-level overview of the MCS system architecture. Distributed cameras capture synchronized video streams,
from which 2D human poses are estimated in each frame. During installation, sequences of multi-view poses are
used for automatic extrinsic camera calibration. Once cameras are calibrated, the system matches detections
across views and reconstructs 3D pose sequences, which can then be used for downstream tasks such as
skeleton-based action recognition, visualization, and logging.

The MCS system has a modular architecture enabling its components, such as
2D pose estimation, 3D reconstruction and activity recognition, to be deployed
in different topologies, as shown in Fig. 2.2. In the centralized configuration,
cameras are connected to a single computer, enabling low-latency processing for
simple room setups. In some environments, cables can not be easily run to the
main computer, for example in large spaces, or in settings where cables should
not be visible. In such situations, the system can be installed in a decentralized
configuration, where each camera is connected to an edge processing unit per-
forming 2D pose estimation. The 2D poses are streamed wirelessly to a main
computer for 3D pose reconstruction and further analysis. In this configura-
tion, only semantic data is exchanged over the network, and the images do not
need to leave the edge computing units; this significantly reduces bandwidth
requirements and can be seen as a privacy-preserving feature, as the 2D pose
data does not contain any identifiable personal details. Finally, in very large
spaces the system can be installed in a semi-distributed, cascaded configuration
employing multiple computers, each handling 2D detection for several cameras
while sending results to a central 3D reconstruction unit.

2.2 Applications

MCS’ versatility has enabled deployment across very diverse application do-
mains, each demonstrating different aspects of the system’s capabilities and
posing new technical challenges that informed the research presented in this
thesis.
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Figure 2.2: MCS network topologies for different deployment scenarios. Left: centralized configuration, where all cameras
are connected to a single computer performing 2D detection, 3D reconstruction, and analysis with minimal
latency. Middle: decentralized configuration, in which edge units perform 2D pose estimation locally and
stream only 2D poses to a central unit for 3D reconstruction, reducing bandwidth requirements. Right:
cascaded configuration for large spaces, combining several intermediate computers handling subsets of cameras
before aggregating results in a central unit.

Realtime gym exercise recognition. The first major application of MCS
was a proof-of-concept for Sony’s Advagym service, providing automated exer-
cise tracking and repetition counting in gym environments. The system was
trained to recognize 15 different exercises, such as push-ups or squats, offering
real-time feedback and session logging for multiple simultaneous users. The
distributed architecture proved particularly valuable in gym settings, where ex-
tensive cabling is often impractical. This application demonstrates the system’s
ability to handle complex multi-person scenarios with frequent occlusions from
equipment and other users. It also informed many design choices for the system,
and in particular made us reflect on how the system would scale in the future:
if it became a commercial application, how could camera systems be installed
and calibrated in hundreds of gyms while keeping the costs manageable? How
could we handle gathering data and training action recognition models to re-
cognize the hundreds of exercises that are commonly used by gym-goers across
the world? How could 3D reconstruction be implemented to be robust to the
many occluding objects typically present in a gym?

Livestock research. Multiple MCS systems have been deployed at the Swedish
University of Agricultural Sciences’ research farm in Uppsala to study dairy cow
welfare, e.g. for detecting brush use or measuring abnormal posture transitions
[61, 74, 75]. This domain presents unique challenges beside detecting and track-
ing animals rather than humans, including harsh environmental conditions, and
the need for continuous long-term remote operation with minimal maintenance.
In particular, sending technicians to remote farms for recalibration would be
economically infeasible.
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Figure 2.3: Example applications of MCS. Top-left: Real-time gym exercise recognition and counting. Top-right: Dairy
cow 3D pose estimation and analysis. Bottom: Interactive entertainment experiences, including CinemaCon
2022, Hall des Lumiéres (New-York) and the Michael Jackson Thriller 40 Immersive Experience, where visitors’
movements are captured and drive visual effects in real time.

Interactive experiences. MCS has powered several high-profile interactive
installations, for example at the Hall des Lumieres, and travelling promotional
events for Sony entertainment properties, e.g. at CinemaCon 2022, the 2023 Li-
censing Expo, or the travelling Michael Jackson Thriller 40 Immersive Experi-
ence. These applications feature large screens surrounded by cameras that detect
the visitors’” movements to trigger interactive content. For example, perform-
ing Spider-Man’s signature hand gesture would activate web effects on screen.
These installations require robust performance in challenging environments with
variable lighting, crowded conditions, and complex backgrounds. The inter-
activity of the applications also puts hard requirements on the latency of the
whole system, from image capture through action recognition to rendering. The
touring nature of these applications has been a particular challenge, requiring
rapid deployment capabilities as the system must be installed, calibrated, and
operational within a short time in completely new venues.

Each application has presented its own set of challenges and influenced the
research agenda of this thesis.

10
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2.3 From Applications to Research Questions

Across all applications, camera calibration emerged as a critical bottleneck. Tra-
ditional checkerboard calibration required specialized equipment that needed to
be shipped to each location and trained operators who understood the calibra-
tion process. For the touring marketing installations, it was vital to reduce the
complexity and time requirements for the calibration process. A major success
factor for the MCS project was the ease of collaboration with teams of domain
experts in remote locations and with different backgrounds. Having to start each
partnership by a crash course on camera calibration or to personally assist with
setup and maintenance of the systems would have been cumbersome and costly,
and may have ultimately derailed the project. This directly motivated RQ1 and
Paper I's research into human-pose-based calibration. By using natural human
motion as the calibration target, we eliminated equipment requirements and
reduced calibration to simply asking someone to walk around the space.

As we started to deploy MCS outside our lab, we soon realized that real-world
environments violated many assumptions of traditional multi-view algorithms.
Occlusions were the norm, not the exception, camera placement was dictated by
practical constraints, lighting could not be easily adapted to our requirements,
and background clutter confused 2D pose estimation models. With noisy or
missing 2D joint detections, reconstructed 3D poses were corrupted, causing
further analysis modules to fail. For example in the gym application, exer-
cises were misclassified or some repetitions were missed, and spurious events
would be triggered in interactive applications. These challenges inspired RQ2.
The learning-based approach to 3D reconstruction proposed in Paper III, which
explicitly handles missing 2D detections proved more robust than triangulation-
based alternatives in challenging environments.

Using the reconstructed 3D poses for activity recognition involves training an
activity classification model on large datasets of labelled pose sequences. When
developing the gym application, we had to collect and manually annotate a
large amount of examples for each new activity. Although we only supported
15 exercises in this prototype, this took a considerable amount of time and
resources. Should the prototype become a commercial application, we realized,
it would need to support many more exercises. This way of working would hardly
scale. Simultaneously, as the system gained popularity within the company and
we came into contact with new teams, many new ideas were generated. But by
definition, when exploring a new domain few or no annotated data are available,
which means that, even for exploring potential ideas, a considerable amount of
time would have to be spent in gathering, curating and annotating data, before

11
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the idea could be evaluated. The annotation bottleneck severely limited our
ability to explore new applications. This need to support rapid idea evaluation,
and to be able to scale in case of success, triggered RQ3. While pondering it,
we realized that our various installations continuously gathered data, although
we did not have the time or the resources to curate them. By pre-training
on unlabeled multi-view pose data, the method presented in Paper II makes it
possible to obtain activity recognition models that can be rapidly fine-tuned to
recognize new activities with minimal annotation effort, considerably reducing
development time.

As the system matured and was now installed in various locations, a recurrent
question was whether it could provide information about more than just the
people moving in the scene. Providing data about the contents of the scenes,
what objects were present and how they were used, could pave the way for
many new applications. Efforts had been made to implement detectors for
certain objects, but the work required to gather and annotate data for these
object detectors meant that this fully-supervised approach would not help us
realize such scene understanding. This led us to RQ4. Paper IV proposes a
training-free pipeline for open-vocabulary 3D object detection using only sparse
RGB images as input, a simple approach that is well-suited for continuous scene
understanding under practical constraints.

2.4 Conclusion

The MCS system serves as both a practical platform for real-world deployment
and a research vehicle for addressing fundamental challenges in multi-view com-
puter vision. The diverse applications, from fitness tracking to interactive en-
tertainment, provided a rich source of practical challenges that informed our
research agenda.

Each deployment revealed limitations of existing approaches when confronted
with real-world constraints. These experiences motivated the research contri-
butions of this thesis, each addressing a specific pain point encountered during
deployment.

This tight coupling between system development and research exemplifies how
practical challenges can drive advances in computer vision, while ensuring that
research contributions address real needs.

12
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Background

3.1 Computer Vision

This section introduces key concepts from computer vision and multi-view geo-
metry used throughout this thesis. We cover the pinhole camera model and
image formation, feature detection and matching between images, epipolar geo-
metry for two-view systems, robust estimation using RANSAC, triangulation
for 3D point reconstruction, and bundle adjustment for joint optimization of
camera poses and scene structure.

These foundations are essential for understanding the multi-camera calibration
method in Paper I, the multi-view 3D pose estimation approach in Paper III,
and the 3D object detection system in Paper IV.

3.1.1 The Pinhole Camera Model

During image formation in a camera, the light reflected or emitted by visible 3D
points is projected onto the image plane. While several mathematical models
can describe the relation between the world coordinates of the 3D points and the
2D coordinates of their projections, the most widely used in computer vision is
the pinhole camera model, a simple model that can, with some adaptations, be
used to accurately describe the viewing geometry of most cameras. It describes
how a perspective camera maps 3D points in the world to 2D points in the image.
A key characteristic of perspective cameras is that they preserve straight lines.
This simple model approximates a camera as a box with an arbitrarily small

13
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Figure 3.1: Pinhole camera model.

hole. Light rays passing through the hole, or camera center, project an image
of the scene onto a back screen called the focal plane. This is the principle of
the camera obscura, which has been used by artists and scientists since the 16th
century to reproduce correct perspective. The line perpendicular to the focal
plane and passing through the camera center is known as the optical axis and
the point at which it intersects the image plane is called the principal point.
The camera is represented by a 3D frame with its origin in the camera center,
with the z-axis pointing forwards along the optical axis.

While the physical model projects the scene upside down, it is often more con-
venient to consider a virtual image plane that is parallel to the focal plane
and located in front of the camera center, for example the normalized im-
age plane at z = 1. As seen in Fig. 3.1, by similar triangles, the ray from
the origin C = [0,0,0]” to X = [X,Y,Z]" intersects the image plane at
x=[X/Z,Y/Z,1]".

In computer vision, it is common to represent points in Euclidean space R™
using their homogeneous coordinates in projective space P", i.e. x = [z,y]” €
R? can be represented by X = [z,y,1]T € P2 and X = [X,Y,Z]T € R? can
be represented by X = (X,Y, Z, 1]T € P3. Homogeneous coordinates enable
to represent perspective projections as linear transformations, which greatly
simplifies many geometric computations.

Using homogeneous coordinates, the mapping from 3D point coordinates to

14



3.1. Computer Vision

points on the image plane can be written in matrix form:

X

x 1
1 0 1

Converting from normalized image coordinates to pixel coordinates can be achieved
by an affine transformation represented by the camera calibration matrix:

fa 5 cz
u=| 0 fy cy | X = Kx. (3.2)
0 0 1

Here K contains the intrinsic parameters of the camera. f, and f, are the focal
lengths in pixels, (cz,cy) is the principal point in pixel coordinates, which in
ideal conditions would be in the centre of the image, and s is a skew factor that
is often omitted in modern cameras.

Thus the transformation from 3D coordinates to pixel coordinates can be ex-
pressed _ _
u=7(K[I 0]X)=nr(PX), (3.3)

where P is the camera matriz, and 7 is the perspective projection operator:
T T
m([z,y,2]") = [2/2,y/7]

Until now, we have considered a camera centered on the origin of the coordinate
system and with viewing direction along the z-axis. For cameras with general
position and orientation, the full camera matrix taking 3D point coordinates to
pixel coordinates is given by

P=KI[R t], (3.4)

where t € R3 represents the camera translation and R is a 3 x 3 rotation matrix.
R and t are called the extrinsic parameters of the camera.

While the pinhole camera model provides an excellent approximation for many
applications, it is only a convenient abstraction, as the light passing through an
arbitrarily small hole would not suffice to form an image in realistic settings.
Actual cameras use larger openings to allow more light to enter, and lenses to
concentrate and focus the light rays. The spherical shape of the lenses causes
the light to be refracted differently at the center and at the edges. This effect,
called radial distortion, makes straight lines appear curved in images. Tangen-
tial distortion, resulting from imperfect lens alignment during manufacturing,
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causes additional displacement perpendicular to the radial direction; however,
in most modern cameras tangential distortion is often negligible compared to
radial distortion.

In this thesis, we consider calibrated cameras for which the distortion parameters
have been estimated and corrected for, effectively enabling the use of the simple
pinhole camera model.

3.1.2 Feature Detection and Correspondence

Many problems in multi-view computer vision require finding and matching
points of interest across images, for example for panorama stitching, camera
pose estimation or sparse 3D reconstruction. The first step involves detecting
candidate salient points or keypoints, i.e. points with well-defined position in
the image and where the local structure of the image is rich in local information
contents, typically at corners or regions with distinctive texture patterns. For
each keypoint, a feature descriptor is computed, usually a vector calculated from
the appearance of the image patch centered on the keypoint. Keypoints can then
be matched between views by comparing their feature descriptors. For example,
two keypoints can be matched if the Euclidean distance of their descriptors is
below a given threshold.

A straightforward feature descriptor would be to take the raw pixel patches
around the keypoints. However, small transformations can drastically affect
feature distances. Ideally, features should be repeatable and invariant to per-
spective effects and illumination, so that different projections of the same 3D
point can yield similar feature descriptors across viewpoints. Many algorithms
for feature detection and description have been developed, such as SIFT [39],
SURF [9], or ORB [120]. In particular, SIFT revolutionized feature detection
and matching due to its invariance and robustness to changes in scale, rota-
tion, and illumination, enabling the development of techniques for large-scale
Structure from Motion (SfM), i.e. reconstruction of 3D scenes from 2D images.

Classical feature detectors are designed to detect salient points where image ap-
pearance shows high variation and do not typically find keypoints in textureless
areas. Moreover, when two cameras have a wide baseline and observe the same
object from very different viewpoints, the projections of the same 3D points in
the images may have very different appearances. Recently, deep learning meth-
ods that learn to perform detection and description simultaneously have made
substantial progress towards handling these issues [30, 35, , ]. Although
these methods can handle large changes in viewpoint, this is sometimes insuffi-
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Figure 3.2: Epipolar geometry. If the projection of X on the left image is x, then its projection on the right image must
be located on the corresponding epipolar line £’. The essential matrix allows to compute ¢’ from x.

cient. In extreme cases, two cameras may see completely different sides of the
same object, a case which no appearance-based descriptor can handle.

In Paper I, we use 2D body joint detections as keypoints, as their semantic
nature has several advantages. Like in X-ray imaging, the same anatomical
joint can be conceptually seen "through” the body, making human joints more
reliable for correspondence matching across wide baselines compared to tradi-
tional feature descriptors. Matching body keypoints across time frames is also
straightforward, enabling the creation of tracks that can be used to enforce mo-
tion constraints. Finally, body keypoints also enable leveraging constraints on
the structure of the body, such as constant limb lengths or plausible poses.

3.1.3 Epipolar Geometry

When two cameras observe the same 3D scene, the geometry relating the cam-
eras, 3D scene points and the corresponding 2D observations is referred to as
the epipolar geometry of the camera pair. This geometric relationship provides
fundamental constraints that are essential for multi-view computer vision ap-
plications.

As illustrated in Fig. 3.2, consider two cameras observing the same 3D point X,
whose projection in each of the image planes is located at x and x’ respectively.
The camera centers are located at C and C’, and the line between them is
referred to as the baseline. The baseline intersects the image planes in two
locations e and €’ called the epipoles (i.e. the projection of the other camera’s
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center on each image plane). The two camera centers and the point X span the
epipolar plane, which intersects the image planes along the epipolar lines ¢ and
¢'. As x and X’ are necessarily on the epipolar plane, they are both located on
the epipolar lines ¢ and #', respectively.

Suppose that both the intrinsic and extrinsic parameters of the cameras are
known, and that the coordinate system is that of the first camera. The projection
matrices of the cameras are

P=KJ[/ 0], PP=K'[R t]. (3.5)

Given the homogeneous pixel coordinates @, ' of observations in each image,
the normalized image coordinates (or ray direction vectors) are

x=K'i~[I 0]X, =K'~ |[R t]X, (3.6)
hence
M =[I 0]X=X (3.7)
N% =[R t]X =RX+t,
where A, ) € R\ {0} are unknown scalars as the position of X is unknown.

Substituting in the above equations, the observation X in the left image can be
mapped onto the right image by the transformation

NX' = ARX + t. (3.9)
Taking the cross-product with t on both sides gives

Nt] % =[t] (ARX+t) = A[t] RX, (3.10)
where [t] .. 1s the skew symmetric matrix representing the cross-product with
t. Taking the dot product with X’ on both sides gives a triple product with two
identical elements on the left side, which is equal to 0, hence the nonnegative
scalars A and )\ can be eliminated:

T [t] & =xT[t] Rx=%"TEx=0. (3.11)

X X

The matrix F = [t] . R, called the essential matriz, encodes the relationships
between corresponding points in the two images. Equation (3.11), known as the
epipolar constraint, is powerful: even though the location of X is unknown, if
we observe X in one image we know that potential matches for x must be on the
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corresponding epipolar line ¢’ in the other image, which restricts the search space
from a 2D space to a 1D space. This dramatically reduces the computational
complexity of feature matching.

The epipolar constraint also allows to calculate the epipolar lines: given X, the
associated epipolar line in the right image is E7%, and given X', the correspond-
ing epipolar line in the left image is EX’. The biased attention mechanism in
Paper III encodes the epipolar constraint implicitly by giving higher weight to
2D observations lying closer to each other’s epipolar line.

The essential matrix F deals with points expressed in normalized camera co-
ordinates. Converting to pixel coordinates requires substituting the values of X
and X’ from Eq. (3.6), which yields

a"K"T[t] RK'a=d"Fa=0. (3.12)

The matrix F' is known as the fundamental matriz. Like the essential matrix,
it represents the epipolar geometry of the cameras and allows to calculate the
epipolar lines, but it does not require calibrating the cameras.

It is possible to retrieve F and F from point correspondences between two
images using classical algorithms. Both matrices can be estimated up to scale
using the 8-point algorithm [53, 88] with 8 point correspondences. Because of
the cross-product matrix, E and F' have rank 2. Leveraging this additional
constraint by enforcing that det(F) = 0 enables to obtain F' with only 7 point
correspondences [52], which gives three possible solutions for F. The essential
matrix has an additional trace constraint [29, 131] ensuring that it has two equal
singular values

2FEETE — tr(EET)E = 0. (3.13)

This allows to determine E with 5 correspondences for calibrated cameras using
the 5-point algorithm [102], which gives 10 possible solutions.

Once the essential matrix F has been obtained, it can be decomposed into R
and t, up to a similarity transform. Four distinct solutions for R and t are
possible, but only one enables to obtain points that are in front of both cameras
by triangulation.

In Paper I, we estimate the essential matrix for a first pair of cameras with the
8-point algorithm using 2D body joint observations, and obtain their relative
poses. This forms the foundation for our multi-camera calibration approach.
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3.1.4 RANSAC

In real settings, detected keypoints will typically contain some noise and the
correspondence set may contain mismatched keypoints that do not correspond
to the same 3D object. These outliers would severely degrade the quality of the
camera poses if they were used directly to estimate the camera matrices.

RANdom SAmple Consensus (RANSAC) [39] is an iterative method for robust
model estimation that enables fitting a model to a set of observations while
simultaneously filtering outliers. The key insight behind RANSAC is that while
outliers can dramatically corrupt model estimation, a model fitted to a small
subset containing only inliers should be supported by many of the remaining
true inliers.

At each iteration, a minimal number of observations is sampled and used to
estimate a model hypothesis. This hypothesis is then applied to all other obser-
vations and residuals are calculated. Observations with residuals smaller than
a predefined threshold are considered inliers and constitute the consensus set of
the hypothesis. After a given number of iterations the hypothesis that yielded
the largest consensus set is selected as the solution. Finally, a refined solution
can be estimated using the entire consensus set of the selected hypothesis.

The parameters of the RANSAC procedure are the number of sampled points
s, the residual threshold 7 and the number of iterations V. Sampling a minimal
number of observations (e.g. 8 in the case of the 8-point algorithm) increases
the probability of sampling only true inliers, which should yield a model with
many true inliers in the consensus set. The inlier threshold 7 is often set using
prior domain knowledge about expected noise levels and can be difficult to set
optimally in real-world applications. Some methods have been proposed to
adaptively estimate 7 during RANSAC [34, 59]. For a given inlier ratio w, the

number N of iterations that guarantees with probability p (e.g., p = 0.99) that at

log(1-p) W
log(1—w*)

[39]. Some variants of RANSAC are also able to estimate N adaptively based
on the observed inlier ratios during the RANSAC process [51].

least one sample of s observations will contain only true inliers is N = {

RANSAC is essential in multi-view geometry because feature matching algorithms
inevitably produce false correspondences, especially in challenging scenarios
with repetitive textures, lighting changes, or wide baselines. Without robust es-
timation, these outliers would make reliable camera pose estimation impossible.
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Figure 3.3: Triangulation. X should be found at the intersection of the rays passing through the camera centers and the
2D observations x and x’. However in real settings the observations will often be noisy and the rays may not
intersect.

3.1.5 Triangulation

Once camera poses are known and point correspondences have been established,
the 3D coordinates of scene points can be recovered through triangulation.

Figure 3.3 illustrates the problem with two cameras. Intuitively, the solution
should be found at the intersection of the rays passing through the camera
centers and the 2D observations. In real settings, however, the two rays will
typically not have a point of intersection, as the observations are usually noisy
and the camera matrices may not be perfectly estimated.

The optimal solution for the triangulation problem, assuming Gaussian noise of
the observations, minimizes the fo-norm of the reprojection error, and a simple
solution exists for two views [55], but finding the global optimum for more than
two views is an active subject of research [75].

While it does not guarantee an optimal solution, the Direct Linear Transform
(DLT) method [51] is a widely-used solution to the triangulation problem as it
is fast and generalizes well to multiple views.

Assume that we know the camera matrices P, of n > 2 cameras and n 2D
correspondences u; for a 3D point X, then

G=[uw v 1]’ ~PX (3.14)
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The vectors are collinear, hence

_ 5 0 —1 (¥ B
u; x PX = [ﬁi] " PX = 1 0 —wu| PBX=0. (3.15)
—v; U 0

This gives three linear equations for each camera, of which two are independent:

ui(pi® X) — (pi''X) = 0 (3.16)
vi(pi?'X) — (5" X) = 0 (3.17)
ui(piZTX) - Ui(pilTX) = 0. (318)

Combining these equations gives a system of linear equations in the form

u1p13T - PllT
B vip1®" — pi?” _
AX = X =0, (3.19)
UnPn®’ — pa'”
Unpn3T - pn2T

giving 2n equations for three unknown coordinates. In real applications the 2D
observations will propably be noisy and there may not be an exact solution,
so we will instead write AX = w and solve for X such that the norm of w is
minimized. This can be solved by determining the singular-value decomposition
(SVD) of A and choosing X as the right singular vector corresponding to the
smallest singular value of A.

Linear triangulation methods typically produce acceptable 3D estimates that
can be used to initialize iterative non-linear refinement methods. In Paper I, the
3D positions of human body joints visible in a first camera pair are initialized
using this method, and are optimized together with the relative poses of the
cameras in a bundle adjustment stage (Sec. 3.1.6).

The results produced by this method degrade when the noise of the 2D obser-
vation increases. This is a problem in particular for 3D human pose reconstruc-
tion, as the accuracy of 2D pose detections depends on factors such as lighting
conditions, occlusions, and viewing angle. Iskakov et al. alleviate the issue of
noisy detections by weighting each row in Eq. (3.19) with the confidence score
of the joints predicted by the detector [(1]. However, as the number of views
decreases, triangulation-based methods struggle, and when there are fewer than
two views they simply cannot produce a result. In Paper III we therefore propose
a learning-based method to solve the 3D pose reconstruction problem instead of
relying on triangulation.
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3.1.6 Bundle Adjustment

The methods we have seen so far can be used to sequentially estimate the relat-
ive poses of many cameras. After estimating the essential matrix for a camera
pair, the relative poses of the pair can be used to triangulate the coordinates
of 3D points that are visible in both cameras. For each subsequent camera,
triangulated 3D points that are visible in that camera are matched to 2D obser-
vations in that image, and used to estimate the camera pose using algorithms
such as EPnP [21]. The set of 3D points is expanded after the addition of each
camera by triangulating more visible points.

However, this incremental approach only uses partial information at each stage,
and errors due to noise and occlusions will typically accumulate. Moreover,
the sequential estimation process does not enforce global consistency across all
cameras and observations simultaneously.

Bundle adjustment is a nonlinear optimization method for producing a coherent
optimized reconstruction using all the cameras and 3D points simultaneously.
The term ”bundle” refers to the bundle of light rays connecting each 3D point to
its projections in multiple camera views. The method minimizes the reprojection
error across all cameras and 3D points:

min >l = m(BXG)I1%, (3.20)

Kl inj

where P; are the camera matrices, 5(]- are the 3D points in homogeneous coordin-
ates, u;; are the observed 2D projections, and 7 denotes the pinhole projection
operator defined in Sec. 3.1.1.

This optimization problem can be solved using nonlinear least squares methods
such as Levenberg-Marquardt [11, 93], which iteratively refine the camera poses
and 3D point positions.

A similar process is used in Paper I to refine the initial estimates of camera
poses given 2D body joint observations. In Paper I, we use gradient descent for
bundle adjustment to enable leveraging domain-specific priors about observation
noise, human motion and anatomy, which helps overcome the challenges posed
by noisy joint detections.
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3.2 Deep Learning

Deep learning has revolutionized computer vision since the breakthrough achieved
by AlexNet in 2012 [73]. The superior performance of deep neural networks
(DNNSs) in detection, classification, and regression tasks has made them the
dominant approach in modern computer vision pipelines. This section presents
fundamental concepts and architectures used in this thesis.

The strength of deep neural networks lies in their ability to learn complex, non-
linear mappings through the composition of multiple layers of simple operations.
According to the Universal Approximation Theorem [60], neural networks with
sufficient width can approximate any continuous function to arbitrary precision.
In practice, depth rather than width has proven more effective, leading to the
development of increasingly deep architectures.

The papers presented in this thesis use several neural network architectures:
graph neural networks (GNNs) model skeletal structure for activity recognition
in Paper II, Transformers enable robust multi-view 3D pose reconstruction in
Paper III, while multilayer perceptrons (MLPs) and convolutional neural net-
works (CNNs) are the building blocks of all the architectures used here. The
learning paradigms span supervised learning for pose estimation, self-supervised
learning for action representation (Paper II) and semi-supervised approaches for
leveraging limited labeled data.

3.2.1 Multilayer Perceptron

The Multilayer Perceptron (MLP) forms the foundation of modern deep learning
architectures. An MLP consists of multiple layers of neurons, where each layer
performs a linear transformation f; followed by a non-linear activation function.
Formally, a layer ¢ in an MLP can be described as

Xit1 = a(fi(xi, Wi, bz)) = O'(WiXZ‘ + bi), (3.21)

where x; € RN is the input vector, W; € RMi*Ni are the learnable weights,
b; € RMi is the bias vector, and ¢ is a non-linear activation function. The
dimensions satisfy N;;1 = M;, ensuring compatibility between consecutive lay-
ers. The non-linearity introduced by the activation function is essential for
the expressive power of neural networks. Indeed, without it even a very deep
multi-layer network would collapse to just one linear layer and lose much of its
representational power. A common choice is the Rectified Linear Unit (ReLU)
o(x) = max(0,x), which provides computational efficiency and addresses van-
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Figure 3.4: Multilayer Perceptron. lllustration of an MLP with one input layer, three hidden layers and one output layer.

ishing gradient problems. A complete MLP with D layers can be expressed as
the composition

G(x) = o(fplo(fp-1(...o(f1(x))...))))- (3.22)

The depth D and layer widths M; govern the model’s capacity.

3.2.2 Regression and Classification

The output layer of the MLP produces the final prediction of the network and
has the same number of neurons as the dimension of the output vector. In
general, its activation function is different from those used in the hidden layers
of the model. For regression tasks, the last layer typically has a linear activation
function (i.e. no non-linearity). For classification tasks with C' classes, the final
layer uses the softmax activation function

[ezl, . ,exC]T

chzl ers
which produces a score vector that can be interpreted as a probability distri-

bution over classes since each element is in the range [0,1] and the sum of the
elements is 1.

softmax(x) = (3.23)

MLPs serve as the final classification or regression layers in most architectures
used throughout this thesis.
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3.2.3 Convolutional Neural Networks

As fully connected layers treat inputs as flattened vectors, every output element
interacts with input element. Many signals such as time series, images or 3D
voxel grids are spatially structured; images, for example, often exhibit strong
local correlations. The standard network architecture for such data are Convo-
lutional neural networks (CNNs), which differ from fully connected networks by
their local connectivity and weight sharing.

CNNs build on the discrete convolution operation, which can be thought of
as a filter or convolution kernel sliding across the input; at each location the
weighted average of the neighbourhood is computed based on the kernel weights,
producing a response field. Convolution is performed with different kernels
simultaneously, creating a multidmensional feature map that captures different
aspects of the input. Different neurons along the depth dimension may activate
in presence of various patterns, e.g. oriented edges or blobs of color.

Formally, for a two-dimensional input x; € RE>*WXC with height H, width W,
and C channels, a convolutional layer applies C4 kernels K, € RF*F*XCi The
convolution operation (which is technically a cross-correlation) at location (3, j)
is defined as

(X1 % Ki)(i,9) = DD > xii+m, j +n, ¢)Kip(m,n, c), (3.24)

and the complete action of the convolutional layer to transforms the input map
x; to the output map x4 is

T
X1 = hi(x) = o([x*Ki,....,x*Kc,,,|" +by), (3.25)

where o is a non-linear activation function and by is a bias vector of dimension
Ciy1, i.e. containing one shared scalar per channel of the output feature map.

Multiple convolutional layers can be stacked to form deep networks that learn
hierarchical feature representations. Early layers detect simple patterns like
edges and textures, while deeper layers combine these basic features into more
complex visual concepts.

The kernel is typically much smaller than the input, so that at each location
the output feature map depends only on a small neighbourhood. This contrasts
with fully-connected (FC) layers that connect every neuron in one layer to every
neuron in the previous layer. This local connectivity leads to lower computational
complexity while preserving spatial coherence.
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The same salient features producing a high response from a kernel at some
location gives the same response for the same kernel at other locations. This
weight sharing dramatically reduces the number of learnable parameters com-
pared to fully-connected layers, making CNNs more data-efficient and less prone
to overfitting.

A fundamental property of convolutional layers is translation equivariance: if
the input is translated by some amount, the output feature map translates by
a corresponding amount. This property allows CNNs trained on objects in
different positions to generalize effectively. Translation equivariance is essential
for computer vision applications such as object detection or segmentation, where
the object’s location within an image should not affect its detection.

Convolutional layers are ususally used together with other components that play
an important role in neural networks.

Pooling. Pooling operations reduce the size of feature maps by using some
function to summarize subregions, such as taking the average or the maximum
value. Max pooling selects the maximum activation within each pooling window.
Average pooling computes the mean instead of the maximum. Pooling makes
the representation less sensitive to small spatial shifts, while also reducing com-
putational load.

Batch Normalization. Batch normalization normalizes the activations of each
layer within a mini-batch [62]. This addresses the problem of internal covariate
shift, where a change in scaling in early layers would impact following layers,
by enforcing a more consistent distribution of activations. For a mini-batch of
inputs, it normalizes each feature dimension to have empirical mean zero and
unit variance, then applies learnable scale and shift parameters:

X— UupB
1/0234—6

where up and op are the empirical mean and variance of the mini-batch, v and
are learnable parameters, and € is a small constant for numerical stability. Batch
normalization accelerates training, enables higher learning rates, and reduces
sensitivity to initialization. It plays an important part in the self-supervised
learning method of Paper II, where it acts as an implicit contrast term [50].

X=r

+ 5, (3.26)
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3.2.4 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) extend the concept of convolution from
grids to non-Euclidean, graph-structured data such as social networks, molecules
or, in our case, human skeletons. In a graph G = (V, F) with nodes V' and edges
FE, a graph convolution operation updates each node’s features by aggregating
features from its neighbours, as defined by the graph’s adjacency, using shared
learnable weights. There are two main paradigms for GCNs: spectral meth-
ods and spatial methods. The skeleton-based action recognition model used in
Paper II [162] is based on the GCN layer defined by Kipf and Welling [69], a first-
order approximation of spectral convolution on graphs that is computationally
equivalent to a spatial message-passing layer. Intuitively, the GCN aggregates a
node’s neighbourhood information just as image convolution aggregates a pixel’s
local patch. Formally, the transformation of the nodes’ features at each layer
can be written in matrix form as

Hyi=o (D—%AD—%H,W,) , (3.27)

where A = A + 1 is the graph’s adjacency matrix A with added self-connections
(identity I), D is the degree matrix of A, H; is the matrix of node features at
layer [ and Wj is the learnable weight matrix. This formula shows that each

node’s new features hl(fgl are a weighted sum of its own features hl(i) and its

neighbours’ features hl(j ), normalized by the neighbour counts.

3.2.5 Transformers

The Transformer [146] has proven to be a powerful architecture with broad ap-
plications in various fields, from natural language processing [30, | to com-
puter vision [17, 33].

A Transformer acts on sets of tokens, vectors that represent data points such as
word embeddings, image patches or 3D points. The core innovation underlying
Transformers is the attention mechanism, which enables tokens to ’‘attend’ to
each other. It computes a weighted sum of a set of tokens based on their relev-
ance to a particular query. In particular, scaled dot-product attention calculates
the relevance score of each key K with respect to a query Q:

Attention(Q, K, V) = softma: <QKT> A\ (3.28)
) ) = X ) *
Vg

where queries Q, keys K and values V are projections of the input tokens and
dj, is the dimension of the feature vectors.
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In the self-attention mechanism Q, K and V are three representations from the
same set of input tokens: Q = WQXT, K = WgX", and V = Wy X7, where
Wo, Wk, Wy € R4k are learned projection matrices and X € RV*4 Thus
all input tokens attend to each other. With cross-attention, two distinct sets
of tokens interact with each other, and in general Q = WQYT, K = WgXT
and V = Wy XT, where W € R®2*% Wi Wy € RExd X ¢ RNXd and
Y € RV*% je. the input tokens X are queried using tokens Y.

Rather than using a single attention function, Transformers usually employ
multiple attention heads that can focus on different types of relationships

MultiHead(Q, K, V') = Concat(head, , head,)W©, (3.29)

where h is the number of heads, each head; = Attention(QWiQ, KWE vwY)
and WO is a final linear projection. The WiQ, WiK and Wiv project the queries,
keys and values h times and the attention function is performed in parallel on
these projections.

The attention mechanism makes the attention layer permutation-equivariant.
However, in many applications the order or relative position of the input is
important, for example the order of the words in a sentence in natural language
processing, or the location of patches in an image for vision tasks. It is therefore
common practice to attach to the tokens a positional encoding indicating their
relative positions.

In Paper III, we adapt Transformers for robust multi-view 3D pose estima-
tion. Each camera view provides a sequence of 2D joint detections, and the
Transformer learns to aggregate information across views while handling miss-
ing or corrupted observations. The Transformer encoder fuses multi-view and
temporal information through self-attention, while a decoder queries this repres-
entation to predict 3D joint positions. We introduce geometry-biased attention
that incorporates the geometric relationships between camera views.

3.2.6 Supervised Learning

The dominant approach for training deep neural networks is supervised learning.
Given a dataset D = {(x;,yi)}Y, of pairs of input data points x; and corres-
ponding ground truth annotations y;, the objective is to find a function f(x;6),
parameterized by @, that can accurately predict the target y for a new, unseen
input x. This learning problem can be formulated as an optimization problem
where we seek to find the parameters 8* that minimize the expected discrepancy
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between output and ground truth, or loss, over the training dataset:

= arg manL (4;0),yi), (3.30)

where the choice of loss function £ depends on the learning task. For regression
problems, it is common to use the mean squared error (MSE) loss

N
Lase(6) = - D llvi — T I, (3.31)
=1

Lyse (f(xi30),y:)

while for classification tasks the cross-entropy loss provides a probabilistically
principled objective

1 N C
Lcr(0 NZZ Yi.clog(pic), (3.32)

Lor(f(2430),y:)

where y; . is the one-hot encoded ground truth and p; . is the likelihood for class
¢ predicted by the softmax layer.

The minimization problem is generally non-convex and high-dimensional, and
will often result in a local optimum or a saddle point rather than a globally
optimal set of parameters. The standard approach for finding 6* combines
gradient-based optimization with the back-propagation algorithm [123] to com-
pute gradients efficiently through the computational graph. The most popular
optimization methods are based on gradient descent which, starting from a ran-
domly initialized set of parameters 6, iteratively updates the parameters in the
direction that decreases the loss most rapidly. Since the gradient Vy£(0) indic-
ates the direction of steepest increase of the loss function, the parameters are
updated in the opposite direction. The parameter update for each iteration of
gradient descent on the complete training dataset can be written

N
1
9t+1 =0, — N E V9£($i7yi§ et)a (3-33)
=1

where t indexes the training iteration and 1 > 0 is the learning rate that controls
the step size. The learning rate requires careful tuning: values that are too
large may cause the optimization to overshoot minima or become unstable,
while values that are too small may result in prohibitively slow convergence.
Many training methods use learning rate schedules that adapt 1 during training,
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starting with a large value for rapid initial progress and decreasing it during
training to ensure convergence.

Computing gradients over the entire dataset becomes intractable for large data-
sets. Stochastic Gradient Descent (SGD) addresses this by approximating the
full gradient using randomly sampled mini-batches, or even a single data point,
at each iteration. For a mini-batch of size m < N, the update step becomes

1 m
0141 =0, — n_ Z VoL(zi,yi; 0r). (3.34)
i=1

While individual mini-batch gradients are noisy estimates of the full gradient,
this stochasticity can actually help escape local minima and often leads to bet-
ter generalization. Many variations of the SGD algorithm have been proposed.
Momentum smoothes the noisy gradient estimates by keeping a running estim-
ate, accelerating SGD in the relevant direction [123]. Adam (Adaptive Moment
Estimation) uses exponential averages of the first and second moments of the
gradient to adapt the learning rates of different parameters of the network [65].
Its robustness and minimal tuning requirements make it a popular optimization
method for deep learning.

Proper evaluation requires careful data partitioning into training, validation,
and test sets. The training set is used for parameter optimization, the validation
set for hyperparameter tuning and early stopping, and the test set for final
performance evaluation. This separation is important to avoid overfitting and
ensure reliable assessment of generalization performance.

The fundamental challenge in supervised learning is achieving good generaliza-
tion to unseen data. Networks with sufficient capacity can memorize the training
data, leading to poor performance on new examples. Regularization techniques
such as weight decay, dropout and data augmentation help combat overfitting
by constraining model complexity or introducing variation during training.

A significant practical limitation of supervised learning is its dependence on
manually annotated datasets, which represents a labor-intensive, time-consuming,
and expensive process that often becomes the bottleneck in developing new ap-
plications. This limitation motivated us to study self-supervised learning in
Paper 11.
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3.2.7 Self-Supervised Learning

Self-supervised learning aims at learning transferable representations by extract-
ing supervisory signals from the data itself rather than external annotations.
The fundamental principle of self-supervised learning is to construct learning
tasks where the ground truth can be automatically derived from the input data
itself, eliminating the need for manual annotation while still providing mean-
ingful learning objectives. These pretext tasks are designed to encourage the
model to learn representations that capture important structural properties of
the data domain, such as spatial relationships, temporal dynamics, or semantic
consistency.

Early methods used pretext tasks related to high-level image understanding, for

example reconstructing the original data by denoising [117], inpainting [105],
colorizing [77, , 167] or solving jigsaw puzzles [31, 103], or predicting trans-
formations [13].

Contrastive learning methods [19, 20, 23, 57, 99, | represent one of the most

successful approaches to self-supervised learning, based on the principle of learn-
ing representations that bring similar examples closer together while pushing
dissimilar examples apart in the representation space. The key insight is that
similar examples (positive pairs) should have similar representations, while dis-
similar examples (negative pairs) should have dissimilar representations. Posit-
ive pairs are constructed by augmenting the same input in two different ways,
while two different data points in the dataset are assumed to be dissimilar. Given
a batch of N inputs, each item is augmented in two different ways to construct
a positive pair. For each positive pair of points, all remaining 2(N — 1) points
are considered negative examples. For a positive pair (z;,z;), the contrastive
loss can be written

exp(sim(z;, z;)/7)

SN L exp(sim(zy, 21,)/7)

fi’j = — log (3.35)

T
. zZ: "z . . . . .
where sim(z;, 2;) = == is the cosine similarity between vectors z; and zj
v [EARERL ! ’

and 7 is a temperature parameter.

Contrastive learning methods face several practical challenges, particularly the
computational overhead of processing large numbers of negative samples. Sim-
CLR [19, 20] uses large batch sizes, and MoCo [23, 57] keeps a large queue of
past representations as negative samples. Several recent works showed that use-
ful representations can be learnt without the need for explicit negative samples
[18, 22, 50]. Bootstrap Your Own Latent (BYOL) [50], for example, uses a
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momentum-updated target network that provides stable learning targets for an
online network to predict.

Paper II demonstrates how BYOL can be adapted for self-supervised learning
of action representations from 3D pose sequences. We designed data augment-
ation strategies that preserve the semantic content of actions while providing
sufficient variation to drive representation learning. Geometric augmentations,
such as rotation and scaling, preserve the essential structure of human mo-
tion while creating diverse training examples. Temporal augmentations, such
as subsampling or temporal jittering, encourage the model to learn represent-
ations that are robust to timing variations while maintaining sensitivity to the
essential dynamics of different actions. The multi-view context provides particu-
larly rich opportunities for self-supervised learning, since geometric consistency
across views provides a natural source of supervision, as observations of the same
3D pose from different camera viewpoints should yield semantically consistent
features.

3.2.8 Foundation Models and Vision-Language Understanding

The emergence of foundation models, trained on massive datasets and capable
of adapting to diverse downstream tasks, has fundamentally changed the land-
scape of machine learning and computer vision. These models demonstrate that
large-scale pretraining on diverse data can produce representations that transfer
effectively to a wide range of applications, often with minimal or no task-specific
fine-tuning [10].

Vision-language models such as CLIP (Contrastive Language-Image Pre-training)
[112] represent a particularly important class of foundation models that learn
joint representations of images and text through contrastive learning on ”internet-
scale” data (several hundred million images and associated captions). CLIP
demonstrates remarkable zero-shot capabilities, and is able to classify images
into arbitrary categories specified through natural language descriptions without
task-specific training.

CLIP uses separate encoders for images and text that are trained to map inputs
to a shared embedding space, where semantically related content has high sim-
ilarity. The training objective encourages high similarity between images and
their associated captions while discouraging similarity between images and un-
related text. This simple but powerful approach enables the model to learn rich
visual representations that are grounded in human language and can be queried
using natural language descriptions.
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In contrast to image classifiers trained in a supervised manner on labeled im-
ages, CLIP is trained by weak supervision. Depending on the context in which
the captions describing the images were produced, they may focus on different
aspects of the images, describe som parts in more detail or disregard some ob-
jects. Thanks to the immense scale of the dataset, the model sees the same
concept in various settings in many images with different descriptions, and is
able to capture rich semantic information without task-specific supervision.

Segment Anything is a foundation model for image segmentation that was
trained to segment any object given prompts [72] (c.f. Sec. 3.3.2). It used a
model-in-the-loop strategy to create a large dataset with a data engine combin-
ing human annotation, semi-automatic annotation and fully automatic annota-
tion. This data engine strategy was successfully used in other domains, such as
monocular depth estimation [153, 163].

Paper IV demonstrates how foundation models can enable open-vocabulary 3D
object detection from sparse multi-view RGB images without task-specific train-
ing. It leverages foundation models for 2D object detection from textual de-
scriptions, object segmentation and monocular depth estimation. During depth
refinement, the rich semantic embeddings learned by CLIP are used to guide
the optimization, establishing cross-view correspondences even in cases where
the cameras see different sides of objects.

3.3 Object Detection, Segmentation and 3D Scene
Understanding

3.3.1 2D Object Detection

Object detection addresses the task of identifying and localizing objects in ob-
served scenes. This involves predicting the semantic class of the objects along
with the bounding bozxes surrounding them. For 2D detection, bounding boxes
are often described by their center coordinates, width and height.

Early methods performed object detection by extracting and classifying hand-

crafted features from images [27, ]. Deep-learning-based 2D object detection
methods generally follow one of two architectural paradigms. Two-stage detec-
tion methods, exemplified by the R-CNN family [14-16, 56, |, decompose the

problem into region proposal generation followed by classification and localiza-
tion refinement. Faster R-CNN introduced the Region Proposal Network (RPN)
that slides over extracted feature maps and predict region proposals based on
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Figure 3.5: Left: Two-stage object detection methods predict region proposals then pool features to predict the class and
refine box parameters of each proposal. Right: One-stage methods predict bounding box coordinates and
classes simultaneously. Images from [115] and [113].

predefined anchors at each location [115]. In a second stage, features inside each
region of interest are pooled from the feature map and used to predict object
class and refine the bounding box parameters.

Single-stage methods such as YOLO [113] or SSD [%5] take a different approach
by directly predicting a fixed number of object descriptors for every spatial
location in the downsampled feature representation. These methods use an
objectness probability to determine whether each location actually contains an
object.

Both paradigms typically employ non-maximum suppression to handle multiple
overlapping detections of the same object by selecting the detection with the
highest confidence score among highly overlapping candidates.

Recent developments have introduced Transformer-based detection methods like
DETR [17], which reformulate object detection as a set prediction problem us-
ing attention mechanisms to directly predict object locations without requiring
hand-crafted components like anchor generation or non-maximum suppression.

Traditional object detectors require training on predefined object classes, lim-
iting their applicability to new domains or novel object categories. Open-
vocabulary 2D object detection has recently emerged as a powerful paradigm to
overcome this limitation, enabling the localization of arbitrary object classes us-
ing natural language queries. Early methods such as ViLD [51] and RegionCLIP
[171] demonstrated that distilling knowledge from pretrained vision-language
models like CLIP [112] could transfer zero-shot recognition capabilities to stand-
ard detectors, while Detic [172] showed that large-scale image-level supervision
could greatly expand the detectable vocabulary. More recent works, including
OWL-ViT [97] and its successor OWLv2 [98], proposed single-stage transformer
detectors built on CLIP-like backbones, offering strong zero-shot transfer and
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scalability to billions of image-text pairs. In parallel, Grounding DINO [34]
buildt upon the DETR framework [17] by integrating natural language as a con-
ditioning signal via cross-modal attention, and YOLO-World [24] augmented the
YOLOvVS detector with a vision-language branch and a region-text contrastive
loss, demonstrating zero-shot object detection at real-time speeds.

3.3.2 Image Segmentation

Image segmentation assigns a label to every pixel in an image. The main focus
of early works was finding segments containing pixels with similar appearance
or features, either with clustering-based methods [25, 20, | or graph-based
algorithms [12, 37, , 158]. In deep learning frameworks, segmentation is typ-
ically performed using Fully Convolutional Network (FCN) architectures where
encoders extract descriptive features and decoders generate per-pixel class pre-
dictions. In semantic segmentation, the network predicts an output vector per
pixel, which is processed through a softmax layer to generate class probability
distributions. The predicted classes are determined by taking the maxima of
these probabilities. Instance segmentation differs from semantic segmentation
by requiring differentiation between individual objects. In contrast to semantic
segmentation, instance segmentation is usually solved by region-based meth-
ods closely related to object detectors. For example, Mask R-CNN [50] adds
a segmentation head to a two-stage object detection network, which predicts
pixel-wise binary masks for detected regions of interest. Panoptic Segmentation
bridges these two concepts by proposing to predict both semantic and instance
labels, and makes the distinction between things (countable objects) and stuff
(uncountable regions such as sky, road or wall). Kirillov et al., after defining
the task [71], proposed to solve it by adding a semantic segmentation branch to
Mask R-CNN’s backbone, in parallel to the existing instance segmentation head

[70]-

Recently, Kirillov et al. defined the new task of promptable segmentation, and
simultaneously solved it with the Segment Anything (SAM) model [72]. SAM
takes as input an image and a prompt, which can be a 2D bounding box, or
one or more 2D coordinates. The prompts can be positive or negative, allowing
for example users to manually click inside and outside objects of interest. As
discussed in Sec. 3.2.8, SAM was trained on a very large dataset and consitutes
the first foundation model for image segmentation. It is so capable that it
can be straightforwardly put to use in different applications with practically
no alteration. For example, it can be paired with an open-vocabulary object
detector to form an open-vocabulary segmentation model [116]. This is the
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method we use in Paper IV to produce 2D object proposals in each view based
on text prompts.

3.3.3 3D Object Detection

3D object detection involves localizing and classifying objects in three-dimensional
scenes. In addition to the volumetric extent of the bounding box an optional
rotation around the vertical axis can also be predicted. Some of the earliest deep
learning methods targeted autonomous driving, where most interesting objects
can be found in a planar Bird’s Eye View (BEV) projection of the scene. By con-
trast, indoor scenes lack any simple global structure; objects vary in height and
can appear anywhere in cluttered spaces, making such BEV-based assumptions
invalid. Here we focus on indoor 3D object detection.

A major branch of 3D object detection uses point clouds or RGB-D images as
input. Song et al. introduced a 3D Region Proposal Network to predict ori-
ented bounding boxes in voxelized RGB-D data [130]. However, 3D CNNs on
dense grids are computationally heavy and limited in resolution. VoteNet [111]
leverages PointNet++ [110] to process point clouds directly without voxeliza-
tion, taking advantage of the inherent sparsity of the data. It introduced a deep
Hough voting mechanism for 3D object centers, achieving state-of-the-art res-
ults on indoor benchmarks using only geometric input. Meanwhile, voxel-based
methods adopted sparse convolution networks that compute features only for
occupied voxels, dramatically improving efficiency [121]. Recent approaches
moved towards anchor-free and transformer-based architectures, employing set
prediction techniques to directly output 3D boxes. For instance, Group-Free 3D
[36] and 3DETR [100] predict boxes from a fixed number of learnable queries,
analogously to DETR in 2D.

An alternative line of work performs 3D detection from multi-view RGB images,
without requiring depth sensors. Inferring 3D structure from images is inher-
ently ambiguous, but multi-view geometry can compensate for missing depth
cues. ImVoxelNet is trained end-to-end on multiple views, projecting image fea-
tures into a shared 3D voxel space and applying 3D convolutions to detect ob-

jects jointly across views [122]. ImGeoNet, building on ImVoxelNet, introduced
an image-induced geometry-aware voxel representation that explicitly learns 3D
shape cues from images [113]. ImGeoNet surpassed ImVoxelNet and even out-

performed the point-cloud detector VoteNet in challenging scenarios, such as
sparse or noisy point clouds or many small objects. Most recently, transformer-
based models have emerged. For example, PARQ uses pixel-aligned 3D queries
with cross-attention, achieving new state-of-the-art on indoor datasets using
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only RGB inputs [161].

All the above methods assume a fixed, closed set of object categories known a
priori, which limits their ability to detect novel object types. The emerging field
of open-vocabulary 3D detection (OV-3D) aims to lift this restriction by lever-
aging large vision-language models so that 3D detectors can recognize arbitrary
classes. OV-3D remains challenging, due to the scarcity of large-scale 3D-text
data and the difficulty of transferring 2D vision-language knowledge into 3D
representations. Nevertheless, extending 3D detection to open-vocabulary is a
necessary step toward general scene understanding. In Paper IV, we present a
method for open-vocabulary 3D detection from sparse RGB views, bridging the
gap between image-based geometry and open-vocabulary recognition.

3.4 Human Pose

The scientific study of human motion has roots that extend deep into history, re-
flecting humanity’s fascination with understanding the mechanics of movement
and the principles that govern bodily function. In Ancient Greece, Aristotle
wrote the first documented treatise of biomechanical analysis [%], containing de-
tailed observations of locomotion patterns of animals and humans, and propos-
ing geometric principles of movement. During this period, artists also demon-
strated remarkable understanding of human anatomy and strived to represent
motion through the static medium of sculptures and frescoes.

In the 17th century, Giovanni Alfonso Borelli conduc-
ted formal experiments that established the mathem-
atical foundations for understanding human motion.
His work "De Motu Animalium” (On the Motion of
Animals) [11] represents the first systematic attempt
to apply mechanical principles the muscular system,
analyzing muscle forces, measuring inhaled and ex-
haled air volumes and estimating with precision the
energy exerted by each muscle. Borelli’s insight that
bones function as levers while muscles operate ac-
cording to mathematical principles established fun-
damental concepts for modeling human motion that

Figure 3.6: Giovanni Borell's mech- T€main relevant in contemporary biomechanical ana-

anical analysis of bones :
as levers [11]. lySIS'
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Figure 3.7: Chronophotography for motion analysis.. From left to right: Etienne-Jules Marey's late 19th-century kino-
grams, which decomposed continuous human motion into sequential visual frames, foreshadowing modern
pose analysis; Braune and Fischer designed blinking markers enabling 3D reconstruction of movement from
syncronized multi-view chronophotographs; the resulting 3D motion model [13].

The 19th century witnessed significant advances in the quantitative analysis of
human locomotion, led by pioneers such as the Weber brothers, who conducted
some of the first systematic studies of gait mechanics [155]. Their work estab-
lished the importance of temporal analysis in understanding human movement,
recognizing that the dynamics of motion contain as much information as static
pose configurations.

In the late 19th century, physiologist Etienne-Jules Marey pioneered the use
of graphical recording in the experimental sciences, designing instruments to
record visually the evolution of physiological functions over time, such as the
circulatory, respiratory and muscular systems [92]. Marey’s development of
chronophotography, inspired by Edweard Muybridge, represents a milestone in
the visual analysis of motion. The technique of capturing multiple sequential
images of moving subjects provided the first systematic method for decompos-
ing continuous motion into discrete temporal samples that could be analyzed
quantitatively. His experiments with subjects wearing black suits marked with
white stripes along the limbs created visual representations, or kinograms that
bear striking resemblance to the skeletal pose visualizations used in modern
computer vision systems.

With quantitative studies came the first applications. Albert Londe, one of the
first medical photographers, used chronophotography to study the movements of
patients during epilectic seizures [37]. Christian Wilhelm Braune and Otto Fisc-
her conducted experimental studies of human gait using blinking Geissler tube
markers to record syncronized multi-view chronophotographs, enabling them to
perform the first three-dimensional analysis of human motion [13].
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Gunnar Johansson’s pioneering studies of biological ’ ’
motion perception in the 1970’s demonstrated that '4\7%3

human observers could recognize complex actions \

from minimal visual information, using only point : \>

lights attached to major joints [65, 66]. This work S ==

showed that explicit modeling of body surface geo-
metry and appearance details is not necessary for ef-
fective motion understanding, and that sparse skeletal
representations were sufficient for conveying rich in- L
formation about human movement. This finding sup-
ports the skeletal modeling approach used through-
out this thesis, where human poses are represented as Figure 3.8: 2D keypoints (B) are

sufficient to recognize

configurations of joint positions rather than detailed complex actions [65].
surface meshes or volumetric models.

Pan]

The advent of digital computing enabled the development of marker-based mo-
tion capture systems that could provide precise 3D measurements of human
movement in controlled environments. These systems established the gold stand-
ard for pose measurement accuracy and have been widely used in medical studies
[14, 76, , ], sports science [5, , | and movie production[l25, ].
However, the practical limitations of marker-based systems, including setup
complexity, restricted capture volumes, and the need for specialized facilities
[49, |, motivated the development of markerless pose estimation methods
that could operate from standard camera observations.

In this thesis, we focus on human pose estimation from images captured by
multi-view cameras, which allows to capture subjects in their natural environ-
ment, such as workplaces, sport fields or public places, without encumbering
their movements, without preparation, and without expensive rigs.

3.4.1 2D Human Pose Estimation

2D human pose estimation is the task of detecting the configuration of the
human body in images or video frames. In practice, this entails localizing a set
of predefined keypoints, usually corresponding to the main body joints such as
the wrists, elbows, shoulders, knees, ankles, etc. Each person’s keypoints can
be connected in a skeletal structure to represent the pose.

Early approaches to 2D pose estimation relied on explicit graphical models of the
human body, or pictorial structures. In pictorial structure models, introduced
by Fischler and Elschlager [10], the human body is represented as a collection
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of rigid segments (limbs) connected by springs or flexible joints in a graph-
ical model. The fundamental idea involves finding the optimal configuration of
body parts that simultaneously minimizes appearance costs (how well each part
matches the image evidence) and deformation costs (how much the configuration
deviates from typical human anatomy).

The seminal work of Felzenszwalb and Huttenlocher [33] provided an efficient
inference algorithm for tree-structured pictorial models using dynamic program-
ming, making real-time pose estimation feasible for the first time. Their method
formulated pose estimation as finding the optimal labeling of a graph where
nodes represent body parts and edges encode spatial relationships. Yang and
Ramanan extended this framework with the Flexible Mixture of Parts model
[164], which learned different appearance templates for each body part under
various viewpoints and deformations, significantly improving robustness to pose
variation.

These classical approaches typically relied on hand-crafted features such as His-
togram of Oriented Gradients (HOG) [27] or edge detection responses. While
interpretable and often computationally efficient, these methods were funda-
mentally limited by their reliance on explicit modeling assumptions and their
inability to capture the complex, non-linear relationships between appearance
and pose that characterize real-world scenarios. Occlusions, particularly self-
occlusions where parts of the person’s own body occlude other parts, presented
particularly challenging problems for these explicit models.

The emergence of deep learning, and particularly convolutional neural networks,
marked a paradigm shift in human pose estimation. The availability of large-
scale datasets such as MPII Human Pose [7] and MS COCO [83], combined
with increased computational power, enabled the development of data-driven
approaches that could learn complex appearance models directly from data.

Toshev and Szegedy introduced DeepPose [110], which represented the first suc-
cessful application of deep neural networks to human pose estimation. DeepPose
approached the problem as direct coordinate regression, learning a mapping
from image pixels to joint coordinates through a deep convolutional neural net-
work. The method employed a cascade of regressors, where initial pose estimates
were iteratively refined by cropping regions around predicted joint locations and
feeding them through subsequent networks. While computationally efficient,
regression-based methods lack precision, particularly with complex poses and
occlusions.

Detection-based methods, on the other hand, treat pose estimation as a spatial
probability estimation problem. Rather than directly regressing coordinates,
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Figure 3.9: Heatmap-based 2D pose estimation. The model predicts one heatmap per joint (right). The final pose is
given by the maximum activation for each heatmap (left). Image from [30].

these methods predict 2D heatmaps for each keypoint, representing the per-
pixel likelihood for the joint positions, as shown in Fig. 3.9. The final pose is
given by the maxima of the heatmaps. This formulation preserves spatial re-
lationships and enables more robust optimization. Ground-truth heatmaps are
typically generated by placing 2D Gaussians at each ground truth joint location.
Tompson et al. introduced the heatmap approach with a multi-resolution net-
work that predicted joint locations with a cascaded network combining coarse
and fine heatmap regression [137, 138]. Wei et al. extended this concept with
Convolutional Pose Machines (CPMs) [156], which sequentially refined joint pre-
dictions through multiple stages, with each stage having access to both image
features and predictions from previous stages. The Stacked Hourglass Network
combined an encoder-decoder structure with skip connections, enabling the net-
work to capture both local detail and global context [20]. Multiple hourglass
modules were stacked sequentially, with intermediate supervision applied at each
stage, facilitating the learning of increasingly refined pose representations.

More recent architectural innovations have focused on improving the efficiency
and accuracy of these foundational approaches. Xiao et al. demonstrated that
simple baseline networks built on ResNet backbones with deconvolutional up-
sampling could achieve competitive performance, emphasizing the importance of
strong feature representations [159]. HRNet (High-Resolution Network) main-
tained high-resolution feature maps throughout the network by parallel pro-
cessing at multiple scales, thus addressing a limitation of previous networks that
downsampled feature representations before upsampling them again [133, 151].
This architecture achieved state-of-the-art accuracy, particularly for precise joint
localization.

3.4.2 Multi-Person Pose Estimation

Human pose estimation in images containing multiple persons presents addi-
tional challenges, such as inter-person occlusions, overlapping bodies, varying
scales and, ultimately, the combinatorial complexity of assigning body joints to
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Figure 3.10: Top-down pose estimation consists in detecting the persons in the image and performing single-person pose
estimation. Bottom-up methods detect all the keypoints in the image and associating these keypoints to
individual persons.

the correct persons. Multi-person pose estimation can in general be classified in
two categories: bottom-up or top-down methods.

Bottom-up approaches detect all keypoints in the image simultaneously be-
fore solving the association problem to group keypoints into individual persons.
Pishchulin et al. introduced DeepCut, the first deep learning-based bottom-up
method, which formulated multi-person pose estimation as an integer linear pro-
gram over detected body part candidates [103]. Cao et al. significantly advanced
the paradigm with OpenPose, which introduced Part Affinity Fields (PAFs) to
encode the spatial relationships between body parts [15, 16]. This efficient ap-
proach spearheaded real-time multi-person pose estimation. The computing
speed of bottom-up approaches is generally unaffected by the number of people
in the images. They can potentially recover people missed by person detectors
and handle crowded scenarios gracefully. However, the association problem be-
comes increasingly challenging with large numbers of people, similar poses, or
heavy occlusion, where the spatial cues encoded in PAFs may become ambigu-
ous.

Top-down methods take a fundamentally different strategy and decompose the
problem into two sequential stages, first performing person detection then es-
timating single-person poses within each detected bounding box. By isolating
individual persons through bounding boxes, these methods can leverage the full
context of the person region, making them accurate and robust. The mod-
ular approach allows each stage to be optimized independently, enabling to
mix and match different flavours of state-of-the-art object detectors and single-
person pose estimators depending on the application. One downside of top-down
methods is that inference speed depends on the number of persons in the image.
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However, in real-time applications with high enough frame rate, bounding boxes
can be tracked with lightweight methods, alleviating the need to run person de-
tection on each frame. Because of their flexibility and superior accuracy, we use
top-down pose estimators in this thesis.

3.4.3 3D Human Pose Estimation

A natural extension of 2D pose estimation is to infer the spatial configuration
of the body in three dimensions. This extension is motivated by applications
requiring true spatial understanding of human movement, including biomech-
anical analysis, human-computer interaction, and augmented reality systems.

Monocular 3D Human Pose Estimation

Monocular 3D human pose estimation is one of the most challenging problems
in computer vision, as it requires inferring three-dimensional structure from
two-dimensional observations. The fundamental difficulty arises from the inher-
ent ambiguity of perspective projection: infinitely many distinct 3D poses can
produce an identical 2D projection on the image plane. This depth ambiguity,
combined with other challenges such as self-occlusion and the variability of hu-
man appearance and motion, makes monocular 3D pose estimation an inherently
ill-posed problem.

Early deep learning approaches addressed this task by directly regressing 3D
pose coordinates from image pixels [106, , , |. However, such meth-
ods require large datasets of images with ground-truth 3D poses for training,
typically obtained with specialized motion-capture systems, and tend to gen-
eralize poorly to images in the wild. Considerable effort has been devoted to
overcoming the training data bottleneck. New datasets have been created by
synthesizing realistic images of humans in known 3D poses, for example by ren-
dering textured 3D human models [21], or by augmenting 2D pose datasets with
plausible 3D annotations derived from mocap data [I15]. Another strategy is
to composite humans into natural images. Mehta et al. captured actors with a
multi-camera markerless system in a green-screen studio and inserted them into
in-the-wild backgrounds to produce training data with 3D ground truth [95, 96].
Alternatively, some methods eliminate explicit 3D labels by leveraging multiple
camera views at training time. Rhodin et al. introduced a weakly-supervised
approach that enforces cross-view consistency during training, i.e. the model is
trained to predict the same 3D pose from different 2D views, thereby learning

44



3.4. Human Pose

a monocular pose estimator without requiring a fully mocap-annotated dataset

(117

A common two-stage paradigm for monocular pose estimation is to first apply
a 2D pose detector to the image and then lift the detected 2D joint coordin-
ates to 3D. This approach was demonstrated effectively by Martinez et al. [91],
whose simple baseline for monocular 3D pose estimation used an off-the-shelf
2D pose estimator [30] followed by a simple feed-forward network to predict
3D joint coordinates from 2D observations. Despite its simplicity, this two-
step approach delivered competitive accuracy and underscored that much of the
difficulty in monocular 3D pose estimation lies in resolving depth ambiguities
rather than detecting 2D joint positions. Subsequent research has attempted
to address the inherent ambiguity of the monocular problem through additional
cues and constraints. Some methods exploit temporal information from video
sequences, leveraging motion cues and enforcing temporal consistency to con-
strain the solution space [107]. Others incorporate strong priors about human
anatomy and biomechanics, either through learned statistical models or expli-
cit kinematic constraints. For example, Akhter and Black introduced pose-
conditioned joint angle limits that rule out anatomically impossible configura-
tions [0], while Wandt et al. proposed a kinematic chain space representation
that naturally preserves constant limb lengths [150]. These model-based ap-
proaches regularize monocular predictions so that even in ambiguous cases, the
reconstructed skeletons remain physically plausible. Another line of work uses
adversarial training to encourage predicted poses to lie on the manifold of valid
human poses. In these approaches, a discriminator is trained to differentiate
between predicted poses and real human poses, and the pose estimator is pen-
alized if its output is unrealistic [119].

Due to the inherent ambiguities of monocular views, monocular 3D pose estim-
ation methods are typically evaluated under protocols that discount unknown
global transformations. It is standard to measure error up to a rigid alignment
(e.g. allowing rotation and scale adjustment via Procrustes analysis [17]) or up
to a translation (by re-centering poses at a chosen root joint), acknowledging
that absolute position cannot be reliably recovered from a single viewpoint. In
practice, even state-of-the-art monocular methods struggle with extreme fore-
shortening or occlusion, as the missing depth information must be inferred from
learned priors or temporal context rather than directly observed. This fun-
damental limitation motivates the use of multiple cameras, where geometric
triangulation can resolve depth ambiguities that monocular methods can only
guess.
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Multi-view 3D pose estimation

With accurate camera calibration, the geometric relationships between views en-
able to recover absolute 3D coordinates without the scale and depth ambiguities
inherent in single-view methods.

Triangulation-based methods represent the most straightforward approach to
multi-view 3D pose estimation [58, 6, 90, , , |. These methods typ-
ically follow a two-stage pipeline, first estimating 2D poses in each view inde-
pendently, then reconstructing 3D poses by triangulating corresponding keypo-
ints with geometric algorithms such as the Direct Linear Transform (DLT) (c.f.
Sec. 3.1.5) to find 3D points that minimize reprojection error across all views.
However, in practice, 2D detections contain errors and may be inconsistent
across views due to occlusion or lighting conditions, hence much attention has
been given to improving the 2D keypoints. Several methods incorporate epipolar
geometry into a 2D pose estimator’s feature processing stage so that keypoint
evidence from one view guides feature extraction in other views [58, 90, ]
For example, the Epipolar Transformer uses attention along epipolar lines to
refine feature maps across views [53], and AdaFuse adaptively weights the con-
tributions of each view based on predicted per-view reliability, achieving robust
results under occlusion [170]. Iskakov et al. implemented a weighted triangula-
tion scheme accounting for detection confidence, which they use to supervise a
2D pose detector from multi-view data [64].

Volumetric methods construct a probabilistic 3D volume of the human body in
voxel space. These approaches discretize the 3D capture volume and aggregate
evidence from multiple views to create occupancy or probability volumes, from
which human poses can be extracted. Iskakov et al. demonstrated that volumet-
ric approaches could achieve high accuracy by projecting 2D CNN features into
a discretized 3D volume and applying 3D convolutions to predict joint locations
[64]. The volumetric representation naturally handles occlusion and provides
spatial context, but computational costs scale cubically with volume resolution,
limiting practical applications.

The main challenges for multi-view 3D pose estimation in real-world scenarios
include handling occlusion across views, adapting to sparse camera configur-
ations, and maintaining robustness when views have limited overlap. Many
public datasets for multi-view pose estimation are characterized by dense cam-
era coverage and controlled environments [63, (7], but practical deployments
often involve wide-baseline setups with few cameras and significant occlusion.

Several works extend the multi-view paradigm to sequences, exploiting temporal

46



3.4. Human Pose

|:> Running

! Action
1 Classification

Pose !
Estimation 1

Class Score

Input Video -
ST-GCNs

Figure 3.11: The ST-GCN pipeline. Image adapted from [162].

information to improve 3D pose reconstruction [28, 18, ]. Temporal cues
help smooth pose estimates, handle brief occlusions, and resolve ambiguities by
enforcing motion coherence over time. However, these methods are generally
not causal, i.e. they use both past and future frames for reconstruction, which is
not suitable for real-time applications. In Paper III, we designed a Transformer
encoder-decoder model to reconstruct 3D poses from sequences of multi-view 2D
observations. In contrast to other methods leveraging temporal information, we
focus on the causal case to enable real-time inference.

3.4.4 Skeleton-Based Action Recognition

The recognition of human activities from visual data represents a natural exten-
sion of human pose estimation. Activity recognition systems typically operate
on sequences of pose observations, either in 2D image coordinates or 3D world
coordinates, to classify the ongoing activity or predict future actions.

Traditional activity recognition approaches employed hand-crafted features based
on trajectory analysis, optical flow, or space-time volumes. However, the ad-
vent of deep learning and the availability of large-scale datasets have enabled
end-to-end learning approaches that can automatically discover discriminative
spatio-temporal patterns.

Recognizing human activities from skeletal data offers several advantages over
appearance-based methods. Skeletal representations are more compact than
raw video, enabling efficient processing and storage. They are also more robust
to variations in clothing, lighting, and background clutter that can confound
appearance-based methods. Furthermore, as shown by Gunnar Johansson’s ex-
periments discussed above, skeletal encodes geometric relationships that, at least
for humans, are sufficient for understanding human movement [65, 66].

The structural nature of human skeletons naturally suggests graph representa-
tions. Yan et al. revolutionized skeleton-based action recognition with Spatial-
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Temporal Graph Convolutional Networks (ST-GCN), modeling skeletons as
graphs where nodes represent joints and edges represent spatial (anatomical)
or temporal (same joint across time) connections [162].

The ST-GCN model is composed of stacked spatio-temporal blocks. Each block
performs a spatial convolution followed by a temporal convolution. Spatial con-
volution aggregates features from spatially neighbouring joints by graph con-
volution on the skeleton graph as described in c.f. Sec. 3.2.4. The temporal
convolution submodule is a 1 x T 2D convolution on the input, where T is
the number of frames of the temporal receptive field. Thus ST-GCN captures
spatial relationships between body parts and temporal evolution of the motion
patterns. Note that the ST-GCN architecture can accomodate both 2D and 3D
pose data, the only difference being the dimension of the input vectors.

Since its inception, several extensions to the original ST-GCN have been pro-
posed. These include adaptive adjacency matrices that can learn task-specific
graph structures beyond the fixed skeletal topology [127], attention mechanisms
that dynamically weight the importance of different joints for specific activ-
ities [109], and multi-stream architectures that process different modalities of
skeletal data (joint coordinates, bone vectors, motion information) in parallel
before fusion [127, 128].

We use ST-GCN for activity recognition in Paper II, where we apply self-
supervised learning techniques to learn robust action representations that can
generalize across different domains with minimal labeled data.
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Research Summary and
Conclusions

This thesis addresses key challenges encountered when designing and deploying
multi-camera systems for 3D human and scene understanding beyond controlled
laboratory settings. Paper I presents a practical method for extrinsic multi-
camera calibration from 2D human poses enabling fast, equipment-free setup.
In Paper II, we focus on learning generalizable representations for 3D skeleton-
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Figure 4.1: Thesis contributions in the context of the MCS system.
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based action recognition via self-supervised learning, reducing dependency on
labeled training data. Paper III introduces a Transformer-based model for multi-
view 3D human pose reconstruction that is robust to real-world challenges such
as occlusions and sparse camera coverage. Finally, in Paper IV we propose a
method for open-vocabulary 3D object detection from sparse multi-view RGB
images, extending the system’s capabilities to 3D scene understanding. To-
gether, these works contribute to bringing multi-view computer vision from the
laboratory to real-world deployment.

4.1 Human Pose-Based Camera Calibration (Paper I)

Traditional multi-camera calibration procedures rely on specialized equipment
and skilled operators, hindering practical deployment of multi-camera systems.
Establishing accurate point correspondences between views becomes particu-
larly challenging in wide-baseline systems, where the appearance of the same
3D regions may vary dramatically across camera viewpoints due to occlusions,
projective deformations, and viewpoint-dependent effects such as specular re-
flections. This makes the setup process of the system time-consuming and
expensive, affecting every aspect of system deployment, from initial setup to
ongoing maintenance. These were critical challenges for applications such as
the traveling marketing experiences described in Sec. 2.2, which relied on rapid
system deployment and reconfiguration across diverse venues.

Our key insight was given by the application context itself. Since our target
scenarios involved detecting moving people, we speculated that the 2D joint
detections could be used as correspondence points between camera views. Com-
pared to classical feature descriptors, 2D joint detections are less dependent on
local image appearance and more robust to viewpoint change, due to their se-
mantic nature: like in X-ray imaging, the same anatomical joint can be seen
"through” the body, whereas the cameras may actually see two opposite sides
of the body part with very different appearances. This makes human joints
more reliable for correspondence matching across wide baselines compared to
traditional feature descriptors.

Therefore, we developed a human-pose-based calibration method that estimates
camera poses while reconstructing 3D human motion from 2D observations of a
person moving naturally through the scene. This approach transforms the cal-
ibration process into a simple, intuitive task that requires only having someone
walk around the capture space. The main challenge with this approach is that
2D joint detections are typically much less accurate than classical patch-based
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2D image features.

After obtaining an initial estimate of the camera poses using standard Structure-
from-Motion approaches with the potentially noisy keypoint detections, we pro-
pose several novel ideas to refine this estimate in the bundle adjustment step.
First, we introduce a robust reprojection loss that takes into account the joint
detection scores and the distances between the joints and the cameras. This al-
lows the optimization to place greater emphasis on more reliable joint detections.
Second, we implement a motion prior that encourages smooth joint trajectories
while accounting for complex human motion, improving temporal consistency.
Third, we enforce a constant limb length constraint that maintains anatom-
ical consistency throughout the calibration sequence. Finally, we incorporate
a learned 3D human pose likelihood model in kinematic chain space, effect-
ively leveraging prior knowledge about human body configuration to prevent
the optimization from converging to geometrically valid but biomechanically
implausible solutions that might arise from noisy observations.

Our central hypothesis was that incorporating more domain-specific knowledge,
i.e. understanding how 2d pose estimates are likely to be erroneous and what
constitutes plausible human motion, could guide the calibration process towards
more accurate and geometrically consistent solutions despite the noisy nature
of the input data. Experimental validation on public datasets confirmed this
hypothesis, demonstrating substantial improvements over previous human-pose-
based calibration methods.

The calibration method presented in Paper I enables fast and accurate camera
calibration while eliminating the need for specialized equipment. It has become
a central part of the MCS system and has contributed to its success by enabling
fast prototyping of new ideas and easy dissemination to remote teams without
computer vision experience. It allows users to quickly set up and reconfigure a
multi-camera system by simply having a person walk around the capture space,
addressing the first research question (RQ1) of this thesis.

Performance depends on sufficient human motion to provide adequate geomet-
ric constraints for the optimization, and the approach relies fundamentally on
the quality of 2D pose detection. When the pose detectors struggle due to poor
lighting conditions, occlusions or challenging poses, the calibration accuracy can
degrade significantly, requiring longer calibration sequences to be recorded. The
current method still requires a user to deliberately walk around the capture area
during setup or re-calibration. In some applications it would be practical to let
the system calibrate itself using the poses from any and all the persons moving
in the area; this would also enable the system to perform re-calibration auto-
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matically when certain conditions are detected. However, the people walking
in the scene may follow paths that are not distributed ideally for calibration to
succeed. This raises the question of how to automatically select which data is
most useful for obtaining a good calibration result. Another interesting avenue
for further research is to combine or initialize our method with learning-based
relative pose regression methods that have recently made enormous progress in
wide-baseline settings [32, 82, , , .

4.2 Learning Action Representations (Paper II)

In Paper II, we address the problem of developing effective action recogni-
tion systems without relying on large amounts of annotated data. As seen in
Chapter 2, a key driving factor when developing the multi-camera system has
been the ability to quickly prototype new ideas and address new needs. How-
ever, traditional supervised learning approaches to action recognition depend on
large, carefully annotated datasets. Collecting and labeling action data proves
both expensive and time-consuming, often requiring domain expertise to en-
sure consistent annotation quality. This becomes particularly problematic when
exploring new application domains or when working with specialized activities
that lack existing labeled datasets.

While labeled action data remains scarce and expensive to produce, unlabeled
human motion data can be captured easily and continuously by multi-camera
systems during normal operation. Inspired by the success of self-supervised
learning in computer vision and natural language processing (see Sec. 3.2.7), we
propose a self-supervised framework specifically designed for 3D pose sequence
representation. Our method is based on Bootstrap Your Own Latent (BYOL)
[50], a framework in which two neural networks, an online network and a target
network, learn to predict consistent representations from two different augmen-
ted views of the same input data. The online network is trained to predict the
representation produced by the target network, while the target network para-
meters are updated with an exponential moving average of the online network’s
weights, creating a sequence of online models of progressively increasing quality
without any labeled data.

One contribution of Paper II is a data augmentation strategy for 3D pose se-
quence data that encourages the model to learn useful features while disreg-
arding semantically-irrelevant variations. We developed a comprehensive set of
skeleton-specific augmentations including temporal resampling to handle nat-
ural variations in action speed, spatial transformations that maintain anatom-
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ical structure while introducing viewpoint invariance, and filtering operations
that simulate realistic noise perturbations.

While strong data augmentation contributes to making the model learn bet-
ter features during pre-training, mild augmentations are preferred during fine-
tuning for downstream tasks to avoid overwhelming the labeled training signal
with excessive noise. This augmentation strategy mismatch can significantly
impact transfer learning performance. To reduce this domain shift between the
data seen when pre-training and during fine-tuning, Paper II proposes asym-
metric augmentation pipelines that simultaneously expose the model to both ag-
gressive and conservative augmentation distributions during pre-training. This
asymmetric design encourages the model to learn representations that can map
from heavily distorted sequences to representations that are consistent with
those of minimally augmented sequences, which are preferred during fine-tuning.
This effectively reduces the distribution gap between pre-training and transfer
learning. We show that this leads to better performance in downstream tasks.

We also introduce multi-viewpoint sampling to leverage the fact that some data-
sets feature several recordings of the same pose sequences seen from different
viewpoints. For example, the datasets used in the paper include synchronized
sequences captured by several RGB-D cameras from different angles. Instead
of treating these as separate, unrelated sequences, we sample pairs of differ-
ent viewpoints of the same action as positive pairs during pre-training, which
encourages the network to learn view-invariant representations and disregard
artefacts of the depth camera or pose reconstruction system. Our experiments
demonstrate that multi-viewpoint sampling significantly improves the quality
of the learned representations. Note that this approach could be extended to
data captured by RGB multi-camera systems: different 3D pose sequences can
be reconstructed from the same motion sequence using 2D poses from different
subsets of cameras.

Paper II directly addresses the third research question (RQ3). Effective repres-
entation learning of human motion data enables fine-tuning activity recognition
models for downstream tasks with minimal labeled data. This makes the de-
velopment and deployment of action recognition systems more accessible and
adaptable to new application domains, significantly reducing the time and cost
associated with data collection and annotation.

Effective pre-training requires access to sufficient quantities of unlabeled motion
data, but more importantly to data that is varied enough to support general-
ization to downstream tasks. However, ensuring this diversity without prior
knowledge of target domains remains challenging. Our approach demonstrates
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the most pronounced performance gains in low-data regimes, with benefits di-
minishing as labeled data becomes more abundant. On fully-labeled datasets,
our method does not surpass fully-supervised baselines. This may however be a
question of scale. The datasets used in our experiments, while standard in the
field, are relatively small compared to the ”internet-scale” datasets that have
driven breakthroughs in language models and vision foundation models. Recent
work in computer vision has demonstrated that training large models on massive,
diverse datasets can yield representations that substantially outperform smaller
models when fine-tuned for downstream tasks. A compelling direction for future
research would be to scale skeleton-based self-supervised learning to much lar-
ger datasets and model architectures. Multi-camera systems like MCS, deployed
across diverse environments, could continuously collect unlabeled motion data at
unprecedented scale. Training large foundation models on such datasets might
yield representations that not only excel in few-shot scenarios but also surpass
fully-supervised methods on standard benchmarks. Furthermore, such founda-
tion models could enable a data engine approach similar to that pioneered by
Segment Anything. A large, capable model could be used to (semi-)automatic-
ally annotate motion sequences, generating high-quality pseudo-labels for train-
ing smaller, deployment-ready models. This would address both the annotation
bottleneck that currently limits the field and the computational constraints of
real-time applications. The virtuous cycle of model improvement driving better
automatic annotation, which in turn enables training even better models, could
accelerate progress substantially while reducing the human effort required for
new application domains.

4.3 Robust 3D Human Pose Estimation (Paper III)

In contrast to laboratory environments where camera placement, lighting con-
ditions, and scene composition can be controlled, practical deployment of multi-
camera system requires adapting to existing, often adverse conditions. Fur-
niture, machinery or architectural features may create occlusions, and possible
mounting locations are determined by the layout of the room, the availability
of power outlets and the ease of running cables, resulting in areas with minimal
camera view overlap. This makes it difficult to obtain accurate 3D pose recon-
structions, as triangulation-based methods typically fail when observations are
too noisy, or simply when keypoints are not visible in at least two views.

Whereas triangulation-based methods consider each 3D keypoint independently,
the positions and motion patterns of the different parts of the body are deeply
inter-related, reflecting anatomical connectivity, biomechanical principles, mo-
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tor control patterns, and temporal continuity constraints. In Paper III, we
approach multi-view 3D human pose reconstruction as a data-driven regression
problem, and designed a novel encoder-decoder Transformer model to uncover
these underlying relationships between 3D joints from multi-view 2D observa-
tions.

The first component of our model is a Transformer encoder that takes as in-
put 2D joint detections encoded as 3D rays passing through the camera centers
and the detected joints, using a Pliicker representation that decouples ray co-
ordinates from camera positions. The encoder treats all these joints detected in
different views and at different times as individual tokens and processes them
globally, allowing information to flow across views, joints and time, even when
some joints are not consistently visible. Whereas standard Transformers treat
all tokens equally, we introduce a biased attention mechanism to incorporate
domain-specific knowledge about the reliability of the observations: a confid-
ence bias weigths attention based on the detection confidence scores from the
2D pose estimator, and a geometry bias promotes attention between rays that
are close in 3D space. This effectively guides the attention mechanism towards
observations that are both reliable and geometrically consistent. The sequence
of refined tokens produced by the encoder form a global representation of the
pose sequence.

The second component of the model is a 3D pose sequence decoder that queries
the global encoded representation using predefined joint queries encoding both
semantic information about specific body parts and temporal information about
target time frames. These queries allow to extract specific 3D pose informa-
tion from the global encoded representation, enabling flexible output generation
where the number of input and output frames can differ.

To promote generalization to unseen scenes and improve robustness to missing
joint observations, we implement several training strategies. Scene centering
transforms all observations to a subject-centric coordinate system, allowing the
model to handle scenes of varying dimensions. We generate synthetic views
during training to increase the diversity of camera poses, compensating for the
limited viewpoint variations of existing datasets and improving generalization to
novel camera configurations. We also leveraged token dropout, which randomly
removes input tokens during training, emulating real-world occlusion scenarios
where certain body parts may be temporarily invisible due to furniture, other
people, or self-occlusion, to make the model resilient to missing joints and in-
complete temporal sequences.

The contributions of Paper IIT address our second research question (RQ2) by
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providing a robust solution for 3D human pose reconstruction in situations with
occlusions and limited camera views. This enables robust performance in diverse
real-world deployment scenarios where the environment cannot be controlled,
advancing the practical applicability of multi-camera systems such as MCS.

The performance of our method can degrade for poses that differ substantially
from the training distribution, which highlights the importance of diverse and
representative training datasets. Unfortunately, datasets combining multi-view
videos and annotated 3D pose data are few, relatively small and do not offer
much diversity of movements. Systems such as MCS, which can be easily in-
stalled in various environments, enable continuous gathering of multi-view 2D
pose data and automatically triangulated 3D poses. However, curating the 3D
poses to ensure that they have the quality required to train a proficient pose
reconstruction model still represents a considerable amount of work. It would
be interesting to explore weakly-supervised learning approaches for training re-
construction models on unlabeled multi-view 2D data, which would enable to
train on substantially larger datasets without 3D annotations. Another strategy
would be to pre-train the networks on large-scale 3D motion capture datasets
such as [91], which do not provide 2D data. Finally, recent work has shown
that leveraging physics priors, e.g. via simulation, enables the reconstruction of
more plausible poses [12, 79, 112]. An interesting future research direction could
be exploring physics simulation during training, or for automatic ground-truth
generation from unlabeled multi-view 2D data.

4.4 3D Scene Understanding from Sparse 2D Views
(Paper IV)

Papers II and III focus on human pose estimation and analysis, without con-
sidering the environment in which the persons are evolving. In Paper IV, we
explore whether the same system of sparse, fixed 2D cameras can be used to
achieve a 3D understanding of the scene, i.e. where are the walls, the furniture,
what objects are in the room, and where they are located. To that end, we tackle
the problem of open-vocabulary 3D object detection from sparse multiview 2D
images.

Our method is training-free and relies entirely on pre-trained, off-the-shelf 2D
networks, making it immediately applicable without requiring domain-specific
fine-tuning. The first stage generates initial 3D object proposals from individual
RGB images by applying a state-of-the-art open-vocabulary 2D object detector
[98] to identify objects specified by text queries, then using an image segment-
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ation model [72] to obtain accurate 2D masks for each detected object. We lift
the 2D masks to 3D using monocular depth estimation using MoGe [153], an
affine-invariant monocular depth estimator that predicts relative depth maps.
We backproject each pixel within an object mask to 3D space using the estim-
ated depth value and known camera parameters. This stage produces a set of
3D point clouds, one for each detected object in each view.

However, these initial proposals suffer from the scale ambiguity inherent in mon-
ocular depth estimation and may have inconsistent depth scales across different
views or even within individual images. The core contribution of our approach
lies in the multi-view refinement stage, which optimizes the initial 3D proposals
for consistency across different camera views. Before optimizing individual pro-
posals, we estimate a global scale factor that provides a reasonable initialization
for all proposals in a given view. This addresses the fact that monocular depth
estimators often produce depth maps with globally consistent relative scales,
even if the absolute scale is unknown. We then optimize individual scale and
shift parameters for each object proposal independently. This per-proposal re-
finement accounts for local inconsistencies in the monocular depth maps that
cannot be corrected by a global scale factor alone. Objects at different distances
from the camera, or in different parts of the image, may require different scale
adjustments to achieve multi-view consistency. We define a multi-view consist-
ency loss that measures how well a 3D proposal aligns with the corresponding
image content when projected into other camera views. The loss combines two
complementary terms: the first term encourages photometric alignment across
views, while the second term captures semantic consistency and is more robust
to photometric variations due to lighting changes or viewpoint-dependent ef-
fects. The combination of these terms provides a robust measure of multi-view
consistency that can handle photometric variations across views.

The final stage of our pipeline combines the optimized 3D proposals from dif-
ferent views into coherent 3D object detections by greedily merging the axis-
aligned 3D bounding boxes computed for each optimized proposal, based on the
intersection-over-union (IoU) of the boxes. For each merged cluster, we compute
a final bounding box that encompasses the union of all point clouds belonging
to proposals in that cluster.

A key strength of our method is that it relies entirely on pre-trained, off-the-shelf
2D networks without any 3D-specific training, resulting in better generalization
to new object categories and environments. The training-free nature also en-
ables immediate deployment without the data collection and training overhead
associated with supervised 3D approaches.
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Paper IV addresses the fourth research question (RQ4) by providing compre-
hensive scene understanding from few 2D views, thus making it possible to lever-
age the same system that was designed for real-time human pose reconstruction
and analysis.

This work represents an initial step toward comprehensive 3D scene understand-
ing from sparse views. A natural next step would be to explore human-object
interaction analysis by combining the 3D human poses from our multi-view sys-
tem with detected object locations and affordances. This integration could en-
able activity recognition that leverages both motion patterns and environmental
context, for example distinguishing between “reaching for a cup” and ”reaching
for a book” based on the spatial relationship between the person and nearby
objects. Knowledge of the 3D scene could also be leveraged to enhance 3D hu-
man pose reconstruction, by preventing unrealistic collisions and intersections
with the environment. Another promising direction is to use the semantic and
geometric data provided by our method to reason about object relationships,
spatial layouts, and functional affordances, enabling natural language queries
about complex spatial relationships, e.g. "Where is the safest place to put this
fragile item?”. Beyond static object detection, the framework could be extended
to understand dynamic scene properties, including extrapolating the state of
the scene in invisible areas, modeling temporal scene evolution, and predicting
probable future states ("will that precariously placed item fall?”). Such capabil-
ities would enable proactive assistance systems that can anticipate events before
they occur.
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