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Abstract 

Chemical exchange saturation transfer MRI is a promising magnetization transfer 

(MT) imaging technique that utilizes, by radiofrequency irradiation, selective 

saturation of exchangeable protons in solutes. This enables the indirect detection of 

the solutes through the water signal after saturation transfer by chemical exchange, 

cross-relaxation, or the combination of the two. Typically, the water-signal change 

is studied within a frequency range where different molecular protons have visible 

resonances in the proton nuclear magnetic resonance spectrum due to the molecular 

mobility in the solution. In saturation transfer experiments, a normalized water 

signal as a function of saturation frequency, also referred to as a Z-spectrum, is 

obtained. Like any other medical imaging modality, the MT imaging technique may 

be hampered by several drawbacks and limitations. A small effect size, together 

with the unavoidable noise in digital imaging, might render Z-spectra useless, and 

various data processing strategies are thus warranted. In the work described in this 

thesis the deep learning (DL)-based constrained loss autoencoder residual denoiser 

was developed, which combined the strength of latent mapping by autoencoders 

with subtractive denoising in the latent dimensions to obtain improved denoising 

performance and enable an increased level of signal recovery compared to other 

state-of-the-art approaches. Moreover, even for processed or high-quality Z-spectra, 

valuable biochemical information from various convolved contributions is 

commonly extracted by fitting the spectral data to a model. Conventional algorithms 

such as least squares (LS) fitting hamper efficient analysis due to inherent 

limitations such as a high dependence on data quality and sampling density, as well 

as long fitting times. To increase the feasibility of implementing MT-techniques, 

promote their clinical applications, and allow for studies of larger cohorts, it is 

necessary to streamline and standardize the analysis. A DL-based fitting approach 

for direct water saturation (DS) Z-spectra was developed and provided increased 

robustness and accelerated fitting compared to LS. The developed method found an 

application in a subsequent study by showing tangible differences in linewidth 

changes of DS spectra (pre- and post-glucose infusion) for healthy brain tissue and 

tumor. Finally, a multi-pool machine learning-based fitting approach using gradient 

boosted decision trees was also developed in the work of this thesis. The reduction 

in algorithmic complexity resulted in training times of approximately one minute, 

thus providing more freedom to change acquisition protocols. The fitting time was 

also reduced to approximately one second per brain compared to several hours with 

LS. The goodness-of-fit of four components was also empirically compared across 
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the Lorentzian and Voigt spectral models, showing a statistically significant 

improvement for the latter. 
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Populärvetenskaplig sammanfattning 

Magnetiseringsöverföring (eng. magnetization transfer, MT) är ett 

fysikaliskt/kemiskt fenomen som kan utnyttjas inom magnetresonanstomografi 

(MRT) för att icke-invasivt undersöka substanser som förekommer i låga 

koncentrationer. Dessa substanser kan finnas i kroppen, endogena, eller så kan de 

administreras utifrån före undersökningen, exogena. En magnetisk märkning (s.k. 

saturering) av protonerna i dessa substanser åstadkoms genom att de exponeras för 

radiofrekventa vågor med en frekvens som är unik för varje typ av substans. Denna 

saturering följs av ett utbyte av protoner, genom olika fysikaliska eller kemiska 

processer, mellan substansen och det fria vatten som finns i hög koncentration i 

kroppen. När omärkta protoner i vattnet ersatts med substansens märkta protoner 

kan dess koncentration indirekt mätas genom den resulterande förändringen i 

vattensignalen. Den uppmäta vattensignalen studeras över ett relevant 

frekvensomfång i det som kallas Z-spektrum. Z-spektra innehåller riklig 

information av fysiologisk relevans och denna information kan till exempel 

användas för att skilja normal vävnad från patologisk. För att kunna extrahera den 

värdefulla informationen krävs ofta en inledande behandling av rådata (insamlade 

obearbetade Z-spektra), eftersom effektstorleken från MT är liten samtidigt som 

data oundvikligen innehåller brus. Efter databehandlingen följer analys av stora 

mängder Z-spektra. Artificiell intelligens (AI) har det senaste årtiondet uppvisat en 

enorm utveckling och smugit sig in nästan överallt i vardagen, även i tillämpningar 

inom medicinsk avbildning. I denna doktorsavhandling har olika lösningar baserade 

på maskininlärning (ML), som är en gren inom AI, utvecklats, dels för att förbättra 

och effektivisera analysen av MT-data, dels för att förbättra datakvaliteten med 

avseende på brus. Mer explicit har ML-lösningar utvecklats för att analysera Z-

spektra genom att extrahera relevanta parametrar av fysiologisk betydelse. Jämfört 

med konventionella metoder för motsvarande analyser har de utvecklade ML-

metoderna visat ökad robusthet (mot diverse faktorer som påverkar datakvaliteten) 

och framför allt kortare analystider. För en mängd Z-spektra från en hel 

hjärnavbildning tar analysen ungefär en sekund jämfört med flera timmar med 

konventionella metoder. En ML-baserad brusreduceringsmetod har också 

utvecklats som resulterat i lägre brusnivå med högre grad av återhämtning av 

förlorad kontrast jämfört med tidigare motsvarande metoder. 
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1. Introduction 

In the last few decades, non-invasive magnetization transfer (MT) magnetic 

resonance imaging (MRI) techniques have emerged enabling indirect probing of 

naturally occurring (endogenous) or externally administered (exogenous) solutes, 

even at low concentration (mM), through the effects on the free water signal. This 

is achievable through the selective saturation of the compound protons by 

radiofrequency (RF) field irradiation at their specific resonance frequency, followed 

by the transfer of the saturation through an exchange with the bulk water protons.1–

6 The MT effects are commonly observed using a so-called Z-spectrum, which is the 

normalized water signal as a function of saturation frequency.3,4 Retrieval of this 

information has shown promising potential in several clinical applications, such as 

stroke detection,7–9 brain cancer9–12 and non-brain cancer diagnoses,13–15 as well as 

cancer therapy monitoring.16 The responsible physician’s interpretation and 

understanding of the MT data are crucial for diagnosis, treatment planning and 

follow-up. However, several limitations and challenges still need to be overcome to 

unlock the full potential of these techniques, both in data-quality improvement by 

post-processing, as well as in standardization and increased efficiency of analyses. 

Artificial intelligence (AI), with its many different fields – not least machine 

learning (ML) – has grown vastly over the last few decades as a consequence of 

improved hardware and increased data availability.17–22 This has led to various 

everyday implementations and a plethora of applications within medical imaging. 

In data science and technology, the growth of the number of publications related to 

AI and ML has resembled an exponential over the last few years, a trend also 

observed in natural science- and medicine-based journals.23 Not surprisingly, ML 

has thus been implemented in various ways within MT-based imaging. Successful 

implementations can be found both in terms of analysis, such as in deep learning 

(DL)-based parameter estimation from chemical exchange saturation transfer 

(CEST) images,24 and processing, such as in the DL-based super-resolution 

approach for reconstructing high-resolution CEST images from fast low-resolution 

acquisitions.25 Despite the increasing number of ML-based publications on MT 

imaging, it is not far-fetched to state that the field is still in its infancy due to the 

numerous possibilities provided by ML and the continued need for improved or 

innovative analysis and processing methods for MT imaging. In light of this 

development, the work of this thesis has focused on finding ML-based solutions to 
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some of the current limitations and challenges faced in MT-based imaging in the 

realms of both analysis and processing.   

For processing specifically, efforts were directed toward addressing the inherent 

problem of noise in digital imaging. Due to the generally small effect size in MT 

imaging, the unavoidable noise may result in a loss of observable contrast, thus 

rendering the data useless. While several denoising approaches have been applied 

to MT data, both conventional26 and DL-based,27,28 the ability to restore an 

observable effect on the signal (especially signals that are small to begin with) with 

high fidelity remains challenging. With this as a motivational factor, an innovative 

DL-based approach was developed (described in Paper IV). In the attempt to 

streamline the analysis of MT data, focus was placed on fitting Z-spectra, which is 

a central approach for extracting the wealth of biochemical information that the 

spectra hold. Firstly, a study primarily concerned with increasing robustness and 

reducing time consumption when fitting direct water saturation (DS) spectra was 

presented in Paper I. Secondly, an investigation that focused on reducing time 

complexity, both in terms of training and inference, as well as comparing different 

multi-pool spectral profiles for modeling Z-spectral components, was described in 

Paper II. The need for effective and robust fitting is also essential in research 

applications, as exemplified in Paper III, where the approach developed in the work 

of Paper I was applied. 

This thesis is structured in the following manner: Chapter 3 provides a general 

theoretical background regarding MT MRI and noise in MRI, and the Z-spectrum 

is also described. Chapter 4 focuses on various spectral models used for Z-spectra 

and provides a comparison based on the empirical findings reported in Paper II. 

Chapter 5 gives an overview of conventional fitting approaches and delves deep into 

the ML-based Z-spectral fitting solutions proposed in Papers I and II. Chapter 6 

investigates available DL-based retrospective denoising approaches, including the 

proposed solution described in Paper IV. Finally, Chapter 7 includes a critical 

review of the completed work along with conclusions and future perspectives.  
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2. Aims 

The projects described in this thesis focused primarily on developing and applying 

ML-based solutions to streamline and standardize the processing and analysis of 

MT-based images and to solve their inherent challenges. 

 

The specific aims of the projects described in this thesis were as follows: 

 

• Developing and testing ML-based methods for a robust and streamlined 

analysis of MT MRI data in the form of Z-spectral fitting (Papers I and II). 

• Implementing and applying a developed method in clinical research 

applications (Paper III). 

• Developing, testing and implementing an innovative DL-based approach 

for denoising in CEST-MRI (Paper IV). 
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3. Magnetic resonance imaging and 

magnetization transfer 

3.1 Magnetic resonance imaging 

In 1946, Bloch and Purcell observed the first nuclear magnetic resonance (NMR) 

phenomena in bulk matter.29,30 Nuclei with nonzero spin, like 1H and 31P, have a 

magnetic dipole moment associated with their spins. When an external static 

magnetic field is applied, the spin or magnetic dipole vectors will orient with a 

precessional motion either parallel to the magnetic field orientation, corresponding 

to a lower energy state, or antiparallel, corresponding to a higher energy state.31,32 

In the quantum mechanical description, the spins can also exist in superposition 

states, where their orientation is not strictly defined until measured.33 Nevertheless, 

the difference in the populations of the two energy states results in a so-called 

polarization, which is proportional to the magnetization measured in MRI. The 

relation between the populations of the parallel (𝑁+) and anti-parallel (𝑁−) spins is 

given by Boltzmann’s distribution34: 

 
𝑁+

𝑁−
= 𝑒

2𝜇𝑝𝐵0

𝑘𝑇  , (3.1) 

where 𝜇𝑝 = 1.4 ∙ 10−26 J/T is the intrinsic magnetic dipole moment for a proton, 

𝐵0 is the magnetic flux density in T, 𝑘 = 1.38 ∙ 10−23 J/K is the Boltzmann 

constant, and 𝑇 is the absolute temperature in K. The highest magnetic field strength 

for clinical use approved by the U.S. Food and Drug Administration (FDA) is 7 T,35 

and the typical room temperature is 293 K. Insertion of these values into Equation 

3.1 results in a difference of less than 50 ppm between the two spin populations, 

indicating that the resulting net magnetization vector, M, has a small magnitude. 

Since the spins have a precession frequency when residing in an external field, M 

will precess around the direction of the external magnetic field lines with a 

resonance frequency referred to as the Larmor frequency, 𝜔0. This frequency is 

given as the product of the magnetic flux density, 𝐵0, and the gyromagnetic 

constant, 𝛾, which is an element-dependent quantity (𝛾/2 = 42.6 MHz/T for 1H).32  
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It is the existence of a net magnetization vector that makes MR imaging possible. 

By using an RF pulse to apply an orthogonal time-varying magnetic field, 𝐵1, to the 

sample in a static B0-field, the net magnetization vector can be “flipped” towards 

the xy-plane (Figure 3.1). Using a receiver coil, a free induction decay signal can be 

recorded due to the precession of the flipped magnetization vector, in accordance 

with Faraday’s law of induction,36 thus yielding a time-varying signal. 

 

 
 

Figure 3.1. Flipping of the net magnetization vector. The nutational motion of the net magnetization vector 
towards the xy-plane from the equilibrium state in the direction of the applied static magnetic field under the 

influence of a time-varying magnetic field, 𝐵1.  

After the RF pulse is terminated, the flipped magnetization vector will recover to its 

thermal equilibrium state, a process referred to as relaxation. The longitudinal (spin-

lattice) relaxation time is referred to as 𝑇1, while the transverse (spin-spin) 

relaxation time is referred to as 𝑇2. The time evolution of the magnetization in a 

static magnetic field is given by the Bloch equations, which are defined as: 

 
𝑑𝑀𝑥(𝑡)

𝑑𝑡
= 𝛾 (𝑀𝑦(𝑡) ∙ 𝐵𝑧(𝑡) − 𝑀𝑧(𝑡) ∙ 𝐵𝑦(𝑡)) − 𝑅2 ∙ 𝑀𝑥(𝑡) , (3.2) 

 
𝑑𝑀𝑦(𝑡)

𝑑𝑡
= 𝛾(𝑀𝑧(𝑡) ∙ 𝐵𝑥(𝑡) − 𝑀𝑥(𝑡) ∙ 𝐵𝑧(𝑡)) − 𝑅2 ∙ 𝑀𝑦(𝑡) , (3.3) 

 
𝑑𝑀𝑧(𝑡)

𝑑𝑡
= 𝛾 (𝑀𝑥(𝑡) ∙ 𝐵𝑦(𝑡) − 𝑀𝑦(𝑡) ∙ 𝐵𝑥(𝑡)) − 𝑅1(𝑀𝑧(𝑡) − 𝑀0) , (3.4) 

where 𝑀𝑥, 𝑀𝑦 𝑎𝑛𝑑 𝑀𝑧 indicate the components in the x, y and z directions of the 

time-dependent magnetization vector, respectively, while 𝑀0 is the magnitude of 

the magnetization at thermal equilibrium in the static magnetic field. Similarly, 

𝐵𝑥 , 𝐵𝑦 𝑎𝑛𝑑 𝐵𝑧 are the components of the applied magnetic field experienced by the 
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nuclei. Note that 𝑅1 and 𝑅2 are the longitudinal and transverse relaxation rates, 

respectively, defined as 𝑅1 = 1/𝑇1 and 𝑅2 = 1/𝑇2. 

The proton of the hydrogen nucleus, which is highly abundant in water, is the 

primary target in MRI. Depending on the tissue compartment or molecular 

environment in which the water resides, different degrees of binding exist (e.g., free 

in the cytoplasm or restricted in semisolid environments such as membranes), 

resulting in a variation of molecular motions affecting the relaxation properties. 

Moreover, various chemical, physical and magnetic interactions (more detailed 

discussion in the following sections) occur for the water proton spins, ultimately 

affecting the measured signal. Hence, the properties of the water protons reflect both 

the macroscopic and microscopic organization of tissue.1 By varying acquisition 

settings such as flip angle (𝐹𝐴), repetition time (𝑇𝑅) and echo time (𝑇𝐸), various 

pulse sequences can be created to produce contrast patterns that reflect the different 

inherent contrast mechanisms. The acquired MR signal is stored in the so-called k-

space. To obtain the MR image, the signal data need to be Fourier-transformed.31,32 

By direct inverse transformation of the complex k-space signal, a complex image is 

generated. However, magnitude and phase images are the most common37,38 since 

they provide more diagnostic value due to their direct interpretability. It should be 

noted that these images are obtained by nonlinear operations applied to the complex 

signal before the subsequent inverse Fourier transform. 

3.1.1 Noise in magnetic resonance imaging 

The main contributor to noise in MRI images is the thermal motion of the electrons 

and ions in the studied object. Charged particles in motion will exchange energy 

upon interactions with surrounding atoms, which may result in (signal-interfering) 

electromagnetic emissions referred to as thermal noise.39–41 Other significant 

contributions to the observed interference arise from the electronic components of 

the system itself, including the pre-amplifier, receiver coil and analogue-to-digital 

converter41. These have a variety of sources, not limited to but including thermal 

noise, as well as flicker noise, which is partly explained by imperfections in the 

electronic components.42 The latter, also referred to as 1/𝑓 − 𝑛𝑜𝑖𝑠𝑒, where 𝑓 is the 

frequency, is thus more notable at lower frequencies. While some sources such as 

flicker noise yield noise that adheres to non-Gaussian distributions, most of the 

noise contributing to the MRI signal (including thermal noise) follow a Gaussian 

probability density function (PDF).43 Furthermore, a linear combination of 

Gaussians will result in another Gaussian probability function, with the mean and 

variance equal to the linear combination of the individual means and variances. For 

the raw MR data collected in k-space, the governing PDF is thus a Gaussian.37,38,43–

45 To obtain complex MR images, the raw k-space data are transformed through the 

discrete inverse Fourier transform. Due to the linearity and orthogonality of the 

transform, the PDFs governing the noise in complex (i.e., real and imaginary) MR 
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images are maintained.37,38,43,44 However, the more common magnitude and phase 

images in MRI37,38 are obtained using nonlinear operations. A magnitude MR image 

𝑋 is generated by taking the pixel-by-pixel root sum of squares of the real and 

imaginary components of a complex image38,43–46, expressed as: 

 𝑋 = √(𝐴𝑅 + 𝑛𝑅)2 + (𝐴𝐼 + 𝑛𝐼)2 , (3.5)  

where 𝐴𝑅 and 𝐴𝐼 are the real and imaginary signal components while 𝑛𝐼 and 𝑛𝑅 are 

the real and imaginary uncorrelated Gaussian noise variables. For the resulting 

image, the PDF governing the pixel values is transformed to a Rician 

distribution,37,45,46 which is defined as: 

 𝑝(𝑥) =
𝑥

𝜎2 𝑒𝑥𝑝 (−
𝑥2+𝜈2

2𝜎2 ) ∙ 𝐼0 (
𝑥𝜈

𝜎2) 𝐻(𝑥) , (3.6) 

where 𝑥 is the magnitude image signal, 𝜈 the non-centrality parameter given by 𝜈 =

√𝐴𝑅
2 + 𝐴𝐼

2, 𝜎 is the standard deviation of the noise, 𝐼0 the zeroth-order Bessel 

function and 𝐻 the Heaviside function, thus ensuring the PDF expression for 𝑥 is 

only valid for non-negative values.43 In the image regions where the signal 

components are zero (𝜈 = 0), the Rician simplifies to a so-called Rayleigh 

distribution. Figure 3.2 provides an overview comparing the main characteristics of 

three PDFs. The Gaussian probability function is symmetrically centered around a 

mean value, 𝜇, and its tails stretches infinitely on both sides. However, 68% of the 

data falls within one standard deviation (std). Since the Rician distribution describes 

the magnitude data, it cannot take negative values (Equation 3.5) and the same 

applies to the Rayleigh distribution. The scaling parameter (𝜎) of the Rician and 

Rayleigh distributions is analogous to the std of the Gaussian and controls the spread 

of the distributions, while the noncentrality parameter of the Rician distribution 

controls the position. It is worth mentioning that subtracting two Rician distributions 

results in a Gaussian-like distribution.47 This becomes relevant, for example, in 

arterial spin labeling imaging, where a labeled image is subtracted from a control 

image. It is also relevant in the novel denoising method described in Paper IV, where 

a subtraction is applied between the latent representations of noisy signal and pure 

noise (a more detailed discussion is provided in Chapter 6.2).   
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Figure 3.2. Comparison of the characteristics of Gaussian, Rician and Rayleigh distributions. The Gaussian 

(blue line) is centered about a mean value ( 𝜇 = 3 in this case) with symmetric tails and can thus have negative 

values. The Rician and Rayleigh probability functions cannot have negative values. Note that the scaling parameter 

is the same for the Rician (orange line) and the Rayleigh (green line), and that the difference is caused by the 

nonzero value of the noncentrality parameter for the Rician.  

3.2 Magnetization transfer 

Conventional MRI relies on the Bloch equations29 (Equations 3.2 – 3.4) for 

describing the time evolution of the collective nuclear magnetization in an external 

static magnetic field (B0) after RF excitation by applying a time-varying magnetic 

field (B1) under the influence of relaxation processes (longitudinal and transversal). 

However, physical (e.g., diffusion and flow), chemical (e.g., substrate binding and 

chemical exchange), and magnetic interactions (e.g., scalar and dipolar coupling) 

also take place and affect the magnetization.1,48,49 Chemical exchange and magnetic 

interactions are especially important to MT, a term that includes processes occurring 

when the effect of saturation on solute proton magnetization is transferred within or 

between molecules. Chemical exchange is the process wherein the transfer of 

magnetization occurs through the physical exchange of protons between molecular 

situations in which they experience a different proton chemical shift. This can be 

due to transfer between different molecules, or within molecules between different 

magnetic environments.1–4 As for magnetic interactions, scalar coupling occurs due 

to the interaction of spins through the electrons in the chemical bond of the 

molecules,49 which can be exploited for MT between nuclei. For dipolar coupling, 

the interactions between spins occur through space, and the transfer of 
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magnetization can occur through a process called cross-relaxation.1,48,50 It should be 

noted that dipolar coupling, due to its dependence on motion, is not detectable in 

MRI because of the rapid molecular tumbling rate in liquids, which averages out the 

effect. However, it does contribute to spin relaxation.1 Chemical exchange and 

dipolar coupling underlie several processes (Figure 3.3) that contribute to the MT 

effects detectable by MRI.  

 

 
 

Figure 3.3. Magnetization transfer processes. (A) Magnetization transfer via cross-relaxation from an RF-

saturated proton (black) to another molecular proton in proximity (distance 𝑟). (B) Chemical exchange between an 

RF-saturated proton in a macromolecule and a free water proton. (C) Intramolecular (relayed) NOE, also referred 
to as spin-diffusion or relayed dipolar transfer. (D) Exchange-relayed NOE, where a saturated proton is transferred 

via chemical exchange to a mobile molecule in which NOE proceeds. (E) NOE relayed exchange (rNOE), wherein 

saturation is transferred via NOE in a mobile molecule, followed by chemical exchange. (F) MTC, where spin-
diffusion occurs in the backbone of the semisolid macromolecule and then continues through intermolecular NOE 

to bound water, with subsequent chemical exchange of whole molecules or protons occurring with free water. 

Alternatively, the fast transfer from the semisolid to free water via proton exchange contributes to the MTC effect. 

Figure adapted from reference 1 with permission from the publisher. 

3.2.1 Different types of magnetization transfer 

3.2.1.1 Chemical exchange 

Chemical exchange for the purpose of CEST MRI refers to the mechanism by which 

the effect of saturation of a proton pool is transferred by the physical exchange of 

protons from one molecule to another (Figure 3.3B and more detailed in 3.4A). 

Conversely, the effect of exchange on relaxation is exploited in chemical exchange 

sensitive spin lock (CESL) MRI.  

In CEST imaging, either endogenous or exogenous solutes are probed by selectively 

saturating their exchangeable protons via irradiation with RF pulses at their specific 
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resonance frequencies. This is followed by the solute protons exchanging with the 

bulk water protons (Figure 3.4A), which resonate at a different frequency due to 

their different chemical shift. Therefore, the solutes are detected indirectly through 

the reduction of the water signal. In practice, the low concentration (typically in the 

millimolar range) of the solutes would not be detectable due to the much higher 

proton concentration in bulk water (110 M). However, this method relies on a 

successive build-up of the water-signal loss due to the repeated transfer of saturated 

protons from the solute pool to free water and, inversely, the transfer of unsaturated 

protons from the water pool to the solute pool.1,4 In this way, signal enhancements 

exceeding a factor of 1,000 can be obtained under the right conditions.1 In particular, 

the exchange rate 𝑘𝑠𝑤 should be within the correct order of magnitude in relation to 

the saturation efficiency 𝛼. An analytical expression for the proton transfer ratio 

(PTR) for a two-pool model under conditions of slow exchange on the MR time 

scale can be expressed as51: 

 𝑃𝑇𝑅 = 𝑥𝑠𝛼𝑠𝑘𝑠𝑤𝑇1𝑤 (1 − 𝑒
−

𝑡𝑠𝑎𝑡
𝑇1𝑤) , (3.7) 

where 𝑥𝑠 is the ratio of the concentration of protons  in the exchangeable solute to 

the concentration of water protons, given as 𝑥𝑠 =
[𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑎𝑏𝑙𝑒 𝑝𝑟𝑜𝑡𝑜𝑛𝑠]

[𝑤𝑎𝑡𝑒𝑟 𝑝𝑟𝑜𝑡𝑜𝑛𝑠]
=

𝑘𝑤𝑠

𝑘𝑠𝑤
. The 

saturation efficiency can be approximated as: 

 𝛼𝑠 ≈
(𝛾𝐵1)2

(𝛾𝐵1)2+𝑘𝑠𝑤
2  . (3.8) 

From the above, it is clear that a higher concentration of solute protons and a higher 

saturation efficiency are favorable for signal enhancement, as well as a longer 𝑇1 

for water (𝑇1𝑤) since it allows the saturation to continue longer. It can also be 

inferred from Equation. 3.8 that for faster exchange rates, a stronger B1-field 

strength is required to obtain sufficient saturation efficiency before exchange 

occurs. Another favorable condition for an enhanced signal is for the exchangeable 

protons to be in the slow to intermediate MR exchange regime (∆𝜔 ≥ 𝑘𝑠𝑤).  

CEST effects are studied using the Z-spectrum (Figure 3.4B), which is defined as 

the normalized water signal intensity as a function of saturation frequency, i.e., 

𝑍(∆𝜔) = 𝑆𝑠𝑎𝑡(∆𝜔)/𝑆0, in which 𝑆𝑠𝑎𝑡 is the water signal intensity at the irradiation 

offset ∆𝜔 from the water proton resonance frequency, and 𝑆0 is the signal intensity 

without saturation. The CESL method is conceptually similar to CEST in terms of 

the mechanism of exchangeable protons. The main difference, however, lies in the 

pulse sequences employed and how the exchange is probed. As previously 

mentioned, imaging in CEST is preceded by a saturation pulse applied for a time 
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𝑡𝑠𝑎𝑡. During this time, saturation of the target proton pool occurs and is followed by 

the exchange with water protons. In contrast, the imaging in CESL is preceded by 

flipping the magnetization with an angle 𝜃 = arctan(𝜔1,𝑆𝐿/∆𝜔), where 𝜔1,𝑆𝐿 is the 

so-called Rabi frequency, into the yz-plane and, subsequently, locking it with a spin-

lock pulse (𝐵1,eff = √(𝜔1,𝑆𝐿
2 + ∆𝜔2  )/𝛾 ) for a time 𝑡𝑆𝐿 before flipping it back and 

proceeding with the imaging. During 𝑡𝑆𝐿, a so-called “spin-lattice relaxation in the 

rotating frame” occurs, which is given as: 

 𝑅1𝑝 = 𝑅1 ∙ cos2 𝜃 + (𝑅2 + 𝑅𝑒𝑥) ∙ sin2 𝜃 , (3.9) 

where, 𝑅𝑒𝑥 describes the transverse relaxation contribution due to exchange, which 

is given as: 

 𝑅𝑒𝑥(∆𝜔, 𝜔1,𝑆𝐿) =
𝑝𝑠𝛿2𝑘𝑒𝑥

(𝛿−∆𝜔)2+𝜔1,𝑆𝐿
2 +𝑘𝑒𝑥

2  ,  (3.10) 

where 𝑝𝑠 is the population fraction of the solute, 𝛿 is the chemical shift difference 

between the solute and water resonance frequencies and 𝑘𝑒𝑥 = 𝑘𝑤𝑠 + 𝑘𝑠𝑤. The 

relaxation effects due to exchange can thus be studied either as a function of the 

Rabi frequency when ∆𝜔 is kept constant, for example, on-resonance with ∆𝜔 = 0 

or ∆𝜔 = 𝛿, which yields a so-called relaxation dispersion curve, or off-resonance 

as a function of ∆𝜔 (𝜔1,𝑆𝐿 kept constant) in a so-called SL Z-spectrum (similar to 

the CEST Z-spectrum).52 Simply put, the main difference is thus relaxation versus 

saturation for CESL and CEST, respectively. As a result, CEST is suitable for slow 

exchanging protons (ms-to-s range) on the MR timescale, while CESL is more 

suitable for protons exchanging in the intermediate-to-fast regime (ms-to-𝜇s 

range).52–54  
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Figure 3.4. The principle of chemical exchange saturation transfer and examples of a Z-spectrum and an 

𝑴𝑻𝑹𝒂𝒔𝒚𝒎 spectrum. (A) A solute proton (in this case an amide proton) is selectively saturated by irradiation using 

RF pulses at its MR resonance frequency offset (3.5 ppm from the water resonance frequency for amide protons). 

The saturated protons exchange with the protons of the water pool. (B) A Z-spectrum showing the normalized water 

signal as a function of saturation frequency. (C) The corresponding 𝑀𝑇𝑅𝑎𝑠𝑦𝑚 spectrum is generated through the 

subtraction of signals at a positive frequency offset from those at a negative frequency offset (Equation. 3.18). Since 

there are no signals at the negative offset, the 𝑀𝑇𝑅𝑎𝑠𝑦𝑚 spectrum visualizes the effects observed at 3.5 ppm. The 

figure was adapted from reference 4 with permission from the publisher. 

3.2.1.2 Cross-relaxation 

Another mechanism that causes MT, although without the physical exchange of 

protons, is cross-relaxation (Figure 3.3A). Dipolar coupling of neighboring spins 

may cause a saturated (or excited) spin population to transfer its magnetization to a 

neighboring population while the original population relaxes to equilibrium state. 

This so-called cross-relaxation process can be much faster than 𝑇1 relaxation. The 

magnitude of dipolar coupling is inversely proportional to the cube of the distance 

between coupled nuclei and is also dependent on the squares of their gyromagnetic 

ratio as well as their orientation.1,50 Consequently, the efficiency of cross-relaxation 

has the same dependencies as dipolar coupling, in addition to the requirement of a 

matching frequency range for the two spin pools, as described by the so-called 𝐽(𝜔)- 

or spectral density functions (see references 50 and 56 for a theoretical and 

experimental understanding, respectively). With the reduced rotational motion of 
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molecules, the cross-relaxation rate increases, thus making it more prevalent in 

larger molecules and extremely fast in semisolid structures.1  

3.2.1.3 Nuclear Overhauser enhancement 

With the underlying mechanism of cross-relaxation, yet another MT process 

between nuclei is the nuclear Overhauser enhancement (NOE),57 which leads to the 

spread of magnetization throughout a macromolecule (Figure 3.3C). This process is 

thus referred to as relayed NOE, relayed dipolar transfer or spin-diffusion, all of 

which are reflective of the effective spread of the magnetization within a molecule.1 

Relayed NOE, in combination with the chemical exchange mechanism, can result 

in two transfer processes. The first process is referred to as exchange-relayed NOE 

(Figure 3.3D), wherein an initially saturated solute proton transfers its 

magnetization through chemical exchange to another molecule, in which relayed 

NOE subsequently proceeds. The second process is referred to as NOE-relayed 

exchange (rNOE), wherein magnetization is transferred first within a molecule via 

relayed-NOE, with a subsequent chemical exchange between the saturated molecule 

protons and protons of free water (Figure 3.3E).1,58 Thus, rNOE is a process that 

contributes to the Z-spectrum. Since the underlying mechanism for NOE is cross-

relaxation, the efficiency of the process increases with the reduction of rotational 

molecular motion. Another important note is that these processes need to be faster 

than 𝑅1 of the target molecule to be measurable.1 

3.2.1.4 Magnetization transfer contrast 

The relayed NOE process itself is the underlying mechanism for another type of 

MT, which is magnetization transfer contrast (MTC). MTC is not to be confused 

with MT, which is the umbrella expression for all magnetization transfer processes. 

As the efficiency of NOE increases with reduced molecular motion, it becomes most 

efficient in semisolid environments, allowing for rapid intermolecular NOE to occur 

(intermolecular NOE is insignificant in mobile macromolecules). The MTC 

processes (Figure 3.3F) describe the transfer of magnetization via either (i) 

intermolecular NOE from semisolids to bound water and, subsequently, molecular 

or proton transfer to free water via exchange,1,59,60 or alternatively, (ii) the fast 

transfer from the semisolid to free water via proton exchange61 (for example, in 

myelin, which has a cerebroside group containing a large number of hydroxyl, OH, 

groups). It should be noted that MTC is limited to saturation transfer since excitation 

removes the detectable signal in semisolid structures due to the fast dephasing of 

transverse magnetization (𝑇2 of the order of a few μs). 

3.2.2 The Bloch-McConnell equations 

It is important to recognize that in MT data from sources such as CEST experiments, 

multiple effects can coincide. These include chemical exchange, NOEs, MTC, and 

DS, where the saturation pulse is applied on or close to the water resonance 
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frequency. The overlap of these effects is particularly pronounced when irradiation 

occurs between 5 to -5 ppm relative to the water resonance wherein most of these 

effects contribute. Nevertheless, the exchange of magnetization between free water 

protons and the protons bound to solutes or macromolecules can be exploited to 

provide an additional MRI contrast with the possibility of detecting biomarkers and 

studying metabolic processes.3,62–65 To account for the additional mechanisms that 

affect magnetization, a modification to the Bloch equations (Equations 3.2 – 3.4) 

including exchange parameters is required. This yields the so-called Bloch-

McConnell (BMC) equations.66 In addition to the dependence on 𝐵0, 𝐵1 and 

relaxation effects (𝑇1 and 𝑇2), in the context of MT, the magnetization vector also 

depends on molecular motion, exchange rate, and molecular interactions.1 

Therefore, all these quantities are needed to properly describe the magnetization 

vector’s time evolution. For the simplest MT case, which consists of only a two-site 

exchange model including a large water pool (w) and a small solute pool (s), and 

under the assumption that the RF field is applied in the x direction in the rotating 

frame, the BMC equations are given as51,67: 

 
𝑑𝑀𝑥𝑠

𝑑𝑡
= −∆𝜔𝑠𝑀𝑦𝑠 − 𝑅2𝑠𝑀𝑥𝑠 − 𝑘𝑠𝑤𝑀𝑥𝑠 + 𝑘𝑤𝑠𝑀𝑥𝑤 , (3.11) 

 
𝑑𝑀𝑦𝑠

𝑑𝑡
= ∆𝜔𝑠𝑀𝑥𝑠 + 𝜔1𝑀𝑧𝑠 − 𝑅2𝑠𝑀𝑦𝑠 − 𝑘𝑠𝑤𝑀𝑦𝑠 + 𝑘𝑤𝑠𝑀𝑦𝑤 , (3.12) 

 
𝑑𝑀𝑧𝑠

𝑑𝑡
= −𝜔1𝑀𝑦𝑠 − 𝑅1𝑠(𝑀𝑧𝑠 − 𝑀0𝑠) − 𝑘𝑠𝑤𝑀𝑧𝑠 + 𝑘𝑤𝑠𝑀𝑧𝑤 , (3.13) 

 
𝑑𝑀𝑥𝑤

𝑑𝑡
= −∆𝜔𝑤𝑀𝑦𝑤 − 𝑅2𝑤𝑀𝑥𝑤 + 𝑘𝑠𝑤𝑀𝑥𝑠 − 𝑘𝑤𝑠𝑀𝑥𝑤 , (3.14) 

 
𝑑𝑀𝑦𝑠

𝑑𝑡
= ∆𝜔𝑤𝑀𝑥𝑤 + 𝜔1𝑀𝑧𝑤 − 𝑅2𝑤𝑀𝑦𝑤 + 𝑘𝑠𝑤𝑀𝑦𝑠 − 𝑘𝑤𝑠𝑀𝑦𝑤 , (3.15) 

 
𝑑𝑀𝑧𝑠

𝑑𝑡
= −𝜔1𝑀𝑦𝑤 − 𝑅1𝑤(𝑀𝑧𝑤 − 𝑀0𝑤) + 𝑘𝑠𝑤𝑀𝑧𝑠 − 𝑘𝑤𝑠𝑀𝑧𝑤  , (3.16) 

where 𝜔1 = 𝛾𝐵1 and ∆𝜔 = 𝜔 defines the chemical shift. The subscripts x, y and z 

indicate the components in the x, y and z directions, respectively, while the 

subscripts s and w indicate the pool (solute or water), and k is the exchange rate. It 

should be noted, however, that pool s in the equations does not include the protons 

of semisolids for which the MT process is MTC. Furthermore, for MTC, it is 

common to exclude the transverse terms due to the fast dephasing of transverse 

magnetization.1 It is, however, also worth noting that some studies have indicated 

potential transverse contribution.68  

Because of the complexity of the equations, reasonable assumptions need to be 

made, including simplified approximations that yield closed-form solutions. A 

straightforward solution can be obtained using the approximation of a weak 

saturation pulse and complete saturation, wherein it is assumed that the saturation 
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pulse is on-resonance for the solute (∆𝜔𝑠 = 0), the protons of the solute are 

completely saturated, and no spillovera occurs. However, for complete saturation to 

be obtained, a very strong saturation pulse is required. Since this condition is not 

realistic, an assumption using steady-state solutions under the weak saturation pulse 

approximation is made (steady-state refers to the equilibrium of the resulting 

magnetization due to the transfer of saturation versus relaxation processes, in which 

the time-varying magnetization terms can be assumed to be zero). Another 

approximation is the time-dependent solutions under the weak saturation pulse 

approximation, wherein a two-step approximation is used, more reflective of the 

real scenario.67 The saturation of the solute protons, which approaches steady-state, 

is instantly followed by transfer to the water pool, which in turn approaches steady 

state with a rate equal to 𝑅1𝑤 + 𝑘𝑤𝑠. From the solutions of the latter approximation, 

the expression for PTR given in Equation 3.7 is obtained for a two-pool model under 

the assumptions of no back exchange of saturated protons, no spillover effects and 

an exchange in the slow exchange regime. 

3.3 The Z-spectrum 

The MT effects are typically studied using the Z-spectrum, which, as previously 

mentioned, is the normalized water signal intensity as a function of irradiation 

frequency. Before discussing the fitting of Z-spectra, it is important to understand 

its features. When the RF irradiation occurs at the resonance frequency of water 

protons (DS), the largest signal reduction will be observed.1,4 Furthermore, the offset 

(∆𝜔 in radians per second) can also be expressed in absolute terms in Hz (commonly 

used in MTC experiments) or in relative terms in ppm (most commonly used in 

CEST experiments).1 The DS peak is defined to be centered at 0 ppm (or 0 Hz), and 

it is well modeled by the Lorentzian function60,69 at low 𝐵1 (more details on this 

topic in Chapter 4). The full width at half maximum (FWHM) of the Lorentzian can 

be described as given in Equation. 3.17. Notice that the FWHM is commonly 

referred to simply as the linewidth (LW), a nomenclature that has been adopted in 

this thesis. 

 𝐿𝑊 =
𝜔1

𝜋
√𝑇1𝑤/𝑇2𝑤 . (3.17) 

The absolute magnitude LW of the DS broadens with increasing field strength due 

to a reduction in 𝑇2 and an increase in 𝑇1, as can be inferred from Equation 3.17. 

 
a  Spillover refers to the unintended direct saturation of water protons caused by a saturation 

radiofrequency that is too close or with a too broad bandwidth relative to the water resonance. The 
effect becomes more pronounced at higher B1-strength. 
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For the convention of using ppm, however, which implies normalization by the 

resonance frequency, the DS peak narrows with increasing field strength since the 

LW increase in Hz is small compared to the increase in resonance frequency with 

field strength. Another convention worth noting, which is taken from NMR 

spectroscopy, is that higher relative frequency (technically corresponding to a lower 

magnetic field and lower absolute frequency) is to the left due to the referencing of 

the protons’ frequency in a particular chemical compound called tetramethyl silane. 

Using this convention, water protons in the NMR spectrum resonate at 

approximately 4.75 ppm, a number used in MR spectroscopy. However, since the 

Z-spectrum is dominated by the DS signal, and due to the frequent use of asymmetry 

analysis relative to that signal, the DS signal in Z-spectra is assigned to 0 ppm. 

Adding to the terminology, and understandable as explained above, frequencies 

higher than the water proton resonance frequency are sometimes referred to as 

downfield from water, whereas lower frequencies are upfield from water. 

As a result of MT, the signal intensity of free water will be reduced at the resonance 

frequencies of the saturated protons in the Z-spectrum. When multiple target protons 

resonate in the same irradiated frequency range, MT effects occur simultaneously. 

The relative contribution from each component to the Z-spectrum depends on 

several factors, including the molecular concentration and type/number of 

interactions, the proton exchange rate, the B0-field, the B1-field (both B1-strength 

and pulse shape) and the sequence settings (e.g., pulse and inter-pulse duration).1 In 

consequence, an overlap and coalescence of the effects may occur, and improved 

separation may be possible with the correct settings of the experimental 

environment and acquisition parameters. 

In particular, an increase in B0 results in a larger resonance dispersion (since the 

resonance frequency is proportional to B0), signifying a larger separation between 

the resonances of the spin pools for different molecules (Figure 3.5). This also 

results in the change of some spin pools to the slow exchange regime, which is more 

favorable for optimizing signal enhancement.1,4 However, it should be mentioned 

that there are a few limiting factors when moving up in field strength. The specific 

absorption rate (SAR), which gives the rate at which energy is absorbed per unit 

mass in the object studied, is proportional to the square of field strength. This is 

especially problematic when using continuous wave saturation at higher 𝐵1. 

However, SAR could be reduced in part by using smaller and more local RF-coils.1 

Another limitation is the amplification of any field inhomogeneities, which arises 

from the dependence of the Larmor frequency on field strength. This can, however, 

be alleviated by retrospective field correction methods.70–73 Of course, a final 

limiting factor is the restricted availability of scanners with higher field strengths 

(≥7 T). The sensitivity of detecting fast-exchanging protons increases with 𝐵1 

(Equation 3.8). This, nevertheless, also increases the DS spillover effects and the 

MTC effects (Figure 3.5), both of which hamper the detectability of CEST and 

rNOE effects. It should be noted that some degree of coalescence is impossible to 
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overcome at lower B0-field, especially for OH-groups close to the DS. One 

approach used to increase the detectability of these peaks is to alter their 

concentration by, for example, using contrast agents (such as glucose).1 

 

 
 

Figure 3.5. Simulation of the effect of 𝑩𝟎 and 𝑩𝟏 on Z-spectral components. A solid black line represents the 

Z-spectrum, while a dashed black line represents the resulting spectrum after removing the MTC and DS 

contributions. The colored lines represent the individual isolated components (indicated in Box l). Notice the 

increase in spillover and MTC effects with the increase in B1-strength as well as the increased saturation transfer 
of fast exchanging protons (from, e.g., creatine), which gets reduced at very high B1 due to the dominance of the 

stronger spillover effects of DS and MTC effect. Also, notice the increased dispersion of the components when 

moving towards higher B0-field strength, e.g., reduced coalescence of the glutamate amine protons with water due 
to their shift towards the slower exchange regime. The increased dispersion is also reflected in the increased 

separation between the 5 rNOEs, however, the rNOE signal reduces with increased 𝐵1 strength since they are 

already in the slow exchange regime. The figure is adapted from reference 1 with permission from the publisher.  
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3.3.1 Common components in the Z-spectrum 

3.3.1.1 The DS pool 

The DS is one of the most dominant contributions to the Z-spectrum (Figure 3.6) 

and the largest at low 𝐵1. In some experiments, it is targeted and isolated by using 

a saturation pulse of low B1-strength and a short duration (<  0.5 μT and <  1 s), 

resulting in what is often referred to as the water saturation shift referencing 

(WASSR) spectrum.70 This term is based on the use of DS signals for voxel-by-

voxel B0-field shift correction.70,71,73 At low 𝐵1 it can also be used for estimating 

and removing small water-based spillover effects.58,74 Other applications include the 

determination of local field shifts for whole-brain magnetic susceptibility mapping75 

and the study of relaxation effects in tissue73 since the 𝐿𝑊 of the DS depends on 

both the longitudinal and transverse relaxation rates (𝑅1 and 𝑅2).73,76 As described 

in Paper III, it was recently shown that these spectra can be further utilized in DS 

dynamic glucose enhanced (DS-DGE) imaging. With DGE, glucoseb uptake has 

usually been studied in a dynamic time series for a fixed saturation frequency that 

matches the average resonance frequency of the exchangeable OH groups of the 

administered glucose (typically occurring in a range from 1.2-2 ppm downfield).77–

80 Thus, the increase in OH-concentration after administration is reflected in the 

water signal reduction at the selected resonance frequency. Subsequently, a dynamic 

curve is calculated by taking the normalized difference between the averaged 

baseline signal (i.e., for a few images prior to glucose infusion) and the signal at 

different time points during and after infusion. The increased signal in the dynamic 

curve thus reflects an increased glucose uptake.77,78 Contrary to conventional DGE, 

D-glucose uptake in the DS-DGE approach is studied via the LW-changes of the 

DS peak pre- and post-infusion (∆𝐿𝑊). The study described in Paper III showed in 

both simulated and in vivo data that the DS-DGE method is promising in 

distinguishing different healthy tissues as well as different tumor types. In vivo 

results showed an increase in ∆𝐿𝑊 of 1% for gray matter (GM) and white matter 

(WM), while the number was between 5-20% for various tumor types and 40% for 

cerebrospinal fluid (CSF).81 

3.3.1.2 The MTC pool 

In addition to the DS, several pools may be visible in the Z-spectrum. A relatively 

large contribution can usually be seen due to the MTC effects (Figure 3.6). As 

previously explained, these effects stretch far off-resonance beyond the proton 

spectral range of mobile macromolecules1; moreover, its total magnitude at higher 

𝐵1 can become larger than that of DS. In reality, semisolids (e.g., membranes having 

abundant protons or lipid chains with many side groups) will contribute with tens to 

 
b  Mainly D-glucose due to its wide availability, biodegradability, and FDA-approval for oral and 

intravenous administration. 
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hundreds of peaks on the Z-spectrum with center frequency values around 2-3 ppm. 

However, the peaks have very broad lines, given by 𝐿𝑊~1/( 𝜋√𝑇2), since 

semisolid protons have a very short 𝑇2 (10-40 μs) compared to those of mobile 

macromolecules (ms range), which instead have finite 𝐿𝑊s. An additional 

broadening of the MTC peaks is caused by so-called chemical shift anisotropy 

(CSA). Due to anisotropic (non-uniform) electronic environments around the nuclei 

in semisolids, the shielding effects will vary in different directions relative to the 

external magnetic field, thus resulting in different shifts on the Z-spectrum.82 A third 

effect broadening the MTC signal is the occurrence of large dipolar couplings (kHz 

range) that split the resonance signals. Due to the superposition of several chemical 

shifts and dipolar splits, the resulting broadening will occur. This effect is not 

apparent for mobile macromolecules, for which the fast molecular tumbling 

averages out the anisotropic shielding and the dipolar splits. The combined effects 

of a short 𝑇2, CSA, and dipolar splits result in a broad unresolved signal for 

semisolids. While not directly affecting the proton spectrum of mobile molecules 

(including the DS), the partial saturation of semisolid molecules leads to the 

eventual saturation of the water,1,59,60 thus producing a broad background signal 

affecting the DS and other Z-spectral components.83 It should be mentioned that 

MTC is a highly active field of research with a lot of unresolved controversy. A 

symmetrical approximation of the MTC contribution in the Z-spectrum has been 

and is still being used, especially in the case of low B1-strength (where the MTC 

effect is smaller), and it is most likely a good approximation due to the dominance 

of the DS. However, several extensive studies84–86 have experimentally shown an 

asymmetry of a few percent of the MTC component using a saturation power 

between 1 and 3 μT. This is expressed at offsets beyond the spectral range of the 

protons from mobile molecules, which signifies |∆𝜔| > 5 ppm (Figure 3.8). More 

recent work87 has indicated the occurrence of both fast and slow exchanging protons 

from semisolids. It is theorized that fast exchanging protons could arise from the 

direct irradiation of OH-groups of semisolids or bound water, which exchanges 

close to the free water resonance.1,61 This results in a contribution with an 

approximately symmetric component, while the slower exchanging components are 

from rNOEs and expressed asymmetrically below the fine structure of the rNOE 

components.1 It should be mentioned that the latter asymmetry is observed even for 

lower 𝐵1 powers (1 μT). The different composition of macromolecules in tissue 

leverages the potential to differentiate tissue based on the study of the MTC 

component since it will be larger in tissues with a high concentration of 

semisolids.60,88 This can, for example, be applied in the brain to differentiate 

between WM (with a high myelin content) and GM as well as CSF (with molecules 

mainly in a liquid environment).89–92 It can also be utilized to detect demyelinated 

WM regions which, for example, occur with multiple sclerosis (MS)65,66 and other 

diseases.93–96 
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Figure 3.6. Z-spectrum with isolated components. A Z-spectrum (blue dots) from a rat brain acquired at a field 

strength of 11.7 T using a saturation pulse with a 𝐵1 of 0.7 μT and a pulse duration of 4000 ms. The Lorentzian fits 

of 5 isolated components, DS (blue), amides (cyan), amines (brown), rNOE (purple), and MTC (black), add up to 

the orange fit of the Z-spectrum. 

3.3.1.3 CEST components 

Several CEST effects might be visible in the Z-spectrum downfield. The 

contributions will vary based on the studied environment and depending on whether 

it contains endogenous or exogenous compounds. Note that the examples that 

follow serve to reflect the intricacy and highly complex appearance of the Z-

spectrum which result from the effects of chemical environments on the 

exchangeable protons. 

3.3.1.3a: Amide protons 

In the brain environment, some of the most common CEST signals are from primary 

amides, which are integral parts of the peptide bond in mobile proteins and 

peptides.1,4 They have the general formula R-C(O)N(H)-R’ wherein R and R’ 

represent different organyl groups or hydrogen atoms in different amino acids, and 

CO is a carbonyl group. Together, the two groups form the so-called acyl-group. 

Furthermore, the NH is sometimes referred to as the reduced amino group (amino 

group if it holds two hydrogens). Hence, it can be inferred that a peptide-bond 

contains two functional groups, the acyl- and the (reduced) amino groups. This is 

because amides are formed through a chemical reaction between carboxylic acid 
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(RCOOH) and ammonia (NH3) or amine groups of individual amino acidsc.97 The 

exchangeable amide protons of mobile proteins and peptides occur over a range of 

several ppm in the spectrum, but multiple amides of the more floppy partsd of these 

macromolecules have an average resonance frequency centered around 3.5 ppm 

(Figure 3.6).1,4,98 The total concentration from the many amides in mobile proteins 

and peptides in most tissues is between 5 – 8 mM,99,100 while the exchange rate is 

~30 Hz,99 thus making it a very attractive candidate for CEST studies (Figure 3.7). 

It should be noted, however, that amides of semisolid structures have a much 

broader range of resonance frequencies and shorter 𝑇1 and 𝑇2 time constants and 

instead contribute to MTC effects.16 Numerous successful applications for detecting 

pathologies have been implemented in clinical or preclinical settings in which the 

change in tissue environment affects the concentration of amides. The exchange of 

amide protons to water, for example, is base-catalyzed,4,16,98 and a reduction in pH 

reduces the exchange rate and leads to reduced signal intensity for such protons in 

the slow exchange regime.99 This has been exploited in several studies to detect 

ischemic stroke,101–106,8,107 wherein the reduced blood flow causes an increase in the 

adenosine triphosphate hydrolysis and bicarbonate buffering, thus resulting in a 

decrease in pH. This was further utilized in a preclinical study to differentiate 

between hemorrhage and ischemic stroke by hyper- versus hypo-intensity.108 The 

change of amide concentration in proteins and peptides has further been used to 

detect pathologies. For example, it has been reported that neurological disorders 

such as MS can be detected by the increased protein content in WM.109,110 In 

addition, preclinical studies are indicative of the detection of Alzheimer’s disease 

due to the reduction of mobile protein signals.111 The accumulation of proteins in 

lymph nodes is another detectable change that has been utilized for the detection of 

breast cancer treatment-related lymphedema.112 Moreover, a large field of 

application for amide signals regards tumor imaging. The increased concentrations 

of mobile proteins and peptides in tumors100 can generate increased amide signals. 

This has been utilized in several studies to differentiate between low- and high-

grade gliomas.113–115 The study of the amide protons has resulted in what is usually 

referred to as amide proton transfer weighted (APT-w) imaging, wherein the 

weighting indicates that with this type of analysis there are mixing of multiple signal 

contributions from, for example, MTC and rNOE.  

3.3.1.3b Amine and guanidinium protons 

Other naturally occurring mobile macromolecules that may appear in the frequency 

range 2 – 3 ppm on the Z-spectrum are the amine and guanidinium proton groups. 

While both primary (RNH2) and secondary (R2NH) amines carry exchangeable 

 
c  It should be noted that both primary (RNH2) and secondary (RNH) amines can participate in 

chemical reactions that produce amides. 
d  In chemistry floppy parts refer to molecules with large-amplitude, low-force constant vibrational 

modes that allow for significant structural changes, such as inversions or internal rotations. 
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protons, the latter usually has a slower exchange rate and requires a higher 

concentration to achieve a similar CEST effect (Figure 3.7c).4 The amine protons 

typically have a fast exchange rate with water, for example, 5500 Hz1 for the amine 

protons in glutamate under physiological conditions (pH = 7.3 and T = 310 K). The 

guanidinium protons have a moderate exchange rate of 1100 Hz (a recent report 

shows it even in the 200–300 Hz range).116 Practically speaking, this indicates that 

neither is in the favorable slow exchange regime, leading to a coalescence between 

their signals and the water signal (Figure 3.6). This is especially true at lower field 

strengths, where the resonance dispersion is small. This means that the guanidinium 

protons only approach the slow exchange regime when the acquisition is performed 

at a very high field strength (Figure 3.5).1 Amines can be found in amino acids such 

as glutamate (as previously mentioned) and glutamine. These are both prevalent in 

the braine and have exchangeable amine protons that resonate at approximately 3 

ppm.117 Guanidinium, on the other hand, is an integral part of creatine (Cr), which 

is a naturally occurring compound in the brain and muscle.1,118,119  

 

Some of the clinical and preclinical applications utilizing the amine protons include 

the early diagnosis of encephalitis by glutamate content. This is because areas of the 

brain with encephalitis exhibit an increased glutamate amine proton signal intensity 

that indicates an increased microglial activation which, in turn, reflects the 

pathology.120 Similar to amides, the exchange of amines to water is base-catalyzed. 

The fast exchange rate of amines can thus be slowed down at a reduced pH leading 

to an increased CEST signal. This is opposite to the amides, which show a reduction 

in the CEST signal when slowed down, since they are already in the slow exchange 

regime at physiological conditions. This effect has been utilized in tumor imaging 

where the higher concentration of proteins enhance the visibility of acidic areas 

containing glutamine.121–123 Moreover, guanidinium protons can be used to reflect 

creatine concentration changes, for example, in the calf muscle pre- and post-

moderate exercise.124–126 It should be mentioned that creatine is an amino acid 

derivative, so it also holds a primary amine group in addition to the guanidinium 

group.127 However, because of delocalized bonds between the electrons of the two 

groups, the exchangeable protons have proximal resonances resulting in one 

indistinguishable peak at approximately 2 ppm. In contrast, phosphocreatine (PCr), 

which has exchangeable guanidinium protons with a secondary amine bound to the 

additional phosphate group, produces two separate peaks at approximately 2.5 and 

2 ppm for the two groups.118,119,128 Notice that the PCr’s peak for the guanidinium 

protons is shifted downfield compared to that of Cr partly because the phosphate 

group is electron-withdrawing, which thus deshields the guanidinium group and 

results in the shift.129   

 

 
e  Glutamine in blood, extravascular extracellular space, and cells, and glutamate mainly in the cell.  
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Figure 3.7. Saturation efficiency, exchange rate, 𝑩𝟏 power and concentrations. a) The effect on saturation 

efficiency with the change of exchange rate and B1-field strength. Maximal saturation efficiency is rapidly achieved 

for low exchange rates as 𝐵1 is increased. When the exchange rate surpasses the intermediate regime, even higher 

saturation powers are insufficient for the required saturation. b) An exchange rate that is too slow halts the saturation 

transfer, while one that is too fast results in insufficient time to saturate protons. Note, however, that the y-axis 

shows the product of the exchange rate and saturation efficiency, which is flatter over the exchange rate range. c) 
The concentration needed for different (common) CEST agents to obtain the same 5% CEST effect. The figure was 

adapted from reference 4 with permission from the publisher. 
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3.3.1.3c OH-groups 

The hydroxyl group, common in but not exclusive to sugars, holds exchangeable 

protons which, depending on the chemical environment of the macromolecule, 

typically resonate between 0 and 3.5 ppm.1 One naturally occurring sugar in the 

brain is myoinositol, which has OH protons with a resonance frequency of 

approximately 0.9 ppm.130 However, this Z-spectral component is coalesced with 

water due to its protons’ fast exchange rate of 2000 Hz. The CEST peak will then 

be inseparable from the water peak even at higher field strengths (Figure 3.6) since 

the exchange rate remains in the fast exchange regime. However, the DS peak yields 

an asymmetry that might be detectable.1,130 Lactate, also with an exchangeable OH 

group, is another naturally occurring compound. It occurs, for example, in muscle 

as a product of glycolysis (the breakdown of glucose to pyruvate and adenosine 

triphosphate) under anaerobic (oxygen-poor) environmental conditions.131 Similar 

to creatine, it increases in concentration in muscle after exercise, as shown by 

lactate-weighted CEST imaging.132 In contrast to naturally induced changes of 

compound concentrations, such as in Cr and lactate during muscle activation, 

artificially altered concentrations can be achieved for low-concentration compounds 

(M-mM).  Examples of these are the biodegradable compounds that contribute 

with protons from OH groups with resonance frequencies close to the resonance 

frequency of the water pool. These can be administrated as CEST contrast agents. 

This signifies that their uptake or metabolism can be reflected by studying the 

change of concentration in a dynamic fashion, i.e. pre- and post-administration, as 

is done with the previously explained DGE technique64,77,78,133–135 wherein D-

glucose is used as a contrast agent. D-glucose holds five exchangeable OH protons 

with resonance frequencies at 0.66, 1.28, 2.08 and 2.88 ppmf having exchange rates 

in the intermediate to high exchange regime at clinical field strengths.136,137 Thus, 

the pools are non-differentiable and instead contribute to a nonsymmetric 

broadening of the DS. In conventional DGE, a resonance frequency within the 

mentioned range is typically selected and studied.77,78 DGE imaging has found 

various fields of application, the largest being cancer imaging where various studies 

have shown signal enhancement in tumorous areas after glucose infusion.77,78,133–135    

3.3.1.4 rNOEs 

Upfield in the Z-spectrum at approximately -1.6 ppm, a peak attributed to chlorin 

phospholipids can be found138,139 as well as several rNOEs including primary, 

secondary, and tertiary aliphatic groups between -2 and -3.5 ppm. However, they 

are generally only detectable as one broad peak at clinical field strength due to the 

proximity of resonances (Figure 3.5). Moreover, they can only be visible at low 𝐵1 

 
f  One OH-group at 0.66 ppm, three at 1.28 ppm, and one occurring at both 2.08 and 2.88 with a 

prevalence ratio of 9:16. This is because cyclic glucose comes as two anomers, 𝛼 and 𝛽. Anomers 
differ in the orientation of the OH-group bound to the anomeric carbon atom, which is the carbon 
part of the carbonyl group in linear form.  
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due to increased interference from MTC effects with an increased 𝐵1 strength (see 

Figure 3.6). Some studies have exploited the changes in rNOE contributions for 

detecting various brain tumors,58 including astrocytoma74 and  glioblastoma140, as 

well as for distinguishing between low- and high-grade glioma.141   

3.2.3 Analysis of Z-spectral components 

As indicated in the previous section, the Z-spectrum holds a plethora of biochemical 

information that has successfully been utilized in various clinical or preclinical 

applications. To obtain this information, a proper analysis of the Z-spectrum is 

required since the considerable reduction in the Z-spectral signal intensity due to 

DS might overshadow small CEST effects. Furthermore, another cause of 

interference in studies of in vivo CEST effects is the MTC effect from semisolid 

tissue components.4,70 For improved detection of CEST effects, the symmetry 

around the DS is often utilized by removing the DS as well as symmetric MTC 

effects in the  so-called magnetization transfer ratio asymmetry1,70,142,143 (𝑀𝑇𝑅𝑎𝑠𝑦𝑚) 

spectrum (Figure 3.4C), which is defined as: 

 𝑀𝑇𝑅𝑎𝑠𝑦𝑚 =
𝑆𝑠𝑎𝑡(−∆𝜔)−𝑆𝑠𝑎𝑡(∆𝜔)

𝑆0
 , (3.18) 

where 𝑆𝑠𝑎𝑡 is the water signal intensity at the irradiation offset ∆𝜔 from the water 

proton resonance frequency and 𝑆0 is the signal intensity without saturation. 

While the 𝑀𝑇𝑅𝑎𝑠𝑦𝑚 is a quick and straightforward approach for Z-spectral analysis 

and proven to be useful in some applications,103,105,106,144–146 it becomes problematic 

with the increased visibility of rNOEs from mobile macromolecules. This is because 

the downfield CEST- and upfield rNOE effects are the main contributions to the 

asymmetry of the Z-spectrum in the proton exchange range (5 to -5 ppm). Hence, 

with the 𝑀𝑇𝑅𝑎𝑠𝑦𝑚 approach, the effects on either side of the DS are super-

positionedg. In addition, the assumption of a symmetric MTC contribution poses 

another problem, since an asymmetrical contribution can even occur at lower B1-

strengths as previously mentioned. Consequently, the 𝑀𝑇𝑅𝑎𝑠𝑦𝑚 approach might be 

rendered unsuccessful. For this reason, several alternatives have been proposed. A 

simple approach is the so-called Lorentzian difference (LD), where the DS is fitted 

with a Lorentzian and subsequently subtracted from the Z-spectrum to isolate both 

CEST and rNOE effects resulting from slow exchanging components.74,83,146 While 

remedying the mixing of CEST and rNOE components caused by the 𝑀𝑇𝑅𝑎𝑠𝑦𝑚, 

the approach is still highly sensitive to MTC contributions which might occur even 

 
g   This is also the reason why compounds targeted with asymmetry-analysis in the in vivo 

environment should be referred to as weighted, e.g., APT-weighted CEST.  
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at lower 𝐵1 irradiation power. Therefore, a more accurate approach is to 

approximate each component by an individual Lorentzian, thus providing a labeled 

model for the spectrum that can be defined as:  

 𝑍𝑙𝑎𝑏(∆𝜔) = 𝑍𝑏𝑎𝑠𝑒 − ∑ 𝐿𝑖(∆𝜔)𝑛
𝑖=1  , (3.19) 

where 𝑍𝑏𝑎𝑠𝑒 is the background signal (close to 1), 𝐿𝑖 is the Lorentzian for 

component 𝑖 at an offset ∆𝜔, and 𝑛 is the number of components in the model. 

Several further intricate approaches have been proposed, such as the MTR exchange 

dependent relaxation contribution (𝑀𝑇𝑅𝑅𝑒𝑥),147  which uses inverse Z-spectral 

analysis and compensates for the DS and MTC components through inverse 

addition. Another approach is the water relaxation compensated exchange 

dependent relaxation contribution,148,149  which adds a correction for the T1w-effect 

to the 𝑀𝑇𝑅𝑅𝑒𝑥 through a simple normalization.1,126,140 These approaches are widely 

used for Z-spectral analysis. However, it should be noted that these assume no 

interaction between the different pools and their success is thus restricted to the low 

B1-setting. The assumption becomes flawed with the increase of 𝐵1 and the 

coalescence of pools in the fast exchange regime, such as myoinositol and 

glutamate, with the water pool. 

Nevertheless, all these approaches rely on one key component, which is fitting. 

Furthermore, prior to fitting there is a need to have a spectral model that 

approximates the Z-spectrum as accurately as possible. The Lorentzian spectral 

model was briefly mentioned, but there are a few other models that should be 

considered for potentially more accurate modeling, as will be discussed in the next 

chapter. 
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Figure 3.8. Nonsymmetrical MTC contributions in vivo. Signals from normocapnic (green), hypercapnic (blue) 

and postmortem (cardiac arrest, red) rat brains at 4.7 T. The signals are averaged over five regions of interest across 

the brains. (A) A Z-spectrum centered around the proton exchange regime. (B) CEST and rNOE effects are 

apparent, especially on the 𝑀𝑇𝑅𝑎𝑠𝑦𝑚 in the proton exchange regime (0-4 ppm). It is worth noting that nonzero 

contribution is apparent beyond the 4 ppm limit, which should not be the case if the MTC had been symmetrical 

around the water resonance frequency. Figure readapted from reference 1 with permission from the publisher. 
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4. Modeling of the Z-spectrum 

4.1 Bloch McConnell modeling 

A Z-spectrum can be described by the numerical solutions of the BMC equations 

under the assumption of a steady-state. To model a Z-spectrum using the BMC 

equations, several key parameters that describe the system’s magnetization 

dynamics and exchange processes need to be defined. For a two-site model (e.g., a 

large water pool and a small solute pool as described in Chapter 3.2), the exchange 

rates (𝑘𝑠𝑤 and 𝑘𝑤𝑠), longitudinal (𝑅1𝑤 and 𝑅1𝑠) and transversal (𝑅2𝑤 and 𝑅2𝑠) 

relaxation rates as well as the chemical shift of the solute pool are needed.51 

Furthermore, the initial magnetizations of the two pools must be determined along 

with the population fractions. Saturation-specific parameters — including the pulse 

strength, duration, and the frequency offsets — must also be specified. With these 

parameters, the BMC equations for a two-site model (Equations 3.11 – 3.16) must 

be solved using a numerical algorithm for each offset frequency before obtaining a 

model for the full Z-spectrum.149,150 This explains that the model’s complexity and 

computational load scales with the applied RF protocol as well as the number of 

pools considered in the model. Therefore, the model needs to assume a limited 

number of pools. Another important consideration is that, while the BMC equations 

take into consideration the exchange between the individual pools and the water 

pool, the exchange between the pools and the MTC pool are not accounted for. 

Furthermore, rNOE can only be approximated as one or a few individual pools (with 

no interaction between pools). In addition, the BMC equations have a restricted 

number of observables for the separation of model parameters such as transversal 

relaxation, exchange rate, and the proton fraction of the studied components.1 

Analytical solutions for the BMC equations have been proposed. A solution 

combining CEST and MTC highlighted the need to include the semisolid MTC pool 

size fraction for more accurate solutions.149 In a more recently proposed analytical 

solution,151 the computational complexity was reduced. It should be mentioned that 

both analytical and numerical solutions have been made available with open 

access.149,152 Nevertheless, despite attempts to reduce the computational complexity 

of the numerical solutions, the analytical solutions are still currently limited to the 

two-site model (one solute and bulk water) while, in reality, the modeled spectra 

mostly contain several components. In combination with the inherent limitations, 

such as the restricted consideration for pool interactions and number of observables, 
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the high computational complexity might not make BMC modeling worthwhile. 

Therefore, several multi-pool spectral profiles can instead be used to estimate the 

observed Z-spectra. In the following sections, one traditional profile, the Lorentzian 

spectral model,153,154 and a more recently used, the Voigt profile,154,155 are defined 

and compared based on empirical findings and MT theory.  

4.2 Lorentzian modeling 

The most used spectral profile to model Z-spectral components is the 

Lorentzian.153,154 It has been shown to accurately fit the DS within the narrow 

frequency interval between 5 and -5 ppm,156 as well as various CEST peaks acquired 

using low irradiation field strength and short saturation duration (B1 < 0.5 μT and 

𝑡𝑠𝑎𝑡 < 1 s).24,157–159 The common approach is to estimate each pool with a separate 

Lorentzian as described in Equation 3.19, wherein each Lorentzian spectral profile 

is defined as: 

 𝑓𝐿𝑜𝑟𝑒𝑛𝑡𝑧𝑖𝑎𝑛(∆𝜔, 𝐴, 𝛿, Γ) =
−𝐴

𝜋
[

Γ

(∆𝜔−𝛿)2+Γ2] , (4.1) 

where ∆𝜔 is the saturation offset frequency from the DS saturation frequency, 𝐴 is 

the amplitude of the peak or area when normalization is performed, 𝛿 is the center 

of the peak relative to the DS center value, and Γ is the half-width at half maximum 

(HWHM) of the peak. For comparability between different spectral models, as well 

as for more practical applications, derived parameters such as the height parameter 

(weighted amplitude) and the LW are often adopted. For the Lorentzian model, the 

height and LW are calculated as: 

 𝐻𝐿 =
𝐴

𝜋∙Γ
 , (4.2) 

 𝐿𝑊𝐿 = 2 ∙ Γ . (4.3) 

4.3 Voigt modeling 

Recently, Voigt profiles154,155 have been utilized for fitting Z-spectral 

components.160 Similar to the multi-pool Lorentzian approach (Equation. 3.19) each 

pool of the Z-spectrum is approximated with a separate Voigt profile. Since the 

Voigt profile is the result of a convolution between a Gaussian and Lorentzian 

profile, the degrees of freedom are increased compared to the Lorentzian due to the 
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additional parameter from the Gaussian component when estimating the LW. The 

Voigt profile is defined as:   

 𝑓𝑉𝑜𝑖𝑔𝑡(∆𝜔, 𝐴, 𝛿, 𝜎𝐺 , Γ) =
−𝐴∙real[𝑤(𝑧)]

σG√2𝜋
 , (4.4) 

with 

 𝑤(𝑧) = 𝑒−𝑧2
(1 +

2𝑖

√𝜋
 ∫ 𝑒𝑡2

𝑑𝑡
𝑧

0
) , (4.5) 

and with 𝑧 = (∆𝜔 − 𝛿 + 𝑖 ∙ Γ)/(𝜎𝐺√2). 𝜎𝐺 is the standard deviation of the Gaussian 

which determines the Gaussian LW. Furthermore, the LW and height for the Voigt 

profile are given by: 

 𝐿𝑊𝑉 = 1.1 ∙ Γ + √0.87 ∙ Γ2 + 5.5 ∙ 𝜎𝐺
2 , (4.6) 

 𝐻𝑉 = 𝐴 ∙
real[w(𝑖∙

Γ

𝜎𝐺√2
)]

𝜎𝐺√2𝜋
 . (4.7) 

4.4 Comparison of spectral models 

As briefly mentioned earlier, the Z-spectral components are well modeled by a 

Lorentzian when the saturation power and duration are kept low and short. Due to 

the minimal MTC contribution, this has been utilized to isolate the DS effect, e.g., 

in WASSR spectra.70 Under the same acquisition conditions, the Lorentzian has also 

shown success in approximating other Z-spectral components with multi-pool 

Lorentzian models, including, for example, individual peaks for amides, amines, 

and a single peak for the aliphatic groups,157,158 as well as a peak approximating the 

MTC contribution.157 It has been suggested that the MTC can be approximated by a 

Lorentzian inside of the proton spectral range under the previously mentioned 

acquisition conditions.156 However, a generally more accurate approximation for 

MTC is the super-Lorentzian,2,161–163 which is a derivation of the Lorentzian having 

a wider profile. Moreover, even at lower 𝐵1 irradiation powers, the Z-spectra 

constitute convolved contributions of various CEST, rNOE and potential MTC 

contributions (see Chapter 3.2.1), making it important to keep several considerations 

in mind. Firstly, rNOE effects from mobile macromolecules typically overlap, 

ultimately affecting the spectral shape. Secondly, for tissues that include strong 

MTC effects, the shape of the spectral components shifts toward a Gaussian profile 
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due to MTC-induced widening of both DS and the remaining peaks in the spectrum. 

Finally, fast-exchanging protons exhibit exchange-regime dependent lineshapes. 

All these effects, possibly even visible at lower 𝐵1, become more pronounced with 

the increased irradiation power. Thus, depending on the saturation scheme and the 

spectral components studied, the shape of Z-spectral components can significantly 

deviate from the Lorentzian shape.  

It has been experimentally shown that the Voigt lineshape significantly reduces the 

systemic fitting error for NMR 1H-spectra compared to using the Gaussian or 

Lorentzian spectral lineshapes separately.164 The Voigt profile, constituting both 

profiles tends to model the above-mentioned possible effects better. This holds true 

even at the low-to-intermediate saturation powers around 0.8 μT as empirically 

verified in the study reported in Paper II (Table 4.1). The improved fitting accuracy 

of the Voigt lineshape, even at lower saturation powers, could potentially be used 

to support the theorized symmetrical MTC contribution1 at lower 𝐵1 since, as 

previously stated, the lineshape transitions to become more Gaussian with the 

increased MTC contribution, a feature that the Voigt profile captures better. The 

overall improved goodness-of-fit of the Voigt profile compared to the Lorentzian is, 

of course, accredited to the increased degrees of freedom.  

Another noteworthy aspect is the asymmetry of components, which is partly due to 

asymmetric MTC contributions but also the coalescence with the water peak for fast 

exchanging protons in the vicinity of the DS. In the previous chapter, two such 

mentioned examples were the myoinositol peak (centered around 0.9 ppm) and the 

rNOE peak from the aliphatic groups (centered around -3 ppm). To the best of my 

knowledge, no publications have yet reported the application of asymmetrical 

spectral models for fitting individual Z-spectral components. In this regard, several 

spectral models are good candidates, such as the split Lorentzian, skewed Voigt, or 

Fano resonance, all of which offer a direct or a derived parameter reflecting 

asymmetry. The asymmetry parameter could provide a new quantity for analyzing 

the Z-spectral components and, subsequently, new insights into the composition and 

structure of the Z-spectra, thus enhancing interpretability and potential clinical 

relevance. A more thorough discussion on this topic, together with a successful 

asymmetrical fit of rNOEs in an in vivo example, is presented in Chapter 7. 

Table 4.1 Comparison of goodness-of-fit between the Voigt and Lorentzian spectral models. The mean absolute error 

(MAE) comparing the fits of the in vivo spectra using the Lorentzian and Voigt models on each peak together with 
the p-values from a Wilcoxon test to include the significance of the difference (level of significance α = 0.05). The 

table was adapted from Paper II. 

Peak MAE Lorentzian MAE Voigt  p-value 

0 ppm 0.0184 0.0166 <0.005 

3.6 ppm 0.00751 0.00716 <0.005 

2 ppm 0.00871 0.00829 <0.005 

-2.8 ppm 0.0101 0.00980 <0.005 

Total 0.0979 0.00927 <0.005 
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The increased degrees of freedom for both the Voigt profile and the asymmetrical 

spectral models improve the goodness-of-fit compared to the Lorentzian, but they 

also entail some challenges and limitations. In particular, an increased time 

complexity adds to the already time-consuming conventional fitting approaches on 

the clinical timescale. Although limited to the interactions between CEST pools and 

the water pool, the BMC-modeling approach has the benefit of including pool 

interactions in the equations. However, its high model and time complexity make 

the choice of BMC fitting undesirable. This very same reason, in contrast, makes 

the multi-pool Lorentzian a preferred choice, especially during the acquisition 

conditions previously mentioned. Nevertheless, on the clinical timescale, multi-pool 

Lorentzian fitting with the fastest conventional algorithm (more details on this topic 

in Chapter 5) has been criticized for being far from feasible, thus prompting the 

search for innovative approaches to close the gap.165 Since higher degrees of 

freedom in a spectral model yield a scalable increase in time consumption with each 

additional peak, more complex spectral models are rarely considered. This is despite 

their potential to significantly increase the goodness-of-fit as demonstrated in Paper 

II when using the Voigt profile instead of the Lorentzian. The scalable time increase 

was also demonstrated in Paper II, where the fitting time with the most efficient 

conventional algorithm for four peaks was approximately four versus eleven hours 

per brain for the Lorentzian and Voigt models, respectively. Hence, there is 

undoubtedly a need for groundbreaking approaches to accelerate the backbone of 

the fitting processes for any spectral model. This is conveniently the topic of the 

next chapter. 
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5.Z-spectral fitting 

5.1 Conventional approaches 

5.1.1 Fitting methods 

Spectral fitting refers to optimizing a predefined model function, 𝑓(𝑥; 𝑝1, … , 𝑝𝑛), 
where 𝑥 denotes the discrete independent variable and 𝑝𝑖 are the model parameters 

that best fit the observed discrete spectral data. This is achieved by determining the 

parameter set that optimizes a specified objective function. Several methods have 

traditionally been used as the foundation for fitting spectral models to discrete 

experimental data, with each having its benefits and drawbacks. Two methods worth 

mentioning are the maximum likelihood estimation166 (MLE) and Bayesian 

regression.167,168 The former relies on finding certain parameters, 𝜃, that maximize 

the likelihood function, 𝑃(𝐷|𝜃), all while observing the given data, 𝐷. The 

likelihood is defined as: 

 𝑃(𝐷|𝜃) =  ∏ 𝑃(𝑦𝑖|𝑥𝑖, 𝜃)𝑁
𝑖=1  , (5.1) 

where 𝑦𝑖 is the predicted intensity value by the spectral model 𝑓(𝑥𝑖 , 𝜃) for the point 

𝑖 while 𝑁 is the number of points in the observed spectrum. Consequently, the 

objective is to find the parameters that maximize the likelihood: 

 𝜃𝑀𝐿𝐸 = argmax ∑ log 𝑃(𝑦𝑖|𝑥𝑖, 𝜃) .𝑁
𝑖=1  (5.2) 

Notice that the logarithm is taken to simplify the optimization process. Furthermore, 

it should be noted that it is a common assumption that errors are normally distributed 

since this simplifies the expression of Equation 5.1 to a product of Gaussian 

distributions, which in turn simplifies the expression of Equation 5.2 to a sum of 

Gaussians.  

Similarly, Bayesian regression also utilizes the likelihood, 𝑃(𝐷|𝜃), but it also 

incorporates prior distributions of the parameters 𝑃(𝜃) in accordance with Bayes’ 

theorem,169 which is given as:  
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 𝑃(𝜃|𝐷) =
𝑃(𝐷|𝜃)𝑃(𝜃)

𝑃(𝐷)
 , (5.3) 

where 𝑃(𝐷) is a normalizing constant (marginal likelihood) ensuring a posterior 

distribution, 𝑃(𝜃|𝐷), that adds up to 1. In terms of fitting a spectral model to 

experimental data, the expression of the posterior is calculated based on each point 

of the spectrum; hence, the expression becomes: 

 𝑃(𝜃|𝐷) = ∏
𝑃(𝑦𝑖|𝑥𝑖, 𝜃)𝑃(𝜃)

𝑃(𝐷)
𝑁
𝑖=1  . (5.4) 

Subsequently, the objective is to maximize the posterior, which can, for example, 

be done using maximum a posteriori estimation (MAP). This is given as: 

 𝜃𝑀𝐴𝑃 = argmax[log 𝑃(𝐷|𝜃) + log 𝑃(𝜃)] . (5.5) 

Notice that the marginal likelihood is omitted in Equation 5.5 since it is constant 

with respect to 𝜃 and does not affect the optimization. Furthermore, it should be 

noted that with MAP, a fixed prior distribution (e.g., based on physiologically 

relevant ranges for the spectral model parameters) is used for Bayesian inference. 

Several other algorithms can be applied for more intricate Bayesian inference, but 

they are often associated with more complex applications than spectral fitting and 

are thus a topic outside the scope of this thesis; readers interested in this subject are 

referred to the literature on full Bayesian inference (such as reference 170). Another 

noteworthy consideration is that, similar to MLE, Gaussian assumptions are 

common regarding the likelihood and the prior, which simplifies the computations 

of Equations 5.4 and 5.5. 

One of the main objectives when fitting is to reduce the complexity of the method 

used while withholding the fitting accuracy, which is an arguably strong reason for 

least squares (LS) fitting being the most-used method. With LS, the sum of squared 

residuals is considered, which is given as: 

 𝑆 =  ∑ (𝑦𝑖 − 𝑓(𝑥𝑖 , 𝜃))2𝑛
𝑖=0  . (5.6) 

The objective of the LS method is thus to minimize the sum of squared residuals, 

which can be expressed as: 

 𝜃𝐿𝑆 = argmin 𝑆 . (5.7) 
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5.1.2 Optimization algorithms for the conventional approach 

All the methods mentioned above rely on iterative optimization to either maximize 

or minimize the objectives (Equations 5.2, 5.5 or 5.7). For LS, one of the most 

common optimization algorithms is the gradient descent (GD) algorithm and its 

variants, as well as the multivariate Newton’s method (MVN), Gauss-Newton 

algorithm (GNA) and the Levenberg-Marquart algorithm (LMA). All utilize first-

order partial derivatives to guide the updating of parameters. GD (Equation 5.8) 

takes the gradients (partial derivative of the objective function with respect to each 

parameter) multiplied by a so-called learning rate (0 < 𝜂 < 1), which reduces the 

step size as the extreme point (minimum for LS) is approached. While the first-order 

partial derivatives reflect the steepness and direction needed to reach the extreme 

point of the objective function, the curvature is reflected by the second-order partial 

derivatives, which are used instead of the learning rate by the other three algorithms 

for guiding the optimization process. However, the curvature is computed 

differently by the three algorithms. For multivariate applications (such as nonlinear 

spectral fitting of multi-parameter models), the MVN (Equation 5.9) relies on 

calculating both the gradient and the true Hessian (second-order partial derivative 

of each point’s residual with respect to each parameter). In contrast, the GNA 

(Equation 5.10) is a simplification of Newton’s method for LS problems wherein 

the Hessian is replaced by an approximation based on the (lower complexity) 

Jacobian (which instead is the first-order partial derivative of each point’s residual 

with respect to each parameter). The approximation is valid close to the minimum 

point, where the residuals are small (since 𝐻 = 𝐽𝑇𝐽 + ∑ 𝑟𝑖 ∙ ∇2𝑟𝑖𝑖  and the second-

order term has a small contribution close to the minimum), but it becomes 

problematic far from the minimum. The LMA (Equation 5.10) addresses this 

limitation by incorporating a damping factor (𝜅) to balance between the GNA when 

the residuals are small, and the GD when the residuals have higher values. The 

update rules for the algorithms mentioned are given in the following equations:  

 𝜃𝑛+1 = 𝜃𝑛 − 𝜂𝛻𝑆(𝜃𝑛) , (5.8) 

 𝜃𝑛+1 = 𝜃𝑛 − [𝐻𝑆(𝜃𝑛)]−1𝛻𝑆(𝜃𝑛) , (5.9) 

 𝜃𝑛+1 = 𝜃𝑛 − (𝐽𝑇𝐽)−1𝐽𝑇𝒓 , (5.10) 

 𝜃𝑛+1 = 𝜃𝑛 − (𝐽𝑇𝐽 + 𝜅𝐼)−1𝐽𝑇𝒓 , (5.11) 

where 𝑛 is the current iteration, 𝛻 denotes the gradient while 𝜂 is the learning rate, 

𝐻𝑆 is the Hessian of the sum of residuals while 𝐽 is the Jacobian and 𝒓 the matrix of 

the point-wise residuals. 𝜅 is the damping factor and 𝐼 denotes the identity matrix.     
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A further comparison and more in-depth look into optimization functions is outside 

the scope of this thesis; however, an important consideration is that the combination 

of the method (e.g., MLE, Bayesian regression or LS) and the optimization 

algorithm (e.g., GD, MVN, GNA or LMA) is what comprises the complete fitting 

algorithm. Furthermore, the combination of LS and any of the optimization 

algorithms previously considered results in comparable computational and time 

complexity, as shown in Table 5.1. This is because while the complexity of MVN 

is the highest out of the four, it usually results in the fastest convergence requiring 

a lower number of iterations. This contrasts with GD which, despite having the 

lowest complexity, usually requires more iterations to converge. Furthermore, LS 

in combination with any of the optimization algorithms mentioned results in 

relatively low complexity compared to other traditional fitting algorithms. However, 

the need for major reductions in time and computational complexity (which will be 

addressed in terms of the proposed ML-based methods later in this chapter) is the 

reason for the indifference shown towards the particularity of the optimization 

algorithm. Consequently, the combination of the LS method with any of the 

mentioned optimization algorithms is referred to as the LS-algorithm for the 

remainder of this thesis. 

Table 5.1 Comparing common optimization algorithms for LS. The complexity analysis is based on the 

following variables: 𝑀 refers to the number of data points, 𝑝 to the number of parameters and 𝑘 the number of 

iterations.  

Algorithm Complexity Preferred use  

Gradient descent 𝑂(𝑘 ∙ 𝑀 ∙ 𝑝) General nonlinear optimization 

Multivariate Newton 𝑂(𝑘 ∙ 𝑀 ∙ 𝑝2 + 𝑝3) General nonlinear optimization 

Gauss-Newton 𝑂(𝑘 ∙ 𝑀 ∙ 𝑝2) Mainly for linear (or moderately 
nonlinear) LS  

Levenberg-Marquardt 𝑂(𝑘 ∙ 𝑀 ∙ 𝑝2) Nonlinear LS 

GD – complexity due to gradient calculations, MVN – complexity due to inversion of Hessian, GNA – complexity 

due to calculation of Jacobian, LMA – complexity due to calculation of Jacobian.  

Despite being the most-used method for fitting due to its lower complexity relative 

to other conventional methods, LS remains limited in terms of clinical applications 

and on the clinical timescale. These limitations signify that it is sensitive to signal-

to-noise ratio (SNR), the choice of starting values, and most importantly, that LS 

results in a high computational complexity relative to the clinical timescale, which 

also scales with the degrees of freedom of the spectral model considered. As was 

shown empirically in the results described in Paper II, fitting a 10-parameter model 

(e.g., the Lorentzian) to cover four Z-spectral peaks requires 0.27 s/spectrumh. To 

 
h  For LS-based fitting, the most relevant central processing unit (CPU) specifications are high single-

thread performance (fast clock speed and a high number of instructions per cycle), 4-8 cores with 
8-16 threads for parallel tasks, a large L3 cache (12-32 MB), and a support for vectorized 
instructions like AVX2. Most available CPUs fulfill these requirements and result in comparable 
fitting times.   
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put this into perspective, in clinical settings, a full brain typically contains 

approximately 50,000 spectra, which translates into a total fitting time of 

approximately 4.3 hours. By using a more precise model with higher degrees of 

freedom (e.g., the Voigt with 14 parameters) the fitting time scales accordingly to 

approximately 11 hours. Neither are feasible for clinical use; this has also been 

stated by Foo et al.165, who concluded that a scientific leap is needed to reduce the 

gap. It is in this regard, and with the motivation to also remedy other LS-based 

shortcomings, that two ML-based solutions were developed. A solution based 

on artificial neural networks (NNs) was used in the work described in Paper I, and 

another solution described in Paper II was based on gradient boosted decision 

trees (GBDT). Each has its own benefits and limitations as will be further discussed 

later in this chapter. 

5.2 Gradient boosted decision trees 

5.2.1 Decision trees 

To understand GBDT, an intuitive understanding of general decision trees (DTs) is 

needed. The concept of DTs was developed with contributions from various fields 

and the modern use in ML and data analysis can be traced back to the early- to mid-

1980s with the development of several DT algorithms.171,172 However, the idea of 

using tree-like structures for decision-making (sometimes referred to as tree-

diagrams) has much older roots, with applications in operations research and 

decision analysis. In its basic form, a DT constitutes a root node wherein the first 

data-dividing prompt is stated. The root node subsequently branches to decision 

nodes (or internal nodes), which consider alternative paths to the root prompt. 

Moreover, the decision nodes proceed to branch recursively, presenting alternative 

pathways to the prompt of their parent node. The branching stops when there are no 

further splits, at the so-called leaf nodes (Figure 5.1).  

 

 
 
Figure 5.1 Components of a decision tree. The root node branches into decision (internal) nodes, which in turn 

branch to subsequent nodes. With no further splits, the final nodes are leaf nodes. 
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While the building blocks and the structure of DTs are straightforward, the way to 

construct a tree to achieve an intended task might not be. A good starting point for 

differentiating target groups within a dataset would be to analyze defining 

characteristics of the samples in a dataset, referred to as features, and select 

“splitting points” based on the features that produce desirable subgroups with 

respect to a predefined similarity metric. Even for the simplest of tasks, however, 

this would be a tedious assignment to complete manually, particularly with a 

growing dataset and especially when there are several features to adhere to. This 

calls for DT algorithms which, in simple terms, are procedures or methods for 

building the trees. To guide the splits and tree formation, the algorithms require a 

measurable quantity, a so-called split criterion. Before delving into the DT 

algorithms, it should be clarified that DTs constitute two task modalities, that is, 

classification and regression trees. While they are conceptually and algorithmically 

similar, the difference is that the former are used when the desired outputs are 

categorical classes, such as a label indicating if the input comes from a pathological 

or a healthy sample, whereas the latter refers to the case where the outputs are 

continuous (numerical) values, such as in the case of predicting the spectral model-

parameters for a discrete valued experimental spectrum as input. 

The foundation to DT algorithms was laid out in the early works of Breiman et al. 

and Quinlan et al. with the classification and regression trees (CART)171 and the 

Iterative Dichotomiser 3 (ID3),172 respectively. The basic formulation of any DT 

algorithm (Algorithm 1) is based on processing the targeted dataset beginning from 

the root node by evaluating feature-and-split-point combinations and then splitting 

based on the combination that optimizes the split criterion. The process proceeds 

recursively at each decision node until a stopping condition is met, typically a 

predefined maximum depth of the tree or no further splits possible. The latter could 

be due to a predefined subset size, only one class remaining in the subset (for 

classification), no further improvement with regards to the split criterion, or only 

one sample remaining in the leaf node. For a trained tree, the most optimal feature-

and-split-point combinations at each node, based on the training data, have been 

established. Consequently, during inference, the formed tree structure is used to 

determine the class/value of the input data as given in Algorithm 2. 
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Algorithm 1. General formulation of the DT algorithm. 

 

 

Algorithm 2. Inference using a trained DT.  

 

  

# Pseudocode for the general formulation of DT algorithms  

1. Initialize root node with full dataset 𝐷. 

2. Define function 𝑓 to determine best split(s): 

   - For each feature 𝐹: 

     - For each split point 𝑠𝑝: 

       - Split 𝐷 into subsets 𝐷1,…, 𝐷𝑛. 

       - Calculate criterion 𝑐 for all splits. 

       - Select the split combination which optimizes 𝑐. 

3. Define recursive function to build tree: 

   - If stopping criterion met, return leaf node. 

   - Else: 

     - Find best split using 𝑓. 

     - Create decision node based on best splits. 

     - Recursively build subtrees with subsets 𝐷1,…, 𝐷𝑛. 

4. Build tree starting from root node using recursive function. 

# Pseudocode for the inference algorithm of a trained DT 

1. To predict class/value(s) of new instance 𝑥: 

   - Start at root node. 

   - Traverse tree by comparing 𝑥 feature values to decision nodes' split points. 

   - Follow path to correct subtree based on comparison. 

   - Return class label/averaged value of reached leaf node. 
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Beyond the fundamental skeleton (Algorithm 1), the intricate differences across DT 

algorithms arise from architectural design choices including (i) split criterion 

(impurity-, variance- or statistics-based), (ii) split type (binary or multiway), (iii) 

search strategyi (greedy, semi-global or global search), (iv) handling of missing 

valuesj (imputation, surrogate,  fractional or missingness-aware splits), and (v) 

pruning typek (pre- or post-pruning). The taxonomy of architectural design choices 

and some of the classical DT algorithms are summarized in Figure 5.2. For the 

design choices, there are additional fine structured options which are considered 

hyperparameters. It should be noted that some design choices are strictly associated 

with task modality. Impurity-based split criteria (e.g., Gini Index,171 Information 

Gain,172 and Gain Ratio173) are used for classification trees since they are defined to 

measure the mixing of classes in a dataset. However, variance-based split criteria, 

such as, mean squared error (MSE) and mean absolute error (MAE), are used 

strictly for regression trees wherein the features have numerical values and can thus 

be evaluated based on variance. Furthermore, binary splits are mostly used in 

regression trees, while multiway splits are more common for classification trees 

since the features in the data used for classification typically have multiple discrete 

categories which might necessitate the multiway splits to optimize the split criterion 

considered. The remaining design choices, however, are non-specific for task 

modality and can be observed in both regression and classification tree algorithms. 

It should be noted that the development of DT algorithms is an active field of 

research, so additional modifications to the design choices and mechanisms have 

emerged and continue to do so. However, the algorithmic setting has been shifted 

to ensemble-based algorithms, which will be further explained in the next section. 

 

 
i  The predominant search strategy in DT algorithms is greedy search wherein the algorithm selects the feature-

and-split-point combination that locally optimizes the split criterion at each node. In contrast, global 

search seeks the combination of splits that yields the optimal overall tree structure, but it is seldom applied due 

to its prohibitive computational complexity. Semi-global search strategies offer a compromise by incorporating 

limited foresight evaluating multiple levels or maintaining a subset of promising candidates to improve decision 

quality. However, these methods remain substantially more computationally intensive than greedy search, 

which explains the latter’s widespread adoption in practice.  
j  Imputation replaces missing values with estimates (e.g., mean or median), often used when native handling is 

absent. Surrogate splits use alternative features that approximate the original split to guide decisions when data 

are missing. Fractional splitting distributes missing instances across branches proportionally to observed 

data. Missingness-aware methods treat missingness as informative and incorporates it directly into the split 

logic. 
k  Pruning techniques aim to reduce overfitting by simplifying the tree structure. Pre-pruning halts tree growth 

early based on predefined criteria (e.g., minimum samples per node or maximum depth), while post-

pruning allows full tree construction followed by the removal of branches that do not improve generalization, 

which is typically validated on a separate dataset. 
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Figure 5.2 Taxonomy of DT algorithms. The four main design choices for classical DT algorithms, their intricate 

variants, and how the most common DT algorithms relate to these.  

From Figure 5.2 it can be inferred that the CART algorithm constitutes greedy 

search, binary splits, a surrogate split-based handling of missing values, and post-

pruning to reduce the risk of overfitting. It can also be seen that the algorithm could 

either have an impurity-based metric (Gini index) in the classification setting or a 

variance-based metric for regression, which is reflected by criteria such as MSE and 

MAE, the former defined in Equation 5.12.  

 𝑀𝑆𝐸𝐷𝑇 =
1

𝑁
∑ (𝑦𝑖 − 𝑐𝑚)2𝑁

𝑖=1  , (5.12) 

where 𝑁 is the number of samples in the node, 𝑦 is the ground truth (GT) value for 

sample 𝑖, and 𝑐𝑚 the average of the GT values for all samples in the node. When a 

split has been performed, based on a feature-threshold combination, the error 

(Equation 5.12) is calculated for both resulting nodes and the weighted error added 

for the total error: 

 𝐸𝑟𝑟𝑜𝑟𝑡𝑜𝑡 =
𝑛𝐿

𝑛
𝐸𝑟𝑟𝑜𝑟𝐿 +

𝑛𝑅

𝑛
𝐸𝑟𝑟𝑜𝑟𝑅  , (5.13) 

where 𝑛𝐿 and 𝑛𝑅 are the number of samples in the left and right nodes. respectively, 

𝑛 is the total number of samples, and 𝐸𝑟𝑟𝑜𝑟 denotes the variance-based error. It 

should be noted that the right-hand side of Equation 5.13 has two terms due to the 

binary split of CART trees and would be replaced with an equal number of terms to 

the number of splits if it was a multiway split.  
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Despite being proposed as early as 1984171 and being a relatively simple algorithm, 

CART has withstood the test of time due not only to its simplicity and, consequently, 

high interpretability, but also because of its strong baseline performance on both 

tabular and structured data originating from its nonlinear nature and high flexibility 

in the main setting. This signifies its suitability for both classification and 

regression, as well as its inherent handling of missing values and outliers. However, 

the CART algorithm has considerable limitations with regard to high variance and 

the risk of overfitting, especially on smaller datasets. Another even more important 

limitation for the regression setting is the piecewise constant predictions that are the 

result of each leaf node predicting a constant value, which is the average of the target 

values in the node. This leads to a step function-like prediction surface which can 

be non-smooth and sensitive to small changes. The simplicity of the CART 

algorithm is the main reason for its use as the backbone for ensemble methods. A 

cornerstone for ensemble-based methods was the random forests (RF) proposed in 

the paper by Breiman et al. in 2001.174 The concept builds on several weak learners, 

i.e., individual CART trees, trained on a bootstrap (subset) from the original dataset 

in a sampling with replacementl fashion and with randomly sampled features. 

Aggregation is subsequently applied during inference, signifying that the majority 

vote for classification or the average of the predictions for regression is taken. This 

is given as:  

 𝑝𝑟𝑒𝑑𝑅𝐹 =
1

𝑇
∑ 𝑦̂𝑡(𝑥)𝑇

𝑡=1  , (5.14) 

where 𝑇 is the number of trees in the ensemble, and 𝑦̂𝑡 is the prediction of the 𝑡-th 

tree. In this way, the limitations of individual CART are overcome since 

averaging smooths out the piecewise constant predictions, thus reducing variance 

and producing a more stable, continuous prediction surface. 

5.2.2 Learning from the errors of the predecessors 

In the last decade, another group of ensemble-based techniques has emerged in the 

form of gradient-boosted DTs. Unlike RF and other bagging-based methods, the 

trees of the GBDT ensemble are not trained independently. Instead, each tree learns 

from the errors of the preceding ensemble to strengthen the final learning. This is 

done by starting with an initial prediction, 𝐹0(𝑥), for the considered dataset, 𝐷 =
 {𝑥𝑖, 𝑦𝑖}𝑖=1

𝑁 , where 𝑥 represents the feature vectors, 𝑦 is the target values and 𝑁 is 

the number of samples in the dataset. In practice, 𝐹0(𝑥) is given a constant value for 

all samples of 𝐷. The constant is determined based on the closed-form solution for 

 
l  The same sample can reoccur in the bootstrap 
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the global minimum of the loss functionm, ℒ, to ensure stable training and reduce 

the risk of overfitting. A common loss function used with GBDT for regression is 

MSE defined as: 

 ℒ𝑀𝑆𝐸(𝑦, 𝐹(𝑥)) =
1

2
(𝑦 − 𝐹(𝑥))

2
 . (5.15) 

For MSE, the closed-form solution is thus the mean of 𝑦. Using the predictions 

𝐹(𝑥), the pseudo-residuals can be computed as given in Equation 5.16 to represent 

the direction and magnitude in which the current model needs to be adjusted to 

reduce the loss. 

 𝑟𝑖
(𝑀)

= − [
𝛿ℒ(𝑦𝑖,𝐹(𝑥𝑖))

𝛿𝐹(𝑥𝑖)
]

𝐹(𝑥𝑖)=𝐹𝑀−1

 , (5.16) 

where 𝑀 is the current iteration. It should be noted that for ℒ𝑀𝑆𝐸, the pseudo-

residuals are the actual residuals given as 𝑦 − 𝐹(𝑥). With the calculated pseudo-

residuals used as targets, a new DT, ℎ𝑀, is trained resulting in ℎ𝑀(𝑥) ≈ 𝑟𝑖. During 

the formation of the individual CART-like trees of the ensemble, the splits are 

guided not by the standard variance-based split criteria but instead by the loss-aware 

gradient-based gain defined as: 

 𝐺𝑎𝑖𝑛 =
𝐺𝐿

2

𝐻𝐿+𝜆
+

𝐺𝑅
2

𝐻𝑅+𝜆𝑟𝑒𝑔
−

𝐺2

𝐻+𝜆𝑟𝑒𝑔
− 𝜆𝑠𝑝𝑙𝑖𝑡  , (5.17) 

where 𝐺 is the sum of pseudo-residuals, 𝐻 is the corresponding sum of second-order 

derivatives, 𝜆𝑟𝑒𝑔 is a regularization term for the leaf weights, and 𝜆𝑠𝑝𝑙𝑖𝑡 is the 

minimum gain threshold. Notice that the second-order derivative for ℒ𝑀𝑆𝐸 is equal 

to 1. The process of training new trees using the previous pseudo-residuals as targets 

is repeated recursively until the loss of a validation dataset has converged or a 

predefined number or iterations, 𝑀, has been reached. For a trained GBDT 

ensemble, the prediction given a feature vector 𝑥 is: 

 𝐹𝑀(𝑥) = 𝐹0(𝑥) + 𝜂 ∑ ℎ𝑚(𝑥)𝑀
𝑚=1  , (5.18) 

 
m  The terminology in ML is very delicate; in terms of the individual trees, the term “split criterion” is used for 

the metric that guides the formation of the tree. However, in terms of GBDT, the algorithm is guided by the 

loss function, which is incorporated into the split criterion of the induvial trees. It should also be noted that 

the term “loss function” is used in terms of the neural networks that are described in the next section. 
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where ℎ𝑚(𝑥) is the individual tree’s predicted pseudo-residuals and η is the learning 

rate. The process described above is, of course, the general formulation of the GBDT 

algorithm, and more fine-tuned differences have emerged since, the most notable 

being XGBoost,175 LightGBM,176 and CatBoost.177 These have gained prominence 

for their predictive accuracy and flexibility, although they offer trade-offs in speed, 

regularization, and categorical feature handling. 

5.2.2.1 XGBoost, LightGBM, and CatBoost 

XGBoost utilizes level-wise tree construction similar to CART, meaning it works 

on all the nodes at the same level before proceeding in depth. However, in contrast 

to CART, it integrates loss-aware second-order optimization, regularization (L1 and 

L2), and sometimes histogram-based binning of the threshold values to enhance 

generalization and control overfitting.175 LightGBM uses a leaf-wise growth 

strategy that aggressively splits the leaf with the largest potential gain, thus 

accelerating training via histogram-based feature binning. Gradient-based One-Side 

Sampling selectively holds high-gradient samples while downsampling well-fitted 

points to preserve distributional integrity.176 This allows significant computational 

efficiency without compromising accuracy. CatBoost, in contrast, constructs so-

called oblivious (symmetric) trees using a consistent split at each depth level and 

integrates ordered boosting, a permutation-driven approach that prevents target 

leakage and stabilizes training on small datasets. Its native handling of categorical 

variables through target-aware encodings minimizes preprocessing and 

hyperparameter tuning.177 Consequently, the algorithms have their strengths and 

limitations. While CatBoost often achieves superior accuracy with minimal 

tuning, LightGBM is superior in training speed and scalability. XGBoost, on the 

other hand, remains a robust, interpretable baseline with strong regularization 

capabilities. Collectively, these frameworks exemplify diverse optimization 

strategies in the GBDT category, each designed to address different primary 

concerns. 

5.2.3 Gradient boosted decision trees for spectral fitting 

In the context of spectral fitting, the problem can naturally be framed as a regression 

task, wherein the outputs are continuous-valued parameters that optimally fit the 

spectral model to the discrete input spectrum. The formulation is also well aligned 

with supervised learning, which is training an ML model with a paired dataset 𝐷 =
 {𝑥𝑖, 𝑦𝑖}𝑖=1

𝑁  constituting sample-and-GT pairs. GBDT, known for their robustness, 

interpretability, and ability to model complex nonlinear relationships, present 

desirable alternatives to conventional optimization-based methods (Chapter 5.1). In 

the simplest form, the feature vectors, i.e. inputs, are taken to be the intensity values 

of the discrete points. Additionally, the possibility of feature engineering, which is 

extracting features from the raw spectra (e.g., descriptive statistics) could provide 
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further insight for strengthening the performance of the trained model. However, 

this approach requires careful design of features with a strong implicit relationship 

to the model parameters, which in turn requires an intricate empirical analysis. In 

the work described in Paper II, it was shown that the raw intensities as features were 

sufficient for the high accuracy mapping of the parameter values for both Lorentzian 

and Voigt spectral models including four Z-spectral peaks.  

As previously mentioned, the output in spectral fitting consists of multiple model 

parameters. Moreover, the number of parameters typically scales with both the 

number of peaks present in the fitted spectrum and the degrees of freedom 

associated with the spectral model considered. The problem thus needs to be treated 

as a multi-output regression task, an aspect which thus far has not been addressed 

for the GBDT algorithms since all previous theory was focused on single-output 

formulations. On that note, one straightforward approach is to train separate GBDT 

ensembles for each model parameter using the same feature vectors as inputs. While 

this method has demonstrated success in various applications, the approach 

inherently neglects potential correlations among the model parameters that could be 

leveraged for improved efficiency and accuracy of mapping, particularly for more 

complex spectral models. An alternative approach, which is natively supported by 

the CatBoost library, involves extending the MSE to a multi-target version, referred 

to as multi-target MSE. This is defined as: 

 𝑚𝑢𝑙𝑡𝑖𝑀𝑆𝐸 =
1

𝑁
∑ ∥ 𝑦𝑖 − 𝑦𝑖̂ ∥2 ,𝑁

𝑖=1  (5.19) 

where 𝑦𝑖 and 𝑦𝑖̂ denote the true and predicted vectors of model parameters for 

sample 𝑖, respectively, and 𝑁 is the number of training samples. 

Analogous to feature-engineering, the output could also be adjusted. In Chapter 4, 

it was explained that derived parameters such as 𝐻 (Equations 4.2 and 4.6 for 

Lorentzian and Voigt respectively) and 𝐿𝑊 (Equations 4.3 and 4.5 for Lorentzian 

and Voigt respectively) are commonly used for inter-model comparisons and for 

practical applications. In this regard, targeting the derived parameters streamlines 

direct analysis. In the work of Paper II, it was empirically shown that both 

approaches are feasible. 



68 

5.3 Densely connected neural networks 

5.3.1 Theory 

Inspired by the biological neuron, the perceptron was invented by Frank Rosenblatt 

in 1958.178 The algorithm operates by computing a weighted sum of its inputs and 

applying a nonlinear transformation via a so-called activation function to obtain the 

output. The activation function is essential for enabling the model to map nonlinear 

relationships in the data. Mathematically, the perceptron can be expressed as:  

 𝑦̂ = 𝜙(∑ 𝑥𝑖 ∙ 𝑤𝑖 + 𝑏𝑁
𝑖=1 ) = 𝜙(𝒘𝑇𝒙 + 𝑏) , (5.20) 

where 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑁]𝑇 is the input vector, 𝒘 = [𝑤1, 𝑤2, … , 𝑤𝑁]𝑇 is the weight 

vector, 𝑏 is the bias term, 𝜙(∙) is the activation function, and 𝑦̂ is the output of the 

perceptron. By connecting multiple perceptrons, the multilayer perceptron (MLP), 

better known as an artificial NN, is constructed. Figure 5.3 illustrates an NN with 

its main building blocks. 

 

 

Figure 5.3 General overview of the building blocks of a NN. A NN with the three main layers: input, hidden and 
output. Each purple circle is a node (perceptron), and the links between the nodes are the weights (the trainable 

parameters). 

In this architecture, each perceptron is referred to as a node or neuron. The first and 

last layers are termed as the input and output layers, respectively, while any 

intermediate layers are denoted as hidden layers. When an artificial NN constitutes 

more than one hidden layer, it is referred to as a deep neural network (DNN). The 

weights and biases in a NN are known as trainable parameters and are iteratively 

adjusted during training to minimize a loss function. The total number of trainable 

parameters, and thus the model’s complexity, is determined by the number of layers 
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and nodes per layer. A highly complex model can effectively approximate complex 

mappings of inputs to outputs, which is analogous to using a spectral model with a 

high number of degrees of freedom to fit a discrete spectrum. However, increasing 

model complexity also increases the risk of overfitting, wherein the model learns 

noise or specific patterns in the training data that do not generalize to unseen data. 

The trade-off between model complexity and generalization capabilities is a central 

consideration in NN design and training and will be addressed further in the coming 

paragraphs.    

In supervised learning, the training of an NN constitutes three fundamental steps: 

(i) forward propagation, (ii) error calculation and gradient evaluation, and (iii) 

backpropagation for parameter updates. The forward propagation for a given input 

𝒙 = 𝒂0 results in the network computing an output 𝒚̂ by sequentially applying 

affine transformations and activation functions across all the layers, which can be 

expressed in a general form as follows: 

 𝒂(𝑙) = 𝜙(𝑙)(𝒘(𝑙)𝒂(𝑙−1) + 𝑏(𝑙)),    𝑙 = 1, … , 𝐿 , (5.21) 

where 𝒂(𝑙) denotes the activation of layer 𝑙, and 𝐿 is the total number of layers in 

the network. In the error calculation step, the discrepancy between the predicted 

output 𝒚̂ and the true target 𝒚 is quantified using a predefined loss function ℒ(𝒚, 𝒚̂), 

which, as with GBDT, should be variance-based, e.g., multiMSE for a multi-

regression task (Equation 5.19). The gradients of the loss with respect to the model 

parameters 𝛿ℒ/𝛿𝒘 and 𝛿ℒ/𝛿𝑏 are also computed, utilizing the chain rule due to the 

sequential nature of the forward propagation. Finally, for the backpropagation and 

parameter update step, the computed gradients are propagated backward through the 

network and used to update the parameters in the direction that minimizes the loss. 

This is done with the guidance of an optimization function, which in most cases is 

GD (Equation 5.8) or one of its variants.   

It follows that the selection of the number of trainable parameters, along with the 

choice of activation functions, loss function and optimization algorithm constitute 

the hyperparameter configuration of the network. The hyperparameters are not 

learned during training but are instead predefined, and their choice can highly 

influence the trained model’s performance. Consequently, finding a balanced 

hyperparameter combination reflects the previously mentioned trade-off between 

model complexity and generalization capabilities. To systematically find an optimal 

hyperparameter configuration, hyperparameter optimization (HPO) is employed. 

The process consists of three main steps, which are (i) defining the search space, 

(ii) defining the objective function, and (iii) choosing the search strategy. The first 

step encapsulates the variability allowed during the search by defining the ranges or 

choices possible for each hyperparameter. The second step determines the 
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performance criterion to evaluate improvements in generalizability as a function of 

the hyperparameter configuration, which is evaluated based on the performance on 

a validation dataset. The final step determines the method by which the search space 

is explored. For a relatively small search space grid search, which exhaustively 

evaluates all possible combinations may be computationally feasible. However, for 

higher dimensional or continuous search spaces, this search method becomes 

computationally unfeasible. Random search is thus preferred in these cases since it 

randomly samples configurations from a uniform distribution and is more efficient 

in high-dimensional settings.179 More involved strategies such as Bayesian 

optimization,180 Hyperband,181 and population based training182 offer a trade-off 

between computational complexity and efficiency. 

5.3.1 The single Lorentzian fitting neural network 

The single Lorentzian fitting neural network (sLoFNet) is a DNN developed in the 

work described in Paper I to fit discrete DS spectra which adhere to Lorentzian 

shapes. Consequently, the outputs are the Lorentzian shape parameters (Equation 

4.1). The architectural design was obtained via HPO, and the defined search space 

and resulting hyperparameter configuration are given in Table 5.2. During the HPO 

process, candidate configurations were evaluated on a held-out validation dataset 

using a composite search objective that incorporated both MAE and root-MSE. The 

adopted search strategy was random search. The inclusion of both metrics in the 

objective function was intended to balance sensitivity to large errors (captured by 

root-MSE) with robustness and interpretability (offered by MAE). While root-MSE 

is widely used, it has been shown to be less reliable for inter-model comparisons 

due to its dependence on the average error (i.e., MAE), the number of samples, and 

the variance within the samples.183 In contrast, MAE provides a scale- and variance-

invariant measure of performance. Consequently, by combining both metrics, a 

selection of models with strong generalization performances across a range of error 

profiles is favored. 

Table 5.2 sLoFNet architecture and search space for its HPO. The defined search space and the resulting 

hyperparameter configuration from the HPO for sLoFNet. This table is adapted from Paper I. 

Hyperparameter Choices Results from HPO 

Number of hidden layers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 5 

Nodes per hidden layer [128,256, 512, 1028, 2048] 2048 

Loss function [MAE, Root-MSE] Root-MSE 

Final activation [Tanh, Linear, None] None  

Batch size [32, 64,128, 256] 32 
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The optimization algorithm for the model was chosen explicitly to be the adaptive 

moment estimation184 (Adam), because it is particularly effective for large datasets 

and high-dimensional parameter spaces. It is given as: 

 𝜃𝑡+1 = 𝜃𝑡 − 𝜂
𝑚̂𝑡

√𝜈̂𝑡+𝜖
 , (5.22) 

where 𝑚̂𝑡 = 𝑚𝑡/(1 − 𝛽1
𝑡) and 𝜈̂𝑡 = 𝜈𝑡/(1 − 𝛽2

𝑡) are the bias-corrected estimates of 

the first moment estimate 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (mean of gradients) and 

second moment estimate 𝜈𝑡 = 𝛽2𝜈𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (uncentered variance), 

respectively, and where 𝑔𝑡 = ∇θℒ𝑡 is the gradient of the loss function with respect 

to the trainable parameters at time point 𝑡. 𝛽1 and 𝛽2 are the decay rates for the 

moment estimates, and 𝜖 is a constant (typically 10−8) to prevent division by zero.   

It should be noted that repeating the HPO would likely yield different optimized 

configurations since the obtained configuration is one of many solutions to the 

objective function. Using an interpolation-based approach, Goodfellow and 

Vinyals185 empirically showed that there is a smooth plateau region of the objective 

function landscape in which all model configurations perform comparably. Thus, 

the focus should be on ensuring that the obtained configuration is one that 

generalizes well. 

5.4 Comparison of fitting approaches 

5.4.1 Theoretical foundation 

While Big O notation186 provides a theoretical framework for understanding how 

different models scale with input size and model complexity, it does not always fully 

explain the empirical performance. The inference of DNNs has a complexity 𝑂(𝐿 ∙
𝑁 ∙ 𝑀), where 𝐿 is the number of layers, 𝑁 the number of nodes per layer, and 𝑀 

the number of datapoints. In contrast, GBDT scale as 𝑂(𝐷 ∙ 𝑀), where 𝐷 is the 

maximum depth of the trees in the ensemble. It should be noted that for training, 

both methods have additional computational cost. For GBDT, the complexity 

becomes 𝑂(𝑇 ∙ 𝐷 ∙ 𝑀), where 𝑇 is the number of trees in the ensemble. For DNNs, 

training complexity scales as 𝑂(𝐸 ∙ 𝐿 ∙ 𝑁 ∙ 𝑀), where 𝐸 is the number of training 

epochs. In comparison, the nonlinear LS-algorithm has an inference-time 

complexity of approximately 𝑂(𝑘 ∙ 𝑀 ∙ 𝑝2). This formulation highlights that LS-

based methods scale quadratically with the number of parameters 𝑝 while the 

inference of both ML-methods is independent of the parameter count. This 

difference becomes especially significant with high-dimensional models since the 
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additional dependence on data size renders LS fitting infeasible for clinical 

applications. 

5.4.2 Practical factors 

The empirical results described in Papers I and II confirm that both ML-based 

approaches significantly outperform LS in terms of inference time. For instance, the 

inference when using the ML-models (on the average available graphical processing 

units, GPUs) required approximately 1 second per brain for four-pool Z-spectra 

compared to several hours for the LS-algorithm. The latter aligns with theoretical 

expectations that LS complexity scales with the number of parameters. This was 

further validated in Paper II, wherein the difference in inference time between a 10-

parameter model (four-pool Lorentzian) and a 14-parameter model (four-pool 

Voigt) was negligible in the ML setting but increased tangibly from 4 to 11 hours 

in the LS setting. On this basis, the ML-based approaches close the gap for clinical 

application. 

In addition to the theoretical foundation, several practical factors are of importance. 

GBDT rely on fast, shallow tree traversal and benefit from highly optimized 

implementations (e.g., LightGBM and CatBoost), thus requiring significantly fewer 

floating-point operations compared to both DNNs and the LS-algorithm. While 

DNNs are more computationally intensive due to matrix operations and nonlinear 

activations, they leverage efficient tensor operations and are well-suited for GPU 

acceleration. Both ML-approaches, in fact, benefit from GPU-level parallelism, 

which further increases the performance advantage. In contrast, LS-methods often 

involve computationally expensive function evaluations that depend on the 

formulation of the spectral model (e.g., Voigt or Lorentzian), and they are typically 

implemented in general-purpose solvers that lack hardware-specific optimizations. 

Taken together, these theoretical and practical considerations explain why GBDT 

are empirically the fastest, followed by DNNs, with the LS-algorithm being the 

slowest. 

5.4.3 Deep neural networks versus gradient boosted decision trees 

It is worth noting that while GBDT models exhibit only marginally faster inference 

times compared to DNNs, they are significantly more efficient in terms of training 

speed. This difference arises primarily from the algorithmic structure of DNNs, 

which involve iterative forward propagation, error calculation, gradient 

computation, and parameter updates across multiple layers (Chapter 5.3.1), all 

operations that scale with the number of trainable parameters and the depth of the 

network. In contrast, GBDT are trained sequentially by fitting shallow DTs to 

residuals, a process that is inherently less computationally intensive and more 
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flexible to parallelization. It should be mentioned, however, that the computational 

burden of DNNs such as sLoFNet can be reduced slightly by decreasing the number 

of trainable parameters without necessarily compromising performance. As 

suggested by Goodfellow and Vinyals,185 the loss landscape of NNs often contains 

a broad plateau region in which many configurations yield comparable performance. 

Consequently, identifying a model within this region that also minimizes the 

number of trainable parameters is therefore desirable since it offers a favorable 

trade-off between efficiency and generalization. Nonetheless, due to their inherently 

lower algorithmic complexity and the simplicity of their inference mechanism, 

GBDT maintain a computational advantage over DNNs especially in the training 

phase. This makes them especially attractive for applications in which reduced time 

and computational complexity is of primary concern. The increased algorithmic 

complexity of DNNs does, however, offer advantages. It enables modeling of highly 

nonlinear and intricate relationships, thus making DNNs more suitable for complex 

tasks. When properly regularized, DNNs also tend to have greater robustness in 

terms of variance and noise in the data. 

It follows that any choice between GBDT and DNNs should be guided by the 

specific requirements of the intended application. If models need to be retrained 

frequently, such as when acquisition protocols for the Z-spectra change or due to 

other changes to the imaging conditions, GBDT are preferred due to their 

significantly faster training times and lower computational load. In contrast, when 

robustness against data variability is a primary concern, DNNs offer a powerful 

choice for fitting. Their increased model complexity and strong capacity for 

generalization enable them to better tolerate variations in the input data, such as 

noise fluctuations, reduction of sampling density, or moderate inconsistencies. In 

this context, robustness thus refers to the model’s ability to maintain stable 

performance in the presence of such well-represented perturbations in the training 

data. However, it is important to recognize that this robustness is inherently limited 

since excessive variability in the training data might obstruct convergence and 

hinder the model’s ability to learn the intended mapping. For instance, a model 

trained to predict spectral fitting parameters such as sLoFNet should ideally be 

invariant to moderate noise, as shown to be the case in Paper I, which indicated a 

marginal increase of fitting error with added noise up to 4%. However, the DNN-

based fitting model should not be expected to perform denoising as an additional 

task. If denoising is required, it should be addressed through dedicated models.  

Furthermore, the lower algorithmic complexity of GBDT provides an additional 

benefit beyond the reduced time complexity, that of enhanced interpretability. The 

decision paths within individual trees can be readily analyzed to understand the 

influence of specific features on predictions. In this way, targeted feature 

engineering is facilitated, which can further improve model performance.  
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5.4.4 Training data and mapping 

Beyond the differences originating in the algorithmic design, another significant 

difference between sLoFNet (Paper I) and the GBDT-based fitting approach (Paper 

II) lies in the nature of the training data. In the main configuration, sLoFNet was 

trained on simulated spectra, where each input-output pair consisted of a discrete 

spectrum simulated over a predefined range of the invariant variable 𝑥, with the 

corresponding Lorentzian shape parameters (Equation 4.1) sampled from uniform 

distributions. The parameter ranges were selected based on values observed in vivo, 

as reported in the literature. Since only a single spectral peak was modeled, the 

outputs were the shape parameters for that peak. In contrast, the GBDT-based fitting 

model was trained on in vivo spectra that had been pre-fitted using the LS-algorithm 

to extract the shape parameters for four peaks modeled using either the Lorentzian 

(Equation 4.1) or Voigt (Equation 4.4) functions. In the work described in Paper I, 

a similar approach was adopted with a DNN resulting in the sLoFNetInvivo variant, 

which is algorithmically identical to sLoFNet but trained on a smaller size LS-fitted 

in vivo dataset instead of the simulated dataset used for sLoFNet to enable a direct 

comparison. This comparison revealed that sLoFNetInvivo demonstrated potential but 

lacked full generalizability due to the small training data size of approximately 

50,000 spectra. Specifically, empirical results indicated that between 500,000 and 

1,000,000 simulated samples were needed to ensure generalizability of sLoFNet, as 

validated on both simulated and in vivo test sets. On this note, it is important to 

consider the cost of increased training time which, as previously discussed, scales 

linearly with the number of training samples. The preprocessing step for the in vivo 

training data presents an additional practical challenge since generating large-scale 

in vivo training datasets requires extensive LS-based fitting, which is 

computationally expensive and scales poorly with both the number of samples and 

parameters of the spectral model considered. Conversely, the GBDT-based model 

achieved convergence and generalization with a relatively small dataset of 

approximately 5,000 samples, significantly reducing the LS burden. Nonetheless, 

the reliance on LS to generate GT labels remains a bottleneck for the approach in 

which in vivo data are used for training.  

In theory, one could simulate multi-peak spectra using parameter ranges observed 

in vivo, similar to the sLoFNet approach. However, as the number of modeled pools 

increases, the complexity of accurately capturing inter-parameter dependencies also 

increases. The dependencies, such as correlations between peak amplitudes, widths 

and positions, are difficult to model explicitly. Preliminary analyses using 

covariance matrices and kernel-based methods suggested the presence of nontrivial 

correlations, further complicating the simulation process. Moreover, training on real 

in vivo data implicitly captures such dependencies, including potential interactions 

between Z-spectral pools, which are otherwise difficult to encode in the simulated 

data. 
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A successfully trained ML-based fitting model learns to approximate the mapping 

between the spectral input and model parameters, effectively learning the 

underlying spectral model (e.g., Lorentzian or Voigt) while tolerating the variability 

observed in the experimental data. This includes both reducible and irreducible 

sources of error. The latter, which originate from inherent noise and biological 

variability, places a fundamental limit on model performance regardless of training 

strategy. However, the former can be suppressed with the proper representation in 

the training data. Consequently, while simulated data offer scalability and control, 

they may fail to capture the full complexity of in vivo spectra, particularly in multi-

pool models. The success of sLoFNet is largely attributable to the simplicity of the 

single-pool model. For more complex models, training on LS-fitted in vivo data 

remains the most effective strategy, provided that sufficient data are available. As 

such, the use of experimental data should be prioritized whenever feasible, since it 

offers the most faithful representation of the underlying biological and physical 

processes.  
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6. Z-spectral denoising 

6.1 Available denoising approaches 

6.1.1 Principal component analysis 

Principal component analysis (PCA) is a statistical method that leverages a linear 

and orthogonal transformation to reorient high-dimensional data to a new coordinate 

system in order to find the uncorrelated directions (principal components, PCs) that 

describe the data variance the most.187 Consequently, the largest data variability can 

be captured in just a few PCs. This allows a reduction in dimensionality to facilitate 

interpretation, and it has several potential applications.  

Before computing the PCs, the feature matrix, 𝑋 ∈ ℝ𝑁∙𝑛 is standardized, where 𝑁 

is the number of samples and 𝑛 the number of features. This process involves 

centering and scaling the data to ensure that all features contribute equally to the 

analysis. This can be mathematically expressed as subtracting the mean of each 

feature 𝜇𝑗 and dividing by its standard deviation, 𝜎𝑗, given as187: 

 𝑥̃𝑖𝑗 =  
𝑥𝑖𝑗−𝜇𝑗

𝜎𝑗
 . (6.1) 

Therefore, the resulting standardized data matrix can be denoted 𝑋̃ ∈ ℝ𝑁∙𝑛. The next 

step is to compute the covariance matrix 𝐶 ∈ ℝ𝑛∙𝑛, which captures the pairwise 

linear correlations between the features187: 

 𝐶 =
1

𝑁−1 
 𝑋̃𝑇𝑋̃ . (6.2) 

It should be noted that the denominator is Bessel’s correction, which serves to 

remove bias from the estimation of the population covariance of a sample. 

Furthermore, each entry 𝑐𝑖𝑘 ∈ 𝐶 represents the covariance between features 𝑖 and 𝑘. 
This signifies that each entry on the diagonal of 𝐶 (i.e., 𝑖 = 𝑗) holds the 

(uncorrelated) variances of the features while each off-diagonal entry (𝑖 ≠ 𝑗) 

represents how the pairs of features vary together. Consequently, the next step 
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involves eigen-decomposition of the covariance matrix to obtain the eigenvalue 

matrix, Λ, (explained variance) and the eigenvectors matrix, 𝑄, (PCs)187: 

 𝐶 = 𝑄𝛬𝑄𝑇 . (6.3) 

This is solved for the individual eigenvalues 𝜆 as det(𝐶 − 𝜆𝐼) = 0, where the 

eigenvalues form the diagonal of 𝛬. For each eigenvalue, the corresponding 

eigenvector 𝑣⃗ is solved through (𝐶 − 𝜆𝐼)𝑣⃗ = 0; these eigenvectors form the 

columns of the matrix 𝑄.187 

The eigenvectors define the direction of maximum variance (PCs), and the 

corresponding eigenvalues quantify the amount of variance explained in these 

directions. Eigenvectors are thus sorted in descending order of their associated 

eigenvalues. Selecting the top 𝑘 components results in a so-called projection matrix 

𝑊𝑘 ∈ ℝ𝑛 ×𝑘 which can be used to transform the data, and 𝑋̃𝑃𝐶𝐴 = 𝑋̃𝑊𝑘 where 

𝑋̃𝑃𝐶𝐴 ∈ ℝ𝑛×𝑘 is the reduced dimensionality representation. Due to the stochastic 

nature of noise, it often manifests in the directions of low variance, so discarding 

components with low variance can serve as an effective denoising approach (also 

leveraged for compression). However, it should be noted that the choice of threshold 

highly affects the denoising performance. PCA has, nevertheless, been used 

successfully for denoising Z-spectra in the work by Breitling et al.26 

6.1.2 Deep learning-based denoising 

Several DL-based denoising approaches have been proposed over the years, with 

different algorithmic constructions and learning mechanisms.  

6.1.2.1 Autoencoders  

Autoencoders (AE) are a class of NNs designed to learn a compressed latent 

representation of the input. This is accomplished with the help of the two-

component design that includes an encoder and a decoder. The encoder is typically 

designed in a manner that reduces the number of nodes per layer successively until 

reaching the end of the encoder, at which point the number of nodes represents the 

dimension of the latent representation. The final layer of the encoder connects to the 

first layer of the decoder, which is commonly designed to mirror the encoder. In 

other words, each layer of the decoder is followed by a layer with an increased 

number of nodes in order to reconstruct the input from the latent representation. 

Hence, an AE is usually symmetrical in its architectural design. When reducing the 

number of hidden layers to a single layer and using a linear activation for all the 

nodes, an AE is reduced to the PCA transformation,187,188 with the number of nodes 

in latent space corresponding to the number of PCs used. The objective of an AE is 

to minimize the reconstruction error by typically using a loss function such as MSE. 
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AEs have been successfully applied for denoising189 in what is referred to as 

denoising autoencoders (DAEs). 

6.1.2.2 Convolutional neural networks  

When the weights in a conventional NN (Chapter 5.3.1) are replaced with 

convolutional kernels, the resulting architecture is referred to as a convolutional 

neural network (CNN). Consequently, the forward pass of the individual 

perceptrons (Equation 5.20) is replaced by a discrete convolution between the input, 

𝑥, and a kernel, 𝑤, which for a 1D input can be defined as:  

 𝑦[𝑛] = 𝜙(∑ 𝑥[𝑛 − 𝑘] ∙ 𝑤[𝑘]𝐾−1
𝑘=0 ) for 𝑛 = 0,1, … , 𝑁 − 𝐾 − 2 , (6.4) 

where 𝑦[𝑛] are the point-wise values of the output vector 𝑦, 𝑁 is the length of the 

input 𝑥, and 𝐾 is the length of the kernel 𝑤. Notice that just as in the conventional 

NN case, the output is passed through an activation function 𝜙. Thus, in CNNs, the 

trainable parameters are convolutional kernels referred to as filters, which are 

iteratively updated during training. The filters will form during the training process 

based on highly prevalent local spatial dependencies in the training data. 

Consequently, if the input contains the learned structures of the filters, at each layer 

during both forward propagation and inference, the convolutions will produce a 

feature map with highlighted regions that can subsequently be leveraged for the 

intended task. It should be noted that a CNN can have several filters at each layer, 

which is analogous with the possibility of several nodes per layer in conventional 

NNs. As with conventional NNs, in the supervised setting, CNNs are trained using 

the previously described three-steps learning algorithm (Chapter 5.3.1). 

It is also common for CNNs to utilize dimensionality reductions by applying so-

called pooling layers. The two most common are max pooling and average pooling, 

which are defined in Equations 6.5 and 6.6, respectively. 

 𝑦[𝑛] = max{𝑥𝑠∙𝑛 , 𝑥𝑠∙𝑛+1, … , 𝑥𝑠∙𝑛+𝐾−1} , (6.5) 

 𝑦[𝑛] =
1

𝐾
∑ 𝑥𝑠∙𝑛+𝑗

𝐾−1
𝑗=0  , (6.6) 

where 𝑛 denotes the position in input 𝑥, 𝑠 is the stride (step size) of the pooling 

window, and 𝐾 is the window size. By using pooling layers, the computational load 

can be alleviated due to the reduction in data size. Furthermore, the projection of a 

higher dimension to a lower one will emphasize prominent features, either by 

keeping max values or averaging them with max and average pooling respectively. 

This results in an inherent translation invariance and noise suppression.  
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When convolutional layers are used in both the encoder and decoder paths of an AE, 

the resulting architecture is referred to as a convolutional autoencoder (CAE). As 

clarified in the previous section, the AEs aim to transform the input to a lower 

dimensional representation. Therefore, pooling layers are essential building blocks 

for achieving dimensionality reduction in CAEs. However, it was also clarified that 

AEs aim to reconstruct the input from the latent dimension. Consequently, the 

counterpart to pooling layers, i.e., upsampling layers, are necessary for regaining 

the input size. A common upsampling process is based on nearest neighbor linear 

interpolation, which is defined as: 

 𝑦[𝑛] = 𝑥𝑛/𝑠 + (
𝑛𝑠

𝑠
) (𝑥𝑛

𝑠⁄ +1 − 𝑥𝑛
𝑠⁄ ) , (6.7) 

where 𝑠 = 2 is common for doubling the dimensionality. Alternatively, transpose 

convolution with a 𝑠𝑡𝑟𝑖𝑑𝑒 > 1 (commonly equal to 2) is used to have a learned 

upsampling instead. It should be noted that CAEs used for denoising are referred to 

as denoising convolutional autoencoders (DCAEs).  

6.1.2.3 State-of-the-art approaches  

In the context of CEST, the most recent DL-based denoiser applied to individual Z-

spectra is that of Kurmi et al.,28 who developed a DCAE and incorporated a 

deterministic Kullback-Leibler (KL) divergence in a curriculum learning-based 

approach. In their work, the authors built a symmetric AE with a four-block 

encoder, and thus a four-block mirrored decoder (Figure 6.1A). Each block of the 

encoder constituted a 1D convolutional layer followed by the exponential linear unit 

(ELU) activation function and a subsequent max-pooling layer. The number of 

filters used at the convolutional layers was doubled block-wise starting from 32 and 

ending at 256 filters, with the kernel size for all convolutions set to 3. The output of 

the encoder was flattened and followed by a dense layer with 32 nodes making up 

the latent space of the architecture. To mirror the encoder, the decoder started with 

a dense layer whose size was equal to that of the flattened layer, which was then 

followed by the four decoder blocks. Each decoder block contained a transposed 

convolutional layer with a 𝑠𝑡𝑟𝑖𝑑𝑒 = 2 serving to upsample the input, followed by a 

convolutional layer. The number of filters per convolutional layer mirrored the 

block-wise progression of the encoder, i.e., starting with 256 and ending with 32 

filters and the kernel size was consistently set to 3. A final convolutional layer with 

one filter followed, and a subsequent cropping layer was applied to regain the input 

shape. It should be noted that each layer in the decoder was followed by a linear 

activation function. 

The curriculum learning-based approach (Figure 6.1B) that Kurmi et al. used 

comprised two steps. In the first step, a baseline model was trained on noisy z-

spectra with varying noise levels (1 to 5 %) and two different saturation powers. In 
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the second step, two models were fine-tuned starting from the baseline, and they 

were focused on one saturation power each. At this training step, a deterministic 

KL-divergence was applied between the output of the fine-tuned model and the 

baseline to restrict tangible divergence and thus ensure stability. Furthermore, 

context learning was employed for the inference. This signifies that, for each input 

to be inferred, a temporary model was further fine-tuned by applying a deterministic 

KL-divergence between the model output and a PCA denoised version. Again, this 

was done to restrict the model output from deviating tangibly and to ensure stability. 

 

 
 

Figure 6.1. Overview of the denoiser by Kurmi et al. (A) The architecture, (B) the training process setup, and 

(C) the structure of the context learning inference. The figure was adapted from the original work28 with permission 

from the publisher. 
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6.2 Constrained loss autoencoder residual denoiser 

In the work described in Paper IV, a novel DL-based denoiser was proposed with 

an asymmetric CAE architecture including several innovative key components 

(Figure 6.2), two of which are particularly noteworthy. The first is a three-way 

encoder wherein the first and second paths target short- and long-range 

dependencies, respectively, while the third path targets noise explicitly. The second 

is a subtractive layer that aims at removing the mapped latent noise from the latent 

representation of the noisy input. Additionally, a custom loss was utilized 

combining the reconstruction loss of the full spectrum ℒ𝐹𝑢𝑙𝑙 with the reconstruction 

losses constrained to spectral regions of interest (ℒ𝑟𝑁𝑂𝐸, ℒ𝑔𝑢𝑎𝑛𝑖𝑑𝑖𝑛𝑖𝑢𝑚 and 

ℒ𝑎𝑚𝑖𝑑𝑒𝑠), with a weighting factor, 𝜁, defined by: 

 ℒ𝐶𝑜𝑚𝑏 = ℒ𝐹𝑢𝑙𝑙 + 𝜁(ℒ𝑟𝑁𝑂𝐸 + ℒ𝑔𝑢𝑎𝑛 + ℒ𝑎𝑚𝑖𝑑𝑒𝑠) . (6.8) 

Consequently, the denoiser was named the constrained loss autoencoder residual 

denoiser (CLAERD). Each of the encoder’s paths contains four blocks wherein the 

fourth block of the first and second paths was shared since the outputs of their 

respective third blocks were merged via a concatenation layer. Furthermore, each 

block of the encoder’s paths constituted a convolutional layer and a subsequent max-

pooling layer according to the common hierarchical CAE feature extraction 

strategy. This reduces the spatial dimension (with pooling) while deepening the 

feature representation with a block-wise increase of the filters, in this case, 

according to 16 →32→64→256 filters. All convolutional layers used a kernel size 

equal to 3, except the convolutions of the first three blocks of the second path (long-

range dependencies path), which used a kernel size equal to 9. Moreover, the output 

from the merged feature maps of noisy signals were given as input to the subtraction 

layer together with the feature maps from the noise path. A one-path decoder 

followed, constituting an upsampling followed by two convolutional layers with 256 

and 16 filters, respectively and a kernel size equal to 3 for both. Finally, a flattening 

layer was applied and connected to a dense layer with the number of nodes set equal 

to the input size to obtain the reconstructed denoised spectra.  

The activation functions used after the convolutions were carefully chosen to 

achieve the intended mechanism for each architectural component. Firstly, the 

activation function after each convolution in the first and second paths was the 

leaky-rectified linear unit (leaky-ReLu), except for the final block, which used the 

hyperbolic tangent (tanh) function. The leaky-ReLu was used to extract both signal 

and noise features since noise might have subtle negative components that will be 

preserved with the Leaky-ReLu as opposed to the standard ReLu. This is because 

the leaky-ReLu permits a small nonzero gradient for negative values while 

maintaining the feature-enhancing behavior of ReLu through linear growth of 
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positive inputs, an important property for the amplification of prominent signal 

features. The activation functions in the noise path were carefully chosen to refine 

the noise representation. The leaky-ReLu was used for the first block to preserve 

small noise variations. This was followed by the ELU in the second block to enhance 

feature expression with smoother transitions by reducing bias shift, while still 

preserving negative noise components. The swish activation function, given as; 𝑥 ∙
1/(1 + exp(−𝑥)), was applied to the output of Block 3 due to its smooth non-

monotonic nature, which is advantageous for capturing complex noise structures. 

The tanh was used for the final block of both the noisy signal and noise paths to 

align their outputs by centering it around zero before the subtraction between the 

two. It should be noted that all layers of the decoder used a linear activation function 

to preserve the obtained distribution of the denoised latent representation.  

 

 
 

Figure 6.2 The architecture of CLAERD. The input is passed to a three-way encoder (the leftmost block): the 

first path (bottom left) focuses on short-range dependencies, the second (middle left) on long-range dependencies, 
and the third (top left) on noise features. The “residual subtraction” layer (yellow) preforms the denoising in latent 

space and the following decoder reconstructs the denoised spectra. The Figure is adapted from Paper IV. 

6.2.1 Latent space analysis 

When subtracting two biased magnitude signals (Rician distributions), the bias can 

be cancelled leaving a difference which is well explained by a Gaussian-like 

distribution.47 This was empirically confirmed in Paper IV, as can be seen in Figure 

6.3A, where a Rician governed noise-free signal was subtracted from the 

corresponding noisy signal spectra. The theoretical expectation is that the latent 

mapping of noise should have a Gaussian-like distribution, suggesting that 

successful noise mapping should be indicated by a Gaussian-like distribution in the 

final feature maps of the noise path. Furthermore, the noise maps of the blocks in 

the noise path should successively move towards a Gaussian-like distribution. This 

was indeed verified in the results presented in Paper IV, wherein a nonsignificant 
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D'Agostino's K2 test (i.e., for a Gaussian-like distribution) was only the case for the 

final block of the noise path as shown in Figure 6.3B-E. 

 

 
 

Figure 6.3. Histogram analysis of latent space. (A) The histogram and a corresponding Gaussian fit for the 

difference between two biased distributions (noisy signal and noise-free signal). The histograms of the feature maps 

for the noise and a corresponding attempted Gaussian fit for the maps from (B) Block 1, (C) Block 2, (D) Block 3, 

and (E) Block 4. The figure is adapted from Paper IV. 

Furthermore, Figure 6.4 shows t-distributed stochastic neighbor embedding maps 

which project the high-dimensional latent spaces of CLEARD for noisy signal and 

noise, respectively, onto two dimensions. The plots revealed one major cluster for 

the latent space of noise while two major clusters could be observed for the noisy 

signal latent space. This is likely to be explained as noise and signal components 

compared to only noise components in the noise latent space projection (Figure 

6.4B). Furthermore, the fine-grained clusters of the noisy signal projection were 

better delineated compared to the projection of only noise. This is again indicative 

of successful mapping since the signal components are many, e.g., from different 

peaks of the Z-spectra, while the variation in noise was primarily based on noise 

levels. 
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Figure 6.4 t-distributed stochastic neighbor embedding maps of latent dimensions. Maps originating from (A) 
the latent representation of the noisy signal and (B) from the latent representation of noise. Notice the two major 

clusters for the noisy signal representation. Furthermore, one can observe the stronger delineation of the fine-

structured clusters for the noisy signal representation. The Figure is adapted from Paper IV. 

6.3 Comparison of denoising methods  

In terms of quantitative denoising performance, it was shown in Paper IV that 

CLAERD outperformed both PCA and DCAE with a statistically significant 

difference. The analysis included standard metrics such as MAE, the peak signal-

to-noise ratio, structural similarity index measure, and coefficient of determination 

(𝑅2), all of 𝑤hich serve to reflect general denoising performance. Moreover, the 

quantitative analysis described in Paper IV also included metrics focusing on the 

capability of recovering Z-spectral peaks. This particularly includes the peak 

recovery score (PRS), which is defined as:  

 𝑃𝑅𝑆 = 1 −
|𝐴𝑈𝐶𝐺𝑇−𝐴𝑈𝐶𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑|

𝐴𝑈𝐶𝐺𝑇
 , (6.9) 

where 𝐴𝑈𝐶𝑔𝑡 denotes the area under the curve for the GT spectra, and 𝐴𝑈𝐶𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 

is the corresponding AUC for the denoised spectra. Additionally, ROC analysis was 

included in the comparison with emphasis on sensitivity and specificity. The 

analysis revealed that CLAERD provided a statistically significant improvement for 

all peaks considered in terms of PRS. As for the ROC analysis, an elevated AUC 

for the ROC curve was observed, and the close-to-perfect sensitivity was similar for 
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both CLAERD and DCAE, whereas the specificity of CLAERD was elevated for 

all peaks. A final quantitative metric called the total variation (TV) was used to 

measure the smoothness of the denoised spectra, with lower values implying 

increased smoothness. An average TV score of approximately 1.80 was observed 

for all denoisers, which was lower than the value of the noisy spectra, equal to 1.87, 

as should be expected. Despite the comparable TV scores of the three denoisers, 

interestingly, DCAE showed a trend of marginally lower TV scores. However, the 

quantitative results unambiguously indicated an enhancement by CLAERD, and Z-

spectra contain contributions from various components, which should thus 

inherently increase the TV value even in a noise-free case. Consequently, the trend 

of lower values by DCAE could potentially be explained by over-smoothing.   

It should be noted that PCA-based denoising remains simple and fast but is limited 

by its strong dependency on the choice of PCs for the denoising performance. This 

can be remedied with cross-validation to find the optimal number of PCs to include. 

The main limitation remains, however, since the linearity of the transformation 

makes the distinction between noise and fine structure components in the low 

variance PCs close to impossible. On the other hand, DCAE leverages enhanced 

DL-based denoising by using the innovative technique of combining a curriculum-

based training strategy with context learning for inference. Both are guided by the 

deterministic KL-divergence, which was constrained by the PCA reference in the 

inference setting. Although this increases the approach’s stability, the PCA’s 

limitations (particularly the inability to separate noise from fine structured details) 

will be partially inherited. 

This, in part, explains the elevated performance by CLAERD compared to DCAE 

in terms of the peak recovery metrics. The specificity was shown to be significantly 

lower using PCA compared to both CLAERD and DCAE. Even if DCAE produced 

slightly higher specificity values compared to PCA, the approach lagged behind 

CLAERD due to its KL-based constraint on PCA during inference. It should be 

noted that an increase in the specificity of detected Z-spectral peaks can add great 

value. This means that in certain applications, such as APT-weighted imaging for 

detecting ischemic strokes, tumorous regions, or neurodegenerative diseases where 

subtle biochemical changes carry high clinical importance, the ability to distinguish 

true spectral signals from noise ensures accurate diagnosis, treatment planning, and 

monitoring.  
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7. Conclusions, reflections, and 

future perspectives 

7.1 Conclusions from the completed work 

Despite the many promising applications that take advantage of MT mechanisms, 

several limitations still need to be overcome to unlock the full potential of its 

imaging techniques. The work of this thesis revolved around finding ML-based 

solutions to some of the current limitations affecting MT imaging techniques. As a 

result, two Z-spectral fitting approaches and one denoising approach were 

developed and thoroughly evaluated. It was previously explained in Chapter 5.4 that 

these two fitting approaches differ in algorithmic design. Based on the results 

presented in Papers I and II, however, it can be concluded that by replacing the 

conventional backbone of spectral fitting (the LS algorithm) with any of the ML 

solutions, the sought-after leap towards clinically feasible fitting times can be 

achieved. Furthermore, based on the analysis described in Chapter 5.4, it can be 

concluded that the choice between the two ML fitting solutions should be based on 

their intended use. If robustness is essential, such as when the targeted data reflect 

high variance or uncertainty, the higher complexity of DNNs should be prioritized. 

If the aim is flexibility, such as being able to redesign the acquisition protocols or 

even change the spectral model, the GBDT solution should be leveraged. Moreover, 

robustness refers to the trained model’s ability to become insensitive to common 

and moderate variations in the data such as noise fluctuations and other 

perturbations (as explained in Chapter 5.4). Since the ML-fitting approaches are not 

actual denoisers, more extensive denoising requires a dedicated model such as the 

one proposed in Paper IV. It is concluded that this denoising model can recover 

overshadowed Z-spectral components due to its intricate algorithmic design 

targeting noise in latent space.     

On that note, organizing the processing and analytical methods in a pipeline would 

greatly benefit standardization. Several pipelines have, of course, already been 

created for CEST data, and to this end, the developed solutions described in this 

thesis could be integrated in a straightforward manner. In the early steps of 

analyzing and processing CEST data, denoising might be necessary, and CLAERD 

can be integrated here. A subsequent step in the pipeline is the B0-field correction, 

commonly performed through fitting DS spectra, and sLoFNet can be used for this. 
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Furthermore, implementing GBDT as a replacement for the LS-backbone for 

subsequent fitting steps is also straightforward. These additions would be a great 

step towards increasing efficiency and standardization when analyzing and 

processing CEST data.  

7.2 A critical approach to a brilliant tool 

When using AI-based solutions, a good awareness of the tool used is essential since 

many risks arise along with the great opportunities. An understanding of the 

application of a developed model and its limitations is thus of great importance. 

With sLoFNet, for example, the intended use is to fit DS Z-spectra, which adhere to 

a Lorentzian shape while providing accelerated fitting times and robustness against 

noise and sampling density. However, knowing this tool’s limitations means 

understanding that this robustness is not infinite. Reducing the sampling density 

below a certain point increases the fitting error tangibly, as does having noise levels 

beyond the levels reflected in the invariance of the model (since the model is not an 

actual denoiser). Furthermore, a non-Lorentzian spectrum would, of course, also 

result in a very poor fitting.    

Lack of awareness of these two aspects is a topic that many AI critics have used as 

leverage to pinpoint the risks of AI. In the work by Antun et al.,190 for example, it 

was shown that DL-models trained to reconstruct MRI brain images from 

undersampled k-space data resulted in major artifacts when introducing 

perturbations in the form of either changes in k-space or in the image domain (heart-

shapes were drawn into the brain images to reflect unfamiliar structures in the brain). 

However, it was not clarified in that work that the models used were not trained on 

these particular variations. Therefore, the poor performance should not be surprising 

when the training data did not include a remotely close reflection of the variations. 

This is because an AI model’s generalizability and invariance reflect what has been 

included in the training data. A model that specializes in denoising brain MR 

images, for example, will have a problem denoising knee MR images, regardless of 

how well it performs on brains if invariance to anatomical structure had not been 

included in the training. As an analogy, a skilled car mechanic would have problems 

fixing a microwave oven unless he had explicitly been trained to do so. The main 

difference is that an AI model will always give an output when given an input, which 

necessitates a high degree awareness.  

The black-box nature of many AI models makes it even more important to 

understand their intended applications and limitations. While some insight into their 

mechanisms is possible by applying statistical and projection-based analyses on the 

internal representations (as done with CLAERD), the interpretability reduces with 

the increased complexity of the models.  Thus, interpretability represents another 
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argument for using a lower complexity algorithm whenever possible. For the GBDT 

used in the Paper II project, for example, interpretability is more straightforward 

since the decision making can be evaluated by analyzing the resulting trees after 

training, which is not as easy to do with the DNNs used for sLoFNet. 

7.3 Future work 

7.3.1 Asymmetrical profiles for Z-spectral components 

The topic of using various spectral models for fitting Z-spectral components was 

discussed in Chapter 4, where it was mentioned that while BMC-based spectral 

modeling takes into consideration some pool interactions, it is restricted by the 

computational complexity tied to its closed form numerical solutions and the 

assumptions made about these. This was further explained to be the reason for the 

popularity of the multi-pool Lorentzian approach under acquisition conditions with 

short durations and low power saturation pulses. In Paper II, it was empirically 

shown in this regard that there are spectral models such as the Voigt profile which, 

due to its increased degrees of freedom, manages to model the Z-spectral 

components with significantly improved accuracy, albeit with increased time 

complexity. By replacing the LS-based backbone of fitting with the GBDT solution, 

however, clinical feasibility could be possible not only for the Lorentzian but also 

for any spectral model, since the time complexity depends on the algorithmic 

complexity instead of the number of parameters. This subsequently opens a new 

realm of opportunities for exploring several other spectral models for fitting 

experimental data, particularly asymmetrical ones. It is on this note that a new 

interesting research question emerges. 

Some Z-spectral components have asymmetric peak shapes due partly to 

asymmetric MTC contributions and the fast-exchanging components causing 

coalescence with other peaks in their vicinity (such as the DS peak). Two such 

examples are the myoinositol peak (approximately 0.9 ppm) and the rNOE peak of 

the aliphatic groups (approximately -3.6 ppm).1 Both the MTC contribution and the 

saturation of the mobile compounds’ protons depend on the saturation pulse shape, 

composition, and timing. As such, the shape of the signal is expected to vary 

depending on the saturation power (and duration). The examples in Figure 7.2 show 

the pool for the aliphatic groups (rNOE peak) from an in vivo mouse brain acquired 

at a field strength of 11.7 T and a saturation pulse power of 0.7 μT, fitted using the 

conventional Lorentzian in Figure 7.2A and using an asymmetrical spectral model 

in Figure 7.2B (the split Lorentzian in this case, although a few other interesting 

candidates such as the skewed Voigt or Fano resonance could also be explored). It 

can be observed that the fitted component has an asymmetrical peak, as further 
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verified in Table 7.1, which presents a nonzero value for the asymmetry parameter 

of the split-Lorentzian model. Table 7.1 also includes the fitting statistics, indicating 

a significant improvement both in terms of 𝑅2 and 𝜒2 metrics for the asymmetric 

model. The asymmetry parameter can potentially provide an additional, previously 

unexplored, quantity for Z-spectral component analysis since it could be reflective 

of the MTC contribution under carefully designed experimental conditions. One 

such study design could address the change of the asymmetry parameter as a 

function of saturation pulse power. 

 

 
 

Figure 7.2. Visual comparison of symmetric to asymmetric Z-spectral fitting. Comparing (A) the conventional Lorentzian 
to (B) an asymmetrical spectral model, namely the split-Lorentzian for fitting the peak for the aliphatic groups at 

approximately -3.6 ppm. Note that the remaining components are fitted with a conventional Lorentzian in both the 

top and bottom plot. 
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Table 7.1 Quantitative comparison of symmetric to asymmetric Z-spectral fitting. The fitting statistics of the 

Lorentzian compared to the split Lorentzian on the same in vivo spectrum as shown in Figure 1, as well as the value 

for the asymmetry parameter. 

Metric Lorentzian Split Lorentzian 

𝝌𝟐 0.00441 0.00232 

reduced 𝝌𝟐 4.65e-05 2.47e-05 

𝑹𝟐 0.9984 0.9992 

Asymmetry [ppm] 0.0 0.70 

7.3.2 AE-based overcomplete transformation 

In data science, various transformations are commonly applied to increase the class-

dependent features and thus the interpretability of the data being analyzed. 

Transformation to higher dimensions means adding features that could provide 

meaningful class-characteristic features, subsequently streamlining the distinction 

between classes (see general example in Figure 7.3). Note that classes in the data 

could refer to signal components, noise, etc. 

 

 
 

Figure 7.3. Transforming data to higher dimensions. (A) A plot including data from three different classes. Note 

that the classes are almost indistinguishable based on the plotted features (x and y axes). (B) The same data has 
been transformed, resulting in the addition of a new feature (dimension), and the distinction is subsequently 

straightforward. 

It should be noted that adding features does not always provide straightforward 

distinctions between the classes, especially when analyzed with linear methods; 

instead, it could result in what is referred to as overcomplete representations. 

Therefore, it should be mentioned that the opposite is also performed, i.e., 

dimensionality reduction, wherein the overcomplete representation of data is 

reduced to get a more focused representation of the most significant features. Such 
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a transformation can be performed via PCA191 as was explained in Chapter 6. In the 

realms of AI, not surprisingly, dimensionality reduction approaches have also been 

developed. In particular, AE networks have been applied diligently to transform data 

and map the most important features in latent space by using lower dimensions in 

the hidden layers compared to the input layer. The potential of AE to transform data 

nonlinearly also provides the potential of finding otherwise non-detectable 

dependencies when relying on linear transformations such as PCA. The common 

view is that the nonlinear transformations of any DNN are, in fact, the main 

characteristics that allow patterns to be found in the data that otherwise would not 

be possible to find with simple solutions; however, this is done in a black-box 

fashion due to the high complexity of DNNs (which instead rely on learning from 

data).  

 

Instead of using AEs to reduce dimensionality, future work in this regard could 

perform transformations to a higher dimension (to increase the number of features 

as previously explained) by designing AEs with larger-size hidden layers than the 

size of the input data. To produce meaningful features, however, the AE must be 

presented with auxiliary input wherein potential, albeit unknown, dependencies 

exist (e.g., the Z-spectrum, B0- and B1-maps, a noise-scan or baseline-scan for 

dynamic images etc.). The transformation to a higher dimension with the AE would 

allow these dependencies to be found and connected in new features, which can 

subsequently be used for easier class distinction. Such class distinctions could, for 

example, be between signal and noise. Hence, the proposed idea of an AE-based 

overcomplete transform (AEbOT) can be integrated into the developed DL-based 

denoiser described in Paper IV, thus allowing for denoising with even higher 

fidelity. Another example is to utilize the AEbOT to target and extract specific Z-

spectral components. Yet another application could be to make the AEbOT an 

integral part of an NN with recurrent modules (e.g., long-short term memory 

modules targeting the sequential nature of dynamic data) or transformer networks 

(targeting long range dependencies) in order to distinguish motion-induced artifacts 

from the actual signal. The handcrafted AE-based transformation to an 

“overcomplete representation” effectively means utilizing the black-box nature 

under controlled conditions, because implicit dependencies will form the new 

features. 
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Magnetization transfer imaging techniques, such as chemical ex-

change saturation transfer (CEST) have shown promise in both 

clinical and preclinical applications. The available methods for 

processing and analyzing CEST data, however, still carry many 

limitations. This thesis provides a solid background to 

magnetization transfer imaging and further introduces, for 

processing, a machine learning-based denoiser and, for analysis, 

two machine learning-based solutions for spectral fitting of CEST 

data. The proposed solutions tackle some of the current 

limitations in their respective categories. By solving these 

limitations, the proposed methods provide beneficial implications 

on the clinical feasibility of the magnetization transfer techniques. 
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