
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Towards self-reliant robots

skill learning, failure recovery, and real-time adaptation: integrating behavior trees,
reinforcement learning, and vision-language models for robust robotic autonomy
Ahmad, Faseeh

2025

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Ahmad, F. (2025). Towards self-reliant robots: skill learning, failure recovery, and real-time adaptation:
integrating behavior trees, reinforcement learning, and vision-language models for robust robotic autonomy.
Computer Science, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/7fcb2da0-0594-41a4-8050-e9367d0c408b

Towards Self-Reliant Robots: Skill Learning, Failure Recovery, and
Real-Time Adaptation

Towards Self-Reliant Robots:
Skill Learning, Failure Recovery,

and Real-Time Adaptation
Integrating Behavior Trees, Reinforcement
Learning, and Vision-Language Models for

Robust Robotic Autonomy

by Faseeh Ahmad

Thesis for the degree of Computer Science
Thesis advisors: Prof. Dr. Volker Krueger, Prof. Dr. Jacek Malec

Faculty opponent: Prof. Dr. Lazaros Nalpantidis

To be presented, with the permission of the Faculty of Engineering (LTH) of Lund University, for public
criticism in the E:1406 at the Department of Computer Science on Friday, the 10th of October 2025 at 13:00.

D
O
K
U
M
EN

TD
A
TA

B
LA

D
en

lS
IS
61

41
21

Organization

LUND UNIVERSITY

Department of Computer Science
Box 118
SE–221 00 LUND
Sweden

Author(s)

Faseeh Ahmad

Document name

DOCTORAL DISSERTATION
Date of disputation

10-10-2025
Sponsoring organizationWallenberg AI, Autonomous
Systems and Software Program (WASP)

Title and subtitle

Towards Self-Reliant Robots: Skill Learning, Failure Recovery, and Real-Time Adaptation: Integrating Behavior
Trees, Reinforcement Learning, and Vision-Language Models for Robust Robotic Autonomy

Abstract

Robots operating in real-world settings must manage task variability, environmental uncertainty, and failures dur-
ing execution. This thesis presents a unified framework for building self-reliant robotic systems by integrating
symbolic planning, reinforcement learning, behavior trees (BTs), and vision-language models (VLMs).

At the core of the approach is an interpretable policy representation based on behavior trees and motion gen-
erators (BTMGs), supporting both manual design and automated parameter tuning. Multi-objective Bayesian
optimization enables learning skill parameters that balance performance metrics such as safety, speed, and task
success. Policies are trained in simulation and successfully transferred to real robots for contact-rich manipulation
tasks.

To support generalization, the framework models task variations using gaussian processes, enabling interpolation
of BTMG parameters across unseen scenarios. This allows adaptive behavior without retraining for each new task
instance.

Failure recovery is addressed through a hierarchical scheme. BTs are extended with a reactive planner that
dynamically updates execution policies based on runtime observations. Vision-language models assist in detecting
and identifying failures, and in generating symbolic corrections when tasks are predicted to fail.

The thesis concludes with a discussion of future work, including (1) using vision-language-action (VLA) models
or diffusion policies to generate new skills on the fly from multimodal inputs, and (2) extending the reactive
planner with proactive failure prediction to anticipate and prevent execution errors before they occur. Together,
these directions aim to advance robotic systems that are more robust, adaptable, and autonomous.

Key words

Autonomous Robotics, Behavior Trees, Reinforcement Learning, Vision-Language Models, Failure Recovery

Classification system and/or index terms (if any)

Supplementary bibliographical information Language

English

ISSN and key title

1404-1219
ISBN

978-91-8104-681-6 (print)
978-91-8104-682-3 (pdf)

Recipient’s notes Number of pages

258
Price

Security classification

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to
all reference sources the permission to publish and disseminate the abstract of the above-mentioned dissertation.

Signature Date 10.09.2025

Towards Self-Reliant Robots:
Skill Learning, Failure Recovery,

and Real-Time Adaptation
Integrating Behavior Trees, Reinforcement
Learning, and Vision-Language Models for

Robust Robotic Autonomy

by Faseeh Ahmad

Thesis for the degree of Computer Science
Thesis advisors: Prof. Dr. Volker Krueger, Prof. Dr. Jacek Malec

Faculty opponent: Prof. Dr. Lazaros Nalpantidis

To be presented, with the permission of the Faculty of Engineering (LTH) of Lund University, for public
criticism in the E:1406 at the Department of Computer Science on Friday, the 10th of October 2025 at 13:00.

Funding information: This work was paritally supported by the Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by Knut and Alice Wallengberg Foundation.

© Faseeh Ahmad 2025

Faculty of Engineering (LTH), Department of Computer Science

ISBN: 978-91-8104-681-6 (print)
ISBN: 978-91-8104-682-3 (pdf)
ISSN: 1404-1219
Dissertation: 83, 2025
LU-CS-DISS: 2025-05

Printed in Sweden by Media-Tryck, Lund University, Lund 2025

Dedicated to my family

Contents

List of publications . vi
Acknowledgements . ix
Popular summary in English . xi
Populärvetenskaplig sammanfattning på svenska xiii

Towards Self-Reliant Robots: Skill Learning, Failure Recovery, and Real-Time Ad-
aptation 1
1 Introduction . 1

1.1 Overview of Aims and Research Questions 3
1.2 Thesis Outline . 6

Background and Related Work 7
2 Skill Representation and Execution Frameworks 8

2.1 Behavior Trees . 8
2.2 Reactive Planning for BT Generation and Extension 11
2.3 Motion Generators . 14
2.4 BTMG Framework: Integrating Behavior Trees with Motion Gen-

erators . 17
2.5 Symbolic Planning and Skill-Based Task Execution 18

3 Learning and Adaptation for Robotics 21
3.1 Learning Policies in Robotics 21
3.2 Bayesian Optimization for Efficient Policy Search 24
3.3 Multi-objective Optimization and Reward Design 25
3.4 Gaussian Processes for Policy Generalization and Adaptation . . . 28

4 Failure Recovery in Robotics . 30
4.1 Failure Models and Detection 30
4.2 Failure Recovery Strategies: Reactive vs. Proactive 32
4.3 Recovery-Behavior Synthesis 33
4.4 Runtime Monitoring and Adaptation 35

5 Vision-Language Models for Robot Reasoning 37
5.1 Technical Foundations of Vision-Language Models (VLMs) . . . 37
5.2 Applications in Robotics . 38
5.3 Scene Understanding and Goal Inference 40

5.4 Failure Detection and Explanation with VLMs 40

Part I – Adaptive Skill Learning for Robot Autonomy 43
6 Structuring Robot Policies for Modularity, Interpretability, and Data-Efficient

Learning . 43
6.1 Motivation and Positioning within Existing Work 43
6.2 Structuring Policies with BTMG and Parameter Optimization . . 45
6.3 Method Overview . 46
6.4 Experimental Evaluation . 48
6.5 Discussion . 51

7 Generalizing Modular Policies . 52
7.1 Motivation and Research Framing 52
7.2 Approach: Gaussian Process-Based Parameter Generalization . . . 53
7.3 Experimental Setup . 54
7.4 Discussion . 55

8 Real-Time Prediction of Policy Parameters 57
8.1 Motivation and Research Framing 57
8.2 Approach: Surrogate Inference for Real-Time Parameter Prediction 57
8.3 Experimental Setup and Evaluation 60
8.4 Discussion . 61

Part II – Failure Detection, Explanation, and Recovery 65
9 Structuring Modular and Adaptive Recovery Behaviors 65

9.1 Motivation and Positioning within Existing Work 65
9.2 Modeling Recovery in the BTMG Framework 66
9.3 Failure Cases and Recovery Behavior Design 68
9.4 Execution Scenarios and Learning Setup 69
9.5 Discussion . 71

10 Pre-Execution Failure Handling with Vision–Language Models 72
10.1 Motivation and Positioning within Existing Work 72
10.2 Approach Overview . 74
10.3 Illustrative Scenarios . 76
10.4 Evaluation and Findings . 78
10.5 Discussion . 79

11 Real-Time Monitoring and Reactive Recovery 80
11.1 Motivation and Positioning within Existing Work 80
11.2 Approach Overview . 81
11.3 Visual Pipeline and Scene Graph Maintenance 84
11.4 Demonstrated Scenarios . 85
11.5 Discussion . 88

Conclusions 91

ii

Scientific publications 109
Contribution Statements . 109

1 Skill-based Multi-objective Reinforcement Learning of Industrial Robot Tasks
with Planning and Knowledge Integration 115
1 Abstract . 115
2 Introduction . 116
3 Related Work . 118

3.1 Skill-based Systems . 118
3.2 Policy Representation and Learning 118
3.3 Planning and Learning . 119

4 Approach . 119
4.1 Behavior Trees . 120
4.2 Planning and Knowledge Integration 121
4.3 Policy Optimization . 122
4.4 Bayesian Optimization . 123
4.5 Multi-objective Optimization 124
4.6 Motion Generator and Robot Control 124

5 Experiments . 125
5.1 Reward Functions . 125
5.2 Push Task . 126
5.3 Peg-in-Hole Task . 129

6 Conclusion . 130
References . 131

2 Generalizing Behavior Trees and Motion-Generator (BTMG) Policy Repres-
entation for Robotic Tasks over Scenario Parameters 139
1 Abstract . 139
2 Introduction . 139
3 Formalization . 141
4 Mapping . 141
5 Experiments . 142
6 Future Work . 142
References . 143

3 Learning to Adapt the Parameters of Behavior Trees and Motion Generators
(BTMGs) to Task Variations 147
1 Abstract . 147
2 Introduction . 148
3 Related Work . 150
4 BTMG and Task Variations . 151
5 Approach . 152

iii

5.1 Training Phase . 153
5.2 Query Phase . 154

6 Experiments . 155
6.1 Obstacle Avoidance Task . 157
6.2 Push task . 160

7 Conclusion and Future Work . 164
References . 165

4 Adaptable Recovery Behaviors in Robotics: A Behavior Trees and Motion Gen-
erators (BTMG) Approach for Failure Management 171
1 Abstract . 171
2 Introduction . 172
3 Related Work . 174
4 Background . 175

4.1 Behavior Trees . 175
4.2 Behavior Trees and Motion Generators (BTMG) 176
4.3 Learning parameters of BTMG 178

5 Approach . 178
5.1 Assumptions . 178
5.2 Recovery Behaviors . 179
5.3 Planner . 180
5.4 Scenarios . 181

6 Experimental Setup . 183
6.1 Peg-in-a-hole Task . 183
6.2 Results and Discussion . 184

7 Conclusion and Future Work . 187
References . 188

5 Addressing Failures in Robotics using Vision-Based Language Models (VLMs)
and Behavior Trees (BT) 195
1 Abstract . 195
2 Introduction . 195
3 Background . 196

3.1 Behavior Trees (BT) . 197
3.2 Reactive Planner . 197
3.3 Vision Language Models (VLM) in Robotics 197

4 Approach . 197
4.1 Failure Detection and Idenitification 198
4.2 Monitoring using VLM . 199
4.3 Condition and Skill Template Generation 199

5 Experiments . 201
6 Evaluation Metrics and Results . 201

iv

7 Conclusion and Future Work . 202
References . 202

6 AUnified Framework for Real-Time FailureHandling inRoboticsUsingVision-
Language Models, Reactive Planner and Behavior Trees 215
1 Abstract . 215
2 Introduction . 216
3 Related Work . 218

3.1 Traditional Failure Recovery Strategies 218
3.2 Learning-Based Failure Recovery 219
3.3 Failure Recovery with Large Language Models (LLMs) and Vision-

Language Models (VLMs) . 219
4 Background . 220

4.1 Behavior Trees . 220
4.2 Reactive Planner . 220
4.3 Vision-Language Models . 221

5 Approach . 221
5.1 Pre-Execution Failure Verification 223
5.2 Real-Time Failure Monitoring 225
5.3 Skill Addition . 226
5.4 Scene Graph Representation . 228
5.5 Execution History . 229

6 Experiments and Results . 229
6.1 Simulation Experiments . 230
6.2 Real-World Experiments . 230

7 Conclusion and Future Work . 233
8 Acknowledgements . 233
References . 234

v

List of publications

This thesis is based on the following publications:

I Skill-based Multi-objective Reinforcement Learning of Industrial Robot
Tasks with Planning and Knowledge Integration
M. Mayr, F. Ahmad, K. Chatzilygeroudis, L. Nardi, V. Krueger
IEEE International Conference on Robotics and Biomimetics (ROBIO),
Jinghong, China, 2022, pp. 1995-2002, doi: 10.1109/ROBIO55434.2022.
10011996

II Generalizing Behavior Trees and Motion-Generator (BTMG) Policy Rep-
resentation for Robotic Tasks Over Scenario Parameters
F. Ahmad, M. Mayr, E.A. Topp, J. Malec, V. Krueger
IEEE International Joint Conferences on Artificial Intelligence (IJCAI), Vi-
enna, Austria, 2022, Workshop on Bridging the Gap Between AI Planning
and Reinforcement Learning

III Learning to Adapt the Parameters of Behavior Trees and Motion Generators
(BTMGs) to Task Variations
F. Ahmad, M. Mayr, V. Krueger
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Detroit, MI, USA, 2023, pp. 10133-10140, doi: 10.1109/
IROS55552.2023.10341636

IV Adaptable Recovery Behaviors in Robotics: A Behavior Trees and Motion
Generators (BTMG) Approach for Failure Management
F. Ahmad, M. Mayr, S. Suresh-Fazeela, V. Krueger
IEEE 20th International Conference on Automation Science and Engineering
(CASE), Bari, Italy, 2024, pp. 1815-1822, doi: 10.1109/CASE59546.2024.
10711715

V Addressing Failures in Robotics using Vision-Based Language Models
(VLMs) and Behavior Trees (BT)
F. Ahmad, J. Styrud, V. Krueger
To appear in European Robotics Forum 2025, vol. 36, Springer Proceed-
ings in Advanced Robotics, Springer, 2025, ch. 43, ISBN 978-3-031-89470-1.
arXiv:2411.01568, 2024.

vi

VI A Unified Framework for Real-Time Failure Handling in Robotics Using
Vision-Language Models, Reactive Planner and Behavior Trees
F. Ahmad*, H. Ismail*, J. Styrud, V. Krueger
arXiv:2503.15202, 2025.

All papers are reproduced with permission of their respective publishers.

Publications not included in this thesis:

VII Learning of Parameters in Behavior Trees for Movement Skills

M. Mayr, K. Chatzilygeroudis, F. Ahmad, L. Nardi, V. Krueger
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Prague, Czech Republic, 2021, pp. 7572-7579, doi: 10.1109/
IROS51168.2021.9636292

VIII Combining Planning, Reasoning and Reinforcement Learning to solve In-
dustrial Robot Tasks
M. Mayr, F. Ahmad, K. Chatzilygeroudis, L. Nardi, V. Krueger
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Kyoto, Japan, 2022, Workshop on Trend and Advances in Machine
Learning and Automated Reasoning for Intelligent Robots and Systems

IX Learning Generalized Robotic Skills

F. Ahmad, V. Krueger, E.A. Topp, J. Malec
Swedish AI Society (SAIS) 34th annual Workshop, Stockholm, Sweden, 2022,
track for ongoing Ph.D. projects

X Hybrid planning for challenging construction problems: An Answer Set
Programming approach
F. Ahmad, V. Patoglu, E. Erdem
Artificial Intelligence, vol. 319, p. 103902, 2023. doi: 10.1016/j.artint.
2023.103902

XI Flexible and Adaptive Manufacturing by Complementing Knowledge Rep-
resentation, Reasoning and Planning with Reinforcement Learning
M. Mayr, F. Ahmad, V. Krueger
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Detroit, United States of America, 2023, Workshop on Robotics &
AI in Future Factory

vii

XII Using Knowledge Representation and Task Planning for Robot-agnostic
Skills on the Example of Contact-Rich Wiping Tasks
M. Mayr, F. Ahmad, A. Durr, V. Krueger
IEEE 19th International Conference on Automation Science and Engin-
eering (CASE), Auckland, New Zealand, 2023, pp. 1-7, doi: 10.1109/
CASE56687.2023.10260413

XIII Hybrid planning for challenging construction problems: An Answer Set
Programming approach (Extended Abstract)
F. Ahmad, V. Patoglu, E. Erdem
Extended abstract presented at KR 2025, Recently Published Research (RPR)
Track, Melbourne, Australia, 2025.

viii

Acknowledgements

Finally, it is done. There are many people to thank, and if I have forgotten someone, please
do not take it personally. Writing acknowledgements on the last day before the final print
was probably not the best idea, so I apologize in advance.

I would like to thank the RSS group, especially my supervisor Volker Krueger for his sup-
port and feedback. I am also grateful to my co-supervisors Jacek Malec and Elin Anna Topp
for their guidance. I also thank Maj Stenmark for her collaboration on a paper and for her
valuable feedback. I am also grateful to Görel Hedin, Martin Höst, and Per Runeson for
their valuable insights and encouragement during my PhD journey.

I want to thank my colleagues. I worked the most with Matthias Mayr, who taught me
many things, especially about organizing day-to-day life such as schedules, calendars, and
tasks, which I still do not quite get completely. Thank you for your patience and support.
I also thank Alexander Dürr, who organized one of the best midsummer parties in a rented
summer house, and who also hosted unforgettable BBQs. Thanks to Johan Oxenstierna,
who sat next to me, for his unique perspective on things, his dark humor that took some
time to get used to, and for the unforgettable moment at a party when others were listing
the drinks they had brought and he simply said, with a straight face, “I brought a cup.”
And thanks to Hampus Åström for our conversations about the struggles of PhD life.

I would also like to thank Simon Kristoffersson Lind for motivating me to go to the gym
and for sharing tomato plants, Ayesha Jena for always remembering campus rules and prac-
tical details better than me even though I had been here longer, Esranur Ertürk for making
me laugh with your mispronunciations and for the chocoballs, Hashim Ismail for continu-
ing conversations long after everyone else had moved on, Jonas Conneryd for being the
math person I could rely on, Jialong Li for introducing me to Chinese traditions, and Mar-
cus Klang for teaching me about networking and for helping me find bugs in the robot’s
programming code.

I am also grateful for all the fika and lunchroom conversations with my colleagues, both
within and outside the RSS group, which made daily life so much better. In particular,
thanks to Anton Risberg Alaküla for raising questions like “What is the actual difference
between a burger and a sandwich?”, which I am still not sure about, and also for organiz-
ing another great midsummer party. Thanks to Rikard Olajos and Gustaf Waldemarson
for your witty replies. Thanks also to Robbert Hofman, who visited from Belgium for
research, for the enjoyable moments we shared during his stay and the good times both
inside and outside work. A big thank you to Michael Doggett for supporting me in the
only LundaLoppet I ever ran, 10 km, and, funny enough, I stopped running LundaLoppet
after that one. Thanks also to Gareth Callanan for the training runs for LundaLoppet and
for the unforgettable “ice wine” story, which Alexander and I misheard in a very funny

ix

way, even though it was not meant as a joke. Thanks to Flavius Gruian for your unusual
choice of cups and sharp humor, and to Michail Boulasikis for finding humor in the most
unexpected ways and for your hilarious commentary on box office bombs. And thanks to
Peng Kuang for introducing me to Chinese snacks.

I also want to thank Noric Couderc for witty comments and for letting us stay at your
mom’s place during vacation. I still cannot spell the name of the hometown, but it was
beautiful. Thanks to Idriss Riouak for fika conversations and for teaching me the ABCs of
Italian gestures.

Thanks also to Alexandru Dura and Jesper Öqvist for thought-provoking discussions, in-
cluding those about parenting, to Erik Hellsten, Carl Hvarfner, Leonard Papenmeier, and
Luigi Nardi for valuable discussions on Gaussian processes and Bayesian optimization, to
Christoph Reichenbach for taking the time to discuss safeguards for large language model
outputs, and to Jonathan Styrud for our collaboration on papers and his valuable feedback.

To the administrative staff, thank you. A special thanks to Anders Bruce, I might hold the
record for breaking the most laptops in five years, but you always had a solution. And to
Heidi Adolfsson, thank you for always fixing my expense reports, I still do not know how
to fill them.

Finally, I want to thank my family and friends for their support. A very special thanks
to my parents, even though they are no longer in this world, I feel they are still with me.
Lastly, to my wonderful wife Momina Rizwan and my daughter Rehana, who are the pillars
of my life. And of course, thanks to Allah Almighty, who gave me the strength to stand
again even in the darkest hours.

Best regards,
Faseeh Ahmad

x

Popular summary in English

Collaborative robots are becoming increasingly common in factories, warehouses, and even
homes. While they perform well in controlled environments, they often struggle when
something unexpected happens, such as an object being missing, misaligned, or blocked.
These types of failures are especially common in dynamic environments like small-batch
manufacturing or service robotics. In such situations, most robots simply stop and wait
for human assistance, leading to delays and increased supervision. To be truly useful in
everyday settings, robots must be able to recognize problems, understand what went wrong,
and recover on their own, just as humans do.

This research focuses on developing self-reliant robotic systems capable of detecting, ex-
plaining, and recovering from both expected and unforeseen failures. A central part of
the approach involves the use of modular and interpretable robot behaviors, known as ro-
bot skills. These skills are organized and executed using behavior trees (BTs), which allow
robots to respond to changing conditions in a structured and reactive way. Each skill is
further parameterized using motion generators (MGs), which define how a specific move-
ment should be carried out. To fine-tune these parameters across varying task conditions,
the framework uses reinforcement learning. Specifically, data-efficient black-box optimiz-
ation methods, such as bayesian optimization (BO), are used to optimize skill parameters
with respect to multiple objectives, such as safety, speed, and task success, using simula-
tion and domain randomization. This setup enables robots to flexibly adapt their behavior
without retraining complex models from scratch and provides interpretability and control
that are often missing in deep learning-based approaches.

To handle unexpected situations during task execution, the framework integrates vision-
language models (VLMs), which combine visual understanding with natural language reas-
oning. These models help the robot identify what went wrong and suggest possible cor-
rections in human-readable terms. This combination of planning, learning, and semantic
reasoning ensures that robot behavior remains both adaptable and transparent, in contrast
to traditional black-box systems.

The proposed approaches have been tested in a variety of simulated environments, including
RobotDART, MuJoCo, AI2-THOR, and Isaac Sim, as well as on physical robotic platforms
such as the ABB YuMi, KUKA iiwa, and a mobile manipulator composed of a UR5e arm
mounted on a MiR200 base. Tasks included peg insertion, object pushing, surface wiping,
item sorting, and drawer placement, many of which required physical interaction under
uncertainty.

Looking ahead, the framework is being extended in two directions: proactive failure pre-
diction using runtime monitoring, and on-the-fly skill generation using emerging vision-
language-action (VLA) models or diffusion policies. While these capabilities are still under

xi

development, they represent promising steps toward further reducing human intervention
and increasing robot autonomy in complex, real-world settings. This work contributes
to the development of robotic systems that are not only more adaptable but also more
autonomous and trustworthy.

xii

Populärvetenskaplig sammanfattning på svenska

Samarbetsrobotar blir allt vanligare i fabriker, lager och till och med i hem. Även om de
fungerar bra i kontrollerade miljöer har de ofta svårt att hantera oväntade situationer, till
exempel om ett föremål saknas, är felplacerat eller blockerat. Sådana fel är särskilt vanliga i
dynamiska miljöer som småskalig tillverkning eller servicerobotik. I dessa fall stannar robo-
ten vanligtvis och väntar på mänsklig hjälp, vilket leder till förseningar och ett ökat behov
av övervakning. För att vara verkligt användbara i vardagliga miljöer måste robotar kunna
upptäcka problem, förstå vad som gick fel och återhämta sig själva, precis som människor
gör.

Denna forskning fokuserar på att utveckla självständiga robotsystem som kan upptäcka,
förklara och återhämta sig från både förväntade och oväntade fel. En central del av till-
vägagångssättet är användningen av modulära och begripliga robotbeteenden, så kallade
robotfärdigheter. Dessa organiseras och körs med hjälp av beteendeträd (behavior trees,
BT), vilket gör att roboten kan reagera strukturerat och flexibelt på förändrade förhållan-
den. Varje färdighet finjusteras med hjälp av rörelsegeneratorer (motion generators, MG),
som definierar hur en specifik rörelse ska genomföras. För att anpassa parametrarna till
olika uppgifter används förstärkningsinlärning. Mer specifikt används dataeffektiva opti-
meringsmetoder, såsom bayesiansk optimering, för att hitta parametrar som balanserar mål
som säkerhet, hastighet och uppgiftsframgång. Detta sker i simulerade miljöer med vari-
ation och gör att roboten kan anpassa sitt beteende utan att behöva träna om komplexa
modeller. Samtidigt bibehålls transparens och kontroll, vilket ofta saknas i djupinlärnings-
baserade metoder.

För att hantera oväntade situationer under uppgifternas gång integreras vision-språkmodeller
(vision-language models, VLMs), som kombinerar visuell förståelse med språkligt resone-
mang. Dessa modeller hjälper roboten att identifiera vad som gått fel och föreslå möjliga
korrigeringar i ett format som människor kan förstå. Kombinationen av planering, inlär-
ning och semantisk förståelse ger ett beteende som är både anpassningsbart och transparent,
i kontrast till traditionella svarta lådan-system.

Metoderna har testats i flera simulerade miljöer, inklusive RobotDART, MuJoCo, AI2-
THOR och Isaac Sim, samt på fysiska robotplattformar som ABB YuMi, KUKA iiwa och en
mobil manipulator med en UR5e-arm monterad på en MiR200-bas. Uppgifterna omfattade
bland annat instick av pluggar, föremålspushning, avtorkning av ytor, sortering av objekt
och placering av lådor, många av dem med krav på fysisk interaktion i osäkra miljöer.

Framåt utökas ramverket i två riktningar: proaktiv felsökning genom övervakning under
körning samt förmågan att generera nya färdigheter i farten med hjälp av framväxande
vision-språk-handlingsmodeller (VLA) eller diffusionspolicys. Även om dessa funktioner
fortfarande är under utveckling utgör de lovande steg mot att ytterligare minska behovet

xiii

av mänsklig inblandning och öka robotars autonomi i komplexa miljöer. Denna forskning
bidrar till utvecklingen av robotsystem som inte bara är mer anpassningsbara utan också
mer självständiga och pålitliga.

xiv

Towards Self-Reliant Robots: Skill
Learning, Failure Recovery, and
Real-Time Adaptation

1 Introduction

Robots have revolutionized industrial processes by performing repetitive, high-precision
tasks in structured environments such as manufacturing lines and warehouses [1]. These
systems are typically programmed to execute fixed routines and operate under strict envir-
onmental assumptions, which has led to gains in productivity, safety, and cost-efficiency.
However, the scope of robotics is now extending to unstructured and dynamic environ-
ments, such as homes, kitchens, and small-batch industries, where robots must interact
with unpredictable objects, people, and evolving task requirements [2].

To operate in such settings, robots must demonstrate a higher degree of autonomy. Autonom-
ous robots perceive their environment, make decisions, and act without constant human
oversight [3, 4, 5]. These capabilities are vital for applications like home assistance and
customized manufacturing, where fixed policies cannot address the diversity of real-world
tasks [6].

Despite being autonomous, robots can still encounter unexpected situations such as mis-
placed objects, occlusions, or partial task failures, which may prevent successful task com-
pletion. These challenges highlight the need for self-reliant robots: robots that go beyond
autonomy by identifying failures, understanding what went wrong, and recovering without
human intervention [7]. In collaborative environments like homes or shared workplaces,
such capabilities ensure reliability and continuity [8].

The current state of robotic systems reveals important limitations that hinder this goal:

• they rely on predefined routines that often break under unexpected situations,

1

• they require human intervention for diagnosing and correcting errors,

• and they provide limited transparency into their internal decision-making processes [9].

While transparency is not essential for self-reliance, it remains a valuable attribute, as it sup-
ports debugging, builds user trust, and helps human operators understand robotic behavior.
Thus, systems that explain their decisions are more usable and trustworthy in real-world
settings.

Looking beyond basic autonomy, enabling self-reliance in robots calls for the ability to
monitor execution, detect failures, and modify plans accordingly, without relying on hu-
man intervention. Achieving this requires integrating symbolic reasoning, adaptability to
task variation, and mechanisms for real-time recovery. Prior research shows that combin-
ing structured control architectures with data-driven components improves robustness and
adaptability in unstructured or dynamic environments [10, 11].

Symbolic control frameworks such as behavior trees (BTs) offer modular and interpretable
policy structures that support robust task execution and easier debugging [12]. BTs define
how a robot selects and sequences symbolic skills to achieve a task. These skills can be
further grounded in parameterized motion policies, forming behavior trees and motion
generators (BTMGs) [13]. In this framework, the symbolic structure of the BT encodes
the logical flow of skills, while each skill invokes a motion generator (MG), a compliant
controller that operates at the trajectory level and enables interaction with the physical
world through impedance control. This structured layering supports both clarity in control
flow and flexibility in low-level motion.

At the same time, recent advances in multimodal and foundation models [14, 11, 15], such
as vision-language models (VLMs), vision-language-action models (VLAs) [16, 17] and dif-
fusion policies [18], offer complementary capabilities. These models provide high-capacity
perception and reasoning grounded in visual and textual modalities. While they often trade
off strict interpretability, they enable flexible semantic inference and contextual generaliza-
tion. Such models can assist in detecting anomalies, suggesting corrections, and predicting
failures, capabilities crucial for self-reliant operation in open-ended settings [8, 3].

This thesis brings these elements together into a unified framework. By combining symbolic
execution via BTs and BTMGs, low-level control through MGs, and high-level reasoning
using multimodal models, we aim to support adaptation to task variation, recovery from
failures, and reduced reliance on human intervention. The overall aim is:

To enable robotic systems to adapt to task variations, recover from execution failures, and main-
tain modularity, interpretability or explainability, and minimal human dependence.

2

1.1 Overview of Aims and Research Questions

Achieving the overall goal of enabling robots to adapt to task variations, recover from fail-
ures, and operate with minimal human input involves two key challenges: modeling adapt-
able and interpretable robot behaviors, and enabling autonomous failure detection, explan-
ation, and recovery. To address these, the thesis is divided into two aims, each accompanied
by specific research questions and corresponding methods.

Aim 1: To enable robots to solve complex, varied tasks with modular, interpretable, and adapt-
able policies.

This aim targets the core challenge of building robot controllers that are both understand-
able and adaptable to different task scenarios. Traditional policies lack modularity and
make it difficult to generalize across variations. To address this, we adopt BTs for struc-
turing policies and integrate them with parameterized MGs, resulting in BTMG policies.
These policies support clear task decomposition while allowing low-level control to be tuned
for different situations [6].

RQ1.1: How can robot behavior policies be structured to remain modular, interpretable,
and tunable for varying tasks?

This question examines how to design robot policies that balance symbolic structure with
parametric flexibility, enabling both clarity and adaptability. To address this, Paper I [6]
employs the BTMG policy framework in combination with bayesian optimization (BO)
in a reinforcement learning (RL) setting. This allows low-level motion parameters to be
optimized while preserving the modular and human-readable structure of BTs, making the
resulting policies easier to understand, maintain, and generalize across tasks.

RQ1.2: How can such policies be adapted to new task variations without retraining?

A key requirement for real-world deployment is the ability to adapt policies to new task
configurations without retraining. While BTMGs offer modularity and interpretability,
their parameters typically need to be tuned for each specific task instance, which limits
generalization. This research question addresses the challenge of extending BTMGs to
generalize across task variations.

In Paper II [19], we address this by learning a mapping from scenario parameters (e.g., goal
pose) to policy parameters (e.g., offsets defining motion trajectories) using gaussian pro-
cesses. This allows interpolation of suitable BTMG parameters for unseen task instances,
enabling policy reuse without retraining.

RQ1.3: How can policy parameters be predicted efficiently for real-time adaptation to un-

3

seen tasks?

Real-world robotics requires not only adaptability but also responsiveness. While learned
task-parameter mappings (RQ1.2) help generalize to new scenarios, they may still involve
non-negligible inference time. This question focuses on enabling rapid prediction of policy
parameters suitable for unseen task variations.

To address this, we introduce PerF, a lightweight predictive model that maps task variations
directly to BTMG parameters. Combined with a local optimizer, it generates feasible and
near-optimal policy parameters within seconds. This approach supports real-time deploy-
ment of skill policies without retraining or extensive computation. These contributions are
presented in Paper III [7].

Aim 2: To enable autonomous failure detection, explanation, and recovery in robots without
human intervention.

While adaptability is critical for task performance, real-world deployment also demands
robustness to failures that arise during execution due to dynamic environments, mechanical
noise, or perception errors. To meet this requirement, robots must not only detect and
identify such failures but also generate appropriate recovery actions without relying on
human assistance. This aim addresses the challenge of building such self-reliant systems
and is guided by three research questions.

RQ2.1: How can recovery behaviors be designed and structured so they are modular and
reusable?

This question focuses on the structure and generality of failure handling strategies, a critical
component for autonomous recovery. Instead of designing ad-hoc responses for each fail-
ure type, we represent recovery strategies using the same BTMG abstraction applied to skill
policies. Paper IV [9] demonstrates how this shared representation allows recovery behavi-
ors to be modeled as parameterized, modular components that integrate naturally into the
overall task structure. These behaviors are both interpretable and transferable across failure
contexts, supporting the goal of robust and reusable recovery.

RQ2.2: How can robots detect and explain failures before executing a skill, enabling pree-
mptive intervention?

Preemptively identifying likely failures is crucial for preventing unnecessary execution at-
tempts and improving robustness in dynamic environments. This research question focuses
on how robots can use contextual information to assess the feasibility of upcoming skills
and adjust plans before execution.

In Paper V [8], we address this by integrating VLMs with a reactive planner and beha-

4

vior trees to perform pre-execution reasoning. The VLM queries the scene, skill plan, and
preconditions to predict whether a skill is likely to fail and identifies missing or violated
preconditions. This enables the robot to take preventive actions, such as modifying the
behavior tree or inserting recovery steps before failure occurs.

RQ2.3: How can robots generate corrective behaviors at runtime and recover without re-
starting the task?

Execution-time failures require prompt, context-aware interventions to ensure task con-
tinuity. This research question focuses on how robots can detect such failures during skill
execution and insert corrective actions into their current plan without resetting or restarting
the entire task.

Paper VI[3] extends the framework of Paper V by incorporating real-time monitoring into
the VLM–reactive planner–BT loop. During execution, the VLM continuously verifies
preconditions and postconditions against the evolving scene, while also identifying missing
preconditions or proposing alternative skills as in Paper V. When a failure is detected, the
reactive planner augments the running BT with corrective behaviors, enabling in-place
recovery and uninterrupted task progress.

Before outlining the thesis structure, we clarify the abstraction hierarchy used throughout
this work. Since the research questions span low-level motion adaptation, skill reuse, and
high-level failure reasoning, this hierarchy helps situate where each contribution fits within
the robot control stack.

Abstraction hierarchy: This thesis considers robot behavior across three levels of abstrac-
tion:

• Trajectory level: Low-level motion primitives such as MGs [13] or dynamic move-
ment primitives (DMPs) [20] generate physical motion in the robot’s workspace.

• Skill level: These trajectories are wrapped into symbolic skills with semantic an-
notations such as preconditions and postconditions, enabling modular reuse and
parameter adaptation.

• Task level: Skills are composed into high-level plans that pursue user-defined goals,
typically using symbolic planners and BTs for structure and reactivity.

This hierarchy enables the combination of adaptable control with symbolic structure. It is
used throughout the thesis to frame how different methods contribute to building robust
and flexible robot behavior.

5

1.2 Thesis Outline

The remainder of this thesis is structured as follows:

• Chapter 2 introduces key tools for behavior modeling, including BTs, MGs, reactive
planning, and symbolic control.

• Chapter 3 reviews learning-based approaches for skill adaptation and policy optim-
ization.

• Chapter 4 presents foundational concepts in failure detection, recovery strategies,
and runtime adaptation.

• Chapter 5 covers VLMs and their role in perception-grounded robotic reasoning.

• Chapters 6–8 correspond to Part I of the thesis, addressing Aim I, which focuses
on modular and adaptable robot policies. These chapters discuss the structuring
of policies (RQ1.1), adaptation to task variations (RQ1.2), and real-time parameter
prediction (RQ1.3), respectively.

• Chapters 9–11 comprise Part II of the thesis, addressing Aim II, which targets autonom-
ous failure detection and recovery. These chapters address the design of reusable re-
covery behaviors (RQ2.1), pre-execution failure detection using VLMs (RQ2.2), and
runtime failure handling and correction (RQ2.3).

• Chapter 12 concludes the thesis by summarizing the contributions, discussing broader
implications and limitations, and outlining directions for future work toward self-
reliant robotic systems.

6

Background and Related Work

Chapters 2 through 5 provide the background tools, and conceptual foundations required
to understand and contextualize the contributions of this thesis. Each chapter introduces
essential methods, frameworks, or models and reviews the relevant literature related to the
specific capabilities needed for skill adaptation and failure recovery in robotics.

Chapter 2 introduces the key components of robot behavior modeling, including BTs,
reactive planning, MGs, and their integration via the BTMG framework. It also presents
symbolic planning with SkiROS2 (a skill-based platform).

Chapter 3 reviews learning-based approaches for adapting and optimizing robot skills. It
covers reinforcement learning, policy search, multi-objective optimization, bayesian optim-
ization, and gaussian processes, with a focus on generalizing behavior across task variations.

Chapter 4 lays the theoretical foundation for failure recovery. It discusses different models
of execution failure, compares reactive and proactive recovery strategies, surveys methods
for generating corrective behaviors, and introduces runtime monitoring and adaptation
techniques.

Chapter 5 provides an overview of VLMs and their role in robotic reasoning. It discusses
technical foundations and practical applications such as scene understanding, instruction
following, and failure explanation.

One important point about how related work and background tools are presented in these
chapters is that they are discussed in context rather than repeated across sections. When
a method or paper contributes to multiple aspects of the thesis, it is cited at the most
relevant location. For example, the same work may be mentioned in one section for its
contribution to failure detection, and in another for its role in runtime adaptation. This
helps avoid repetition and makes it easier to follow how each piece of prior work supports
specific parts of the thesis.

7

2 Skill Representation and Execution Frameworks

This chapter introduces the core frameworks used for representing and executing robotic
skills in a modular and reactive manner. It covers BTs as the primary structure for organizing
robot actions, reactive planning for dynamically constructing and adapting BTs, and MGs
for low-level compliant control. The chapter also describes how these components are
integrated through the BTMG framework and how symbolic planning is used to ground
skill semantics and guide execution.

2.1 Behavior Trees

BTs are hierarchical control architectures that originated in the video game industry to
model complex agent behaviors in a modular and reactive manner [21, 22]. In robotics,
their adoption has grown due to their structural clarity and support for real-time decision
making [10]. BTs enable complex behaviors to be built from smaller, reusable components,
supporting modular design and dynamic execution.

A BT is a directed rooted tree used to structure decision making and control flow in ro-
botics. It consists of two main types of nodes: control flow nodes and execution nodes.
Control flow nodes define the execution structure. The sequence node executes its chil-
dren from left to right and returns success only if all children succeed. The fallback (or
selector) node also visits children in order but returns success as soon as any child does.
The parallel node runs all children simultaneously and uses configurable thresholds to
determine overall success or failure. The decorator node modifies the behavior of a single
child, such as inverting its result or retrying execution.

Execution nodes represent the leaf-level actions and conditions. Action nodes corres-
pond to atomic robot operations like picking or moving and return one of three statuses:
success, failure, or running. Condition nodes evaluate boolean predicates such as
whether an object is at a certain position and return success or failure accordingly.

Execution begins with a periodic ‘tick’ sent from the root. The tick traverses the tree top-
down, conventionally left to right, triggering node evaluation based on the defined control
flow [23]. Each node returns a status, success, failure, or running, which guides
the flow of control and enables responsive behavior switching [12]. Since skills often in-
clude semantic preconditions (e.g., an object must be in a specific location before it can
be picked), BTs can include condition nodes to check these preconditions during execu-
tion. This structure allows developers to encode retry mechanisms, precondition checks,
and timeouts in a modular way without changing the overall behavior logic.

Figure 1 illustrates a peg-in-hole task organized via BT. Sequential nodes enforce task or-

8

Sequence

Fallback

peg at (0.0, -0.15, 0.1)?

insert peg!

aligned peg? Sequence

Fallback

grasp peg (0.0, -0.15, 0.1)! align peg!

Figure 1: Behavior tree for a peg-in-hole task. The tree includes condition nodes (e.g., checking
alignment), action nodes (e.g., grasp, insert), and control flow nodes (Sequence,
Fallback) to manage flow and recovery.

der, while fallback branches enable recovery from failed conditions. This modular and
interpretable structure supports real-time behavior control in uncertain environments.

Alternative Control Architectures

Before focusing on behavior trees, it is important to briefly consider alternative control
architectures that have been used in robotics. These include finite state machines (FSMs),
hierarchical FSMs (HFSMs), petri nets, and hierarchical task networks (HTNs), each with
specific strengths and limitations. This provides context for why BTs are chosen in this
thesis and highlights their advantages over other strategies.

FSMs define robot behavior as a set of discrete states connected by transitions. They are
conceptually simple and easy to implement, but they suffer from state explosion as tasks
grow in complexity, making them hard to scale in practical applications [24]. HFSMs
attempt to mitigate this problem by introducing nested states, which improve modularity.
However, this added hierarchy makes transitions more complex to manage and reduces
runtime flexibility, especially in dynamic environments [25].

Petri nets offer another approach by modeling concurrency and synchronization expli-
citly [26]. They are powerful for tasks that require parallel actions and formal analysis
but are often too low-level to represent high-level robotic tasks effectively. In contrast,
HTNs [27] excel in symbolic task decomposition, providing structured plans for long-
horizon goals. However, HTNs generally assume static and fully observable environments,

9

and their plans lack built-in reactivity, making them less suitable for highly dynamic or
uncertain conditions.

Hybrid architectures attempt to combine the benefits of these methods. For instance,
HTN-BT combinations [28] integrate the deliberative planning of HTNs with the react-
ive capabilities of BTs. While effective in some contexts, these hybrid approaches increase
system complexity and require careful coordination between layers.

In comparison, behavior trees offer a balanced solution by combining modularity, scalabil-
ity, and real-time adaptability [29, 30, 31]. Their hierarchical structure allows complex beha-
viors to be composed from reusable components, while their tick-based execution supports
dynamic reaction to changing conditions without discarding previous progress. This makes
BTs particularly suitable for robotic applications where both interpretability and runtime
flexibility are essential.

Design and Synthesis of Behavior Trees

BTs are often designed manually using frameworks such as BehaviorTree.CPP or py_
trees [32]. While manual construction offers full control and interpretability, it becomes
time consuming and error prone in complex or highly variable tasks. To overcome these
limitations, several automated synthesis methods have been proposed, constructing BTs
from data, symbolic models, or interaction with the environment.

One approach is genetic programming, which evolves BT structures through mutation and
crossover operations guided by a task specific fitness function [33]. Genetic programming
can generate novel behaviors without requiring manual design but may produce large or
inefficient trees if not properly constrained.

Another approach is learning from demonstration (LfD), where expert trajectories are seg-
mented and organized into interpretable BT structures [34, 35, 36]. This method allows
robots to reproduce demonstrated behaviors in a modular form, but it generally requires
multiple demonstrations to achieve robustness and generalization.

A third approach is planning-based compilation, which converts symbolic task plans into
BTs [37]. In this method, the planner generates an action sequence that is compiled into
a BT, often including fallback branches and retry loops for added reactivity. While prin-
cipled and structured, these BTs remain static during execution unless explicitly recompiled,
which can limit responsiveness in dynamic environments.

Finally, a fourth class of methods, reactive planning [10], constructs and updates BTs by
combining planning with execution. Reactive planning can generate initial plans offline
and dynamically insert new subtrees during execution when conditions fail or unexpected

10

situations arise, allowing robots to adapt without discarding prior progress. This approach
is central to this thesis and is discussed in the following subsection.

2.2 Reactive Planning for BT Generation and Extension

Reactive planning incrementally builds or updates robot behavior policies during task ex-
ecution by alternating between acting and planning [10, 38]. Here, behavior policies refer
to task execution strategies represented as BTs, where each policy specifies a structured se-
quence of condition checks and parameterized actions to achieve the goal. Unlike classical
planning, which generates a complete action sequence before execution begins, reactive
planning dynamically extends or adjusts the current policy based on the observed state.
This enables the system to respond to environmental changes without restarting the entire
planning process.

BTs are well-suited for this paradigm due to their modular and hierarchical structure. Ex-
ecution may begin from an abstract or minimal BT. When a precondition fails (e.g., a
required object is not yet grasped), the planner searches for an action whose postcondition
satisfies the unmet precondition. This process is recursive: for each candidate action, the
planner checks whether it is immediately executable or whether additional preconditions
must be first met. The process continues, using symbolic backchaining, until the precon-
ditions are satisfied or resolved into concrete actions (leaf nodes). The resulting sequence
of supporting actions is composed into a subtree and inserted into the BT at runtime [39].
Figure 2 illustrates this mechanism with a peg-in-hole task, where the tree is incrementally
constructed through subgoal expansion.

peg at (0.0, -0.15, 0.1)?

(a) Initial BT: check peg position.

peg at (0.0, -0.15, 0.1)? Sequence

insert peg!aligned peg?

Fallback

(b) Subgoal added for peg alignment.

11

Sequence

Fallback

peg at (0.0, -0.15, 0.1)?

insert peg!

aligned peg? Sequence

Fallback

grasp peg (0.0, -0.15, 0.1)! align peg!

(c) Final BT: complete task structure.

Figure 2: Behavior tree constructed incrementally via reactive planning.

Some approaches extend reactive planning with parameter optimization. For example, Be-
BOP [38] combines BT-based planning with bayesian optimization to adjust action para-
meters dynamically, improving task robustness under uncertainty.

BT Generation

Figure 2 shows how a BT is constructed incrementally. Starting from a high-level goal (a),
the planner introduces subgoals such as alignment (b), eventually producing a complete
behavior structure (c).

(a) Side view of the peg-in-hole task.

12

(b) Front view of the peg-in-hole task.

Figure 3: Obstructed scene requiring BT extension.

BT Extension

Reactive planning not only constructs BTs from scratch but also extends them during exe-
cution. Figure 3 shows the peg-in-hole task scene where the hole is obstructed. The planner
inserts a subtree to handle obstacle removal, as shown in Figure 4, allowing the task to
proceed without discarding prior progress.

Sequence

Fallback

peg at (0.0, -0.15, 0.1)?

insert peg!

aligned peg? Sequence

Fallback

grasp peg (0.0, -0.15, 0.1)! align peg!

(a) BT before extension.

13

2

Fallback

Sequence

Fallback

peg at (0.0, -0.15, 0.1)?

insert peg!

aligned peg? Sequence

Fallback

grasp peg (0.0, -0.15, 0.1)!

check_loc (0.0, -0.15, 0.1)?

align peg!

Sequence

grasp obstacle (0.0, -0.15, 0.1)! reach (0.0, -0.1, 0.0)! open!

Sequence

Fallback

peg at (0.0, -0.15, 0.1)?

insert peg!

aligned peg? Sequence

Fallback

grasp peg (0.0, -0.15, 0.1)! align peg!

(b) BT after extension.

Figure 4: BT extension via reactive planning.

Comparison with Classical Planning and Re-Planning

Classical symbolic planners construct complete action sequences offline using models such
as STRIPS or HTNs [40]. Once execution begins, deviations from the expected state
often require halting and re-planning the full sequence [41]. While re-planning improves
robustness compared to static plans, it still incurs delays and often discards partial execution
history.

In contrast, reactive planning operates online, incrementally repairing or extending the
current plan while preserving previous structure. It integrates planning into execution,
using symbolic reasoning to patch the behavior tree in response to failures or unexpected
events. This fine-grained adaptation makes reactive planning especially suitable for real
world robotics, where uncertainty and variability are unavoidable [10, 38].

2.3 Motion Generators

MGs were introduced by Rovida et al.[13] as a class of impedance controllers that (i) allow
the superposition of generic cartesian wrenches and (ii) constrain velocities, accelerations,
and torques to ensure safety. Under these conditions, MGs produce low-level, compliant
end-effector motions using second-order dynamical systems that emulate virtual springs
and dampers in cartesian space [13](See Figure 5). They are particularly effective for contact-

14

rich tasks, such as assembly, where safe interaction and adaptability are required.

Figure 5: Representation of the motion generator parameters used in this thesis. Reprinted
from [13], © 2018 IEEE, with permission.

The equations below follow the original formulation introduced by Rovida et al. [13], but
are restated with adapted notation and expanded explanations for clarity. The end-effector
motion is governed by:

mv̇ + bv = F̄c + Fd + Fw,

where m is the apparent end-effector mass, v and v̇ are velocity and acceleration, b is the
damping coefficient, Fd represents external disturbances (e.g., contact forces), and Fw is
a feedforward term for compensation (e.g., gravity). The control force F̄c is a saturated
version of the virtual force:

F̄c =

Fc, ‖Fc‖ ≤ Fmax,

Fmax
Fc

‖Fc‖
, otherwise.

Here, Fmax is the maximum admissible force, and Fc is the composite virtual control force
generated by springs, dampers, and optional excitation:

Fc = −K
(
x− (xg + xoff)

)
+ Fe,

15

where K = diag(k1, k2, k3) is the stiffness matrix, x the current position, xg the goal
position, xoff an optional offset for strategy adjustments, and Fe the excitation force that
can induce oscillatory or superimposed motions. For example, in a peg-in-hole task, Fe

can generate a downward insertion motion combined with an Archimedean spiral search
trajectory, configured through parameters such as path velocity, spiral radius, and step dis-
tance, to efficiently locate the hole under uncertainty.

By tuning stiffness, damping, and excitation parameters, MGs can realize behaviors such
as guarded insertion, compliant alignment, and oscillatory probing. Multiple primitives
can also be superimposed on orthogonal parameter subspaces to create hybrid behaviors
(e.g., vertical insertion with lateral oscillation), improving adaptability without task-specific
scripts. Unlike DMPs [42, 20], which encode motion implicitly from demonstrations,
MGs expose explicit parametric control, improving interpretability, safety, and suitability
for industrial applications.

"SetMGGoalPose"

"ChangeStiffness"

"ApplyForce"

"skiros:contain", "Gripper", "Peg"

¬ "skiros:at", "Peg", "Box"

"skiros:at", "Gripper", "ApproachPose"

"PegInsertion" <||FS>

"skiros:at", "Peg", "Box"

¬ "skiros:at", "Gripper", "ApproachPose"

"skiros:at", "Gripper", "Box"

"skiros:at", "Gripper", "StartPose"

"GoToLinear" <||FS>

¬ "skiros:at", "Gripper", "StartPose"

"skiros:at", "Gripper", "GoalPose"

"SetMGGoalPose" "EEPoseDistance"

"EEPoseDistance"

→*

Ø

"OverlayMotion"

Figure 6: BTMG representation of a peg-in-hole task. Each BT node encodes a symbolic skill and
invokes a motion generator with task-adapted parameters.

MGs operate at the trajectory level of abstraction, producing time-indexed cartesian mo-
tions without direct symbolic semantics. They are typically integrated into higher-level
structures, such as BTs, which select and configure MG parameters at runtime. This com-
bination allows symbolic reasoning at the skill and task levels, while MGs handle compliant

16

low-level execution.

Figure 6 illustrates MG configurations as part of a BTMG representation for a peg-in-hole
task, where an Archimedean spiral trajectory combined with a downward force is configured
through parameters such as spiral radius, path velocity, and step distance.

2.4 BTMG Framework: Integrating Behavior Trees with Motion Generators

The BTMG framework integrates symbolic control and reactive execution by combining
BTs with parameterized MGs [13]. In this architecture, each BT leaf node invokes a context
aware MG, enabling high-level symbolic decisions to trigger adaptable low-level motions.

Within the abstraction hierarchy, BTMGs operate at the skill level [28], elevating trajectory
level control to reusable symbolic behaviors. Each BT leaf encapsulates a parameterized
MG, forming a skill with semantic meaning and associated pre/postconditions. These skills
can then be composed to form task level plans. This design enables symbolic planning over
skills, while retaining motion adaptability through MG parameters.

Extended BTs (eBTs) [28] form the structural basis of BTMGs. They embed symbolic
annotations such as preconditions, postconditions, and execution memory into BT nodes.
This enables observation, runtime monitoring, and dynamic insertion of subtrees during
execution, improving modularity and reactivity.

BTMGs use a parameterization scheme that separates the symbolic structure from the
motion-level details, enabling reuse across tasks while allowing fine-grained adaptation.
These parameters are broadly classified into two types. The intrinsic parameters (θi) define
the BT structure and the ordered sequence of symbolic skills. These remain fixed across
different task instances and capture the high-level behavior logic. The extrinsic paramet-
ers (θe) specify the numerical configuration of the MGs, such as stiffness values, positional
offsets, or force directions. These are adapted to the current task context, allowing the same
symbolic skills to perform appropriately under different variations.

Figure 6 illustrates a BTMG for a peg-in-hole task, where BT nodes represent symbolic
skills such as grasping or insertion, each annotated with preconditions and postconditions,
and linked to MGs configured with task-specific parameters.

This separation allows the symbolic control logic to remain constant while motion-level be-
haviors are tuned for new scenarios. Extrinsic parameters can be manually tuned using ex-
pert knowledge, inferred through reasoning over symbolic world knowledge [28], or learned
from data using methods such as gaussian process regression or reinforcement learning [7].

In this thesis, the data-driven approach is of particular importance: extrinsic parameters are
learned using BO in RL setting to adapt motion generators efficiently across different task

17

variations, enabling real-time reuse and fine-tuned performance. By preserving the intrinsic
BT structure while adapting extrinsic MG parameters, BTMGs support generalizable and
flexible robot behaviors in diverse and dynamic environments.

2.5 Symbolic Planning and Skill-Based Task Execution

This section addresses how symbolic reasoning is used to define, organize, and execute robot
skills at the task level. These abstractions sit above the trajectory and skill layers discussed in
Sections 2.3 and 2.4, enabling robots to reason about what to do and in what order, rather
than how to perform each motion. Skills are defined as symbolic actions with preconditions
and effects [43], which are then composed into high-level plans using symbolic planners.
The resulting task-level plans are executed using frameworks that support integration with
motion-level primitives.

Symbolic Planning

Symbolic planning enables robots to reason over abstract task representations to generate
action sequences that achieve a defined goal. Planning problems are typically expressed in
declarative languages such as PDDL (Planning Domain Definition Language) [44], where
the world state, available actions, and goal conditions are specified symbolically.

Heuristic search algorithms, such as those used in Fast Downward [45], are then applied
to find valid plans. This approach is well suited for long-horizon, structured tasks such as
assembly, navigation, or multi-step manipulation, where the solution space can be explored
efficiently through symbolic reasoning.

However, classical symbolic planners assume a fully known and static world model, which
limits their robustness in dynamic or uncertain environments. For instance, when object
positions change or unexpected obstacles occur, symbolic planners must either replan en-
tirely or be combined with reactive architectures. To address this, symbolic planning is
often integrated with BTs, which handle real-time feedback and partial plan repair while
retaining symbolic grounding [34, 46].

Ontologies, Skill Models, and SkiROS2

Symbolic planning depends on well-structured representations of robot capabilities, envir-
onment semantics, and action outcomes. Ontologies provide this structure by defining a
formal vocabulary of object types, relations, skills, and constraints [47, 48]. They support

18

reasoning over compatibility, type checking, and object affordances, enabling modular,
robot-agnostic behavior design.

Robot skills are modeled as semantic abstractions with defined parameters, preconditions,
postconditions, and an execution body [49]. These models allow planners to reason at a
high level, deferring motion specifics to lower control layers.

One such skill-based framework is SkiROS2 [43](Figure 7), which is also utilized in this
thesis. It integrates symbolic planning, semantic reasoning, and skill execution. Skills are
described using RDF-based representations (extending IEEE Std 1872™-2015 CORA) and
include preconditions, which must hold before execution; hold conditions, which remain
valid during execution; and postconditions, which describe the effects after execution. A
semantic world model (WM) based on OWL-DL ontologies tracks object states and task
context in real time.

Task Manager

LoadScene

LoadLoad
R

ob
ot

 C
on

tro
l

R
ob

ot
 C

on
tro

l

Plan

World Model

Ontologies
Ontologies

Skill B

Skill A

Skill
Manager

Skill C

SkiROS GUI

User

Planning
Goal

Task Manager

Manufacturing
Execution Sytem

Skill Libraries
Skill Libraries

Figure 7: Schematic overview of the SkiROS2 control architecture with symbolic skills, world
model, and task planner. Reprinted from [43], © 2023 IEEE, with permission.

19

SkiROS2 uses a Task Manager to formulate planning problems in PDDL, solve them with
symbolic planners such as Fast Downward, and compile the resulting plans into eBTs for
execution. A Skill Manager supervises skill execution and provides interfaces for monit-
oring. The framework also supports additional reasoning modules, such as geometric or
temporal reasoners, which can infer missing parameters like tool poses, reachable surfaces,
or compatible grippers based on the current world state.

Together, ontologies, semantic skill models, and frameworks such as SkiROS2 provide the
foundation for structured, generalizable, and reactive robot control that remains robust
under uncertainty.

20

3 Learning and Adaptation for Robotics

Robotic systems must operate across a wide range of environments and task configurations,
which introduces variability in object properties, spatial arrangements, and required mo-
tions. While symbolic frameworks like BTMG support structured and reactive execution,
they typically rely on fixed parameters and predefined models. To achieve generalization
and robustness, learning-based methods are used to optimize skill parameters, adapt to task
variations, and balance competing objectives such as performance and safety. This section
reviews key approaches for learning and adaptation in robotics, including reinforcement
learning, policy search, bayesian optimization, and gaussian process-based generalization.

3.1 Learning Policies in Robotics

This subsection contributes to RQ1 and RQ2 by reviewing how robotic policies can be
learned and adapted to new task conditions. A central approach for learning such adaptive
behaviors is reinforcement learning (RL), where robots improve their actions through trial
and error interaction with the environment to maximize long-term performance (Figure 8).
RL provides a formal framework for mapping sensory observations to actions under uncer-
tainty, making it a natural choice for data-driven policy learning in robotics [50]. Formally,
RL is modeled as a markov decision process (MDP), defined by the tuple (S,A, P,R, γ),
where S is the set of states, A the set of actions, P (s′|s, a) the transition function, R(s, a)
the reward function, and γ ∈ [0, 1] the discount factor. The agent selects actions according
to a policy π(a|s) to maximize the expected return:

J(π) = Eπ

[∞∑
t=0

γtR(st, at)

]
Two central concepts in RL are the state-value function and the action-value function. The
state-value function Vπ(s)measures the expected return from state swhile following policy
π:

Vπ(s) = Eπ

[∞∑
t=0

γtRt+1 | S0 = s

]
The action-value functionQπ(s, a) evaluates the expected return of taking action a in state
s and then following policy π:

Qπ(s, a) = Eπ

[∞∑
t=0

γtRt+1 | S0 = s,A0 = a

]
While Vπ evaluates the desirability of states, Qπ directly guides action selection by consid-
ering state-action pairs, forming the basis for many RL algorithms.

21

Deep Reinforcement Learning (DRL) extends classical RL by using neural networks to
approximate π, V , or Q. Methods such as Q-learning estimate Q∗(s, a) directly, while
actor–critic approaches maintain both a policy network (actor) and a value estimator (critic)
to stabilize training [51]. DRL has been applied to robotic tasks including locomotion,
grasping, and navigation, especially in simulation [52]. However, real-world application
remains challenging due to sample inefficiency, safety concerns, and the sim-to-real gap [53].

To overcome sample inefficiency, safety concerns, and the sim-to-real gap of DRL, several
strategies have been developed. Off-policy algorithms such as Deep Deterministic Policy
Gradient (DDPG) [54] and Soft Actor-Critic (SAC) [55] reuse past experience stored in a
replay buffer, allowing multiple updates per interaction and improving sample efficiency.
SAC further enhances stability through a maximum entropy objective, which encourages
exploration while maintaining robustness.

Model-based RL reduces the need for real-world trials by learning a probabilistic model
of the environment for planning and policy optimization. PILCO [56], for example, uses
gaussian processes to model dynamics and uncertainty, enabling highly data-efficient policy
learning.

Domain randomization helps bridge the sim-to-real gap by training policies under diverse
simulated variations, such as randomized lighting, textures, or physics [57]. Policies trained
in this way can generalize to real-world conditions without extensive fine-tuning. This ap-
proach is also used in this thesis to learn the extrinsic parameters of BTMG skills, ensuring
that policies remain robust to environmental variations.

Finally, hierarchical RL decomposes tasks into reusable sub-skills, enabling learning at mul-
tiple abstraction levels. Methods like HIRO [58] learn high-level goals and low-level con-
trollers in an off-policy, data-efficient manner, improving both modularity and transferab-
ility.

By combining these ideas, off-policy learning for sample efficiency, model-based planning
for data reduction, domain randomization for sim-to-real robustness, and hierarchical de-
composition for modularity, modern DRL approaches can better support real-world ro-
botic deployment.

Policy Search and Parameter Learning

In skill-based robotic systems, policies are often parameterized by vectors θ that define
motion primitives or low-level control modules, such as pose offsets, stiffness, or inser-
tion velocities. Policy search aims to find the optimal parameters θ∗ that maximize task
performance:

θ∗ = argmax
θ

E[R(τθ)]

22

RL Agent Environment
Action at

Observation st+1

Reward rt+1

Figure 8: General reinforcement learning framework. The agent interacts with the environment
by taking actions and receiving observations and rewards.

where τθ denotes the trajectory induced by parameters θ.

In many robotic scenarios, the policy structure is non-differentiable, for instance when exe-
cution involves BTs with discrete branching or conditional logic. This prevents the use of
classical gradient-based methods, since gradients cannot propagate through symbolic de-
cision nodes or discontinuous dynamics. Instead, gradient-free optimization methods are
employed.

One common approach is bayesian optimization (BO), which builds a surrogate model
of the reward landscape, often a gaussian process (GP), to propose informative parameter
samples for evaluation [59]. BO is particularly effective for expensive or noisy evaluations,
and in our work, it is used to tune the extrinsic parameters of BTMGs. We also enhance
BO with domain randomization during training to ensure the learned parameters generalize
across variations in task context.

Evolutionary strategies (ES) represent another class of gradient-free, population-based meth-
ods [60]. They maintain a population of candidate policies, perturb parameters using
stochastic mutations, evaluate them in parallel, and update the population based on fitness.
Population-based search is robust to noise, discontinuities, and long-horizon credit assign-
ment challenges, making ES a scalable black-box optimization method. While powerful,
ES generally requires more evaluations than BO for low-dimensional policy spaces like
BTMG parameter tuning.

Another approach is random search, which samples policy parameters uniformly across the
search space [61]. While conceptually simple, random search can perform surprisingly well
in low-dimensional settings and often serves as a useful benchmark when evaluating more
sophisticated optimization strategies.

To improve generalization across task contexts, contextual policy search [62] learns a map-
ping θ = f(c) from context variables c (e.g., object pose or geometry) to optimal policy
parameters. This approach allows a single policy model to adapt its parameters on-the-fly
when faced with new task conditions. Similarly, neural policy regressors [63] directly learn
this mapping using supervised learning or few-shot adaptation, enabling skill parameter-

23

ization for unseen scenarios. BO can be extended with this principle by conditioning the
GP surrogate on context variables, enabling data-efficient learning of parameterized skills
for varying environments.

In this thesis, we primarily adopt BO due to its sample efficiency and suitability for low-
dimensional parameter spaces in BTMGs. Combined with domain randomization, BO
allows robust and generalizable policy parameter learning while maintaining modularity
and interpretability, complementing the symbolic planning layer and supporting real-time
task adaptation.

3.2 Bayesian Optimization for Efficient Policy Search

BO [64] is a sample-efficient approach for optimizing expensive black-box functions, par-
ticularly suited to robotics where function evaluations can be slow, costly, and derivative-
free. BO maintains a surrogate model, often a GP, which provides a predictive mean µ(x)
and variance σ2(x) over the input space X . An acquisition function α(x) then uses these
predictions to decide where to evaluate next, balancing exploration of uncertain regions
with exploitation of promising candidates.

Formally, BO seeks to maximize an unknown function f(x):

x∗ = argmax
x∈X

f(x),

with the next evaluation point selected by

xt+1 = argmax
x∈X

α(x;µ(x), σ(x)).

Several acquisition functions are commonly used. Expected Improvement (EI) [65] evaluates
the expected gain relative to the current best observation, naturally trading off exploration
and exploitation. Upper Confidence Bound (UCB) [66] instead selects x with the highest
µ(x) + βσ(x), where β controls the exploration–exploitation balance; larger β favors
exploring uncertain regions. Probability of Improvement (PI) [67] measures the likelihood
that a candidate will improve upon the best-so-far value, but it tends to overexploit unless
the improvement threshold is carefully chosen. In practice, EI is widely adopted for its
robustness, while UCB is preferred in scenarios requiring explicit exploration control. PI
is simple but risk-averse and is often paired with adaptive thresholds.

For multi-objective optimization, BO can be extended with acquisition functions such as
Expected Hypervolume Improvement (EHVI) to focus sampling on pareto-optimal regions
(see Section 3.3) [68]. These mechanisms make BO effective for policy parameter tuning,
controller adaptation, and robot behavior optimization, where each evaluation is costly and
uncertainty-guided exploration is crucial.

24

3.3 Multi-objective Optimization and Reward Design

Many robotic tasks inherently involve conflicting objectives. For example, achieving re-
liable task success often requires applying sufficient force or motion speed, yet excessive
force may compromise safety, energy efficiency, or hardware longevity. In the context of
this thesis, where we investigate adaptive skill execution for task variations (RQ2), multi-
objective optimization provides a principled framework to navigate such trade-offs. Instead
of compressing multiple performance criteria into a single scalar reward, which can obscure
important compromises, we explicitly consider multiple objectives to identify policies that
represent desirable trade-offs across success, safety, and efficiency.

Motivation and Formulation

Multi-objective optimization seeks solutions that are pareto-optimal, meaning that no ob-
jective can be improved without degrading another [69, 70]. Formally, given k objectives
f1, . . . , fk and a policy set Π, the problem is:

max
π∈Π

(
f1(π), f2(π), . . . , fk(π)

)
A solution π∗ ∈ Π is pareto-optimal if there is no other π ∈ Π that improves at least one
fi without lowering another [69, 70]. The image of all pareto-optimal policies is called the
pareto front, representing the set of non-dominated trade-offs among objectives. In practice,
multi-objective optimization does not always return a fully connected front, but rather a
pareto set (or approximation) that reflects achievable trade-offs [71]. This front is useful
because it enables explicit selection of a policy according to application-specific preferences
without collapsing all metrics into a single scalar.

Figure 9 shows a learned pareto front for a peg-in-hole task, where the objectives are in-
sertion success and contact force. Each color corresponds to an independent optimization
run, illustrating the range of achievable compromises. In this work, we use BO to explore
the low-dimensional parameter space of the BTMG skills. BO proposes candidate BTMG
parameter configurations, such as insertion velocity or compliance settings, evaluated un-
der multiple objectives, which allows us to construct the pareto front and select policies
that best align with desired performance profiles.

Common strategies for learning pareto fronts in multi-objective optimization include scal-
arization, multi-objective bayesian optimization (MOBO), and evolutionary algorithms.
Scalarization reduces multiple objectives into a single scalar reward via a weighted sum,
r =

∑
iwifi(π) [70]. While simple and computationally efficient, scalarization is highly

sensitive to the choice of weights and can fail to capture non-convex regions of the pareto

25

0.0 0.2 0.4 0.6 0.8 1.0
Force

0.0

0.2

0.4

0.6

0.8

1.0

In
se

rti
on

 R
ew

ar
d

Figure 9: Example pareto front showing trade-off between insertion success and contact force in a
peg-in-hole task [6]. Each color indicates a distinct optimization run or configuration.

front. This means that exploring diverse trade-offs often requires multiple weight config-
urations.

Multi-objective bayesian optimization treats each objective independently using surrog-
ate models, typically GPs, and selects candidate evaluations using specialized acquisition
functions. EHVI [72] is a prominent choice, as it maximizes the expected increase in the
dominated hypervolume [68]. MOBO is particularly sample-efficient and is well-suited for
robotic applications where function evaluations (e.g., real-world trials) are costly or risky.

Evolutionary algorithms, such as NSGA-II [73], evolve a population of candidate solutions
over generations using selection, crossover, and mutation to approximate the pareto front.
These methods excel at preserving diversity and handling complex, non-convex pareto
fronts but typically require a large number of evaluations, which can be impractical for
physical robotic experiments.

In this thesis, MOBO is particularly used to optimize BTMG parameters under mul-
tiple objectives. This allows discovering parameter configurations that balance task suc-
cess, safety, and efficiency, while minimizing real-world trials. The resulting pareto front
provides decision makers with a set of policies reflecting different trade-offs, from conser-
vative but safe execution to faster but riskier behavior.

26

Reward Design Strategies

Reward design is critical in robotic learning because it directly shapes agent behavior and
affects both learning efficiency and safety. Poorly specified rewards can lead to uninten-
ded or suboptimal behaviors, slow convergence, or unsafe actions [74]. We discuss it here
because effective reward structures are fundamental for both single- and multi-objective op-
timization in our thesis, influencing the performance of bayesian optimization and policy
learning.

In this thesis, we primarily use sparse, dense, and shaped rewards. Sparse rewards provide
feedback only upon task completion, such as indicating success or failure of a behavior tree
execution. While simple and unbiased, they often result in slow learning due to limited
guidance. Dense rewards, in contrast, provide continuous feedback, for example, penaliz-
ing distance to goal or excessive contact forces, which accelerates convergence but may bias
policies toward locally optimal behaviors. Shaped rewards combine these ideas by adding
intermediate guidance or potential-based signals [75], helping to direct learning toward
desirable behaviors without altering the optimal policy.

Our contact-rich manipulation tasks use composite reward functions to capture multiple
aspects of task performance:

r(s, a) = w1rsuccess + w2rforce + w3renergy + w4rtime

Here, rsuccess reflects task completion, rforce penalizes large contact forces, renergy discour-
ages high actuator effort, and rtime penalizes long execution durations. The weights wi are
manually tuned to balance success and safety. In our experiments, we primarily use sparse
success rewards combined with dense force and energy penalties, with occasional shaping
for intermediate guidance.

Other reward strategies also exist. Curriculum learning gradually increases task difficulty
to guide progressive policy improvement [76]. Constrained reinforcement learning incor-
porates safety or resource constraints using auxiliary cost functions or Lagrangian penal-
ties [77]. These methods are particularly relevant in safety-critical applications but are not
directly applied in this thesis.

While scalarization of reward components is practical for single objective optimization,
it can obscure trade-offs between competing objectives such as efficiency and safety. In
scenarios with significant or unknown trade-offs, multi-objective learning and pareto-front
exploration provides a more principled approach.

27

3.4 Gaussian Processes for Policy Generalization and Adaptation

GPs [78] are non-parametric bayesian models that define a distribution over functions. In
robotics, they are widely used to generalize skill execution across task variations by learning
a mapping from scenario variables (e.g., object position or size) to policy parameters.

Given training dataD = {(xi, yi)}ni=1, where xi ∈ Rp denotes a task context and yi ∈ Rd

the corresponding policy parameters, the GP defines a posterior over functions:

y(x) ∼ GP(m(x), k(x, x′)),

with mean function m(x) (often set to zero) and kernel k(x, x′) expressing similarity
between task instances.

The GP posterior yields the following expressions for predictive mean and variance at a new
input x∗:

µ(x∗) = k(x∗, X)[K(X,X) + σ2
nI]

−1y,

σ2(x∗) = k(x∗, x∗)− k(x∗, X)[K(X,X) + σ2
nI]

−1k(X,x∗).

At test time, the GP provides a predictive distribution over outputs:

p(y∗|x∗, D) = N (µ(x∗), σ
2(x∗)).

This distribution allows not only interpolation between known training points via the pre-
dictive mean µ(x∗), but also quantifies uncertainty via the variance σ2(x∗). In robot-
ics, this enables confidence-aware adaptation, where high uncertainty may trigger fallback
strategies or require human oversight, particularly in safety critical scenarios.

Applications and Complementary Strategies in Robotics

GPs are particularly effective for robotic applications [79, 80] that demand both data ef-
ficiency and principled uncertainty estimation. They are widely used to model contextual
policies by mapping scenario features, such as object position, orientation, or size, to cor-
responding motion or control parameters [59]. This allows robots to generalize skills across
task variations without retraining entire policies.

A key strength of GPs is their predictive posterior: the mean enables smooth interpolation
between known parameterizations, while the variance quantifies model confidence. High
variance identifies regions with limited training support, guiding active data collection or
triggering conservative fallback strategies and human supervision in safety-critical scenarios.
In our work [19], we exploit these properties to interpolate MG parameters in BTMG
policies, achieving few-shot adaptation to varied peg-in-hole configurations with minimal
data.

28

GP-based generalization can be further strengthened by complementary strategies. Do-
main randomization (DR) exposes policies to varied simulated environments, altering dy-
namics, friction, or sensor noise, to enhance robustness and improve sim-to-real trans-
fer [81]. Meanwhile, robust RL benchmarks, such as the Robust Reinforcement Learning
Suite (RRLS) [82], enable systematic evaluation of policies under perturbations and ad-
versarial conditions, ensuring reliability in dynamic environments. Together, GPs, DR,
and robust RL evaluation provide a practical and interpretable foundation for safe, data-
efficient, and adaptable skill learning in real-world robotics.

29

4 Failure Recovery in Robotics

Robotic systems in real-world settings inevitably encounter execution failures caused by
hardware malfunctions, sensor noise, environmental uncertainty, or task variations. Achiev-
ing reliable autonomy therefore requires mechanisms that can detect, diagnose, and recover
from such errors, beyond what learning and adaptation alone can provide.

Failure recovery is especially important in contact-rich and dynamic environments, where
small deviations can escalate quickly and compromise both safety and task success. This
chapter reviews the core elements of failure recovery, failure detection, recovery strategy
synthesis, and runtime adaptation, which together enable autonomous handling of both
expected and unexpected deviations. These foundations support the unified framework
evaluated in the subsequent chapters.

4.1 Failure Models and Detection

Failures in robotics are deviations from expected behavior that prevent successful task execu-
tion. They arise from three primary sources: hardware failures, sensor failures, and execution
failures. Hardware failures involve mechanical or electrical malfunctions such as actuator
wear, joint backlash, or power loss, typically requiring low-level diagnostics or physical
maintenance. Sensor failures occur when measurements are corrupted, missing, or mislead-
ing due to occlusions, signal degradation, or calibration drift, which indirectly impair task
performance.

This thesis primarily focuses on execution failures, which occur even when hardware and
sensing are nominal. These failures often manifest in contact-rich tasks as misalignments,
slips, or unmodeled environmental interactions caused by task variability or dynamic dis-
turbances. At the symbolic level, they correspond to violations of task preconditions or the
inability to satisfy postconditions during skill execution. For example, a grasp may fail if
an object is slightly displaced, breaking its precondition, or an insertion may stall due to
unexpected contact forces that prevent the postcondition from being met.

Detecting execution failures requires methods that continuously track both the robot’s
physical behavior and symbolic task state to identify deviations early. The following sec-
tions review representative strategies for failure detection.

Model-Based Detection

Model-based approaches predict nominal system behavior using analytical or physical mod-
els and detect failures through residuals, the discrepancies between expected and observed

30

states. Observer-based techniques, such as Kalman filters [83] and sliding-mode observ-
ers [84], as well as parity-space methods [85], provide low-latency detection with strong
theoretical guarantees. However, they depend on accurate dynamics and noise models,
which are difficult to obtain in unstructured environments [86].

Data-Driven Detection

Data-driven methods learn patterns of failure directly from sensory data. Cho et al. [87]
trained neural networks to detect actuator faults from raw torque signals. RECOVER [88]
combines multimodal perception (RGB, depth, force) with symbolic conditions to train
classifiers for manipulation error detection. Khansari et al. [89] modeled obstacle avoid-
ance dynamics to detect anomalies in real time. These approaches generalize well to new
scenarios but often require large labeled datasets covering diverse failure cases.

Hybrid Approaches

Hybrid methods combine analytical structure with learning flexibility to improve general-
ization and reliability. Inceoglu et al. [90] introduced FINO-Net, which fuses interpretable
task-level cues with proprioceptive and tactile representations, enhancing detection of ma-
nipulation failures. Xu et al. [86] proposed FAIL-Detect, a two-stage hybrid framework
that extracts scalar confidence signals and applies conformal prediction to flag deviations
with statistical guarantees, reducing reliance on explicit failure labels.

Multimodal Sensor Fusion

Multimodal sensor fusion integrates complementary sensing modalities, vision, force, tact-
ile, and proprioception, to detect subtle or ambiguous anomalies that unimodal methods
may miss. FINO-Net [90] exemplifies this approach by integrating RGB and force-torque
signals through modality-specific CNNs and temporal convolutions, improving detection
of object slippage and grasp misalignment. REFLECT [91] similarly fuses RGB-D, audio,
and contact data into hierarchical summaries, structured history traces that can be quer-
ied by an LLM for failure explanation and recovery. DoReMi [92] and AHA [93] extend
this idea by combining multimodal perception with language grounding, enabling context-
aware reasoning over ambiguous failures.

The unified framework proposed in this thesis [3] follows a multimodal design: symbolic
checks from behavior trees are combined with visual inference from VLMs. This joint
processing of symbolic and perceptual signals enables early detection of execution failures
and supports real-time recovery, as detailed in Section 11.

31

In summary, multimodal and hybrid detection approaches enhance robustness and inter-
pretability in unstructured environments, where relying on a single modality or purely
model-based reasoning often leads to brittle or incomplete failure detection.

4.2 Failure Recovery Strategies: Reactive vs. Proactive

Robotic systems can recover from failures using two main strategies: reactive recovery, which
responds after an error occurs, and proactive recovery, which aims to anticipate and prevent
failures. This distinction has been formalized in recent surveys [94, 95] and studied extens-
ively in autonomous manipulation [91].

Reactive Failure Recovery

Reactive recovery restores task execution after a failure through retries, adaptation, or cor-
rective planning [96]. These methods are essential in dynamic environments where unex-
pected disturbances can disrupt execution.

Early approaches rely on BTs with predefined retry and recovery branches. Wu et al. [97]
automate modular recovery in mobile manipulation by triggering error handlers such as
reattempts or resets.

Learning-based policies offer greater adaptability when hardcoded strategies fail. Lee et
al. [98] trained a quadrupedal robot with deep reinforcement learning to recover from falls
and external pushes without explicit failure modeling. Booher et al. [99] proposed CIMRL,
combining imitation learning for efficient initialization with reinforcement learning for
long-term correction in autonomous driving.

Neuro-symbolic and VLM-driven systems enable more flexible recovery. RECOVER [88]
monitors each executed action with an ontology-based sub-goal verifier, then invokes an
LLM re-planner to generate corrective actions online. ReplanVLM [100] performs dual-
loop error correction, where the external loop reacts to observed failures by regenerating
task plans. DoReMi [92] delegates constraint generation to an LLM, while a VLM mon-
itors execution and flags violations, enabling semantic diagnosis of the failed goal. Mul-
tiReAct [101] uses a CLIP-based visual reward signal to monitor subtask completion and
triggers corrective behavior on drops in confidence.

Language-based methods extend reactive recovery to high-level reasoning. AHA [93] in-
terprets visual and textual traces to classify failures and propose planner-level corrections.
REFLECT [91] leverages hierarchical execution summaries to prompt LLMs for reactive re-
covery suggestions. RACER [102] and SC-MLLM [103] use language-conditioned policies

32

that detect mismatches between expected and observed states and reissue corrected com-
mands in real time.

Together, these methods span a spectrum from simple retries to adaptive learning control-
lers and neuro-symbolic or VLM-driven replanning, enabling recovery from both low-level
control errors and high-level task deviations.

Proactive Recovery

Proactive strategies prevent failures by validating constraints or predicting risky states before
execution. They are less common due to the difficulty of modeling unstructured environ-
ments and anticipating all failure modes.

Alvanpour et al. [104] use SHAP-based explainable models to predict grasp failures from
contextual cues. Diehl et al. [105] apply causal reasoning to compute counterfactuals,
identifying minimal interventions to avoid failure. Curriculum-based methods like Cur-
ricuLLM [106] also exhibit proactive behavior by structuring training data to reduce ex-
posure to unsafe or failure-prone states.

Spanning Both Categories

Some frameworks integrate proactive checks with reactive adaptation to enhance robust-
ness. Code-as-Monitor [95] compiles user-defined constraints into executable monitors
that validate tasks pre-execution and continue checking them during runtime, halting or
providing semantic feedback upon violations. Our unified framework [3] similarly com-
bines pre-execution validation with real-time recovery: VLM-guided symbolic planning
ensures initial feasibility, while runtime monitoring triggers behavior tree modifications or
replanning when failures occur (see Sections 10 and 11).

4.3 Recovery-Behavior Synthesis

Detecting a failure is not sufficient for robust execution; the system must also generate a cor-
rective policy to restore task feasibility. Recovery behavior synthesis converts detection sig-
nals into actionable plans, enabling the robot to resume or complete the task. Approaches
fall into three broad categories: rule-based, learning-based, and hybrid neuro-symbolic
methods.

33

Rule-based synthesis

Symbolic planners generate corrective behaviors from skill annotations defining precon-
ditions and postconditions. Reactive planners can backchain from the failure point to
construct a BT that restores goal feasibility [10, 107]. Frameworks like SkiROS2 support
modular recovery using this approach, which is widely applied in manipulation, naviga-
tion, and human-robot interaction [23, 32]. Rule-based synthesis is fast, interpretable, and
verifiable but brittle when facing novel or ambiguous failures.

Learning-based synthesis

Learning-based methods derive recovery policies from data rather than hand-coded logic.
RecoveryChaining [108] employs hierarchical reinforcement learning to recover from ex-
ecution failures, using a hybrid action space that switches between primitive actions and
nominal skills to return the system to a solvable state. Inverse Reinforcement Learning
from Failure (IRLF) [109] infers reward functions from both successful and failed demon-
strations, helping the robot recognize and avoid states leading to failure. Composition of
Conditional Diffusion Policies (CCDP) [110] leverages diffusion models conditioned on
failure events, steering generated actions away from previously unsuccessful regions and
composing multiple policies to handle long action sequences. These methods adapt well to
diverse scenarios but often require large datasets and lack formal safety guarantees.

Hybrid synthesis

Hybrid approaches combine symbolic structure with learning-based adaptability. RE-
COVER [88] uses ontology-driven reasoning to identify failure sources and invokes an
LLM-based re-planner to generate online recovery plans. ReplanVLM [100] performs
dual-loop error correction, where external correction reacts to observed failures by regener-
ating updated task plans. Code-as-Monitor [95] compiles task constraints into executable
runtime checks, providing verifiable structure that can support symbolic replanning but
does not natively generate recovery behaviors.

Our unified framework [3] integrates both symbolic and data-driven components in a
two-phase process. During planning, behavior trees are statically validated using VLM-
generated summaries, and missing preconditions trigger automatic subtree insertion via
reactive planning. During execution, a runtime monitor tracks skill outcomes and scene
graph updates; if a violation is detected, the reactive planner grafts a corrective subtree, us-
ing VLM input to select or generate appropriate skills. Recovery skills are further optimized
using reinforcement learning by tuning the parameters of BTMG representations [9].

34

Trade-offs

Rule-based methods are efficient and verifiable but brittle. Learning-based approaches gen-
eralize better across unmodeled conditions yet require extensive data and are harder to
validate for safety. Hybrid methods seek to combine these strengths: RECOVER and Re-
planVLM pair language and perception with symbolic reasoning, while Code-as-Monitor
emphasizes verifiability at the cost of autonomous recovery generation. Our framework
offers proactive BT validation and reactive real-time adaptation, balancing interpretability
and generality, but depends on VLM accuracy and the completeness of the skill library.

In summary, synthesis methods trade off adaptability, verifiability, and efficiency. Robust
systems benefit from blending structured planning with data-driven policies, provided that
decision-making remains interpretable and computationally tractable.

4.4 Runtime Monitoring and Adaptation

Runtime monitoring is essential for robust robotic execution in dynamic and uncertain en-
vironments. It continuously evaluates whether the robot’s actions align with expected task
progress and anticipates or detects potential failures. By combining symbolic condition
checks with perceptual scene understanding, monitoring ensures that deviations are detec-
ted early so that the system can respond before they compromise task success. This section
reviews representative approaches to runtime monitoring and adaptation, which form the
backbone of reliable failure handling.

Monitoring techniques

Traditional monitoring relies on threshold-based checks of sensor signals. For example,
Shahsavari et al. [111] monitor quadcopter motor RPMs via a remote controller, where
failures are detected using the ChangeFinder algorithm and logistic regression, triggering
emergency control for safe landing.

Model-based approaches provide foresight by simulating future states. Liu et al. [112] learn a
latent-space dynamics model and a failure classifier to predict potential out-of-distribution
(OOD) states and upcoming failures within an interactive imitation learning framework.
This predictive capability enables preemptive intervention and reduces the need for con-
tinuous human supervision.

Symbolic and semantic monitoring operates at a higher abstraction level. Code-as-Monitor
[95] compiles task constraints into runtime assertions, effectively turning specifications into
self-checking execution. AHA [93] uses a VLM to determine whether the current scene still

35

satisfies task preconditions and flags violations as potential failures.

These techniques collectively span low-level sensor checks, predictive modeling, and high-
level semantic reasoning.

Adaptation mechanisms

Adaptation mechanisms define how a system responds after a failure or a risk of failure is
detected. They involve modifying the robot’s behavior to recover, either by switching to a
safe state, replanning, or issuing corrective actions.

RecoveryChaining [108] trains hierarchical reinforcement learning policies to recover from
execution failures. When a failure is detected (e.g., object slip or collision), the recovery
policy steers the robot to a nearby safe state and then transitions control back to the nom-
inal policy to complete the task. ReplanVLM [100] employs a dual-loop error correction
strategy. Internal error correction inspects the current code and task plan to fix errors
proactively, while external error correction reacts to observed failures by regenerating plans
based on the updated environmental state. RECOVER [88] leverages ontology-driven sym-
bolic reasoning to identify failure points, then invokes an LLM-based re-planner to generate
a recovery plan online without resetting the environment.

Runtime monitoring and adaptation in our framework

Our framework unifies symbolic and perceptual monitoring with reactive adaptation in a
single runtime loop [3]. At each BT tick, a VLM verifies pre- and postconditions against
the scene graph. If a violation is found, the reactive planner grafts a corrective subtree,
selecting from existing skills or generating new ones with VLM guidance. The scene graph
and execution history are updated continuously, enabling causal reasoning and real-time
recovery without interrupting execution. See Section 11 for further details.

36

5 Vision-Language Models for Robot Reasoning

VLMs are transforming robotic reasoning by unifying perception and decision-making.
They jointly encode visual and textual inputs into a shared representation, allowing robots
to interpret scenes, understand instructions, and generate task-relevant insights in complex
environments.

By aligning visual observations with language-based semantics, VLMs enable robots to ex-
tract symbolic cues, reason about affordances, infer goals, and support dynamic replan-
ning or failure recovery, capabilities that go beyond hand-crafted perception pipelines and
predefined rules. These strengths make VLMs well-suited for embodied agents requiring
interpretable, adaptive, and data-driven reasoning in real-world tasks.

This section introduces the foundations of VLMs and their applications in robotics. We first
review the technical architecture of modern VLMs, then examine their role in instruction
following, policy generation, scene understanding, and failure handling, showing how they
support both reactive and deliberative reasoning within the unified framework of this thesis.

5.1 Technical Foundations of Vision-Language Models (VLMs)

Foundation models are large-scale pre-trained neural networks that generalize across diverse
tasks with minimal task-specific adaptation [113]. In natural language processing, autore-
gressive models such as GPT-3/4 [114, 115] and PaLM [116] exhibit strong generative and
reasoning abilities, while masked language models like BERT [117] and T5 [118] excel at
contextual representation learning. Extending this paradigm, VLMs jointly encode visual
and textual inputs, enabling tasks such as image captioning, visual question answering,
semantic scene understanding, and high-level reasoning for robotics.

A typical VLM consists of an image encoder (e.g., ResNet [119] or ViT [120]), a text en-
coder (e.g., BERT or GPT-style transformer), and a multimodal fusion module [121]. Based
on the fusion strategy, VLMs are generally categorized into early-fusion, late-fusion, and
cross-modal attention models [122, 123]. Early-fusion models combine low-level feature
embeddings from multiple modalities at the input stage, which allows joint learning but
risks interference when signals are misaligned. Late-fusion models process each modality
independently before merging their high-level representations, preserving modality-specific
learning but limiting cross-modal interactions. Cross-modal attention models, such as
MulT [122], allow one modality to attend to another during intermediate layers, yielding
richer joint representations and supporting temporal and spatial reasoning.

Building on these fusion strategies, VLMs are further divided into contrastive and gen-
erative families. Contrastive VLMs, such as CLIP [124] and ALIGN [125], align image

37

and text embeddings by maximizing the similarity of paired samples and minimizing it for
unpaired ones. This approach enables open-vocabulary classification, zero-shot recogni-
tion, and image-text retrieval. Generative VLMs, including Flamingo [14], BLIP-2 [126],
and MiniGPT-4 [127], adopt encoder-decoder or decoder-only architectures that generate
textual or multimodal outputs conditioned on visual inputs. This design supports tasks
such as captioning, visual question answering, and instruction following. Representative
architectures are shown in Figure 10.

VLMs are typically trained on large-scale image-text datasets such as LAION-400M [128]
and CC3M [129], using objectives that include contrastive loss, masked language model-
ing, image-text matching, and next-token prediction [126, 127]. Recent methods improve
efficiency by freezing vision encoders and training lightweight adapters or Q-Former mod-
ules [126]. Some approaches further integrate external LLMs, such as Vicuna or OPT,
enhancing language reasoning while grounding visual inputs through projection heads and
prompt tuning [127, 130].

In robotics, VLMs bridge low-level perception and high-level reasoning by mapping raw
visual inputs to structured or symbolic representations. This alignment of perceptual fea-
tures with language-based semantics enables object grounding, semantic scene understand-
ing, task planning, and failure recovery. Consequently, VLMs provide a powerful founda-
tion for interpretable and adaptive control in real-world robotic systems [131, 132].

5.2 Applications in Robotics

VLMs are becoming central to embodied AI because they unify visual perception with
language-grounded reasoning, allowing robots to interpret instructions, perceive complex
environments, and make context-aware decisions. Their applications in robotics can be
grouped into four main areas.

Instruction following involves translating high-level natural language commands into ac-
tionable robot behaviors. Early examples such as SayCan [133] and PaLM-E [11] demon-
strated zero-shot execution on mobile-manipulation platforms by connecting language un-
derstanding to waypoint-level control. More recent systems like OpenVLA [134] and RT-
2 [17] extend this approach by fine-tuning vision–language–action (VLA) models on large-
scale video–text datasets, enabling robots to follow instructions with minimal task-specific
retraining.

Policy generation from multimodal context builds on this capability by conditioning dif-
fusion or autoregressive policies directly on both language and egocentric visual inputs.
Models such as PerAct [135], VIMA [136], and RT-1 [16] use this approach to perform
table-top manipulation and tool-use tasks without the need for explicit reprogramming,

38

(a) CLIP / ALIGN

Image Encoder Text Encoder

Image Embedding Text Embedding

Contrastive Loss
(b) BLIP-2

Image Encoder Text Encoder

Q-Former /
Cross-Attention

Decoder / LLM

(c) Flamingo

Frozen ViT
Causal Decoder

(LLM)

Multimodal Output

Figure 10: Representative VLM architectures. (a) CLIP-style models align image and text
embeddings through a contrastive objective. (b) BLIP-2 uses a Q-Former to fuse
modalities before decoding with an LLM. (c) Flamingo combines a frozen vision
encoder with a causal language decoder to produce multimodal outputs.

demonstrating how VLM-based policies can generalize across scenarios.

Dynamic replanning and failure handling uses VLMs at runtime to recover from devi-
ations or errors. ReplanVLM [100] and AHA [93] detect goal divergence and propose
revised action sequences by querying a frozen VLM with updated environmental context.
Our own work [8] follows a similar principle but integrates VLM queries into a behavior
tree execution framework, where unmet preconditions are automatically reformulated as
language prompts for corrective skill insertion.

Scene understanding and affordance reasoning focuses on extracting structured represent-
ations from complex visual scenes. CLIPORT [131] and the scene graph pipeline of Chen

39

et al. [137] convert RGB-D observations into symbolic object–affordance graphs, which
downstream planners exploit for pick-and-place, tool selection, and navigation.

Together, these applications illustrate a shift from rigid, hand-coded pipelines toward data-
driven, interpretable, and context-aware robotic reasoning, where VLMs provide the se-
mantic bridge between perception, planning, and action.

5.3 Scene Understanding and Goal Inference

Scene understanding is crucial for autonomous robots operating in unstructured environ-
ments, as it provides the semantic context needed for decision-making. VLMs facilitate this
process by aligning visual inputs and language prompts in a joint embedding space [124,
138], enabling zero-shot recognition, object localization, and scene interpretation (see Sec-
tion 5.1).

Models such as CLIP [124] and ALIGN [138] can match textual queries to visual regions
and generalize across tasks like classification, segmentation, and captioning [139]. In ro-
botics, this ability allows agents to extract task-relevant cues from cluttered or ambiguous
environments, supporting both action selection and planning. Systems like SayCan [133]
and VIMA [136] leverage this capability to score the feasibility of actions and ground plans
in perceptual context, effectively linking what the robot sees to what it can do.

Recent work extends VLM outputs into structured semantic representations such as scene
graphs or object–affordance maps [137]. These representations capture which objects can
be manipulated, what actions are plausible, and which goals are implicitly supported by
the current environment, enabling downstream planners to operate without handcrafted
perception modules. This approach aligns with this thesis’s focus on integrating symbolic
planning with VLM-informed scene understanding.

By transforming raw multimodal inputs into high-level semantic context, VLMs provide
the foundation for both reactive control and deliberative goal inference, bridging perception
and reasoning in real-world robotics.

5.4 Failure Detection and Explanation with VLMs

VLMs provide a flexible mechanism for high-level introspection in robotic systems by
identifying and explaining task failures directly from visual and contextual input. Unlike
traditional rule-based monitors that rely on predefined conditions, VLMs can reason over
open-ended observations to detect unexpected deviations and offer interpretable explana-
tions. Building on the failure models introduced in Section 4.1, this subsection examines

40

how VLMs enable detection and explanation through perceptual queries and symbolic reas-
oning.

A common strategy is to compare expected and observed scene states using open-vocabulary
object recognition. Models like CLIP [124] can detect missing or misplaced objects without
requiring explicit class labels, identifying discrepancies such as “cup not found on tray” or
“object grasped incorrectly” via prompt-based queries [139]. This capability allows robots
to flag execution errors even in previously unseen scenarios.

Beyond simple visual checks, VLMs can participate in goal verification and policy monit-
oring loops. Systems such as SayCan [133] and VIMA [136] prompt VLMs with templates
like “Is the target object present?” or “Was the goal achieved?” to detect precondition viol-
ations and assess task progress. This enables structured failure reporting and supports the
triggering of fallback actions when tasks deviate from their intended plan.

Our framework [8] extends this idea to real-time detection of unknown failures. It con-
tinuously monitors preconditions and postconditions during task execution, using VLM
outputs to interpret the cause of anomalies and to guide corrective actions, including dy-
namic insertion of missing skills. This approach combines visual cues with symbolic context
to recover from both anticipated and unanticipated execution errors.

By transforming multimodal observations into actionable diagnostic insights, VLMs en-
able generalizable and interpretable failure detection. Their ability to detect discrepancies
without exhaustive supervision makes them a powerful tool for robust execution in dynamic
and unpredictable environments.

41

Part I – Adaptive Skill Learning for
Robot Autonomy

This part of the thesis addresses how to design robot policies that are easy to configure,
robust in performance, and suitable for long-term deployment. This includes three re-
search directions: (i) structuring behavior policies so they remain modular, interpretable,
and tunable (RQ1.1), (ii) adapting these policies to new task variations without retraining
by learning task-parameter mappings (RQ1.2), and (iii) efficiently predicting optimal para-
meters for unseen tasks on-the-fly to enable responsiveness in real-world settings (RQ1.3).

6 Structuring Robot Policies for Modularity, Interpretability, and
Data-Efficient Learning

This chapter addresses RQ1.1: How can robot behavior policies be structured to remain mod-
ular, interpretable, and tunable for varying tasks? We use the BTMG policy formulation,
which combines the symbolic structure of behavior trees with parameterized motion gen-
erators, to design policies that are both interpretable and adaptable. Paper I: Skill-based
Multi-objective Reinforcement Learning of Industrial Robot Tasks with Planning and
Knowledge Integration supports our answer to this question.

6.1 Motivation and Positioning within Existing Work

Robotic control can be analyzed at multiple abstraction levels, ranging from motion tra-
jectories to symbolic skills and task-level plans (see Section 1). Low-level controllers (e.g.,
policies in RL [50]) generate trajectories by mapping states to actions, while symbolic
policies (e.g., skill sequences [6]) operate over semantically meaningful actions. Many ex-
isting robot systems are either hard-coded at the symbolic level (offering no adaptability)
or learned directly at the trajectory level through end-to-end methods such as deep neural

43

policies, which typically require large amounts of data, are hard to debug, and produce
opaque behavior [140]. Data-driven motion primitives such as DMPs [141, 142, 143, 20,
144] offer interpretable, modular trajectory representations. However, they operate at the
motion level and do not natively support symbolic composition or task-level reasoning.

Industrial robots, in particular, must balance safety, predictability, and adaptability. They
need to be quick to reconfigure for new tasks, easy to understand, and able to exploit digital
twins and symbolic knowledge about their environment [43, 28, 145]. These requirements
are difficult to meet simultaneously. Conversely, manually engineered control strategies are
brittle and inflexible when the task changes [146].

Several prior works attempt to bridge symbolic planning with learning. Approaches like
PLANQ-learning [147], PEORL [148], SPOTTER [149], and HIP-RL [150] combine sym-
bolic planners with model-free reinforcement learning but are mostly applied in discrete or
simulated environments. Other methods such as [46] evolve behavior trees using genetic
programming. In contrast, in Paper I, we retain a fixed BT structure and focus on optimiz-
ing a small number of interpretable parameters in leaf-level motion generators. Later works
(Papers V and VI) extend this approach by allowing automatic generation and extension of
the BT structure itself.

Our work also contrasts with black-box policy representations [59, 140], offering instead a
human-readable symbolic scaffold with semantic parameter labels to support policy selec-
tion. Compared to DMPs, which encode point-to-point motions using attractor dynamics,
our method operates at a higher level of abstraction. While DMPs have proven effective
for trajectory generalization, they remain at the motion level and do not support symbolic
reasoning or task-level composition. In contrast, we wrap MGs inside symbolic skills and
compose them using BTs, enabling structured, explainable, and reactive execution across
multi-step tasks.

RQ1.1 asks how to design robot behavior policies that are both interpretable and adaptable
to specific task contexts. Interpretable policies benefit from structured representations that
humans can read and reason about. Adaptability requires tuning motion behavior to match
the demands of a task instance. We adopt a layered representation where a behavior is com-
posed of symbolic skill sequences with tunable parameters. These parameters often need
to satisfy multiple objectives, such as maximizing success while minimizing force, which
motivates the use of data-efficient optimization. We use symbolic planning to generate
parameterized skill sequences and adapt those parameters using multi-objective bayesian
optimization. Before presenting our approach in detail, we discuss how this structure sup-
ports interpretability, tunability, and modularity in line with RQ1.1.

44

ParametersRobot State

Motion Configuration

"Motion 3" <→>

?

"Motion 2" <→> "Motion 1" <→>

ConfigMotion ConfigMotion ConfigMotion

Ø

Skill Manager

World
Model

Planner

SkiROS

Learned
Policies

GUI

Learning
Scenario 2.

4.

5.

6. Execute

Learning

Policy
Optimizer

Reward

Simulation

Control 500 Hz

Physics 1000 HzP
ar

am
et

er
s

Policy Update
10 Hz

1. Goal

Operator

3. Rewards

Figure 11: Overview of the skill–planning–learning pipeline (adapted from Paper I, Fig. 2). A
symbolic goal is translated into a sequence of skills, each represented using the BTMG
format. Tunable parameters of motion generators are optimized using MOBO, and the
resulting pareto-optimal policies are deployed on the robot.

6.2 Structuring Policies with BTMG and Parameter Optimization

Our solution builds on symbolic BTs, where some leaf nodes invoke MGs with tunable
parameters (See Section 2.4). This structure provides a natural separation between sym-
bolic logic and continuous control. The skill parameters exposed for learning such as inser-
tion force, spiral radius, or push offset are referred to as extrinsic parameters of the BTMG
representation.

These parameters are tuned using bayesian optimization in a multi-objective setting, where

45

multiple competing goals (e.g., task success, speed, force) must be balanced. We use BO
due to its sample efficiency and ability to handle noisy and expensive evaluations, especially
in robotics. This learning layer complements the symbolic BT structure, enabling data-
efficient and targeted adaptation of specific behaviors.

The key characteristics of the approach are:

• Modularity: The BT encodes the policy as a sequence of reusable symbolic skills.

• Interpretability: The BT structure is transparent and readable, while each parameter
has a semantic label.

• Tunability: Parameters of motion generators can be adjusted to better match task-
specific dynamics.

• Data-efficient learning: A small number of parameters are optimized using Bayesian
Optimization.

This modular and structured formulation directly supports the goals in RQ1.1.

6.3 Method Overview

Our method integrates symbolic task planning with parameter optimization through learn-
ing. This optimization may be performed in simulation or on the physical robot. However,
simulation is typically preferred due to safety, time, and other cost considerations.

The workflow is as follows (see Fig. 11):

1. Goal specification: The operator defines a symbolic goal using PDDL. For instance,
for the peg-in-hole task, the goal is: (skiros:atskiros:Peg-1skiros:BoxWi
thHole-1)

2. Plan generation and parameter identification: A PDDL planner is used to generate
a sequence of skills for the goal. Each skill is represented using the BTMG represent-
ation. The BT nodes that involve MGs are identified along with the parameters that
require tuning. This information is specified in the SkiROS2 skill models, which
define the motion generator used by each skill and list the tunable parameters ex-
posed for optimization. (See Section 2.5).

3. Learning scenario specification: The user defines a JSON configuration file spe-
cifying which parameters to optimize, their value ranges, and the associated reward
functions for each objective. An example configuration for the peg-in-hole task is
shown in Listing 1.

46

4. Reward assignment: Each objective (e.g., success, force) is defined using one or more
reward functions to guide policy learning.

5. Learning phase: Bayesian Optimization is used in a multi-objective setting to eval-
uate policies and learn optimal parameters (see Sections 3.3 and 4.4).

6. Pareto front and deployment: The learned policies are shown on a Pareto front,
where each axis corresponds to an objective (e.g., success vs. force). Non-dominated
policies (those not worse on all objectives) are retained. These policies can then be
selected by the user and deployed directly on the robot.

1 {
2 application_name : peg_insertion_task ,
3 optimizer : hypermapper ,
4 optimizer_config : {
5 input_parameters : {
6 PathVelocity : { values : [0.0, 0.3], parameter_type : real },
7 PathDistance : { values : [0.0, 0.03], parameter_type : real },
8 Radius : { values : [0.0, 0.07], parameter_type : real },
9 Force : { values : [-10, 0.0], parameter_type : real }

10 }
11 },
12 rewards : {
13 FixedSuccessReward : {
14 objective : insertion_reward , type : FixedSuccessReward , value :

8.0
15 },
16 force_application : {
17 objective : force , type : ForceApplicationReward , negative : true
18 },
19 GoalDistanceTranslationReward : {
20 objective : insertion_reward , type : GoalDistanceTranslationReward

, ...
21 },
22 linear_distance_to_box : {
23 objective : insertion_reward , type : LinearDistanceToBoxReward ,

...
24 }
25 },
26 ...
27 }

Listing 1: Excerpt from the JSON configuration used to define the peg-in-hole task. It specifies
the parameters to be optimized (e.g., Force, Radius), their ranges, the optimization
backend (in this case, HyperMapper), and the reward functions for each task objective.
Each reward is linked to an objective such as insertion success or applied force.

47

6.4 Experimental Evaluation

To evaluate our approach, we consider two contact-rich tasks commonly encountered in
industrial settings.

Peg-in-hole Task. The goal is to insert a peg into a box with a hole (Figure 12). The
tunable parameters include downward insertion force, path velocity, path distance, and spiral
radius. The last three belong to an Archimedean spiral strategy used to search for the hole
when contact is uncertain. The objectives of the peg-in-hole task are: (i) maximize insertion
success and (ii) minimize applied force to reduce damage risk.

Figure 12: Experimental setup for the peg-in-hole task, where a peg (black) is inserted into a box
(orange) with a hole.

The first objective is captured using three rewards: a fixed success reward for successful
insertion, a goal distance translation reward that increases with proximity to the hole, and
a linear distance to box reward that encourages approaching the box. The second objective

48

(force minimization) uses a single reward that measures how much force is applied over
time during the execution.

Push Task. The goal is to push a rectangular object to a specified goal (Figure 13). The
learnable parameters include start and goal offsets in the x and y directions. The objectives
of the push task are: (i) maximize push success and (ii) minimize applied force, to ensure
effective and safe completion.

Figure 13: Experimental setup for the push task, where a rectangular block (cyan) is moved to a
designated goal position.

The first objective uses three reward terms: goal distance translation (distance from object
to goal), object position reward (alignment with the target), and object orientation reward
(correct final orientation). The force objective uses the same force applied over time during
execution metric as in the peg-in-hole task.

To benchmark the learning procedure, we compared against three baselines, chosen to re-
flect common industrial and research practices:

• Planning-only: symbolic plan with default skill parameters. This reflects the per-
formance of purely deliberative planning without adaptation.

• Random sampling: parameter values sampled randomly within valid bounds. This
serves as a sanity check for the difficulty of the search space and establishes a naive
lower bound.

49

• Robot operators: parameters manually tuned by experienced roboticists. This rep-
resents expert-guided tuning, which is the current practice in many industrial setups
[146].

Pla
nn

ing

Ran
do

m

Pa
ram

ete
rs

Rob
ot

Ope
rat

ors

Cho
sen

 Le
arn

ed

Pa
ram

ete
rs

0

20

40

60

80

100

Su
cc

es
s R

at
e

** - *
(a) Push

Pla
nn

ing

Ran
do

m

Pa
ram

ete
rs

Rob
ot

Ope
rat

ors

Cho
sen

 Le
arn

ed

Pa
ram

ete
rs

**** -

(b) Peg

Figure 14: Success rate comparison against baselines for both tasks. Box-and-whisker plots show
performance variability.

Our approach outperformed all three baselines (Figure 14). In the peg-in-hole task, learned
policies achieved 96% success on unseen starts (versus 52% for operators), while using 16.6%
less force and completing task 18.1% faster. In the push task, learned policies achieved 100%
success across all test starts, including previously unseen configurations, whereas human
operators only reached 50–100% success depending on their parameter set. Moreover, our

50

method eliminated the need for manual tuning, which took operators on average over 16
minutes and 11 trials per task. Full quantitative analysis and plots can be found in Paper I.

6.5 Discussion

Our approach answers to RQ1.1 by demonstrating how modular and interpretable BT-based
policies can be automatically tuned using a small number of parameters, resulting in high
task performance. The framework bridges symbolic planning with parameter optimization,
providing both structure and adaptability.

One key insight is that semantic parameter names such as ‘downward force’ or ‘spiral radius’
enabled operators to interpret learned behaviors and meaningfully assess trade-offs when
selecting between candidate solutions. This interpretability proved valuable in selecting
solutions from the Pareto front without needing to inspect raw policy behavior. Another
insight is that symbolic planning significantly constrained the search space by eliminating
irrelevant or fixed parameters, thereby improving the efficiency and safety of the learning
process.

At the same time, the approach has limitations. Reward functions still require expert know-
ledge to define and balance, particularly when multiple objectives are involved. Learning
was performed at the level of individual skills, without modeling interactions or depend-
encies between them. Finally, the simulation-based learning relied on accurate contact
dynamics, which may limit the transferability of policies to real-world settings in some
scenarios.

Despite these limitations, the overall framework offers a practical and data-efficient path
to producing modular, interpretable, and tunable behavior policies. In the next chapter,
we extend this foundation to address RQ1.2 by learning to generalize such policies across
varying task conditions.

51

7 Generalizing Modular Policies

This chapter addresses RQ1.2: How can modular, interpretable robot policies be made to gen-
eralize over task variations without retraining? Building on the BTMG policy formulation
introduced in Chapter 6, we now extend this structure to adapt across multiple varying
instances of a task by learning mappings from scenario parameters to optimal policy para-
meters. Paper II: Generalizing Behavior Trees and Motion-Generator (BTMG) Policy
Representation for Robotic Tasks Over Scenario Parameters supports our answer to this
question.

7.1 Motivation and Research Framing

While structured BTMG policies allow skill-level modularity and tuning (Chapter 6), they
require optimizing parameters for each new variation of a task. For instance, if a robot
learns to push an object to one location, it must relearn suitable parameters for each new
goal. In real-world deployments, such as flexible manufacturing, this re-optimization is
impractical because it incurs time and safety costs, disrupts workflow, and often requires
repeated human involvement[145]. When task configurations frequently change, such over-
head makes online adaptation infeasible. RQ1.2 asks: Can we reuse the structure of a learned
BTMG policy and generalize its parameters to new task variations without retraining?

Our core idea is to model the relationship between observable task features (e.g., object
pose) and behavior parameters (e.g., push offsets). Observable task features are variables
describing the external task context, such as target object positions or goal poses, which
we denote as scenario parameters. Behavior parameters, in contrast, are values within the
BTMG policy (e.g., velocities, offsets) that determine how a skill is executed for that con-
text. These are referred to as extrinsic parameters in our formulation (see Section 2.4).

Learning a mapping between scenario parameters and extrinsic BTMG parameters allows
the robot to generalize its behavior across varying task instances by adapting motion execu-
tion without modifying symbolic structure. This approach draws inspiration from similar
efforts in DMPs, where gaussian processes have been successfully used to generalize motion
parameters over varying conditions [151, 152, 153, 78]. Since MGs and DMPs both oper-
ate at the trajectory level (see Chapter 1), we extend this idea to generalize parameterized
BTMG policies.

Note: In this and subsequent chapters, we use the terms scenario parameters and task vari-
ations interchangeably to describe the same concept: observable variables defining the task
instance.

52

7.2 Approach: Gaussian Process-Based Parameter Generalization

We use GP [78] regression to map scenario parameters to BTMG parameters. Each s
defines a different task instance. The challenge is to find a function f : s 7→ θ that maps
from s to extrinsic BTMG parameters θ ∈ Rd. The policy structure itself, represented as
a behavior tree, remains fixed across task instances. Figure 15 illustrates this mapping.

Figure 15: Mapping scenario parameter space (pink) to BTMG parameters (gray) using gaussian
processes (yellow).

The training pipeline involves:

1. Collecting training pairs (s,θ) using the same data collection strategy as in Chapter 6:
BO is used to learn extrinsinc BTMG parameters for each training task instance.

2. Training a GP in a supervised learning fashion with scenario parameters as input
and corresponding extrinsic BTMG parameters as output. This realizes the mapping
function f : s 7→ θ.

3. At runtime, querying the GP with a new scenario parameter vector s to infer tuned
extrinsic parameters θ for the BTMG policy.

53

This allows one-shot parameter inference for novel task instances while preserving symbolic
interpretability.

7.3 Experimental Setup

We evaluated this method on the same pushing task used in Chapter 6, where a triangular
object must be moved to various 2D goal positions using a push skill.

However, we made one key modification: the goal corner used previously in Figure 13
was removed. This was done for two reasons. First, the corner simplified execution by
guiding the object into the goal area, which could mask differences between parameter
values. Second, in this chapter we introduce variable goal locations as scenario parameters,
which made the corner unreliable and inappropriate for generalization.

Figure 16: a) Red push vector defined by extrinsic offsets. b) Setup showing training and test goal
locations.

To simplify the setup and focus on understanding the effect of task variation, we fixed
the initial object position and varied only the 2D goal location. This goal position forms
the scenario parameter vector s. The push behavior is parameterized using four extrinsic

54

parameters, start and goal offsets in x and y directions (sx, sy, gx, gy) that together define
the push vector (Figure 16). These offsets determine how the robot approaches and moves
the object.

Training and Generalization: We generated training and test configurations using Latin
Hypercube Sampling (LHS), a space-filling method that ensures efficient coverage of con-
tinuous domains [154]. Each sample corresponds to a unique 2D goal pose. For every
configuration, we used BO (as in Chapter 6) to learn the BTMG extrinsic parameters. The
resulting (s,θ) pairs were used to train the GP model.

The GP was then queried with unseen goal poses to produce parameter predictions.

(a) Original space (GP performs well) (b) Expanded space (GP underfits)

Figure 17: Effect of scenario space size on generalization. a) GP learns smooth mappings in small
space. b) GP underfits when scenario space is expanded and training data is insufficient.

7.4 Discussion

This chapter shows that modular BTMG policies can be generalized to new task instances
using GP-based mappings from scenario parameters to extrinsic motion parameters. The
learned mappings allowed the same symbolic policy structure to adapt across different goal
configurations without retraining.

Our results suggest that GPs offer reliable generalization in low-dimensional scenario spaces
with limited training data. This is beneficial for practical deployment, where collecting new
data is costly. However, we observed that as the scenario space grows larger or becomes
higher-dimensional, the GP begins to underfit, predicting similar outputs for distinct in-
puts (Figure 17). This limitation arises from sparse training data and the fact that only the

55

final output from each optimization run was used for GP training, discarding all interme-
diate samples.

To address these issues, we propose two directions: (1) modifying the GP input–output
structure to incorporate more task features and (2) using all data collected during optimiz-
ation, not just the final solutions. These improvements are explored in the next chapter as
part of answering RQ1.3.

56

8 Real-Time Prediction of Policy Parameters

This chapter addresses RQ1.3: Can we design a predictive model that enables real-time infer-
ence of optimal policy parameters for unseen task variations? Building on Chapters 6 and 7, we
now aim to eliminate the latency associated with re-optimization at deployment. The goal
is to infer parameters on-the-fly with minimal computation and no retraining. Paper III:
Learning to Adapt the Parameters of Behavior Trees and Motion Generators (BTMGs)
to Task Variations supports our answer to this question.

8.1 Motivation and Research Framing

In Chapter 7, we showed that GP [78] models could generalize extrinsic BTMG parameters
to new task variations, but only using the final optimized sample from each BO run. This
discarded the intermediate samples, limiting data use and weakening performance as the
variation space grew more complex.

RQ1.3 addresses this limitation by asking whether optimal parameters can be efficiently
predicted for unseen task variations on-the-fly, enabling fast and robust real-world deploy-
ment. This is especially critical in flexible manufacturing or logistics, where robot tasks
frequently change and must be handled reliably without retraining.

Prior work in trajectory-level control has explored similar ideas. GP-based models have
been used to adapt dynamic movement primitives (DMPs) to new goals [155, 156, 157],
while ProMPs [158] and MoMPs [159, 160] allow trajectory adaptation using probabilistic
inference or weighted combinations of primitives. These approaches demonstrate that sur-
rogate prediction, probabilistic inference, and library-based adaptation can generalize mo-
tion behavior effectively.

Inspired by this line of work, we extend these ideas to the symbolic skill level. Rather than
directly regressing parameters for each new task variation, we predict reward and feasibility
of candidate parameterizations and use lightweight optimization to select the best one. This
approach forms the basis for our model, PerF, described next.

8.2 Approach: Surrogate Inference for Real-Time Parameter Prediction

To address RQ1.3, we propose PerF (Performance and Feasibility), a surrogate-based model
for real-time inference of BTMG parameters. PerF uses all training data from earlier BO
runs (Chapter 6), repurposing it to train a surrogate model that can be efficiently queried
during deployment.

57

Surrogate-Based Reformulation

Given a task variation v and candidate BTMG parameters θe, PerF predicts the expected
performance and feasibility of executing the policy and optimizes over this surrogate. It
comprises:

• Performance model Ĵ(θe,v): A gaussian process (GP) regression model that estim-
ates the task reward.

• Feasibility model F̂ (θe,v): A weighted support vector machine (SVM) that classi-
fies whether the parameters satisfy task-specific feasibility constraints.

Both models are trained using the full set of intermediate samples from BO runs. For the
performance model, we collect all (task variation, parameter, reward) tuples. For the feas-
ibility model, we evaluate each parameterization by executing the corresponding BTMG
policy, determining feasibility based on task-specific criteria such as collisions or failure to
reach the goal. Alternatively, feasibility information can be obtained directly from the op-
timization framework used during BO. In our case, we use HyperMapper 2.0 [161], which
supports modeling unknown feasibility constraints through classification models as part of
its surrogate-assisted search process.

GPs are chosen for performance modeling due to their ability to generalize under limited
data [78]. Weighted SVMs [162] are selected for feasibility classification, as they handle
class imbalance and sparse feasible regions effectively.

This formulation offers several benefits: it reuses existing data without new trials, captures
reward structure more accurately than single-point models, and integrates empirical reward
functions with task-specific feasibility checks.

Surrogate Optimization for Real-Time Inference

To predict parameters for a new variation v, we define a surrogate reward:

r̂sur = Ĵ(θe,v)− (1− F̂ (θe,v)) · µ

where µ is a penalty for infeasible configurations. This function is optimized using Limited-
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [163], a memory-efficient
quasi-Newton method well-suited for problems with moderate dimensional inputs. It uses
low-rank updates to approximate second-order derivatives without storing the full Hessian.

To obtain the BTMG parameters for a new variation, we solve the following equation:

58

θ∗
e = argmax

θe

r̂sur

where the optimization is performed entirely in surrogate space, enabling real-time infer-
ence without further interaction with the robot. The model and workflow are summarized
in Figure 18.

Figure 18: GP-based direct model (Chapter 7) shown in red. Right: PerF model with GP reward
and weighted SVM feasibility shown in green. An optimizer infers parameters
maximizing the surrogate reward.

59

8.3 Experimental Setup and Evaluation

We tested PerF on two tasks: push and obstacle avoidance. The push task follows the setup
used previously (Chapters 6–7), where a KUKA iiwa robot pushes a triangular object using
a cylindrical peg (Figure 19). Here, we additionally varied the object’s initial position across
test cases. For details on the obstacle avoidance task, refer to Ahmad et al. [7].

Figure 19: Experimental push setup on a KUKA iiwa. Colored boards mark start and goal poses.
A triangular object is pushed with a cylindrical peg.

We evaluated PerF against four baselines:

• Learned: Policies retrained from scratch using RL (upper-bound performance).

• Direct: GP model from Chapter 7, trained using only final BO outputs.

• Nearest Neighbor: Applies parameters from the closest training variation based on
Euclidean distance.

• Single Policy: Reuses all training policies across test cases to check for a universal
solution.

In simulation, PerF achieved an 86% success rate, closely matching Learned (97%) and sig-
nificantly outperforming Direct (65%), Nearest Neighbor (52%), and Single Policy (39%)(Fig-

60

ure 20). On the real robot, PerF slightly exceeded the Learned baseline, indicating better
generalization and smoother physical execution (Figure 21). Inference time averaged under
6 seconds, compared to over 20 minutes for RL-based training. For further results, see
Ahmad et al. [7].

Lea
rne

d

97
.0% Pe

rF

86
.0%

Nea
res

t

Neig
hb

or

52
.0%

Dire
ct

65
.0% Sin

gle

Po
licy

38
.6%

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

(a) Position Error [m]

Lea
rne

d

97
.0% Pe

rF

86
.0%

Nea
res

t

Neig
hb

or

52
.0%

Dire
ct

65
.0% Sin

gle

Po
licy

38
.6%

0

25

50

75

100

125

150

175

(b) Orientation Error [deg]

Figure 20: Simulation performance: position and orientation errors across baselines. PerF
matches Learned and outperforms others.

8.4 Discussion

PerF shows that real-time parameter inference is possible without retraining by evaluating
candidate parameters through surrogate modeling. By decoupling reward prediction from
feasibility and training both models on full BO data, PerF enables high-quality inference
with minimal compute cost. Its data reuse strategy leads to faster, more robust adaptation

61

than prior approaches.

Lea
rne

d

80
.0% Pe

rF

86
.0%

Nea
res

t

Neig
hb

or

46
.0%

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

(c) Position Error [m]

Lea
rne

d

80
.0% Pe

rF

86
.0%

Nea
res

t

Neig
hb

or

46
.0%

0

10

20

30

40

50

60

(d) Orientation Error [deg]

Figure 21: Real-robot results: PerF slightly outperforms retrained Learned policies.

Key insights include the importance of using intermediate learning samples to improve
generalization, and the role of feasibility classification in constraining exploration within
safe bounds. The use of surrogate optimization also allows principled integration of task
performance and safety into a unified objective.

Nevertheless, PerF assumes a fixed BT structure and known parameter bounds. It cannot
generalize across different symbolic plans or adapt to new tasks. Moreover, feasibility labels
require manual definition and may not cover all failure modes. These limitations motivate
future work on runtime monitoring, adaptive BT structures, and integration with failure
recovery systems.

62

Concluding Remarks on Adaptive Skill Learning (RQ1)

This part of the thesis addressed RQ1: How can we design modular, interpretable, and adapt-
able robot policies that generalize across task variations and enable real-time adaptation? The
investigation unfolded through three stages.

First, Chapter 6 demonstrated how robot policies can be structured using BTs and MGs,
forming BTMGs that offer a clear separation between symbolic control flow and low-level
motion adaptation. This modular design enabled interpretable and tunable policy repres-
entations that retained robustness across skill compositions.

Next, Chapter 7 showed that generalization across task variations can be achieved by learn-
ing mappings from task descriptors to policy parameters using GPs. This allowed BTMG
policies to adapt without re-optimization, supporting reuse and flexibility.

Finally, Chapter 8 proposed PerF, a model for real-time parameter inference. By evaluat-
ing candidate policies through a surrogate composed of performance and feasibility mod-
els, PerF eliminated retraining and delivered high-quality parameters in seconds, enabling
practical deployment.

Together, these contributions show that modular skill representations, data-efficient gen-
eralization, and lightweight inference methods can be combined to support adaptive robot
autonomy. While structural adaptation and failure recovery remain open challenges, the
methods developed here form a foundation for reliable behavior adaptation under known
task variations. These results also motivate the next part of the thesis, which focuses on
handling failure cases that lie beyond the training distribution.

63

Part II – Failure Detection,
Explanation, and Recovery

9 Structuring Modular and Adaptive Recovery Behaviors

This chapter addresses RQ2.1: How can recovery behaviors be designed to remain modular,
interpretable, and reusable when embedded into structured robot policies? The central chal-
lenge is to augment structured robot policies with failure handling while preserving the
modularity and tunability established in Part I. Our solution, detailed in Paper IV: Ad-
aptable Recovery Behaviors in Robotics: A Behavior Trees and Motion Generators (BTMG)
Approach for Failure Management, is to represent recovery behaviors using the same BTMG
abstraction as nominal skills. This enables unified learning, execution, and integration.

9.1 Motivation and Positioning within Existing Work

Industrial robotic tasks such as peg insertion, screwing, and part fitting often involve con-
tact interactions and tight tolerances, which make them susceptible to execution failures
even under nominal sensory and actuation conditions [9]. These failures are not due to
hardware breakdown or sensor noise but stem from environmental uncertainties or incor-
rect assumptions about the task state. As categorized in Chapter 4, we focus on execution-
level failures, which can be identified either during skill execution (e.g., peg slips mid-
insertion) or beforehand, pre-execution, when symbolic preconditions are violated (e.g.,
obstacle blocking the hole before action starts). In this chapter, and specifically in Paper
IV, we consider a restricted class of predefined execution failures, where failure types are
anticipated and modeled offline. The recovery behavior is selected accordingly, and we
begin from the assumption that the failure has already occurred. The goal is to encode
both the nominal and recovery components into a single symbolic skill that is modular,
interpretable, and adaptable.

65

Conventional failure handling in BTs relies on static fallback branches or recovery subtrees
handcrafted for specific scenarios. For instance, Wu et al. [97] design fixed recovery nodes
embedded in BTs, while De Luca et al. [164] construct explicit failure recovery routes in
navigation trees. While modular, these designs assume known failure types and lack support
for tuning behavior parameters to task conditions.

Recent research has explored hybrid methods that combine symbolic reasoning with learn-
ing. Pezzato et al. [165] integrate BTs with active inference to select recovery behaviors
based on belief updates, though the symbolic and learning layers remain loosely coupled.
Paxton et al. [37] introduce logical-dynamical BTs that embed robustness at the symbolic
level, yet these are statically compiled and lack runtime adaptation.

At the control level, researchers have developed reactive motion strategies to increase phys-
ical robustness, such as push recovery for quadrupeds [98], regrasping in manipulation [166],
or contact-force corrections [167]. These techniques enhance motion-level durability but
do not support symbolic planning or recovery reuse across different tasks.

In contrast, our approach encodes recovery behaviors within the same BTMG structure
used for nominal task skills [13, 9]. This unified representation enables symbolic planning,
modular reuse, and parameter learning. A symbolic PDDL planner is used to generate
recovery-augmented plans by composing production and recovery skills for each known
failure. Importantly, the approach adopts a selective tuning strategy, only the parameters
associated with the recovery action are learned (e.g., push force or grasp offset), leading
to adaptive yet data-efficient behavior synthesis. The remainder of this chapter details the
structure and evaluation of this framework.

9.2 Modeling Recovery in the BTMG Framework

Our approach to RQ2.1 models both production and recovery behaviors using the BTMG
framework. Production skills achieve task objectives (e.g., peg insertion), while recovery
behaviors address known failure types (e.g., obstacle removal or regrasping). Both are rep-
resented using the same BTMG structure and parameterized by extrinsic values such as
force magnitude, pose offsets, or compliance gains.

We operate under two core assumptions: (i) failure types are known and expected based
on prior task knowledge, and (ii) recovery behaviors can be constructed by composing and
tuning existing skills from the BTMG library. These assumptions enable the use of a fixed
BT structure combined with parameter learning of the MG part.

66

Planner Failures

 Small obstacle block
 Large obstacle block
 Peg dropped

Production
Skills

 Peg Insertion
 Engine Assembly
 Stacking

O
f
f
l
i
n
e

P
h
a
s
e

E
x
e
c
u
t
i
o
n

P
h
a
s
e

Recovery
Behaviors

 Pick-place
 Push
 Pick-Exchange

Successful
Executions

Failure
Instances

Case 2 Case 3 Case 4 & 5

RL

Case 1

Figure 22: Illustration of our approach: for a known failure, a symbolic planner composes a plan
using production and recovery skills which are represented in the BTMG format. BO
is used to tune policy parameters, after which the policy is deployed.

The method proceeds in two phases. In the offline phase, for a given failure scenario, a
symbolic PDDL planner generates a plan (BTMG-based policy) by composing production
and recovery skills. This policy is passed to a learning module, where tunable paramet-
ers are optimized using the multi-objective bayesian optimization techniques discussed in
Chapter 6.

67

In the execution phase, the optimized policy is executed without further modification.

This design supports reuse of the same planning and learning framework for both nominal
task execution and recovery handling. Rather than relying on fixed fallback structures, the
system synthesizes symbolic recovery plans at design time and adapts them to specific failure
conditions using previously tuned parameters.

9.3 Failure Cases and Recovery Behavior Design

We evaluate our approach using the peg-in-hole task introduced in Chapter 6, where the
goal is to insert a peg into a hole. This task serves as a benchmark for assessing how recovery
behaviors can be modularly designed and integrated using the BTMG framework. In line
with the assumptions of Paper IV, we consider a set of known and predefined execution
failures that were modeled in advance.

We consider the following failure instances:

• F1 – Small obstacle blocking the hole (Figure 23b): A small object blocks the hole,
preventing peg insertion.

• F2 – Large obstacle blocking the hole (Figure 23c): The hole is obstructed by a large
object beyond the grasping capability of the gripper.

• F3 – Peg dropped from gripper (Figure 23d): The peg slips from the gripper before
insertion is completed.

Each failure is addressed by a corresponding recovery behavior, represented as a BTMG
policy composed of skill primitives:

• Pick-Place (used for F1): Moves the gripper to the obstacle, grasps it, lifts it,
and places it aside. This behavior is manually defined and contains no learnable
parameters.

• Push (used for F2): Applies a lateral force to move the obstructing object. It includes
one learnable parameter: the push force magnitude.

• Pick-Exchange (used for F3): Regrasps the dropped peg and restores it to the
insertion pose. It involves two learnable parameters: the x- and y-offsets of the
grasp location, which may be fixed or learned depending on the scenario.

All recovery behaviors are constructed from a shared set of reusable skill primitives:

68

• GripperOpen: opens the gripper

• GripperClose: closes the gripper to secure an object

• GoToLinear: performs linear motion to a specified pose

• ChangeStiffness: adjusts impedance control gains for compliant motion

• ApplyForce: applies a Cartesian force vector at the end-effector

These primitives are composed into BTMG representation to define recovery behaviors.
For example, Pick-Place sequences a linear approach, grasp, lift, and release; Push com-
bines compliance adjustment with a lateral force application; and Pick-Exchange in-
cludes grasp offset correction followed by re-alignment to the insertion pose.

9.4 Execution Scenarios and Learning Setup

To evaluate how well the proposed framework supports modular and adaptive recovery
behaviors, we define five representative scenarios. These scenarios vary in both the type
of execution failure and whether the associated recovery behavior includes learnable para-
meters. Across all scenarios, the insertion skill is optimized using the same four extrinsic
parameters introduced in Chapter 6: downward insertion force, spiral path velocity, spiral
radius, and path distance.

We evaluate the following five scenarios:

1. Baseline: No failures or recovery behaviors are present. Only the insertion skill is
executed and optimized. This serves as a reference for normal task execution (Fig-
ure 23a).

2. Static Recovery (F1): Failure F1 (small obstacle blocking the hole) is introduced and
resolved using a fixed Pick-Place behavior with no learnable parameters. Only
the insertion skill is optimized (Figure 23b).

3. Dynamic Recovery (F2): Failure F2 (large obstacle blocking the hole) is resolved
using the Push behavior, which includes a tunable push force. Insertion parameters
and push force are optimized jointly (total of five parameters) (Figure 23c).

4. Static Recovery + Behavior Change (F3): Failure F3 (peg dropped from gripper) is
resolved using a manually defined Pick-Exchange behavior with fixed grasp offsets.
Only the insertion skill is optimized (Figure 23d).

69

Figure
23:Peg

insertion
task

and
corresponding

recovery
behaviors.(a)N

om
inalexecution.(b)F1:chip

in
hole

rem
oved

by
Pick-Place.(c)

F2:accessblocked,resolved
by

Push.(d)F3:dropped
peg

recovered
by

Pick-Exchange.

70

5. Dynamic Recovery + Behavior Change (F3): Uses the same failure as Scenario 4 but
includes learning of grasp x- and y-offsets in addition to the insertion parameters
(total of six parameters) (Figure 23d).

For each scenario, we perform multi-objective Bayesian Optimization over 40 iterations
with 10 random seeds. Candidate policies are evaluated in five randomized simulation en-
vironments that vary the block position and initial peg pose. The reward function balances
two competing objectives: insertion success and contact force minimization.

All five scenarios yielded at least one successful policy capable of achieving 5/5 successful
insertions across random world instances. This validates the framework’s ability to accom-
modate fixed and learnable recovery behaviors while preserving task performance.

9.5 Discussion

The experiments confirm that recovery behaviors modeled as symbolic BTMG skills can
be effectively integrated into structured robot policies without degrading task perform-
ance. Across all five scenarios, including both static and dynamic recovery, the framework
produced successful policies that handled different failure modes under randomized condi-
tions. This supports the claim in RQ2.1 that modeling recovery and production behaviors
within the same BTMG structure enables modular reuse, parameter adaptation, and uni-
fied planning. The results also highlight the value of selective learning: in cases where
parameter tuning was necessary (e.g., push force, grasp offsets), the optimizer efficiently
adjusted recovery parameters without affecting unrelated parts of the policy.

This work focuses strictly on expected and predefined execution failures. All failure types
are known ahead of time, and recovery behaviors are composed from existing skills that
are modeled offline. The framework assumes that failure detection occurs before execu-
tion, and that symbolic planning (via PDDL) can be performed before runtime. As such,
unanticipated failures or mid-execution recovery are outside the scope of this study.

These limitations are addressed in the next chapter (Chapter 10), which investigates RQ2.2.
There, we extend the framework to handle pre-execution failures, such as unmet sym-
bolic preconditions, by enabling failure-aware planning before execution begins. A reactive
planner is introduced that can dynamically modify or extend the behavior tree based on
detected conditions at planning time. Recovery from runtime failures, including unanti-
cipated disturbances during execution, is tackled in Chapter 11, where the system adapts
online through monitoring and BT modification. Together, these extensions move toward
policies that can adapt both before and during execution, improving robustness in dynamic
settings.

71

10 Pre-Execution Failure Handling with Vision–Language Mod-
els

This chapter addresses RQ2.2: Can a robot detect and explain failures before executing a skill,
enabling preemptive intervention using environmental feedback? We focus on failures that
arise not during execution, but beforehand, when symbolic preconditions are violated or
task assumptions do not hold. The challenge is to detect such failures automatically and
adapt the robot’s policy before acting. Our approach, developed in Paper V: Addressing
Failures in Robotics using Vision-Based Language Models (VLMs) and Behavior Trees
(BT), integrates VLMs into the symbolic planning loop. VLMs provide a flexible interface
to inspect the current environment and predict task feasibility. If a problem is identified,
the system adapts its policy by modifying or extending the current BT before execution
begins.

10.1 Motivation and Positioning within Existing Work

In symbolic robot planning, task failures are often discovered only during execution, when
it is already too late. Studies have shown that classical planners assume perfect action exe-
cution and only detect errors after execution fails, requiring mid-course replanning [168].
Similarly, task & motion planning systems rely on predefined symbolic models and only
detect precondition violations when grounding fails during execution [169]. More recent
methods have begun augmenting planning pipelines with LLM-based plan verification to
anticipate such issues before they occur [170].

Prior work focuses primarily on reacting to execution failures. For instance, Wu et al. [97]
designed BT based recovery strategies for known errors, while Ahmad et al. [9] compose
symbolic recovery skills for anticipated execution-level failures. These methods require pre-
defined failures and do not generalize to novel scenarios. Some systems use VLMs to gen-
erate recovery actions post-facto, such as Chen et al. [137] and AHA [93], but these ap-
proaches handle symbolic correction only indirectly and after plan execution has begun.
ReplanVLM [100] rebuilds the plan entirely upon failure, maintaining symbolic structure
but relying on re-planning rather than incremental correction.

A key limitation across these methods is the assumption of perfect symbolic knowledge and
the lack of proactive plan inspection before execution. To address this gap, our method
(Paper V) injects a VLM before execution. The VLM reviews the current scene, symbolic
state, and BT to predict feasibility. If a symbolic precondition is violated, it identifies the
missing condition or suggests a new skill.

72

Figure
24:System

overview
:the

V
LM

inspectsthe
currentenvironm

entand
sym

bolic
BT,identifiesm

issing
preconditionsorskills,and

guides
the

reactive
plannerto

generate
a

corrected
BT

before
execution.

73

A reactive planner then incrementally extends or patches the BT, unlike PDDL replanning,
this reactive planner retains existing plan structure and enables targeted BT extension [107,
38]. This results in truly proactive failure handling: the robot adapts its symbolic policy
using multi-modal feedback, before execution begins.

This chapter evaluates whether pre-execution symbolic reasoning is feasible and beneficial.
Drawing on Paper V, we explore how VLMs can detect potential failures early, articulate
them in symbolic terms, and enable corrective BTs that are both interpretable and reusable.

10.2 Approach Overview

To address RQ2.2, we propose a framework that augments symbolic robot policies with
visual and language-based reasoning before execution begins. The goal is to detect potential
failures, such as violated symbolic preconditions or the absence of a needed skill, and pro-
actively correct the BT to ensure feasibility. Rather than relying on post-failure recovery,
the robot evaluates whether the current plan is valid in its actual environment and, if not,
amends it accordingly. This is achieved by integrating a VLM with a reactive planner and
symbolic BTs. The VLM acts as a reasoning module that interprets both visual observa-
tions and symbolic structure, while the reactive planner enables dynamic modification of
BTs based on preconditions.

Our approach decomposes pre-execution failure handling into three abstract reasoning
stages:

• Failure detection: Is the current BT likely to fail in this environment? (binary output
from the VLM)

• Failure identification: Which skill is expected to fail, and which precondition is
violated?

• Failure correction: How can the symbolic plan be augmented to restore feasibility?

This chain-of-thought [171] style reasoning makes the internal logic of the system transpar-
ent and auditable. The different steps of th approach are shown in Figure 25.

To perform this reasoning, the VLM is prompted with four types of input:

• RGB images from multiple viewpoints, which provide visual context and help re-
solve occlusions in cluttered scenes.

74

Figure 25: Overview of the proposed VLM-BT integration: the VLM receives multi-view RGB
images, symbolic BTs, skill descriptions, and known conditions. It predicts missing
conditions or skill templates to correct pre-execution failures. The reactive planner then
synthesizes an updated BT and lastly the parameters are tuned either manually, via a
reasoner or using RL before execution on the robot.

• The current BT, represented in plain text, which describes the robot’s intended se-
quence of actions.

• Theskill library, containing symbolic skills with natural language descriptions, which
defines available actions and their symbolic semantics.

• The known symbolic conditions, which encode the system’s current knowledge
about the world state.

Given this prompt, the VLM assesses the feasibility of the BT. If a failure is likely, it returns
either:

• A missing_condition, e.g., hole free, representing a symbolic requirement
that is not currently satisfied.

• A suggested_skill, such as a Push action, encoded as a skill template with a
symbolic name, parameters, and postconditions, when the missing_condition
alone is insufficient to resolve the failure.

The use of missing_condition as the primary output is motivated by how the reactive
planner operates. Once a missing precondition is added to a skill node in the BT, the re-
active planner automatically expands the tree by backchaining through the skill library to
find a skill (or sequence of skills) whose postconditions satisfy it. This makes the correc-
tion process modular, symbolic, and grounded in the planner’s existing action model. For
example, appending the condition hole free to an insertion skill causes the planner to
insert a Pick-Place subtree if it has matching postconditions or suggest a new Push skill
if the obstacle is larger than the gripper affordance.

75

If no known skill satisfies the missing condition, the VLM proposes a new skill template.
A human expert then reviews and completes this template. Once added to the library, the
skill becomes available for future expansions. (In such cases, its symbolic cost is adjusted
to prioritize it appropriately over alternatives that produce the same effect.)

Once the BT structure is finalized, skill parameters must still be specified. These include
continuous values such as force, pose offsets, or velocities. Depending on the task, these
parameters can be selected manually, inferred through symbolic reasoning, or optimized
using learning techniques such as bayesian optimization, as introduced in Chapter 6.

Throughout this process, the VLM never directly controls execution. Instead, it serves
as a pre-execution filter that inspects planned actions against the current environment and
suggests symbolic corrections. The reactive planner then synthesizes a new plan that satisfies
the goal under current conditions. This combination enables the system to proactively
detect and resolve pre-execution failures in a way that is general, interpretable, and reusable.

10.3 Illustrative Scenarios

We evaluate the proposed framework using robosuite [robosuite2023] simulations and
GPT-4o as the VLM. Each scenario begins with a nominal BT that would succeed in an
ideal environment. An unforeseen precondition violation is then introduced, and we assess
whether the VLM and reactive planner can detect and correct the plan before execution.
Execution stages for the first two scenarios (small and large obstacle) are illustrated in Fig-
ure 24, where each row shows the visual progression from failure detection to task success.
The corresponding symbolic plan corrections, before and after VLM-guided updates, are
shown in Figures 26 and 27.

Peg-in-hole with small obstacle: A small obstacle blocks the hole. The VLM identifies
this as a potential failure and suggests the symbolic precondition hole free (internally
represented as check_loc). The reactive planner responds by appending a recovery subtree
composed of Grasp, Reach, and Open actions, forming a Pick-Place behavior that
clears the hole. This example demonstrates successful symbolic correction through known
skill reuse. The original BT is shown is Figure 1.

76

Figure 26: BT correction for small obstacle scenario: the VLM proposes a missing condition,
which the reactive planner satisfies by inserting a known Pick-Place subtree.

Peg-in-hole with large obstacle: A large object blocks the hole and cannot be grasped.
The VLM detects this condition and determines that no existing skill can satisfy the miss-
ing precondition. It then suggests a new Push skill template, which is later completed by a
human expert and added to the skill library. In subsequent runs, this new skill is automat-
ically selected by the planner when the same condition arises. The original BT is shown is
Figure 1.

Lift task: An obstacle rests on the target object. The VLM suggests the symbolic condi-
tion target clear as a missing precondition for the grasping skill. The planner resolves
this by inserting a known Pick-Place subtree that clears the obstacle from the grasp
target.

Door opening: The robot attempts to pull a door without turning the handle. The VLM
proposes handle turned as a missing precondition, which is satisfied by inserting the
known TurnHandle skill as a prerequisite step.

For detailed BT structures and step-by-step execution sequences corresponding to each
scenario, please refer to the supplementary material provided in Paper V.

77

Figure 27: BT correction for large obstacle scenario: the VLM detects a precondition violation
and proposes a new Push skill, which is later reused in future plan expansions.

10.4 Evaluation and Findings

We conducted 10 trials per scenario using GPT-4o as the Vision–Language Model. To
ensure reproducibility and stable outputs, we used a deterministic decoding configuration
with temperature = 0.1 and top_p = 0.1. This setting reduces the randomness in
generation, helping the model consistently return valid symbolic conditions or skill sug-
gestions.

• Consistent failure detection: The VLM successfully detected and corrected symbolic
failures in all tasks across all trials, achieving 100% consistency.

• Role of vision: Removing image input severely degraded performance. In the peg-
in-hole with large obstacle scenario, success dropped from 100% with vision to 30%
using only text-based prompts. Even when feasibility constraints were manually in-
cluded in the prompt, success reached only 60%, with inconsistent and unreliable
outputs. This reinforces that visual grounding is essential for physically meaningful
reasoning, LLMs alone cannot substitute for perception in geometry sensitive tasks.

• Skill feasibility: All VLM-generated conditions and skill suggestions were executable
and matched the physical constraints of the robot and scene. In our setup, skill
feasibility refers to whether a suggested action aligns with the robot’s capabilities
(e.g., grasping only if the object is within gripper size limits or not occluded). This
ensures that the recovery suggestions are practical and do not introduce additional
failure risk.

78

These results indicate that VLM-based pre-execution reasoning can scalably extend sym-
bolic policies while maintaining consistency and physical realism. The ability to correct
plans before execution, and ensure that proposed corrections are executable, makes this
approach promising for reducing failure rates in real-world robot deployments.

10.5 Discussion

This work demonstrates that VLMs can be effectively integrated into symbolic planning
pipelines to anticipate failures before execution. By inspecting both the visual context and
the symbolic policy, the VLM enables proactive correction of missing preconditions or
capabilities. This allows the robot to avoid futile actions and instead begin execution from
a policy that has already been adapted to its current environment.

One notable insight is the VLM’s capacity to reason about physical feasibility, for instance,
recognizing that an obstacle is too large for the gripper to grasp and instead proposing a
new action like pushing. This suggests that the VLM is not only grounded in visual and
symbolic input but can align its suggestions with task and hardware constraints, enabling
physically valid plan corrections.

Once a correction is proposed and accepted, it becomes reusable: the updated BT and
skill library entries persist, allowing future plans to inherit robustness without repeating
the correction step. Over time, this allows the system to incrementally build resilience to
disturbances without relying on hardcoded recovery branches or exhaustive planning.

However, there are still limitations. The system depends on the VLM’s ability to generalize
from minimal demonstrations or examples. While the reactive planner ensures symbolic
consistency, the feasibility of entirely new skills still requires human validation. This means
that the approach, while reducing manual effort, is not yet fully autonomous. Moreover,
pre-execution reasoning assumes the failure is detectable from the visual and symbolic
prompt; failures that emerge only during execution (e.g., slipping, deformation) remain
outside the current scope.

In the broader context of RQ2.2, this chapter shows that symbolic failure detection before
execution is both feasible and beneficial when guided by a vision–language model. The in-
tegration of learned multimodal reasoning with reactive symbolic planning offers a scalable
path toward adaptable, interpretable robot behavior. The next chapter (Chapter 11) builds
on this foundation by addressing RQ2.3, extending the framework to handle runtime fail-
ures through monitoring and dynamic BT modification.

79

11 Real-Time Monitoring and Reactive Recovery

This chapter addresses RQ2.3: How can a robot detect, explain, and correct failures during
execution, not just beforehand, while remaining modular and interpretable?

Whereas Chapter 10 focused on detecting failures before execution begins, many realistic
failures only manifest at runtime due to dynamic disturbances, occlusions, or human in-
terference. In such cases, pre-execution inspection is insufficient. RQ2.3 therefore asks
whether robots can handle such failures in a modular and interpretable manner as they
occur, rather than relying solely on proactive planning or full replanning.

Our approach, developed in Paper VI: A Unified Framework for Real-Time Failure Hand-
ling in Robotics Using Vision–Language Models, Reactive Planner and Behavior Trees,
builds on the pre-execution verification framework introduced in Chapter 10, and extends
it with a real-time monitoring loop. The robot checks symbolic preconditions and post-
conditions during execution, invokes a VLM to reason about missing knowledge, and uses
a reactive planner to dynamically extend the running BT. The result is a unified, two-phase
framework for failure handling that supports both proactive and reactive intervention, us-
ing shared symbolic and visual representations.

11.1 Motivation and Positioning within Existing Work

Robots deployed in unstructured environments, from assistive homes to cluttered factories,
must contend with dynamic and partially observable surroundings. Failures can emerge not
just from initial planning errors, but from unexpected runtime events such as occlusions,
object displacements, or human interference. As described in Chapter 4, proactive fail-
ure recovery attempts to prevent such issues by inspecting the environment and symbolic
policy before execution. However, this strategy cannot catch failures that depend on action
outcomes or newly revealed conditions. Reactive failure recovery instead responds during
execution, typically by verifying symbolic conditions and inserting repairs as needed.

Pre-execution verification, discussed in Chapter 10, is effective in catching incomplete plans
or known symbolic violations. Yet, consider a drawer placement task: the robot may cor-
rectly plan to open a drawer and place an object, only to discover at runtime that the drawer
already contains an item. This postcondition violation (occupied(drawer)) is invisible
until the drawer is opened. The robot must reactively insert a subgoal to clear the drawer,
a correction that was not known or relevant at planning time.

Prior work has explored related ideas across different failure handling modes. Reactive sym-
bolic recovery methods such as Wu et al. [97] use BTs with hand-coded fallback branches
for each known failure type. Similarly, RACER [102] integrates recovery strategies into

80

imitation learning pipelines. While interpretable, both approaches require predefining the
types of failures and do not generalize to unseen ones. RECOVER [88] introduces symbolic
monitors to detect failures and supports plan repair, but relies heavily on fixed relational
graphs and pre-specified symbolic descriptions, limiting applicability in changing environ-
ments.

Large language and vision–language models have also been explored for failure reasoning.
REFLECT [91] summarises past experience and queries an LLM for failure explanations,
but only after execution. AHA [93] and DoReMi [92] detect and explain failures using
VLMs at selected checkpoints, but do not operate over structured symbolic policies. Sim-
ilarly, Code-as-Monitor [95] monitors execution against pseudo-code representations, but
lacks symbolic correction capabilities. While these methods support failure understanding,
they do not permit real-time symbolic repair within ongoing plans.

Other works improve real-time perception and affordance grounding. Chen et al. [137] op-
timize prompts to detect spatial violations using VLMs, but treat the model as a standalone
policy selector rather than part of a symbolic system. Causal-based reasoning [105] and
CurricuLLM [106] use LLMs to learn causally valid curricula or identify action depend-
encies, but require posthoc plan re-generation or retraining, rather than direct symbolic
correction during execution.

In contrast to these works, our approach in Paper VI offers three distinctive contributions.
First, it performs real-time symbolic monitoring by continuously verifying preconditions
and postconditions at every skill tick and detecting violations through a combination of
visual and symbolic context. Second, it uses a reactive planner to insert missing precon-
ditions or new skills directly into the currently running BT, avoiding full replanning and
preserving the interpretability of the symbolic structure. Third, it employs a unified reas-
oning pipeline for both pre-execution and real-time recovery, built around a shared VLM,
incremental scene graph, and execution log. This enables consistent, modular failure de-
tection and correction throughout the entire task lifecycle.

The next subsection describes the architecture and key components of this unified frame-
work in detail.

11.2 Approach Overview

To address RQ2.3, we extend the pre-execution failure detection framework introduced in
Chapter 10 by enabling robots to also detect and correct failures during execution. While
pre-execution checks can catch infeasible plans before any movement begins, many fail-
ures arise only at runtime due to occlusions, sensor drift, or environmental changes. Our
approach combines a BT execution policy, a reactive planner, and a VLM into a unified

81

two-phase loop for symbolic failure detection and repair.

Figure 28: Overview of the two-phase system. The Pre-execution phase verifies the planned BT
before execution by checking for missing conditions or skills to address the failure. The
Real-time monitoring phase uses Verifier and the Suggestor module to monitor pre and
post conditions, execution, detect failures, and propose corrections.

The framework consists of two distinct but integrated phases:

(1) Pre-execution verification, performed once immediately after planning, uses the same
method introduced in Chapter 10 (Paper V). The VLM analyzes the generated BT and
the current environment to suggest either a missing symbolic precondition or a new skill
template. The reactive planner integrates this correction by expanding the BT accordingly.
This helps anticipate and fix symbolic gaps before execution starts.

82

(2) Real-time monitoring, applied at every tick of BT execution, performs continuous
failure detection and correction. Two modules operate in this phase:

• The Verifier checks that skill preconditions are satisfied before execution and verifies
postconditions afterwards. Failures are handled reactively by the BT structure (e.g.,
retrying or reselecting).

• The Suggestor is invoked when a failure is detected. It reuses the same prompting
strategy as the pre-execution phase but is applied during runtime. It returns missing
conditions or new skill templates based on current multimodal context, enabling
incremental repairs.

The key idea is to preserve the modular, interpretable structure of symbolic BTs while aug-
menting them with real-time visual reasoning and language-based correction. We reuse
the same chain-of-thought reasoning process as in Chapter 10, detection, identification, and
correction, but now apply it both before and during execution.

Figure 28 shows the overall system, including both monitoring phases and shared inputs.

Both phases rely on a common set of structured inputs:

• RGB-D images (front and side views) provide real-time visual context and help re-
solve occlusions in cluttered scenes.

• Skill library contains the set of symbolic skills available to the robot, each annotated
with pre- and post-conditions.

• Conditions represent a fixed set of boolean predicates. For instance, on(obj1,obj2)
and grasped(obj) define the symbolic world state.

• Scene graph encodes symbolic object–object and robot–object relations using the
same condition predicates. This structure complements image input by making
world knowledge accessible to symbolic reasoning and the VLM.

• Behavior tree represents the current execution policy. It is dynamically updated by
the reactive planner when symbolic fixes are needed.

• Execution history, used only during runtime, logs previous skill ticks, their out-
comes, and changes in the scene graph. This is particularly useful when failures
depend on subtle visual shifts that happen during skill execution but are only detec-
ted afterward. For example, in a stacking task, if a human removes an object from
the table while the robot is approaching it, the history allows the system to recognize
the failure retrospectively even though it was not observed during skill execution.

83

The two-phase architecture ensures that known symbolic gaps are caught early (pre-execution),
while runtime failures, those that emerge through interaction, are detected and resolved
on-the-fly. The VLM never controls the robot directly; it only suggests symbolic additions
based on multimodal inputs. The reactive planner handles policy expansion, ensuring that
all corrections remain interpretable, grounded, and consistent with the symbolic model.

The next subsection introduces the visual perception pipeline that enables real-time scene
understanding and maintains the scene graph required for symbolic monitoring.

11.3 Visual Pipeline and Scene Graph Maintenance

Reliable real-time monitoring depends on accurate, low-latency perception of the robot’s
environment. To support symbolic reasoning over object relations and skill outcomes,
we maintain a continuously updated scene graph using a structured visual pipeline that
operates at 15 Hz. This scene graph encodes object–object and robot–object relationships
such as on, inside, or holding, which are used by the verifier and suggestor during both
pre-execution and runtime monitoring.

The pipeline combines object detection, segmentation, pose estimation, and relation in-
ference. Object detection is performed using Grounding DINO [172], which produces
2D bounding boxes conditioned on language prompts. These detections are passed to
SAM2 [173] for instance segmentation and tracking, enabling mask-level precision and
identity maintenance over time. Each segmented region is projected into a point cloud
using RGB-D depth information. We estimate 6-DoF object poses by aligning these point
clouds to pre-scanned object models using RANSAC for initial alignment and PCA for
pose refinement.

Given the object poses and geometries, spatial relations are computed through simple geo-
metric tests. For instance, on(A, B) is inferred if the bottom of object A lies slightly above
the top surface of B within a fixed distance threshold. Similarly, inside(A, B) requires
object A’s bounding volume to be fully enclosed within B’s cavity.

Unlike prior work such as REFLECT [91], which reconstructs a new scene graph from
scratch after each action, we incrementally update the scene graph in-place. Each frame
triggers localized edits: new objects are added, vanished objects are removed, and relations
are re-evaluated only for changed elements. This improves runtime efficiency and con-
sistency, enabling the verifier to correlate current observations with symbolic expectations.

84

11.4 Demonstrated Scenarios

We validate our unified failure handling framework across both simulated and physical ro-
botic setups, demonstrating its effectiveness in real-time failure detection, identification,
and correction. Unlike prior work such as REFLECT [91], which generates hierarchical
summaries post-execution for language-guided replanning, our system continuously mon-
itors execution and applies symbolic corrections on-the-fly. This allows us to address both
pre-execution and unforeseen runtime failures, ensuring robust performance across varying
environments.

Simulation (AI2-THOR): We reproduce all failure scenarios in the REFLECT bench-
mark [91] using our framework. Unlike REFLECT, which reconstructs the scene graph and
performs reasoning only after execution completes, our system maintains an incrementally
updated scene graph and performs real-time plan repair. Across all 50 randomly seeded tri-
als, our system achieved 100% task success without requiring post-execution intervention.
Failures such as blocked receptacles, incorrect object states, or occlusions were detected and
corrected during execution via the Verifier and Suggestor modules (see Section 11.2). These
results show that structured symbolic reasoning, combined with proactive VLM checks and
reactive BT rewrites, can fully eliminate the need for retrospective correction.

Physical robot (ABB YuMi): We deploy our system on an ABB YuMi robot equipped
with an RGB-D camera, testing its performance across three tabletop manipulation tasks,
each under dynamic disturbances:

• Peg-in-hole: Execution perturbations include occlusions of the hole and dropped
pegs, leading to symbolic violations such as hole free or
grasped(object).

• Drawer opening: Failures are introduced through drawer jamming or human inter-
ference, requiring skill reordering or insertion of precondition restoring actions.

• Object sorting: External bin movements and object displacement test the system’s
ability to detect spatial inconsistencies like incorrect inside(obj, bin) relations.

We conducted 30 real-world trials (10 per task) with perturbations at varying stages. Our
full framework (pre-execution + reactive monitoring) achieved 100% success. Using only
reactive monitoring also succeeded but required 30% longer execution due to repeated skill
reattempts. Pre-execution-only verification failed in 69% of trials, unable to anticipate
runtime disturbances. These results show that unified failure handling, combining proact-
ive and reactive reasoning, is essential for robust execution in dynamic settings. Demon-
strations on the real robot are shown in Figures 29 and 30.

85

Figure
29:Runtim

e
correction

loop.Left:Skillfailsdue
to

unm
etprecondition.C

enter:V
LM

suggestsm
issing

sym
bolic

know
ledge.R

ight:
Reactive

plannerintegratesrepairinto
currentBT.

86

Figure
30:V

isualverification
loop.(a)Pre-execution

check
detectsa

m
issing

condition.(b)PreVerifierfindsan
occlusion-related

failure.(c)
PostVerifieridentifiesincorrectplacem

ent.Each
case

triggerssym
bolic

repair.

87

11.5 Discussion

This chapter addressed RQ2.3 by presenting a unified framework that enables robots to
detect, explain, and correct failures during execution through real-time symbolic monitor-
ing and reactive plan repair. The proposed system extends the pre-execution framework of
Chapter 10 with runtime modules, PreVerifier, PostVerifier, and Suggestor, that interface
with a VLM and a reactive planner. This integration allows failure detection at every skill
tick and correction through symbolic insertions, preserving modularity and interpretabil-
ity.

Our evaluation confirms that combining proactive and reactive monitoring yields robust
behavior across varied domains. In simulation, the framework succeeded on all REFLECT
benchmark tasks without requiring post-execution replanning. On the physical YuMi ro-
bot, it handled occlusions, disturbances, and unexpected objects without human interven-
tion. Compared to reactive-only or pre-execution-only strategies, our approach maintained
high task success while reducing latency and VLM query costs.

Several limitations remain. First, the VLM operates over a fixed symbolic vocabulary; new
predicates or concepts must be defined manually, limiting adaptability to unseen domains.
Second, the reliance on RGB-D input can degrade under heavy occlusions or lighting
changes. Future extensions may include fusing tactile or proprioceptive inputs for more
robust scene grounding. Finally, each VLM query incurs non-trivial latency. We are cur-
rently exploring local fine-tuned models to improve response time and privacy.

Beyond immediate improvements, our longer-term goal is to enrich runtime reasoning. Fu-
ture work will integrate holding condition monitoring and predictive checks to catch mid-
execution hazards. Additionally, VLA models or diffusion policies could replace skill tem-
plates entirely, enabling autonomous skill suggestion with grounded pre/post-conditions.
These enhancements aim to move closer to general purpose, self-correcting robots that op-
erate reliably in unstructured, human-centered environments.

Concluding Remarks on Symbolic Failure Handling and Real-Time Adaptation
(RQ2)

This part of the thesis addressed RQ2: How can a robot detect, explain, and correct failures
that arise before or during execution, while preserving modularity and interpretability? The
investigation was carried out in three stages.

First, Chapter 9 introduced a method for integrating predefined recovery behaviors into
symbolic robot policies. Using the BTMG framework, both nominal and recovery skills
were modeled uniformly, enabling reuse, modularity, and parameter adaptation. This ap-

88

proach supported recovery from known failures through structured planning and offline
tuning.

Next, Chapter 10 extended this capability by addressing failures that occur before execution
begins. The proposed system integrated a VLM into the planning loop to detect missing
symbolic preconditions or absent skills using multimodal reasoning. A reactive planner
then adapted the Behavior Tree accordingly. This enabled proactive correction before any
motion occurred, improving robustness to environment-specific discrepancies.

Finally, Chapter 11 addressed failures that emerge during execution. The unified framework
combined pre-execution verification with real-time monitoring of symbolic preconditions
and postconditions. A runtime Suggestor module queried the VLM reactively when failures
were detected, and the reactive planner modified the BT on-the-fly. This two-phase design
allowed robots to adapt dynamically, detecting failures early, explaining them symbolically,
and recovering without discarding the existing plan.

Together, these contributions demonstrate that structured symbolic policies can be aug-
mented with visual and language-based reasoning to handle both anticipated and unfore-
seen failures. The resulting system achieves generality without sacrificing transparency, and
supports continuous adaptation before and during execution. These insights lay the found-
ation for scalable, interpretable robot autonomy in unstructured environments.

89

Conclusions

This thesis presented a modular and introspective framework for robotic skill learning and
failure recovery. It addressed two major challenges: how to represent and generalize in-
terpretable robot policies across task variations, and how to enable autonomous failure
detection, explanation, and correction through pre- and post-execution reasoning.

The first part of the thesis focused on representing and generalizing interpretable robot
policies. BTMGs were used as a hybrid policy representation that combines symbolic task
structure with parametric motion control, enabling modular and interpretable policy exe-
cution (RQ1.1). Policy generalization across task variations was achieved by learning smooth
mappings from task descriptors to motion generator parameters using gaussian processes
(RQ1.2). Real-time adaptation was supported through the PerF model, which dynamically
inferred BTMG parameters during execution (RQ1.3). Together, these studies demon-
strated that combining interpretable policy structures with data-driven parameter learning
enables adaptive and efficient robotic behavior.

The second part of the thesis focused on failure detection and recovery. Recovery behaviors
were encoded as BTMG representation, enabling local, reusable corrections (RQ2.1). To
prevent execution-time failures, VLMs were integrated with a reactive planner and behavior
trees for pre-execution reasoning, allowing the system to detect likely failures and insert
missing skills or conditions before execution (RQ2.2). The framework was then extended
with real-time monitoring, combining symbolic pre- and post-condition checkers, a Verifier
module for continuous skill validation, and a Suggestor module to detect, explain, and
correct failures as they occurred (RQ2.3). This unified framework supports continuous task
execution without resetting, providing both proactive and reactive failure management.

The six research questions (RQ1.1–RQ2.3) were each addressed through a dedicated study.
Table 1 summarizes the mapping between research questions, corresponding contributions,
and how they were answered.

91

Table 1: Summary of research questions and their answers

Research Ques-
tion

Addressed in Answer Summary

RQ1.1: How can
we design robotic
policies that re-
main interpretable
and adaptable?

Papers I Utilized BTMGs as a hybrid representation separ-
ating symbolic structure from motion parameters,
supporting modular and interpretable policies.

RQ1.2: How can
these policies gen-
eralize to new task
variations?

Papers II Achieved parameter generalization via learned map-
pings from task descriptors to motion generator
parameters using gaussian processes.

RQ1.3: How can
policy parameters
be efficiently in-
ferred at runtime?

Paper III Introduced PerF, a lightweight model for real-time
parameter inference based on performance and
feasibility surrogates.

RQ2.1: How can
we design modu-
lar recovery beha-
viors?

Paper IV Modeled recovery behaviors using the BTMG ap-
proach, which can be dynamically inserted to
handle localized failures.

RQ2.2: How can
failures be detected
and explained be-
fore execution?

Paper V Enabled pre-execution plan verification with VLMs
to identify missing symbolic conditions, skills and
suggest corrective steps.

RQ2.3: How can
failures be detec-
ted and recovered
from during execu-
tion?

Paper VI Extended the framework with real-time symbolic
monitoring, a Verifier for pre- and post-condition
checks, and a Suggestor module to identify miss-
ing symbolic conditions, skills and suggest correct-
ive steps.

This thesis demonstrates that symbolic structure and data-driven learning can complement
each other effectively. BTMGs provide a transparent policy representation while support-
ing real-time adaptation. Modular recovery integrated into policy structure becomes a
first-class capability rather than an afterthought. Finally, VLM-supported semantic reas-
oning closes the loop between perception, symbolic understanding, and policy adjustment,
enabling robots to adapt and recover autonomously in dynamic environments.

Limitations and Future Work

While this thesis presents a modular and introspective framework for robotic skill learning
and failure recovery, several limitations remain, which also suggest directions for future

92

research.

The current framework has been evaluated on tasks with moderate complexity, such as
tabletop and mobile manipulation. Scaling to more challenging domains like humanoid
locomotion, dexterous manipulation, or deformable object handling remains an open prob-
lem. These tasks require managing high-dimensional state spaces and long skill sequences,
which could benefit from hierarchical policies and structured task decomposition.

Another limitation comes from the use of VLMs. Current VLMs are trained on general in-
ternet data and are not optimized for robotic scenarios, which can lead to semantic drift and
occasional misinterpretation of task-specific queries. They also introduce latency, which
makes real-time monitoring more challenging. A promising direction is to fine-tune VLMs
or develop smaller, robot-focused models to improve both accuracy and responsiveness.

In addition, the framework currently relies on manually defined skills, which limits scalab-
ility for diverse or long-horizon tasks. A natural next step is to replace manually written
skills with fine-tuned VLA models or diffusion policies that generate executable trajector-
ies. These trajectories could then be automatically wrapped into skills using VLM-extracted
preconditions and postconditions. These skills can then be autonomously generated and
embedded within the behavior tree and reactive planning framework. This allows the sys-
tem to monitor execution, handle failures, and maintain long-horizon task performance.
By wrapping behaviors generated by VLA models or diffusion policies in this structured
framework, the system overcomes one of the main weaknesses of purely data-driven meth-
ods. It gains the ability to supervise execution and recover from errors at the skill level.

Another limitation is that the system does not currently output confidence or feasibility
scores for its suggested actions. This makes the framework vulnerable to edge cases where
proposed skills might be unsafe or infeasible. Future work could explore integrating static
verification and continuous integration checks inspired by software testing, ensuring that
foundation model outputs are feasible and safe before execution.

Finally, proactive failure prediction is still limited. While the framework performs pre-
execution verification and real-time monitoring, it does not fully anticipate holding con-
dition violations during skill execution. Extending the system with predictive monitoring,
simulation based foresight, and probabilistic reasoning would allow robots to prevent fail-
ures before they occur, further improving robustness.

Overall, future work lies in scaling to more complex domains, adopting fine-tuned VLMs
and VLAs or diffusion policies for automated skill synthesis, and integrating predictive
and safety-aware mechanisms. These directions aim to enhance the system’s autonomy,
reliability, and adaptability in open-ended real-world environments.

93

References

[1] Bruno Siciliano and Oussama Khatib. Springer Handbook of Robotics. Berlin, Heidel-
berg: Springer-Verlag, 2007. ISBN: 354023957X.

[2] Sebastian Thrun, Wolfram Burgard and Dieter Fox. Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005. ISBN: 0262201623.

[3] Faseeh Ahmad et al. “A Unified Framework for Real-Time Failure Handling in
Robotics Using Vision-Language Models, Reactive Planner and Behavior Trees”.
In: arXiv preprint (2025). arXiv: 2503.15202 [cs.RO]. URL: https://arxiv.
org/abs/2503.15202.

[4] Wikipedia contributors. Autonomous robot. Accessed: 2025-05-07. 2024. URL: https:
//en.wikipedia.org/wiki/Autonomous_robot.

[5] Niryo. What is an autonomous robot? Accessed: 2025-05-07. 2024. URL: https:
//niryo.com/what-is-an-autonomous-robot/.

[6] Matthias Mayr et al. “Skill-based Multi-objective Reinforcement Learning of In-
dustrial Robot Tasks with Planning and Knowledge Integration”. In: 2022 IEEE In-
ternational Conference on Robotics and Biomimetics (ROBIO). 2022, pp. 1995–2002.
DOI: 10.1109/ROBIO55434.2022.10011996.

[7] Faseeh Ahmad, Matthias Mayr and Volker Krueger. “Learning to Adapt the Para-
meters of Behavior Trees and Motion Generators (BTMGs) to Task Variations”.
In: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
2023, pp. 10133–10140. DOI: 10.1109/IROS55552.2023.10341636.

[8] Faseeh Ahmad, Jonathan Styrud and Volker Krueger. “Addressing failures in robot-
ics using vision-based language models (vlms) and behavior trees (bt)”. In: arXiv
preprint arXiv:2411.01568 (2024).

[9] Ahmad, Faseeh and Mayr, Matthias and Suresh-Fazeela, Sulthan and Krueger, Volker.
“Adaptable Recovery Behaviors in Robotics : A Behavior Trees and Motion Gen-
erators (BTMG) Approach for Failure Management”. eng. In: 2024 IEEE 20th In-
ternational Conference on Automation Science and Engineering (CASE). IEEE Com-
puter Society, 2024, 1815–1822. ISBN: 9798350358513. DOI: {10.1109/CASE59546.

95

https://arxiv.org/abs/2503.15202
https://arxiv.org/abs/2503.15202
https://arxiv.org/abs/2503.15202
https://en.wikipedia.org/wiki/Autonomous_robot
https://en.wikipedia.org/wiki/Autonomous_robot
https://niryo.com/what-is-an-autonomous-robot/
https://niryo.com/what-is-an-autonomous-robot/
https://doi.org/10.1109/ROBIO55434.2022.10011996
https://doi.org/10.1109/IROS55552.2023.10341636
https://doi.org/{10.1109/CASE59546.2024.10711715}
https://doi.org/{10.1109/CASE59546.2024.10711715}

2024.10711715}. URL: %7Bhttp://dx.doi.org/10.1109/CASE59546.
2024.10711715%7D.

[10] Michele Colledanchise and Petter Ögren. Behavior Trees in Robotics and AI: An
Introduction. CRC Press, 2018. ISBN: 978-1-138-59373-4. URL: https://www.
taylorfrancis.com/books/mono/10.1201/9780429489105/behavior-
trees-robotics-ai-michele-colledanchise-petter-%C3%B6gren.

[11] Danny Driess et al. “Palm-e: An embodied multimodal language model”. In: (2023).

[12] Michele Colledanchise, Alejandro Marzinotto and Petter Ögren. “Performance ana-
lysis of stochastic behavior trees”. In: (2014), pp. 3265–3272. DOI: 10 . 1109 /
ICRA.2014.6907328.

[13] Francesco Rovida et al. “Motion generators combined with behavior trees: A novel
approach to skill modelling”. In: 2018 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). IEEE. 2018, pp. 5964–5971.

[14] Jean-Baptiste Alayrac et al. “Flamingo: a visual language model for few-shot learn-
ing”. In: Advances in neural information processing systems 35 (2022), pp. 23716–
23736.

[15] Anas Awadalla et al. “Openflamingo: An open-source framework for training large
autoregressive vision-language models”. In: arXiv preprint arXiv:2308.01390 (2023).

[16] Anthony Brohan et al. “Rt-1: Robotics transformer for real-world control at scale”.
In: arXiv preprint arXiv:2212.06817 (2022).

[17] Anthony Brohan et al. “Rt-2: Vision-language-action models transfer web know-
ledge to robotic control”. In: arXiv preprint arXiv:2307.15818 (2023).

[18] Cheng Chi et al. “Diffusion policy: Visuomotor policy learning via action diffu-
sion”. In: The International Journal of Robotics Research (2023), p. 02783649241273668.

[19] Faseeh Ahmad et al. “Generalizing behavior trees and motion-generator (btmg)
policy representation for robotic tasks over scenario parameters”. In: 2022 IJCAI
Planning and Reinforcement Learning Workshop. 2022.

[20] Auke Jan Ijspeert et al. “Dynamical movement primitives: learning attractor models
for motor behaviors”. In: Neural computation 25.2 (2013), pp. 328–373.

[21] Damian Isla. “Handling Complexity in the Halo 2 AI”. In: Game Developers Confer-
ence (GDC). Available at: https://www.gamedeveloper.com/programming/
gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-
ai. 2005.

[22] Alex Champandard. “Understanding behavior trees”. In: AiGameDev. com 6.328
(2007), p. 19.

[23] Matteo Iovino et al. “A survey of behavior trees in robotics and ai”. In: Robotics and
Autonomous Systems 154 (2022), p. 104096.

96

https://doi.org/{10.1109/CASE59546.2024.10711715}
%7Bhttp://dx.doi.org/10.1109/CASE59546.2024.10711715%7D
%7Bhttp://dx.doi.org/10.1109/CASE59546.2024.10711715%7D
https://www.taylorfrancis.com/books/mono/10.1201/9780429489105/behavior-trees-robotics-ai-michele-colledanchise-petter-%C3%B6gren
https://www.taylorfrancis.com/books/mono/10.1201/9780429489105/behavior-trees-robotics-ai-michele-colledanchise-petter-%C3%B6gren
https://www.taylorfrancis.com/books/mono/10.1201/9780429489105/behavior-trees-robotics-ai-michele-colledanchise-petter-%C3%B6gren
https://doi.org/10.1109/ICRA.2014.6907328
https://doi.org/10.1109/ICRA.2014.6907328
https://www.gamedeveloper.com/programming/gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai
https://www.gamedeveloper.com/programming/gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai
https://www.gamedeveloper.com/programming/gdc-2005-proceeding-handling-complexity-in-the-i-halo-2-i-ai

[24] Rodney A. Brooks. “A Robust Layered Control System for a Mobile Robot”. In:
IEEE Journal of Robotics and Automation 2.1 (1986), pp. 14–23. DOI: 10.1109/
JRA.1986.1087032. URL: https://people.csail.mit.edu/brooks/
papers/AIM-864.pdf.

[25] Hiren D Patel and Sandeep K Shukla. “Behavioral hierarchy with hierarchical FSMs
(HFSMs)”. In: Ingredients for Successful System Level Design Methodology (2008),
pp. 47–75.

[26] Tadao Murata. “Petri Nets: Properties, Analysis and Applications”. In: Proceedings
of the IEEE 77.4 (1989), pp. 541–580. DOI: 10.1109/5.24143.

[27] Kutluhan Erol, James Hendler and Dana S. Nau. “HTN Planning: Complexity and
Expressivity”. In: Proceedings of the 12th National Conference on Artificial Intelligence
(AAAI). 1994, pp. 1123–1128.

[28] Francesco Rovida, Bjarne Grossmann and Volker Krüger. “Extended behavior trees
for quick definition of flexible robotic tasks”. In: 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 6793–6800.

[29] Alejandro Marzinotto et al. “Towards a unified behavior trees framework for ro-
bot control”. In: 2014 IEEE International Conference on Robotics and Automation
(ICRA). 2014, pp. 5420–5427. DOI: 10.1109/ICRA.2014.6907656.

[30] Petter Ogren. “Increasing modularity of UAV control systems using computer game
behavior trees”. In: Aiaa guidance, navigation, and control conference. 2012, p. 4458.

[31] Michele Colledanchise and Petter Ögren. “How Behavior Trees Modularize Hy-
brid Control Systems and Generalize Sequential Behavior Compositions, the Sub-
sumption Architecture, and Decision Trees”. In: IEEE Transactions on Robotics 33.2
(2017), pp. 372–389. DOI: 10.1109/TRO.2016.2633567.

[32] Razan Ghzouli et al. “Behavior trees in action: a study of robotics applications”. In:
Proceedings of the 13th ACM SIGPLAN international conference on software language
engineering. 2020, pp. 196–209.

[33] Matteo Iovino et al. “Learning behavior trees with genetic programming in un-
predictable environments”. In: 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2021, pp. 4591–4597.

[34] Oscar Gustavsson et al. “Combining context awareness and planning to learn beha-
vior trees from demonstration”. In: 2022 31st IEEE international conference on robot
and human interactive communication (RO-MAN). IEEE. 2022, pp. 1153–1160.

[35] Matteo Iovino et al. “A framework for learning behavior trees in collaborative ro-
botic applications”. In: 2023 IEEE 19th International Conference on Automation Sci-
ence and Engineering (CASE). IEEE. 2023, pp. 1–8.

[36] Kevin French et al. “Learning behavior trees from demonstration”. In: 2019 Interna-
tional Conference on Robotics and Automation (ICRA). IEEE. 2019, pp. 7791–7797.

97

https://doi.org/10.1109/JRA.1986.1087032
https://doi.org/10.1109/JRA.1986.1087032
https://people.csail.mit.edu/brooks/papers/AIM-864.pdf
https://people.csail.mit.edu/brooks/papers/AIM-864.pdf
https://doi.org/10.1109/5.24143
https://doi.org/10.1109/ICRA.2014.6907656
https://doi.org/10.1109/TRO.2016.2633567

[37] Chris Paxton et al. “Representing robot task plans as robust logical-dynamical sys-
tems”. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2019, pp. 5588–5595.

[38] Jonathan Styrud et al. “Bebop-combining reactive planning and bayesian optimiz-
ation to solve robotic manipulation tasks”. In: 2024 IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2024, pp. 16459–16466.

[39] Matteo Iovino et al. “A Framework for Learning Behavior Trees in Collaborative
Robotic Applications”. In: 2023 IEEE 19th International Conference on Automation
Science and Engineering (CASE). 2023, pp. 1–8. DOI: 10 . 1109 / CASE56687 .
2023.10260363.

[40] Matteo Iovino. “Learning Behavior Trees for Collaborative Robotics”. PhD thesis.
KTH Royal Institute of Technology, 2023.

[41] Christian Fritz and Sheila McIlraith. “Generating optimal plans in highly-dynamic
domains”. In: arXiv preprint arXiv:1205.2647 (2012).

[42] Auke Ijspeert, Jun Nakanishi and Stefan Schaal. “Learning attractor landscapes for
learning motor primitives”. In: Advances in neural information processing systems 15
(2002).

[43] Mayr, Matthias and Rovida, Francesco and Krueger, Volker. “SkiROS2: A Skill-
Based Robot Control Platform for ROS”. eng. In: 2023 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE - Institute of Electrical and
Electronics Engineers Inc., 12 2023, 6273–6280. ISBN: 978-1-6654-9190-7. DOI:
{10.1109/IROS55552.2023.10342216}. URL: %7Bhttp://dx.doi.org/
10.1109/IROS55552.2023.10342216%7D.

[44] Malik Ghallab, Dana S. Nau and Paolo Traverso. Automated Planning: Theory and
Practice. Amsterdam, Netherlands: Elsevier, 2004.

[45] Malte Helmert. “The fast downward planning system”. In: Journal of Artificial In-
telligence Research 26 (2006), pp. 191–246.

[46] Jonathan Styrud et al. “Combining Planning and Learning of Behavior Trees for
Robotic Assembly”. In: 2022 International Conference on Robotics and Automation
(ICRA). 2022, pp. 11511–11517. DOI: 10.1109/ICRA46639.2022.9812086.

[47] Elin A. Topp et al. “Ontology-Based Knowledge Representation for Increased Skill
Reusability in Industrial Robots”. In: 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2018, pp. 5672–5678. DOI: 10.1109/IROS.
2018.8593566.

[48] Michael Beetz et al. “Know Rob 2.0 — A 2nd Generation Knowledge Processing
Framework for Cognition-Enabled Robotic Agents”. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). 2018, pp. 512–519. DOI: 10.1109/
ICRA.2018.8460964.

98

https://doi.org/10.1109/CASE56687.2023.10260363
https://doi.org/10.1109/CASE56687.2023.10260363
https://doi.org/{10.1109/IROS55552.2023.10342216}
%7Bhttp://dx.doi.org/10.1109/IROS55552.2023.10342216%7D
%7Bhttp://dx.doi.org/10.1109/IROS55552.2023.10342216%7D
https://doi.org/10.1109/ICRA46639.2022.9812086
https://doi.org/10.1109/IROS.2018.8593566
https://doi.org/10.1109/IROS.2018.8593566
https://doi.org/10.1109/ICRA.2018.8460964
https://doi.org/10.1109/ICRA.2018.8460964

[49] Moritz Tenorth and Michael Beetz. “KnowRob: A knowledge processing infrastruc-
ture for cognition-enabled robots”. In: The International Journal of Robotics Research
32.5 (2013), pp. 566–590. DOI: 10.1177/0278364913481635. eprint: https:
//doi.org/10.1177/0278364913481635. URL: https://doi.org/10.
1177/0278364913481635.

[50] Barto Andrew and Sutton Richard S. “Reinforcement learning: an introduction”.
In: (2018).

[51] Volodymyr Mnih et al. “Human-level control through deep reinforcement learn-
ing”. In: nature 518.7540 (2015), pp. 529–533.

[52] Chen Tang et al. “Deep reinforcement learning for robotics: A survey of real-world
successes”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 39.
27. 2025, pp. 28694–28698.

[53] Wenshuai Zhao, Jorge Peña Queralta and Tomi Westerlund. “Sim-to-real transfer
in deep reinforcement learning for robotics: a survey”. In: 2020 IEEE symposium
series on computational intelligence (SSCI). IEEE. 2020, pp. 737–744.

[54] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”.
In: arXiv preprint arXiv:1509.02971 (2015).

[55] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor”. In: International conference on machine
learning. Pmlr. 2018, pp. 1861–1870.

[56] Marc Deisenroth and Carl E Rasmussen. “PILCO: A model-based and data-efficient
approach to policy search”. In: Proceedings of the 28th International Conference on
machine learning (ICML-11). 2011, pp. 465–472.

[57] Josh Tobin et al. “Domain randomization for transferring deep neural networks
from simulation to the real world”. In: 2017 IEEE/RSJ international conference on
intelligent robots and systems (IROS). IEEE. 2017, pp. 23–30.

[58] Ofir Nachum et al. “Data-efficient hierarchical reinforcement learning”. In: Ad-
vances in neural information processing systems 31 (2018).

[59] Konstantinos Chatzilygeroudis et al. “Black-box data-efficient policy search for ro-
botics”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2017, pp. 51–58.

[60] Tim Salimans et al. “Evolution strategies as a scalable alternative to reinforcement
learning”. In: arXiv preprint arXiv:1703.03864 (2017).

[61] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter optimiz-
ation”. In: The journal of machine learning research 13.1 (2012), pp. 281–305.

99

https://doi.org/10.1177/0278364913481635
https://doi.org/10.1177/0278364913481635
https://doi.org/10.1177/0278364913481635
https://doi.org/10.1177/0278364913481635
https://doi.org/10.1177/0278364913481635

[62] Andras Kupcsik et al. “Data-efficient generalization of robot skills with contextual
policy search”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 27.
1. 2013, pp. 1401–1407.

[63] Chelsea Finn et al. “One-shot visual imitation learning via meta-learning”. In: Con-
ference on robot learning. PMLR. 2017, pp. 357–368.

[64] Peter I. Frazier. A Tutorial on Bayesian Optimization. 2018. arXiv: 1807.02811
[stat.ML]. URL: https://arxiv.org/abs/1807.02811.

[65] Donald R Jones, Matthias Schonlau and William J Welch. “Efficient global op-
timization of expensive black-box functions”. In: Journal of Global optimization 13
(1998), pp. 455–492.

[66] Niranjan Srinivas et al. “Gaussian process optimization in the bandit setting: No
regret and experimental design”. In: arXiv preprint arXiv:0912.3995 (2009).

[67] Harold J Kushner. “A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise”. In: (1964).

[68] Shinya Suzuki et al. “Multi-objective Bayesian optimization using Pareto-frontier
entropy”. In: International conference on machine learning. PMLR. 2020, pp. 9279–
9288.

[69] Kaisa Miettinen. Nonlinear multiobjective optimization. Vol. 12. Springer Science &
Business Media, 1999.

[70] R Timothy Marler and Jasbir S Arora. “Survey of multi-objective optimization
methods for engineering”. In: Structural and multidisciplinary optimization 26 (2004),
pp. 369–395.

[71] Roman Garnett. Bayesian optimization. Cambridge University Press, 2023.

[72] Samuel Daulton, Maximilian Balandat and Eytan Bakshy. “Differentiable expected
hypervolume improvement for parallel multi-objective Bayesian optimization”. In:
Advances in Neural Information Processing Systems 33 (2020), pp. 9851–9864.

[73] Kalyanmoy Deb et al. “A fast and elitist multiobjective genetic algorithm: NSGA-
II”. In: IEEE transactions on evolutionary computation 6.2 (2002), pp. 182–197.

[74] Dario Amodei et al. Concrete Problems in AI Safety. 2016. arXiv: 1606 . 06565
[cs.AI]. URL: https://arxiv.org/abs/1606.06565.

[75] Andrew Y Ng, Daishi Harada and Stuart Russell. “Policy invariance under reward
transformations: Theory and application to reward shaping”. In: Icml. Vol. 99. Cite-
seer. 1999, pp. 278–287.

[76] Yoshua Bengio et al. “Curriculum learning”. In: Proceedings of the 26th annual in-
ternational conference on machine learning. 2009, pp. 41–48.

[77] Joshua Achiam et al. “Constrained policy optimization”. In: International conference
on machine learning. PMLR. 2017, pp. 22–31.

100

https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/1606.06565

[78] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for ma-
chine learning. Vol. 2. 3. MIT press Cambridge, MA, 2006.

[79] Marc Peter Deisenroth, Dieter Fox and Carl Edward Rasmussen. “Gaussian pro-
cesses for data-efficient learning in robotics and control”. In: IEEE transactions on
pattern analysis and machine intelligence 37.2 (2013), pp. 408–423.

[80] Miao Liu et al. “Gaussian processes for learning and control: A tutorial with ex-
amples”. In: IEEE Control Systems Magazine 38.5 (2018), pp. 53–86.

[81] Xue Bin Peng et al. “Sim-to-real transfer of robotic control with dynamics random-
ization”. In: 2018 IEEE international conference on robotics and automation (ICRA).
IEEE. 2018, pp. 3803–3810.

[82] Adil Zouitine et al. “Rrls: Robust reinforcement learning suite”. In: arXiv preprint
arXiv:2406.08406 (2024).

[83] Claudio Urrea and Rayko Agramonte. “Kalman filter: historical overview and re-
view of its use in robotics 60 years after its creation”. In: Journal of Sensors 2021.1
(2021), p. 9674015.

[84] Christopher Edwards, Sarah K Spurgeon and Ron J Patton. “Sliding mode observ-
ers for fault detection and isolation”. In: Automatica 36.4 (2000), pp. 541–553.

[85] Steven X Ding. Model-based fault diagnosis techniques: design schemes, algorithms,
and tools. Springer Science & Business Media, 2008.

[86] Chen Xu et al. Can We Detect Failures Without Failure Data? Uncertainty-Aware
Runtime Failure Detection for Imitation Learning Policies. 2025. arXiv: 2503.08558
[cs.RO]. URL: https://arxiv.org/abs/2503.08558.

[87] Chang Nho Cho, Ji Tae Hong and Hong Ju Kim. “Neural network based adaptive
actuator fault detection algorithm for robot manipulators”. In: Journal of Intelligent
& Robotic Systems 95 (2019), pp. 137–147.

[88] Cristina Cornelio and Mohammed Diab. “Recover: A neuro-symbolic framework
for failure detection and recovery”. In: 2024 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2024, pp. 12435–12442.

[89] Seyed Mohammad Khansari-Zadeh and Aude Billard. “A dynamical system ap-
proach to realtime obstacle avoidance”. In: Autonomous Robots 32 (2012), pp. 433–
454.

[90] Arda Inceoglu et al. “Fino-net: A deep multimodal sensor fusion framework for
manipulation failure detection”. In: 2021 IEEE/RSJ international conference on in-
telligent robots and systems (IROS). IEEE. 2021, pp. 6841–6847.

[91] Zeyi Liu, Arpit Bahety and Shuran Song. “Reflect: Summarizing robot experiences
for failure explanation and correction”. In: arXiv preprint arXiv:2306.15724 (2023).

101

https://arxiv.org/abs/2503.08558
https://arxiv.org/abs/2503.08558
https://arxiv.org/abs/2503.08558

[92] Yanjiang Guo et al. “Doremi: Grounding language model by detecting and recover-
ing from plan-execution misalignment”. In: 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE. 2024, pp. 12124–12131.

[93] Jiafei Duan et al. “AHA: A vision-language-model for detecting and reasoning over
failures in robotic manipulation”. In: arXiv preprint arXiv:2410.00371 (2024).

[94] Suzanne Tolmeijer et al. “Taxonomy of Trust-Relevant Failures and Mitigation
Strategies”. In: 2020 15th ACM/IEEE International Conference on Human-Robot In-
teraction (HRI). 2020, pp. 3–12.

[95] Enshen Zhou et al. “Code-as-monitor: Constraint-aware visual programming for
reactive and proactive robotic failure detection”. In: Proceedings of the Computer
Vision and Pattern Recognition Conference. 2025, pp. 6919–6929.

[96] Gregory LeMasurier et al. “Reactive or proactive? how robots should explain fail-
ures”. In: Proceedings of the 2024 ACM/IEEE International Conference on Human-
Robot Interaction. 2024, pp. 413–422.

[97] Ruichao Wu, Sitar Kortik and Christoph Hellmann Santos. “Automated behavior
tree error recovery framework for robotic systems”. In: 2021 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE. 2021, pp. 6898–6904.

[98] Joonho Lee, Jemin Hwangbo and Marco Hutter. “Robust recovery controller for a
quadrupedal robot using deep reinforcement learning”. In: arXiv preprint arXiv:1901.07517
(2019).

[99] Jonathan Booher et al. “CIMRL: Combining IMitation and Reinforcement Learn-
ing for Safe Autonomous Driving”. In: arXiv preprint arXiv:2406.08878 (2024).

[100] Aoran Mei et al. “ReplanVLM: Replanning robotic tasks with visual language mod-
els”. In: IEEE Robotics and Automation Letters (2024).

[101] Zhouliang Yu et al. “Multireact: Multimodal tools augmented reasoning-acting
traces for embodied agent planning”. In: (2023).

[102] Yinpei Dai et al. “RACER: Rich Language-Guided Failure Recovery Policies for
Imitation Learning”. In: arXiv preprint arXiv:2409.14674 (2024).

[103] Jiaming Liu et al. “Self-corrected multimodal large language model for end-to-end
robot manipulation”. In: arXiv preprint arXiv:2405.17418 (2024).

[104] Aneseh Alvanpour et al. “Robot failure mode prediction with explainable machine
learning”. In: 2020 IEEE 16th International Conference on Automation Science and
Engineering (CASE). IEEE. 2020, pp. 61–66.

[105] Maximilian Diehl and Karinne Ramirez-Amaro. “A causal-based approach to ex-
plain, predict and prevent failures in robotic tasks”. In: Robotics and Autonomous
Systems 162 (2023), p. 104376.

102

[106] Kanghyun Ryu et al. “Curricullm: Automatic task curricula design for learning
complex robot skills using large language models”. In: arXiv preprint arXiv:2409.18382
(2024).

[107] Michele Colledanchise, Diogo Almeida and Petter Ögren. “Towards blended react-
ive planning and acting using behavior trees”. In: 2019 international conference on
robotics and automation (ICRA). IEEE. 2019, pp. 8839–8845.

[108] Shivam Vats et al. “Recoverychaining: Learning local recovery policies for robust
manipulation”. In: arXiv preprint arXiv:2410.13979 (2024).

[109] Kyriacos Shiarlis, Joao Messias and Shimon Whiteson. “Inverse reinforcement learn-
ing from failure”. In: (2016).

[110] Amirreza Razmjoo et al. “CCDP: Composition of Conditional Diffusion Policies
with Guided Sampling”. In: arXiv preprint arXiv:2503.15386 (2025).

[111] Sajad Shahsavari et al. “Remote Run-Time Failure Detection and Recovery Control
For Quadcopters”. In: Journal of Integrated Design and Process Science 25.2 (2022),
pp. 120–140.

[112] Huihan Liu et al. “Model-Based Runtime Monitoring with Interactive Imitation
Learning”. In: IEEE International Conference on Robotics and Automation (ICRA).
2024.

[113] Rishi Bommasani et al. “On the opportunities and risks of foundation models”. In:
arXiv preprint arXiv:2108.07258 (2021).

[114] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural
information processing systems 33 (2020), pp. 1877–1901.

[115] Josh Achiam et al. “Gpt-4 technical report”. In: arXiv preprint arXiv:2303.08774
(2023).

[116] Aakanksha Chowdhery et al. “Palm: Scaling language modeling with pathways”.
In: Journal of Machine Learning Research 24.240 (2023), pp. 1–113.

[117] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding”. In: Proceedings of the 2019 conference of the North American
chapter of the association for computational linguistics: human language technologies,
volume 1 (long and short papers). 2019, pp. 4171–4186.

[118] Colin Raffel et al. “Exploring the limits of transfer learning with a unified text-to-
text transformer”. In: Journal of machine learning research 21.140 (2020), pp. 1–67.

[119] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[120] Alexey Dosovitskiy et al. “An image is worth 16x16 words: Transformers for image
recognition at scale”. In: arXiv preprint arXiv:2010.11929 (2020).

103

[121] Tadas Baltrušaitis, Chaitanya Ahuja and Louis-Philippe Morency. “Multimodal
machine learning: A survey and taxonomy”. In: IEEE transactions on pattern analysis
and machine intelligence 41.2 (2018), pp. 423–443.

[122] Yao-Hung Hubert Tsai et al. “Multimodal transformer for unaligned multimodal
language sequences”. In: Proceedings of the conference. Association for computational
linguistics. Meeting. Vol. 2019. 2019, p. 6558.

[123] Hassan Akbari et al. “Vatt: Transformers for multimodal self-supervised learning
from raw video, audio and text”. In: Advances in neural information processing systems
34 (2021), pp. 24206–24221.

[124] Alec Radford et al. “Learning transferable visual models from natural language su-
pervision”. In: International conference on machine learning. PmLR. 2021, pp. 8748–
8763.

[125] Chao Jia et al. “Scaling up visual and vision-language representation learning with
noisy text supervision”. In: International conference on machine learning. PMLR.
2021, pp. 4904–4916.

[126] Junnan Li et al. “Blip-2: Bootstrapping language-image pre-training with frozen
image encoders and large language models”. In: International conference on machine
learning. PMLR. 2023, pp. 19730–19742.

[127] Deyao Zhu et al. “Minigpt-4: Enhancing vision-language understanding with ad-
vanced large language models”. In: arXiv preprint arXiv:2304.10592 (2023).

[128] Christoph Schuhmann et al. “Laion-400m: Open dataset of clip-filtered 400 mil-
lion image-text pairs”. In: arXiv preprint arXiv:2111.02114 (2021).

[129] Piyush Sharma et al. “Conceptual captions: A cleaned, hypernymed, image alt-
text dataset for automatic image captioning”. In: Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2018,
pp. 2556–2565.

[130] Haotian Liu et al. Visual Instruction Tuning. 2023. arXiv: 2304.08485 [cs.CV].
URL: https://arxiv.org/abs/2304.08485.

[131] Mohit Shridhar, Lucas Manuelli and Dieter Fox. “Cliport: What and where path-
ways for robotic manipulation”. In: Conference on robot learning. PMLR. 2022,
pp. 894–906.

[132] Mohit Shridhar, Lucas Manuelli and Dieter Fox. “Perceiver-actor: A multi-task
transformer for robotic manipulation”. In: Conference on Robot Learning. PMLR.
2023, pp. 785–799.

[133] Michael Ahn et al. “Do as i can, not as i say: Grounding language in robotic afford-
ances”. In: arXiv preprint arXiv:2204.01691 (2022).

104

https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2304.08485

[134] Moo Jin Kim et al. “Openvla: An open-source vision-language-action model”. In:
arXiv preprint arXiv:2406.09246 (2024).

[135] Mohit Shridhar, Lucas Manuelli and Dieter Fox. “Perceiver-actor: A multi-task
transformer for robotic manipulation”. In: Conference on Robot Learning. PMLR.
2023, pp. 785–799.

[136] Yunfan Jiang et al. “Vima: General robot manipulation with multimodal prompts”.
In: arXiv preprint arXiv:2210.03094 2.3 (2022), p. 6.

[137] Hongyi Chen et al. “Automating Robot Failure Recovery Using Vision-Language
Models With Optimized Prompts”. In: arXiv preprint arXiv:2409.03966 (2024).

[138] Junnan Li et al. “Align before fuse: Vision and language representation learning
with momentum distillation”. In: Advances in neural information processing systems
34 (2021), pp. 9694–9705.

[139] Zongxia Li et al. “Benchmark evaluations, applications, and challenges of large vis-
ion language models: A survey”. In: arXiv preprint arXiv:2501.02189 1 (2025).

[140] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters et al. “A survey on policy
search for robotics”. In: Foundations and Trends® in Robotics 2.1–2 (2013), pp. 1–142.

[141] Auke Jan Ijspeert, Jun Nakanishi and Stefan Schaal. “Movement imitation with
nonlinear dynamical systems in humanoid robots”. In: Proceedings 2002 IEEE In-
ternational Conference on Robotics and Automation (Cat. No. 02CH37292). Vol. 2.
IEEE. 2002, pp. 1398–1403.

[142] Aude G. Billard, Sylvain Calinon and Florent Guenter. “Discriminative and ad-
aptive imitation in uni-manual and bi-manual tasks”. In: Robotics and Autonomous
Systems 54.5 (2006). The Social Mechanisms of Robot Programming from Demon-
stration, pp. 370–384. ISSN: 0921-8890. DOI: https://doi.org/10.1016/
j . robot . 2006 . 01 . 007. URL: https : / / www . sciencedirect . com /
science/article/pii/S0921889006000170.

[143] Stefan Schaal. “Dynamic movement primitives-a framework for motor control in
humans and humanoid robotics”. In: Adaptive motion of animals and machines.
Springer, 2006, pp. 261–280.

[144] Matteo Saveriano et al. “Dynamic movement primitives in robotics: A tutorial sur-
vey”. In: The International Journal of Robotics Research 42.13 (2023), pp. 1133–1184.

[145] Konstantinos Chatzilygeroudis et al. “A survey on policy search algorithms for
learning robot controllers in a handful of trials”. In: IEEE Transactions on Robotics
36.2 (2019), pp. 328–347.

[146] Michael Beetz et al. “Towards performing everyday manipulation activities”. In:
Robotics and Autonomous Systems 58.9 (2010), pp. 1085–1095.

105

https://doi.org/https://doi.org/10.1016/j.robot.2006.01.007
https://doi.org/https://doi.org/10.1016/j.robot.2006.01.007
https://www.sciencedirect.com/science/article/pii/S0921889006000170
https://www.sciencedirect.com/science/article/pii/S0921889006000170

[147] Matthew Grounds and Daniel Kudenko. “Combining reinforcement learning with
symbolic planning”. In: European Symposium on Adaptive Agents and Multi-Agent
Systems. Springer. 2005, pp. 75–86.

[148] Fangkai Yang et al. “Peorl: Integrating symbolic planning and hierarchical rein-
forcement learning for robust decision-making”. In: arXiv preprint arXiv:1804.07779
(2018).

[149] Vasanth Sarathy et al. “Spotter: Extending symbolic planning operators through
targeted reinforcement learning”. In: arXiv preprint arXiv:2012.13037 (2020).

[150] Daniel Gordon, Dieter Fox and Ali Farhadi. “What should i do now? marrying
reinforcement learning and symbolic planning”. In: arXiv preprint arXiv:1901.01492
(2019).

[151] Denis Forte, Aleš Ude and Andrej Gams. “Real-time generalization and integration
of different movement primitives”. In: 2011 11th IEEE-RAS International Conference
on Humanoid Robots. IEEE. 2011, pp. 590–595.

[152] Denis Forte et al. “On-line motion synthesis and adaptation using a trajectory data-
base”. In: Robotics and Autonomous Systems 60.10 (2012), pp. 1327–1339.

[153] You Zhou and Tamim Asfour. “Task-oriented generalization of dynamic movement
primitive”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). IEEE. 2017, pp. 3202–3209.

[154] Michael D McKay, Richard J Beckman and William J Conover. “A comparison of
three methods for selecting values of input variables in the analysis of output from
a computer code”. In: Technometrics 42.1 (2000), pp. 55–61.

[155] Aleš Ude et al. “Task-specific generalization of discrete and periodic dynamic move-
ment primitives”. In: IEEE Transactions on Robotics 26.5 (2010), pp. 800–815.

[156] Denis Forte, Aleš Ude and Andrej Gams. “Real-time generalization and integration
of different movement primitives”. In: 2011 11th IEEE-RAS International Conference
on Humanoid Robots. IEEE. 2011, pp. 590–595.

[157] S Mohammad Khansari-Zadeh and Aude Billard. “Learning stable nonlinear dy-
namical systems with gaussian mixture models”. In: IEEE Transactions on Robotics
27.5 (2011), pp. 943–957.

[158] Alexandros Paraschos et al. “Probabilistic movement primitives”. In: Advances in
neural information processing systems 26 (2013).

[159] Katharina Muelling, Jens Kober and Jan Peters. “Learning table tennis with a mix-
ture of motor primitives”. In: 2010 10th IEEE-RAS international conference on hu-
manoid robots. IEEE. 2010, pp. 411–416.

106

[160] Katharina Mülling et al. “Learning to select and generalize striking movements in
robot table tennis”. In: The International Journal of Robotics Research 32.3 (2013),
pp. 263–279.

[161] Luigi Nardi, David Koeplinger and Kunle Olukotun. “Practical design space ex-
ploration”. In: 2019 IEEE 27th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS). IEEE. 2019,
pp. 347–358.

[162] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A library for support vector
machines”. In: ACM transactions on intelligent systems and technology (TIST) 2.3
(2011), pp. 1–27.

[163] Dong C Liu and Jorge Nocedal. “On the limited memory BFGS method for large
scale optimization”. In: Mathematical programming 45.1 (1989), pp. 503–528.

[164] Alessio De Luca, Luca Muratore and Nikos G Tsagarakis. “Autonomous navigation
with online replanning and recovery behaviors for wheeled-legged robots using be-
havior trees”. In: IEEE Robotics and Automation Letters 8.10 (2023), pp. 6803–6810.

[165] Corrado Pezzato et al. “Active inference and behavior trees for reactive action plan-
ning and execution in robotics”. In: IEEE Transactions on Robotics 39.2 (2023),
pp. 1050–1069.

[166] Hongmin Wu et al. “Recovering from external disturbances in online manipula-
tion through state-dependent revertive recovery policies”. In: 2018 27th IEEE Inter-
national Symposium on Robot and Human Interactive Communication (RO-MAN).
IEEE. 2018, pp. 166–173.

[167] Zhaoyuan Gu, Nathan Boyd and Ye Zhao. “Reactive locomotion decision-making
and robust motion planning for real-time perturbation recovery”. In: 2022 Interna-
tional Conference on Robotics and Automation (ICRA). IEEE. 2022, pp. 1896–1902.

[168] Xiaohan Zhang et al. “Grounding classical task planners via vision-language mod-
els”. In: arXiv preprint arXiv:2304.08587 (2023).

[169] Caelan Reed Garrett et al. “Integrated task and motion planning”. In: Annual review
of control, robotics, and autonomous systems 4.1 (2021), pp. 265–293.

[170] Danil S Grigorev, Alexey K Kovalev and Aleksandr I Panov. “VerifyLLM: LLM-
Based Pre-Execution Task Plan Verification for Robots”. In: arXiv preprint arXiv:2507.05118
(2025).

[171] Jason Wei et al. “Chain-of-thought prompting elicits reasoning in large language
models”. In: Advances in neural information processing systems 35 (2022), pp. 24824–
24837.

[172] Shilong Liu et al. “Grounding dino: Marrying dino with grounded pre-training
for open-set object detection”. In: European conference on computer vision. Springer.
2024, pp. 38–55.

107

[173] Nikhila Ravi et al. “Sam 2: Segment anything in images and videos”. In: arXiv
preprint arXiv:2408.00714 (2024).

108

Scientific publications

Contribution Statements

Table 2: Overview of contributions in each paper included in the thesis.

Paper Writing Concepts Implementation Evaluation

I
II
III
IV
V
VI

The dark portion of the circle represents the amount of work and responsibilities assigned
to Faseeh Ahmad for each individual step:

Faseeh Ahmad was a minor contributor to the work

Faseeh Ahmad was a contributor to the work

Faseeh Ahmad led and did a majority of the work

Faseeh Ahmad led and did almost all of the work

Co-authors are abbreviated as follows:

109

Table 3: Author Acronyms

Acronym Name

MM Matthias Mayr
KC Konstantinos Chatzilygeroudis
LN Luigi Nardi
EAT Elin Anna Topp
JM Jacek Malec
VK Volker Krueger
HI Hashim Ismail
JS Jonathan Styrud
MS Maj Stenmark
SSF Sulthan Suresh-Fazeela

Paper I: Skill-based Multi-objective Reinforcement Learning of Industrial Robot
Tasks with Planning and Knowledge Integration

MM led the framework design and implementation of the reinforcement learning and
SkiROS2 integration. I developed the task-specific skills and planning integration. MM
and I jointly conducted experiments in simulation and on the KUKA iiwa. LN contrib-
uted to the Bayesian optimization component. MM wrote most of the paper, with feedback
from KC and others. I contributed to discussions, experiments, and writing support.

Paper II: Generalizing Behavior Trees and Motion-Generator (BTMG) Policy
Representation for Robotic Tasks Over Scenario Parameters

The initial idea was developed in collaboration with MM. I implemented the full frame-
work, designed and ran the experiments, and collected the results. MM supported the
formulation and provided feedback throughout. I wrote the paper, with contributions and
reviews from all co-authors. The notion of intrinsic and extrinsic parameters was intro-
duced by me, with input from VK. EAT provided valuable feedback on the paper.

Paper III: Learning to Adapt the Parameters of Behavior Trees and Motion Gen-
erators (BTMGs) to Task Variations

This idea was co-developed by me and MM. I led the model design, including architecture
and input-output mapping. MM supported the BT and reinforcement learning setup.
I implemented the core model, extended Skireil for task variations, and performed the

110

majority of experiments. MM supported baseline implementation. I wrote most of the
paper, with valuable feedback from MM.

Paper IV: Adaptable Recovery Behaviors in Robotics: A Behavior Trees and Mo-
tion Generators (BTMG) Approach for Failure Management

MM initially proposed failure recovery with BTMGs. I designed the framework, imple-
mented the dual-arm skills in SkiROS2, and extended Skireil. SSF, our master’s student,
contributed code for dual-arm tasks. I set up and conducted all simulation experiments,
including peg-in-hole failure scenarios. MM supported real-robot setup and debugging. I
wrote the full paper, with feedback from MM and SSF.

Paper V: Addressing Failures in Robotics using Vision-Based Language Models
(VLMs) and Behavior Trees (BT)

I designed the architecture combining VLMs with Behavior Trees, implemented the system,
and conducted most experiments in MuJoCo. JS provided the initial codebase, helped with
early setup, and contributed initial results. I wrote the full manuscript, with support and
reviews from JS and VK.

Paper VI: A Unified Framework for Real-Time Failure Handling in Robotics Us-
ing Vision-Language Models, Reactive Planner and Behavior Trees

I developed the initial concept and worked closely with HI to refine the overall framework.
JS provided the initial repository that served as a baseline. HI implemented most of the
skill logic and the vision pipeline. I wrote the prompts and condition checks, which HI
integrated and refined. HI and I jointly ran simulations and performed real-robot experi-
ments, with HI finalizing setup. I wrote the manuscript, with valuable feedback from HI,
JS, VK, and MS.

111

Paper I

M. Mayr, F. Ahmad, K. Chatzilygeroudis, L. Nardi, V. Krueger
Skill-based Multi-objective Reinforcement Learning of Industrial Robot Tasks with Plan-
ning and Knowledge Integration
IEEE International Conference on Robotics and Biomimetics (ROBIO), Jinghong, China,
2022, pp. 1995-2002, doi: 10.1109/ROBIO55434.2022.10011996

Chapter 1

Skill-based Multi-objective
Reinforcement Learning of Industrial
Robot Tasks with Planning and
Knowledge Integration

1 Abstract

In modern industrial settings with small batch sizes it should be easy to set up a robot system
for a new task. Strategies exist, e.g. the use of skills, but when it comes to handling forces
and torques, these systems often fall short. We introduce an approach that provides a com-
bination of task-level planning with targeted learning of scenario-specific parameters for
skill-based systems. We propose the following pipeline: the user provides a task goal in the
planning language PDDL, then a plan (i.e., a sequence of skills) is generated and the learn-
able parameters of the skills are automatically identified, and, finally, an operator chooses
reward functions and parameters for the learning process. Two aspects of our methodo-
logy are critical: (a) learning is tightly integrated with a knowledge framework to support
symbolic planning and to provide priors for learning, (b) using multi-objective optimiza-
tion. This can help to balance key performance indicators (KPIs) such as safety and task
performance since they can often affect each other. We adopt a multi-objective Bayesian
optimization approach and learn entirely in simulation. We demonstrate the efficacy and
versatility of our approach by learning skill parameters for two different contact-rich tasks.
We show their successful execution on a real 7-DOF KUKA-iiwa manipulator and outper-
form the manual parameterization by human robot operators.

115

2 Introduction

Industrial environments with expensive and fragile equipment, safety regulations and fre-
quently changing tasks often have special requirements for the behaviour policies that con-
trol a robot: First, the trend in industrial manufacturing is to move to smaller batch sizes
and higher flexibility of work stations. Reconfiguration needs to be fast, easy and should
minimize downtime. Second, it is important to be able to guarantee the performance as
well as safety for material and workers. Therefore, it is crucial to be able to understand
what action is performed when and why. Finally, in industrial environments digital twins
provide a lot of task-relevant information such as material properties and approximate part
locations that the robot behavior policies have to consider.

One way to fulfill these criteria is to use systems based on parameterized skills [1, 2, 3]. These
encapsulated abilities realize semantically defined actions such as moving the robot arm,
opening a gripper or localizing an object with vision. State-of-the-art skill-based software
architectures can not only utilize knowledge, but also automatically generate plans (skill-
sequences) for a given task [4, 5]. The skill-based approach is powerful when knowledge
can be modeled and formalized explicitly [1, 2]. But it is often limited when it comes to
skill parameters of contact-rich tasks that are difficult to reason about. One example are
the parameters of a peg insertion search strategy where material properties (e.g. friction)
and the robot controller performance need to be considered. While it is possible to create a
reasoner that follows a set of rules to determine such skill parameters, it is often challenging
to implement and to maintain.

Another way to handle this is to have operators manually specify and try values for these
skill parameters. However, this is a manual process and can be cumbersome.

Finally, it is possible to allow the system to learn by interacting with the environment.
However, many policy formulations that allow learning (e.g. artificial neural networks)
have deficiencies which make their application in an industrial domain with the above-
mentioned requirements challenging. Primarily during the learning phase, dangerous be-
haviors can be produced and even state-of-the-art RL methods need hundreds of hours of
interaction time [6]. Learning in simulation can help to reduce downtime and dangers for
the real system. But many policy formulations are black boxes for operators and it can be
hard to predict their behavior, which could hinder the trust to the system [7] Moreover,
the simulation-to-reality gap [8, 9] is bigger in lower-level control states (i.e. torques), and
policies working directly on raw control states struggle to transfer learned behaviors to the
real systems [6]. Our policy formulation consisting of behavior trees (BT) with a motion
generator [10] has shown to be able to learn interpretable and robust behaviors [11].

The formulation of a learning problem for a given task is often not easy and becomes more
challenging if factors such as safety or impact on the workstation environment need to be

116

Figure 1.1: The robot setup used for the experiments. Wooden boards indicate the start location
for the push task. The goal is the corner between the fixture and the box with the hole
for the peg task.

considered. Multi-objective optimization techniques allow to specify multiple objectives
and optimize for them concurrently. This allows operators to select from solutions that are
optimal for a certain trade-off between the objectives (usually represented as a set of Pareto-
optimal solutions). In order to learn sample-efficient and to support the large variety of
skill implementations as well as scenarios, we use gradient-free Bayesian optimization as an
optimization method.

In this paper we make the following contributions:

1. We introduce a new method which seamlessly integrates symbolic planning and re-
inforcement learning for skill-based systems to learn interpretable policies for a given
task.

2. A Bayesian multi-objective treatment of the task learning problem, which includes
the operator through easy specification of problem constraints and task objectives
(KPIs); the set of Pareto-optimal solutions is presented to the operator and their
behavior can be inspected in simulation and executed on the real system.

3. We demonstrate our approach on two contact-rich tasks, a pushing task and a peg-in-
hole task. We compare it to the outcome of the planner without reasoning, randomly
sampled parameter sets from the search space and the manual real-world paramet-
erization process of robot operators. In both tasks our approach delivered solutions
that even outperform the ones found by the manual search of human robot operat-
ors.

117

3 Related Work

3.1 Skill-based Systems

Skill-based systems are one way to support a quick setup of a robot system for a new task and
to allow re-use of capabilities. There are multiple definitions of the term skills in the literat-
ure. Some define it as a pure motion skills [12] or ”hybrid motions or tool operations” [13].
Other work has a broader skill definition [1, 2, 3, 4, 5, 14, 15]. In this formulation, skills can
be arbitrary capabilities that change the state of the world and have pre- and postconditions.
Their implementation can include motion skills, but also proficiencies such as vision-based
localization of objects. In [16] skills are ”high-level reusable robot capabilities, with the
goal to reduce the complexity and time consumption of robot programming”. However,
compared to [3] and [14] they do not use pre- and postconditions. In [17], an integrated
system for manual creation of task plans is presented and shares the usage of BTs with our
approach.

Task planners are used in [1, 2, 4, 5, 14, 18, 16, 13] while [17] lacks such a capability.

In [16] it is suggested that ”Machine learning can be performed on the motion level, in
terms of adaptation, or can take the form of structured learning on a task/error specification
level”. However, none of the reviewed work offers a combination task-level planning with
learning.

3.2 Policy Representation and Learning

An important decision to make when working with manipulators is the type of policy rep-
resentation and on which level it interfaces with the robot. The latter can strongly influence
the learning speed and the quality of the obtained solutions [19, 20]. These choices also in-
fluence the form of priors that can be defined and how they are defined [6]. Not many
policies combine the aforementioned properties of being a) interpretable, b) parameteriz-
able for the task at hand and c) allow learning or improvement.

The commonly used policy representations for learning systems include radial basis func-
tion networks [21], dynamic movement primitives [22, 23] and feed-forward neural net-
works [21, 24]. In recent years deep artificial neural networks (ANN) seem to become a
popular policy. All of them have in common that their final representation can be diffi-
cult to interpret. Even if a policy only sets a target pose for the robot to reach, it can be
problematic to know how it reacts in all parts of the state space. In contrast to that, [11]
suggests to learn interpretable policies based on behavior trees [10]. They work explicitly
in end-effector space and allow for an easy formulation of parameter priors to accelerate
learning [25].

118

3.3 Planning and Learning

Symbolic planning is combined with learning in [26, 27, 28, 29]. In [26], the PLANQ-
Learning algorithm uses a symbolic planner to shape the reward function based on the
conditions defined which are then used by the Q-learner to get an optimal policy with
good results on the grid domain. [27] uses the combined symbolic planner with reinforce-
ment learning (RL) in a hierarchical framework to solve complex visual interactive question
answering tasks. PEORL [28] integrates symbolic planning and hierarchical reinforcement
learning (HRL) to improve performance by achieving rapid policy search and robust sym-
bolic planning in the taxi domain and grid world. SPOTTER [29] uses RL to allow the
planning agent to discover the new operators required to complete tasks in Grid World.
In contrast to all these approaches, our approach aims towards real-life robotic tasks in an
Industry 4.0 setting where a digital twin is available.

In [30], the authors combine symbolic planning with behavior trees (BT) to solve blocks
world tasks with a robot manipulator. They use modified Genetic Programming (GP) [31]
to learn the structure of the BT. In our approach, we focus on learning the parameters of
the skills in the BT and utilize a symbolic planner to obtain the structure of the BT.

4 Approach

Our approach consists of two main components that interact in different stages of the
learning pipeline: First, SkiROS [14], a skill-based framework for ROS, which represents
the implemented skills with BTs, hosts the world model (digital twin), and interacts with
the planner. SkiROS is also used to execute BTs while learning and to perform tasks on the
real system. Second, the learning framework that provides the simulation, the integration
with the policy optimizer as well as the reward function definition and calculation.

The architecture of the system and the workflow is shown in Figure 1.2: (1) an operator
enters the task goal into a GUI; (2) a plan with the respective learning scenario configur-
ation is generated; (3) an operator complements the scenario with objectives and reward
functions; (4) learning is conducted in simulation using the skills and information from
the world model; (5) in the multi-objective optimization case, a set of Pareto-optimal solu-
tions is generated and presented to the operator; finally, (6) the operator can select a good
solution from this set given the desired trade-off between KPIs and execute it on the real
system.

119

ParametersRobot State

Motion Configuration

"Motion 3" <→>

?

"Motion 2" <→> "Motion 1" <→>

ConfigMotion ConfigMotion ConfigMotion

Ø

Skill Manager

World
Model

Planner

SkiROS

Learned
Policies

GUI

Learning
Scenario 2.

4.

5.

6. Execute

Learning

Policy
Optimizer

Reward

Simulation

Control 500 Hz

Physics 1000 HzP
ar

am
et

er
s

Policy Update
10 Hz

1. Goal

Operator

3. Rewards

Figure 1.2: The architecture of the system that depicts the pipeline: (1) The operator enters the
goal state; (2) a learning scenario for the plan is created; (3) rewards and
hyperparameters are specified; (4) learning is conducted using the skills and the
information in the world model; (5) after policy learning, the operator can choose
which policies to execute on the real system (6).

4.1 Behavior Trees

A Behavior Tree (BT) [32] is a formalism for plan representation and execution. Like [18,
33], we define it as a directed acyclic graph G(V,W) with |V | nodes and |W | edges. It
consists of control flow nodes (processors), and execution nodes. The four basic types of control
flow nodes are 1) sequence, 2) selector, 3) parallel and 4) decorator [33]. A BT always has one
initial node with no parents, defined as Root, and one or more nodes with no children,

120

called leaves. When executing a BT, the Root node periodically injects a tick signal into the
tree. The signal is routed through the branches according to the implementation of the
control flow nodes and the return statements of their children. By convention, the signal
propagation goes from left to right.

The sequence node corresponds to a logical AND: it succeeds if all children succeed and
fails if one child fails. The selector, also called fallback node, represents a logical OR: If one
child succeeds, the remaining ones will not be ticked. It fails only if all children fail. The
parallel control flow node forwards ticks to all children and fails if one fails. A decorator
allows to define custom functions. Implementations like extended Behavior Trees (eBT) in
SkiROS [18] add custom processors such as parallel-first-success that succeeds if one of the
parallel running children succeeds. Leaves of the BT are the execution nodes that, when
ticked, execute one cycle and output one of the three signals: success, failure or running.
In particular, execution nodes subdivide into 1) action and 2) condition nodes. An action
performs its operation iteratively at every tick, returning running while it is not done, and
success or failure otherwise. A condition performs an instantaneous operation and returns
always success or failure and never running. An example of the BT for the peg insertion task
is in Fig. 1.3.

4.2 Planning and Knowledge Integration

The Planning Domain Definition Language (PDDL) [34, 4] is used to formulate the plan-
ning problem. We use the SkiROS [14] framework that automatically translates a task into
a PDDL planning problem by generating domain description and problem instance using
the world model. We then use the semantic world model (WM) from SkiROS [14] as the
knowledge integration framework.

Actions and fluents are obtained by utilizing the predicates that have pre- or post-conditions
in the world model. For the problem instance, the objects (robots, arms, grippers, boxes,
poses, etc.) in the scene and their initial states (as far as they are known) are used. After get-
ting the necessary domain description and the problem instance, SkiROS calls the planner.
The goal of the planner is to return a sequence of skills that can achieve the goal conditions
of the task. The individual skills are partially parameterized with explicit data from the
WM. The WM is aware of the skill parameters that need to be learned for the task at hand
and they are automatically identified in the skill sequence.

121

"SetMGGoalPose"

"ChangeStiffness"

"ApplyForce"

"skiros:contain", "Gripper", "Peg"

¬ "skiros:at", "Peg", "Box"

"skiros:at", "Gripper", "ApproachPose"

"PegInsertion" <||FS>

"skiros:at", "Peg", "Box"

¬ "skiros:at", "Gripper", "ApproachPose"

"skiros:at", "Gripper", "Box"

"skiros:at", "Gripper", "StartPose"

"GoToLinear" <||FS>

¬ "skiros:at", "Gripper", "StartPose"

"skiros:at", "Gripper", "GoalPose"

"SetMGGoalPose" "EEPoseDistance"

"EEPoseDistance"

→*

Ø

"OverlayMotion"

Figure 1.3: The BT of the generated plan for the peg insertion task in eBT format [18]. Each node
has conditions or pre-conditions shown in the upper half and effects or post-conditions
shown in the lower half. The serial start control flow node (→∗) executes in a sequence
and remembers the successes. The skills have a parallel-first-success processor
(< ||FS >).

4.3 Policy Optimization

In order to optimize for policy parameters, we adopt the policy search formulation [21, 6,
24]. We formulate a dynamical system in the form:

xt+1 = xt +M(xt,ut,ϕR), (1.1)

with continuous-valued states x ∈ RE and actions u ∈ RU . The transition dynamics
are modeled by a simulation of the robot and the environment M(xt,ut,ϕR). They are
influenced by the domain randomization parameters ϕR.

The goal is to find a policy π,u = π(x|θ) with policy parameters θ such that we maximize
the expected long-term reward when executing the policy for T time steps:

J(θ) = E

[
T∑
t=1

r(xt,ut)|θ

]
, (1.2)

122

where r(xt,ut) is the immediate reward for being in state x and executing action u at
time step t. The discrete switching of branches in the BT and most skills are not differ-
entiable. Therefore, we frame the optimization in Eq. (1.2) as a black-box optimization
and pursue the maximization of the reward function J(θ) only by using measurements of
the function. The optimal reward function to solve the task is generally unknown, and a
combination of reward functions is usually used. In the RL literature, this is usually done
with a weighted average, that is, r(xt,ut) =

∑
iwiri(xt,ut). In this paper, we chose not

to use a weighted average of reward functions that represent different objectives (as the op-
timal combination of weights cannot always be found [35]), but optimize for all objectives
concurrently (Sec. 4.5) using Bayesian Optimization.

4.4 Bayesian Optimization

We consider the problem of finding a global minimizer (or maximizer) of an unknown
(black-box) objective function f : s∗ ∈s∈ f(s), where is some input design space of
interest in D dimensions. The problem addressed in this paper is the optimization of a
(possibly noisy) function f :→ with lower and upper bounds on the problem variables.
The variables defining can be real (continuous), integer, ordinal, and categorical as in [36].
We assume that the function f is in general expensive to evaluate and that the derivatives of
f are in general not available. The function f is called black box because we cannot access
other information than the output y given an input value s.

This problem can be tackled using Bayesian Optimization (BO) [37]. BO approximates
s∗ with a sequence of evaluations, y1, y2, . . . , yt at s1, s2, . . . , st ∈, which maximizes an
utility metric, with each new st+1 depending on the previous function values. BO achieves
this by building a probabilistic surrogate model on f based on the set of evaluated points
{(si, yi)}ti=1. At each iteration, a new point is selected and evaluated based on the sur-
rogate model which is then updated to include the new point (st+1, yt+1). BO defines an
utility metric called the acquisition function, which gives a score to each s ∈ by balancing
the predicted value and the uncertainty of the prediction for s. The maximization of the ac-
quisition function guides the sequential decision making process and the exploration versus
exploitation trade-off: the highest score identifies the next point st+1 to evaluate. BO is a
statistically efficient black-box optimization approach when considering the number of ne-
cessary function evaluations [38]. It is, thus, especially well-suited to solve problems where
we can only perform a limited number of function evaluations, such as the ones found in
robotics.

We use the implementation of BO found in HyperMapper [36, 39, 40, 41]. Our implement-
ation selects the Expected Improvement (EI) acquisition function [42] and we use uniform
random samples as a warm-up strategy before starting the optimization.

123

4.5 Multi-objective Optimization

Let us consider a multiple objectives minimization (or maximization) over in D dimen-
sions. We define f :→ Rp as our vector of objective functions f = (f1, . . . , fp), taking
s as input, and evaluating y = f(s) + ϵ, where ϵ is a Gaussian noise term. Our goal is
to identify the Pareto frontier of f , that is, the set Γ ⊆ of points which are not domin-
ated by any other point, the maximally desirable s which cannot be optimized further for
any single objective without making a trade-off. Formally, we consider the partial order
in Rp: y ≺ y′ iff ∀i ∈ [p], yi ⩽ y′i and ∃j, yj < y′j , and define the induced order on :
s ≺ s′ iff f(s) ≺ f(s′). The set of minimal points in this order is the Pareto-optimal set
Γ = {s ∈: ∄s′ such that s′ ≺ s}. We aim to identify Γ with the fewest possible function
evaluations using BO. For this purpose we use the HyperMapper multi-objective Bayesian
optimization which is based on random scalarizations [43].

4.6 Motion Generator and Robot Control

The arm motions are controlled in end-effector space by a Cartesian impedance controller.
The time varying reference or attractor point of the end effector xd is governed by a motion
generator (MG). Given the joint configurationq, we can calculate the end-effector posexee

using forward kinematics and obtain an error term xe = xee−xd. Together with the joint
velocities q̇, the Jacobian J(q), the configurable stiffness and damping matrices Kd and
Dd, the task control is formulated as τc = JT (q) (−Kdxe −DdJ(q)q̇) . Additionally,
the task control can be overlayed with commanded generalized forces and torques Fext =
(fx fy fz τx τy τz): τext = JT (q)Fext. We utilize the integration introduced in [10] and
used in [11], which proposes to parameterize the MG with movement skills from the BT.
The reference pose is shaped by 1) a linear trajectory to a goal point and 2) overlay motions
that can be added to the reference pose as discussed in [10, 11]. E.g. an Archimedes spiral
for search.

To make it compliant with the dynamical system in Eq. (1.1), a new reference configuration
of the controller is only generated at every time step t. It includes the reference pose,
stiffnesses, applied wrench and forms the action u with a dimension of U = 19. The
stiffness and applied force are changed gradually at every time step t to ensure a smooth
motion. The state space consists of joint positions and joint velocities and is E = 14
dimensional. Direct control of the torques of a robot arm requires high update rates and we
control the robot arm at 500 Hz based on the current action u, but continuously updated
values for q and q̇. Therefore, from the perspective of Eq. (1.1), the controller is to be seen
as part of the model M(xt,ut).

We assume a human-robot collaborative workspace with fragile objects. Therefore, the
stiffnesses and applied forces are to be kept to a minimum and less accuracy than e.g. high-

124

gain position-controlled solutions is to be expected.

5 Experiments

In our experiments we use a set of pre-defined skills that are part of a skill library. In order
to solve a task, the planner determines a sequence that can achieve the goal condition of
the task. This skill sequence is also automatically parameterized to the extend possible, e.g.
the goal pose of a movement. We evaluate our system in two contact-rich scenarios that
are shown in Fig. 1.1: A) pushing an object with uneven weight distribution to a goal pose
and B) inserting a peg in a hole with a 1.5mm larger radius. Pure planning-based solutions
for both these tasks have a poor performance in reality (Fig. 1.5).

As a baseline we invited six robot operators to manually parameterize the skills for the
tasks. Their main objective is to find a parameter set that robustly solves the task. As an
additional objective they were asked to minimize the impact of the robot arm and its tool
on the environment as long as it does not affect the first objective.

The robot arm used for the physical evaluation is a 7-degree-of-freedom (DOF) KUKA iiwa
arm controlled by a Cartesian impedance controller (Sec. 4.6).

5.1 Reward Functions

For each task, we utilize a set of reward functions parameterized for the learning scen-
ario configuration. Each configured reward has an assigned objective and can be weighted
against other rewards. Each experiment uses a subset of the following reward functions:

1. Task completion: A fixed reward is assigned when the BT returns success upon task
completion.

2. End-effector distance to a box: We use a localized reward to attract the end effector
towards the goal location rh(x) = (2 (d(pee,x,ph) + do))

−1 , where do is the dis-
tance offset and d(pee,x,ph) is the shortest distance function between the end ef-
fector and the box.

3. Applied wrench: This reward calculates the cumulative forces applied by the end ef-
fector on the environment.

Reward functions 4-6 share a common operation of computing an exponential function of
the calculated metric to obtain the reward as used in ([44, 24]) r(dm) = exp

(
− 1

2σ2
w
(dm+

do)
)
, where σw is a configurable width, do is a distance offset and dm is the input metric.

125

4. End-effector distance to a goal: This reward uses distance between the end effectors
current pose and goal pose to calculate the input metric dee,g = ‖pee,x − pg‖.

5. End-effector-reference-position distance: This reward uses the distance between the end
effectors reference pose (Sec. 4.6) and its current pose to calculate the input metric.
dee,d = ‖pee,x − xd‖

6. Object-pose divergence: This reward uses the translational and angular distance between
the object’s goal pose and its current pose.

5.2 Push Task

The push task starts by specifying the goal in the SkiROS Graphical User Interface (GUI) as:
(skiros:at skiros:ObjectToBePushed-1 skiros:ObjectGoalPose-1). SkiROS calls
the planner to generate a plan given all the available skills. The plan consists of two skills: 1)
GoToLinear skill and 2) Push skill. The first skill moves the end effector from its current
location to the approach pose of the object. This approach pose is defined in the WM and
needs to be reached before interacting with the object.

The push skill then moves the end effector to the object’s geometric centre with an optional
offset in the horizontal (x) and (y) directions. Once the end effector reaches it, the motion
generator executes a straight line to the (modified) target location.

The push task is formulated as a multi-objective task. It also has two objectives, 1) success
and 2) applied force. The first objective has three associated rewards: 1) object position
difference from goal position, 2) object orientation difference from goal orientation, and 3)
end-effector distance to the goal location. The second objective accumulates the Cartesian
distance between the end-effector reference pose and the actual end-effector pose as a meas-
ure of the force applied by the controller. The learnable parameters in this task are offsets
in the horizontal (x) and (y) direction of both the push skill’s start and goal locations. An
offset of the start location allows the robot to push from a particular point from the side
of the object. Together with the offsets on the goal position, these learnable parameters
collectively define the trajectory of the push.

The object to be pushed has a height of 0.07m and is an orthogonal triangle in the horizontal
dimensions (x) and (y). It has a length of 0.15m and 0.3m and it weights 2.5kg. For this
task we use a square-shaped peg for pushing with a side length of 0.07m and a height of
0.05m. Start and goal locations are ≈ 0.43m apart and are rotated by 26 deg. We define
success if the translational and rotational difference of the object w.r.t the goal is less than
0.01m and 5 deg, respectively.

We learn for 400 iterations and repeat the experiment ten times. In order to obtain solutions

126

35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0
Force

150

175

200

225

250

275

300

325

Pu
sh

 R
ew

ar
d

Figure 1.4: Pareto front of the push task. Each experiment has a different color and each point
represents a Pareto-optimal solution. It shows that higher rewards for pushing require
higher interaction forces with the environment.

that are robust enough to translate to the real system, we apply domain randomization.
Each parameter set is evaluated in seven worlds. Each execution uniformly samples one
out of the four start positions for the robot arm. Furthermore, we vary the location of the
object and the goal in the horizontal (x) and (y) directions by sampling from a Gaussian
distribution with a standard deviation of 7mm.

We compare the learned solutions with (a) the outcome of a direct planner solution without
any offset on the start and goal pose while pushing, (b) ten sets of random parameters from
the search space and (c) the policies that are parameterized by the robot operators. We
evaluated on the four start configurations used for learning as well as on two additional
unknown ones. The results are shown in Fig. 1.5a.

The results of a multi-objective optimization are parameters found along a Pareto front
(Sec. 4.5, see Fig. 1.4). It contained 8.3 points on average, of which some minimize the
impact on the environment to an extent that the push is not successful. An operator can
choose a solution that is a good compromise between the success of the task on the real
system and the force applied on the environment. The performance of one of the solutions
that existed on the Pareto front is shown in Fig. 1.5.

Furthermore, we asked six robot operators to find values for the learnable parameters of the
skill sequences. They were given the same start positions used for learning and were given

127

a script to reset the arm to a start position of their choice. They could experiment with the
system until they decided that their parameter set fulfills the criteria. Their final parameter
set that was also evaluated on the known and unknown start configurations. On average the
operators spent (16.3 ± 64)min and executed (11.1 ± 30) trials on the system to configure
this task. Four out of the six operators found solutions that achieved the task from every
start state. However, two of the operators’ final parameters only achieved success rates of
50% and 16.66%.

Pla
nn

ing

Ran
do

m

Pa
ram

ete
rs

Rob
ot

Ope
rat

ors

Cho
sen

 Le
arn

ed

Pa
ram

ete
rs

0

20

40

60

80

100

Su
cc

es
s R

at
e

** - *
(a) Push

Pla
nn

ing

Ran
do

m

Pa
ram

ete
rs

Rob
ot

Ope
rat

ors

Cho
sen

 Le
arn

ed

Pa
ram

ete
rs

**** -

(b) Peg

Figure 1.5: The success rates of both experiments. The box plots show the median (black line) and
interquartile range (25th and 75th percentile); the lines extend to the most extreme data
points not considered outliers, and outliers are plotted individually. The number of
stars indicates that the p-value of the Mann-Whitney U test is less than 0.1, 0.05, 0.01
and 0.001 respectively.

128

5.3 Peg-in-Hole Task

The PDDL goal of the peg insertion task is (skiros:atskiros:Peg-1skiros:BoxWi
thHole-1). The BT that is generated by the planner is shown in Fig. 1.3 and consists of
two skills: 1) GoToLinear skill and 2) PegInsertion skill. The first skill moves the end
effector from its current location to the approach pose of the hole. Once it is reached, the
peg insertion procedure starts.

The PegInsertion skill starts when the end effector reaches the approach pose of the box.
It uses four separate SkiROS primitive skills to 1) set the stiffness of the end effector to zero
in (z) direction, 2) apply a downward force in (z) direction, 3) configure the center of the
box as a goal and 4) additionally apply an overlaying circular search motion on top of the
reference pose of the end effector as described in [11]. The BT returns success only if the
peg is inserted into the box hole by more than 0.01m.

We model the peg insertion as a multi-objective and multi-reward task. There are two
objectives of the task, 1) successful insertion and 2) applied force. To assess the efficacy
of the first objective, we use three rewards, 1) success of the BT, 2) peg distance to the
hole, and 3) peg distance to the box. For the second objective, we use a single reward that
measures the total force applied by the peg. There are three learnable parameters in this
task, 1) downward force applied by the robot arm, 2) radius of the overlay search motion
and 3) path velocity of the overlay search motion.

We learn for 400 iterations in the simulation and repeat this experiment ten times. To
increase the robustness of the solutions we use domain randomization and evaluate each
parameter configuration in seven worlds. We vary the location of the box by sampling
from a Gaussian distribution with a standard deviation of 7mm and uniformly sample
one out of five start configurations of the robot arm. We compare the performance of
the learned policies with (1) the outcome of the planner without a parameterized search
motion, (2) randomly chosen parameter configurations from the parameter search space
used for learning and (3) policies that are parameterized by human operators (see Fig. 1.5b).

The learned Pareto-optimal configurations consist of 6.1 points on average. We evaluated
the insertion success using the 5 known and additional 10 unknown start configurations of
the robot (Fig. 1.5b).

To find policies for this task, the human operators took (31.8 ± 109)min and executed
(39 ± 14) trials on the system. However, compared to the randomly sampled policies the
average insertion rate only increased from 41% to 52.2%. This is much lower than the
average insertion rate of 96% of the best learned policies as shown in box four, Fig. 1.5b.
Furthermore, the average force that was chosen by the operators compared to the learned
policies was 16.6% higher. Finally, the successful insertions by the learned policies were also

129

0 2000 4000 6000 8000
Force

4750

5000

5250

5500

5750

6000

6250

6500

In
se

rti
on

 R
ew

ar
d

Figure 1.6: Pareto front of the peg task. Each experiment has a different color. The goal is to
maximize insertion reward while minimizing the interaction forces.

18.1% faster. Therefore, the learned policies outperformed the human operators in both
objectives while also producing more reliable results.

6 Conclusion

In this paper we proposed a method for effectively combining task-level planning with
learning to solve industrial contact-rich tasks. Our method leverages prior information
and planning to acquire explicit knowledge about the task, whereas it utilizes learning to
capture the tacit knowledge, i.e., the knowledge that is hard to formalize and which can
only be captured through actual interaction. We utilize behavior trees as an interpretable
policy representation that is suitable for learning and leverage domain randomization for
learning in simulation. Finally, we formulate a multi-objective optimization scheme so that
(1) we handle conflicting rewards adequately, and (2) an operator can choose a policy from
the Pareto front and thus actively participate in the learning process.

We evaluated our method on two scenarios using a real KUKA 7-DOF manipulator: (a) a
pushing task, and (b) a peg insertion task. Both tasks are contact-rich and naïve planning
fails to solve them. The approach was able to outperform the baselines including the manual
parameterization by robot operators.

For future work we are looking into multi-fidelity learning that can leverage a small amount

130

of executions on the real system to complement the learning in simulation. Furthermore,
the use of parameter priors for the optimum seems a promising direction to guide the policy
search and make it more efficient.

Appendix

The implementation and the supplemental video are available at:
https://sites.google.com/ulund.org/SkiREIL

Acknowledgement

We thank Alexander Durr, Elin Anna Topp, Francesco Rovida and Jacek Malec for the interesting
discussions and the constructive feedback.

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Pro-
gram (WASP) funded by Knut and Alice Wallenberg Foundation. This research was also supported
in part by affiliate members and other supporters of the Stanford DAWN project—Ant Financial,
Facebook, Google, InfoSys, Teradata, NEC, and VMware.

References

[1] Volker Krueger et al. “Testing the vertical and cyber-physical integration of cognit-
ive robots in manufacturing”. In: Robotics and Computer-Integrated Manufacturing
57 (2019), pp. 213–229.

[2] Volker Krueger et al. “A Vertical and Cyber–Physical Integration of Cognitive Ro-
bots in Manufacturing”. In: Proceedings of the IEEE 104.5 (2016), pp. 1114–1127.

[3] Simon Bøgh et al. “Does your robot have skills?” In: Proceedings of the 43rd inter-
national symposium on robotics. VDE Verlag GMBH. 2012.

[4] Matthew Crosby et al. “Integrating Mission and Task Planning in an Industrial
Robotics Framework”. In: Proceedings of the Twenty-Seventh International Conference
on Automated Planning and Scheduling (ICAPS 2017). AAAI. 2017.

[5] Francesco Rovida et al. “Planning for sustainable and reliable robotic part hand-
ling in manufacturing automation”. In: Proceedings of the Twenty-Sixth International
Conference on Automated Planning and Scheduling (ICAPS 2016). 2016.

[6] Konstantinos Chatzilygeroudis et al. “A survey on policy search algorithms for
learning robot controllers in a handful of trials”. In: IEEE Transactions on Robotics
36.2 (2019), pp. 328–347.

131

https://sites.google.com/ulund.org/SkiREIL

[7] Mark Edmonds et al. “A tale of two explanations: Enhancing human trust by ex-
plaining robot behavior”. In: Science Robotics 4.37 (2019), eaay4663.

[8] Sylvain Koos, Jean-Baptiste Mouret and Stéphane Doncieux. “The transferability
approach: Crossing the reality gap in evolutionary robotics”. In: IEEE Transactions
on Evolutionary Computation 17.1 (2012), pp. 122–145.

[9] Jean-Baptiste Mouret and Konstantinos Chatzilygeroudis. “20 years of reality gap:
a few thoughts about simulators in evolutionary robotics”. In: Proceedings of the
Genetic and Evolutionary Computation Conference Companion. 2017, pp. 1121–1124.

[10] F. Rovida et al. “Motion Generators Combined with Behavior Trees: A Novel Ap-
proach to Skill Modelling”. In: 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2018, pp. 5964–5971. DOI: 10.1109/IROS.2018.
8594319.

[11] Matthias Mayr et al. “Learning of Parameters in Behavior Trees for Movement
Skills”. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems.
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2021.

[12] Tsutomu Hasegawa, T Suehiro and Kunikatsu Takase. “A model-based manipula-
tion system with skill-based execution in unstructured environment”. In: Fifth In-
ternational Conference on Advanced Robotics’ Robots in Unstructured Environments.
IEEE. 1991, pp. 970–975.

[13] Ulrike Thomas et al. “Error-tolerant execution of complex robot tasks based on
skill primitives”. In: 2003 IEEE International Conference on Robotics and Automation
(Cat. No. 03CH37422). Vol. 3. IEEE. 2003, pp. 3069–3075.

[14] Francesco Rovida et al. “SkiROS-A skill-based robot control platform on top of
ROS”. In: Studies in Computational Intelligence. Vol. 707. 2017, pp. 121–160.

[15] Ulrike Thomas et al. “A new skill based robot programming language using uml/p
statecharts”. In: 2013 IEEE International Conference on Robotics and Automation.
IEEE. 2013, pp. 461–466.

[16] Maj Stenmark et al. “On distributed knowledge bases for robotized small-batch
assembly”. In: IEEE Transactions on Automation Science and Engineering 12.2 (2015),
pp. 519–528.

[17] C. Paxton et al. “CoSTAR: Instructing collaborative robots with behavior trees and
vision”. In: 2017 IEEE International Conference on Robotics and Automation (ICRA).
2017, pp. 564–571. DOI: 10.1109/ICRA.2017.7989070.

[18] Francesco Rovida, Bjarne Grossmann and Volker Krüger. “Extended behavior trees
for quick definition of flexible robotic tasks”. In: 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 6793–6800.

132

https://doi.org/10.1109/IROS.2018.8594319
https://doi.org/10.1109/IROS.2018.8594319
https://doi.org/10.1109/ICRA.2017.7989070

[19] Patrick Varin, Lev Grossman and Scott Kuindersma. “A Comparison of Action
Spaces for Learning Manipulation Tasks”. In: 2019 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). 2019, pp. 6015–6021. DOI: 10.1109/
IROS40897.2019.8967946.

[20] Roberto Martín-Martín et al. “Variable Impedance Control in End-Effector Space:
An Action Space for Reinforcement Learning in Contact-Rich Tasks”. In: 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2019,
pp. 1010–1017. DOI: 10.1109/IROS40897.2019.8968201.

[21] Marc Peter Deisenroth, Gerhard Neumann and Jan Peters. “A Survey on Policy
Search for Robotics”. In: Foundations and Trends® in Robotics 2.1–2 (2013), pp. 1–
142. ISSN: 1935-8253, 1935-8261. DOI: 10.1561/2300000021. URL: https:
/ / www . nowpublishers . com / article / Details / ROB - 021 (visited on
26/03/2019).

[22] Auke Jan Ijspeert et al. “Dynamical movement primitives: learning attractor models
for motor behaviors”. In: Neural computation 25.2 (2013), pp. 328–373.

[23] Aleš Ude et al. “Task-specific generalization of discrete and periodic dynamic move-
ment primitives”. In: IEEE Transactions on Robotics 26.5 (2010), pp. 800–815.

[24] Konstantinos Chatzilygeroudis et al. “Black-Box Data-Efficient Policy Search for
Robotics”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2017, pp. 51–58. DOI: 10.1109/IROS.2017.8202137.

[25] Matthias Mayr et al. “Learning Skill-based Industrial Robot Tasks with User Priors”.
In: IEEE International Conference on Automation Science and Engineering (CASE).
IEEE. 2022.

[26] Matthew Grounds and Daniel Kudenko. “Combining reinforcement learning with
symbolic planning”. In: Adaptive Agents and Multi-Agent Systems III. Adaptation
and Multi-Agent Learning. Springer, 2005, pp. 75–86.

[27] Daniel Gordon, Dieter Fox and Ali Farhadi. “What should i do now? marrying
reinforcement learning and symbolic planning”. In: arXiv preprint arXiv:1901.01492
(2019).

[28] Fangkai Yang et al. “Peorl: Integrating symbolic planning and hierarchical rein-
forcement learning for robust decision-making”. In: arXiv preprint arXiv:1804.07779
(2018).

[29] Vasanth Sarathy et al. “SPOTTER: Extending Symbolic Planning Operators through
Targeted Reinforcement Learning”. In: Proceedings of the 20th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS). 2021.

[30] Jonathan Styrud et al. “Combining Planning and Learning of Behavior Trees for
Robotic Assembly”. In: arXiv preprint arXiv:2103.09036 (2021).

133

https://doi.org/10.1109/IROS40897.2019.8967946
https://doi.org/10.1109/IROS40897.2019.8967946
https://doi.org/10.1109/IROS40897.2019.8968201
https://doi.org/10.1561/2300000021
https://www.nowpublishers.com/article/Details/ROB-021
https://www.nowpublishers.com/article/Details/ROB-021
https://doi.org/10.1109/IROS.2017.8202137

[31] John R Koza and John R Koza. Genetic programming: on the programming of com-
puters by means of natural selection. Vol. 1. MIT press, 1992.

[32] Michele Colledanchise and Petter Ögren. Behavior Trees in Robotics and AI: An
Introduction. Chapman & Hall/CRC Press, 2017.

[33] A. Marzinotto et al. “Towards a Unified Behavior Trees Framework for Robot Con-
trol”. In: 2014 IEEE International Conference on Robotics and Automation (ICRA).
2014 IEEE International Conference on Robotics and Automation (ICRA). 2014,
pp. 5420–5427. DOI: 10.1109/ICRA.2014.6907656.

[34] Maria Fox and Derek Long. “PDDL2. 1: An extension to PDDL for expressing
temporal planning domains”. In: Journal of artificial intelligence research 20 (2003),
pp. 61–124.

[35] Rituraj Kaushik, Konstantinos Chatzilygeroudis and Jean-Baptiste Mouret. “Multi-
objective model-based policy search for data-efficient learning with sparse rewards”.
In: Conference on Robot Learning. PMLR. 2018, pp. 839–855.

[36] Luigi Nardi, David Koeplinger and Kunle Olukotun. “Practical Design Space Ex-
ploration”. In: International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems. 2019.

[37] Peter I. Frazier. A Tutorial on Bayesian Optimization. 2018. arXiv: 1807.02811
[stat.ML].

[38] Eric Brochu, Vlad M Cora and Nando De Freitas. “A tutorial on Bayesian optim-
ization of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning”. In: arXiv preprint arXiv:1012.2599 (2010).

[39] Luigi Nardi et al. “Algorithmic performance-accuracy trade-off in 3d vision ap-
plications using hypermapper”. In: International Parallel and Distributed Processing
Symposium Workshops. 2017.

[40] Bruno Bodin et al. “Integrating algorithmic parameters into benchmarking and
design space exploration in 3D scene understanding”. In: International Conference
on Parallel Architectures and Compilation. 2016.

[41] Artur Souza et al. “Bayesian Optimization with a Prior for the Optimum”. In: Ma-
chine Learning and Knowledge Discovery in Databases. Research Track. Ed. by Nuria
Oliver et al. Cham: Springer International Publishing, 2021, pp. 265–296. ISBN:
978-3-030-86523-8.

[42] Jonas Mockus, Vytautas Tiesis and Antanas Zilinskas. “The application of Bayesian
methods for seeking the extremum”. In: Towards global optimization 2.117-129 (1978),
p. 2.

134

https://doi.org/10.1109/ICRA.2014.6907656
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1807.02811

[43] Biswajit Paria, Kirthevasan Kandasamy and Barnabás Póczos. “A Flexible Frame-
work for Multi-Objective Bayesian Optimization using Random Scalarizations”.
In: Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence,
UAI. Ed. by Amir Globerson and Ricardo Silva. 2019, p. 267.

[44] Marc Peter Deisenroth and Carl Edward Rasmussen. “PILCO: A Model-Based and
Data-Efficient Approach to Policy Search”. In: Proceedings of the 28th International
Conference on International Conference on Machine Learning. ICML’11. Bellevue,
Washington, USA: Omnipress, 2011, pp. 465–472. ISBN: 978-1-4503-0619-5.

135

Paper II

F. Ahmad, M. Mayr, E.A. Topp, J. Malec, V. Krueger
Generalizing Behavior Trees and Motion-Generator (BTMG) Policy Representation for
Robotic Tasks Over Scenario Parameters
IEEE International Joint Conferences on Artificial Intelligence (IJCAI), Vienna, Austria,
2022, Workshop on Bridging the Gap Between AI Planning and Reinforcement Learning

Chapter 2

Generalizing Behavior Trees and
Motion-Generator (BTMG) Policy
Representation for Robotic Tasks over
Scenario Parameters

1 Abstract

We propose a generalization of a behaviour tree and motion-generator based robot arm
policy representation for learning and solving tasks such as contact-rich tasks like peg in-
sertion or pushing an object. We use planning to generate skill sequences needed to ex-
ecute these tasks and rely on reinforcement learning to obtain parameters of the policy. We
assume gaussian processes as a suitable method for this generalization and present prelim-
inary, promising results from initial experiments.

2 Introduction

In previous papers [1, 2, 3] we have developed a representation based on behavior trees (BT)
[4] and motion-generator (MG), (BTMG). [1]. They are easy to interpret, can be robust
to faults and errors that can occur during execution and they can be reactive, allowing the
robot to act and deal with uncertain conditions and recover from failures.

BTMG is a parameteric policy representation that allow us to solve contact-rich tasks like

139

Figure 2.1: The mapping (yellow) of the vector space of a scenario parameter (pink) to the abstract
BTMG space of a task (gray).

“peg-in-hole” or pushing an object. Parameters of a BTMG can vary from deciding the
structure of behavior trees to specifying the actual controller stiffness values of the MG. We
can either specify these parameters manually [1] or learn them using reinforcement learning
(RL) [2, 3]. We generate skill sequences for these tasks in a skill-based system, SkiROS [5]
that uses Planning Domain Definition Langauage (PDDL) for task planning.

Although BTMGs are shown to be quite promising, one key shortcoming of this represent-
ation is that they can be scenario specific. For instance, pushing an object to different goal
locations using a BTMG requires learning the parameters. This is problematic and is also
common for the original formalization of dynamic motion primitives (DMPs) [6]. This
problem was later resolved by generalizing DMPs [7]. In this work, we aim to generalize
the BTMG policy representation in a similar way. Our proposed solution is to generate a
novel BTMG for a new task instance as a weighted sum of the ”basis”-BTMG (parametric
BTMG for different instances of a task). This poses some interesting questions: 1) What
kind of Basis-BTMGs should we use? 2) How many Basis-BTMGs do we need? 3) How
can we use Basis-BTMGs to interpolate?

140

3 Formalization

A BTMG is parameterized by two types of parameters; intrinsic parameters and extrinsic
parameters. Intrinsic parameters decide the structure of the BT, number of control flow
and execution nodes, etc. These parameters also decide how much velocity can be allowed,
how fast the arm should move, etc. Intrinsic parameters could be implied by the specific
task at hand, e.g., push task and peg-in-a-hole task. In this work, we do not want to
change intrinsic parameters. Extrinsic parameters on the other hand represent, e.g., how
much force can be applied, offsets, path velocity of the end-effector, etc. In a nutshell,
extrinsic parameters are optimized while intrinsic ones are assumed to be known apriori.
Note that object goal pose is not necessarily a parameter here. Consider a pushing task:
while the object goal pose represents the centre of mass of the object at the goal location,
the point on the object where the peg touches the object is expected to be different. The
centre of mass of the object should be at the goal location. We specify pushing the object
through a push vector(see Figure 2.2 defined by start and goal offsets from object start and
goal locations.

In previous work [3], we have used RL to learn extrinsic parameters of the BTMG policy
representation for a specific instance of a push task and a peg insertion task.

Apart from BTMGs, we also consider scenario parameters like object goal pose, object start
pose, object weight, etc. These parameters represent variations or dimensions over which
we want to generalize the BTMG representation of a task. Figure 2.1 shows the vector space
Rm of a particular scenario parameter (shown in pink). Every point in this space shows
a set of unique values of scenario parameters. For instance, any point or object goal pose
would be a 6D-vector x, y, z, α, β, γ representing the goal pose of the object.

4 Mapping

In order to generate various policy representations of a task that generalizes over a scenario
parameters, we are interested in a mapping that maps scenario parameters to the corres-
ponding extrinsic BTMG parameters for a task. Figure 2.1 shows the mapping (yellow)
that maps the vector space of a scenario parameter to BTMGs of a specific task.

We propose to use gaussian processes (GP) [8, 9, 10] as a mapping function. We start
by collecting data samples using RL by learning extrinsic parameters for BTMGs of a task
over particular scenario parameters. We use these samples to train the GP by using scenario
parameters as input and extrinsic parameters as output. The idea is to then use this trained
GP to interpolate and return the values of extrinsic parameters for different values of the
scenario parameters.

141

We also want to clarify that using GP to interpolate is not a new idea as it has already
been used in literature [11, 8]. The novelty of our approach lies in using GPs as a mapping
function in the context of BTMG policy representation that allows it to generalize over
scenario parameters.

Using GP has two major benefits: 1) It provides mean and variance bounds over the extrinsic
parameters of BTMG of a skill. 2) They are known for generalizing over domains and have
been used in this context in Dynamic Motion Primitives (DMPs) as discussed before.

5 Experiments

We tested our approach on a push task where the robot had to push an object from a start
location to specified object goal poses, see Figure 2.2. In our setting, the BTMG of the
push task has four learnable extrinsic parameters: 1) Offsets in start locations sx, sy, 2)
Offsets in goal locations gx, gy. Together, these parameters decide the push vector. We
start by collecting training and testing samples of goal locations of the object. Instead of
randomly choosing samples over the space we use Latin hypercube space[12] to achieve
evenly distributed samples across the entire region. We choose defined number of samples
within the bounds. Choosing the number of samples is not a trivial task and dependent on
work space and the type of the scenario parameter.

We use RL to get the best sx, sy, gx, gy for every training sample. These are used to train
our GP. The GP takes object goal pose as input and produces offsets sx, sy, gx, gy as output.
For simplicity, we only change the x and y coordinates of the object goal pose. The trained
GP is then used to generate offsets for the test points.

We trained the GP on samples distributed across a restrictive space and tested it on unseen
samples. The initial results look promising as the GP was able to find offsets that managed
to solve the task for all the test points. The offsets managed to push the object through-
out without slipping off. We analyzed the performance of offsets by calculating the error
between actual and specified goal pose of the object. Initial results suggest that the error
for the offsets obtained thorough GP is in the same range for the offsets learned through
RL.

6 Future Work

For future work, we are planning to generalize over a larger space to obtain BTMG para-
meters for multiple scenario parameters together. We would also like to extend this gener-
alization to other tasks.

142

Figure 2.2: a) Shows the push vector (red) defined by offsets in start and goal location. The image b)
shows the push task setup with different goal locations where (1-3) are training examples
and (4) is a test example.

We would also like to evaluate the performance of trained GP models for a skill by com-
paring it with baseline regression models. Since, we aim to use a generic model, we expect
GP to perform well to generalize scenario parameters of BTMG of difference skills.

We would also like to investigate sensitivity of the model to different scenario parameters.
Basically how well GP performs for different types of scenario parameters? Furthermore,
we would also like to see if GP can be used to interpolate intrinsic parameters as well i.e.
generating new BTs for a skill.

References

[1] F. Rovida et al. “Motion Generators Combined with Behavior Trees: A Novel Ap-
proach to Skill Modelling”. In: 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2018 IEEE/RSJ International Conference on Intelligent

143

Robots and Systems (IROS). 2018, pp. 5964–5971. DOI: 10.1109/IROS.2018.
8594319.

[2] Matthias Mayr et al. “Learning of Parameters in Behavior Trees for Movement
Skills”. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems.
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2021.

[3] Matthias Mayr et al. “Skill-based Multi-objective Reinforcement Learning of In-
dustrial Robot Tasks with Planning and Knowledge Integration”. In: arXiv preprint
arXiv:2203.10033 (2022).

[4] Michele Colledanchise and Petter Ögren. “How Behavior Trees Modularize Ro-
bustness and Safety in Hybrid Systems”. In: 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems. 2014 IEEE/RSJ International Conference on In-
telligent Robots and Systems. 2014, pp. 1482–1488. DOI: 10.1109/IROS.2014.
6942752.

[5] Francesco Rovida et al. “SkiROS-A skill-based robot control platform on top of
ROS”. In: Studies in Computational Intelligence. Vol. 707. 2017, pp. 121–160.

[6] Auke Jan Ijspeert, Jun Nakanishi and Stefan Schaal. “Learning rhythmic move-
ments by demonstration using nonlinear oscillators”. In: Proceedings of the ieee/rsj
int. conference on intelligent robots and systems (iros2002). CONF. 2002, pp. 958–963.

[7] Auke Jan Ijspeert et al. “Dynamical movement primitives: learning attractor models
for motor behaviors”. In: Neural computation 25.2 (2013), pp. 328–373.

[8] Carl Edward Rasmussen. Gaussian processes in machine learning. Springer Science
& Business Media, 2003.

[9] Denis Forte, Aleš Ude and Andrej Gams. “Real-time generalization and integration
of different movement primitives”. In: 2011 11th IEEE-RAS International Conference
on Humanoid Robots (2011).

[10] You Zhou and Tamim Asfour. “Task-oriented generalization of dynamic movement
primitive”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS) (2017).

[11] Denis Forte et al. “On-line motion synthesis and adaptation using a trajectory data-
base”. In: Robotics and Autonomous Systems 60.10 (2012), pp. 1327–1339.

[12] K.Q. Ye. “Orthogonal column Latin hypercubes and their application in computer
experiments”. In: Journal of the American Statistical Association (1998).

144

https://doi.org/10.1109/IROS.2018.8594319
https://doi.org/10.1109/IROS.2018.8594319
https://doi.org/10.1109/IROS.2014.6942752
https://doi.org/10.1109/IROS.2014.6942752

Paper III

F. Ahmad, M. Mayr, V. Krueger
Learning to Adapt the Parameters of Behavior Trees and Motion Generators (BTMGs) to
Task Variations
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit,
MI, USA, 2023, pp. 10133-10140, doi: 10.1109/IROS55552.2023.10341636

Chapter 3

Learning to Adapt the Parameters of
Behavior Trees and Motion
Generators (BTMGs) to Task
Variations

1 Abstract

The ability to learn new tasks and quickly adapt to different variations or dimensions is
an important attribute in agile robotics. In our previous work, we have explored Behavior
Trees and Motion Generators (BTMGs) as a robot arm policy representation to facilitate the
learning and execution of assembly tasks. The current implementation of the BTMGs for
a specific task may not be robust to the changes in the environment and may not generalize
well to different variations of tasks. We propose to extend the BTMG policy representation
with a module that predicts BTMG parameters for a new task variation. To achieve this, we
propose a model that combines a Gaussian process and a weighted support vector machine
classifier. This model predicts the performance measure and the feasibility of the predicted
policy with BTMG parameters and task variations as inputs. Using the outputs of the
model, we then construct a surrogate reward function that is utilized within an optimizer
to maximize the performance of a task over BTMG parameters for a fixed task variation.
To demonstrate the effectiveness of our proposed approach, we conducted experimental
evaluations on push and obstacle avoidance tasks in simulation and with a real KUKA iiwa
robot. Furthermore, we compared the performance of our approach with four baseline
methods.

147

Figure 3.1: The experimental setup. It shows the object with the skewed weight distribution that is
pushed with a 45mm wide peg. On the table the different start and goal positions for
the object can be seen in different colours. On the sides, some example sizes for
obstacles are shown.

2 Introduction

Robots have been utilized effectively for many years in repetitive and automated industrial
processes. However, despite the shift towards smaller batch sizes and increased demand
for customization, many robot systems still require a lengthy and expensive reconfigura-
tion process. To keep up with the demands of society and modern industrial production,
robots should have the ability to adapt quickly to different situations. In these situations,
the task formulations should be robust to failures, interpretable, and possibly reactive to
failures. Additionally, the task formulations should also be adaptable to different variations
or dimensions of the same task, such as pushing an object to different locations, picking an
object from any location in the space, and avoiding an obstacle with different shapes and
positions.

To overcome the challenges, Rovida F. et al. [1] have suggested a representation that com-
bines behavior trees (BT) [2, 3] and motion generators (MG), (BTMG). In our previous
work, we used BTMGs to model skills for contact-rich tasks such as inserting a peg into
the hole to mimic engine assembly [1, 4] and pushing an object to a target location [5, 6].

148

A BTMG is a parameterized policy representation that combines the strengths of both
behavior trees and motion generators. Behavior trees provide a clear and intuitive way to
describe the high-level logic of the robot’s behavior, while motion generators generate the
low-level motion commands by controlling the end-effector in Cartesian space. For a more
concrete definition of motion generators, refer to [1]. The parameters of a BTMG can be
used to specify the structure of the behavior tree as well as values such as controller stiffness.

BTMGs are easy to interpret and can be designed to be robust to faults and failures that
can occur during execution [1]. Furthermore, they have the ability to be reactive [2], al-
lowing the robot to adapt and respond to current circumstances. Simple BTs can also be
systematically combined with more complex ones to solve complex tasks [1, 4, 7].

BTMGs are a promising technique for motion modeling because of their explicitness, ro-
bustness, and reactiveness. There are mainly three ways to set the parameters of BTMGs.
One way is to specify them manually or fine-tune them by experts [1]. Another way is
to determine those parameters through reasoning. However this requires the existence of
such a reasoner for the task at hand, which can not always be assumed. Finally, BTMG
parameters can be learned through reinforcement learning (RL) [5, 6, 8]. However, learned
BTMG parameters are in many cases scenario-specific and changes in the setup may require
relearning them.

Setting BTMG parameters using these methods can limit the usage of BTMGs in scenarios
that require quick adaptability. For example, tasks such as pushing an object to different
locations, picking an object from various locations, or even picking objects with various
shapes would require updating the parameters of the respective BTMGs. This problem is
also present in the original formalization of dynamic motion primitives (DMPs) [9, 10] and
was later addressed in [11].

In this paper, we propose an extension to the BTMG formulation that enables quick ad-
aptation to different task variations by incorporating a model that combines a Gaussian
process (GP) and a weighted support vector machine (SVM) classifier. Our model uses a
GP to learn a function that predicts the performance measure of a policy using task vari-
ations and BTMG parameters as inputs. Furthermore, the model also trains a weighted
SVM classifier that predicts the feasibility of a policy. For example, in a push task, the
performance measure of a policy can be given by its overall reward, which depends on the
error between the actual and target position of the pushed object. In this task, a policy can
be feasible when this error is below a user-defined threshold. Once the model is trained, we
optimize the BTMG parameters over the resulting surrogate reward function for a given
new task variation.

The following are our main contributions:

• We extend BTMG policy representation that enables it to quickly adapt to task vari-

149

ations.

• We propose a model that combines a GP and a weighted SVM classifier to predict
the performance measure and feasibility of a BTMG policy for a new task variation,
and subsequently optimize the output of the model to obtain resulting BTMG para-
meters.

• We evaluate the performance of the proposed method in simulation and on a real
KUKA iiwa robot for two tasks and compare its performance with four baselines.

3 Related Work

Movement primitives, based on motor primitives theory [12, 13], are mathematical formu-
lations of dynamic systems that generate motions. Two well-known movement primitives
used in robotics are Dynamic Movement Primitives (DMPs) [9, 10] and Probabilistic Move-
ment Primitives (ProMPs)[14]. Movement primitives can be generalized and have proven
successful in various robotics applications, such as dynamic motion primitives [9, 10].
Similar to our BTMGs, DMPs intially lacked the capacity to generalize to different task
parameters. This was resolved later by introducing a small change in the transformation
system [11].

While both DMPs and BTMGs are capable of generating motions through attractor land-
scapes, the parameters for DMPs are learned implicitly from a set of demonstrations, whereas
parameters for BTMGs can be explicitly specified manually, inferred through a reasoner, or
learned using RL. Nevertheless, a comprehensive comparison of the two approaches would
require further investigation and is outside the scope of this paper.

DMPs have been extended with intermediate via points [15, 16, 17, 18], and can generalize
to new goals by interpolating weights of neighboring DMPs [19] or by using Gaussian Pro-
cess Regression (GPR) to generate new parameters [20]. Furthermore, GPs [21] have been
used to generalize DMPs to external task variations, arbitrary movements, and adapting
trajectories to new situations online in [22, 23, 20], respectively. In [24], Gaussian mixture
models are used to learn the mapping of task parameters and the forcing term of DMPs.

The mixture of movement primitives (MoMP) algorithm introduced in [25, 26], can also be
used to generalize the basis movements stored in the library. The MoMP algorithm captures
the robot’s position and velocity as parameters for the expected hitting position and velocity.
A new motion is generated by a weighted sum of DMPs, assigning a probability to a DMP
based on the sensed state. MoMPs and ProMPs have been applied successfully in various
applications, including learning striking movements for table tennis robots [27, 28] and
solving Human-Robot collaborative tasks [29] using ProMPs.

150

We draw inspiration from prior work on DMPs to extend BTMG’s formulation by incor-
porating generalization to different task variations using GP, as seen in [20, 22, 23]. These
studies employed GPs to directly map task variations to DMP parameters, which we refer
to as the direct model in this paper. However, our approach differs significantly in how we
use GPs. Instead of using the direct model, we propose a model that combines GP with a
weighted SVM classifier to predict the performance of tasks and the feasibility of a policy,
using task variations and BTMG parameters as inputs. Since our model predicts both per-
formance measure and feasibility, we refer to it as the PerF model, short for performance
and feasibility.

4 BTMG and Task Variations

We define BTMG as a parametric policy representation, BTMG(θ) where θ ∈ RN . The
parameters θ can range from determining the structure of the behavior tree (BT) to spe-
cifying the controller stiffness values of the motion generator (MG). These parameters are
further subdivided into intrinsic parameters θi and extrinsic parameters θe [30].

Intrinsic parameters θi determine the structure of the behavior tree, the number of control
nodes, the type of motion generator, etc. For example, consider a policy Tp for a push task,
which has intrinsic parameters θi. These parameters are fixed and independent of the task
instance, meaning that Tp uses the same θi values regardless of the starting position, or the
target position of the object. In other words, θi is situation-invariant. Within the scope of
this paper, these parameters are assumed to be known a priori.

Extrinsic parameters θe are situation dependent e.g. to determine the applied force, offsets,
and the velocity of the end effector. Again, θe can be specified manually [1, 31], inferred
through a reasoning framework, or learned using RL. We have already demonstrated how
RL can be used to obtain BTMG parameters [4] and used it in simulation and on a real
robot to solve multi-objective tasks [6, 8].

In addition to θ, we also consider task variations v ∈ RM . Task variations refer to different
possible alterations of a given task, such as different start and goal positions of an object.
For example, a task variation v in the case of a push task would be a 4D vector consisting
of the values of the start and goal positions of the object along the horizontal and vertical
axes.

Note that the task variation parameters are different from the extrinsic BTMG parameters
(Figure 3.2). We take two task variations v1 = (vsx , vsy , vg1x , vg1y) and v2 = (vsx , vsy ,
vg2x , vg2y) that define the start and goal positions of the object. For variations v1 and v2, we
have corresponding θe1 = (θe1sx , θe1sy , θe1gx , θe1gy) and θe2 = (θe2sx , θe2sy , θe2gx , θe2gy)
that collectively define the start and the goal locations for the pushing action.

151

Figure 3.2: An illustration of two simplified task variations v1 and v2 in the pushing task that only
vary the goal location. The orange and blue vectors are set by the respective learned
extrinsic parameters θe1 and θe2, so that they define the resulting green and red push
vectors that should successfully push the object.

As θi has no impact on adapting BTMGs to different variations, our objective in this paper
is to establish a relationship between θe and v that would enable the adaptation of BTMGs
to new variations.

5 Approach

In this section, we explain how we adapt BTMG parameters for a new task variation by
using the PerF model. Figure 3.3 shows how the PerF model works in comparison with a
direct model. The overall approach is divided into the training (Sec. 5.1) and query phase
(Sec. 5.2). In the training phase, we pass each task variation vk ∈ Vtrain, into an extended
RL pipeline similar to [6]. For each learning process for different task variations, we utilize
three sets of outputs from the RL pipeline to train the direct and the PerF models:

1. Best policies: For every task variation we get the best performing policy:

152

T = {(vk, θ∗e,vk)|k = 1, . . . , n}

2. All evaluated configurations and their rewards:
K = {(vk, θei,vk , rθei,vk)|k = 1, . . . , n and i = 1, . . . , t ≤ tmax}

3. All evaluated configurations and their feasibility:
E = {(vk, θei,vk , fθei,vk)|k = 1, . . . , n and i = 1, . . . , t ≤ tmax}

The direct model M is trained with the set T and, as a result, learns to predict θ̂e given v.
On the other hand, the PerF model is trained with the sets K and E and as a result it learns
to predict the reward r̂ and feasibility f̂ of a policy with parameters θe. The model further
uses r̂ and f̂ to generate a surrogate reward function that obtains θ̂e given v. For more
details on how we obtain set T, we direct the reader to [6]. To obtain sets K and E, we
follow the same procedure as in [6], retaining all configurations along with their respective
rewards and feasibilities for a given task variation.

The intuition behind using the PerF model together with an optimizer is to guide the com-
bination of GP and weighted SVM towards predicting policy parameters θe that prioritize
performance measure and feasibility. In contrast, the direct model does not take into ac-
count the performance measure and feasibility. In the following subsections, we explain
our approach in more depth.

5.1 Training Phase

We frame the mapping of the task variations v to the extrinsic BTMG parameters θe as
a supervised learning problem. The training phase aims to learn two functions: Ĵ that
predicts the reward achieved by a policy and F̂ that predicts if a policy is feasible, see
Figure 3.3. We propose to use GP and weighted SVM to learn Ĵ : (θe, v) 7→ r̂ ∈ R and
F̂ : (θe, v) 7→ f̂ ∈ {0, 1}. Ĵ and F̂ are trained by data points in sets K and E, provided
by the RL pipeline introduced in [4].

For each task variation, vk ∈ Vtrain, similar to [4, 6], we define Jvk(θe) as the expected
sum of individual rewards over time, given a sequence of extrinsic parameters θe1, θe2, . . . ,
θet ∈ θe.

In [4, 6], we use Bayesian optimization (BO) as a black-box optimization method to obtain
the optimal policy parameters θ∗e and the best reward Jvk(θ

∗
e). In this paper, however,

we use BO to obtain Jvk(θe) by computing Jvk(θe1), Jvk(θe2), . . . , Jvk(θet) over the
sequence θe1, θe2, . . . , θet. This allows us to not only have the optimal policy parameters
θ∗e and the corresponding best reward Jvk(θ

∗
e) but it also provides us with intermediate θet

and Jvk(θet). Overall, this provides us with large amount of data to train the Ĵ function
and allows us to capture the overall reward landscape better.

153

In addition to learning the reward function Ĵ , we also learn the feasibility function F̂ .
The motivation behind learning F̂ is twofolds: First, it provides a user-defined metric
to evaluate the feasibility of a policy and second, it complements the reward formulation
of a task by addressing the potential shortcomings of inaccurate reward formulations. In
principle, we do not need to optimize feasibility if the reward formulation covers all aspects
of the task. However, in practice, reward formulation is challenging, so feasibility addresses
these shortcomings effectively. It ensures learned policies align with the task’s requirements,
despite imperfect reward formulations.

For a given task variation vk, we define the feasibility function Fvk(θe) as a binary function
that maps to 1 or 0 depending on whether the policy achieves a user-defined metric of feasib-
ility or not. Similar to Jvk(θe), we obtain Fvk(θe) by computing Fvk(θe1), Fvk(θe2), . . . ,
Fvk(θet) for the sequence of evaluations θe1, θe2, . . . , θet. For more details about the
pipeline, we refer the reader to the policy optimization section in [4, 6].

To model Ĵ and F̂ , we obtain a sequence of BTMG parameter vectors, θe1, θe2, . . . , θet,
along with their corresponding reward values Jvk(θe1), Jvk(θe2), . . . , Jvk(θet) and feas-
ibility values Fvk(θe1), Fvk(θe2), . . . , Fvk(θet) for task variations. We then use these data
points to train a GP and a weighted SVM classifier. This enables us to effectively model
the underlying J and F .

5.2 Query Phase

The goal of this phase is to query the trained model with a new task variation vp ∈ Vtest and
obtain a θ̂e by optimizing Ĵ(θet|vp) under the feasibility constraint F̂ (θet|vp) (Figure 3.3).
For this purpose, we use the Ĵ and F̂ obtained in the training phase. We solve this as an
optimization problem over a sequence of θe for a new vp.

We begin the optimization process by specifying the optimizer type, the bounds for θe, and
the maximum number of iterations tmax. In our experiments, we used the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [32, 33] algorithm, which refines an initial
estimate of θe1 to iteratively obtain improved evaluation points θet, where t ≤ tmax, using
the derivative as the driving function. For each new task variation vk, we run the optimizer
to obtain a sequence of evaluation points θet.

Using Ĵ and F̂ , we define a surrogate reward rvp = r̂θet,vp − (1− f̂θet,vp)) ∗ µ. Here, the
first term corresponds to the output reward value computed by Ĵ , while the second term
penalizes the reward if f̂θet,vp maps to 0. We penalize the reward r̂θei,vp by a small factor µ.
We query the surrogate reward rvp for defined number of iterations or until the optimizer
converges.

After the optimization phase, we select the θet that maximizes both Ĵ(θet|vp) and is feasible

154

F̂ (θet|vp).

Figure 3.3: The pipeline of our approach and the direct model baseline. For every task variation v,
an RL problem is solved and the respective results are provided to the GP models.
When querying for a new task variation vp both models are queried for a set of
extrinsic parameters θ̂e.

6 Experiments

We evaluated the efficacy of our approach in simulation and also by transferring of the
simulation results to a real KUKA iiwa manipulator for two tasks: an obstacle avoidance task

155

Figure 3.4: The obstacle task with some of the variations of the object location, width, and height.
For each object configuration, valid example trajectories are shown in the same color.
For the red trajectory, the intermediate goal points (g1 and g2) and two motion
switching thresholds (p1 and p2) are shown.

and a pushing task, each having its own challenges. For simulation, we utilized the DART
simulation toolkit [24] and in both simulation and reality, the robot arm was controlled
using a Cartesian impedance controller [34], which helps reduce the disparities between
simulation and reality. Additionally, for the push task, we further reduce the sim-to-real
gap by adjusting the friction coefficient appropriately. For more detailed information on
bridging the sim-to-real gap, please refer to [4].

To train our model, we considered 20 task variations that are learned for the same amount
of iterations each. Using the method detailed in Sec. 5.1, we train the GP and the weighted
SVM classifier with the resulting BTMG parameters, the feasibility, and the reward values.
The weights of the SVM classifier are adjusted automatically to adjust bias induced by an
unequal number of feasible and non-feasible policies. We then tested our approach on 20
unknown task variations. This experiment is repeated five times for both tasks to show the
robustness of the approach.

We compare the performance of our approach with four baselines:

156

1. Learned : This baseline uses the RL pipeline described in [6] to learn the BTMG
parameters directly for the test variations. It shows which performance could be
achieved if a new variation is learned from scratch instead of querying the model.
Notably, our training data is generated in this way.

2. Direct: This model takes the best parameters for the training variations (T) and
learns a direct mapping from task variations to BTMG parameters without explicitly
learning the reward.

3. Nearest Neighbor: For each test variation, we select the closest task variation in the
training set and choose the corresponding BTMG parameters.

4. Single Policy: The learned BTMG parameters of a single training variation are used
for all test variations. This baseline shows how well and how often the learned para-
meters for one task variation can be utilized in a different one without any changes.

Although our baselines may seem simplistic, they are deliberately selected to provide in-
sights into the functionality and performance of our approach. Each of these baselines
serves a specific purpose in understanding the capabilities and limitations of our approach.

We consider task-specific reward functions for both tasks. The rewards and feasibility meas-
ures for the tasks are defined separately in their respective sections.

6.1 Obstacle Avoidance Task

The objective of the obstacle avoidance task is to move the robot’s end effector from the
start to the goal location while avoiding an obstacle in the workspace. As shown in Fig. 3.4,
the obstacle can vary in size and position. The goal is to find policies that navigate the robot
around the obstacle while completing the task as quickly as possible, without violating the
safety constraints that require the end effector to maintain a safe distance from the obstacle.

We consider three task variations: 1) obstacle height, 2) obstacle width, and 3) obstacle
position in a horizontal direction (left-right in Fig. 3.4). The obstacle varies in height from
0.049m to 0.331m and in width from 0.09m to 0.331m. The horizontal position ranges
from 0.274m to 0.311m with respect to the origin. We use Latin hypercube sampling to
ensure a more even sample distribution and obtain 20 task variations from the specified
ranges. We learn each variation for 120 iterations.

This learning problem formulation has three rewards: 1) a fixed success reward, 2) a goal
distance reward, and 3) an obstacle avoidance reward. The fixed success reward assigns a
fixed reward if the BT finishes successfully. The positive goal distance reward increases, the
closer the end effector gets to the goal. The obstacle avoidance reward is a negative function

157

that penalizes end-effector states that are close to the obstacle. These reward functions are
combined to encourage fast execution while discouraging getting too close to the obstacle.
A policy is considered feasible if it satisfies two conditions: First, the end effector does not
come closer to the obstacle than 40mm. Second, the policy must successfully complete the
BT by bringing the end effector to the goal position.

The policy for this task has six learnable parameters consisting of two coordinates of the
intermediate goal points and two thresholds to transition between goal points. A more
detailed description of the task is provided in [4, 6]. Notably, the structure of this policy
with its thresholds allows for different movement strategies. For example, for flat obstacles,
the goal can be reached with only a single intermediate point, while larger obstacles require
both intermediate points, as shown in Fig. 3.4.

Lea
rne

d

89
.0% Pe

rF

87
.0%

Nea
res

t

Neig
hb

or

71
.0%

Dire
ct

67
.0% Sin

gle

Po
licy

58
.0%

−1000

0

1000

2000

3000

4000

5000

6000

7000

(a) Total Reward

Lea
rne

d

89
.0% Pe

rF

87
.0%

Nea
res

t

Neig
hb

or

71
.0%

Dire
ct

67
.0% Sin

gle

Po
licy

58
.0%

4

5

6

7

8

9

10

11

12

(b) Finish Time [sec]

158

Lea
rne

d

88
.0% Pe

rF

86
.0%

Nea
res

t

Neig
hb

or

72
.0%

−1000

0

1000

2000

3000

4000

5000

6000

7000

(c) Total Reward

Lea
rne

d

88
.0% Pe

rF

86
.0%

Nea
res

t

Neig
hb

or

72
.0%

4

5

6

7

8

9

10

11

12

(d) Finish Time [sec]

Figure 3.5: The total reward (a, c) and the execution time (b, d) of the obstacle task in simulation
(a, b) and on the real system (c, d). The box plots show the median (black line) and
interquartile range (25th and 75th percentile); the lines extend to the most extreme
data points not considered outliers, and outliers are plotted individually. The success
percentages are shown below the method names.

Results and Discussion

For the evaluation, we randomly sample 20 new task variations (Vtest) that are not in-
cluded in the training set, and compare the performance of our proposed model and the
baseline methods. Specifically, we assess the execution time and the reward achieved by
each parameter configuration in the new task variation. The reward value is chosen as a
performance metric as it reflects how well a policy balances between the goal-reaching and
obstacle-avoidance objectives expressed in the reward functions.

159

The simulation results are shown in Fig. 3.5a) and b) and Table 3.1. They show that the
policies obtained by optimizing the output of our PerF model performs similarly to the
policies that are explicitly learned. Our model achieves a success percentage of 87% com-
pared to the 89% of the learned ones and a total reward in a similar range. In contrast to
that, the nearest neighbor baseline succeeds only in 71% of the variations. The direct model
also only achieves a success percentage of 67% and has significantly more outliers in the
reward. Further investigation indicates that the reason for the low performance is that an
interpolation between policies is often not valid. This is especially the case between motion
configurations that use a single or both intermediate points.

Based on these results from simulation we also evaluated the learned policies, our model
outputs and the nearest neighbor policies on the real robot system. Although this includes
a transfer from simulation to the real system, the results shown in Fig. 3.5c) and d) have
only minor variations from the simulation results. This also demonstrates the robustness
of this policy formulation as a whole.

6.2 Push task

The goal of this task is to push an object from a varying start location to a varying goal
location. The object is shown in Fig. 3.1 and has a skewed weight distribution with respect
to its bounds.

We consider two types of task variations: 1) the starting position of the object in both
horizontal directions and 2) the goal position of the object in both horizontal directions.
For the starting position, we consider samples from a circle with a diameter of 0.16m around
a center point. For the goal position, a triangular-shaped region is used. Fig. 3.1 shows the
start and goal positions for a single repetition.

The learning formulation has two rewards: 1) the object position reward, which is a function
of the difference between the actual and desired goal position, and 2) the object orientation
reward, which is based on the difference between the actual and desired goal orientation.
For our experiment, we prioritize the object position reward, which is weighted 10 times
more heavily than the orientation reward.

Similarly to previous work [5, 6], the push task has four BTMG parameters that are learned.
They are depicted in Fig. 3.2. These parameters control additional start and goal offsets in
the horizontal directions (x, y), determining the shape of the push vector that is indicated
in Fig. 3.2. The start and goal orientation of the object for this task are fixed.

The object being pushed is an right-angled triangular object with dimensions 0.3m x 0.15m
x 0.07m, and a weight of 2.5kg. The tool on the end effector is a cubic peg with side lengths
of 45mm and therefore covers less than 15% of the side length of the object. In this task,

160

the error between the desired goal position and orientation and the achieved one serves as
direct performance measures for the policy.

Results and Discussion

The results for the simulation are shown in Figure 3.6a) and b). We consider a policy feasible
if the position error between the goal location of the object and the desired goal location is
less than 11mm and the orientation error is less than 30degrees. The high success percentage
of 97% for the learned policies shows that it is generally possible to solve this task. Our
proposed model solves 86% of the configuration and outperforms all baselines that do not
require explicit learning. The gap to the direct model, which achieved a success rate of 65%,
is significant. The nearest neighbor and the single policy approach only achieved 52% and
38%, which shows not only the difficulty of the task but also excludes them as practical
solutions.

Lea
rne

d

97
.0% Pe

rF

86
.0%

Nea
res

t

Neig
hb

or

52
.0%

Dire
ct

65
.0% Sin

gle

Po
licy

38
.6%

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

(a) Position Error [m]

Lea
rne

d

97
.0% Pe

rF

86
.0%

Nea
res

t

Neig
hb

or

52
.0%

Dire
ct

65
.0% Sin

gle

Po
licy

38
.6%

0

25

50

75

100

125

150

175

(b) Orientation Error [deg]

161

Lea
rne

d

80
.0% Pe

rF

86
.0%

Nea
res

t

Neig
hb

or

46
.0%

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

(c) Position Error [m]

Lea
rne

d

80
.0% Pe

rF

86
.0%

Nea
res

t

Neig
hb

or

46
.0%

0

10

20

30

40

50

60

(d) Orientation Error [deg]

Figure 3.6: The final position error (a, c) and orientation error (b, d) of the push task in
simulation (a, b) and on the real system (c, d). The box plots show the median (black
line) and interquartile range (25th and 75th percentile); the lines extend to the most
extreme data points not considered outliers, and outliers are plotted individually. The
success percentages are shown below the method names.

Similar to the obstacle task, we also executed the learned policies on the real robot system.
To account for the differences of such a contact-rich task to the simulation, we increase the
allowed final position error by 4mm but keep the same angular maximum.

162

Table
3.1:Th

e
m

edian
perform

ance
valuesand

the
25

th
and

75
th

percentilesforboth
tasks.A

”-”
indicatesthatconfiguration

w
asnotevaluated.

Task
Perform

ance
M

easure
Environm

ent
Learned

PerF
N

earest
N

eighbor
D

irect
SinglePolicy

M
edian

Percentiles
M

edian
Percentiles

M
edian

Percentiles
M

edian
Percentiles

M
edian

Percentiles

O
bstacle

TotalRew
ard

Sim
ulation

5050
(4467,5531)

5013
(4290,5462)

4834
(3607,5357)

4594
(2635,5143)

4496
(-200,5184)

Reality
4963

(4357,5414)
4966

(4238,5426)
4782

(3625,5327)
–

–
–

–
Finish

Tim
e

[sec]
Sim

ulation
5.7

(5.3,7.3)
5.9

(5.3,7.5)
6.1

(5.4,12)
7

(5.9,12)
7.6

(5.7,12)
Reality

5.8
(5.4,7.4)

6.1
(5.4,7.8)

6.1
(5.5,12)

–
–

–
–

Push

Position
Error

[m
]

Sim
ulation

0.002
(0.002,0.003)

0.006
(0.004,0.009)

0.011
(0.007,0.083)

0.007
(0.005,0.014)

0.016
(0.007,0.123)

Reality
0.01

(0.007,0.014)
0.009

(0.007,0.012)
0.016

(0.01,0.028)
–

–
–

–
O

rientation
Error

[deg]
Sim

ulation
0.15

(0.07,0.33)
0.16

(0.07,0.34)
0.18

(0.08,29.48)
0.11

(0.06,0.26)
0.29

(0.1,45.76)
Reality

1.51
(0.98,2.76)

1.42
(0.94,2.74)

2.58
(1.18,6.23)

–
–

–
–

163

The results for the evaluation on the real system are in Fig. 3.6c) and d) as well as in Table 3.1.
As intuitively expected, the success percentages generally drop as not all policies transfer
to the real system. Similar to the evaluation in simulation, the nearest neighbor baseline
performs poorly. However, it is notable that our model now outperforms the explicitly
learned policies in both the success rate and the final error. A possible explanation for
this is that our model needed to generalize, whereas an explicitly learned policy is able to
exploit the simulation to the maximum extent possible. During the experiments, we also
observed that policies from our model generally kept a larger distance from the object when
approaching it and also had fewer collisions with it.

To determine the time efficiency of our approach, we compute time required to compute
BTMG parameters for 60 new task variations. This analysis compares learning BTMG
parameters from scratch using the RL-pipeline and obtaining BTMG parameters using
our approach. Starting from scratch with the RL-pipeline, median completion times were
770.315 seconds for the obstacle task and 1232.625 seconds for the push task. In contrast,
the optimization phase of our approach achieved median completion times of 1.27 seconds
for the obstacle task and 5.189 seconds for the push task. Additionally, obtaining a trained
PERF model took an average of 66.628 seconds for the obstacle task and 317.025 seconds
for the push task. During optimization, we observed some outliers, likely stemming from
the stochastic nature of the process. The analysis was performed on a laptop equipped with
an Intel(R) Core(TM) i7-10870H CPU running at 2.20GHz with 8 physical cores and
hyper-threading, along with 64GB of RAM.

7 Conclusion and Future Work

Agile robotics requires that a system adapts quickly to changing conditions. In this work,
we introduced an extension to BTMGs, a motion representation based on behavior trees
and motion generators, which addresses this challenge. Our approach enables the use of
learned policies in previously unseen variations of a task, allowing for fast adaption of robot
behavior to changes in the task or environment.

The experimental evaluation demonstrates that our approach effectively learns a model
capable of adapting to new task variations. Our method exhibits comparable perform-
ance to explicitly trained policies and consistently outperforms all other baseline models.
Furthermore, experiments conducted on the real robotic system demonstrate the success-
ful transferability of our approach from simulation to reality, even in a contact-rich task.
Notably, our proposed method can even outperform explicitly learned policies in the same
contact-rich task, indicating superior generalization capabilities.

In future work, it is worth exploring whether the uncertainty modeled by the GP can be

164

leveraged to make more accurate predictions about successful execution. This uncertainty
measure could also be used for out-of-distribution detection. Another promising direction
is to use the learned model to return policy parameters for task parameters, such as friction,
for which the values are not known a priori. In this case, we could jointly optimize over
both policy and task parameters to identify a compatible set of learned parameters.

References

[1] F. Rovida et al. “Motion Generators Combined with Behavior Trees: A Novel Ap-
proach to Skill Modelling”. In: 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2018, pp. 5964–5971. DOI: 10.1109/IROS.2018.
8594319.

[2] Michele Colledanchise and Petter Ögren. “How Behavior Trees Modularize Ro-
bustness and Safety in Hybrid Systems”. In: 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems. 2014 IEEE/RSJ International Conference on In-
telligent Robots and Systems. 2014, pp. 1482–1488. DOI: 10.1109/IROS.2014.
6942752.

[3] Michele Colledanchise and Petter Ögren. Behavior Trees in Robotics and AI: An
Introduction. Chapman & Hall/CRC Press, 2017.

[4] Matthias Mayr et al. “Learning of Parameters in Behavior Trees for Movement
Skills”. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems.
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2021.

[5] Matthias Mayr et al. “Combining Planning, Reasoning and Reinforcement Learn-
ing to solve Industrial Robot Tasks”. In: IROS 2022 Workshop on Trends and Ad-
vances in Machine Learning and Automated Reasoning for Intelligent Robots and Sys-
tems (2022).

[6] Matthias Mayr et al. “Skill-based multi-objective reinforcement learning of indus-
trial robot tasks with planning and knowledge integration”. In: 2022 IEEE Inter-
national Conference on Robotics and Biomimetics (ROBIO). IEEE. 2022, pp. 1995–
2002.

[7] F. Rovida, B. Grossmann and V. Krüger. “Extended Behavior Trees for Quick
Definition of Flexible Robotic Tasks”. In: 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 2017, pp. 6793–6800. DOI: 10.1109/
IROS.2017.8206598.

165

https://doi.org/10.1109/IROS.2018.8594319
https://doi.org/10.1109/IROS.2018.8594319
https://doi.org/10.1109/IROS.2014.6942752
https://doi.org/10.1109/IROS.2014.6942752
https://doi.org/10.1109/IROS.2017.8206598
https://doi.org/10.1109/IROS.2017.8206598

[8] Matthias Mayr et al. “Learning skill-based industrial robot tasks with user priors”.
In: 2022 IEEE 18th International Conference on Automation Science and Engineering
(CASE). IEEE. 2022, pp. 1485–1492.

[9] A.J. Ijspeert, J. Nakanishi and S. Schaal. “Trajectory formation for imitation with
nonlinear dynamical systems”. In: Proceedings 2001 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in
the the Next Millennium (Cat. No.01CH37180). Vol. 2. 2001, 752–757 vol.2. DOI:
10.1109/IROS.2001.976259.

[10] Auke Jan Ijspeert, Jun Nakanishi and Stefan Schaal. “Learning rhythmic move-
ments by demonstration using nonlinear oscillators”. In: Proceedings of the ieee/rsj
int. conference on intelligent robots and systems (iros2002). CONF. 2002, pp. 958–963.

[11] Auke Jan Ijspeert et al. “Dynamical movement primitives: learning attractor models
for motor behaviors”. In: Neural computation 25.2 (2013), pp. 328–373.

[12] Ferdinando A Mussa-Ivaldi. “Modular features of motor control and learning”. In:
Current opinion in neurobiology 9.6 (1999), pp. 713–717.

[13] Tamar Flash and Binyamin Hochner. “Motor primitives in vertebrates and inver-
tebrates”. In: Current opinion in neurobiology 15.6 (2005), pp. 660–666.

[14] Alexandros Paraschos et al. “Probabilistic movement primitives”. In: Advances in
neural information processing systems 26 (2013).

[15] KeJun Ning et al. “Accurate position and velocity control for trajectories based on
dynamic movement primitives”. In: 2011 IEEE International Conference on Robotics
and Automation. IEEE. 2011, pp. 5006–5011.

[16] KeJun Ning et al. “A novel trajectory generation method for robot control”. In:
Journal of Intelligent & Robotic Systems 68 (2012), pp. 165–184.

[17] Roman Weitschat and Harald Aschemann. “Safe and efficient human–robot col-
laboration part II: Optimal generalized human-in-the-loop real-time motion gen-
eration”. In: IEEE Robotics and Automation Letters 3.4 (2018), pp. 3781–3788.

[18] You Zhou, Jianfeng Gao and Tamim Asfour. “Learning via-point movement prim-
itives with inter-and extrapolation capabilities”. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2019, pp. 4301–4308.

[19] Roman Weitschat et al. “Dynamic optimality in real-time: A learning framework
for near-optimal robot motions”. In: 2013 IEEE/RSJ International Conference on In-
telligent Robots and Systems. IEEE. 2013, pp. 5636–5643.

[20] Denis Forte, Aleš Ude and Andrej Gams. “Real-time generalization and integration
of different movement primitives”. In: 2011 11th IEEE-RAS International Conference
on Humanoid Robots (2011).

166

https://doi.org/10.1109/IROS.2001.976259

[21] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for ma-
chine learning. Vol. 2. MIT press Cambridge, MA, 2006.

[22] Tohid Alizadeh, Milad Malekzadeh and Soheila Barzegari. “Learning from demon-
stration with partially observable task parameters using dynamic movement prim-
itives and gaussian process regression”. In: 2016 IEEE International Conference on
Advanced Intelligent Mechatronics (AIM). IEEE. 2016, pp. 889–894.

[23] Yunis Fanger, Jonas Umlauft and Sandra Hirche. “Gaussian processes for dynamic
movement primitives with application in knowledge-based cooperation”. In: 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.
2016, pp. 3913–3919.

[24] Jeongseok Lee et al. “DART: Dynamic Animation and Robotics Toolkit”. In: Journal
of Open Source Software 3.22 (2018), p. 500. ISSN: 2475-9066. DOI: 10.21105/
joss.00500. URL: https://joss.theoj.org/papers/10.21105/joss.
00500 (visited on 18/02/2020).

[25] Katharina Muelling, Jens Kober and Jan Peters. “Learning table tennis with a mix-
ture of motor primitives”. In: 2010 10th IEEE-RAS International Conference on Hu-
manoid Robots. IEEE. 2010, pp. 411–416.

[26] Katharina Mülling et al. “Learning to select and generalize striking movements in
robot table tennis”. In: The International Journal of Robotics Research 32.3 (2013),
pp. 263–279.

[27] K. Muelling, J. Kober and J. Peters. “Learning Table Tennis with a Mixture of Motor
Primitives”. In: 10th IEEE-RAS International Conference on Humanoid Robots (Hu-
manoids 2010). 2010. URL: http://www.ias.informatik.tu-darmstadt.
de/uploads/Publications/Muelling_ICHR_2012.pdf.

[28] S. Gomez-Gonzalez et al. “Using Probabilistic Movement Primitives for Striking
Movements”. In: Proceedings of the International Conference on Humanoid Robots
(HUMANOIDS). 2016.

[29] G. Maeda et al. “Probabilistic Movement Primitives for Coordination of Multiple
Human-Robot Collaborative Tasks”. In: 3 (2017), pp. 593–612. URL: http://
www.ias.tu-darmstadt.de/uploads/Team/PubGJMaeda/gjm_2016_
AURO_c.pdf.

[30] Faseeh Ahmad et al. “Generalizing Behavior Trees and Motion-Generator (BTMG)
Policy Representation for Robotic Tasks Over Scenario Parameters”. In: 2022 IJCAI
Planning and Reinforcement Learning Workshop. 2022.

[31] Francesco Rovida et al. “Planning for sustainable and reliable robotic part hand-
ling in manufacturing automation”. In: Proceedings of the Twenty-Sixth International
Conference on Automated Planning and Scheduling (ICAPS 2016). 2016.

167

https://doi.org/10.21105/joss.00500
https://doi.org/10.21105/joss.00500
https://joss.theoj.org/papers/10.21105/joss.00500
https://joss.theoj.org/papers/10.21105/joss.00500
http://www.ias.informatik.tu-darmstadt.de/uploads/Publications/Muelling_ICHR_2012.pdf
http://www.ias.informatik.tu-darmstadt.de/uploads/Publications/Muelling_ICHR_2012.pdf
http://www.ias.tu-darmstadt.de/uploads/Team/PubGJMaeda/gjm_2016_AURO_c.pdf
http://www.ias.tu-darmstadt.de/uploads/Team/PubGJMaeda/gjm_2016_AURO_c.pdf
http://www.ias.tu-darmstadt.de/uploads/Team/PubGJMaeda/gjm_2016_AURO_c.pdf

[32] Richard H Byrd et al. “A limited memory algorithm for bound constrained optim-
ization”. In: SIAM Journal on scientific computing 16.5 (1995), pp. 1190–1208.

[33] Ciyou Zhu et al. “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale
bound-constrained optimization”. In: ACM Transactions on mathematical software
(TOMS) 23.4 (1997), pp. 550–560.

[34] Matthias Mayr and Julian M Salt-Ducaju. “A C++ Implementation of a Cartesian
Impedance Controller for Robotic Manipulators”. In: arXiv preprint arXiv:2212.11215
(2022).

168

Paper IV

F. Ahmad, M. Mayr, S. Suresh-Fazeela, V. Krueger
Adaptable Recovery Behaviors in Robotics: A Behavior Trees and Motion Generators (BTMG)
Approach for Failure Management
IEEE 20th International Conference on Automation Science and Engineering (CASE),
Bari, Italy, 2024, pp. 1815-1822, doi: 10.1109/CASE59546.2024.10711715

Chapter 4

Adaptable Recovery Behaviors in
Robotics: A Behavior Trees and
Motion Generators (BTMG)
Approach for Failure Management

1 Abstract

In dynamic operational environments, particularly in collaborative robotics, the inevitabil-
ity of failures necessitates robust and adaptable recovery strategies. Traditional automated
recovery strategies, while effective for predefined scenarios, often lack the flexibility required
for on-the-fly task management and adaptation to expected failures. Addressing this gap,
we propose a novel approach that models recovery behaviors as adaptable robotic skills,
leveraging the Behavior Trees and Motion Generators (BTMG) framework for policy rep-
resentation. This approach distinguishes itself by employing reinforcement learning (RL)
to dynamically refine recovery behavior parameters, enabling a tailored response to a wide
array of failure scenarios with minimal human intervention. We assess our methodology
through a series of progressively challenging scenarios within a peg-in-a-hole task, demon-
strating the approach’s effectiveness in enhancing operational efficiency and task success
rates in collaborative robotics settings. We validate our approach using a dual-arm KUKA
robot.

171

2 Introduction

In dynamic operational environments, ensuring the efficiency and adaptability of collab-
orative robots is crucial. Unlike traditional manufacturing line robots, collaborative robots
are designed for on-the-fly task deployment, facing a unique set of challenges and failures.
A Failure is defined as an inability to perform a task as intended due to unforeseen errors
or disturbances, which may include hardware malfunctions, software bugs, or unexpec-
ted environmental conditions [1]. For instance, in a piston engine assembly process [2],
common issues such as misalignment of the engine block, obstruction by misplaced tools,
and incorrect piston orientation due to handling errors can lead to substantial production
delays. Addressing these failures promptly and effectively is crucial for maintaining seamless
operations and efficiency.

Current strategies for managing these failures include human intervention, systematic fail-
ure analysis [3], and automated recovery strategies [4, 5]. Human intervention relies on
operator expertise for problem-solving. Failure analysis systematically identifies root causes
to prevent future issues, but it requires time and expertise. Automated recovery strategies,
on the other hand, leverage intelligent systems for quick detection and correction of failures,
significantly reducing downtime and enhancing consistency. However, these strategies
come with high initial costs and complexity in integration. Automated recovery strategies
often rely on predefined scenarios and responses, lacking the flexibility to adapt to different
variations of the expected failures [4]. While they can efficiently address a range of anti-
cipated problems, their effectiveness diminishes where adaptability and rapid response to
novel challenges are to be addressed.

The necessity for adaptive recovery behaviors is evident in collaborative tasks like piston
engine assembly, where the nature of an obstruction dictates the required strategy. Whether
it involves removing a small obstacle or applying force to displace a larger one, the recovery
behavior must flexibly adjust its approach based on the specific challenge. We propose a
hybrid approach that combines human expertise with the dynamic adaptability of recovery
behaviors. Unlike traditional automated strategies that rely on predefined responses, our
method leverages RL to dynamically refine and adjust recovery parameters. For instance, in
the piston engine assembly problem, RL allows the system to learn the precise force needed
to push an obstacle based on its weight without compromising safety. Although a reasoner
can determine the correct parameters, it requires a detailed task model. Instead, we use RL
to optimize behavior parameters best suited to the task. This adaptability ensures our robots
can effectively handle a wider range of failure scenarios with minimal human intervention,
making the recovery process more efficient and responsive.

Inspired by the literature, one effective way to enhance robot capabilities involves the ad-
option of skills [6]. These robot skills, defined by specific parameters, preconditions, and

172

Figure 4.1: The real dual-arm KUKA iiwa setup executing a handover task before inserting the peg
in the orange block. On the table, the purple peg for Scenario 1, alongside various
obstacles that block the opening an be seen.

postconditions [7, 8], enable interaction with the environment in a robust, adaptable, and
flexible manner, mirroring the qualities we seek for effective failure recovery. Building on
this foundation, we suggest to model recovery behaviors as dedicated robotic skills, distinct
from standard production skills and specifically designed to address failures, see Figure 4.2.
This strategy equips robots with a specialized toolkit for managing known failure scen-
arios, streamlining the skill set for simplicity and reducing maintenance requirements. For
example, in piston engine assembly, alongside the primary assembly skill, we could have
a recovery skill like ’pick-place’ to remove obstacles such as misplaced tools blocking the
engine hole.

Various execution strategies for skills have been explored in literature [9, 10]. We have
chosen the Behavior Trees and Motion Generators (BTMG) framework for its strengths
in robustness, modularity, interpretability, and reactivity, which are good for effectively
handling complex robotic tasks. This framework serves as the foundation for representing
both standard operational skills and recovery behaviors.

In this paper, we extend the BTMG representation with the introduction of adaptable
recovery behaviors inside the representation, drawing on insights from Styrud et al. [11].
The parameters of these recovery behaviors can be set manually, through reasoning, or
using RL, offering flexibility based on the complexity of the task. We evaluate this approach
with the peg-in-a-hole task, by gradually introducing failures to increase task complexity
and demonstrate the necessity for sophisticated recovery behaviors. The failure instances are

173

specified by experts, and we assume the existence of a module that handles failure detection
and identification. Following are the main contributions of the paper:

• We extend the BTMG policy representation with the introduction of adaptable re-
covery behaviors, incorporating RL to dynamically adjust behavior parameters in
response to task requirements.

• We present challenging scenarios as failure cases and adapt the parameters of recovery
behaviors to suit the specific requirements of the task.

• We evaluate the performance of the proposed method on a peg-in-a-hole task us-
ing dual arm KUKA iiwa robot, demonstrating its effectiveness in adapting to and
recovering from failures. .

3 Related Work

The development of recovery behaviors to mitigate failures and disturbances has emerged
as a critical area of research, aiming to enhance the resilience and autonomy of robotic
systems. In [12], an approach was introduced for the recovery of high-degree-of-freedom
motor behaviors in robots, utilizing rank-ordered differential constraints to quickly adapt to
damage, malfunction, or environmental changes. [13] uses Deep Reinforcement Learning
to control recovery maneuvers for quadrupedal robots, showcasing dynamic and reactive
behaviors that enable a robot to recover from falls with a high success rate. [14] developed
a state-dependent recovery policy that allows robots to recover from external disturbances
across various tasks and conditions. In [15], the authors explored push recovery for bipedal
robot locomotion, integrating decision-making and motion planning to address perturba-
tions. Lastly, [16] proposes the T-resilience algorithm, a novel method that enables robots
to autonomously discover compensatory behaviors in unanticipated situations, thereby fa-
cilitating fast damage recovery.

Furthermore, the utilization of recovery behaviors in behavior trees (BT) has also emerged
as a recent interesting area of research. [17, 18] provides a detailed survey on behavior trees
in the domain of robotics and AI, highlighting the usage of BT across a wide landscape. [1]
introduces a framework that integrates an execution generation tool, a learning module,
and a recovery pipeline to facilitate error detection, diagnosis, and recovery, showcasing
the potential of BT in managing complex error recovery processes with minimal human
intervention. In the context of wheeled robots, [19] demonstrates a hierarchical online
hybrid planner for autonomous navigation. They utilize BT in enabling wheeled-legged
robots to autonomously navigate and recover from collisions or planner failures, emphasiz-
ing the framework’s capability to handle dynamic challenges without human intervention.

174

On a side note [20] introduced a direct extension to BT by adding a new leaf node type
within the structure, aimed at specifying desired states rather than actions. This innova-
tion demonstrates improved runtime adaptability and suggests a method for integrating
recovery states directly into the BT structure, enhancing their flexibility in error recovery
scenarios. [21] introduces a framework called Robust Logical-Dynamical Systems (RLDS),
which combines the advantages of BT with theoretical performance guarantees. RLDS
exemplifies how BT can be extended to achieve robust, reactive behavior in dynamic en-
vironments, particularly in manipulation tasks.

Our work distinguishes itself from aforementioned studies by leveraging RL to dynamically
define the parameters of recovery behaviors, a novel approach that significantly enhances
adaptability and effectiveness in failure management. This emphasis on RL-driven paramet-
erization underscores its potential utility, a point we elaborate on through various failure
scenarios in our experimental section, demonstrating the benefits of integrating RL into
recovery strategies.

4 Background

In this section, we discuss the relevant concepts that serve as background knowledge for
this paper.

4.1 Behavior Trees

Behavior Trees (BT) [22] are a hierarchical model for task planning and decision-making,
widely known in robotics [17] for their modularity, flexibility, and clarity. Initially con-
ceived for video game AI to simulate complex behaviors, BT have been effectively adapted
for robotic tasks, enabling structured execution of actions from simple to complex decision-
making processes. A BT structures as a directed acyclic graph, initiating execution from the
root node and ticking at regular intervals to adapt dynamically to environmental changes.
This execution involves traversing the tree based on control logic, evaluating conditions,
executing actions, and applying decorators to modify outcomes [23]. The nodes are ex-
ecuted only when they are ticked and return Success, Failure or Running. Control flow nodes
are the non-leaf nodes that control the execution flow, with sequence (logical AND) and
selector (logical OR) being the most common. These nodes are responsible for determining
the order and conditions under which child nodes are executed. The leaf nodes are called
execution nodes and are further divided into action and condition nodes. Condition nodes
only return Success or Failure and are used to evaluate the robot’s state or environment.
Action nodes execute the tasks, such as movement or manipulation, and return statuses
indicating Success, Failure or Running. Lastly, we have decorator nodes that modify the

175

behavior or outcome of their child nodes to meet specific criteria or constraints.

BT offer several advantages in robotics. The readable and hierarchical structure enhances
modularity [24, 25], allowing for easy modification and expansion of robotic behaviors. This
modularity, combined with the clarity of the BT framework, simplifies understanding and
debugging, making BT an attractive choice for complex robotic applications. Furthermore,
BT also support reactivity [26], enabling robotic systems to dynamically respond to changes
in the environment.

4.2 Behavior Trees and Motion Generators (BTMG)

Leveraging the foundational structure of Behavior Trees, Rovida et al. [2] integrate it with
an arm motion generation strategy known as Motion Generators (MG) to develop the
Behavior Trees and Motion Generators (BTMG) policy representation. MG, as detailed
in [2], employs an impedance controller to control the robot’s end-effectors in Cartesian
space. This approach not only enables the execution of the primary motion but also permits
the superimposition of additional motions through a generic varying Cartesian wrench.
Furthermore, MG incorporates mechanisms for constraining velocities, accelerations, and
torques, thereby addressing safety requirements comprehensively. For an in-depth explor-
ation of MG refer to [2]. The addition of MG to the BT structure is done via having action
and condition nodes specific to the MG. An example would be a node that allows us to
change the stiffness of the end-effector or specify the force applied by the end-effector. This
means not only we can control the flow of execution but also specify controller specific
values. This gives an additional control over the actual execution of a task.

A BTMG is a parameterized policy representation with parameters broadly categorized into
two types: intrinsic and extrinsic, as mentioned in [27, 28]. Intrinsic parameters encompass
elements like the structure of BT, the quantity of BT nodes, and the type of motion gener-
ator employed. Conversely, extrinsic parameters include variables such as the applied force,
position offsets, and the end-effector’s velocity. The specification of extrinsic parameters
can be done manually [2], through reasoning, or by employing RL [29, 30, 28], offering
flexibility in adapting the BTMG framework to diverse tasks and environments.

In our prior work, we have successfully used BTMG policy representation [2] for skill
execution strategies in complex robotic tasks, including peg-in-a-hole, object pushing, and
obstacle avoidance [31, 29]. We have further enhanced this approach by employing RL
to dynamically learn and adjust the BTMG parameters [31], allowing for adaptability in
response to task variations [27, 32]. Additionally, we have utilized planning techniques
within the BTMG framework to sequence skills effectively [30] and demonstrated how
incorporating priors can expedite the learning process [33].

176

Planner Failures

 Small obstacle block
 Large obstacle block
 Peg dropped

Production
Skills

 Peg Insertion
 Engine Assembly
 Stacking

O
f
f
l
i
n
e

P
h
a
s
e

E
x
e
c
u
t
i
o
n

P
h
a
s
e

Recovery
Behaviors

 Pick-place
 Push
 Pick-Exchange

Successful
Executions

Failure
Instances

Case 2 Case 3 Case 4 & 5

RL

Case 1

Figure 4.2: The figure shows the peg-in-a-hole task execution using our approach. We have
separate sets of production and recovery behaviors. We can use a planner to come up
with a sequence for a given failure specification. Subsequently, we tune the learnable
parameters via reinforcement learning. Ultimately, appropriate recovery behaviors and
skills are applied based on the identified failure, ensuring successful peg insertion. In
the image we see successful peg insertions for all the scenarios.

177

4.3 Learning parameters of BTMG

In addition to predefined configurations, the extrinsic parameters of the BTMG repres-
entation can also be learned. This capability is crucial for adjusting the robotic skills dy-
namically, ensuring efficient task execution across diverse scenarios. To achieve this, we
employ a policy optimization search method, as outlined in [34, 35], which is instrumental
in learning the extrinsic parameters present in the action nodes of the tree. The objective is
to derive a policy π, where the action u = π(x|θ) is determined based on the state x and
policy parameters θ, aimed at maximizing the expected long-term reward over T time steps
of policy execution. The optimization of these parameters is facilitated through Bayesian
Optimization (BO) [36], enabling the identification of extrinsic parameters that are adapt-
able to diverse situations. For an in-depth exploration of this optimization process and its
applications, refer to [30, 29].

5 Approach

In this section, we outline our approach, beginning with the assumptions guiding our work.
We then detail the recovery behaviors implemented, the role of the planner in our frame-
work, and conclude with an overview of the experimental scenarios designed to test our
methodology. The overall approach is shown in Figure 4.2.

5.1 Assumptions

Following are the assumptions for this work:

1. We operate under the premise that we are addressing expected and known failures
within operational processes, leveraging human experience and historical data to an-
ticipate these failures.

2. Given a comprehensive set of skill primitives, we assume our system has the capability
to dynamically generate suitable recovery behaviors for any known failure, assuming
a solution exists within the parameter space defined by these skills.

The first assumption acknowledges the predictability of common failures in operational
processes, with an understanding that basic parameters like object type, size, and weight
are known and can be stored as knowledge about the system. For instance, in SkiROS2,
this information can be managed using the world model [8, 7, 37].

Addressing the second assumption more deeply, our approach leverages the natural capabil-
ities of skills, planning, and parameter estimation to generate recovery behaviors tailored to

178

specific failure scenarios. This method allows for the dynamic creation of recovery strategies
by learning the necessary parameters (categorized as extrinsic parameters within the BTMG
framework) and determining the optimal sequence of skills for complex error situations.
This strategy, inspired by the methodologies demonstrated in [11], ensures that we are not
constrained to having a predefined skill for each recovery situation but can adapt and re-
spond effectively to a wide range of failures.

5.2 Recovery Behaviors

In our framework, recovery behaviors are defined as specialized skills aimed at restoring a
robotic system to its desired state after encountering a failure. These behaviors, defined
by specific parameters, preconditions, and postconditions, are crafted from a predefined
set of skill primitives, ensuring a seamless integration into the robot’s comprehensive skill
set. Each recovery behavior has deterministic effects. For example, the pick-place behavior
always involves picking the object and placing it at a designated location. While the actual
position may vary, the effect of the action remains the same. Within the BTMG policy
representation, these recovery behaviors are integrated into the broader execution strategy,
leveraging the capabilities of the SkiROS2 platform [7] for effective implementation.

The generation of recovery behaviors from skill primitives is inspired by the approach out-
lined in [11, 38], emphasizing the versatility and power of a well-defined set of primitives.
Our set includes:

• GripperOpen and GripperClose, controlling the state of the gripper.

• GoToLinear, moving the end-effector linearly while maintaining orientation. Also
allows positional offsets in specified directions.

• ChangeStiffness, adjusting the stiffness of the end-effector.

• ApplyForce, applying force in a specified direction.

These primitives serve as the building blocks for constructing the recovery behaviors ne-
cessary for addressing specific failure scenarios encountered during task execution. The
parameters for these behaviors can be finely tuned manually, through reasoning, or using
RL, with RL playing a pivotal role in enhancing their robustness and adaptability. We
identify which parameters require optimization through RL [30], and refine them based on
the task’s needs using Bayesian Optimization (BO), as detailed in Section 4.3.

Following are the recovery behaviors used in this paper:

179

• Pick-Place: Generated from GripperOpen, GripperClose, GoToLinear, and ChangeStiff-
ness, this behavior enables obstacle removal, specifying parameters like arm and obstacle.

• Push: Incorporating ApplyForce alongside the other primitives, this behavior is tailored
for displacing heavier obstacles, with parameters such as force being optimized through
RL.

• Pick-Exchange: A complex behavior utilizing all five primitives to facilitate object
transfer between arms. Additionally allows offsets in x and y directions that can be
set manually or through RL.

This methodology underscores the power of our set of skill primitives to generate the ne-
cessary recovery behaviors effectively. It also illustrates the ease with which this set can
be extended should the need arise, ensuring that recovery behaviors are both situationally
dependent and swiftly generated based on the available primitives. The adaptability and
quick generation of these behaviors, as demonstrated in [11], are critical for our approach,
allowing for rapid response to a wide range of failure scenarios.

5.3 Planner

In the context of collaborative tasks, our approach leverages the knowledge of expected
failures to inform the design of recovery behaviors, encoding these failures as preconditions
and postconditions. For instance, during a peg-in-a-hole task, a typical failure such as an
obstruction in the hole by a small block can be explicitly defined as a precondition for
triggering a recovery behavior. The successful clearance of the obstruction, resulting in
an unblocked hole, is set as the postcondition, marking the completion of the recovery
behavior. This structured encoding allows for the potential use of planning algorithms to
sequence the necessary recovery behaviors for the task at hand, although it’s important to
note the practical challenges involved.

While we have demonstrated the use of the Problem Domain Description Language (PDDL)
planner within the SkiROS2 framework to orchestrate sequences of skills for robotic tasks [30],
applying such planning in real-time collaborative scenarios poses unique challenges. In
these settings, cycle times are critical, and it may not be feasible to invoke planning for every
action, especially for tasks requiring rapid execution. Instead, a strategy [26, 11] can be em-
ployed where preconditions are continuously monitored, and the planner is triggered only
when specific conditions are not met, necessitating recovery actions. This ensures planning
is used efficiently, only when necessary to address deviations from expected task execution,
thus maintaining operational efficiency while benefiting from adaptable recovery behavi-
ors. Through this tailored application of planning, we can navigate the complexities of
integrating automated recovery strategies effectively.

180

5.4 Scenarios

To evaluate our approach, we introduce a series of progressively more challenging scenarios
within the peg-in-a-hole task, each necessitating distinct recovery behaviors, see Figure 4.3.
In every scenario, we focus on learning the parameters of the peg insertion skill. The differ-
entiation among these scenarios hinges on the utilization of recovery behaviors, the method
of parameterization for these behaviors (learned via RL or manually specified), and whether
the execution of a recovery behavior necessitates a relearning of the PegInsertion skill para-
meters due to changes in the task environment. In all the scenarios, we learn the parameters
PegInsertion skill via RL.

1. Baseline: Utilizes only the PegInsertion skill, serving as control (Figure 4.3a).

2. Static Recovery: Uses a manually specified pick-place recovery behavior to address a
simple obstruction (Figure 4.3b).

3. Dynamic Recovery: Employs a push recovery behavior with RL-determined para-
meters for handling a more complex obstruction (Figure 4.3c).

4. Static Recovery with Behavior Changes: Features a manually specified pick-exchange
recovery behavior that alters the task environment, necessitating the relearning of peg
insertion skill parameters (Figure 4.3d).

5. Dynamic Recovery with Behavior Changes: Similar to the previous scenario but
uses RL to learn the offsets for grasping the peg during the pick-exchange recovery
behavior (Figure 4.3d).

For all scenarios, we utilize the reward function in [29]. While it is true that different
behaviors might benefit from distinct reward functions to reflect their unique optimiza-
tion criteria, our study focuses on the overall adaptability and robustness of the recovery
behaviors.

181

Figure
4.3:Illustration

ofthe
PegInsertion

skillalongsideitsassociated
failurescenariosand

corresponding
recovery

behaviors.Panel(a)show
sthe

initialand
finalstatesofthe

PegInsertion
skillw

ithoutfailure.Panel(b)displaysthe
failure

state
due

to
the

sm
allblue

obstacle
blocking

the
hole

w
ith

the
recovery

behaviorofpick-place.Panel(c)show
casesthe

failure
state

due
to

the
large

red
obstacle

blocking
the

hole
w

ith
the

recovery
behaviorofpush.Lastly,panel(d)presentsthe

failure
statesdue

to
the

peg
being

dropped
w

ith
the

recovery
behaviorofpick-exchange.

182

6 Experimental Setup

Our set of experiments evaluate the effectiveness of recovery behaviors in a peg-in-a-hole
task, progressively introducing more challenging failures to require different recovery strategies.
The task primarily utilizes a single production skill, the PegInsertion skill, complemented
by various implementations of pick-place, push and pick-exchange recovery skills, differ-
ing based on the learning status of their parameters. The experiments are conducted in
the DART simulator [39], employing a Cartesian impedance controller for arm manipula-
tion [40].

6.1 Peg-in-a-hole Task

The objective of our task is to insert a peg into a hole within a box, as depicted in Figure 4.1
and 4.3. We utilize the GoToLinear skill for precise end-effector positioning and the PegIn-
sertion skill for insertion. The PegInsertion skill activates upon the end effector’s arrival at
the box’s approach pose, where it dynamically adjusts the end effector’s stiffness to zero in
the z-direction (downwards) and applies a targeted force in the same direction. Addition-
ally, it incorporates an overlaying circular motion, akin to an Archimedean spiral, aimed at
the box’s center. The learnable parameters of this skill, including the end-effector’s applied
force, path velocity, path distance, and radius, are crucial for successful insertion. For an
in-depth exploration of the BTMG representation and further skill specifics, we refer the
interested reader to [30].

The task is framed as a multi-objective challenge focusing on successful insertion and min-
imizing applied force, with reward metrics aligned with those in [30]. To evaluate the
successful insertion, we employ a trio of reward metrics: the success of the BT execution,
the proximity of the peg to the hole, and its distance from the box. For gauging the ap-
plied force, a singular reward metric quantifies the cumulative force exerted by the peg.
To enhance system robustness, we use domain randomization, varying the location of the
block with a hole by a standard deviation of 8 via Gaussian distribution and changing the
arm’s starting position across five positions. For each scenario, we conduct 40 iterations,
with each iteration being evaluated five times to account for domain randomization. Each
scenario is repeated 10 times. This approach ensures robustness in our assessments by intro-
ducing variability in the task environment. A policy is considered successful if it manages
to achieve peg insertion in at least three out of the five evaluations. Across all scenarios, the
clearance between the peg and the hole is maintained at 3 to standardize the task difficulty.

183

6.2 Results and Discussion

Across all scenarios and for each repetition, we identified at least one policy capable of
successfully inserting the peg into the hole, demonstrating the effectiveness of our recovery
behaviors and the adaptability of the PegInsertion skill under varied failures. Notably, the
introduction of recovery behaviors, whether static or dynamic, did not impede the task’s
success, highlighting the robustness of our approach. The Pareto fronts for each scenario
illustrate the trade-off between insertion success and applied force, with diverse policies
achieving the task across all repetitions, see Figure 4.4, 4.5, 4.6, 4.7 and 4.8. Each distinct
color in Figure 4.4, 4.5, 4.6, 4.7 and 4.8 represents a single experiment or repetition of
a scenario and bold points represent the pareto-optimal execution policy. This diversity
underscores our approach’s flexibility, enabling effective completion of a task subjected to
multiple objectives.

By focusing on collaborative robots and leveraging the adaptability of recovery behaviors,
our approach provides an alternative to automated recovery strategies. Even though, the
static and dynamic scenarios we presented could be addressed through automated recovery
strategies, our method uses RL to dynamically adjust recovery behavior parameters, ensur-
ing effective response to environmental changes. This adaptability, crucial for on-the-fly
task management, sets our approach apart, offering a flexible solution to the changing de-
mands of dynamic environments.

Additionally, it is pertinent to reference findings from our previous work [30], where we
evaluated the efficacy of using RL to specify parameters for the PegInsertion skill against
three distinct baselines: planning with predefined parameter values, random policy selec-
tion, and policies chosen by robot operators. The learned policies from our RL-based ap-
proach outperformed the alternative strategies in terms of success rates. Therefore, we opted
not to directly compare our current approach with these baselines in the present study. Our
focus in this study was the effectiveness of adaptable recovery behaviors for failure hand-
ling. Furthermore, it is also worth mentioning that the adaptability of our approach can
be further enhanced by accommodating different task variations, as demonstrated in our
previous work [28]. In that study, we trained a model to predict the long-term reward
of different policies, showing that the policies suggested by this model perform compar-
ably to those optimized directly through RL. In principle, this predictive model could be
used in place of direct RL optimization, potentially accelerating the adaptability process for
recovery behaviors in response to varying task conditions.

184

0 2500 5000 7500 10000 12500 15000
Force

4250

4500

4750

5000

5250

5500

5750

6000

In
se

rti
on

 R
ew

ar
d

Figure 4.4: Pareto front for Scenario 1: Baseline. Each experiment is denoted by a distinct color,
with each bold point representing a pareto-optimal policy ready for execution. The
optimizer tries to strike a balance between the reward for successful insertion and the
force applied by the end-effector.

0 2000 4000 6000 8000
Force

2000

2500

3000

3500

4000

4500

5000

5500

6000

In
se

rti
on

 R
ew

ar
d

Figure 4.5: Pareto front for Scenario 2: Static Recovery. This demonstrates that achieving a higher
insertion reward necessitates greater force application, as observed from the force
exerted by the end-effector during the search for the hole.

185

2500 5000 7500 10000 12500 15000
Force

−2000

0

2000

4000

6000

In
se

rti
on

 R
ew

ar
d

Figure 4.6: Pareto front for Scenario 3: Dynamic Recovery. In this scenario, the application of force
is notably higher because pushing the obstacle away requires additional force before
the peg can be inserted into the hole.

0 2000 4000 6000
Force

5000

6000

7000

8000

9000

10000

11000

12000

In
se

rti
on

 R
ew

ar
d

Figure 4.7: Pareto front for Scenario 4: Static Recovery with behavior changes. In this scenario, we
observe a similar trend to Scenario 2, where a higher force is necessary as the peg
searches for the hole, reflecting the similar nature of the tasks.

186

0 2000 4000 6000 8000
Force

4000

6000

8000

10000

12000

In
se

rti
on

 R
ew

ar
d

Figure 4.8: Pareto front for Scenario 5: Dynamic Recovery with behavior changes. In this scenario,
the wide distribution of policies suggests the task’s complexity, as picking up and
exchanging the dropped peg significantly impacts the success of the peg insertion.

7 Conclusion and Future Work

In this paper, we presented a novel approach that models recovery behaviors as robotic skills
to effectively manage and recover from failures in robotic tasks. By defining these recovery
behaviors with specific parameters, preconditions, and postconditions, and utilizing the
BTMG policy representation as the execution strategy, we have demonstrated a structured
method to represent and implement these behaviors. The adaptability of these behaviors
is enhanced through RL to dynamically adjust parameters. Our approach enables robots
to autonomously recover from disruptions and resume normal operations seamlessly. We
evaluated our methodology through the peg-in-a-hole task by gradually introducing chal-
lenging failures and recovering from them, thereby testing the resilience and adaptability
of our recovery strategies. By framing this task as a multi-objective challenge, focusing
on successful insertion while minimizing applied force, we showcased the effectiveness of
our approach. Our results confirm that the integration of recovery behaviors, modeled as
adaptable robotic skills within the BTMG framework, significantly enhances the robot’s
ability to recover from failures, thereby improving operational efficiency and task success
rates.

In our future work, we aim to develop a comprehensive recovery pipeline that not only
identifies failures but also selects the appropriate recovery skills automatically to address

187

them effectively. This pipeline will enhance our current set of recovery skills, making them
capable of handling not just anticipated failures but also unexpected ones within certain
limits. Our goal is to leverage the structure of a BT and its tick signals, which return
different states, to pinpoint the exact location of a failure by analyzing which node returns
a failure state. This diagnostic capability will enable us to match the specific pre- and
post-conditions of a failure, facilitating the selection of suitable recovery behaviors from a
more generalized skill set. To achieve this, we plan to explore the use of a recursive tree
structure [26], which will play a crucial role in dynamically choosing the most effective
recovery behavior based on the situation at hand. Additionally, we will also like to explore
the creation of a dataset of various failures to demonstrate learning recovery behaviors from
skill primitives, akin to a reformulation in [11] focused on error recovery. This effort will
include verifying the sufficiency of our skill primitives for comprehensive recovery scenarios,
enhancing the system’s adaptability and resilience in complex environments.

ACKNOWLEDGMENTS

We thank Momina Rizwan and Simon Kristoffersson Lind for their discussions and feed-
back. This work was partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by Knut and Alice Wallenberg Foundation. We used
Generative AI tools for editing, including sentence structuring, spelling, and grammar cor-
rections.

References

[1] Ruichao Wu, Sitar Kortik and Christoph Hellmann Santos. “Automated Behavior
Tree Error Recovery Framework for Robotic Systems”. In: 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2021, pp. 6898–6904.

[2] F. Rovida et al. “Motion Generators Combined with Behavior Trees: A Novel Ap-
proach to Skill Modelling”. In: 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2018, pp. 5964–5971. DOI: 10.1109/IROS.2018.
8594319.

[3] FN Jusuf et al. “Review on defenses against common cause failures on digital safety
system”. In: AIP Conference Proceedings. Vol. 2374. 1. AIP Publishing. 2021.

[4] Yumeng Lei et al. “Artificial Intelligence Planning of Failure Recovery Strategies in
Discrete Manufacturing Automation”. In: 2023 IEEE 19th International Conference
on Automation Science and Engineering (CASE). IEEE. 2023, pp. 1–8.

188

https://doi.org/10.1109/IROS.2018.8594319
https://doi.org/10.1109/IROS.2018.8594319

[5] Lucas VR Alves and Patrícia N Pena. “Secure recovery procedure for manufacturing
systems using synchronizing automata and supervisory control theory”. In: IEEE
Transactions on Automation Science and Engineering 19.1 (2020), pp. 486–496.

[6] Mikkel Rath Pedersen et al. “Robot skills for manufacturing: From concept to in-
dustrial deployment”. In: Robotics and Computer-Integrated Manufacturing 37 (2016),
pp. 282–291.

[7] Francesco Rovida et al. “SkiROS-A skill-based robot control platform on top of
ROS”. In: Studies in Computational Intelligence. Vol. 707. 2017, pp. 121–160.

[8] Matthias Mayr, Francesco Rovida and Volker Krueger. “SkiROS2: A Skill-Based
Robot Control Platform for ROS”. In: 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2023, pp. 6273–6280.

[9] Andreas Herzig, Laurent Perrussel and Zhanhao Xiao. “On hierarchical task net-
works”. In: Logics in Artificial Intelligence: 15th European Conference, JELIA 2016,
Larnaca, Cyprus, November 9-11, 2016, Proceedings 15. Springer. 2016, pp. 551–557.

[10] Matteo Iovino et al. “On the programming effort required to generate Behavior
Trees and Finite State Machines for robotic applications”. In: 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE. 2023, pp. 5807–5813.

[11] Jonathan Styrud et al. “BeBOP–Combining Reactive Planning and Bayesian Op-
timization to Solve Robotic Manipulation Tasks”. In: 2024 International Conference
on Robotics and Automation (ICRA). IEEE, 2024.

[12] George Council and Shai Revzen. “Recovery of Behaviors Encoded via Bilateral
Constraints”. In: arXiv preprint arXiv:2005.00506 ().

[13] Joonho Lee, Jemin Hwangbo and Marco Hutter. “Robust recovery controller for a
quadrupedal robot using deep reinforcement learning”. In: arXiv preprint arXiv:1901.07517
(2019).

[14] Hongmin Wu et al. “Recovering from external disturbances in online manipula-
tion through state-dependent revertive recovery policies”. In: 2018 27th IEEE Inter-
national Symposium on Robot and Human Interactive Communication (RO-MAN).
IEEE. 2018, pp. 166–173.

[15] Zhaoyuan Gu, Nathan Boyd and Ye Zhao. “Reactive locomotion decision-making
and robust motion planning for real-time perturbation recovery”. In: 2022 Interna-
tional Conference on Robotics and Automation (ICRA). IEEE. 2022, pp. 1896–1902.

[16] Sylvain Koos, Antoine Cully and Jean-Baptiste Mouret. “Fast damage recovery in
robotics with the t-resilience algorithm”. In: The International Journal of Robotics
Research 32.14 (2013), pp. 1700–1723.

[17] Matteo Iovino et al. A Survey of Behavior Trees in Robotics and AI. 2020. arXiv:
2005.05842 [cs.RO].

189

https://arxiv.org/abs/2005.05842

[18] Razan Ghzouli et al. “Behavior Trees and State Machines in Robotics Applications”.
In: IEEE Transactions on Software Engineering (2023).

[19] Alessio De Luca, Luca Muratore and Nikos G Tsagarakis. “Autonomous navigation
with online replanning and recovery behaviors for wheeled-legged robots using be-
havior trees”. In: IEEE Robotics and Automation Letters (2023).

[20] C Pezzato, C Hernandez and M Wisse. “Active inference and behavior trees for re-
active action planning and execution in robotics. arXiv”. In: arXiv preprint arXiv:2011.09756
(2020).

[21] Chris Paxton et al. “Representing robot task plans as robust logical-dynamical sys-
tems”. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2019, pp. 5588–5595.

[22] Michele Colledanchise and Petter Ögren. Behavior Trees in Robotics and AI: An
Introduction. Chapman & Hall/CRC Press, 2017.

[23] Magnus Olsson. Behavior trees for decision-making in autonomous driving. 2016.

[24] Michele Colledanchise and Petter Ögren. “How Behavior Trees Modularize Ro-
bustness and Safety in Hybrid Systems”. In: 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems. 2014 IEEE/RSJ International Conference on In-
telligent Robots and Systems. 2014, pp. 1482–1488. DOI: 10.1109/IROS.2014.
6942752.

[25] Oliver Biggar, Mohammad Zamani and Iman Shames. “On modularity in reactive
control architectures, with an application to formal verification”. In: ACM Trans-
actions on Cyber-Physical Systems (TCPS) 6.2 (2022), pp. 1–36.

[26] Michele Colledanchise and Petter Ögren. Behavior trees in robotics and AI: An in-
troduction. CRC Press, 2018.

[27] Faseeh Ahmad et al. “Generalizing Behavior Trees and Motion-Generator (BTMG)
Policy Representation for Robotic Tasks Over Scenario Parameters”. In: 2022 IJCAI
Planning and Reinforcement Learning Workshop. 2022.

[28] Faseeh Ahmad, Matthias Mayr and Volker Krueger. “Learning to Adapt the Para-
meters of Behavior Trees and Motion Generators (BTMGs) to Task Variations”.
In: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(2023), pp. 10133–10140. URL: https://api.semanticscholar.org/CorpusID:
257532298.

[29] Matthias Mayr et al. “Learning of Parameters in Behavior Trees for Movement
Skills”. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems.
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2021.

190

https://doi.org/10.1109/IROS.2014.6942752
https://doi.org/10.1109/IROS.2014.6942752
https://api.semanticscholar.org/CorpusID:257532298
https://api.semanticscholar.org/CorpusID:257532298

[30] Matthias Mayr et al. “Skill-based multi-objective reinforcement learning of indus-
trial robot tasks with planning and knowledge integration”. In: 2022 IEEE Inter-
national Conference on Robotics and Biomimetics (ROBIO). IEEE. 2022, pp. 1995–
2002.

[31] Matthias Mayr et al. “Combining Planning, Reasoning and Reinforcement Learn-
ing to solve Industrial Robot Tasks”. In: IROS 2022 Workshop on Trends and Ad-
vances in Machine Learning and Automated Reasoning for Intelligent Robots and Sys-
tems (2022).

[32] Faseeh Ahmad, Matthias Mayr and Volker Krueger. “Learning to adapt the para-
meters of behavior trees and motion generators (btmgs) to task variations”. In: 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.
2023, pp. 10133–10140.

[33] Matthias Mayr et al. “Learning skill-based industrial robot tasks with user priors”.
In: 2022 IEEE 18th International Conference on Automation Science and Engineering
(CASE). IEEE. 2022, pp. 1485–1492.

[34] Konstantinos Chatzilygeroudis et al. “Black-Box Data-Efficient Policy Search for
Robotics”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2017, pp. 51–58. DOI: 10.1109/IROS.2017.8202137.

[35] Konstantinos Chatzilygeroudis et al. “A survey on policy search algorithms for
learning robot controllers in a handful of trials”. In: IEEE Transactions on Robotics
36.2 (2019), pp. 328–347.

[36] Luigi Nardi, David Koeplinger and Kunle Olukotun. “Practical Design Space Ex-
ploration”. In: International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems. 2019.

[37] Matthias Mayr et al. “Using Knowledge Representation and Task Planning for
Robot-Agnostic Skills on the Example of Contact-Rich Wiping Tasks”. In: 2023
IEEE 19th International Conference on Automation Science and Engineering (CASE).
IEEE, 2023, pp. 1–7.

[38] Soroush Nasiriany, Huihan Liu and Yuke Zhu. “Augmenting reinforcement learn-
ing with behavior primitives for diverse manipulation tasks”. In: 2022 International
Conference on Robotics and Automation (ICRA). IEEE. 2022, pp. 7477–7484.

[39] Jeongseok Lee et al. “DART: Dynamic Animation and Robotics Toolkit”. In: Journal
of Open Source Software 3.22 (2018), p. 500. ISSN: 2475-9066. DOI: 10.21105/
joss.00500. URL: https://joss.theoj.org/papers/10.21105/joss.
00500 (visited on 18/02/2020).

191

https://doi.org/10.1109/IROS.2017.8202137
https://doi.org/10.21105/joss.00500
https://doi.org/10.21105/joss.00500
https://joss.theoj.org/papers/10.21105/joss.00500
https://joss.theoj.org/papers/10.21105/joss.00500

[40] Matthias Mayr and Julian M. Salt-Ducaju. “A C++ Implementation of a Cartesian
Impedance Controller for Robotic Manipulators”. In: Journal of Open Source Soft-
ware 9.93 (Jan. 2024), p. 5194. DOI: 10.21105/joss.05194. URL: https:
//joss.theoj.org/papers/10.21105/joss.05194.

192

https://doi.org/10.21105/joss.05194
https://joss.theoj.org/papers/10.21105/joss.05194
https://joss.theoj.org/papers/10.21105/joss.05194

Paper V

F. Ahmad, J. Styrud, V. Krueger
Addressing Failures in Robotics using Vision-Based Language Models (VLMs) and Beha-
vior Trees (BT)
To appear in European Robotics Forum 2025, vol. 36, Springer Proceedings in Advanced
Robotics, Springer, 2025, ch. 43, ISBN 978-3-031-89470-1. arXiv:2411.01568, 2024.

Chapter 5

Addressing Failures in Robotics using
Vision-Based Language Models
(VLMs) and Behavior Trees (BT)

1 Abstract

In this paper, we propose an approach that combines Vision Language Models (VLMs) and
Behavior Trees (BTs) to address failures in robotics. Current robotic systems can handle
known failures with pre-existing recovery strategies, but they are often ill-equipped to man-
age unknown failures or anomalies. We introduce VLMs as a monitoring tool to detect and
identify failures during task execution. Additionally, VLMs generate missing conditions or
skill templates that are then incorporated into the BT, ensuring the system can autonom-
ously address similar failures in future tasks. We validate our approach through simulations
in several failure scenarios.

Keywords: Robotics, Failure Detection, Behavior Trees, Vision Language Models, Recov-
ery Behaviors

2 Introduction

Modern robotic systems can handle complex tasks in controlled environments, but trans-
itioning into dynamic, small-batch manufacturing introduces new challenges, especially
around failure management. Failures; unforeseen disturbances that prevent task comple-
tion; can lead to costly delays and risks, particularly in shared workspaces [1]. The ability

195

to detect, identify, and recover from failures autonomously is crucial for ensuring the ro-
bustness of robotic systems.

Traditional failure management strategies in robotics include human intervention, failure
analysis [2], and automated recovery strategies [1]. These approaches have limitations: hu-
man intervention is time-consuming, failure analysis requires expertise, and automated
strategies often lack flexibility in handling unforeseen scenarios. Our recent work [3] in-
troduced a novel method using automated recovery behaviors modeled as robotic skills
with parameters, preconditions, and postconditions, executed through Behavior Trees and
Motion Generators (BTMG) policy representation [4]. This approach optimizes recovery
policies using Reinforcement Learning (RL) [5] and also adapts the parameters to different
task variations [6].

However, two key limitations remain: (1) the system assumes failure detection and identi-
fication are already solved, requiring prior knowledge of the failure, and (2) it only handles
known failures with predefined solutions. These limitations make it difficult to address un-
foreseen failures. We propose addressing these gaps by utilizing Vision Language Models
(VLMs) to detect, identify, and generate solutions for unknown failures. By integrating
VLMs with Behavior Trees (BTs), our approach autonomously monitors task execution,
identifies failure states, and generates missing conditions or skill templates to recover from
failures. The BT is then updated using a reactive planner [7] to handle similar future oc-
currences.

Main Contributions

• We propose a novel integration of VLMs with BTs for monitoring, failure detection,
identification and recovery in robotic systems.

• We use VLMs to generate missing preconditions or skill templates to address failures
and update the BT policy.

• We conduct experiments to demonstrate the effectiveness of the approach.

3 Background

This section provides essential background concepts to our proposed approach, focusing
on behavior trees, reactive planner and vision-based language models.

196

3.1 Behavior Trees (BT)

Behavior Trees (BTs) are hierarchical models for task execution, known for their modularity
and flexibility [8]. A BT organizes task execution through nodes that receive tick signals,
indicating readiness for execution. BTs consist of two types of nodes: control-flow nodes
and execution nodes. Control-flow nodes manage execution flow and return statuses of suc-
cess, failure, or running; examples include Sequence (AND) and Fallback/Selector (OR).
Execution nodes, which are leaf nodes, represent either skills (”!”) or conditions (”?”). Skills
perform specific tasks, while conditions evaluate the environment, returning only success
or failure. BTs offer modularity and clarity, making them ideal for robotics applications,
particularly in dynamic environments where flexibility is required [9].

3.2 Reactive Planner

Reactive planners generate BTs dynamically, using a backchaining approach to select skills
that satisfy goal conditions [10]. The process iteratively selects skills based on their precon-
ditions and postconditions, constructing a BT that satisfies the specified goal. This recursive
process continues until a leaf node is reached or a predefined depth is attained. The plan-
ner ensures adaptability by dynamically responding to changes in the environment without
requiring extensive re-planning. This planner has been extended for various applications
in [11, 12].

3.3 Vision Language Models (VLM) in Robotics

Vision Language Models (VLMs) are powerful tools in robotics, enabling a deeper under-
standing of complex environments by combining visual data with language inputs. VLMs
excel at tasks such as scene interpretation, object recognition, and generating control skills
based on visual cues and task descriptions [13, 14]. Recent applications of VLMs in robotics
include failure recovery, task planning, and multimodal reasoning, with systems like Re-
planVLM [15] and AHA [16] demonstrating their ability to reason over failures and generate
dynamic solutions.

4 Approach

We extend the existing framework [3] to handle unknown failures by integrating VLMs for
failure detection, identification and recovery and generate missing preconditions or skill
templates to be incorporated into the BT.

197

Skills

Conditions

Missing
Condition

Missing
Skill

No Failure

Reactive
Planner

Parameter
Specification
1) Manual
2) Reasoner
3) RL

Figure 5.1: Overview of the proposed approach, where the VLM takes a set of images, skills,
conditions, and a BT as input. The VLM uses this information to provide missing
conditions or skills, which are then used to update the BT through a planner.

4.1 Failure Detection and Idenitification

Failure detection refers to the system’s ability to recognize when a task cannot be completed
due to unforeseen errors, such as hardware malfunctions or environmental disturbances.
This can be achieved by using sensor data, such as from cameras or force-torque sensors,
and comparing it against the expected postconditions of skills. For example, in a peg-in-
hole task, if an object blocks the hole, the system detects this failure when the postcondition
of the ”insert” skill (peg inserted) is not met [1] (see Figure 5.3).

Failure identification involves describing the failure using existing system conditions and
understanding why the task could not be completed. For instance, in the peg-in-hole task,
the missing precondition when an obstacle is blocking the hole could be ”Not any obstacle
at hole” for the insert skill. This allows the system to formulate strategies for dealing with
similar failures in the future.

Sequence

Fallback

peg at (0.0, -0.15, 0.1)?

insert peg!

aligned peg? Sequence

Fallback

grasp peg (0.0, -0.15, 0.1)! align peg!

198

Figure 5.2: Comparison of Behavior Trees (BTs). The left side shows the initial BT, while the right
side illustrates the updated BT, with the changes highlighted in red connections.

4.2 Monitoring using VLM

We use VLMs to enable failure detection, identification and recovery (Figure 5.1). Before
task execution, the VLM is queried with images of the task environment, the BT structure,
and the skills and conditions involved. The VLM then assesses whether the task will succeed
and, if not, identifies the cause of failure (detection). It also suggests the missing condition
(identification) that could prevent the failure. If the system lacks the required skill to recover
from a failure (recovery), the VLM suggests an appropriate recovery skill based on the
provided library of existing skills (see Figure 5.2).

4.3 Condition and Skill Template Generation

When the VLM identifies a missing condition or skill, it updates the BT accordingly. For
example, if a small obstacle blocks the peg, the condition ”hole free” is generated and added
as a precondition to the ”insert” skill. The reactive planner regenerates the BT by incorpor-
ating this condition, ensuring similar failures are handled in the future [7]. If a recovery
skill is missing, the VLM generates an skill template that follows a structured format and
requires some manual inputs to complete. For instance, if a large object blocks the peg hole
and the gripper cannot grasp it, the VLM suggests a ”push” skill template to remove the
obstacle (see Figure 5.3). This template is added to the BT, and in the future, this process
could be fully automated, allowing the system to autonomously recover from failures.

199

1(a)
1(b)

1(c)
1(d)

2(a)
2(b)

2(c)
2(d)

Figure
5.3:Scenesshow

ing
peg-in-hole

task
execution

w
ith

obstacles.Th
e

firstrow
(1(a)–1(d))illustratesthe

task
w

ith
a

sm
allobstacle,w

hile
the

second
row

(2(a)–2(d))depictsthe
task

w
ith

a
large

obstacle.

200

5 Experiments

We validated the proposed approach using simulations in robosuite [17] and OpenAI’s
GPT-4. The experiments were designed around three tasks, each involving unknown fail-
ures:

• Peg-in-Hole Task: Two scenarios—(A) a small obstacle inside the hole, and (B) a large
obstacle positioned in front of the hole.

• Lift Task: An additional cube is placed on top of the target object, creating an un-
foreseen failure.

• Door Opening Task: The robot attempts to open a door but lacks the precondition
that the handle must be turned first.

6 Evaluation Metrics and Results

We evaluated the VLM’s performance using three key metrics: consistency in failure de-
tection and recovery, the importance of vision input, and skill feasibility considerations
(ensuring that suggested skills, such as a ”grasp” skill, are feasible based on the gripper’s
affordance and object location). For all experiments, we used model parameters of tem-
perature and top_p set to 0.1, which resulted in more deterministic and focused outputs,
reducing randomness and ensuring that the model consistently chose the most likely re-
sponses.

• Consistency of Failure Detection and Recovery: The VLM’s reliability was tested
across 10 trials per scenario, consistently detecting and recovering from failures in all
tasks, achieving 100% consistency.

• Vision Importance Ablation Study: To assess the impact of visual input, we com-
pared VLM (with visual input) and LLM (without visual input). In the Peg-in-Hole
(small obstacle), Lift, and Door Opening tasks, both models achieved 100% accuracy.
However, in the Peg-in-Hole (large obstacle) task, the VLM achieved 100% accuracy,
while the LLM reached 30% accuracy without skill feasibility considerations and 60%
with feasibility checks.

• Skill Feasibility Considerations: When skill feasibility is considered, LLM per-
formance improved but still fell short of the VLM. The VLM excelled in complex
scenarios like the Peg-in-Hole (large obstacle) task, generating feasible recovery skills
autonomously.

201

7 Conclusion and Future Work

In this paper, we introduced a method for integrating Vision Language Models (VLMs)
with Behavior Trees (BTs) to autonomously detect, identify, and recover from failures in
robotic systems. By generating missing conditions and skill templates, the system can ef-
fectively handle unknown failures and adapt its execution policy for future tasks. Future
work will focus on several key areas: expanding the range of failure scenarios to include
more complex and dynamic environments, improving the skill generation mechanism to
move from generating skill templates to directly producing feasible skills, thereby reducing
manual input. Additionally, we aim to fine-tune an open-source model to further enhance
the system’s performance and adaptability across diverse robotic tasks.

References

[1] R. Wu et al. “Automated Behavior Tree Error Recovery Framework for Robotic
Systems”. In: IEEE ICRA 2021.

[2] F. Jusuf et al. “Review on Defenses Against Common Cause Failures on Digital
Safety Systems”. In: AIP Conference Proceedings 2021.

[3] F. Ahmad et al. “Adaptable Recovery Behaviors in Robotics: A Behavior Trees and
Motion Generators (BTMG) Approach for Failure Management”. In: IEEE CASE
2024.

[4] F. Rovida et al. “Extended behavior trees for quick definition of flexible robotic
tasks”. In: IEEE/RSJ IROS 2017.

[5] M. Mayr et al. “Skill-based Multi-objective Reinforcement Learning of Industrial
Robot Tasks with Planning and Knowledge Integration”. In: IEEE ROBIO 2022.

[6] F. Ahmad et al. “Learning to Adapt the Parameters of Behavior Trees and Motion
Generators (BTMGs) to Task Variations”. In: IEEE/RSJ IROS 2023.

[7] J. Styrud et al. “Automatic Behavior Tree Expansion with LLMs for Robotic Ma-
nipulation”. In: arXiv preprint arXiv:2409.13356 (2024).

[8] M. Colledanchise and P. Ögren. Behavior Trees in Robotics and AI: An Introduction.
CRC Press 2018.

[9] M. Iovino et al. “A Survey of Behavior Trees in Robotics and AI”. In: Robotics and
Autonomous Systems 2022 ().

[10] M. Colledanchise et al. “Towards Blended Reactive Planning and Acting Using
Behavior Trees”. In: IEEE ICRA 2019.

202

[11] M. Iovino et al. “A Framework for Learning Behavior Trees in Collaborative Robotic
Applications”. In: IEEE CASE 2023.

[12] J. Styrud et al. “BeBOP-Combining Reactive Planning and Bayesian Optimization
to Solve Robotic Manipulation Tasks”. In: IEEE ICRA 2024.

[13] H. Chen et al. “Automating Robot Failure Recovery Using Vision-Language Mod-
els With Optimized Prompts”. In: arXiv preprint arXiv:2409.03966 (2024).

[14] M. J. Kim et al. “OpenVLA: An Open-Source Vision-Language-Action Model”.
In: arXiv preprint arXiv:2406.09246 (2024).

[15] A. Mei et al. ReplanVLM: Replanning Robotic Tasks with Visual Language Models.
Available at: https://arxiv.org/abs/2407.21762. 2024.

[16] J. Duan et al. AHA: A Vision-Language-Model for Detecting and Reasoning Over
Failures in Robotic Manipulation. Available at: https : / / arxiv . org / abs /
2410.00371. 2024.

[17] Robosuite: A Framework for Robot Learning. 2023. URL: https://robosuite.
ai.

203

https://arxiv.org/abs/2407.21762
https://arxiv.org/abs/2410.00371
https://arxiv.org/abs/2410.00371
https://robosuite.ai
https://robosuite.ai

Appendix

Peg-in-a-Hole with Small Obstacle

Sequence

Fallback

peg at (0.0, -0.15, 0.1)?

insert peg!

aligned peg? Sequence

Fallback

grasp peg (0.0, -0.15, 0.1)! align peg!

2

Fallback

Sequence

Fallback

peg at (0.0, -0.15, 0.1)?

insert peg!

aligned peg? Sequence

Fallback

grasp peg (0.0, -0.15, 0.1)!

check_loc (0.0, -0.15, 0.1)?

align peg!

Sequence

grasp obstacle (0.0, -0.15, 0.1)! reach (0.0, -0.1, 0.0)! open!

Sequence

Fallback

peg at (0.0, -0.15, 0.1)?

insert peg!

aligned peg? Sequence

Fallback

grasp peg (0.0, -0.15, 0.1)! align peg!

Figure 5.4: Comparison of Behavior Trees (BTs) for the peg-in-a-hole task with a small obstacle.
The initial tree (top) lacks a condition that checks whether the hole is free before
insertion or not. The Visual Language Model (VLM) suggests this condition, which is
then added as precondition of the insert skill, producing the updated tree (bottom)
generated by the reactive planner. Changes are highlighted in red.

204

1(a)
1(b)

1(c)
1(d)

Figure
5.5:Scenesdepicting

the
execution

ofthe
peg-in-a-hole

task
w

ith
a

sm
allobstacle.

205

Peg-in-a-Hole with Large Obstacle

Sequence

Fallback

peg at (0.0, -0.15, 0.1)?

insert peg!

aligned peg? Sequence

Fallback

grasp peg (0.0, -0.15, 0.1)! align peg!

Figure 5.6: Comparison of Behavior Trees (BTs) for the peg-in-a-hole task with a large obstacle.
This is similar to task 5 with difference in the size of obstacle larger than the gripper
affordance. The VLM identifies that the obstacle is too large for the gripper and
suggests a push skill in place of grasp, reach, and open skills as used in the small
obstacle scenario (Fig. 5.4). The modified tree (right) with the added skill is shown,
with changes marked in red.

206

1(a)
1(b)

1(c)
1(d)

Figure
5.7:Scenesshow

ing
the

execution
ofthe

peg-in-a-hole
task

w
ith

a
large

obstacle.

207

Lift Task

Sequence

Fallback

cube at (0.0, 0.0, 0.1)!

reach (0.0, 0.0, 0.1)!

grasped cube? Sequence

Fallback

grasp cube (0.0, 0.0, 0.0)!gripper free?

208

Sequence

Fallback

cube at (0.0, 0.0, 0.1)?

grasped cube? Sequence

Fallback

grasp cube (0.0, 0.0, 0.0)!gripper free?

No object on cube?

Fallback

Sequence

grasped obstacle? Sequence

Fallback

grasp obstacle (0.0, 0.0, 0.1)!gripper free?

open!

No object on obstacle?

reach (0.0, 0.0, 0.1)!

reach (0.0, 0.0, 0.1)!

Figure 5.8: Comparison of Behavior Trees (BTs) for the lift task. The initial tree (top) lacks a
check for a blue cube (obstacle) on the red cube. The VLM adds this missing
condition as precondition of grasp skill, verifying if the target object is clear.
Additionally, we also add ”gripper free” check to ensure the gripper is empty. The
updated BT (bottom) shows these changes in red.

209

1(a)
1(b)

1(c)
1(d)

Figure
5.9:Scenesdepicting

the
execution

ofthe
lifttask,show

ing
variousstagesfrom

approach
to

successfullift.

210

Door Handle Opening Task

Sequence

Fallback

door angle > 0.1?

reach handle!grasp handle!

Sequence

Fallback

door angle > 0.1?

reach handle!

handle angle > 1.0? Sequence

Fallback

grasp handle! reach handle!

Figure 5.10: Comparison of Behavior Trees (BTs) for the door handle opening task. The initial
tree (top) lacks a condition to check the handle angle, ensuring the handle is turned
before opening. The VLM suggests adding this condition as a precondition for the
reach skill, resulting in the modified tree (bottom) with changes shown in red.

211

1(a)
1(b)

1(c)
1(d)

Figure
5.11:Scenesillustrating

the
stagesofthe

doorhandle
opening

task,progressing
from

initialapproach
to

successfulhandle
operation.

212

Paper VI

F. Ahmad*, H. Ismail*, J. Styrud, V. Krueger
A Unified Framework for Real-Time Failure Handling in Robotics Using Vision-Language
Models, Reactive Planner and Behavior Trees
arXiv:2503.15202, 2025.

Chapter 6

A Unified Framework for Real-Time
Failure Handling in Robotics Using
Vision-Language Models, Reactive
Planner and Behavior Trees

1 Abstract

Robotic systems often face execution failures due to unexpected obstacles, sensor errors, or
environmental changes. Traditional failure recovery methods rely on predefined strategies
or human intervention, making them less adaptable. This paper presents a unified failure
recovery framework that combines Vision-Language Models (VLMs), a reactive planner,
and Behavior Trees (BTs) to enable real-time failure handling. Our approach includes pre-
execution verification, which checks for potential failures before execution, and reactive
failure handling, which detects and corrects failures during execution by verifying exist-
ing BT conditions, adding missing preconditions and, when necessary, generating new
skills. The framework uses a scene graph for structured environmental perception and an
execution history for continuous monitoring, enabling context-aware and adaptive fail-
ure handling. We evaluate our framework through real-world experiments with an ABB
YuMi robot on tasks like peg insertion, object sorting, and drawer placement, as well as in
AI2-THOR simulator. Compared to using pre-execution and reactive methods separately,
our approach achieves higher task success rates and greater adaptability. Ablation studies
highlight the importance of VLM-based reasoning, structured scene representation, and
execution history tracking for effective failure recovery in robotics.

215

2 Introduction

Modern robotic systems excel in controlled environments, but struggle with dynamic envir-
onments such as small batch manufacturing, particularly in handling execution failures [1].
Failures such as unexpected obstacles, sensor inaccuracies, or misaligned objects disrupt
operations, causing costly delays [2]. Unlike repetitive, pre-planned tasks in large-scale
production, small batch manufacturing demands adaptability to frequent task variations.
Similarly, in collaborative assembly lines, where robots work alongside humans, real time
failure handling is crucial for safe and efficient execution [3]. Developing autonomous fail-
ure recovery mechanisms that enable robots to detect, identify, and correct failures without
human intervention is essential for improving reliability and reducing downtime [4].

To address these challenges, failure recovery methods range from learning based approaches
that rely on data driven policies to structured execution frameworks designed for modu-
lar and interpretable decision making. Many learning based methods employ end-to-end
architectures where robotic control policies are trained directly from data [5, 6]. While ef-
fective across diverse tasks, these methods often lack interpretability and verifiability, mak-
ing them unsuitable for safety critical domains requiring robust, failure resistant execution
especially in high stakes environments where errors can damage expensive equipment or
disrupt operations.

Structured execution frameworks, such as Behavior Trees (BTs) [7], provide a modular
framework for verification, adaptation, and efficient failure recovery. They define execu-
tion policies as hierarchical compositions of reusable skills [8], enabling fine-grained mon-
itoring while ensuring compliance with safety standards [9]. Their modularity supports
incremental recovery, avoiding the computational cost of full replanning [10]. While BTs
can be manually designed, reactive planners automate their generation using a backchain-
ing approach that selects skills based on preconditions and postconditions [11]. This allows
robots to construct reactive execution policies that adapt to unexpected conditions in real-
time without requiring full replanning.

In our prior work [12], we introduced a failure recovery framework that used a Vision-
Language Model (VLM) for pre-execution plan verification. The system analyzed input
skills, execution conditions, the planned BT, and pre-execution images to assess whether
the plan contained sufficient knowledge for successful execution. If critical preconditions
or required skills were missing, it suggested modifications to prevent execution errors, re-
ducing failures caused by incomplete task knowledge. However, this approach did not ac-
count for failures arising during execution due to unforeseen disturbances, environmental
changes, or hardware errors.

216

Reactive
Checker

Verifier

Suggestor

Missing
Condition

Missing
Skill

No Failure

Reactive
Planner

Success

Failure

Real-time Monitoring

Pre-Execution

Conditions

Inputs

Robot

red object

green object

blue object

Holding

Inside

Near

Skills

Pre-Execution
Checker

Plan
Verification

Missing
Condition

Missing
Skill

No Failure

Reactive
Planner

Conditions

Feedback

Robot

red object

green object

blue object

Holding

Inside

Near

Skills

Execution
History

Figure 6.1: Overview of our approach, which consists of two phases: pre-execution verification
and real-time monitoring. The pre-execution phase verifies the entire planned BT
proactively using a VLM based on inputs (images, scene graphs, skills, and
conditions). The real-time phase continuously monitors execution, where the VLM
verifies preconditions, postconditions, and infers missing preconditions for individual
skills using updated inputs and execution history. A reactive planner dynamically
generates and adapts the BT as the robot’s execution policy.

While pre-execution verification helps prevent many failures, it cannot predict all possible
execution-time issues. A robot may generate a valid pick-and-place plan, yet unexpected
events, such as human intervention or object displacement, can still cause grasp failures.
Addressing such failures requires real-time monitoring and corrective actions, which is only
possible through a reactive mechanism. Without continuous failure monitoring, robots
cannot effectively detect and adapt to failures as they occur, making reactive checks essential

217

for robust autonomous execution.

Building on our prior work [12], this paper presents a unified failure recovery framework
that extends pre-execution plan verification with real-time execution monitoring (Figure 6.1)
to detect, identify, and correct errors dynamically. Our framework integrates reactive fail-
ure handling using a continuously updated execution history, which records skill execution
states, timestamps, and scene graph updates for adaptive failure recovery. To improve situ-
ational awareness, we incorporate scene graphs that track object-object and robot-object
spatial relationships throughout execution. Unlike [13], which generates scene graphs post-
execution, our method updates them continuously, enabling immediate detection of envir-
onmental changes. Additionally, while [12] suggested missing skills only pre-execution, our
approach supports both pre-execution and reactive skill suggestions, ensuring failures are
addressed proactively and dynamically. This work makes the following key contributions:

• A unified failure recovery framework integrating Vision-Language Models (VLMs),
reactive planners, and Behavior Trees (BTs) for pre-execution failure verification and
real-time reactive failure handling.

• Real-time failure detection, identification, and correction using an incrementally
updated execution history that tracks skill conditions, execution timestamps, and
scene graph updates.

• Experimental validation in AI2-THOR [14] and a real-world ABB YuMi robot, demon-
strating improved failure recovery across diverse environments.

3 Related Work

Failure recovery in robotics has been extensively studied, from predefined strategies to mod-
ern learning-based techniques and Large Language Models (LLMs) for adaptive failure
handling. This section reviews these methodologies and highlights the distinctions between
existing works and our approach.

3.1 Traditional Failure Recovery Strategies

Early methods relied on human intervention, predefined recovery strategies, and automated
solutions based on failure mode analysis. While human-in-the-loop strategies offer flexib-
ility, they are labor-intensive and limit scalability [15]. Predefined strategies handle known
failure cases well but struggle with novel issues [16]. Systematic failure analysis, such as
Failure Mode and Effects Analysis (FMEA), requires expert knowledge and does not gen-
eralize to dynamic environments [17]. Automated recovery methods attempt autonomy

218

but remain constrained by predefined failure modes [18, 19]. Unlike these approaches, our
framework continuously updates a dynamic execution history for real-time failure detection
and adaptation.

3.2 Learning-Based Failure Recovery

Recent approaches explore reinforcement learning (RL) and imitation learning (IL) to de-
velop recovery strategies from experience [5, 6]. RL-based methods require extensive train-
ing in simulations, making real-world deployment difficult [20]. IL-based methods like
RACER [21] improve recovery using demonstrations but struggle to generalize. Neuro-
symbolic methods combine structured reasoning with learning, improving interpretability
but facing scalability challenges [22, 23, 24]. Our approach avoids data-heavy training by
leveraging Vision-Language Models (VLMs) for reasoning-based failure recovery, enabling
flexible and context-aware corrections in real time.

3.3 Failure Recovery with Large Language Models (LLMs) and Vision-Language
Models (VLMs)

LLMs and VLMs have become integral to robotic failure recovery due to their reasoning
capabilities. Several approaches leverage LLM-based reasoning for failure detection and
correction, including REFLECT [25], AHA [20], DoReMi [26], ReplanVLM [27], RE-
COVER [22], and Code-as-Monitor [28]. REFLECT provides hierarchical post-execution
summaries but lacks real-time intervention. AHA fine-tunes a VLM for failure detection
at task checkpoints but lacks structured execution policies. DoReMi enforces dynamic ex-
ecution constraints but relies on LLM-generated constraints, introducing variability. Re-
planVLM integrates pre-execution validation with execution monitoring using GPT-4V
but depends on LLM-driven re-planning rather than structured failure handling.

Unlike these, our framework integrates a reactive planner and Behavior Trees (BTs) for
structured, real-time failure handling at both pre-execution and reactive levels. RECOVER[22]
uses ontology-driven neuro-symbolic reasoning for real-time failure detection but requires
domain-specific engineering, limiting adaptability. Code-as-Monitor[28] translates natural
language constraints into executable monitors for proactive (handling foreseeable failures)
and reactive failure detection but lacks explicit recovery mechanisms. Unlike these, our ex-
ecution history continuously updates skill execution states, enabling VLMs to analyze fail-
ures dynamically rather than post-execution. Compared to AHA and ReplanVLM, which
focus on high-level reasoning or planning corrections, our approach ensures modular and
adaptive failure recovery by integrating structured execution policies via BTs and a react-
ive planner. Additionally, recent work [29] explores intent-based BT planning using LLMs
for goal interpretation, whereas our method actively modifies execution policies by suggest-

219

ing missing preconditions, postconditions, and skills in real time, ensuring robust failure
recovery in dynamic environments.

4 Background

In this section, we discuss the relevant concepts that serve as background knowledge for
the paper.

4.1 Behavior Trees

Behavior Trees (BTs) are a hierarchical execution model valued for their modularity, flex-
ibility, and reactivity in robotic decision-making [30, 31]. Originally developed for game
AI, BTs now provide interpretable and scalable task execution in robotics [9, 7]. Their
structure simplifies behavior design, modification, and debugging while enabling real-time
adaptation to dynamic environments [32].

A BT is a directed acyclic graph where execution begins at the root node, propagating tick
signals to evaluate and execute behaviors dynamically. Nodes return Success, Failure, or
Running, with control-flow nodes (e.g., Sequence, Fallback) managing execution order and
execution nodes (e.g., action, condition) implementing robot skills. This structured execu-
tion enables task decomposition and fine-grained monitoring. Once adapted to handle a
failure, the BT becomes a reusable execution policy, reducing reliance on model queries
and improving efficiency over time.

4.2 Reactive Planner

Reactive planners generate Behavior Trees (BTs) dynamically using backchaining, selecting
skills that satisfy goal conditions [33]. Starting from the goal, the planner works back-
ward through skill preconditions and postconditions, iteratively expanding the BT until
all conditions are met or a termination criterion is reached. This approach enables robots
to adapt to environmental changes without full re-planning, leveraging BT modularity for
flexible execution [11]. The PDDL-based reactive planner used in this work follows [11],
ensuring efficiency by removing redundant nodes and introducing composite subtrees for
complex tasks. This facilitates real-time, autonomous failure recovery while maintaining
computational efficiency. As backchaining inherently selects skills that achieve required
postconditions, explicit VLM-generated postcondition suggestions are unnecessary.

220

4.3 Vision-Language Models

Vision-Language Models (VLMs) combine visual perception with language-based reason-
ing, making them effective for robotic failure recovery [22, 21]. They enable robots to
detect, identify, and correct failures by analyzing execution conditions and task states.

In our prior work [12], GPT-4o was used for pre-execution verification, where the VLM as-
sessed if a planned execution contained sufficient knowledge to succeed. It performed three
key tasks: failure detection (checking for potential failures based on available conditions),
failure identification (diagnosing root causes by analyzing missing or incorrect precondi-
tions), and failure correction (suggesting modifications such as adding missing precondi-
tions or required skills). This approach reduced failures due to incomplete task knowledge
but did not address execution-time failures from unforeseen disturbances or environmental
changes.

This work extends VLMs to real-time execution monitoring and correction. The VLM
continuously analyzes execution states, providing corrective suggestions based on evolving
conditions. To improve reasoning, we integrate scene graphs that dynamically track object-
object and robot-object relationships, improving failure detection. Additionally, an exe-
cution history records skill preconditions, postconditions, and execution timestamps, en-
abling structured failure analysis. By combining pre-execution checks with reactive real-
time monitoring, our framework ensures continuous adaptation to failures, enhancing ro-
bustness in autonomous robotic execution.

5 Approach

To enable real-time robotic failure recovery, our framework integrates a reactive planner,
Behavior Trees (BT), and Vision Language Models (VLM). The failure monitoring process
is divided into pre-execution failure verification and real-time execution monitoring, each
addressing failure detection, identification, and correction. Additionally, we extend the sys-
tem with a scene graph and execution history to improve failure reasoning and adaptation.
All failure handling mechanisms rely on the following key inputs:

• Images capturing the scene from multiple angles using two cameras (front and side
views) to improve spatial understanding.

• Skills with predefined pre- and postconditions.

• Known conditions for environment reasoning.

• Scene graph representing spatial object relations.

221

• Behavior Tree (BT) defining execution policy.

• Execution history (real-time only) tracking past actions and scene updates.

Failure handling follows a three-phase process: detection identifies potential failures, iden-
tification determines the root cause by pinpointing the affected skill and unmet condition,
and correction modifies the BT through precondition adjustments or skill additions to en-
sure successful execution. inspired by chain-of-thought [34] reasoning, we structure failure
recovery prompt into these three phases. This improves the VLM performance by guiding
it step-by-step toward the correct solution. If no failure is detected during the detection
phase, the system skips the identification and correction steps, optimizing computational
efficiency in both pre-execution and real-time monitoring.

To explain concretely our failure handling process, we use a peg-in-hole task, where the
goal is to insert the blue object inside the green object, while red and black objects act as
obstacles. Figures 6.4 and 6.5 illustrate different failure types with VLM responses. These
figures also show various prompts, color-coded to distinguish between failure detection,
identification, and correction questions posed to the VLM¹. From here onward, we will
consider a BT for peg-in-hole task execution that does not yet account for failures, as shown
in Figure 6.2, unless specified otherwise.

blue object inside green object? Sequence

place blue object!grasped blue object?

Fallback

Figure 6.2: BT of the peg-in-hole task without failure handling

¹Full prompts and code will be released after the submission process.

222

blue object inside green object? Sequence

place blue object!Fallback

grasped blue object? Sequence

grasp blue object!Fallback

~grasped any object? place any object!

Fallback

Figure 6.3: Extended BT execution where a missing precondition is added, ensuring the gripper is
empty before grasping target object.

5.1 Pre-Execution Failure Verification

Before execution [12], we validate the planned BT by proactively checking for missing pre-
conditions or potential execution failures. This step prevents errors before they occur, re-
ducing failures caused by incomplete task knowledge. A GPT-4o-based VLM performs this
verification by analyzing the inputs.

• Detection: Flags anomalies where the planned BT may fail based on the current
scene. For example, in the peg-in-hole task, if a black cube blocks the hole, the pre-
execution checker detects a potential failure (Figure 6.4(a)).

• Identification: Pinpoints the failing skill and the root cause, whether due to miss-
ing knowledge or an incorrect assumption. In this case, the VLM identifies that the
place skill will fail as the BT does not ensure the hole is unoccupied before placement
(Figure 6.4(a)).

• Correction: Suggests a missing precondition to update the BT and prevent failure.
Here, the system adds occupied(hole) as a precondition for place, prompting the reactive
planner to remove the black cube before placement (Figure 6.4(a)).

223

Q
: Is the plan correct w

ith no potential failures?
A

: N
o, the plan has a potential failure.

Q
: W

hich skill w
ill fail and w

hy?
A

: Place skill w
ill fail because the hole is blocked by

 a black object
Q

: W
hich condition should be added to avoid failure?

A
: A

dd ~occupied(hole) as precondition for place skill.

(a)

Q
: A

re the preconditions of the grasp skill satisfied?
A

: N
o, they are not satisfied.

Q
: W

hich preconditions are not satisfied and w
hy?

A
: ~grasped(any object) is not satisfied as gripper is holding

 red object
Q

: Should B
T condition node return Success or Failure?

A
: ~grasped(any object) node should return Failure

(b)

Q
: A

re the postconditions of the place skill satisfied?
A

: N
o, they are not satisfied.

Q
: W

hich postconditions are not satisfied and w
hy?

A
: inside(blue object, green object) is not satisfied as blue

 object is on green object
Q

: Should B
T condition node return Success or Failure?

A
: inside(blue object, green object) node should return Failure (c)

Figure
6.4:Th

ree
failure

instancesw
ith

corresponding
V

LM
responses.(a)Pre-execution

verification
detectsthatthe

black
objectblocksthe

hole,and
the

V
LM

suggestsadding
the

m
issing

precondition
forthe

place
skill.(b)Precondition

verification
identifiesthatthe

grasp
skillfailsdue

to
an

unm
etcondition,asthe

robotisalready
holding

a
red

object.(c)Postcondition
verification

detectsa
failed

placem
entsince

the
blue

objectison
top

ofthe
green

objectinstead
ofinside.Failure

detection
(red),identification

(orange),and
correction

(blue)are
indicated

w
ith

corresponding
V

LM
responsesin

black.

224

5.2 Real-Time Failure Monitoring

While pre-execution verification minimizes failures, unexpected execution failures may still
occur due to sensor inaccuracies, dynamic obstacles, or external disturbances. To handle
these, we introduce a real-time failure monitoring module comprising a Verifier and a Sug-
gestor. Both modules use the same inputs as pre-execution verification but incorporate
continuously updated scene graphs, images, and execution history for improved reasoning.

5.2.1 Verifier

Ensures that execution aligns with expected conditions by performing precondition verific-
ation before execution and postcondition verification after execution.

Precondition Verification Before executing a skill, the Verifier checks if the skill precon-
ditions hold. Consider the BT in Figure 6.3 with an existing grasped any object pre-
condition in this case.

• Detection: Flags an anomaly if the preconditions for the skill in the BT are unmet.
For example, in the peg-in-hole task, if the robot has already grasped a red object but
needs to grasp the blue object, the verifier detects an anomaly (Figure 6.4(b)).This failure
can occur if a human intervenes after the pre-execution failure check by manually placing
the red object inside the gripper.

• Identification: Determines the violated precondition and the cause of failure. In this
case, it finds that the grasped any object precondition of the grasp skill is not satisfied
(Figure 6.4(b)).

• Correction: Prevents execution by marking relevant preconditions as unsatisfied.
The reactive planner will then automatically expand the BT to satisfy the marked
preconditions. For instance, the BT adapts by placing the currently held object before
attempting the new grasp (Figure 6.4(b)).

Postcondition Verification After executing a skill, the Verifier checks if expected postcon-
ditions hold.

• Detection: Flags an anomaly if the executed skill fails to meet its postconditions.
For instance, if the robot places the blue object on top of the hole instead of inside, the
verifier detects a failure (Figure 6.4(c)).

225

• Identification: Identifies the violated postcondition and the cause of failure. Here, it
finds that the “inside” condition is violated because the object is on top rather than inside
(Figure 6.4(c)).

• Correction: Returns Failure, triggering the reactive planner to adjust execution dy-
namically. The BT reattempts placement in the next tick (Figure 6.4(c)).

5.2.2 Suggestor

The Suggestor dynamically infers missing preconditions when a skill fails due to unmet
conditions.

• Detection: Flags an anomaly when a skill is likely to fail due to an unmet precon-
dition. For example, in the peg-in-hole task, the red object is already occupying the hole
(Figure 6.5(a)).

• Identification: Identifies the missing precondition and the cause of failure. In this
case, it determines that the place skill is missing a precondition ensuring the hole is empty
before insertion (Figure 6.5(a)).

• Correction: Suggests the missing precondition, prompting the BT to update accord-
ingly. The model suggests occupied(hole) as a precondition, allowing the reactive planner
to expand the BT accordingly (Figure 6.5(a)).

5.3 Skill Addition

While modifying preconditions can resolve many failures, some cases require introducing
new skills. The skill addition can be suggested either pre-execution or reactively depending
on when the potential failure case arises. The pre-execution stage implements our prior
work in the [12] paper. if no existing skill can address a detected failure, the system suggests
a missing skill (Figure 6.5(b)). In the reactive phase, the VLM checks execution feasibility
before executing every skill. If the current skill is predicted to fail, a missing skill is suggested
to remove the failure (Figure 6.5(c)).

226

(a)

Q
: Is the plan correct w

ith no potential failures?
A

: N
o, the plan has a potential failure.

Q
: D

o w
e have the necessary skill to deal w

ith failure, If not w
hy?

A
: W

e don't have the necessary skill to rem
ove large red object

 blocking the hole. The current grasp skill cannot grip an object
 larger than the gripper affordance
Q

: W
hich skill should be added to avoid failure?

A
: A

dd push skill to rem
ove red object.

(b)

Q
: W

ill the current skill grasp red object! succeed or not?
A

: N
o, grasp red object skill w

ill fail
Q

: W
hy w

ill the current skill fail?
A

:The current grasp skill cannot grip an object larger than the gripper
 affordance
Q

: W
hich skill should be added to avoid failure?

A
: A

dd push skill to rem
ove red object.

(c)

Q
: A

re there any m
issing preconditions that could lead to failure?

A
: Yes, place skill has a m

issing precondition that can lead to failure
Q

: W
hich preconditions are m

issing and w
hy they can cause failure?

A
: Place skill does not have precondition that accounts for the placing

 location to be em
pty.

Q
: W

hich condition should be added to avoid failure?
A

: A
dd ~occupied(hole) as precondition for place skill.

Figure
6.5:Th

e
figure

illustratesthree
failure

scenariosand
corresponding

V
LM

responses.(a)Precondition
suggestor:Th

e
red

objectinside
the

green
objectleadsthe

V
LM

to
identify

a
m

issing
precondition

forthe
place

skill.(b)Pre-execution
m

issing
skillgeneration:Th

e
V

LM
identifiesthe

need
fora

push
skillto

rem
ove

the
red

object.(c)Real-tim
e

m
issing

skillgeneration:Th
e

V
LM

suggests
generating

the
push

skillduring
execution.Failure

detection
(red),identification

(orange),and
correction

(blue)phasesare
depicted,

w
ith

V
LM

responsesin
black.

227

• Detection: Identifies when the available skills can not resolve a failure. For example,
in the peg-in-hole task, if a non-pickable object blocks the hole and the system detects an
unresolved failure (Figure 6.5(b)).

• Identification: Determines the missing capability and the skill that fails due to
this limitation. In this case, the pick skill fails because the object is non-pickable (Fig-
ure 6.5(b)).

• Correction: The VLM suggests a new skill to resolve the failure, ensuring compat-
ibility with the robot’s world model. The suggestion includes:

– The name of the missing skill.

– A code template defining the skill.

– Predefined preconditions and postconditions.

For example, if a robot cannot grasp an object, the VLM may suggest a “Push” skill as
an alternative, providing a skill description with predefined conditions (Figure 6.5(b)).
Figure 6.5(c) illustrates the reactive version occurring during execution, where the
robot first places the blue object on the table before executing the ”Push” skill to
move the red object. To ensure consistency, the system restricts the VLM to known
world model conditions, preventing arbitrary condition generation.

LLMs can reason but are unreliable for planning due to hallucinations and nondetermin-
ism. Vision-language-action models generate short-horizon actions with a few exceptions
but often require large datasets and offer limited support for structured failure recovery.
Our reactive planner ensures valid plans through backchaining over grounded conditions,
enabling modular and traceable recovery without retraining.

5.4 Scene Graph Representation

To enable real-time monitoring, our system maintains an evolving scene graph that tracks
spatial relationships between objects and the robot. Unlike REFLECT [13], which regen-
erates the scene graph from scratch at each timestep, our approach continuously updates it
by modifying relationships and adding or removing nodes as needed.

The scene graph is constructed using:

• RGB-D images and point clouds for capturing scene depth and object positioning.

• Grounding DINO [35] for object detection and SAM2 [36] for instance segmenta-
tion and tracking.

228

• RANSAC and PCA-based pose estimation to estimate 6D object poses.

Continuous updates improve efficiency and ensure execution consistency. For example, in
the peg-in-hole task, when the robot inserts the blue object into the green one, our system updates
the scene graph by modifying the ”on” relation to ”inside” without reconstructing the entire graph.

5.5 Execution History

The execution history maintains a log of skill executions, condition verification results, and
environmental changes. Instead of explicit failure logging, which assumes perfect execution
state knowledge, our approach captures execution traces via changes in the scene graph that
help infer failures and inconsistencies.

• Skill execution records: Logs executed skills with timestamps.

• Precondition and postcondition verification: Tracks whether preconditions were
met before execution and if postconditions held afterward.

• Scene graph updates: Records object positions and relationships before and after
execution to analyze deviations.

For example, in the peg-in-hole task, if the blue peg is placed on top of the green hole instead of
inside, the execution history logs the ”Place” skill execution with its timestamp. The system records
that the precondition was satisfied (e.g., the peg was grasped), but postcondition verification fails
as the peg’s spatial relation does not match the expected ”inside” condition. The scene graph
update reflects this deviation, showing the peg as ”on” rather than ”inside” the hole.

This structured history enables real-time adaptation by detecting execution anomalies, al-
lowing the system to refine failure handling based on observed task progression.

6 Experiments and Results

We evaluate our failure recovery framework through both simulation benchmarks and real-
world experiments. In simulation, we use benchmark tasks from REFLECT [13] in AI2-
THOR [14], assessing how our system adapts to predefined failure cases. For real-world
validation, we implement our framework on a robotic platform to evaluate its effectiveness
in handling failures in physical environments.

229

6.1 Simulation Experiments

We evaluate our framework on REFLECT benchmark tasks, where failures occur dur-
ing execution and are corrected post-execution using hierarchical summaries and scene
graphs [25]. However, REFLECT lacks real-time adaptation, as failures are only detec-
ted and corrected after task completion.

Our approach instead uses a reactive planner and BTs to dynamically generate execution
policies, enabling real-time monitoring and immediate failure correction. Unlike RE-
FLECT, which reconstructs a new scene graph per execution, our system continuously
updates it. Additionally, while REFLECT relies on LLM-generated post-execution cor-
rections without correctness guarantees, our reactive planner ensures correctness through
structured preconditions and postconditions.

We successfully applied our framework to all REFLECT benchmark tasks, achieving a
100% success rate across multiple runs. Real-time monitoring was sufficient, making pre-
execution checks unnecessary. The Verifier ensured execution correctness, while the Sug-
gestor resolved missing preconditions. Unlike REFLECT, which evaluates explanation,
localization, and replanning success, we assess overall task completion. Since failures are
proactively verified and reactively corrected during execution, post-execution replanning is
unnecessary, reducing reliance on retrospective reasoning.

Key differences between REFLECT and our approach are summarized in Table 6.1.

Table 6.1: Qualitative Comparison of REFLECT and Our Approach

Feature REFLECT Our Approach
Execution Plan Manually designed Reactive BT

Failure Handling Post-execution Real-time
Scene Graph

Update
Reconstructed
post-execution

Maintained
incrementally

Failure Detection Post-execution Real-time
Plan Correction LLM-generated Reactive BT

6.2 Real-World Experiments

For real-world validation, we deployed our framework on an ABB YuMi robot equipped
with an RGB-D camera. We assessed its failure recovery capabilities across three tasks:

• Peg-in-hole: Inserting a peg into a hole with varying initial placements.

• Object Sorting: Sorting objects by color into designated locations.

• Drawer Placement: Placing an object inside a drawer.

230

Table 6.2: Comparison of Failure Recovery Baselines

Metric Pre-execution Reactive Pre-execution +
Reactive (Ours)

Task Success
Rate 31.25% 100% 100%

Failure Detection
Rate 31.25% 100% 100%

Failure Identification
Rate 100% 100% 100%

Correction Success
Rate 100% 100% 100%

Skill Suggestion
Accuracy 50% 100% 100%

Failures were introduced by modifying object placements, adding obstructions, or alter-
ing task constraints. Additionally, human intervention was used to induce failures during
execution.

6.2.1 Baseline Approaches

We compared our approach against two baselines to assess the benefits of integrating pre-
execution and reactive failure recovery mechanisms:

• Pre-execution: Check for plan verification [12].

• Reactive: Detect and correct failures during execution.

• Our Approach (Pre-execution + Reactive): Combine pre-execution validation and
real-time monitoring to prevent and correct failures dynamically.

Table 6.2 provides a quantitative comparison, showing that Pre-execution + Reactive achieves
the highest performance. Reactive only approach matches its failure handling but incurs
higher computational cost due to more VLM queries, additional skills, and longer execu-
tion times. For instance, without pre-execution checks, a robot may begin execution only
to discover a missing object mid-task, requiring backtracking and reactive correction. In
contrast, pre-execution checks efficiently catch static or predictable failures (e.g., a blocked
hole), avoiding wasted actions. However, they miss dynamic issues revealed only during
execution (e.g., a hidden drawer obstruction). Reactive monitoring handles such failures
by verifying conditions step-by-step. Although, the reactive only method is robust, they
are expensive. Combining both modes is more efficient.

231

6.2.2 Evaluation Metrics

We evaluated our framework’s ability to detect, identify, and correct failures across 16 pre-
recorded failure cases, repeating each experiment 10 times. To assess false positives, we also
ran each task 10 times without introducing failures.

We measured the system’s accuracy in detecting failures, correctly identifying their root
causes, and successfully correcting them. Additionally, we analyzed the proportion of pre-
execution failures handled versus those requiring real-time intervention and assessed the
accuracy of skill suggestions.

Table 6.2 summarizes the performance across these metrics. Our framework achieved a
perfect 100% accuracy on all tasks, demonstrating strong failure recognition and reasoning
capabilities. No false positives occurred when running the tasks without failures. Given
that failure recovery systems are designed to achieve near-perfect accuracy, these results
align with expectations. Future work should focus on evaluating the framework on more
complex benchmarks to further assess its scalability and robustness.

6.2.3 Ablation Studies and Summary of Findings

To evaluate key components, we conducted ablation studies by selectively removing ele-
ments and analyzing their impact on failure recovery.

• VLM vs. LLM: Removing vision input weakens spatial and scene-aware failure de-
tection, limiting object relation reasoning. Success drops from 100% (2 images) to
98% (1 image) and 95% (no images), assuming scene graph accuracy, which is not
always guaranteed.

• Scene Graph Contribution: Assists spatial reasoning and removes scene ambigu-
ity. Without it, success drops to 91.25%, highlighting its role in structured failure
prediction.

• Execution History Effectiveness: Omitting execution history tracking did not sig-
nificantly impact results, as we observed similar success rates with and without it.
However, this does not imply that execution history is ineffective; its benefits may
become more evident in more complex benchmarks.

Our findings confirm that combining pre-execution and reactive failure handling improves
task success. Pre-execution checks prevent plan failures, while real-time monitoring im-
proves adaptability. VLM-based reasoning strengthens failure detection and correction,

232

and scene graphs with execution tracking improve system reliability by maintaining struc-
tured environmental context. These results validate our framework’s effectiveness in autonom-
ous failure recovery across diverse robotic tasks.

7 Conclusion and Future Work

This paper presented a unified failure recovery framework integrating VLMs, a reactive
planner, and Behavior Trees (BTs) for pre-execution failure detection and reactive recov-
ery in robotic execution. By incorporating a scene graph for structured perception and
execution history for real-time monitoring, our approach dynamically adapts to failures,
minimizing execution disruptions. Experiments with an ABB YuMi robot and in simula-
tion showed that combining pre-execution and reactive strategies outperforms either alone.
Ablation studies confirmed the value of VLMs, scene understanding, and execution sum-
maries for reliability.

Although, our evaluated tasks are short-horizon, they feature dynamic and occluded condi-
tions, making them realistic for recovery testing. Future work will address more complex,
multi-step tasks in cluttered environments to assess scalability. We also plan to bench-
mark against models like ReplanVLM to evaluate trade-offs in accuracy, robustness, and
interpretability, as few baselines support both long-horizon planning and structured failure
recovery.

In the future, we aim to enhance our framework by integrating video and audio inputs for
improved context-aware task monitoring. We plan to fine-tune open-source multi-modal
models for failure handling, reducing computational costs and improving efficiency. Addi-
tionally, we will leverage Vision-Language Action (VLA) models for autonomous skill gen-
eration with structured preconditions and postconditions, ensuring quality through static
and integration checks. To extend real-time monitoring, we will incorporate holding con-
ditions for proactive failure checking during execution. These advancements will enhance
autonomous failure recovery, making robotic systems more adaptable and self-sufficient.

8 Acknowledgements

We thank Jialong Li for valuable discussions. This work was supported by the Wallenberg
AI, Autonomous Systems, and Software Program (WASP) through the Knut and Alice
Wallenberg Foundation and by Vinnova (NextG2Com, ref. no. 2023-00541). Experiments
were partly conducted at ABB Corporate Research Center, Västerås, Sweden, with financial
support from WASP. Generative AI tools were used for editing, including grammar and
sentence structuring.

233

References

[1] Malin Löfving et al. “Evaluation of flexible automation for small batch production”.
In: Procedia Manufacturing 25 (2018). Proceedings of the 8th Swedish Production
Symposium (SPS 2018), pp. 177–184. ISSN: 2351-9789. DOI: https://doi.org/
10.1016/j.promfg.2018.06.072. URL: https://www.sciencedirect.
com/science/article/pii/S2351978918305912.

[2] Ruikai Liu et al. “Autonomous Robot Task Execution in Flexible Manufactur-
ing: Integrating PDDL and Behavior Trees in ARIAC 2023”. In: Biomimetics 9.10
(2024). ISSN: 2313-7673. DOI: 10.3390/biomimetics9100612. URL: https:
//www.mdpi.com/2313-7673/9/10/612.

[3] Ekansh Sharma et al. Adaptive Compliant Robot Control with Failure Recovery for
Object Press-Fitting. 2023. arXiv: 2307.08274 [cs.RO]. URL: https://arxiv.
org/abs/2307.08274.

[4] Ruichao Wu, Sitar Kortik and Christoph Hellmann Santos. “Automated Behavior
Tree Error Recovery Framework for Robotic Systems”. In: 2021 IEEE International
Conference on Robotics and Automation (ICRA). 2021, pp. 6898–6904. DOI: 10.
1109/ICRA48506.2021.9561002.

[5] Shoki Kobayashi and Takeshi Shibuya. “Reinforcement Learning to Efficiently Re-
cover Control Performance of Robots Using Imitation Learning After Failure”. In:
2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2022,
pp. 1147–1154. DOI: 10.1109/SMC53654.2022.9945538.

[6] Jonathan Booher et al. CIMRL: Combining IMitation and Reinforcement Learning
for Safe Autonomous Driving. 2024. arXiv: 2406.08878 [cs.LG]. URL: https:
//arxiv.org/abs/2406.08878.

[7] Michele Colledanchise and Petter Ögren. Behavior Trees in Robotics and AI: An
Introduction. Chapman & Hall/CRC Press, 2017.

[8] Faseeh Ahmad et al. “Adaptable Recovery Behaviors in Robotics: A Behavior Trees
and Motion Generators (BTMG) Approach for Failure Management”. In: 2024
IEEE 20th International Conference on Automation Science and Engineering (CASE).
IEEE. 2024, pp. 1815–1822.

[9] Oliver Biggar, Mohammad Zamani and Iman Shames. “On modularity in reactive
control architectures, with an application to formal verification”. In: ACM Trans-
actions on Cyber-Physical Systems (TCPS) 6.2 (2022), pp. 1–36.

[10] A. Marzinotto et al. “Towards a Unified Behavior Trees Framework for Robot Con-
trol”. In: 2014 IEEE International Conference on Robotics and Automation (ICRA).
2014 IEEE International Conference on Robotics and Automation (ICRA). 2014,
pp. 5420–5427. DOI: 10.1109/ICRA.2014.6907656.

234

https://doi.org/https://doi.org/10.1016/j.promfg.2018.06.072
https://doi.org/https://doi.org/10.1016/j.promfg.2018.06.072
https://www.sciencedirect.com/science/article/pii/S2351978918305912
https://www.sciencedirect.com/science/article/pii/S2351978918305912
https://doi.org/10.3390/biomimetics9100612
https://www.mdpi.com/2313-7673/9/10/612
https://www.mdpi.com/2313-7673/9/10/612
https://arxiv.org/abs/2307.08274
https://arxiv.org/abs/2307.08274
https://arxiv.org/abs/2307.08274
https://doi.org/10.1109/ICRA48506.2021.9561002
https://doi.org/10.1109/ICRA48506.2021.9561002
https://doi.org/10.1109/SMC53654.2022.9945538
https://arxiv.org/abs/2406.08878
https://arxiv.org/abs/2406.08878
https://arxiv.org/abs/2406.08878
https://doi.org/10.1109/ICRA.2014.6907656

[11] Jonathan Styrud et al. “BeBOP–Combining Reactive Planning and Bayesian Op-
timization to Solve Robotic Manipulation Tasks”. In: 2024 International Conference
on Robotics and Automation (ICRA). IEEE, 2024.

[12] Faseeh Ahmad, Jonathan Styrud and Volker Krueger. “Addressing failures in robot-
ics using vision-based language models (VLMs) and behavior trees (BTs)”. In: arXiv
preprint arXiv:2411.01568 (2024). Accepted at European Robotics Forum (ERF) 2025.

[13] Zeyi Liu, Arpit Bahety and Shuran Song. “REFLECT: Summarizing Robot Exper-
iences for Failure Explanation and Correction”. In: arXiv preprint arXiv:2306.15724
(2023).

[14] Eric Kolve et al. “AI2-THOR: An Interactive 3D Environment for Visual AI”. In:
arXiv (2017).

[15] Shunki Itadera and Yukiyasu Domae. Motion Priority Optimization Framework to-
wards Automated and Teleoperated Robot Cooperation in Industrial Recovery Scenarios.
2024. arXiv: 2308.15044 [cs.RO]. URL: https://arxiv.org/abs/2308.
15044.

[16] Ruichao Wu, Sitar Kortik and Christoph Hellmann Santos. “Automated Behavior
Tree Error Recovery Framework for Robotic Systems”. In: 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2021, pp. 6898–6904.

[17] FN Jusuf et al. “Review on defenses against common cause failures on digital safety
system”. In: AIP Conference Proceedings. Vol. 2374. 1. AIP Publishing. 2021.

[18] Yumeng Lei et al. “Artificial Intelligence Planning of Failure Recovery Strategies in
Discrete Manufacturing Automation”. In: 2023 IEEE 19th International Conference
on Automation Science and Engineering (CASE). IEEE. 2023, pp. 1–8.

[19] Lucas VR Alves and Patrícia N Pena. “Secure recovery procedure for manufacturing
systems using synchronizing automata and supervisory control theory”. In: IEEE
Transactions on Automation Science and Engineering 19.1 (2020), pp. 486–496.

[20] Jiafei Duan et al. AHA: A Vision-Language-Model for Detecting and Reasoning Over
Failures in Robotic Manipulation. 2024. arXiv: 2410.00371 [cs.RO]. URL: https:
//arxiv.org/abs/2410.00371.

[21] Yinpei Dai et al. RACER: Rich Language-Guided Failure Recovery Policies for Imit-
ation Learning. 2024. arXiv: 2409.14674 [cs.RO]. URL: https://arxiv.
org/abs/2409.14674.

[22] Cristina Cornelio and Mohammed Diab. Recover: A Neuro-Symbolic Framework for
Failure Detection and Recovery. 2024. arXiv: 2404.00756 [cs.AI]. URL: https:
//arxiv.org/abs/2404.00756.

[23] Oualid Bougzime et al. Unlocking the Potential of Generative AI through Neuro-
Symbolic Architectures: Benefits and Limitations. 2025. arXiv: 2502.11269 [cs.AI].
URL: https://arxiv.org/abs/2502.11269.

235

https://arxiv.org/abs/2308.15044
https://arxiv.org/abs/2308.15044
https://arxiv.org/abs/2308.15044
https://arxiv.org/abs/2410.00371
https://arxiv.org/abs/2410.00371
https://arxiv.org/abs/2410.00371
https://arxiv.org/abs/2409.14674
https://arxiv.org/abs/2409.14674
https://arxiv.org/abs/2409.14674
https://arxiv.org/abs/2404.00756
https://arxiv.org/abs/2404.00756
https://arxiv.org/abs/2404.00756
https://arxiv.org/abs/2502.11269
https://arxiv.org/abs/2502.11269

[24] Xin Zhang and Victor S. Sheng. Neuro-Symbolic AI: Explainability, Challenges, and
Future Trends. 2024. arXiv: 2411.04383 [cs.AI]. URL: https://arxiv.
org/abs/2411.04383.

[25] Zeyi Liu, Arpit Bahety and Shuran Song. REFLECT: Summarizing Robot Experi-
ences for Failure Explanation and Correction. 2023. arXiv: 2306.15724 [cs.RO].
URL: https://arxiv.org/abs/2306.15724.

[26] Yanjiang Guo et al. DoReMi: Grounding Language Model by Detecting and Recover-
ing from Plan-Execution Misalignment. 2024. arXiv: 2307.00329 [cs.RO]. URL:
https://arxiv.org/abs/2307.00329.

[27] Jiaqi Wang et al. Large Language Models for Robotics: Opportunities, Challenges, and
Perspectives. 2024. arXiv: 2401.04334 [cs.RO]. URL: https://arxiv.org/
abs/2401.04334.

[28] Enshen Zhou et al. Code-as-Monitor: Constraint-aware Visual Programming for Re-
active and Proactive Robotic Failure Detection. 2024. arXiv: 2412.04455 [cs.RO].
URL: https://arxiv.org/abs/2412.04455.

[29] Xinglin Chen et al. “Integrating intent understanding and optimal behavior plan-
ning for behavior tree generation from human instructions”. In: arXiv preprint
arXiv:2405.07474 (2024).

[30] Michele Colledanchise and Petter Ögren. Behavior trees in robotics and AI: An in-
troduction. CRC Press, 2018.

[31] Matteo Iovino et al. A Survey of Behavior Trees in Robotics and AI. 2020. arXiv:
2005.05842 [cs.RO].

[32] Jonathan Styrud et al. Automatic Behavior Tree Expansion with LLMs for Robotic
Manipulation. 2024. arXiv: 2409.13356 [cs.RO]. URL: https://arxiv.
org/abs/2409.13356.

[33] Michele Colledanchise, Diogo Almeida and Petter Ögren. “Towards Blended Re-
active Planning and Acting using Behavior Trees”. In: 2019 International Conference
on Robotics and Automation (ICRA). 2019, pp. 8839–8845. DOI: 10.1109/ICRA.
2019.8794128.

[34] Jason Wei et al. “Chain of thought prompting elicits reasoning in large language
models”. In: Advances in neural information processing systems (2022).

[35] Shilong Liu et al. Grounding DINO: Marrying DINO with Grounded Pre-Training
for Open-Set Object Detection. 2024. arXiv: 2303.05499 [cs.CV]. URL: https:
//arxiv.org/abs/2303.05499.

[36] Nikhila Ravi et al. SAM 2: Segment Anything in Images and Videos. 2024. arXiv:
2408.00714 [cs.CV]. URL: https://arxiv.org/abs/2408.00714.

236

https://arxiv.org/abs/2411.04383
https://arxiv.org/abs/2411.04383
https://arxiv.org/abs/2411.04383
https://arxiv.org/abs/2306.15724
https://arxiv.org/abs/2306.15724
https://arxiv.org/abs/2307.00329
https://arxiv.org/abs/2307.00329
https://arxiv.org/abs/2401.04334
https://arxiv.org/abs/2401.04334
https://arxiv.org/abs/2401.04334
https://arxiv.org/abs/2412.04455
https://arxiv.org/abs/2412.04455
https://arxiv.org/abs/2005.05842
https://arxiv.org/abs/2409.13356
https://arxiv.org/abs/2409.13356
https://arxiv.org/abs/2409.13356
https://doi.org/10.1109/ICRA.2019.8794128
https://doi.org/10.1109/ICRA.2019.8794128
https://arxiv.org/abs/2303.05499
https://arxiv.org/abs/2303.05499
https://arxiv.org/abs/2303.05499
https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2408.00714

	List of publications
	Acknowledgements
	Popular summary in English
	Populärvetenskaplig sammanfattning på svenska
	Towards Self-Reliant Robots: Skill Learning, Failure Recovery, and Real-Time Adaptation
	Introduction
	Overview of Aims and Research Questions
	Thesis Outline

	Background and Related Work
	Skill Representation and Execution Frameworks
	Behavior Trees
	Reactive Planning for BT Generation and Extension
	Motion Generators
	BTMG Framework: Integrating Behavior Trees with Motion Generators
	Symbolic Planning and Skill-Based Task Execution

	Learning and Adaptation for Robotics
	Learning Policies in Robotics
	Bayesian Optimization for Efficient Policy Search
	Multi-objective Optimization and Reward Design
	Gaussian Processes for Policy Generalization and Adaptation

	Failure Recovery in Robotics
	Failure Models and Detection
	Failure Recovery Strategies: Reactive vs. Proactive
	Recovery-Behavior Synthesis
	Runtime Monitoring and Adaptation

	Vision-Language Models for Robot Reasoning
	Technical Foundations of Vision-Language Models (VLMs)
	Applications in Robotics
	Scene Understanding and Goal Inference
	Failure Detection and Explanation with VLMs

	Part I – Adaptive Skill Learning for Robot Autonomy
	Structuring Robot Policies for Modularity, Interpretability, and Data-Efficient Learning
	Motivation and Positioning within Existing Work
	Structuring Policies with BTMG and Parameter Optimization
	Method Overview
	Experimental Evaluation
	Discussion

	Generalizing Modular Policies
	Motivation and Research Framing
	Approach: Gaussian Process-Based Parameter Generalization
	Experimental Setup
	Discussion

	Real-Time Prediction of Policy Parameters
	Motivation and Research Framing
	Approach: Surrogate Inference for Real-Time Parameter Prediction
	Experimental Setup and Evaluation
	Discussion

	Part II – Failure Detection, Explanation, and Recovery
	Structuring Modular and Adaptive Recovery Behaviors
	Motivation and Positioning within Existing Work
	Modeling Recovery in the BTMG Framework
	Failure Cases and Recovery Behavior Design
	Execution Scenarios and Learning Setup
	Discussion

	Pre-Execution Failure Handling with Vision–Language Models
	Motivation and Positioning within Existing Work
	Approach Overview
	Illustrative Scenarios
	Evaluation and Findings
	Discussion

	Real-Time Monitoring and Reactive Recovery
	Motivation and Positioning within Existing Work
	Approach Overview
	Visual Pipeline and Scene Graph Maintenance
	Demonstrated Scenarios
	Discussion

	Conclusions
	Scientific publications
	Contribution Statements

	Skill-based Multi-objective Reinforcement Learning of Industrial Robot Tasks with Planning and Knowledge Integration
	Abstract
	Introduction
	Related Work
	Skill-based Systems
	Policy Representation and Learning
	Planning and Learning

	Approach
	Behavior Trees
	Planning and Knowledge Integration
	Policy Optimization
	Bayesian Optimization
	Multi-objective Optimization
	Motion Generator and Robot Control

	Experiments
	Reward Functions
	Push Task
	Peg-in-Hole Task

	Conclusion
	References

	Generalizing Behavior Trees and Motion-Generator (BTMG) Policy Representation for Robotic Tasks over Scenario Parameters
	Abstract
	Introduction
	Formalization
	Mapping
	Experiments
	Future Work
	References

	Learning to Adapt the Parameters of Behavior Trees and Motion Generators (BTMGs) to Task Variations
	Abstract
	Introduction
	Related Work
	BTMG and Task Variations
	Approach
	Training Phase
	Query Phase

	Experiments
	Obstacle Avoidance Task
	Push task

	Conclusion and Future Work
	References

	Adaptable Recovery Behaviors in Robotics: A Behavior Trees and Motion Generators (BTMG) Approach for Failure Management
	Abstract
	Introduction
	Related Work
	Background
	Behavior Trees
	Behavior Trees and Motion Generators (BTMG)
	Learning parameters of BTMG

	Approach
	Assumptions
	Recovery Behaviors
	Planner
	Scenarios

	Experimental Setup
	Peg-in-a-hole Task
	Results and Discussion

	Conclusion and Future Work
	References

	Addressing Failures in Robotics using Vision-Based Language Models (VLMs) and Behavior Trees (BT)
	Abstract
	Introduction
	Background
	Behavior Trees (BT)
	Reactive Planner
	Vision Language Models (VLM) in Robotics

	Approach
	Failure Detection and Idenitification
	Monitoring using VLM
	Condition and Skill Template Generation

	Experiments
	Evaluation Metrics and Results
	Conclusion and Future Work
	References

	A Unified Framework for Real-Time Failure Handling in Robotics Using Vision-Language Models, Reactive Planner and Behavior Trees
	Abstract
	Introduction
	Related Work
	Traditional Failure Recovery Strategies
	Learning-Based Failure Recovery
	Failure Recovery with Large Language Models (LLMs) and Vision-Language Models (VLMs)

	Background
	Behavior Trees
	Reactive Planner
	Vision-Language Models

	Approach
	Pre-Execution Failure Verification
	Real-Time Failure Monitoring
	Skill Addition
	Scene Graph Representation
	Execution History

	Experiments and Results
	Simulation Experiments
	Real-World Experiments

	Conclusion and Future Work
	Acknowledgements
	References

