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Popular summary

Cardiovascular disease is the number one cause of death at a global scale. Magnetic reso-
nance imaging (MRI) is the most accurate method for measuring the function and structure
of the heart, and is thus important for diagnosing cardiovascular disease. Imaging of the
heart with MRI can be done by recording multiple two-dimensional (2D) videos and piec-
ing them together into a three-dimensional (3D) video of the heart, as if the heart was a
loaf of bread and each 2D video was a slice of that loaf. From these 3D videos, the amount
of blood in the heart can be determined by drawing lines around the edges of each chamber
and measuring the volumes enclosed by these lines. This can tell us how much blood the
heart is pumping at every heartbeat, indicating its function.

However, there are some persisting challenges with this method. Both the manual
drawings and the MRI can take a long time. The MRI also usually requires patients to
hold their breath and be completely still. This can be difficult for children that are not able
to follow instructions. It can also be difficult for patients that are doing exercise during the
MRI, in order to show problems with the heart that cannot be seen during rest. This thesis
investigated the use of deep learning, a form of artificial intelligence, to tackle these issues,
by using it for tasks that humans can and cannot do, in four different studies.

In the first study, a deep learning model was developed for automatically drawing the
contours of one of the heart’s chambers, the right ventricle. This method was able to speed
up the process of getting drawings that could be used in a clinic by 87 % compared to
manual drawings.

In the second study, we investigated the randomness that is used when deep learning
models learn to draw contours. The learning is based on showing the model many exam-
ples of human-made drawings in a random order. We showed that by changing a single
parameter that affects this order (and other random processes), the resulting models ended
up with differences in performance, according to standard methods for comparing draw-
ing performance. This showed that if we want to compare two different ways of learning
to draw, we should not use these standard methods for comparing drawings, since they
showed differences between models that used the same learning method, entirely based on
randomness.

In the third study, a method was developed for creating 3D heart videos from 2D heart
videos of patients that are doing exercise during the MRI, while breathing freely. In this

v



vi Popular summary

method, deep learning was used to detect specific time points in a heartbeat, to allow piecing
together 2D videos that were taken at the same stage of breathing. Using this method, we
could see that the anatomy was comparable to standard MRI during breath-holding and
rest, and that deep learning could make the method faster.

In the fourth study, a method was developed for speeding up the MRI method for
collecting 2D videos when patients are breathing freely. This was done by collecting two
2D videos simultaneously instead of just one at a time, which resulted in one video where
two different videos are added on top of each other. A deep learning method was then
used to separate this into two separate 2D videos. Using this method, the MRI scanning
time could be reduced from minutes to seconds, but the quality of the videos was reduced
compared to standard MRI.

To conclude, this thesis shows that the development of deep learning methods involves
impactful randomness, but that the resulting methods can nonetheless be used to improve
various aspects of heart MRI by speeding up tasks that humans can do, and by performing
tasks that humans cannot do.



Preface

Studies I-III in this thesis were carried out at Clinical Physiology, Department of Clini-
cal Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden and at the
Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund,
Sweden under the supervision of Dr. Einar Heiberg (main supervisor) and Dr. Ellen
Ostenfeld (co-supervisor). Study IV was mostly carried out during a research visit at the
Centre for Translational Cardiovascular Imaging, Institute of Cardiovascular Science, Uni-
versity College London, London, United Kingdom under the supervision of Dr. Jennifer
Steeden and Prof. Vivek Muthurangu.

The work was supported by funding from the Heart and Lung Foundation, the Medi-
cal Faculty at LundUniversity, theKnut andAliceWallenberg Foundation,Region Skåne,
Wallenberg Centre for Molecular Medicine, the Swedish Research Council, the Scandi-
navian Society of Clinical Physiology and Nuclear Medicine, and Svenska Sällskapet för
Medicinsk Forskning.

vii





Acknowledgements

I’m endlessly grateful for all the help that I have received during my time as a PhD student
in the Lund Cardiac MR Group. It has been a journey with many ups and downs, but
at some point the ups started outweighing all those downs, and they have taken me down
routes I could not foresee.

Thank you Einar for all your fantastic support, your guidance, and your ability to
find solutions to all problems. Thank you Ellen for your great support, endless positivity,
and for sharing your deep knowledge about writing. Thank you Håkan for creating and
maintaining a great research environment, and for the guidance in personal development.
Thank you Jennifer and Vivek for teaching me about sequence programming and image
reconstruction, and for making my time in London a very developing experience. Thank
you Johannes and Anthony for inspiring me to venture deeper into the technical aspects
of MRI. Thank you Erik for being a great source of scientific inspiration and a networking
mentor. Thank you Katarina for great help in physiology and exercise CMR. Thank you
Henrik for being a great role model in leadership.

Thank you Barbro, Shahnaz, Mariam, Per, Fredrik, Robert, Jonas, Morten, Henrik,
David, Pia, Jane, Ashwin, Alessandro, Mattias, Helen, Karolina, Jelena, Anette, Ann-
Helen, Christel, Reza, Johanna, Anna, Annmarie, Charlotte, Tony and Frederik for con-
tributing to a great research and work environment. Thank you to my fellow PhD students
and research colleagues Elsa, Axel, Kristian, Jonathan E, Martin, Tania, Theodor, Anders,
Marjolein, Karin, Anna, Björn, Fanny, Anthony L, Daniel, Petter, Jonathan B, Jonas,
and Romeissa for all your help and the sharing of knowledge and struggle in our common
journey into research. A special thanks to my fellow engineers for all our great times and
travels. Thank you to everyone in the UCL lab for your help and companionship during
my time at ZCR. Thank you to my parents Helena and Mats for always giving me un-
conditional support in everything I do, and to my sister Karolina for always being a great
inspiration. Thank you Sorrel for everything.

ix





List of abbreviations

2D Two-Dimensional

3D Three-Dimensional

ADC Analog-to-Digital Converter

AI Artificial Intelligence

BH Breath-Hold

BPM Beats Per Minute

bSSFP Balanced Steady-State Free Precession

CAIPI Controlled Aliasing in Parallel Imaging

CAIPIRINHA CAIPI Results In Higher Acceleration

CMR Cardiovascular Magnetic Resonance

CNN Convolutional Neural Network

CO Cardiac Output

CS Compressed Sensing

DFT Discrete Fourier Transform

DL Deep Learning

ECG Echocardiogram

ED End Diastole / End-Diastolic

EDV End-Diastolic Volume

EF Ejection Fraction

xi



xii List of abbreviations

ERF Early Rapid Filling

ES End Systole / End-Systolic

ESV End-Systolic Volume

FA Flip Angle

FFT Fast Fourier Transform

FNN Feedforward Neural Network

FOV Field Of View

GB Gigabyte

GPU Graphics Processing Unit

GRAPPA Generalized Auto-calibrating Partially Parallel Acquisitions

HR Heart Rate

LA Left Atrium

LV Left Ventricle

LVM Left-Ventricular Mass

MDD Mechanical Diastolic Duration

MRI Magnetic Resonance Imaging

MS Mid Systole

MSE Mean Squared Error

NUFFT Non-Uniform Fast Fourier Transform

O1 Observer 1

O2 Observer 2

RA Right Atrium

ReLU Rectified Linear Unit

RF Radiofrequency

RT Real-Time



List of abbreviations xiii

RV Right Ventricle

RVEDV Right Ventricular End-Diastolic Volume

RVESV Right Ventricular End-Systolic Volume

SMS Simultaneous Multi-Slice

SSIM Structural Similarity Index Measure

SV Stroke Volume

TE Echo Time

TR Repetition Time





Part I

Research context





Chapter 1

Background

1.1 Introduction

Cardiovascular disease is the leading global cause of death [1]. Thus, accurate diagnostics of
cardiovascular disease are of great importance. Cardiovascular magnetic resonance (CMR)
imaging is considered to be the gold standard method for evaluating cardiac function and
structure [2], and is thus an important tool for diagnostics. It is also an active field of
research in which new developments and improvements are constantly being published.
Since the popularization of artificial intelligence (AI) methods, developments in the field
of CMR have accelerated, and a lot of recent work has been focused on applications of
these methods. One of the most widely applied types of AI for recent developments in
the field of CMR is deep learning, which is the subcategory of AI that focuses on the use of
neural networks. Deep learning has permeated many aspects of CMR, from reconstruction
to image analysis, and new applications continue to be published.

This thesis presents a few applications of deep learning in CMR for measuring cardiac
function. However, it focuses on the wider perspective of the use of deep learning, through
applying it in a context together with other new developments in CMR, where it is used
as a tool to reach certain goals that cannot be reached with other methods. The work
in this thesis touches upon many of the different aspects of the CMR process, including
image acquisition, image reconstruction, image processing, and image analysis. In addition
to presenting the applicability of deep learning methods within this context, the studies
focus on the aspect of usefulness of deep learning, in terms of its ability to speed up clinical
practice or provide some added value in the given context. In the studies, new developments
are presented in image segmentation, real-time exercise CMR, and real-time simultaneous
multi-slice CMR. In one of the studies, a more thorough examination is also done on the
effects of randomness when training deep learning methods for image segmentation, and
how this can affect the reporting of results. This initial chapter provides an overview of the
most important theoretical concepts that were touched upon in this doctoral thesis.

1



2 CHAPTER 1. BACKGROUND

1.2 Magnetic resonance imaging (MRI)

1.2.1 Fundamentals of MRI

Magnetic resonance imaging (MRI) is a medical imaging modality based on physical phe-
nomena occurring when atomic nuclei with a non-zero spin and magnetic moment interact
with magnetic fields [3]. In the human body, the most commonly occurring atom with
these properties is hydrogen (1H), and in this thesis, only hydrogen imaging was performed.
Nuclei with these properties are commonly referred to as spins in MRI literature [3], and
this notation will be used throughout this chapter.

Spins can be thought of as very small bar magnets with their own small magnetic fields,
meaning that they will also interact with other, external magnetic fields. If one observes a
volumetric sample of spins without any external magnetic field, the net magnetization M
(magnetic moment per unit volume) will be zero due to the randomly directed magnetic
moments cancelling each other out (Fig. 1.1a). When interacting with an external mag-
netic field B0, they tend to align with the direction of this, leading to a net magnetization
vector M in the direction of B0 (Fig. 1.1b) [3].

Figure 1.1: Simplified visualization of the behaviour of a volumetric sample of spins in
the absence and presence of an external magnetic field B0. Without the external field, the
magnetic moments of the individual spins cancel out. Inside B0, the spins align parallel
and antiparallel to the direction of B0, and there is a non-zero net magnetization M.

M is aligned with B0 when at thermal equilibrium. However, when M is not fully
aligned with B0, the torque imposed from B0 gives rise to a precessional behaviour of M
about B0 [3], with a frequency known as the Larmor frequency, given as

ω = γB rad/s (1.1)

where γ is the gyromagnetic ratio (a constant specific to the nucleus) and B is the mag-
netic field strength. This is also the resonant frequency of M. This means that if we apply
a second magnetic field B1 perpendicular to B0 that oscillates at this particular resonant
frequency, energy will be efficiently transmitted from B1 to M resulting in a torque per-
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pendicular to B1 and M that rotates M away from the B0 direction. Figure 1.2 illustrates
this precessional behaviour at the presence of B1. The B1 field is usually applied via short
radiofrequency (RF) pulses. The process of tipping the magnetization vector away from the
B0 field is known as excitation, and the angle to which the magnetization is flipped away
from the direction of B0 right after excitation is called the flip angle.

Figure 1.2: Illustration of the behaviour of the magnetizationM at (a) thermal equilibrium,
and (b) after applying a second magnetic fieldB1, oscillating at the Larmor frequency. This
shows that when B1 is applied, the magnetization vector M moves into the xy-plane in an
oscillatory manner.

After excitation,Mwill start to return to its thermal equilibrium via a process known as
relaxation. This process is best described separately for the longitudinal (Mz) and transver-
sal (Mxy) components of the magnetization. For the longitudinal magnetization compo-
nent, the return to equilibrium can be described by

Mz = Mo + (Mz(0)−Mo)e
−t/T1 (1.2)

where Mo is the equilibrium magnetization, Mz(0) is the longitudinal magnetization di-
rectly following the excitation (which would be zero if the flip angle was 90 degrees), t is
time, and T1 is a tissue-specific constant called the the spin-lattice relaxation constant that
describes Mz during the return to equilibrium. For the transversal magnetization compo-
nent, the return to equilibrium can be described by

Mxy = Mxy(0)e
−t/T2 (1.3)

where Mxy(0) is the transversal magnetization directly following excitation (which will
be equal to the equilibrium magnetization Mo if the flip angle is 90 degrees), t is time,
and T2 is a tissue-specific constant called the the spin-spin relaxation constant that describes
Mxy during the return to equilibrium [3]. One reason for this decay is that the individual
spins interact with each other, which leads to slight changes in their individual precessional
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frequencies and causing them to de-phase [4]. The de-phasing of the individual oscillations
of the spins means that the magnitude of the transversal net magnetization component will
decay.

1.2.2 The MRI signal

After excitation, the net magnetization M will precess around B0 at the Larmor frequency.
In MRI, the source of the imaging signal is the time-variation or precession of the transverse
magnetization component during relaxation. The signal measurement is carried out using
receiver coils in which the time-variation of the transverse magnetization, and thus the
magnetic flux through the receiver coil, induces an electromotive force through Faraday’s
law of induction [3]. The measured MRI signal is a voltage in the receiver coil that is
sampled and digitized by using an analog-to-digital converter (ADC) [4].

Right after excitation, the transverse magnetization component precesses in the xy-
plane and the de-phasing of spins causes it to decay according to Equation 1.3. The signal
that can be measured during this process is called free induction decay (FID). However,
this signal is rarely measured in itself in cardiovascular MRI [4]. Instead, the signal that is
measured in most MRI sequences comes from different types of echoes. One way to form
an echo is through using linear gradient magnetic fields (or gradients), that create linear
spatial variations of the effective magnetic field, making the Larmor frequency of the spins
vary linearly with the position along the direction of the applied gradient field according to
Equation 1.1. By turning on a gradient right after RF excitation, the spins are de-phased by
precessing at different frequencies based on their spatial position (if stationary). If a gradient
of opposite sign to the first gradient is then played, the de-phasing can be reversed, bringing
the spins back into phase [4], and this is when the echo signal occurs [5]. Echoes can also
be formed in with RF pulses, but this will not be described in this thesis.

1.2.3 Spatial encoding and RF pulses

In order to make the MR signal useful for imaging, spatial dependency needs to be encoded
in the measured signal. For this, gradients are employed. Figure 1.3 illustrates the use of
gradients for spatial encoding. Gradients can be turned on during a signal readout (when
the ADC is on) to create spatially dependent frequency variations in the measured signal.
This is known as frequency encoding. Additionally, gradients can be turned on before a
readout to create spatially dependent phase variations in the measured signal. This is known
as phase encoding. Gradients can also be applied during excitation to make the RF pulse (the
oscillatingB1 field) excite only a specific slice of spins. This is known as slice selection. When
played, the slice selection gradient makes the resonant frequencies of the spins vary linearly
along the z-axis. RF pulses usually excite only a specific band of frequencies, called the
transmit bandwidth [4]. A common shape of the RF pulse is variants of the sinc (sin(x)/x)
function that have been truncated to be made finite and further processed to create a better
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shape of the excited slice, or slice profile [5]. The sinc pulse produces a slice profile that is
approximately rectangular, hence its widespread use [4].

Figure 1.3: Illustration of the use of linear gradient fields for A) slice selection (Gz-axis),
B) phase encoding (Gy-axis), and C) frequency encoding (Gx-axis). The slice selection
gradient makes the RF pulse excite spins within the transmit bandwidth of frequencies,
corresponding to a section along the Gz axis. The phase encoding gradient, after being
turned on and off, imparts different phases to spins at different spatial positions along Gy.
The frequency encoding gradient imparts different frequencies to spins at different spatial
positions along Gx when turned on.

1.2.4 K-space

The MR signal sampled using the ADC does not provide an image directly. The signal is
obtained in the spatial frequency domain, which is often referred to as k-space. Signals in
k-space can be transformed to the image domain via the inverse Fourier transform. The
Fourier transform is a mathematical operation that can be applied to a signal to retrieve
its spectral content, i.e. what frequencies it contains. For example, given an audio signal
of a chord from a musical instrument, the Fourier transform can be used to find out what
musical notes were played in the chord, and how loudly each note was played [5]. In an
MR signal measured into 2D k-space, each data point describes the influence of a particular
spatial frequency, which in image space corresponds a two-dimensional sinusoidal wave at
a particular frequency, direction, and amplitude. This is illustrated in Figure 1.4, where
a single non-zero point in k-space corresponds to a two-dimensional sinusoidal wave in
image space. Any object in image space can be described as a superposition of such two-
dimensional sinusoidal wave components, and thus by spatial frequencies in k-space.
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Figure 1.4: Left: K-space (the spatial frequency domain) with a single nonzero point at
(kx, ky) = (5, 5). Right: The real component of the corresponding signal in the image
domain, displaying a two dimensional sinusoidal wave.

Because the sampled MR signal is discrete, the Fourier transform that needs to be
applied to transform the MR signal is the discrete two-dimensional Fourier transform
(DFT). More specifically, an efficient algorithm for computing the DFT, called the two-
dimensional fast Fourier transform (FFT), is often used [5]. This method can be used in the
case when k-space is uniformly fully sampled, i.e. when the values in k-space are evenly dis-
tributed across the k-space grid. This can be achieved through filling k-space rectilinearly,
via one horizontal line for each phase encoding step, also known as Cartesian imaging.
However, the collected MR signal is often deliberately under-sampled at readout to re-
duce acquisition time. In this case, not all points in the k-space grid are filled. In many
cases of under-sampled imaging, k-space is also traversed using a trajectory with which the
measured k-space points are not evenly or uniformly sampled in k-space, also known as
non-Cartesian imaging. An example of a Cartesian and a non-Cartesian trajectory can be
seen in Figure 1.5. To allow the computation of the inverse FFT on k-space data filled
with a non-Cartesian trajectory, it requires for the FFT to be generalized to a non-uniform
sampling grid. This is called a non-uniform fast Fourier transform (NUFFT), and is often
based on algorithms for gridding the data onto a uniform Cartesian grid via interpolation
to allow performing a conventional FFT [6, 7].

Spiral readouts, such as seen in Figure 1.5, can be used to cover a large part of k-
space at each excitation, thereby being more efficient in their coverage of k-space than with
a rectilinear filling [4]. To achieve a spiral readout in 2D imaging using gradients, the
gradients are played out simultaneously during the readout along the x-and y directions,
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Figure 1.5: Left: A Cartesian k-space trajectory, covering k-space in a rectilinear manner.
Right: A non-Cartesian, variable density interleaved multi-shot spiral k-space trajectory,
where the density of the spirals are significantly higher in the center of k-space. The trajec-
tory has 8 interleaves, meaning that it consists of 8 separate spiral arms acquired at separate
excitations.
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varying sinusoidally [5] (see Fig. 1.7). Usually, spiral trajectories begin at the center of
k-space, and after the full length of each spiral interleave (or spiral arm) has been reached,
a gradient is run to rewind the k-space trajectory back to the origin of k-space, to allow the
next interleave to start from the origin [5].

1.2.5 Advanced image reconstruction techniques

When k-space is under-sampled, directly applying the FFT or NUFFT algorithms leads
to increased amounts of aliasing artifacts in the resulting images. These are artifacts that
occur when signals above the Nyquist frequency (fN = 1

2fs, where fs is the sampling
frequency) are misrepresented as low frequency signals. This misrepresentation increases
with higher under-sampling. To avoid under-sampling artifacts, these methods need to
be extended with more advanced techniques in order to handle the missing k-space data.
There is a wide range of techniques for reconstructing under-sampled MR images, and the
central aim of most new reconstruction methods is to facilitate faster MR acquisition by
allowing a heavier under-sampling of k-space without a substantial reduction in the spatial
resolution. The level of under-sampling is denoted by the reduction factorR. For example,
R = 2 if every other line is skipped in Cartesian sampling.

A central category of reconstruction techniques for under-sampled imaging is parallel
imaging techniques. Parallel imaging utilizes receiver coil arrays with multiple coil elements
(also known as phased arrays), where each element is used to measure the MR signal sepa-
rately. Each coil element has a different sensitivity to the signal from the imaged object due
to their different spatial positions. Maps of these sensitivities are leveraged to aid the recon-
struction, and the separate coil measurements are combined in various ways (depending on
the specific method) to fill in the gaps in k-space and to create the final image [4]. One
widely used parallel imaging technique is GRAPPA (Generalized Auto-calibrating Partially
Parallel Acquisitions). In this method, lines of k-space are skipped according to some R,
while some additional k-space lines close to the center of k-space are also collected. These
are called auto-calibration lines. The purpose of the auto-calibration lines is to calculate
weights for determining how nearby k-space lines from all coil elements can be combined
together to estimate each missing k-space line in each coil [8]. When the missing lines
have been filled in, coil images are reconstructed separately and then combined together in
image space [8].

A category of reconstruction methods that is widely used in accelerated CMR (and
can be combined with parallel imaging techniques) is iterative reconstruction methods.
In iterative reconstruction methods, the MR image reconstruction problem is generally
posed as the problem of finding an image series x that aligns with the acquired k-space
signal s given some prior information or assumptions. To solve this problem, iterative
reconstruction methods typically seek to minimize a regularized least squares cost function
that can be denoted as
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x̂ = argminx||s−Ex||22 + λR(x) (1.4)

whereE is the MRI encoding operator or encoding matrix that includes the Fourier transform
and other properties of the acquisition process (e.g. coil sensitivity information), R(x) is
the regularization term that enforces prior information or assumptions of the image data,
and λ is a tunable parameter that determines the weighting between the first and second
term [9]. The term ||s−Ex||22 is commonly called the data consistency term, since it enforces
consistency between s and x [9].

One widely used iterative reconstruction method in contemporary CMR is compressed
sensing (CS). In CS, the regularization term R(x) includes a sparsity transform of x (e.g.
total variation [10]) which enforces the optimization to find solutions that have a sparse
representation in some domain [10]. Usually, this term also employs an L1-norm. The
method works under the assumption that k-space is randomly under-sampled [11]. To
solve the optimization problem in Equation 1.4, iterative optimization methods are com-
monly used, such as the nonlinear conjugate gradient method [10]. Another method that
can be used is the L-BFGS algorithm [12].

Iterative methods, in particular CS, have achieved high-quality reconstructions at high
under-sampling factors in multiple areas of CMR imaging [11, 13]. However, drawbacks
of these methods include long reconstruction times and the need to tune the regularization
parameters (λ) differently for different applications [11]. The long reconstruction times
limit their use for online reconstruction. This is when images are directly reconstructed
during a scan and visualized at the scanner.

Recently, deep learning has been widely applied for image reconstruction in under-
sampled MR imaging [13]. Image-based de-aliasing, or deep artifact suppression is one type
of deep learning-based reconstruction. In this, an under-sampled k-space is transformed
to image space using e.g a NUFFT, producing an aliased image. Then, a neural network
is applied to suppress aliasing artifacts through an image-to-image mapping. Thus, in this
case, the deep learning problem is a mapping of an aliased image to a non-aliased image,
or an artifact-free image. Training data for training this type of mapping can be created
through retrospectively under-sampling a fully sampled k-space to synthesize the under-
sampling process during acquisition. This type of method was employed in Study IV of
this thesis, and was implemented for online reconstruction using the Gadgetron framework
[14].

A wide variety of other deep learning-based reconstruction methods exist, and the field
is under constant development. Some methods are iterative, and employ cost functions
similar to Equation 1.4. For example, unrolled networks apply neural networks to learn the
regularization R(x) instead of using an explicit definition of it, as for example in CS [11].
However, these methods were not employed in this thesis.
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1.2.6 Cardiovascular MR (CMR) imaging

The specific type of MR imaging that this thesis focuses on is cardiovascular MR (CMR)
imaging. CMR can be used to acquire time-resolved image volumes of the heart, allowing
one to make volumetric measurements of the various anatomical structures of the heart
throughout the cardiac cycle. To do this, it is necessary to employ techniques that produce
a spatial resolution that allows resolving the anatomical structures of interest and a temporal
resolution that allows resolving the temporal events of interest.

The anatomical and temporal information that one wishes to resolve varies depending
on the specific application of CMR, and the techniques used to achieve these also vary.
Importantly, there is a trade off between the time that is spent on collecting the MR signal
(or filling up k-space) and the temporal and spatial resolution that can be achieved. To
achieve a high spatial and temporal resolution, long acquisition times are required. Longer
acquisition times make clinical CMR examinations longer and more tedious for patients,
and can even make it unfeasible to carry out the acquisition for some patients. Below are
descriptions of the various CMR techniques used in this thesis.

1.2.7 Cine CMR imaging

Methods for collecting k-space data to construct CMR timeframes can be divided in to two
main categories. The first category utilizes the periodicity of cardiac motion and fills up
k-space with signal acquired over multiple heartbeats. This is known as gated cine imaging,
and it is the method that provides the highest spatial and temporal resolution. This is also
the method most commonly employed clinically. The second category does no sharing
of k-space data across heartbeats, and instead uses continuously collected MR signal to
reconstruct each timeframe. This is known as real-time imaging.

In gated cine imaging, image acquisition is usually carried out simultaneously as an
echocardiogram (ECG) signal is being measured. The ECG signal measures the electrical
activity of the heart and can indicate the different phases of the cardiac cycle (see section
1.4.3). This can be used to sort the acquired k-space data into a discrete set of cardiac
phases [5]. The ECG can also be used for triggering the acquisition of data, meaning that
the start of certain events of the MR pulse sequence is connected to events in the ECG
signal [5]. In retrospective gating, the acquisition runs continuously while the ECG triggers
the updating of gradients, and the sorting of data into phases is done after the acquisition.
In prospective gating, the acquisition itself only happens during a time window triggered
by events in the ECG. In gated cine imaging using Cartesian sampling of k-space, k-space
lines are acquired for each cardiac phase during each heartbeat, and imaging is continued
until enough k-space lines have been collected in order to reconstruct all timeframes [5].
When more than one k-space line (a segment of k-space) is collected for each cardiac phase
for each heartbeat, it is called segmented gated cine imaging. This technique is illustrated
in Figure 1.6a.

Gated cine imaging is based one the assumption that anatomical information and mo-
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tion will be similar across all imaged heartbeats. Because of this, cine imaging is usually
carried out during breath-holding. Without breath-holding, there is risk for breathing-
induced displacement of the heart between heartbeats, which can lead to artifacts. Fur-
thermore, the ECG signal is not always reliable enough to carry out gated cine imaging.
This can for example be the case when a patient suffers from arrhythmia [15] or when a
patient is carrying out exercise [16]. One way to carry out exercise during CMR is to use
a supine bicycle ergometer, with which the patient is pedalling with their feet while laying
in a supine position. In these cases where breath-holding is not feasible and the ECG is
unreliable, real-time imaging can be used.

Figure 1.6b shows a schematic overview of real-time imaging. In contrast to segmented
cine imaging, real-time imaging continuously fills up k-space enough to reconstruct each
timeframe, without sharing k-space data across heartbeats. In practice, this makes it more
difficult to achieve high spatial and temporal resolutions, and increases the need for more
efficient k-space sampling. Higher spatial and temporal resolutions in real-time CMR can
be attained through efficient non-Cartesian to sampling of k-space, such as spiral or radial
trajectories [15].

In real-time CMR, the ECG signal is not necessary for image formation. However,
ECG signals or similar signals such as pulse oximeter signals can still be used for triggering
the acquisition. In contrast to the ECG that measures the electrical activity of the heart
using electrodes that are attached to the skin of the patient, a pulse oximeter is instead
attached to a peripheral body part, such as a finger. To get a signal that indicates the cardiac
periodicity, it transmits light into the body part and then determines the attenuation of this
light [5] as it is transmitted through the body part [17]. Continuous measurement of this
property provides a signal that can indicate cardiac phase, similarly to an ECG.

1.2.8 Balanced steady-state free precession (bSSFP) sequences

In both gated cine and real-time CMR, one of the most widely used types of MRI pulse se-
quences are balanced steady-state free precession (bSSFP) sequences. In this thesis, segmented
cine bSFFP imaging was used for all CMR imaging in Study I, II and III and the real-time
CMR pulse sequence implemented in Study IV was also based on a bSSFP sequence.

The most fundamental aspect of bSSFP sequences is the application of a train of RF
pulses that, after a certain number of repetitions, leads to a steady state of the magnetiza-
tion [18]. The steady state entails that the magnetization M is in a dynamic equilibrium,
meaning that it has the same magnitude at corresponding temporal positions across con-
secutive repetition times (TR) measured between the centres of two consecutive RF pulses
[5]. The conditions required to reach a steady state magnetization include a constant TR, a
constant amount of de-phasing in each TR, and a constant flip angle α [18], and it usually
takes around 5 periods of T1 to reach this steady state [19, 5].

The balanced aspect of bSSFP sequences comes from the fact that the time integrals of
the gradients over every TR, also known as the zeroth order gradient moments, are zero. This
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Figure 1.6: Schematic overview of how a) segmented gated cine imaging and b) real-time
imaging can be carried out to fill k-space. In segmented gated cine imaging, a segment
consisting of a few unique k-space lines is collected for each timeframe during each R-R
interval, filling up k-space step-by-step. In real-time imaging, the k-space for every time-
frame is filled up continuously within a single R-R interval, without the need for an ECG
signal for gating.
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also means that the net de-phasing of spins caused by gradients is zero over each TR [18].
For example, this is given along the gradient axis Gx as:∫ TR

0
Gx(t) dt = 0 (1.5)

This property can be achieved by applying compensatory gradients (rewinder gradients)
for each gradient that is played during a TR. Figure 1.7 shows a single TR of a bSSFP se-
quence with spiral readout gradients, and with the zeroth order gradient moments M0x,
M0y, and M0z plotted for their respective axes. Here, it can be seen that the zeroth order
gradient moment is nulled across all axes at the end of the TR, as a result of the compen-
satory gradients applied to all gradient axes. The rewinder gradients along the Gx and Gy

axes make the k-space trajectory return to the origin of k-space. In bSSFP imaging, the
imaging signal in the steady state is not formed by just a single echo or a single FID signal,
but rather a mix of multiple types of signals from multiple magnetization states as a result
of the train of RF-pulses [19]. For CMR, bSSFP sequences are suitable because they can
achieve high temporal resolution and be robust to motion [19]. However, the robustness
to flow may depend on the used k-space trajectory, and some trajectories may require for
additional compensatory lobes to also null the first order gradient moment [20].

1.2.9 Simultaneous multi-slice (SMS) imaging

Simultaneous multi-slice (SMS) imaging is an MR imaging technique that allows acquiring
multiple (N > 1) image slices simultaneously, and thereby accelerating the image acquisi-
tion by a factor N [21]. An important aspect of this technique is the use of SMS RF pulses,
that allow simultaneous excitation of slices at multiple slice positions. A single-band RF
pulse can be described as

RF (t) = A(t) · P (t) (1.6)

where A(t) is the waveform of the RF pulse (e.g. a sinc function) and P (t) = ei(γGzt+ϕ),
where γ is the gyromagnetic ratio, G is the amplitude of the slice select gradient, z is the
slice position, and ϕ is the phase directly following excitation [21]. Given this, an SMS RF
pulse exciting N different slices (at N different slice positions zn) using the same slice select
gradient can be constructed as the following sum of N different RF pulses [21, 22]

RFSMS(t) = A(t) ·
∑
N

ei(γGznt+ϕn). (1.7)

In SMS imaging, the acquired imaging signal is a superposition of the imaging signals
from the N excited slices, and the k-space is thus a superposition of the N different k-spaces.
Another key aspect of SMS imaging is the separation of the N superimposed slices into N
different slices. To facilitate this, additional spatial encoding of the N SMS slices is often
used.
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Figure 1.7: Sequence diagram showing a bSSFP sequence with spiral readout gradients.
The diagram also shows the start and stop time of the analog-to-digital converter (ADC)
and the zeroth order moments calculated across time for the three gradient axesM0x, M0y,
and M0z . The numbered events are (1) slice selection gradient; (2) radiofrequency (RF)
pulse; (3) rewinder for the slice selection gradient; (4) spiral readout gradient (Gx); (5)
spiral readout gradient (Gy); (6) rewinder gradient for Gx; (7) rewinder gradient for Gy;
(8) prewinder for the slice selection gradient. Note that the zeroth order gradient moment
is zero for all axes at the end of the TR.
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Similarly to how in-plane phase encoding is carried out using gradients, gradients can
impart relative phase differences between the SMS slices along the slice direction. However,
in SMS imaging, the aim of the SMS phase encoding is generally to achieve an in-plane
shift between the acquired slices, to decrease the spatial overlap [21]. A linear phase shift
in k-space corresponds to a shift in the spatial position in image space according to the
Fourier shift theorem [5]. Through this, it can be shown that specific shifts in the field of
view (FOV) can be achieved through the application of specific phase modulation patterns
[23]. This is known as CAIPIRINHA (Controlled Aliasing In Parallel Imaging Results In
Higher Acceleration) [23], and can be used in order to achieve better separation of slices
during reconstruction.

Figure 1.8: SMS acquisition of a cylindrical bottle phantom with a blipped-CAIPI phase
pattern alternating between 0 and π for the phase encoding steps. The acquired SMS slice
contains the superposition of the signals from the two slices. Due to the applied gradient
phase modulation (gradient blips), slice 2 is shifted by FOV/2 in the phase encoding di-
rection at acquisition. Slice 1 experiences no phase modulation due to being positioned in
the gradient isocenter.

In the original CAIPIRINHA publication, phase modulation patterns were achieved
using RF pulse phase cycling [23]. Another way of introducing these phase modulation
patterns is through the application of short gradient pulses known as gradient blips, and
this method is known as blipped-CAIPI [24]. Gradient blips applied along theGz-direction
(the SMS slice direction) introduce a phase difference between spins along this direction.
When integrated into bSSFP sequences, the blips are played out before the readout in each
TR, with an additional gradient blip of opposite polarity being played out after the readout
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for balancing purposes (nulling the zeroth order moment) [25]. An implementation of
this, where the blips are integrated into the rewinder and prewinder gradients of a bSSFP
sequence, can be seen in Figure 3.2 in the Materials and methods section.

Figure 1.8 shows an example of an SMS acquisition where a shift of FOV/2 in the
phase encoding direction is achieved through the application of a phase modulation pattern
alternating between 0 and π for each phase encoding step using gradient blips. Here, the
first slice is located in the gradient isocenter and the second slice is located such that it
accrues a phase of π when the gradient is turned on. A specific phase shift of ϕ can be
achieved through setting the properties of the blip gradient lobe based on the separation
distance zgap between the two slices according to

Ablip = ϕ/(γzgap) (1.8)

where Ablip =
∫
blipGzdt is the area of the blip (the zeroth order gradient moment) and γ

is the gyromagnetic ratio [24].
In the case of non-Cartesian (e.g. spiral) imaging, the same type of phase modulation

pattern as in Figure 1.8 can be applied to the individual spiral interleaves in an alternating
fashion. However, in non-Cartesian imaging, with trajectories that cross the centre of k-
space multiple times (e.g. radial or spiral), this does not produce the effect of a shift in the
FOV. Instead, the resulting effect is a constructive or destructive interference of the signal
coming from the different excited slices [26, 27].

Figure 1.9 shows an example of this constructive and destructive interference using
phase modulation for a spiral trajectory where the 16 spiral interleaves are phase modulated
with an alternating phase modulation pattern of−π/2 and π/2. Here, the trajectory can be
seen divided into its two components with different phase modulation, namely the even-
and odd-numbered spiral interleaves. When these individual trajectory components are
reconstructed separately using a NUFFT, the resulting images contain signal as well as
aliasing artifacts from under-sampling. When instead reconstructing the full trajectory, the
resulting image only consists of residual aliasing artifacts, with no visible signal. This is
due to destructive signal interference. Note that the phase modulation pattern of −π/2
and π/2 provides the same effect as a phase modulation pattern of 0 and π, since the
phase difference is π between interleaves. This type of signal cancellation can, similarly
to the linear shifting, improve the quality of images reconstructed using parallel imaging
[26, 27].

The effects of phase modulation from gradient blips can be reversed by applying the
complex conjugate of the phase modulation pattern to the k-space. Through doing this,
the phase can be de-modulated such that all spiral interleaves are given the same phase, and
the signal interference between interleaves is then made constructive instead of destructive.
In the case of SMS imaging, the phase modulation pattern is typically configured such
that the phase modulation that is needed to achieve constructive interference for one slice
corresponds to the phase modulation needed to achieve destructive interference in the other
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Figure 1.9: Example of signal cancellation by applying a phase modulation pattern of−π/2
and π/2 to a spiral trajectory. This shows the two individual trajectory components (even
and odd spiral interleaves) between which there is a phase difference of π. The two com-
ponents are reconstructed separately using a NUFFT, and the resulting images show both
signal and aliasing artifacts from under-sampling. When the full trajectory is reconstructed
using a NUFFT, the resulting image has no visible signal, but carries residual aliasing arti-
facts.
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slice. Figure 1.10 shows an example of how this can be achieved when two simultaneously
excited slices are evenly spaced around the Gz gradient isocenter and a phase modulation
pattern of−π/2 and π/2 is applied, imparting an absolute phase difference of π/2 between
slices that are zgap apart. In this case, even spiral interleaves accrue the phase π/4 for slice 1
and −π/4 for slice 2, whereas odd spiral interleaves accrue the phase −π/4 for slice 1 and
π/4 for slice 2. It can be seen that in this case, the phase de-modulation pattern required to
achieve constructive signal interference for slice 1 (the same phase for odd and even spiral
interleaves) produces destructive signal interference (a phase difference of π between odd
and even spiral interleaves) for slice 2, and vice versa. This method was used in Study IV.
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Figure 1.10: Schematic diagram of the phase de-modulation for even and odd spiral in-
terleaves employed to separately recover two simultaneously acquired slices, where the Gz

isocenter is in the center between the two slices. A) the accrued phase for slice 1. B) the
accrued phase for slice 2. C) the constructive signal interference for slice 1 after recovering
slice 1. D) the destructive signal interference for slice 2 after recovering slice 1. E) the
destructive signal interference for slice 1 after recovering slice 2. F) the constructive signal
interference for slice 2 after recovering slice 2. G) the phase de-modulation required to
recover slice 1. H) the phase de-modulation required to recover slice 2. This diagram is
reproduced from the manuscript of Study IV.
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1.3 Deep learning

Recently, deep learning (DL) has had a great impact on the fields of image analysis and
image processing by outperforming traditional image analysis methods on problems such
as image classification, image segmentation and image de-noising. DL is a sub-category
of artificial intelligence, and it focuses specifically on neural networks. These originated
as models that imitated the function of the human brain, but have since been massively
improved. Today, many different types of neural network architectures exist for solving a
wide range of problems. An important factor in the rise of DL are developments in com-
putational hardware, specifically Graphics Processing Units (GPUs), that make it possible
in practice to train and employ large neural networks on large amounts of data. This chap-
ter provides a theoretical background to the DL concepts that were touched upon in this
thesis.

1.3.1 Fundamentals of neural networks

A widely used type of neural network is the feedforward neural network (FNN). FNNs are
characterized by providing a mapping between some input x and some output y by ap-
proximating some function f∗. This mapping can be described as a parametrized function
y = f(x; θ), where θ is a set of parameters that are learned [28].

To learn the parameters θ, neural networks are trained on training data using some
learning algorithm. The learning algorithm determines all aspects of the training process,
for example how training data are used in order to update θ. A learning algorithm can
be supervised, meaning that each element in the training dataset xi ∈ {x1,x2...,xn} has
a corresponding labelled ground truth value yi, which is the ideal output from the neural
network given the input xi. In this thesis, this was the only type of learning algorithm that
was used.

The general structure of a neural network

Neural networks are typically constructed as computational graphs of several layers, where
each layer performs some mathematical operation [28]. An example of the structure of
a simple type of FNN can be seen in Figure 1.11a. Here, the network consists of three
layers, an input layer, a hidden layer, and an output layer, between which information flows
in a single direction. Each node in each layer is connected to each node in the next layer,
making it a fully connected FNN. In each node of this type of network, the weighted sum
of all inputs is computed, some bias is added, and some non-linear activation function is
applied to this weighted sum before the output is given to the nodes of the next layer (Figure
1.11b). In a fully connected FNN, the learnable parameters θ that are updated during the
execution of the learning algorithm are the weights and biases. Most DL architectures use
multiple hidden layers, making them deeper than the architecture in Figure 1.11a. This is
the origin of the term deep learning.
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Figure 1.11: a) A fully connected feedforward neural network (FNN) with one input layer,
one hidden layer, and one output layer. b) The internal structure of a node in the fully
connected network. In this, inputs xi are multiplied by weights wi and summed, some
bias b is added to the weighted sum, and a nonlinear activation function is applied before
the output is given to the nodes in the next layer.

The use of nonlinear activation functions allows networks to learn nonlinear mappings.
Two common nonlinear activation functions are the rectified linear unit (ReLU), and the
leaky ReLU (LeakyReLU) functions

ReLU(z) =

{
0, z ≤ 0

z, z > 0
(1.9)

LeakyReLU(z) =

{
αz, z ≤ 0

z, z > 0
(1.10)

whereα > 0 is some small slope value [28]. The choice of activation function for the output
layer will depend on the task of the network. For example, for a classification problem with
n classes, the Softmax activation function produces a normalized probability distribution
across all classes [28]. For a classification problem with n classes, the Softmax output for
an input z = (z1, z2, ..., zn) is

Softmax(z)i =
ezi∑n
j=1 e

zj
. (1.11)

The Softmax output function is also commonly applied for segmentation problems,
since this involves the classification of each pixel in an image. For some problems, including
image de-noising, linear output activation functions can be used.
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Training neural networks

When an FNN produces an output ŷ from some input x, the quality of the produced out-
put can be determined through some loss function. In the case of supervised learning, the
loss function typically contains a measure of the similarity between the predicted output ŷ
and the ground truth y (see section 1.3.3). The learning algorithm then uses an algorithm
known as backpropagation to employ the loss value for learning. Backpropagation utilizes
the chain rule of calculus to propagate the computed loss value backwards trough the net-
work to determine the gradient of the loss with respect to each learnable parameter [29].
The computed gradients can then be utilized by some gradient-based optimization method
in order to determine how the parameters should be updated. In this thesis, the optimiza-
tion methods Adam [30] and stochastic gradient descent with momentum were employed.
An important parameter of these optimizers is the learning rate, which determines the step
size for each step of the optimization.

Constructing a learning algorithm

To construct a learning algorithm for training a neural network, a series of design choices
have to be made. These include problem-specific design choices, such as the choice of loss
function, network architecture, and hyperparameters, but also choices such as the hardware
[31]. An important aspect of a learning algorithm is also the preparation of the available
training data, in terms of how it should be pre-processed and whether any data augmenta-
tion should be carried out before or during training. Data augmentation entails the syn-
thetization of additional training dataset elements through slight modifications of existing
elements in the training dataset, which can increase the generalizability of a model [28].
Another design choice related to the training data is the choice of batch size, which deter-
mines how many training data elements should be used (in each mini-batch of data) before
each parameter update during training. Frameworks for automatically configuring these
types of design choices exist. One example is the nnU-Net for medical image segmenta-
tion, that configures choices based on the training data [32]. However, manual design
choice configuration is still commonplace.

1.3.2 Convolutional neural networks (CNNs)

Convolutional neural networks (CNNs) are a type of FNN that perform a convolutional
operation in at least one layer [28]. In a discrete convolutional operation, a convolutional
kernel (or filter) is applied to an input matrix in multiple steps, and a summation of the
elementwise multiplication between the kernel elements and the corresponding input el-
ements gives the elements of the resulting feature map. How the kernel is applied to the
input matrix in each step is determined by the stride. The stride is the step size of the con-
volutional kernel in each dimension. For example, for a 3D convolution, a stride of [1,1,1]
means that step sizes of 1 pixel are used in the x-, y-, and z-directions. Figure 1.12a and
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1.12b shows examples of 2D and 3D discrete convolutional operations with strides [1, 1]
and [1, 1, 1], respectively.

Convolutions allow the detection of local features in images by application of filters
that are smaller than the image, and they also allow a more sparse connectivity than fully
connected FNNs [28], making them useful for high-dimensional inputs such as images or
videos. In CNNs, the filters of the convolutional layers are part of the learnable parameters
θ, and these are updated during training to learn to extract useful features. Each convo-
lutional layer in a CNN typically contains multiple filters in order to be able to extract
multiple different types of features from the input. In addition to filters, convolutional lay-
ers also include a learnable bias, and some nonlinear activation function is typically applied
to the resulting feature maps.

Another common operation in CNNs is max-pooling. In this operation, the maximum
value of the elements within a specified area of the input matrix is selected. Figures 1.12c
and 1.12d shows 2D and 3D max-pooling operations with strides [2, 2] and [2, 2, 2], re-
spectively. Max-pooling is commonly used as a down-sampling method for reducing the
dimensionality of intermediate feature maps in CNNs [29].

In CNNs, convolutions can also be transposed. This means that they can be made to
produce the opposite effect of a standard discrete convolution and instead function as an up-
sampling operation that produces output feature maps of a higher dimensionality than the
input [33]. This is commonly applied in CNNs after some initial downsampling steps. In
some CNN architectures, up-sampling operations are instead done without convolutional
operations, for example using nearest neighbour interpolation.

CNN architectures

One of the most widely used CNN architectures in medical image segmentation for the past
decade is the U-Net [34]. U-Net-based architectures were employed for image segmenta-
tion in Study I and II and for de-noising in Study IV of this thesis. The U-Net consists
of an encoding path followed by a decoding path. The purpose of the encoding path is to
downsample the data in multiple steps to extract features and their context in the input
image [34]. The purpose of the decoding path is to do a stepwise upsampling of the ex-
tracted features to the desired output size (commonly the same as the input size) of the
network. It also locates objects in the image by combining feature maps extracted at dif-
ferent levels of downsampling [34]. Skip connections between each downsampling step and
the corresponding upsampling step allows combination of image features from different
levels.

In the original 2D U-Net architecture by Ronneberger et al. (2015), the encoding
path consisted of multiple steps of two convolutional layers with 3× 3 filters and a ReLU
activation followed by a 2 × 2 max-pooling operation, where the number of filters are
doubled at each such step [34]. The decoding path consisted of multiple steps of 2 × 2
transposed convolutions followed by a concatenation with filters from the skip connections
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Figure 1.12: a) A 2D discrete convolutional operation where a 2× 2 convolutional kernel
is applied to a 4 × 4 input using a stride of [1, 1], producing a 3 × 3 feature map. The
blue dotted squares indicate the next kernel position and resulting feature map position
according to the stride. b) A 3D discrete convolutional operation where a 2 × 2 × 2
convolutional kernel is applied to a 4 × 4 × 4 input using a stride of [1, 1, 1], producing
a 3 × 3 × 3 feature map. The blue dotted squares indicate the next kernel position and
resulting feature map position according to the stride. c) A 2D max-pooling operation
where a 4 × 4 input is assessed within a 2 × 2 kernel using a stride of [2, 2], producing a
2× 2 feature map. The colours indicate the stride. d) A 2D max-pooling operation where
a 4× 4× 4 input is assessed within a 2× 2× 2 kernel using a stride of [2, 2, 2], producing
a 2× 2× 2 feature map. The colours indicate the stride.
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and two convolutional layers with 3× 3 filters. Softmax was used as the output activation
function. An implementation of this architecture was employed in Study I.

The U-Net has also been expanded to handle 3D input images [35]. Figure 1.13 shows
the version of the 3D U-Net that was implemented for Study IV of this thesis. In this
implementation, the encoding path had two downsampling steps containing two 3D con-
volutions with 3×3×3 filters followed by 1×2×2max-pooling operations. Max-pooling
across time (the first dimension) was avoided to avoid blurring of motion. The decoding
path used 3D up-sampling layers followed by a concatenation with filters from skip con-
nections and two 3×3×3 convolutions with LeakyReLU activations. The final operation
was a 3×3×3 convolution with a linear activation function. This architecture was chosen
experimentally in Study IV.

Figure 1.13: The 3D U-Net architecture implemented for Study IV of this thesis.

In Study I of this thesis, modified versions of the Darknet-19 architecture [36] were
employed for one binary classification problem and one regression problem. The original
architecture consists of 19 convolutional layers with increasing numbers of 3× 3 filters, 5
layers of max-pooling, and a global average pooling layer that computes the global average
of each feature map, followed by a Softmax activation for classification. The modification
done for the binary classification problem was to change the number of filters of the final
convolutional layer to 2, such that the Softmax output activation only returned probabilities
for two classes. The modification for the regression task was to additionally change the
output Softmax activation to a ReLU activation function.

1.3.3 Loss functions

The image analysis problems that were addressed in this thesis were image segmentation, im-
age classification, image-based regression, and image de-aliasing. Problem-specific loss func-
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tions were used for each task. Image segmentation entails assigning a class label to each
pixel of an image. For image segmentation, the Dice loss function can be used. The Dice
loss function [37] is based on the Sørensen-Dice coefficient, or the Dice score, which is a
measure of spatial overlap between two binary images. The Dice loss can be given between
a predicted binary image Ŷ and a ground truth binary image Y with N pixels or voxels
ŷi ∈ Ŷ and yi ∈ Y as LDice = 1−D where

D =
2
∑N

i ŷiyi∑N
i ŷ2i +

∑N
i y2i

(1.12)

is the Dice score [37].
Another loss function that can be used for both image segmentation and image clas-

sification is the cross-entropy loss function. This is useful when the output of the network
consists of probability distributions, such as when using a Softmax output activation func-
tion [29]. In the binary case, for an image of N pixels, cross-entropy loss can be defined
as

LCE = −
N∑
i

(yi log(ŷi) + (1− yi) log(1− ŷi)) (1.13)

between a ground truth label y and the corresponding predicted probability ŷ [38].
For image-based regression problems, the mean squared error (MSE) loss function is

often used. The mean squared error loss function between a predicted output array ŷ of N
values and the ground truth array y can be given as

LMSE(ŷ,y) =
1

N

N∑
i

(ŷi − yi)
2 (1.14)

For image restoration tasks, such as image de-aliasing and de-noising, a common loss
function is the structural similarity index measure (SSIM). The SSIM is a measure of the
structural similarity between images that is based on combining measures of luminance,
contrast and structure of the images [39]. For the mathematical definition of the SSIM, the
reader is referred to the original publication [39].

1.3.4 Performance estimation & performance measures

A training dataset can be split up in multiple ways to allow both training and performance
estimation to be done using the dataset. A common way to split a dataset is via hold-out
validation. This means that a part of the dataset (often 20 %) is held out from training and
used for testing the performance of the trained model. Often, a dataset is split into three
parts, one for training, one for validation (i.e. performance evaluation during training), and
one for testing. Another way to split a dataset is through k-fold cross-validation. This means
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that the dataset is split into k (often k = 5) equally sized parts (folds) without overlap.
Performance is then estimated on one fold at a time, while using the remaining folds for
training. The average performance across the k folds provides a performance measure that
is less biased with respect to the chosen dataset split than a performance measure from a
single hold-out validation [29]. This method is often also employed when only a limited
amount of data is available.

For the deep learning models trained in this thesis, problem-specific performance mea-
sures were employed. Image segmentation performance was evaluated using the 2D and
3D Dice score (as given in Equation 1.12). It was also measured using the Hausdorff dis-
tance, which is a measure of the distance between two point sets, calculated as the furthest
of all the closest distances between points in the two sets. When measuring segmentation
performance, the point sets correspond to non-zero objects in binary segmentation masks.

To measure image classification performance, accuracy was used, which is the number
of correct predictions divided by the total number of predictions. To measure image-based
regression performance, the mean squared error (Equation 1.14) was used. To measure
de-aliasing performance, the average SSIM was used. In all studies, performance measures
specific to the medical applications were also used (see section 1.4.2).

1.4 Cardiovascular physiology

In this thesis, all studied methods were in various ways connected to the goal of produc-
ing measures of cardiac function from cardiovascular MRI images. This chapter gives an
overview of the most important aspects of cardiovascular anatomy and physiology that were
touched upon in the studies of this thesis.

1.4.1 Cardiac anatomy

The heart is an anatomical structure with the primary task of driving the blood flow in
the cardiovascular system. A normal heart has four chambers, known as the right and left
atria and the right and left ventricles. The main function of the ventricles is to pump
blood, while the atria also pump blood but mainly receive and hold blood that is sent on
to the ventricles. The left ventricle (LV) pumps oxygenated blood through the aorta to
the systemic circulation, which is the circuit of blood vessels that provides oxygenated blood
to the organs and tissues of the body. The left atrium and ventricle are separated by the
mitral valve, and the left ventricle and the aorta are separated by the aortic valve. These
valves open at different points during the cardiac cycle to let blood pass. The right ventricle
(RV) pumps blood to the pulmonary circulation, which is the circuit of blood vessels that
transports blood through the lungs in order to oxygenate it and remove carbon dioxide.
The left atrium receives the blood that has passed through the pulmonary circulation, and
the right atrium receives the blood that has passed through the systemic circulation.

Using CMR, the heart can be imaged in multiple different imaging planes to show
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different aspects of its anatomy. Figure 1.14 (left) shows a CMR image of the heart in the
four chamber view, which is an imaging plane that shows all four heart chambers. Figure
1.14 (right) shows the heart in the short-axis view plane. This is the imaging plane of the
heart that is the most common for performing ventricular volumetric measurements, and
it is the view plane that was used in all four studies of this thesis.

Figure 1.14: Left: A CMR image of the heart in the four chamber view, where all the four
chambers of the heart are visible, i.e. the right atrium (RA), the left atrium (LA), the left
ventricle (LV), and the right ventricle (RV). Right: A CMR image of the heart in the short-
axis view, where the two ventricles (RV and LV) are visible.

1.4.2 Measures of cardiac function from MRI

From CMR, ventricular volumes can be measured if the images provide sufficient coverage
of the ventricles. Volumes are measured by performing image segmentation, which provides
a classification of each voxel as either being background or part of the volume. The volume
of each voxel is known, and the full volume of the segmented object can be given as a
sum of all voxel volumes. In short-axis CMR images, the LV is commonly segmented in
both the endocardium, i.e. the innermost layer of the ventricle, and the epicardium, which
is the outermost layer. The volume enclosed by the endocardium is also known as the
blood pool. Extending into the blood pool, there are small pieces of muscle that are known
as trabeculations. For the RV, it is commonly only the endocardium that is segmented.
Segmentations of these structures in a short-axis CMR image can be seen in Figure 1.15.

From the ventricular volumetric measurements, measures of cardiac function can be
derived separately for the two ventricles. For many measures of cardiac function, the vol-
umes of the ventricles are measured at the two extremes of the cardiac cycle in terms of
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Figure 1.15: A short-axis CMR image with segmentations of the endocardium (red) and
epicardium (green) of the left ventricle as well as the endocardium of the right ventricle
(magenta).

blood volume, the end-systolic (ES) and end-diastolic (ED) phases (see section 1.4.3), giv-
ing the ED volume (EDV) and ES volume (ESV). The ED phase is when the ventricles
are the most filled with blood, and it marks the end of ventricular filling. The ES phase is
when the ventricles contain the least amount of blood, and it marks the end of ventricular
contraction. From the EDV and ESV, the stroke volume (SV), which is the volume of blood
that is pumped from each ventricle at each heartbeat, can be given as

SV = EDV − ESV. (1.15)

The ejection fraction (EF) can be given as

EF =
SV

EDV
× 100 (1.16)

and indicates the percentage of the EDV that is ejected from the respective ventricles at
each heartbeat. It can be calculated both for the LV (LVEF) and the RV (RVEF).

From the SV and a measured heart rate (HR), commonly given in beats per minute,
the cardiac output (CO), which is a measure of the ejected blood volume per minute, can
be calculated as

CO = SV × HR. (1.17)

Given volumetric segmentations of both the endocardium and epicardium of the LV,
the left ventricular mass (LVM) can be calculated as the difference between the epicardial
and endocardial volumes multiplied by the myocardial density, which is assumed to be 1.05
g/ml [40]. The LVM does not provide a direct measure of cardiac function, but is a useful
measure for validating that imaging methods provide accurate measurements. In addition,
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LVM can be an important indicator of pathology, especially when measured in relation to
blood volumes. The LVM should be constant across all time points of the cardiac cycle,
and can thus be used to make sure that different imaging methods, e.g. different MRI pulse
sequences, agree in their depiction of anatomy.

Among many other measures that can be derived from CMR, the measures of cardiac
function given above can be used clinically to aid diagnosis of cardiovascular pathology.
One cardiovascular disease where e.g. the EF measurement is of use for diagnosis and
subtype classification is heart failure. Heart failure is when the heart is unable to pump the
amount of blood required to fulfill the metabolic needs of the body, and it is a complex
disease with a range of etiologies and subtypes [41].

1.4.3 Cardiac mechanics

The motion of the heart is periodical, and consists of a series of mechanical events. The car-
diac cycle can be divided into two separate sections, diastole and systole. During diastole, the
ventricles are relaxed, and during systole, the ventricles contract. These two sections in turn
consist of several mechanical sub-events. Below follows an overview of these mechanical
events and how they can change between rest and exercise.

Cardiac mechanics at rest

As mentioned in section 1.2.7, the triggering of the data acquisition in CMR can be done
with an electrocardiogram (ECG) signal. The ECG signal is used to make sure the acqui-
sition coincides with specific mechanical events of the cardiac cycle. Figure 1.16 shows a
Wiggers diagram that illustrates how the timings of the events of an ECG signal relate to
the mechanical events of the left side of the normal heart. The diagram starts with the final
event of diastole, namely atrial systole [42]. Atrial systole is initiated by an electrical acti-
vation of the atria, indicated by the P-wave of the ECG, leading to atrial contraction. The
contraction slightly increases the blood volume of the ventricle, giving the final diastolic
filling before the mitral valve closes.

Directly following atrial systole, ventricular systole (or simply systole) starts. The start
of systole coincides with the QRS-complex of the ECG signal. This series of electrical events
indicates the electrical activation of the ventricles, leading to ventricular contraction [43].
The initial event of systole is isovolumetric contraction, where the ventricular walls develop
tension while the mitral and aortic valve are closed, which increases the pressure of the
blood within the ventricles without affecting the blood volume [42], producing a change
in ventricular geometry. When the aortic valve opens due to the increased blood pressure
in the LV exceeding the pressure in the aorta, the event of ejection begins. The ejection
lasts until the aortic valve closes again due to a reversed pressure difference between the LV
and the aorta [43], marking the end of systole and the beginning of diastole. During the
ejection phase, the T-wave of the ECG occurs, indicating the return of the ventricles to
their electrical resting state.
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The first event of diastole is isovolumetric relaxation, during which the ventricles relax
while the blood volume stays constant due to the mitral and aortic valves being closed.
When the mitral valve opens due to the pressure difference between the left atria and the
LV, early rapid filling starts, where blood collected in the atria flows rapidly and passively
into the ventricles. When the passive filling of the ventricles starts to decrease, this marks
the start of the diastasis, which is the longest mechanical event of the cardiac cycle for lower
HR. This occurs until atrial systole happens again, and the cardiac cycle starts over. At rest,
most of the ventricular filling occurs during early diastole [42].

Figure 1.16: A Wiggers diagram showing the timings of the mechanical events of the cardiac
cycle, an ECG signal, a typical left ventricular blood pool volume curve, and the timings
of the openings and closings of the mitral and aortic valves. This diagram is inspired by the
Wiggers diagram in [42].



32 CHAPTER 1. BACKGROUND

Cardiac mechanics during exercise

During exercise, there is an increased demand for transporting oxygen and carbon dioxide
to and from the active skeletal muscle, requiring an increase the cardiac output (CO) [44].
Looking at Equation 1.17, this can be done by increasing the HR, by increasing the SV, or
both. For individuals with normal cardiac function, the increase in CO during exercise is
mainly given by an increased HR, with minor increases in the SV [42]. The compensatory
increase in HR commonly has a linear relationship with the exercise intensity, but this
depends on the type of exercise performed [45]. The increase in heart rate leads to different
changes in duration for the different mechanical events of the cardiac cycle.

As described above, diastole consists of isovolumetric relaxation, early rapid filling
(ERF), diastasis, and atrial systole. The mechanical diastolic duration (MDD) can be de-
fined as diastole without the isovolumetric relaxation. When HR increases, a nonlinear
decrease in the duration of the diastasis is the primary factor in the decrease of the MDD
[46]. For HR elevations at lower HRs, the elimination of the diastasis is what causes the
main reduction of an R-R interval [47]. As the HR increases further, the duration of the
diastasis is reduced to zero, causing a merge of ERF and atrial systole [46, 47]. Figure 1.17
shows LV volume curves across one cardiac cycle from CMR images acquired during three
different exercise intensities, constructed using the method developed in Study III. This
clearly shows the reduction of the diastasis between rest and exercise.

Figure 1.17: Left ventricular volume curves from cine CMR images of one healthy subject
acquired at different exercise intensities. The heart rate at rest was estimated to be 59 BPM,
the heart rate during moderate exercise was 143 BPM, and the heart rate during intensive
exercise was 155 BPM. For exercise, the cine CMR images were constructed using the
method developed in Study III.
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Ventricular volumes during exercise

In addition to an increased HR, exercise can lead to changes in the level of ventricular filling
compared to the resting state. However, how the changes appear depends on the intensity
of exercise and the position it is performed in (e.g. upright or supine). For exercise in
the supine position, which is the position used for exercise during CMR in Study III, the
normal response to sub-maximal exercise for healthy individuals is for the left ventricular
end-diastolic volume to stay unchanged, while the end-systolic volume decreases [48]. This
means that any increase in SV occurs due to an decrease in end-systolic volume rather than
increased filling [48]. Ventricular volumes are also affected by respiration, and it has been
observed that left ventricular volumes are larger during expiration and the right ventricular
volumes are larger during inspiration, both during rest and during exercise [49].

1.5 Study motivations

The four studies included in this thesis were all connected to the use of deep learning in
CMR for assessing measures of cardiac function. Below follows the motivations behind
each study.

Study I

The right ventricle (RV) can be a challenging structure to segment in short-axis images
[50]. It has a complex variability in shape [51], ambiguous borders, and trabeculations
[52]. These aspects make it time-consuming to segment manually, and may cause substan-
tial inter-observer variability, which shows the need for automated segmentation methods.
At the time of starting this study, many automated RV segmentation methods based on
CNNs had already been presented in literature [53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63].
However, it had also been reported that CNN-based RV segmentations were still in need of
expert verification and corrections [50]. Meanwhile, no studies had reported on if CNNs
can actually reduce clinical RV segmentation time compared to fully manual segmentations,
given this persisting need for corrections. This motivated Study I, in which a clinically ap-
plicable CNN-based segmentation pipeline was developed and the aspect of clinical time
reduction with regards to the need for corrections was assessed.

Study II

Learning algorithms for deep learning-based medical image segmentation, such as the one
developed in Study I, utilize randomness in various forms before and during the training
process to aid the production of segmentation models. The randomness arises from the
initialization of parameters (e.g. weights) [64, 65], the sampling of mini-batches [30],
drop-out [30], data augmentation [66], non-deterministic GPU operations [65], and non-
deterministic operations in deep learning software libraries [67, 68]. The randomness can
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lead to performance differences between segmentation models that are generated using the
very same learning algorithm. However, learning algorithms in literature are often com-
pared based on performance comparisons between segmentation models. This motivated
Study II, in which it was assessed how randomness affects the reliability of standard meth-
ods for comparing the performance of segmentation models.

Study III

Conducting CMR during ongoing exercise (exercise CMR) can help reveal pathophysiol-
ogy that is not visible during rest [16]. However, exercise CMR introduces the inability
to employ ECG-gating due to motion and the magneto-hydrodynamic effect [69, 16],
and makes breath-holding difficult. Because of this, free-breathing real-time imaging is
widely used [70], but breathing affects ventricular filling [49], and motion from breathing
and from exercise leads to the displacement of the heart. To minimize the influence of
breathing on volumes, retrospective respiratory and cardiac gating methods can synchro-
nize timeframes from matching breathing and cardiac states across slice positions. Previous
studies have presented methods for respiratory and cardiac gating of real-time images in im-
age space [71, 72, 73, 74]. However, no existing method preserved the temporal order of
consecutively acquired timeframes when constructing time-resolved CMR images, which is
of relevance for accurate assessments of time-resolved cardiac mechanics during exercise, for
example for constructing non-invasive pressure-volume loops [75]. This motivated Study
III, in which a retrospective gating method for producing time-resolved ventricular CMR
images from real-time exercise CMR was developed.

Study IV

In addition to exercise CMR, free-breathing real-time CMR is also of use in other cases
where breath-holding is challenging, including pediatric CMR [15]. In both of these cases,
fast imaging is of relevance to reduce the time that the patient needs to be in the scanner
and to reduce the influence of bulk motion. Although real-time bSSFP CMR with non-
Cartesian sampling of k-space allows rapid imaging [76], the acceleration is still limited by
the need to collect 10-16 slices in order to fully cover the ventricles, thus requiring imaging
during at least 10-16 R-R intervals. Simultaneous multi-slice (SMS) imaging can accelerate
acquisitions by a factor equal to the number of simultaneously acquired slices [21], and has
been combined with bSSFP imaging in several previous studies [25, 77, 78]. Furthermore,
real-time bSSFP SMS CMR has been conducted at 0.55 T in a recent study [79]. However,
in this, iterative reconstruction was employed [79], which requires extensive reconstruction
times and limits the possibility to do online reconstruction at the scanner [11]. Rapid
online reconstruction can be achieved by employing deep learning [80, 81, 82], which has
also previously been employed in SMS CMR [83, 84]. This motivated Study IV, in which a
bSSFP SMS sequence was implemented at 1.5 T and a deep learning-based reconstruction
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method was developed to achieve fast online reconstruction of highly accelerated real-time
SMS CMR.





Chapter 2

Aims

The overarching aim of this thesis was to assess the benefits of incorporating deep learning-
based methods in the process of evaluating cardiac function using cardiovascular magnetic
resonance (CMR) imaging. This included applications in both reconstruction and image
analysis. The individual studies had specific aims, and these were:

Study I: To develop a deep learning-based pipeline for right ventricular segmentation
in CMR and to assess its clinical usefulness in terms of reducing the time to obtain right
ventricular segmentations of clinically sufficient quality.

Study II: To assess how randomness in neural network training affects the reliability of
conventional techniques for comparing deep learning-based medical image segmentation
models.

Study III: To develop a semi-automated method for retrospectively constructing time-
resolved real-time exercise CMR cines that are synchronized in terms of respiratory and
cardiac phase and preserves the temporal order of consecutive timeframes, and to investi-
gate the possibility to use this method for time-resolved measures of cardiac function in
heart failure patients and healthy volunteers.

Study IV: To: (1) develop a balanced steady state free precession (bSSFP) simultaneous
multi-slice (SMS) sequence on a 1.5 T system for rapid free-breathing image acquisition;
(2) develop a deep learning-based image artifact suppression reconstruction method for
rapid online reconstruction of real-time bSSFP SMS CMR data; and (3) validate the feasi-
bility of this method by comparing it with standard methods.

These four studies approached the overarching aim from different angles. Study I as-
sessed the benefits of deep learning-based segmentations in clinical CMR practice. Study
II contributed to the understanding of how to interpret and conduct reporting in stud-
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ies on deep learning-based medical image segmentation in CMR. Study III assessed the
benefits of deep learning as part of a new method for conducting measurements in exer-
cise CMR. Study IV assessed the utility of a deep learning-based method for rapid online
reconstruction of real-time imaging data from a SMS bSSFP CMR sequence.



Chapter 3

Materials and methods

The process of deriving measures of cardiac function from cardiovascular magnetic res-
onance (CMR) imaging involves multiple steps, including image acquisition, image re-
construction, image processing, and image analysis. This thesis touched upon all of these
aspects. Figure 3.1 shows a flowchart of the general steps involved in obtaining measures
of cardiac function from CMR imaging. This figure also specifies where the four different
studies in this thesis fit in to this process, and how deep learning (DL) was used in each
study. This chapter provides an overview of the materials and methods used to conduct
the studies included in this thesis. Figures in this thesis were prepared using draw.io (di-
agrams.net: JGraph Ltd), MATLAB (Natick, Massachusetts: The MathWorks Inc.), and
various Python libraries.

Figure 3.1: A flowchart of the general steps involved in CMR imaging for acquiring mea-
surements of cardiac function. The flowchart indicates what aspects of CMR imaging are
addressed in the four studies in this thesis, and how deep learning was employed in each
study.
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3.1 Imaging data and study populations

This thesis employed MR imaging data from human subjects in all studies. The imaging
data was either used for training neural networks, for testing the performance of neural
networks, or for validating the performance of the developed or existing methods that were
employed in each study. It came from several different populations of human subjects, col-
lected at multiple sites. In all cases, data collection was or had previously been conducted
in accordance with the Declaration of Helsinki, and the use of data adhered to guidelines
and regulations outlined by ethical review authorities.

Study I

In this study, a dataset of 1434 subjects was assembled for training, validation, and testing
neural networks for the right ventricular segmentation pipeline. This consisted of short-
axis bSSFP CMR images that were collected during clinical practice at Skåne University
Hospital in Lund between 2019 and 2020, as well as during various research projects be-
tween 2004 and 2020. An additional dataset of short-axis CMR images from 50 clinical
scans at Skåne University Hospital in Lund was used for validating performance. Addi-
tionally, a scan-rescan assessment was conducted using a dataset of short-axis CMR images
from 10 healthy subjects acquired at Skåne University Hospital for a previous research
project. Finally, additional performance assessments were done on a publicly available
testing dataset of short-axis bSSFP CMR images of 50 subjects from the 2017 MICCAI
Automatic Cardiac Diagnosis Challenge (ACDC) challenge [85]. Approval to use image
data from research CMR scans was given by the Regional Ethical Committee in Lund (EPN
Dnr 621/2004, 2010/114, 2010/248, 2011/777, 2010/55, 741/2004, 269/2005), and ap-
proval to use image data from clinical CMR scans was given by the Swedish Ethical Review
Authority (Dnr 2021-03583).

Study II

In this study, only publicly available datasets were used for training, validation, and testing
of the neural networks. This included the training set (100 subjects) of short-axis bSSFP
CMR images from the 2017 MICCAI Automated Cardiac Diagnosis Challenge (ACDC)
[85]. This also included the training set (484 subjects) from the Brain Tumour dataset and
the training set (263 subjects) from the Hippocampus dataset of the Medical Segmentation
Decathlon [86]. Note that this data from non-CMR MRI was used to make the assessment
apply outside of the field of CMR and to DL-based medical image segmentation in general.
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Study III

In this study, short-axis CMR data from 20 subjects were used for assessing the performance
of the developed method. Of the 20 subjects, 10 were healthy volunteers and 10 were heart
failure patients, included using the inclusion criteria of having heart failure as a clinical di-
agnosis. The images had been collected for previous and ongoing research projects, using
both standard cine imaging during rest and real-time imaging during exercise. Exercise was
carried out using a supine bicycle ergometer (Lode, Groningen, Netherlands) during CMR
imaging. Ethical approval was given by the Regional Ethical Review Board in Lund (Dnr
948/2018) and the Swedish Ethical Review Authority (Dnr 2021-05044).

Study IV

In this study, a dataset of short-axis CMR k-space data from 64 subjects collected at the
Royal Free Hospital in London, United Kingdom was used for training, validation, and
testing of the DL-based image reconstruction method. The collection and use of this
data was approved by the National Research Ethics Committee in the United Kingdom
(ref. 21/EE/0037, 17/LO/1499). Furthermore, to assess the performance of the developed
MRI pulse sequence and reconstruction method, short-axis CMR data was collected in 10
healthy volunteers at Skåne University Hospital in Lund using both standard cine imaging
and the developed method. This data collection was approved by the Swedish Ethical Re-
view Authority (Dnr 2025-00334-02).

3.2 Magnetic resonance imaging (MRI)

In all studies except Study IV, magnetic resonance imaging (MRI) data had been collected
prior to the studies and made available either for in-house or public use. The in-house
datasets collected for Study I had been acquired with multiple MRI scanners from dif-
ferent vendors, including Siemens, Philips and General Electric, and at field strengths of
1.5 T and 3 T. The in-house data for Study III had been collected using a single Siemens
MAGNETOM Aera 1.5 T system. In Study IV, MRI scanning was carried out on Siemens
MAGNETOM Aera 1.5 T systems (Siemens Healthineers, Forchheim, Germany) at the
Royal Free Hospital in London, United Kingdom and Skåne University Hospital in Lund,
Sweden.

3.2.1 MRI pulse sequences

For the in-house datasets in Study I, short-axis CMR images had been acquired using differ-
ent implementations of bSSFP sequences for breath-held ECG-gated Cartesian segmented
cine imaging (see section 1.2.7), that are commonly applied for clinical practice at Skåne
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University Hospital in Lund. This type of pulse sequence was also used for acquiring the
reference short-axis CMR data in Studies III and IV. Typical imaging parameters for this
type of sequence were TE/TR = 1.07/2.14 ms, temporal resolution = 40.96 ms, voxel
size = 1.0 × 1.0 × 8 mm3 without a slice gap, and FA = 69◦. However, these imaging
parameters varied widely between the individual datasets collected from clinical practice.

For Study III, the subjects had also been imaged with non-Cartesian real-time imaging
during exercise, carried out using a Siemens product bSSFP sequence (TrueFISP), with
a radial read-out trajectory. Typical imaging parameters were TE/TR = 1.10/2.20 ms,
temporal resolution = 35-37 ms, voxel size = 1.9 × 2.8 × 10.0 mm3 without a slice gap,
and FA = 60◦.

MRI pulse sequence development

In Study IV, a spiral SMS bSSFP sequence was developed for real-time CMR on a 1.5 T
Siemens MAGNETOM Aera system. The development was largely inspired by existing
sequences from literature [77, 25]. Development was carried out in the IDEA develop-
ment environment (Siemens Healthineers, Forchheim, Germany). The sequence was im-
plemented by modifying an existing bSSFP sequence that had been previously modified to
permit variable density spiral k-space trajectories (see Figure 1.7). The two primary mod-
ifications that were performed were: (1) replacing the original single-band RF pulse with
a SMS RF pulse; and (2) incorporating blipped-CAIPI gradient blips into the sequence
[24, 77].

Figure 3.2 shows the pulse sequence as implemented in Study IV. The SMS RF pulse
was based on a sinc RF pulse that underwent modification to be replicated at multiple
slice positions [22]. A slice acceleration factor of 2 (SMS-2) was used. The blipped-CAIPI
gradient blips were integrated into the slice selection re-winder and pre-winder of the bSSFP
sequence [77]. A phase modulation pattern of ±π/2 that alternated between TR:s was
achieved through calculating the zeroth order gradient moment of the blips based on the
distance between SMS slices according to Equation 1.8. Within each TR, the gradient
blips integrated into the re-winder and pre-winder were of opposite polarity to balance the
sequence, i.e. nulling the zeroth order gradient moment along the Gz axis at excitation.

Figure 3.3 shows the trajectory that was used. This was a variable density trajectory
consisting of 8 spiral interleaves that were linearly spaced. An under-sampling factor of 1.6
was employed within the inner 20 % of the k-space radius and an under-sampling factor
of 14.8 was employed for the area corresponding to the outer 70 % of the k-space radius.
Between timeframes, all interleaves of the trajectory were rotated by a 5th tiny golden angle
(≈ 32.04◦) [87]. The trajectory and rotational angle were decided experimentally.

The imaging parameters were TE/TR: 1.15 ms/4.5 ms, temporal resolution = 36.32
ms, voxel size = 1.7× 1.7× 8.0 mm, FA = 100◦, matrix size = 240× 240 mm2, FOV =
400× 400 mm. 12-16 slices were collected to cover the left ventricle.
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Figure 3.2: The simultaneous multi-slice (SMS) balanced steady state free precession
(bSSFP) sequence developed in Study IV. The events are (1): gradient for slice selection;
(2): radio-frequency (RF) pulse for SMS-2 imaging; (3): re-winder for the slice selection
with integrated gradient blips (for phase modulations π/2 and −π/2); (4): spiral readout
gradient along Gx; (5): spiral readout gradient along Gy; (6): re-winder for the spiral gra-
dient along Gx (7): re-winder for the spiral gradient along Gy; (8): pre-winder for the slice
selection gradient with integrated gradient blips (at phase modulations −π/2 and π/2).
This figure was reproduced from the manuscript of Study IV.

Figure 3.3: The variable density trajectory that was utilized for the developed pulse sequence
in Study IV. The trajectory consists of 8 linearly spaced spiral interleaves that are rotated
by a 5th tiny golden angle (≈ 32.04◦) between each timeframe. This figure is reproduced
from the manuscript of Study IV.
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3.3 Image reconstruction

In all studies except Study IV, image reconstruction had been carried out prior to the
studies. For standard CMR, the default reconstruction methods implemented clinically
on the different scanners (often GRAPPA) had been used. For the real-time exercise CMR
data in Study III, GRAPPA reconstruction with a reduction factor of 3 and a partial Fourier
factor of 5/8 was used.

3.3.1 Image reconstruction development

In Study IV, a deep learning-based reconstruction method was developed for dynamic
multi-coil real-time SMS-2 CMR data acquired using the SMS bSSFP sequence. A schematic
diagram of this can be seen in Figure 3.4. During the SMS-2 acquisition, the gradient blips
of the sequence introduced different phase modulation patterns to the k-spaces from the
two different slices, and the SMS-2 k-space was the superposition of the k-space signals
from these two slices. As a first step of the reconstruction, the SMS-2 k-space was de-
modulated by applying the conjugate of the phase values that had been accrued during
acquisition. This was done according to the process shown in Figure 1.10, where the de-
modulation is carried out separately for the two different slices, producing constructive
interference of signal from one slice and simultaneous destructive interference of signal
from the other slice [27]. After phase de-modulation, singular value decomposition-based
coil-compression was applied to compress the dynamic k-spaces to 10 coils, followed by
density compensation [88]. Then, a NUFFT was applied to convert the two k-spaces to
image space, producing dynamic multi-coil images with residual aliasing artifacts. A 3D
U-Net for de-aliasing was then applied, producing dynamic cine images with suppressed
aliasing artifacts as outputs. This reconstruction method was implemented as an online
reconstruction at the scanner, using the Gadgetron framework [14]. This allowed image
reconstruction to be done by sending k-space data to an external machine that runs the
reconstruction and then sends the image data back to the scanner. A compressed sensing
(CS) reconstruction method for SMS imaging was implemented based on existing code
for CS in the TensorFlow MRI library, to allow performance comparisons with the de-
veloped reconstruction method. A cost function that employed an encoding matrix with
blipped-CAIPI phase de-modulation was used, inspired by Tian et al. (2023) [77]. Sepa-
rate regularization terms for spatial and temporal regularization using total variation were
employed. The L-BFGS algorithm was used as an optimizer [12] because it was the only
optimizer in the used library that was compatible with having two regularization terms.

3.4 Image analysis

Studies I, II, and III investigated automated image analysis tasks. Study I focused on
image segmentation, while also using methods for image classification and image-based re-
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Figure 3.4: The image reconstruction method developed in Study IV. A) a SMS-2 k-space
is acquired, corresponding to the superposition of signal from two different slices with dif-
ferent phase modulation patterns; B) phase de-modulation is carried out to separate the two
slices in k-space by separately applying the conjugates of the phase values accrued during
acquisition, and the slices are then transformed into image space using a non-uniform fast
Fourier transform (NUFFT), resulting in dynamic multi-coil images with aliasing artifacts;
C) a 3D U-Net is applied to the dynamic multi-coil images to suppress artifacts, producing
coil-combined dynamic images with suppressed artifacts. This figure is reproduced from
the manuscript of Study IV.
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gression. Study II focused on image segmentation. Study III focused on the problem of
retrospective image-based gating based on a method for image segmentation, and used the
gating results for image processing. In Studies I and III, new methods were developed for
automated and semi-automated image analysis. In Study II, no new image analysis meth-
ods were developed. Instead, the nnU-Net [32] was used, which is a deep learning-based
open source framework for medical image segmentation that automatically sets parameters
of the training process based on properties of the training data [32].

3.4.1 Image analysis development

Study I

In Study I, an automated pipeline for performing segmentation of the RV was developed.
This can be seen in Figure 3.5. The pipeline took as input short-axis CMR images across
all slice positions for a single cardiac phase. As an initial step, the input was re-sampled to a
spatial resolution of 1.07× 1.07 mm2 using bi-linear interpolation. Then, three different
CNN models were applied to the pre-processed input. The first CNN utilized a Darknet-19
architecture [36] to conduct binary classification for selecting the slices that contained an
RV cross-section, as done in [89]. Only the slices containing a cross-section of the RV were
used in the remaining steps of the pipeline. The second CNN used the same architecture
to instead conduct regression on each slice, predicting the coordinates of the central point
of the RV to allow cropping or padding of all slices to the same size (256×256 pixels). The
final CNN used a 2D U-Net [34] architecture to perform segmentation of the RV in the
cropped images, and the output segmentation masks were then post-processed to match
the size of the input images. This pipeline was implemented into Segment [90], which is
a freely available software for research. It was also implemented into Segment CMR [90],
which is a commercial product for clinical use.

Study III

In Study III, a semi-automated pipeline was developed for constructing time-resolved cine
images from 2D real-time exercise CMR images, synchronized in terms of respiratory and
cardiac phases across slice positions. The pipeline can be seen in Figure 3.6. For each
slice position, the initial step was to place a region of interest over the diaphragm, within
which respiratory motion was estimated using a manifold learning-based method [71, 72,
73]. For this, the method implemented in Edlund et al. (2022) was used [74]. This
produced a respiratory curve that allowed manually selecting a set of timeframes around
a single end-expiratory state. Generally, the state containing the maximum amount of
timeframes near end-expiration was selected. From these sampled timeframes, automated
cardiac gating could optionally be carried out. This was based on: (1) utilizing a CNN
[89] for segmentation of the LV blood pool [73]; (2) determining the cross-sectional area
of the blood pool in all timeframes; and (3) identifying ED timeframes as peaks in the
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Figure 3.5: The pipeline for RV segmentation developed in Study I. The pipeline consisted
of an initial pre-processing step for the input mutli-slice timeframe, followed by a network
employed to select slices containing cross-sections of the RV (slice selection network). The
selected slices were then given as input to a network for detecting the central point of the RV
to allow cropping or padding, centered around the RV (RV centerpoint detection network).
Finally, a network for segmenting the RV in the cropped images was employed (segmen-
tation network), followed by post-processing. This figure is reproduced from Åkesson et
al., Scientific Reports (2023) [91], licensed under a Creative Commons Attribution 4.0
International License.
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area over time larger than their three surrounding timeframes in both directions. An ES
timeframe was defined as the minimum area between two detected ED timeframes. From
this automated suggestion of ED and ES timeframes, two consecutive ED timeframes and
a corresponding ES timeframe were manually selected, and the interval between the ED
timeframes was determined as the R-R interval. These steps were then repeated across all
slice positions. Once R-R intervals had been defined for all slice positions, synchronization
was done by re-sampling systole and diastole to the lowest number of timeframes within
these intervals found across slice positions, through bi-linear interpolation. This allowed
synchronizing the ED and ES timeframes, and thereby the R-R intervals, across all slice
positions.

3.4.2 Manual image analysis

Manual image analysis was carried out by expert observers in Studies I, III, and IV. In
Studies I and III, Segment [90] was used to conduct manual segmentation of the RV and
LV, respectively. In Study IV, OsiriX [93] was used for manual segmentation of the LV.

3.5 Deep learning

Deep learning methods were employed in all four studies of this thesis. In Study I, all
neural network training was carried out using the Deep Learning Toolbox in MATLAB
R2019a and R2021a (Natick, Massachusetts: The MathWorks Inc.; 2019 and 2021). In
Study II, all neural network training was carried out using PyTorch 1.12.0 + cu113 (Meta
AI, New York City, NY, United States) and the nnU-Net framework [32]. In Study III,
the previously trained neural network that was employed for image segmentation had been
trained using the Deep Learning Toolbox in MATLAB R2019a [89]. In Study IV, all
neural network training was carried out using Keras and TensorFlow 2.10.0 (TensorFlow,
Google, Mountain View, CA, USA).

3.5.1 Network architectures

In Study I, aDarknet-19 architecture [36] with an output layer modified for binary classifi-
cation was used for slice selection. The same architecture but with an output layer modified
for regression was used for RV centerpoint detection. A modified 2D U-Net architecture
[34] was used for RV segmentation. In Study II, a 2D U-Net architecture [34] was used for
the various image segmentation tasks, as implemented in the nnU-Net framework [32]. In
Study III, the architecture from Bai et al. (2018) [63] was employed for LV segmentation
[89], which is similar to a U-Net but with only a single up-sampling step. In Study IV, a
modified implementation of the 3D U-Net architecture [35] was used for the suppression
of aliasing artifacts.
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Figure 3.6: Overview of the semi-automatic pipeline for constructing synchronized time-
resolved cine images from real-time exercise CMR images. In this: (1) a region of interest
was placed manually across the diaphragm and respiratory motion was detected through
manifold learning, producing a respiratory curve; (2) from the respiratory curve, time-
frames near a single end-expiratory state (red dots) were selected, and deep learning-based
detection of ED and ES timeframes could optionally be carried out; (3) two adjacent ED
timeframes were identified; (4) the ES timeframe between the ED timeframes was identi-
fied; (5) all previous steps were repeated for all slice positions; (6) the R-R intervals across all
slice positions were resampled to the lowest number of timeframes within the two respective
intervals across all slice positions; and (7) ED and ES were aligned across slice positions.
This figure is reproduced from Åkesson et al., Clinical Physiology and Functional Imaging
(2025) [92], licensed under a Creative Commons Attribution 4.0 International License.
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3.5.2 Training of neural networks

Training of neural networks was done in Studies I, II, and IV. The following sections de-
scribe the methods that were used for training.

Loss functions

In Study I, a cross-entropy loss function was used for the slice selection network, a mean
squared error loss function was used for the RV centerpoint detection network, and a Dice
loss function was used for the RV segmentation network. In Study II, the sum of a Dice
loss function and a cross-entropy loss function was used for the various image segmentation
tasks. In Study IV, a structural similarity index measure (SSIM) loss function was used for
the network employed for the suppression of aliasing artifacts.

Optimizers

In Study I, a stochastic gradient descent with momentum optimizer was used for the slice
selection network, and an Adam [30] optimizer was used for the RV centerpoint detection
network and the RV segmentation network. In Study II, a stochastic gradient descent with
momentum optimizer was used for the various segmentation tasks. In Study IV, an Adam
[30] optimizer was used for the network employed for the suppression of aliasing artifacts.

Hardware

In Studies I and II, all training was performed on either an NVIDIA GeForce RTX 3090
(24 GB memory) GPU or an NVIDIA TITAN RTX GPU (24 GB memory) GPU. In
Study IV, training was performed on a single NVIDIA RTX A6000 (48 GB memory)
GPU (NVIDIA, Santa Clara, California, United States).

3.6 Evaluation and statistical analysis

Study I

In this study, analyses were conducted to evaluate (1): the ability of the developed pipeline
to reduce the manual time for producing segmentations of clinically useful quality; and (2):
the performance of the pipeline for segmentation and quantification of volumes and ejec-
tion fraction. All statistical analyses were performed using MATLAB R2019a or R2021a.

The assessment of time reduction was carried out by two expert observers (O1 and O2).
First, the pipeline was used to automatically generate RV segmentations on the clinical val-
idation set comprised of 50 subjects, and the time for each segmentation was measured.
Then, O1 provided subjective ratings of the quality of automated segmentations according
to a modified Likert scale as either (A) sufficient for clinical use; (B) needing minor correc-
tions; or (C) needing major corrections. Then, O1 and O2 carried out corrections of the
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segmentations that had been rated as category B or C, and the time for each correction
was measured. Finally, fully manual segmentations were also carried out by O1 and O2
and times were measured. To assess statistical significance in time reduction, the two-sided
Wilcoxon signed-rank test was used.

To evaluate segmentation performance, Dice scores and Hausdorff distances were cal-
culated between automated and manual segmentations. To evaluate agreements in the
quantification of volumes and ejection fraction, Bland-Altman analysis [94] and Spearman’s
rank correlation coefficients (r) were employed between automated and manual segmenta-
tions. These methods were also used to assess inter-observer variability between O1 and
O2.

Study II

In this study, analyses were conducted to evaluate how randomness affects the reliability of
standard methods for comparing the performance of deep learning-based medical image
segmentation models. All statistical analyses were carried out using MATLAB R2021a.

As an initial step, recent literature was sampled to provide an overview of standard com-
parison methods. It was found that hold-out validation and 5-fold cross-validation were the
most common performance estimation methods, and the paired t-test and Wilcoxon signed-
rank test were the most common statistical methods. For details regarding this literature
analysis, the reader is referred to the publication [31].

To evaluate the effects of randomness on the reliability of these methods, three different
multiclass 3D segmentation problems were addressed. Specifically, the problems included
brain tumour segmentation, hippocampus segmentation, and short-axis CMR segmenta-
tion. For each segmentation problem, the same nnU-Net [32] based learning algorithm
was run 50 times for 100 epochs using different random seeds. This was done for both
hold-out validation and 5-fold cross-validation. For hold-out validation, this resulted in
50 different segmentation models, whose performance was estimated on the hold-out test
set. For 5-fold cross-validation, this resulted in 50 different sets, each containing 5 seg-
mentation models, whose performance was estimated across all five folds and concatenated
into one array of performance measurements.

To measure segmentation performance, the 3D Dice score was used. The best-performing
seed for each segmentation problem could be decided as the seed that provided the high-
est mean Dice score across images. Then, using both the paired t-test and the Wilcoxon
signed-rank test, statistically significant differences in performance were assessed between
the best-performing seed and the 49 remaining seeds. Statistical significance was defined
as a two-tailed p value < 0.05. Results from this were evaluated by computing the per-
centage of outperformances between seeds, defined as a statistically significant difference in
performance given by at least one of the two statistical methods.
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Study III

In this study, analyses were conducted to (1): investigate the possibility to use the developed
retrospective synchronization method for deriving time-resolved measures of cardiac func-
tion in heart failure patients and healthy volunteers; and (2) investigate the performance
of the deep learning-based method for automated detection of ED and ES. All statistical
analyses were performed using MATLAB R2022a.

The developed method was used by an expert observer to construct retrospectively syn-
chronized real-time exercise CMR cines for 10 heart failure patients and 10 healthy vol-
unteers. Then, manual segmentation of the LV was carried out by the expert observer in
both exercise CMR cines and standard CMR cines at rest. LV segmentation was conducted
at end diastole (ED), mid systole (MS), end systole (ES), and early rapid filling (ERF) in
images from exercise, and at ED and ES for images at rest. The MS and ERF phases were
chosen due to being the most challenging phases to segment in the cardiac cycle, thereby
serving as strong indicators of the feasibility of time-resolved measurements. From the seg-
mentations, the LV mass (LVM) was calculated, and agreements in LVM between rest and
exercise were assessed for all cardiac phases using Bland-Altman analysis [94].

DL-based automated selections of ED and ES timeframes were compared to manual
selections carried out by the expert observer during the construction of cines. Comparisons
were done for the most central midventricular slice in each subject, and automated selec-
tions were made within the samples of timeframes that had been manually selected near a
single end-expiratory state by the expert observer. Automated and manual selections were
compared by calculating the mean and standard deviation of the difference in temporal
position between corresponding timeframes (T), ∆T = Tautomatic − Tmanual.

Study IV

In this study, analyses were conducted to evaluate the performance of the developed meth-
ods by: (1) comparing the clinical accuracy and image quality of the developed method
for DL-reconstructed real-time bSSFP SMS CMR (RT-SMS) with that of standard breath-
hold ECG-gated CMR (standard CMR); and (2) comparing reconstruction performance
and runtime between the DL-based reconstruction method (DL) and compressed sensing
(CS).

Image quality was compared between RT-SMS and standard CMR at ED and ES
through a plot for qualitative visual comparison. Clinical accuracy was assessed using
Bland-Altman analysis [94] for evaluating agreements in manually derived volume-based
measures between RT-SMS and standard CMR. The manually derived measures were LV
endocardial volumes at ED (LVEDV) and at ES (LVESV) as well as stroke volume (SV)
and ejection fraction (EF). These measures were obtained through manual segmentation
performed by an expert observer with 25 years of experience.

Reconstruction performance was qualitatively compared between DL and CS through
visual assessments of sharpness and motion. This was done by plotting the intensity over
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time for a vertical line of pixels in dynamic images of 4 different subjects reconstructed with
DL and CS. The runtimes of the two reconstruction methods were also evaluated.





Chapter 4

Results and comments

4.1 Study I

The results from this study indicated that the developed deep learning-based pipeline for RV
segmentation could substantially reduce the time for producing segmentations of clinically
useful quality. Its performance was on par with inter-observer variability for volume-based
measures and Dice scores, and it further indicated the ability to decrease inter-observer
variability.

4.1.1 Time reduction

On the clinical validation set of 50 subjects, the average time for a fully manual segmen-
tation of the RV in ED and ES was 6 min and 46 s for O1 and 5 min and 19 s for O2.
The corresponding average automated segmentation time for the pipeline was 2 s. The
subjective ratings of the automated segmentations showed that 58 % of automated seg-
mentations were of category A (sufficient for clinical use) and the remaining 42 % were of
category B (needing minor corrections), while none were rated to be of category C (needing
major corrections). The average time for a manual correction was 1 min and 38 s for O1
and 2 min and 38 s for O2, both significantly shorter than the corresponding manual de-
lineation times (p < 0.05). The average reduction in time given by corrected automated
segmentations compared to fully manual segmentations was 5 min and 17 s, which was 87
% of the average manual segmentation time between the two observers.

This indicated that the pipeline could provide a substantial time reduction even though
manual corrections were needed. Nonetheless, since the pipeline was trained on data from
a single centre and evaluated within the same centre by observers that use the same seg-
mentation guidelines [40], it is possible that less of a time reduction would be given when
used in centres that apply different guidelines. This was also indicated by the somewhat
reduced performance during the external validation presented in the publication [91].

55



56 CHAPTER 4. RESULTS AND COMMENTS

4.1.2 Segmentation and quantification of volumes

On the clinical validation set of 50 subjects, the average Dice scores (± SD) were 0.91±0.02
at ED and 0.87 ± 0.04 at ES between O1 and the pipeline, 0.91 ± 0.02 at ED and
0.88±0.03 at ES between O2 and the pipeline, and 0.91±0.03 at ED and 0.86±0.04 at
ES between O1 and O2. This indicated that the inter-method variability was on par with
the inter-observer variability in terms of Dice score.

Figure 4.1 shows Bland-Altman and correlation analysis for ED and ES volumes be-
tween the pipeline and the two observers. The limits of agreement between the pipeline
and the two observers were more narrow than the limits of agreement between observers. A
comparison of the inter-observer variability between O1 and O2 for fully manual segmen-
tations and corrected automated segmentations can be seen in Figure 4.2. The narrower
limits of agreement for corrected automated segmentations indicates that the use of the
automated segmentation pipeline as a starting point for segmentation can decrease inter-
observer variability.
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Figure 4.1: Bland-Altman and correlation plots showing agreements in RV volumes at ED
(RVEDV) and ES (RVESV) between the automated pipeline (A) and Observer 1 (O1)
(left column), between A and Observer 2 (O2) (middle column), and between O1 and
O2 (right column). The Bland-Altman plots show bias and limits of agreement (±1.96
SD). The correlation plots show least squares lines (grey) and Spearman’s rank correlation
coefficients (with p values). This figure is reproduced from Åkesson et al., Scientific Reports
(2023) [91], licensed under a Creative Commons Attribution 4.0 International License.
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Figure 4.2: Bland-Altman and correlation plots showing agreements in RV volumes at ED
(RVEDV, left column) and ES (RVESV, right column) between the two observers (O1 and
O2). This indicates the inter-observer variability for fully manual delineations (blue) and
corrected automated delineations (red). The Bland-Altman plots show bias and limits of
agreement (±1.96 SD). The correlation plots show least squares lines (grey) and Spearman’s
rank correlation coefficients (with p values). This figure is reproduced from Åkesson et
al., Scientific Reports (2023) [91], licensed under a Creative Commons Attribution 4.0
International License.
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4.2 Study II

The results from this study indicated that randomness, induced by simply varying the
random seed, can cause statistically significant differences in performance between deep
learning-based medical image segmentation models from the same learning algorithm when
using standard methods for performance comparison.

4.2.1 Literature overview

Figure 4.3 shows the results from the literature overview. 460 studies were assessed, and
among these studies, 399 (87 %) had presented performance comparisons between seg-
mentation models. Out of these, 92 (23 %) had used statistical hypothesis testing for com-
parisons. The two most common methods for this were the paired t-test and the Wilcoxon
signed-rank test. It was also noted that hold-out validation was the most common per-
formance estimation method, followed by cross-validation. Within this category, 5-fold
cross-validation was the most common.

4.2.2 Experiments

Figure 4.4 shows 3D Dice scores across images of the hold-out test set from the 50 repeated
hold-out validation procedures using 50 different seeds for all three segmentation problems.
It also highlights the best and worst performing seeds. This plot indicates that when varying
the random seed, the different resulting models show large variations in performance on
a select few images, while remaining stable in performance across most other images. The
best-performing seed generally performed well across the few images with a high variance
in performance across seeds, and the best-performing seed varied between classes for the
same segmentation problem.

Figure 4.5 shows histogram plots of the distributions of Dice scores and the results
from the pairwise statistical comparisons between the best-performing seed and the 49
remaining seeds when using hold-out validation. This shows that best-performing seed
statistically significantly (p < 0.05) outperformed 16 %, 16 %, and 23 % of models for
the three Brain Tumour classes, 23 %, and 23 % for the two Hippocampus classes, and
75 %, 76 %, and 0 % for the three CMR classes. Figure 4.6 shows histogram plots of
the distributions of Dice scores and the results from the pairwise statistical comparisons
between the best-performing seed and the 49 remaining seeds when using 5-fold cross-
validation. This shows that the best-performing seed statistically significantly (p < 0.05)
outperformed 35 %, 20 %, and 27 % of models for the three Brain Tumour classes, 23
%, and 38 % for the two Hippocampus classes, and 18 %, 20 %, and 10 % for the three
CMR classes.

These results indicate that the choice of random seed impacts the training of a single
learning algorithm enough to produce models that can outperform up to 76 % of other
seeds with statistical significance, using the most widely used statistical methods in liter-
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Figure 4.3: The results from the literature overview conducted in Study II. Of the 460
assessed studies, 399 (87 %) had presented performance comparisons. Out of these, 92 (23
%) had used statistical hypothesis testing for comparisons. The two most common methods
for this were the paired t-test and the Wilcoxon signed-rank test. Hold-out validation and
cross-validation were the most common performance estimation methods. This figure is
reproduced from Åkesson et al., Computers in Biology and Medicine (2024) [31], licensed
under a Creative Commons Attribution 4.0 International License.
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ature. This affects the reliability of these methods in the context of measuring true per-
formance differences between different learning algorithms, since performance differences
of statistical significance can arise from changing the random seed within a single learning
algorithm. Furthermore, the results indicate that using 5-fold cross-validation for perfor-
mance estimation does not eliminate this effect.

Figure 4.4: This shows the Dice scores across images in the hold-out validation test sets,
obtained for all classes of the three different segmentation problems, when repeatedly run-
ning learning algorithms for 50 different seeds in Study II. Each subplot shows the results
from the 50 different seeds in gray, and highlights the seed with the highest mean Dice
score in green and the seed with the lowest mean Dice score in magenta. This figure is
reproduced from Åkesson et al., Computers in Biology and Medicine (2024) [31], licensed
under a Creative Commons Attribution 4.0 International License.



62 CHAPTER 4. RESULTS AND COMMENTS

Figure 4.5: Histogram plots showing the distributions of Dice scores for the 50 different
seeds for all classes of all segmentation problems assessed in Study II, when using hold-out
validation. The best-performing seed is highlighted in green. The seeds that did not show
a statistically significant difference to the best-performing seed from a pairwise statistical
comparison are shown in gray. The seeds that did show a statistically significant difference
according to one or both of the two employed statistical hypothesis tests are shown in pur-
ple, blue or red, and the percentages of outperformances are indicated above the histogram
plots. This figure is reproduced from Åkesson et al., Computers in Biology and Medicine
(2024) [31], licensed under a Creative Commons Attribution 4.0 International License.
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Figure 4.6: Histogram plots showing the distributions of Dice scores for the 50 different
seeds for all classes of all segmentation problems assessed in Study II, when using 5-fold
cross validation. The best-performing seed is highlighted in green. The seeds that did not
show a statistically significant difference to the best-performing seed from a pairwise sta-
tistical comparison are shown in gray. The seeds that did show a statistically significant
difference according to one or both of the two employed statistical hypothesis tests are
shown in purple, blue or red, and the percentages of outperformances are indicated above
the histogram plots. This figure is reproduced from Åkesson et al., Computers in Biology
and Medicine (2024) [31], licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
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4.3 Study III

The results from this study indicated that the developed method for constructing synchro-
nized time-resolved cine images from 2D real-time exercise CMR could be used for deriving
time-resolved measures of cardiac function in heart failure patients and healthy volunteers.
This was indicated through reasonable agreements in LVM with ECG-gated rest CMR.
Assessments of the method for automated detection of ED and ES showed the ability to
rapidly produce predictions of ED and ES, but indicated that this needs further improve-
ments apically and basally.

4.3.1 Utility for time-resolved measures

Figure 4.7 shows Bland-Altman plots indicating agreements in LVM between ECG-gated
rest CMR and the proposed method at ED, MS, ES, and ERF. Figure 4.8 shows Bland-
Altman plots indicating the agreement in LVM for ECG-gated rest CMR between ED and
ES. These plots show that the limits of agreement between ECG-gated rest CMR and the
proposed exercise CMR method are within an order of magnitude of the limits of agreement
between ED and ES for ECG-gated rest CMR, although the latter are visibly more narrow.
This was the case for both heart failure patients and healthy volunteers. This indicates that,
despite some deviation, the anatomical information is preserved when using the proposed
method for all subjects. Furthermore, the agreement in LVM at the MS and ERF phases
was on par with the agreement in LVM at the ED and ES phases, indicating the feasibility
to conduct time-resolved volumetric measurements across all phases in cines constructed
with the proposed method.

4.3.2 Automated detection of ED and ES

When evaluating the DL-based method for automated detection of ED and ES, the method
failed at finding two consecutive ED phases within the selected sample of timeframes in 4
of 20 subjects. For the remaining 16 subjects, the mean ± SD of the difference in tem-
poral position between corresponding timeframes were 0.13 ± 0.91 timeframes for ED
and 1.19± 1.60 timeframes for ES. The average time for automatically detecting two con-
secutive ED phases and one ES phase within an average of 32 timeframes was 4 seconds
using a laptop with a GPU (NVIDIA Quadro T1000). These results indicate that when
the method does not fail, it can rapidly provide reasonably accurate predictions of ED and
ES frames in midventricular slices, which could speed up the process of synchronization
for the user. The method failed due to an insufficient number of selected timeframes (less
than 20 timeframes in 3 out of 4 failed cases), which increased the difficulty of finding two
consecutive ED timeframes for the method. Furthermore, the method performed poorly
in apical and basal slices. Thus, further improvements are needed.
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Figure 4.7: Bland-Altman and correlation plots between real-time CMR during exercise
(Real-time) and ECG-gated CMR during rest (ECG-gated ) in terms of left ventricular mass
(LVM) at end diastole (ED), mid systole (MS), end systole (ES), and early rapid filling
(ERF). This is shown for healthy volunteers (left column) and heart failure patients (right
column). This figure is reproduced from Åkesson et al., Clinical Physiology and Functional
Imaging (2025) [92], licensed under a Creative Commons Attribution 4.0 International
License.
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Figure 4.8: Bland-Altman and correlation plots between ECG-gated CMR during rest at
end diastole (ED) and end systole (ES) in terms of left ventricular mass (LVM) for healthy
volunteers (left) and heart failure patients (right). This figure is reproduced from Åkesson
et al., Clinical Physiology and Functional Imaging (2025) [92], licensed under a Creative
Commons Attribution 4.0 International License.

4.4 Study IV

The results from this study indicated that the developed real-time SMS-2 bSSFP sequence
(RT-SMS) with online DL-based reconstruction for image artifact suppression could achieve
a reasonable agreement with standard CMR in terms of volume-based clinical measures,
and that the online DL-based reconstruction could substantially reduce reconstruction time
compared to CS. However, the results also indicated that further improvements in image
quality are required before the method can be applied in clinical practice.

4.4.1 Comparisons with standard CMR

Figure 4.9 shows CMR images at ED and ES collected using both RT-SMS and standard
CMR at 16 slice corresponding positions. This shows that compared to standard CMR, the
blood-myocardium contrast is reduced when using RT-SMS. Also, there is visible blurring
of the borders of the blood pool that is more substantial during systole than diastole, and
also a blurring and in-plane shift of fat signal visible in all RT-SMS slices.

Figure 4.10 shows Bland-Altman and correlation plots between RT-SMS and standard
CMR for LV ED volume (LVEDV), LV ES volume (LSESV), stroke volume (SV) and
ejection fraction (EF). The bias± SD (in ml and in percentages of standard CMR volumes)
were −13.2± 8.0 ml (−7± 4 % ) for LVEDV, 2.1± 5.9 ml (5± 12 %) for LVESV, and
−15.1 ± 8.1 ml (−14 ± 6 %) for SV. The bias ± SD of EF were −3.9 ± 3.3 %. This
shows that when using RT-SMS, the LVEDV is largely underestimated while the LVESV is
overestimated. This could be due to the visible blurring and reduced contrast. Despite the
visibly higher amount of blurring at ES, LVESV showed a lower bias and standard deviation
than LVEDV. This indicates that further improvements of the sequence or reconstruction
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are needed to reduce blurring and improve contrast. However, the acquisition time of the
standard CMR was several minutes using multiple breath-holds, while the acquisition time
of the RT-SMS was around 12-16 seconds during free-breathing.

4.4.2 Comparisons with compressed sensing (CS)

Online DL reconstruction required 31 seconds of GPU reconstruction time for a 12-slice
dataset (6 SMS-2 slices) with 34 coil elements and 25 timeframes. The offline CS recon-
struction required 16 min and 9 seconds of GPU reconstruction time for the same dataset.
Thus, the DL accelerated the reconstruction by a factor of 31.26 compared to CS. How-
ever, it is possible that a more efficient implementation using another optimizer or a more
optimal set of parameters could speed up the CS reconstruction.

Figure 4.11 shows RT-SMS data acquired in four different subjects reconstructed using
both DL and CS, shown as diastolic timeframes as well as plots of intensity over time for
one R-R interval. This indicates an agreement in motion and anatomy between CS and
DL. However, the CS reconstruction appears less sharp, both in the diastolic timeframes
and the motion plots. This could be because the used k-space trajectory was optimized for
the DL reconstruction, with high levels of under-sampling in the outer parts of k-space,
possibly causing the blurring of CS. It also indicates the sharpening properties of the DL
method. It is possible that for a trajectory more optimized for CS, the CS reconstruction
could provide sharper results.
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Figure 4.9: CMR images in one healthy volunteer at end diastole (ED, first 4 rows) and
end systole (ES, last four rows) collected using both the real-time SMS-2 bSSFP sequence
with DL reconstruction (RT-SMS) and standard breath-hold ECG-gated CMR (BH) at 16
corresponding slice positions. This figure is reproduced from the manuscript of Study IV.
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Figure 4.10: Bland-Altman and correlation plots between the real-time SMS-2 bSSFP se-
quence with DL reconstruction (RT-SMS) and standard breath-hold ECG-gated CMR
(BH) for A) LV ED volume (LVEDV), B) LV ES volume (LSESV), C) stroke volume (SV),
and D) ejection fraction (EF). This figure is reproduced from the manuscript of Study IV.
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Figure 4.11: Real-time SMS-2 bSSFP data in four different subjects reconstructed using
deep learning-based image artifact suppression (DL) and compressed sensing (CS). This is
shown as X-Y plots of diastolic timeframes as well as Y-T plots of intensity over time in the
positions indicated by the dotted lines for one R-R interval. This figure is reproduced from
the manuscript of Study IV.



Chapter 5

Conclusions and future directions

In the studies of this thesis, several different aspects of the application of deep learning
(DL) in the process of evaluating cardiac function using CMR were assessed. The benefits
of DL were evaluated in several parts of this process together with other new developments
in CMR. Specifically, it was investigated whether DL could speed up the clinical segmen-
tation process for the right ventricle (RV) (Study I), help in synchronizing time-resolved
cine images from exercise CMR (Study III), and reconstruct real-time SMS images through
image artifact suppression (Study IV). Furthermore, the impact of randomness when devel-
oping DL methods for medical image segmentation was assessed (Study II). Below follows
the conclusions of the four studies and discussions on future directions.

Study I

Conclusion: The clinical applicability of the developed deep learning-based pipeline for
RV segmentation was indicated through its ability to reduce the time needed to obtain
segmentations of clinically useful quality compared to segmentations performed manually.
The average time reduction was 87 %, but the actual time reduction may vary between
users that employ different segmentation guidelines.

Future directions: To further study the general clinical utility of this specific pipeline,
it would be of relevance to assess the aspect of time reduction at multiple different cen-
tres, between which segmentation guidelines may differ. The aspect of pathology-specific
segmentation performance and time reduction would also be of interest to study.

Since this method has been implemented in software available for clinical use [90], it
would be of interest to investigate the actual clinical impact of this or similar methods, and
how widespread the actual use of DL-based methods for RV segmentation is compared to
manual segmentation.

Since this study was conducted, there has been substantial technical developments in
the field of DL, and newer methods, such as those based on transformers, could potentially
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lead to improved RV segmentation performance. However, it would also be of interest to
study how a larger and better curated training dataset that includes an even wider range of
pathologies and more refined manual segmentations could improve segmentation perfor-
mance and decrease the need for manual corrections.

Study II

Conclusion: Changing the random seed can lead to statistically significant differences in
performance between DL-based medical image segmentation models from a single learn-
ing algorithm, using standard methods for performance estimation and statistical testing.
Thus, statistically significant differences in model performance do not reliably indicate dif-
ferences in performance between different learning algorithms.

Future directions: To build upon the results of this study, it would be relevant to in-
vestigate how performance differences between models change with the number of epochs.
To move away from unreliable performance comparisons, there are suggested methods that
use repeated model training [95]. However, methods that require multiple repeated train-
ing procedures have a high computational demand and can be time consuming, and are
therefore not likely to be widely applied. Therefore, methods for reliable performance esti-
mation of learning algorithms that require minimal training are of great relevance for future
use in the field of deep learning-based medical image segmentation. For example, methods
from neural architecture search [96] may be of relevance.

Study III

Conclusion: The developed semi-automated method for constructing time-resolved ven-
tricular cine images from exercise CMR data demonstrated feasibility for providing time-
resolved volume-based measures of cardiac function in both heart failure patients and
healthy volunteers. The DL-based method for rapid automated detection of end-diastolic
and end-systolic timeframes provided an adequate prediction performance at mid-ventricular
slice positions, but needs improvements apically and basally.

Future directions: Future applications of the presented method include producing non-
invasive pressure-volume loops [75] during exercise. The method could also potentially
be of use for 4D flow MRI during exercise. To improve the presented method for ED
and ES detection, it would be of relevance to conduct training with a dataset consisting of
actual exercise CMR data, while either formulating the ED and ES detection as a segmen-
tation problem or a classification problem. It could also be of relevance to move towards
k-space-based gating.

The use of SMS imaging, as presented in Study IV, could aid the retrospective synchro-
nization of timeframes, since the simultaneous acquisition entails that multiple timeframes
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are already synchronized across slice positions. This would substantially accelerate the ret-
rospective synchronization.

Image-based methods for retrospective gating have the drawback of requiring assump-
tions regarding the appearance of certain image features (e.g. the heart or the diaphragm) to
function. For more robustness to image artifacts and a more generalizable synchronization
of respiratory and cardiac phases in real-time exercise CMR, it would therefore be relevant
to look towards alternative physiological monitoring methods, such as pilot tone [97] or
improved methods for pulse oximeter or ECG measurements.

Study IV

Conclusion: The developed real-time bSSFP SMS-2 sequence and DL-based online im-
age artifact suppression reconstruction provided substantial acceleration of acquisition time
compared to standard CMR and substantial acceleration of reconstruction time compared
to compressed sensing. The agreement in volume-based clinical measures with standard
CMR was reasonable, but further improvements in image quality are required before the
method can be applied clinically.

Future directions: Potential improvements to the DL-based image artifact suppression
method include reducing the amount of blurring in the reconstructed data. This could
potentially be achieved by increasing the amount of training data, changing the network ar-
chitecture, or using another loss-function. To reduce artifacts, it could be relevant to further
optimize the trajectory for the DL-based reconstruction, as in [98]. Future improvements
also include increasing the SMS acceleration factor to further decrease the acquisition time.

Exercise CMR is an important potential future application of this method. Partially
because the SMS acquisition could aid the retrospective synchronization of timeframes,
but also because the accelerated acquisition could shorten the exercise time for patients
with reduced exercise capacity. Pediatric imaging could also benefit from the accelerated
acquisition.

Concluding remarks

DL provides a powerful set of methods for solving various problems in CMR, but it is
not a global solution. The time reduction that DL enables through speeding up certain
tasks can be useful in a clinical context and can facilitate new developments in CMR. The
development of a clinically applicable DL method involves multiple sources of randomness,
which can make it a long process of trial and error, and can make it difficult to do reliable
comparisons. The usefulness of DL methods needs to be assessed on a case-by-case basis as
a trade-off between performance, runtime, and the time it would take to carry out the task
manually or using other methods. However, DL methods will likely continue to be a big
part of future developments in CMR.
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