


Effect of Aluminium Content on Oxidation Behavior of Arc Melted Al_xCoCrFeNi (x=0, 0.3, 0.6, 1 mole) High Entropy Alloys

Rahul Bhattacharya¹, B.S. Murty¹, Daniel Fabijanic², Peter Hodgson²

¹ Department of Metallurgical and Materials Engineering, IIT Madras, India.

(E-mail: rahulbnitrr@gmail.com, murty@iitm.ac.in)

² Institute for Frontier Materials, Deakin University, Australia.

(E-mail: daniel.fabijanic@deakin.edu.au, peter.hodgson@deakin.edu.au)

ABSTRACT

One of the most anticipated properties of high entropy alloys (HEA) is excellent oxidation resistance. Al_xCoCrFeNi (x=0,0.3,0.6,1 mole) HEAs were synthesized by arc melting route, followed by 4 remelting operations to ensure compositional homogenization. Alloys with x = 0 and 0.3 show single phase FCC structure and x = 1 have intricate BCC+B2 structure, whereas x = 0.6 have dual phases – FCC and BCC. Subjected to oxidation in air at 1000 °C and 1150 °C for 24 hours, CoCrFeNi (x = 0) developed a continuous Cr₂O₃ layer, while for Al_{0.3}CoCrFeNi, a Cr₂O₃ surface layer and internal Al₂O₃ was observed. Under the same test conditions, AlCoCrFeNi exhibited a continuous protective Al₂O₃ surface layer. Al_{0.6}CoCrFeNi having dual phase structure develops Cr₂O₃ surface and internal Al₂O₃ over FCC dendritic regions and single Al₂O₃ surface oxide layer over the BCC interdendritic region. Oxidation resistance increases with increase in Al content. AlCoCrFeNi shows the best oxidation resistance, with a 5 micron thick, adherent, continuous and protective Al₂O₃ surface layer even at 0.89T_m(1150°C) when exposed for 24h. The oxidation resistance of Al_{0.6}CoCrFeNi and AlCoCrFeNi synthesized by arc melting is far superior to that of Inconel 718 and Inconel 600 superalloys, in terms of oxide layer thickness, adherence, stability and protective behavior. This is due to their higher Al content, which remains dissolved in the alloy phases, owing to configurational entropy stabilization.

Keywords: High entropy alloys; oxidation resistance; arc melting; configurational entropy stabilization.

Acknowledgment: The authors would like to express appreciation for the support of Deakin University-IIT Madras Joint Mtech programme

References:

- 1. C. Wagner, Corros. Sci. 5 (1965) 751
- 2. H. Hindam, D.P. Whittle, Oxid. Met. 18 (1982) 245
- 3. P. Kofstad, High Temperature Corrosion, Elsevier Applied Science, New York, 1988
- 4. F.H. Stott, G.C. Wood, J. Stringer, Oxid. Met. 44 (1995) 113