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spatiotemporal scheme for process control through speckle pattern imaging
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A B S T R A C T

This paper presents a novel convolutional neural network (CNN)-based control chart for detecting localized and 
subtle speckle shifts (displacements) in the images. To enhance detection accuracy, especially in detecting 
localized and simultaneous shifts, we design a custom CNN architecture and utilize a training methodology. 
Moreover, instead of inputting the entire images, we divide them into equal-sized grids and process them as two- 
channel inputs: one containing the shifted grids and the other capturing the difference between shifted and 
reference grids. A maximum probability-based control scheme is developed to concurrently detect shifted images 
and localize shifted regions within an image. To the best of our knowledge, this is also the first spatiotemporal 
scheme that simultaneously performs detection and localization, while conducting image-based process control. 
We perform simulation studies under two main scenarios: (i) spatial domain analysis and (ii) frequency domain 
analysis. The control chart’s performance is evaluated across various grid sizes, shift magnitudes, and shifted 
areas. Additionally, we demonstrate our scheme’s capability through several real-time monitoring examples. 
Comparative analysis with the existing methods showed that our CNN-based control chart significantly out
performed the existing approach, particularly in detecting small global shifts, localized shifts, and simultaneous 
shifts.

1. Introduction

Control charts serve as a fundamental tool in statistical process 
monitoring (SPM), designed to identify assignable causes of variation 
within a process and differentiate them from natural fluctuations. 
Traditionally, control charts have been constructed using statistical 
methods. However, in recent years, there has been a growing shift to
wards machine learning (ML) models due to their enhanced capabilities. 
While nowadays ML models are being extensively used in many indus
trial and manufacturing processes (e.g., Nguyen-Ngoc et al., 2024; 
Luong et al., 2025; Guo et al., 2025; Nguyen et al., 2025; Kocabıçak 
et al., 2025), several studies including those by Niaki and Abbasi (2008), 
Hosseinifard et al. (2011), Mohammadzadeh et al. (2023), Sabahno and 
Amiri (2023), Sabahno and Niaki (2023), and Yeganeh et al. (2024)
have demonstrated that ML-based control charts outperform traditional 
statistical control charts in certain scenarios. Machine learning-based 
control charts provide a flexible alternative to traditional statistical 
methods when working with complex, nonlinear, or high-dimensional 
data, such as images. While they forgo some of the statistical rigor of 

classical approaches, they enable powerful modeling of subtle and 
spatially distributed changes that are difficult to capture analytically.

In addition, there has been increasing interest in adapting control 
chart methodologies to analyze image data and spatiotemporal varia
tions. Megahed et al. (2011) conducted a comprehensive review of 
control charting developments using image data until 2011. Later, 
Megahed et al. (2012) introduced a control chart based on the gener
alized likelihood ratio (GLR) to monitor image data, assessing its per
formance using the dice similarity coefficient test. Koosha et al. (2017)
proposed a nonparametric profile monitoring approach, utilizing 
wavelet transformation for feature extraction and monitoring approxi
mation coefficients with a GLR-based control chart. Their method was 
found to surpass that of Megahed et al. (2012) in specific cases. Koosha 
et al. (2022) further extended this work by introducing a two- 
dimensional wavelet-based framework. Similarly, Khodadadi et al. 
(2024) enhanced prior studies by applying contourlet transformation to 
image data in conjunction with a GLR control chart. Other notable 
contributions include Amirkhani and Amiri (2020), who developed a p- 
value-based control chart for image data monitoring, incorporating 
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Dunnett’s test for fault localization and a maximum likelihood estimator 
for change point detection. Building on this, Yeganeh et al. (2024)
improved the p-value-based chart by introducing a partitioning 
ensemble control chart that integrates machine learning, ensemble 
learning, and image partitioning techniques. Additionally, Sabahno and 
Khodadad (2025) explored and introduced control charting through 
speckle pattern analysis, which is proven to be very effective on 
featureless surfaces as well as detecting subtle shifts.

As industrial systems grow increasingly complex, conventional 
image processing techniques face limitations, particularly in handling 
high-frequency patterns, noise, and subtle variations. One area where 
these traditional methods fall short is speckle pattern analysis. Speckles, 
random granular light patterns caused by the interference of coherent 
light scattered by rough or irregular surfaces, are crucial in non- 
destructive testing (NDT) and optical metrology (Hecht and Zajac, 
1974; Khodadad, 2016; Sirohi, 2020). Speckle analysis is widely used for 
measuring displacements and detecting physical changes such as 
deformation, strain, and flow velocity. Its applications span various in
dustries, including NDT (Pang et al., 2020; Khodadad et al., 2023; Zhang 
et al., 2024), optics and metrology (Torre et al., 2016; Qureshi et al., 
2023; Chao et al., 2024; Smolovich et al., 2024; Zhou et al., 2024), 
medical imaging and diagnostics (Iwase et al., 2015; Abdel-Nasser et al., 
2024), material and surface science (Jamali et al., 2023), fluid me
chanics (Raffel, 2007), and agriculture (Zdunek, 2014; Khodadad and 
Sabahno, 2025). The ability to detect localized and subtle changes 
within an image is critical for high-precision applications such as ma
terial testing, semiconductor manufacturing, and surface inspection. 
However, conventional image processing methods struggle to identify 
micro-defects, high-frequency variations, and subtle texture shifts 
essential for process control and defect detection. Speckle pattern 
analysis provides a more effective alternative by leveraging high- 
frequency components inherent in speckle patterns, enabling the 
detection of even the smallest shifts and imperfections. Detecting subtle 
shifts and micro-defects is essential in many high-precision industrial 
contexts. For example, in semiconductor manufacturing, nanometer- 
scale surface misalignments can lead to circuit failure and yield loss. 
In aerospace, small deformations or strains on fuselage or wing struc
tures can signal early fatigue that, if left undetected, may lead to cata
strophic failure. In mechanical systems, such as gearboxes or rotating 
machinery, local surface wear often begins as minute, localized texture 
changes are undetectable by traditional vision systems but diagnosable 
through speckle pattern variations. These examples highlight the prac
tical necessity of detecting small, distributed shifts in production and 
inspection pipelines.

Furthermore, Convolutional Neural Networks (CNNs) have signifi
cantly advanced image processing by improving feature extraction and 
pattern recognition. Their hierarchical architecture, which employs 
convolutional layers to learn spatial hierarchies from raw image data, 
has led to remarkable improvements in tasks such as object detection, 
image segmentation, and enhancement (Simonyan and Zisserman, 
2015; He et al., 2016; Krizhevsky et al., 2017; Xu et al., 2022; Shen et al., 
2023; Choi et al., 2024). Within speckle metrology, CNNs have proven 
effective in enhancing speckle pattern analysis, automating detection 
and quantification, and improving displacement and deformation mea
surements. Recent studies have demonstrated how CNNs refine speckle 
pattern reconstruction and extract meaningful features from complex 
interference patterns, thereby enhancing non-destructive testing and 
metrological applications. Deep learning-based image segmentation and 
feature extraction techniques have been particularly valuable in 
analyzing speckle images, facilitating more accurate and reliable mea
surements in speckle metrology (Nguyen et al., 2021; Montresor et al., 
2022; Kwon et al., 2023). Although CNNs have been previously used for 
speckle pattern analysis, they have not been used for speckle image- 
based control charting and process monitoring.

As previously mentioned, Sabahno and Khodadad (2025) introduced 
control charting based on speckle images. They used Fourier magnitude 

spectrum differences to construct their control chart. They also use a 
memory-type control chart to speed up small shifts detection. Moreover, 
they used an additional p-value analysis for localization.

In this paper, we will significantly improve the work of Sabahno and 
Khodadad (2025). Among existing works, only Sabahno and Khodadad 
(2025) propose a control chart specifically tailored to speckle pattern 
images. As such, we compare our proposed method against this method 
as the most relevant and structurally similar benchmark. We use a 
custom omnibus CNN model with two-channel inputs to construct the 
control charts for detection, and at the same time, localize the shifted 
areas. Our scheme is based on dividing the image into equal-sized grids. 
We construct the control chart based on the maximum out-of-control 
probabilities among the grids of the speckle image. Although image 
gridding itself is common, the novelty here is inputting individual grids 
into the CNN instead of using the whole image, and the integration of 
gridwise CNN outputs into a single MPr control statistic that simulta
neously signals and localizes faults within the same sampling. We tailore 
the CNN architecture, and also its training methodology, so we can 
quickly detect both small and large speckle shifts (displacements). Un
like their work which was only performed in the frequency domain, we 
will explore both spatial and frequency domains. Also, to better show 
our scheme’s superiority, we do not use a memory-type control chart, as 
they did. In addition, we use an industrial product example (a gear in 
this study) for our numerical analysis and evaluated the charts’ perfor
mance under different individual or simultaneous shifts, grid sizes, and 
affected areas. This study is designed as a proof-of-concept to evaluate 
the feasibility of using CNN-based control charts for detecting and 
localizing subtle shifts in speckle patterns under controlled conditions. 
Our approach complements traditional SPC by addressing use cases 
(such as image-based surface inspection, where statistical assumptions 
are violated and subtle texture shifts must be detected and localized in 
real-time).

Moreover, traditional control charts, such as Shewhart and EWMA, 
offer strong statistical foundations but rely on assumptions like 
normality, independence, and linearity that often do not hold for image- 
based or high-dimensional process data. In contrast, machine learning 
(ML)-based methods — while lacking theoretical guarantees — can 
model complex input structures and learn subtle spatiotemporal pat
terns, including localized shifts. Our CNN-based framework embraces 
this tradeoff: it uses empirical calibration to define control thresholds 
and enables localized detection in cases where classical SPC tools 
underperform. The approach provides a data-driven alternative partic
ularly suited to modern industrial applications such as surface defect 
detection, tool wear monitoring, and structural health inspection — all 
of which demand smart, image-based quality control strategies.

In summary, the main contributions of this study are: 

– A novel grid-wise CNN-based control scheme that jointly performs 
detection and spatial localization of subtle structural shifts in speckle 
textures.

– Evaluation of the framework in both spatial and frequency domains, 
demonstrating flexibility across signal representations.

– A data-efficient input construction using only two channels per grid: 
the shifted grid and a local feature map (e.g., spatial difference or 
frequency residual).

– A full pipeline for process-level and grid-level decision-making, 
enabling interpretable shift localization without requiring synthetic 
labels at test time.

This paper is structured as follows: In Section 2, we describe the 
speckle pattern analysis method. Section 3 contains the proposed CNN- 
based process control scheme which includes designing the CNN ar
chitecture and its training methodology, accompanied by detection and 
localization methods. Section 4, contains extensive simulation studies 
accompanied by real-time process monitoring and localization exam
ples. In Section 5, we present our concluding remarks and suggestions 
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for future works.

2. Speckle pattern analysis

Speckles are random granular interference patterns that occur when 
coherent light (e.g., laser light) is scattered by a rough or irregular 
surface. The scattered waves interfere with one another, producing a 
seemingly random distribution of bright and dark spots. This phenom
enon, known as “speckle,” is caused by the following process: (i) a 
coherent light source such as a laser illuminates the surface; (ii) the 
surface scatters the light in various directions; (iii) the scattered waves 
interfere constructively (bright spots) and destructively (dark spots); (iv) 
the resulting interference pattern appears as a dense, granular texture. 
These speckle patterns are highly sensitive to minute surface displace
ments, making them suitable for precision sensing and quality control. 
Fig. 1 depicts the speckle pattern creartion process.

In this paper, we analyze the speckle patterns in both spatial and 
frequency domains. In the absence of a real speckle pattern, we can 
simulate one. We begin by generating a reference speckle pattern from a 
grayscale image, which is converted to the frequency domain using a 
random phase mask and the Fourier transform. For how a speckle 
pattern can be generated we refer interested readers to Sabahno and 
Khodadad (2025). For transforming the speckle pattern into the fre
quency domain, we use the Fourier transform, as it is commonly used in 
speckle pattern analysis. In addition, instead of performing these 
transformations on the whole speckle pattern image, in this paper we 
first divide the image into equal-sized grids and then perform relevant 
operations on each grid separately.

Before the Fourier transform, we use windowing with a Blackman 
window to enhance the stability of the results and to avoid artifacts 
caused by abrupt transitions at the grid’s edges to reduce spectral 
leakage due to edge discontinuities between grid boundaries (Harris, 
1978). Although CNNs offer partial translation invariance, this win
dowing operation is essential for improving frequency-domain feature 
quality rather than for training stability or shift generalization. 

w(z) = a0 − a1cos
(

2πz
T − 1

)

+ a2cos
(

4πz
T − 1

)

, (1) 

where w(z) is the value of the window function at index z, that is the 
index along one of the rows or columns of the section, T is the total 
number of samples in the window, a0 = 0.42, a1 = 0.5, and a2 = 0.08.

This formula generates the coefficients of the Blackman window, 
which are then multiplied element-wise with I(x, y), the intensity of the 
grids at spatial coordinates of (x,y), to apply the windowing effect. 
Therefore, we have: 

f1(x, y) = I1(x, y).w(x).w(y), (2) 

f2(x, y) = I2(x, y).w(x).w(y), (3) 

where f1(x, y) and f2(x, y) are the intensity functions of the reference and 
deformed (shifted) grids affected by the Blackman window, respectively.

When we divide an image into equal-sized grids and want to analyze 
each grid without losing information, applying a Blackman window to 
each grid can help in the following ways, even if we want to perform the 
image analysis in the spatial domain (referring to the first scenario in 
Section 4.1.1):

1. Reducing edge effects
Normally, when an image is divided into grids, information at the 

boundaries can be lost or discontinuities can appear between adjacent 
grids. A Blackman window smoothly tapers the pixel values toward the 
edges of the grid, reducing sudden transitions that could lead to artifacts.

2. Maintaining spatial Continuity
If a shift occurs in the image, a harsh grid-based segmentation 

without windowing might miss subtle displacements. The Blackman 
window ensures that neighboring grids still retain some overlap in terms 
of spectral content, which can help in detecting shifts.

The Fourier transform of the spatial domain grid f(x, y) is: 

F(u, v) =
∫∫ ∞

− ∞
f(x, y).e− 2πi(ux+vy)dxdy, (4) 

where F(u, v) is the Fourier transform of the grid, and u and v are the 
spatial frequency coordinates.

After Fourier transformation, we apply a high-pass filter to each grid 
to suppress low-frequency components that mainly reflect global illu
mination and background structure. Subtle shifts and micro-textural 
changes primarily affect the high-frequency spectrum of speckle pat
terns, as shown in speckle metrology studies. By emphasizing high- 
frequency content, we enhance the model’s sensitivity to discrimina
tive local shifts while suppressing irrelevant background variations.

To do so, we first obtain the Fourier magnitude spectra F1 and F2 of 
the reference and deformed grids, respectively, and apply a high-pass 
filter H (u, v). The enhanced Fourier magnitude spectra of the refer
ence and deformed grid become: 

F’1(u, v) = |F1(u, v) |.H(u, v), (5) 

F’2(u, v) = |F2(u, v) |.H(u, v), (6) 

where H (u, v)=(1 − X (u, v))(2 − X (u, v)) and X (u, v) = cos (πu).cos(πv).

3. Proposed CNN-based process control scheme

In this section, we propose a CNN-based method for shift detection 
and the localization of the shifted areas in a speckle pattern. Before 
presenting our proposed CNN architecture and its training methodology, 
which are carefully tailored and its hyperparameters carefully selected 
and tuned to achieve our goal, we encourage readers to read the Ap
pendix: Fundamentals of CNNs.

3.1. CNN architecture and training methodology

For the goal of detecting small to large localized speckle shifts, we 
design the following CNN architecture, as described in Table 1. The 
architecture and hyperparameter values were determined through 
extensive experimentation and iterative refinement, involving evalua
tion under diverse conditions to ensure that the CNN-based approach 
reliably performs both detection and localization.

The input layer in our study is four-dimensional and includes: [grid 
height, grid width, channels, grids]. We generate equal numbers of in- 
and out-of-control images as the CNN input. As in Sabahno and Kho
dadad (2025), we only consider translational displacements and 
generate the in-control (IC) images using displacements generated by a 
bivariate normal distribution N(μ = 0,Σ = I). For the out-of-control 
(OC) images, we generate the shifts using N(μ = 2,Σ = I). To train the 
CNN, shifts are synthetically applied to localized regions in simulated 
speckle images. This provides full control over ground truth, enabling 
systematic evaluation of the model’s shift sensitivity and localization Fig. 1. Creartion of speckle patterns.
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capability. As mentioned before, we divide the images into equal-sized 
grids in this research. To better train the CNN about the IC and OC 
images, and also to be able to not only use the CNN model for detecting, 
but for localization of the shifted areas of the speckle pattern, instead of 
the images, we enter each grid separately into the model. In addition, 
the grids are entered in two channels. In the first channel, the shifted 
grids (shifted IC or OC grids) are entered. In the second channel, the 
difference between the shifted grids and the reference grids is also 
entered, enabling the CNN to learn about the reference image as well. 
Note that, as it will be further discussed in Section 4, the spatial and 
frequency domain data are handled as separate input sources in two 
independent experimental scenarios in this study. The CNN is trained 
either on raw spatial grids or on log-magnitude frequency-domain grids 
obtained after windowing, FFT and high-pass filtering. The two input 
types are not fused or used as multi-channel inputs within the same 
network. This design enables isolated evaluation of detection and 
localization performance within each domain.

The reference image is the original speckle image before applying 
any IC or OC shifts on it. Note that, we could have made the input layer 
with three layers, or two layers including the reference and shifted grids 
instead, but after extensive ablation studies during our development 
phase we discovered the current combination to be the most effective 
one, similar to inputting the grids instead of the images which we pre
viously discussed. We have two classes (labels) in this study: IC (labeled 
0) and OC (labeled 1) and we dedicate them to each grid depending on 
whether they belong to an IC or OC image. Moreover, in IC images, all 
the grids are IC, and in OC images, all the grids are OC. However, we 
found it to be most effective to apply the same IC shift (generated by 
N(μ = 0,Σ = I)) to all the grids of an IC image, but apply different shifts 
(each generated by N(μ = 2,Σ = I)) to each grid of an OC image. In 
other words, all the grids of an IC image shift uniformly (we first 
generate and apply the IC shift to the whole image and then divide it into 
grids, in this case), but all the grids of an OC image shift differently (we 
first divide the image into grids, and then generate and apply the OC 
shift to each grid separately, in this case). This is based on the logic and 
assumption that an IC shift affects the whole image uniformly and an OC 
shift can occur in any area of the image. This is also very helpful in 
detecting simultaneous shifts that occur in different areas of the image.

In all the convolutional layers, we have chosen small filter sizes of 3 
× 3 to capture fine-grained details (better for small shifts), preserve local 
displacements, and maintain more spatial resolution. We also use the 

same padding in all the layers to keep all the input features, even small 
displacements, in the output. In the two first convolution layers, the 
dilation factor of one is used, which is actually the default value. 
However, for the third convolution layer, the dilation factor of two is 
used which means the kernel is spread out by skipping 1 pixel between 
sampled points. We designed the convolution layers as such so the first 
two layers focus on fine, local texture variations, making sure small 
speckle shifts are detected and the third layer (with dilation = 2) en
hances spatial awareness, allowing the model to pick up slightly larger 
contextual changes while retaining fine details. Table 2 outlines the 
summary of the CNN architecture mostly focusing on the convolution 
layers and their purpose.

In addition, to avoid neurons becoming inactive and ensure gradient 
flow for negative inputs, we use another function for activation (instead 
of the popular method mentioned in the appendix), and it is called leaky 
ReLU: 

Leaky ReLU(x) =
{

x if x > 0
βx if x ≤ 0 , (6) 

where β is the leak factor, and we set its value to 0.1. This helps 
prevent dead neurons in neural networks by maintaining a small 
gradient even for negative values.

Note that, since we deal with highly detailed speckles in this paper, 
we do not use a pooling layer. Pooling layers were omitted to maintain 
spatial resolution across all layers. Since the objective is to detect subtle, 
localized variations in texture (e.g., small shifts in speckle structure), 
pooling could dilute or eliminate essential local features. To expand the 
receptive field without losing spatial precision, we instead apply dilation 
in the final convolutional layer.

We specifically design the training methodology, by considering 
faster computation, overfitting avoidance, and small shifts detection.

For the optimizer, we use Adam because it is an ideal choice for small 
gradient updates. Speckle displacement detection requires precision, 
and Adam ensures stable updates without large fluctuations.

For training the CNN, we set the maximum number of epochs to 20 
and use a piecewise learning rate scheduling as: 

ηt = η0.γ

⌊
t
T

⌋

, (7) 

where ηt is learning rate at step t, η0 (set to 0.0005) is the initial learning 
rate, γ (set to 0.5) is the drop factor, and T (set to 10) is the drop period. 
The learning rate is halved every 10 epochs, allowing coarse learning at 
the start and finer adjustments later, making it suitable for precise 
displacement detection. In addition, we choose a small initial learning 
rate (0.0005) to avoid overshooting fine shifts.

For training stability and regularization, we use L2 regularization 
and gradient clipping. L2 regularization (weight decay) adds a penalty 
term as described in Equation 15. We set λ = 0.005 in this research to 
preserve small displacements while preventing overfitting.

Also, to prevent gradient explosion, we clip gradients as: 

Table 1 
The proposed CNN architecture.

Layer/Block Type Description

Input Layer − Two-channel inputs (shifted + difference grids)
Convolutional Block 

1
− Convolution layer (8 filters, 3 × 3, dilation = 1, padding =
same)  

− Batch Normalization layer 
− LeakyReLU layer (α = 0.1)

Convolutional Block 
2

− Convolution layer (16 filters, 3 × 3, dilation = 1, padding =
same)  

− Batch Normalization layer 
− LeakyReLU layer (α = 0.1)

Convolutional Block 
3

− Convolution layer (32 filters, 3 × 3, dilation = 2, padding =
same)  

− Batch Normalization layer 
− LeakyReLU layer (α = 0.1)

Fully Connected 
layers

− Dense layer with 32 neurons  

− LeakyReLU layer (α = 0.1) 
− Dropout layer (0.5) 
− Dense layer with 2 neurons

Output Layers − Softmax layer  

− Classification Layer (IC / OC)

Table 2 
Convolution layers in the proposed CNN architecture.

Layer Type Key Parameters Purpose

Input grid size × grid size 
× 2

Takes in a 2-channel grayscale image 
(grid)

Convolution 1 3 × 3, 8 filters Detects edges, small displacements
Convolution 2 3 × 3, 16 filters Detects complex small shifts
Convolution 3 3 × 3, 32 filters, 

dilation = 2
Captures larger displacement patterns

Fully 
Connected 1

32 neurons, dropout 
0.5

Converts extracted features into a 
compact representation

Output 2 neurons, softmax Predict the probability of the two 
classes (IC and OC)
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gt =
gt

max
(

1, ‖gt‖
c

), (8) 

where gt is the raw gradient, and c is the threshold (set to 1). Gradient 
clipping avoids exploding gradients, which can happen if small shifts 
cause unstable updates. It ensures stable updates by preventing exces
sively large gradients that could disrupt small displacement learning.

The mini-batch size is set to 32 and at the beginning of each epoch, 
we shuffle the dataset to avoid pattern memorization. Shuffling ensures 
that mini-batches contain different combinations of samples in each 
epoch, improving generalization. We chose a small mini-batch size for 
small displacements, but not too small to avoid noise.

Furthermore, validation is used to assess the model’s performance on 
unseen data during training, helping to prevent overfitting. We keep 10 
% of the dataset for validation, and 5 % for testing. We run validation 
every 50 iterations (mini-batches). This means the model trains for 50 
mini-batches and then evaluates the validation set without updating 
weights. This helps catch overfitting early, prevent data leakage, provide 
a true performance measure, optimize the learning rate dynamically, 
ensure that regularization is effective, and detect instabilities in 
training.

In summary, our architecture uses three convolutional layers with 3 
× 3 filters, which are optimal for preserving local shift sensitivity. 
Smaller kernels allow the network to learn fine-grained texture distor
tions that characterize subtle speckle shifts. The number of filters (8, 16, 
32) increases with depth to capture progressively complex spatial fea
tures. A dilation of 2 is used in the third convolutional layer to expand 
the receptive field, allowing the model to encode larger-scale correla
tions. Dropout (0.5) is applied after the fully connected layer to prevent 
overfitting, tuned via validation accuracy.

3.2. Detection and localization

As mentioned in the previous section, the proposed CNN architecture 
outputs two probabilities (IC and OC probabilities). To design the con
trol chart for process monitoring, and thereafter localization of the 
shifted areas of the image, we use the OC probability of each grid. We 
define: 

MPr = maxjPrj, (9) 

where MPr is the maximum of OC probabilities among all the image 
grids, and Prj is the OC probability of grid j. Then, we use MPr for 
constructing the control chart. It means that at each sampling, the MPr 
value (computed using Equation 9) will be compared against the control 
limits for signal detection. The next step in designing a control chart is 
determining the probability of false alarm (false alarm rate), α. We 
follow Sabahno and Khodadad (2025) and set its theoretical value to 
0.05, in this research. The last step in designing a control chart is 

determining the control limits values. Due to the nature of our problem, 
in which only the high OC probabilities are crucial, we only use the UCL 
(upper control limit) in this research. In a Shewhart-type control chart, 
we have UCL = 1

α = 20. However, in other control charts (like ours) in 
which the normality and independence assumptions cannot be 
confirmed, we can adjust the UCL value, so we get a fixed pre- 
determined ARL value (average run length) which is the main perfor
mance measure of the control charts (Sabahno and Eriksson, 2024). ARL 
is the average number of samples (images) taken before an OC signal is 
detected by the control chart.

Fig. 2 shows how the proposed monitoring scheme operates at each 
sampling. With the control chart set for process monitoring, one image is 
taken at each smapling. Then, the image is divided into equal-sized grids 
and each grid is fed into the CNN in two channels (its current form and 
the difference between its current form and the reference from). Then, 
the CNN computes each grid’s OC probability (Pr), and their maximum 
is also computed (MPr). If MPr > UCL, the process is declared as out-of- 
control (detection), and the grids with their Pr > UCL are flagged as 
significant (localization). Note that the same UCL will be used for both 
detection and localization purposes, even though its value is adjusted 
using MPr to achieve a pre-determined ARL, prior to online process 
monitoring.

4. Numerical analyses

To perform our numerical analyses, we use the same gear’s image 
(Fig. 3) as used in Sabahno and Khodadad (2025). The main goal is to 
evaluate the proposed process control scheme under different scenarios 
and cases. In addition, to be able to compare our proposed AI-based 
scheme with the magnitude spectrum difference-dependent one pro
posed in Sabahno and Khodadad (2025), we keep the simulation envi
ronment in both papers the same. Although their scheme was only 
applied in the frequency domain, we apply our CNN-based scheme in 
both spatial and frequency domains. Moreover, while they used a 
memory-type scheme, which inherently increases the chart’s perfor
mance especially in detecting small to moderate shift sizes, to better 
demonstrate the power of our AI-based scheme, we use a memory-less 
scheme.

In addition, the same speckle pattern of 600 × 600 pixels is also used, 
as shown in Fig. 4.

Note that, while the experiments in this section are based on simu
lated patterns, they provide a structured and replicable platform for 
validating detection/localization accuracy under known shift 
conditions.

As mentioned in Section 2, we use several preprocessing techniques 
in this study, applied individually to each grid or patch of the image. To 
illustrate the visual effect of each step, we extract a 100 × 100 patch 
from the top-left corner of the image in Fig. 4 and apply the pre
processing stages in sequence.

Fig. 2. Process monitoring scheme at each sampling.
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Fig. 5 shows the results of this process using two parallel paths—with 
and without Blackman windowing. The top row presents the unpro
cessed path: the original raw intensity patch, its FFT magnitude spec
trum (log-scaled for visualization), and the high-pass filtered spectrum 
obtained by applying a frequency-domain filter directly to the FFT of the 
raw patch. The bottom row shows the windowed path: the Blackman- 
windowed patch (which is created by applying the windowing fucn
tion on the original patch), its FFT magnitude spectrum, and the spec
trum after applying the same high-pass filter.

Other than showing the effect of each preprocessing operation, this 
comparison highlights the role of windowing: the unwindowed FFT 
spectrum exhibits stronger edge effects and potential spectral leakage, 

while the windowed version offers a smoother, cleaner frequency 
response. The high-pass filter then enhances higher frequency compo
nents, which correspond to subtle texture variations critical for shift 
detection and defect identification.

4.1. Control chart and signal detection

In this section, we evaluate the charts’ performance in two main 
scenarios of spatial and frequency domains, and in three gridding cases 
of 100 × 100, 50 × 50, and 30 × 30 for each scenario. For our analyses in 
this section, we use a powerful laptop equipped with an NVIDIA GeForce 
RTX 4090 GPU (16 GB VRAM), an Intel i9 14900HX processor, and a 32 
GB system RAM. Smaller grid sizes produce more grids and therefore 
increase per-sample compute and memory roughly in proportion to the 
grid count. For example, for a fixed 600 × 600 image, 30 × 30-pixel 
grids yield 20 × 20 = 400 grids in the image, while 100 × 100-pixel 
grids yield 6 × 6 = 36 grids (more than 11 × difference). Consequently, 
grid size should be chosen to trade off localization granularity versus 
available compute/latency; if finer localization is required but compute 
is constrained, multi-scale (coarse-to-fine) refinement, selective re- 
evaluation of candidate regions, or model compression/quantization 
should be considered. To adapt to new speckle statistics we recommend 
transfer learning using a small calibration set (freeze early layers and 
fine-tune later layers or the final head).

To conduct our simulation studies, we adjust the UCL value for each 
chart (case-scenario) to obtain the ARL value of 20, under 5000 IC runs. 
This will make it easier for us to perform simulation studies, due to the 
extremely heavy and computationally demanding of the image/grids- 
based scheme. After estimating the UCL in each case by targeting an 
ARL of 20, we also computed the empirical false alarm rate (α) to 
independently evaluate in-control performance. Note that, as mentioned 
before, since the normality and independence assumptions cannot be 
confirmed in our scheme, we expect the empirical false alarm rate not to 
be equal to its theoretical value 0.05.

It is clear that because in each scenario and also each gridding case 
the inputs are different, different CNN models should be trained for each 
as well. In both scenarios, we generate 400 images for each gridding 
case. In addition, half the images in each case are generated in-control 
(shifts are generated by N(0,I)) and the other half are generated out- 
of-control (shifts are generated by N(2,I)), and the IC or OC shifts are 
applied as was detailed in Section 3.1. The shift magnitude (e.g., N(2,I)) 
is applied in the spatial domain and represents a translational 
displacement in pixels. This is a standardized, unitless measure within 
the image frame. The conversion to physical units (e.g., microns) can be 
determined by the calibration of the specific imaging system (e.g., mi
crons/pixel), which is an application-dependent parameter.

To evaluate the charts’ performance, artificial shifts are applied to 
five different random areas of the 600 × 600 speckle pattern as shown in 
Fig. 6.

The shifts (the columns of the following tables) are only applied to 
the mean of the normal distribution, and it is assumed that the variances 
(as well as covariances) remain unchanged throughout the monitoring 
procedure. Therefore, the shift cases in the columns are respectively 
created using: N(0.2,I), N(0.5,I), N(0.9,I), N(2,I), N(3,I), N(5,I), and N 
(10,I).

Note that, regardless of whether the analysis is performed in the 
spatial domain (first scenario) or the frequency domain (second sce
nario), all shifts are applied to the intensities in the spatial domain 
(Fig. 4), with the necessary transformations carried out afterward.

Furthermore, the ARL (average run length) and SDRL (standard de
viation of run length) are used to measure the charts’ performance. 
However, comparisons are only performed based on the ARL values and 
the SDRL values are only reported for additional details. We also report 
ARL/20 values in the tables, so it would be easier to compare to the chart 
of Sabahno and Khodadad (2025).

As shown in all the tables in this section (Tables 3-11), the shifts are 

Fig. 3. A gear’s image.

Fig. 4. The gear’s speckle pattern.
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applied in three stages: first, each affected area is shifted solely; next, all 
five areas are shifted simultaneously; and finally, the entire monitored 
pattern is uniformly shifted. In addition, the simulation is conducted as 
follows: when an area is shifted by a value drawn from N(x,I), the rest of 
the pattern is shifted equally by a value generated from N(0,I) to 
simulate a natural movement during the image capturing. Additionally, 
when all five areas are shifted, each area’s shift size is independently 
drawn from N(x,I), resulting in different shifts across areas, while the 
rest of the pattern is again shifted equally by a value from N(0,I).

4.1.1. First Scenario: Speckle image in the spatial domain
In the first scenario, the image in Fig. 4 is divided into equal-sized 

grids and will be analyzed in the spatial domain. In addition, each 
gridding case is analyzed in two sub-scenarios. In sub-scenario 1, the 
grids are directly fed into the CNN, while in sub-scenario 2, they are fed 

into the CNN after the windowing is applied to them.
In the first scenario, we apply our CNN-based scheme in the spatial 

domain. We also consider two sub-scenarios for the first scenario. In sub- 
scenario 1, the speckle patterns (I1(x, y) for the reference image and I2(x,
y) for the IC and OC images) are directly fed into the CNN (as inputs) 
after gridding and without performing any of the operations outlined in 
Section 2. In sub-scenario 2, however, we apply the windowing function 
(Equation 1) to each grid before inputting them (we input f1(x, y), 
Equation 2, and f2(x, y), Equation 3, in this sub-scenario instead of I1(x,
y) and I1(x, y) used in the previous sub-scenario).

The objective in this scenario is evaluating the model’s ability to 
detect and localize subtle shifts in speckle images using spatial (raw 
intensity) features alone. This simulates real-time process monitoring 
directly from pixel-level variations.

As mentioned before, we use simulated speckle patterns generated 
from grayscale base images. The images are partitioned into grid sizes of 
100 × 100, 50 × 50, and 30 × 30. Controlled shifts are introduced either 
globally or locally. Each scenario is tested over 5000 Monte Carlo rep
etitions to estimate UCLs and ARLs. Tables 3-8 show the ARL perfor
mance for various grid sizes and shift magnitudes.

Fig. 5. Illustration of the role of windowing in the preprocessing pipeline, using a 100 × 100 image patch.

Fig. 6. The shifted areas in the speckle pattern.

Table 3 
ARL, SDRL, ARL/20 values of the control chart under different mean shift sizes 
and in different areas of the image, with the 100 × 100 grids size and in the 
spatial domain without windowing.

Shift size
Shifted 
area

0.2 0.5 0.9 2 3 5 10

First 
area

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Second 
area

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Third 
area

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Fourth 
area

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Fifth 
area

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

All five 
areas

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Whole 
image

13.87, 
13.17, 
0.69

7.97, 
7.45, 
0.4

4.08, 
3.52, 
0.2

1.28, 
0.61, 
0.06

1.01, 
0.12, 
0.05

1.00, 
0.00, 
0.05

1.00, 
0.00, 
0.05
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Case 1: 100 × 100 grids.
In this case, we divide the image into equal-sized grids of size 100 ×

100 (which makes 36 grids in the image), as shown in Fig. 7.
In the first sub-scenario, the grids are directly inputted into the CNN 

without the windowing function applied to them. For this sub-scenario, 
after training the CNN, the validation accuracy is computed as 99.24 % 
and the test accuracy is computed as 99.58 %. Then, as previously 
mentioned, using the developed CNN model, for this case and using 
5000 simulation runs, we estimate the UCL to achieve the desired ARL of 
20, as 0.922. We have also computed the empirical false alarm rate 
(under again 5000 simulation runs) as 0.0499, which is very close to its 
theoretical value of 0.05.

Table 3 shows the control chart performance under this gridding 
case, without windowing. As it can be seen in this table, the control chart 
under this gridding case and this sub-scenario is unable to detect 
localized shifts and the chart’s performance in this case-scenario is 
similar to the IC performance, under all shift sizes and in all shifted 
areas. However, when the whole image shifts uniformly, the chart per
forms very well in detecting shifts and its performance improves as the 
shift size increases.

Moreover, when we compare this chart to the chart designed by 
Sabahno and Khodadad (2025) under the same gridding (its Table 3), 
both charts perform badly in detecting localized shifts, but our chart 
performs faster in detecting small shifts when the whole image is shifted 

Table 4 
ARL, SDRL, ARL/20 values of the control chart under different mean shift sizes and in different areas of the image, with the 100 × 100 grids size and in the spatial 
domain with windowing.

Shift size
Shifted area 0.2 0.5 0.9 2 3 5 10

First area Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC
Second area Same as IC Same as IC Same as IC 15.96, 15.50, 0.8 11.30, 10.32, 0.57 5.64, 5.17, 0.28 4.86, 4.40, 0.24
Third area Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC
Fourth area Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC
Fifth area Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC
All five areas Same as IC Same as IC Same as IC 15.02, 13.99, 0.75 12.07, 11.80, 0.6 5.67, 5.17, 0.3 5.03, 4.71, 0.25
Whole image 13.25, 12.74, 0.66 6.35, 5.92, 0.32 3.09, 2.58, 0.15 1.17, 0.44, 0.06 1.01, 0.08, 0.05 1.00, 0.00, 0.05 1.00, 0.00, 0.05

Table 5 
ARL, SDRL, ARL/20 values of the control chart under different mean shift sizes 
and in different areas of the image, with the 50 × 50 grids size and in the spatial 
domain without windowing.

Shift size
Shifted 
area

0.2 0.5 0.9 2 3 5 10

First 
area

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

11.23, 
10.31, 
0.56

Second 
area

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

4.92, 
4.63, 
0.25

Third 
area

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Fourth 
area

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

17.23, 
16.29, 
0.86

Fifth 
area

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

All five 
areas

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

Same 
as IC

4.06, 
3.52, 
0.2

Whole 
image

12.77, 
12.41, 
0.64

7.21, 
6.47, 
0.36

3.80, 
3.34, 
0.19

1.30, 
0.63, 
0.06

1.02, 
0.14, 
0.05

1.00, 
0.00, 
0.05

1.00, 
0.00, 
0.05

Table 6 
ARL, SDRL, ARL/20 values of the control chart under different mean shift sizes and in different areas of the image, with the 50 × 50 grids size and in the spatial domain 
with windowing.

Shift size
Shifted area 0.2 0.5 0.9 2 3 5 10

First area 18.71, 18.30, 0.94 16.74, 15.98, 0.84 13.45, 12.87, 0.67 6.53, 5.85, 0.33 5.09, 4.38, 0.25 2.26, 1.70, 0.11 1.01, 0.11, 0.05
Second area Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC
Third area 15.09, 14.41, 0.75 14.48, 13.85, 0.72 12.25, 11.44, 0.61 6.33, 5.83, 0.32 8.40, 7.72, 0.42 3.42, 2.87, 0.17 1.00, 0.00, 0.05
Fourth area 9.24, 8.63, 0.46 6.19, 5.38, 0.31 3.29, 2.74, 0.16 1.19, 0.47, 0.06 1.01, 0.12, 0.05 1.01, 0.09, 0.05 1.00, 0.00, 0.05
Fifth area 8.65, 8.15, 0.43 5.63, 5.15, 0.28 2.94, 2.38, 0.15 1.19, 0.48, 0.06 1.01, 0.09, 0.05 1.00, 0.02, 0.05 1.00, 0.00, 0.05
All five areas 5.31, 4.85, 0.27 3.33, 2.78, 0.17 1.83, 1.22, 0.09 1.02, 0.14, 0.05 1.00, 0.00, 0.05 1.00, 0.00, 0.05 1.00, 0.00, 0.05
Whole image 11.77, 10.95, 0.59 5.80, 5.34, 0.29 2.83, 2.18, 0.14 1.13, 0.39, 0.06 1.00, 0.07, 0.05 1.00, 0.00, 0.05 1.00, 0.00, 0.05

Table 7 
ARL, SDRL, ARL/20 values of the control chart under different mean shift sizes and in different areas of the image, with the 30 × 30 grids size and in the spatial domain 
without windowing.

Shift size
Shifted area 0.2 0.5 0.9 2 3 5 10

First area 11.15, 10.59, 0.56 7.84, 7.42, 0.39 4.73, 4.25, 0.24 1.75, 1.14, 0.06 1.30, 0.64, 0.05 1.10, 0.34, 0.05 1.05, 0.24, 0.05
Second area Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC 2.91, 2.31, 0.14
Third area 15.09, 14.09, 0.75 15.77, 15.13, 0.79 17.14, 16.35, 0.86 19.31, 19.01, 0.96 19.26, 18.51, 0.96 18.93, 18.00, 0.95 18.86, 18.41, 0.94
Fourth area 8.86, 8.39, 0.44 8.15, 7.85, 0.4 7.22, 6.82, 0.36 5.51, 4.86, 0.27 2.95, 2.36, 0.15 1.23, 0.52, 0.06 1.07, 0.27, 0.05
Fifth area 8.44, 7.61, 0.42 8.28, 7.69, 0.41 8.20, 7.78, 0.41 10.40, 9.80, 0.52 4.85, 4.34, 0.24 1.12, 0.36, 0.05 1.01, 0.12, 0.05
All five areas 4.66, 4.18, 0.23 3.81, 3.41, 0.19 2.95, 2.44, 0.15 1.57, 0.96, 0.08 1.19, 0.47, 0.06 1.01, 0.11, 0.05 1.00, 0.00, 0.05
Whole image 14.22, 13.36, 0.71 9.05, 8.49, 0.45 5.06, 4.66, 0.25 1.55, 0.93, 0.07 1.05, 0.24, 0.05 1.00, 0.00, 0.05 1.00, 0.00, 0.05
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uniformly. It is worth mentioning again that their chart was only 
analyzed in the frequency domain, and unlike our memory-less scheme, 
it is a memory-type chart, which should inherently be faster in detecting 
small shifts.

Next, for this gridding case, we first apply the windowing to each 
grid and then feed them into the CNN. For this sub-scenario, after 
training the CNN, the validation accuracy is computed as 96.25 % and 
the test accuracy is computed as 93.58 %. The UCL in the case is esti
mated as 0.83. We computed the empirical false alarm rate for this case 
as 0.0502, which is again very close to its theoretical value.

As it can be seen in Table 4, windowing makes the control chart 
perform a bit better in the spatial domain as well, when this gridding 
case is used. Shifts in the second area (the one in the middle of the image 
and shared equally by four grids), as well as simultaneous shifts 
involving that area, are detected well under medium and large shift 
sizes. The whole image shifts detections are also improved when win
dowing is used.

Case 2: 50 × 50 grids.
The speckle pattern in this case is divided into equal-sized grids of 

size 50 × 50 (which makes 144 grids in the image), as shown in Fig. 8. 
For when the windowing is not applied to the grids and they are directly 
inputted, after training the CNN the validation accuracy is computed as 
99.64 % and the test accuracy is computed as 99.69 %. The UCL in the 
case is estimated as 0.721, and the empirical false alarm rate as 0.0486.

The result of the control chart performance evaluation in this case is 
presented in Table 5. Similar to the previous case, the control chart is 

unable to detect localized shifts and its performance is mostly the same 
as the IC performance. However, again similar to the previous case, it 
performs well in detecting shifts when the whole image is shifted uni
formly; with a little performance improvement in this gridding case.

In addition, when we compare this chart to the chart designed by 
Sabahno and Khodadad (2025), under the same gridding (its Table 4), 
their chart performs better overall in detecting localized shifts, than our 
chart under this case-scenario performs better in detecting small whole 
image shifts.

Next, for when the windowing is applied to the grids before feeding 
them into the CNN for training, the validation accuracy is computed as 
97.13 % and the test accuracy is computed as 94.54. The UCL in the case 
is estimated as 0.802, and the empirical false alarm rate as 0.0479.

As in Table 6, the windowing in this gridding case shows massive 
improvements, especially in detecting localized and simultaneous shifts. 
Except for the second area, other areas are detected very rapidly, 
especially larger areas (areas 4 and 5) when windowing is applied. 
Moreover, when all the areas shift together, the chart’s performance in 
this case-scenario is always much better than in a case in which any of 
the local areas is individually shifted, which shows the chart’s absolute 
power in detecting simultaneous shifts in this case.

In addition, Unlike the previous sub-scenario of this gridding case, 
with windowing our scheme performs better than that of Sabahno and 
Khodadad (2025), even in localized and simultaneous shifts detections; 
except for the second area.

Case 3: 30 × 30 grids.

Table 8 
ARL, SDRL, ARL/20 values of the control chart under different mean shift sizes and in different areas of the image, with the 30 × 30 grids size and in the spatial domain 
with windowing.

Shift size
Shifted area 0.2 0.5 0.9 2 3 5 10

First area Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC
Second area Same as IC Same as IC Same as IC 15.83, 15.87, 0.79 12.04, 11.67, 0.6 5.08, 4.73, 0.25 4.16, 3.74, 0.21
Third area 16.07, 16.23, 0.8 12.27, 12.47, 0.61 7.48, 6.90, 0.37 2.19, 1.64, 0.11 2.43, 1.85, 0.12 1.64, 1.03, 0.08 1.00, 0.00, 0.05
Fourth area 14.45, 13.66, 0.73 9.99, 9.49, 0.5 5.46, 5.15, 0.27 1.62, 1.00, 0.08 1.62, 1.00, 0.08 1.51, 0.85, 0.07 1.00, 0.00, 0.05
Fifth area 11.85, 11.60, 0.59 7.66, 7.24, 0.38 4.23, 3.70, 0.21 1.41, 0.74, 0.07 1.45, 0.80, 0.07 2.04, 1.43, 0.1 1.00, 0.00, 0.05
All five areas 8.51, 7.83, 0.42 4.92, 4.39, 0.25 2.46, 1.84, 0.12 1.06, 0.26, 0.05 1.09, 0.33, 0.05 1.09, 0.32, 0.05 1.00, 0.00, 0.05
Whole image 11.89, 11.69, 0.59 5.94, 5.67, 0.3 3.03, 2.45, 0.15 1.16, 1.16, 0.06 1.00, 0.05, 0.05 1.00, 0.00, 0.05 1.00, 0.00, 0.05

Table 9 
ARL, SDRL, ARL/20 values of the control chart under different mean shift sizes and in different areas of the image, with the 100 × 100 grids size and in the frequency 
domain.

Shift size
Shifted area 0.2 0.5 0.9 2 3 5 10

First area Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC
Second area 9.89, 9.25, 0.5 10.81, 10.26, 0.54 11.79, 11.43, 0.58 7.57, 6.83, 0.38 4.14, 3.62, 0.21 7.63, 7.12, 0.38 11.23, 11.05, 0.56
Third area Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC
Fourth area Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC
Fifth area Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC
All five areas 9.58, 8.99, 0.48 10.47, 10.83, 0.52 11.74, 11.41, 0.59 7.49, 6.77, 0.37 4.15, 3.76, 0.21 7.64, 7.26, 0.38 10.72, 9.86, 0.54
Whole image 12.26, 11.60, 0.61 6.61, 6.04, 0.33 3.38, 2.86, 0.17 1.20, 0.47, 0.06 1.01, 0.09, 0.05 1.00, 0.00, 0.05 1.00, 0.00, 0.05

Table 10 
ARL, SDRL, ARL/20 values of the control chart under different mean shift sizes and in different areas of the image, with the 50 × 50 grids size and in the frequency 
domain.

Shift size
Shifted area 0.2 0.5 0.9 2 3 5 10

First area 17.59, 17.63, 0.87 17.60, 16.73, 0.88 18.72, 18.64, 0.94 18.60, 18.37, 0.93 17.05, 16.32, 0.85 11.53, 11.05, 0.58 19.93, 19.81, 0.99
Second area 19.72, 19.63, 0.99 19.68, 19.99, 0.99 17.70, 17.14, 0.88 8.42, 7.99, 0.42 4.53, 3.85, 0.23 7.53, 6.71, 0.38 19.86, 19.08, 0.99
Third area 10.02, 9.86, 0.5 6.50, 6.05, 0.32 3.50, 2.89, 0.17 1.30, 0.60, 0.06 1.03, 0.19, 0.05 1.71, 1.09, 0.08 4.92, 4.38, 0.25
Fourth area 13.76, 13.35, 0.69 9.86, 9.15, 0.49 5.35, 4.94, 0.27 1.68, 1.10, 0.08 1.61, 0.96, 0.08 12.55, 11.75, 0.63 1.74, 1.18, 0.09
Fifth area 12.61, 11.87, 0.63 8.51, 8.21, 0.43 4.54, 3.91, 0.23 1.47, 0.82, 0.07 1.21, 0.50, 0.06 6.37, 5.89, 0.32 2.55, 2.02, 0.13
All five areas 6.58, 6.20, 0.33 3.81, 3.44, 0.19 2.04, 1.45, 0.1 1.03, 0.19, 0.05 1.00, 0.02, 0.05 1.50, 0.85, 0.07 1.31, 0.64, 0.31
Whole image 12.19, 11.65, 0.61 5.87, 5.27, 0.3 3.06, 2.50, 0.15 1.18, 0.46, 0.06 1.00, 0.07, 0.05 1.00, 0.00, 0.05 1.00, 0.00, 0.05

H. Sabahno and D. Khodadad                                                                                                                                                                                                               Computers & Industrial Engineering 210 (2025) 111538 

9 



The speckle pattern in this case is divided into equal-sized grids of 
size 30 × 30 (which makes 400 grids in the image), as shown in Fig. 9. 
When windowing is not applied, after training the CNN the validation 
accuracy is computed as 99.66 % and the test accuracy is computed as 
99.64 %. The UCL in the case is estimated as 0.99, and the empirical 
false alarm rate as 0.0527.

Table 7 contains the chart’s performance in this gridding case when 
windowing is not applied. Based on this table, localized shifts are now 
detected much faster when this small gridding case is utilized. However, 
some performance fluctuations are apparent. Normally in control charts, 
as the shift size increases, the chart’s speed in detecting shifts is sup
posed to increase as well (i.e., the ARL values decrease). However, in this 
case-scenario this general rule only applies when considering medium to 
large shifts (2–10) and also when the shifted areas are the first and 
fourth areas (left side of the speckle pattern). Moreover, in here again 
when all the areas shift together, the chart’s performance is always 
much better than in a case in which any of the local areas is individually 
shifted. In addition, in this case as well the chart performs well in 
detecting shifts when the whole image shifts uniformly. However, it 
performs a little worse compared to the previous cases.

In addition, when we compare this chart to the chart designed by 
Sabahno and Khodadad (2025), under the same gridding (its Table 5), 
the proposed chart performs much better in detecting localized shifts 
(except for medium shift sizes in the second area and medium to large 
shift sizes in the third area), but their chart performs better in detecting 
shifts when the whole image is shifted. Moreover, the proposed chart is 

much faster in detecting simultaneous shifts than their chart.
When windowing is applied in this gridding case, after training the 

CNN, the validation accuracy is computed as 94.87 % and the test ac
curacy is computed as 94.46 %. The UCL in the case is estimated as 
0.966, and the empirical false alarm rate for this case as 0.0496.

Table 8 presents the results of this analysis. Comparing this analysis 
to that of Table 7 shows that, except for the frist area whose shifts can 
only be detected without windowing, with windowing the chart per
forms better in detecting medium to large localized shifts sizes. So there 
is no clear winner as to which one is better at detecting localized shifts in 
this gridding case. In addition, with windowing the chart performs 
better in detecting the whole image shifts, even when it is compared to 
the chart of Sabahno and Khodadad (2025). Also, unlike the previous 
sub-scenario, there is no performance fluctuation at all when windowing 
is applied.

4.1.2. Second Scenario: Speckle image in the frequency domain
In this scenario, first, the image in Fig. 4 is divided into equal-sized 

grids, then windowing, Fourier transformation, and high pass filtering 
are applied to each grid individually (as described in Section 2), and 
finally, they are fed into the CNN for training. So, in this scenario F́ 1(u,
v) (Equation 5) and F́ 2(u, v) (Equation 6) are fed into the CNN for 
training.

This scenario’s objective is to assess the model’s effectiveness after 
transforming grids into the frequency domain and applying high-pass 
filtering to emphasize fine texture shifts.

Fig. 7. The shifted areas in the speckle pattern, when the grids size is 100 
× 100.

Table 11 
ARL, SDRL, ARL/20 values of the control chart under different mean shift sizes and in different areas of the image, with the 30 × 30 grids size and in the frequency 
domain.

Shift size
Shifted area 0.2 0.5 0.9 2 3 5 10

First area Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC Same as IC
Second area 14.78, 13.77, 0.74 11.60, 11.17, 0.58 7.42, 6.99, 0.37 2.27, 1.66, 0.11 1.55, 0.87, 0.08 6.29, 5.95, 0.31 18.98, 18.67, 0.95
Third area 15.91, 15.13, 0.8 11.78, 11.60, 0.6 6.75, 6.25, 0.34 1.65, 1.04, 0.08 1.05, 0.22, 0.05 1.59, 0.95, 0.08 2.21, 1.65, 0.11
Fourth area 10.06, 9.72, 0.5 6.84, 6.25, 0.34 3.84, 3.41, 0.19 1.39, 0.73, 0.07 1.19, 0.48, 0.06 3.00, 2.42, 0.15 1.29, 0.63, 0.06
Fifth area 13.17, 12.98, 0.66 8.58, 7.97, 0.43 5.00, 4.36, 0.25 1.39, 0.73, 0.07 1.10, 0.33, 0.05 5.19, 4.63, 0.26 1.40, 0.74, 0.07
All five areas 6.63, 6.03, 0.33 3.94, 3.33, 0.2 2.05, 1.53, 0.1 1.02, 0.16, 0.05 1.00, 0.03, 0.05 1.25, 0.57, 0.06 1.03, 0.18, 0.05
Whole image 13.21, 12.71, 0.66 7.07, 6.71, 0.35 3.39, 2.83, 0.17 1.22, 0.52, 0.06 1.01, 0.11, 0.05 1.00, 0.00, 0.05 1.00, 0.00, 0.05

Fig. 8. The shifted areas in the speckle pattern, when the grids size is 50 × 50.
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We apply FFT to each Blackman-windowed grid and retain the 
magnitude spectrum. High-pass emphasis filters are used to suppress 
background trends. The same CNN architecture is trained on frequency 
domain data. Only the input layer is differnet compared to the previous 
scenario. Here, the grids are inputted after transformation into the fre
quesncy domain. The method for estimating the UCLs and ARLs are also 
the same. Tables 9-11 show the ARL performance for various grid sizes 
and shift magnitudes.

Case 1: 100 × 100 grids.
For this case-scenario, after training the CNN, the validation accu

racy is computed as 94.17 % and the test accuracy is computed as 92.78. 
The UCL in the case is estimated as 0.693. We computed the empirical 
false alarm rate for this case as 0.052, which is very close to its theo
retical value of 0.05.

Based on Table 9, when the speckle pattern is analyzed in the fre
quency domain, similar to the best-performing sub-scenario of the pre
vious scenario (with windowing), under the same gridding (100 × 100 
grids), the chart is only able to detect shifts in the second area (and 
simultaneous shifts involving that area). However, small localized shifts 
sizes are better detected in this scenario (frequency domain), although 
the chart’s performance in this scenario is not consistent with how a 
control chart should normally behave when the shift size increases/de
creases and performance fluctuation is visible at points. Regarding the 
whole image shifts, this scenario only performs better in detecting very 
small shift sizes compared to the best of the previous scenario.

Moreover, comparing the proposed chart’s performance under the 
second scenario to the chart in Sabahno and Khodadad (2025), under 
similar gridding (its Table 3), reveals that both charts perform almost 
the same in detecting localized shifts, except for the second area shifts 
which are much better detected by the proposed control chart. Also, our 
chart performs faster in detecting small shifts when the whole image is 
shifted uniformly.

Case 2: 50 × 50 grids.
For this case-scenario, after training the CNN, the validation accu

racy is computed as 93.65 % and the test accuracy is computed as 93.99 
%. The UCL in the case is estimated as 0.912, and the empirical false 
alarm rate as 0.0511.

Table 10 shows that, compared to the best sub-scenario of the pre
vious scenario which is still the with-windowing one, there is no clear 

winner. While some shifts in the second area can only be detected when 
analyzed in the frequency domain when this gridding is used, shifts in 
the larger areas (4 and 5) are better detected when the spatial domain 
with windowing is used. Regarding the shifts in the first area, only under 
a very small shift size the chart performs better in the frequency domain, 
while regarding the shifts in the third area, the current scenario is clearly 
a winner, except for the very large shift size (10). Regarding simulta
neous and whole image shifts (the last two rows of the tables), the best 
chart in the previous scenario (with windowing) performs a little bit 
better than the current scenario chart under this gridding, although their 
performance is rather the same.

Furthermore, compared to the previous case of this scenario, local
ized and simultaneous shifts are detected much faster in this gridding 
case, except for shifts in the second area which are detected faster under 
the previous gridding case.

In addition, comparing our proposed chart under this scenario and 
gridding case to Sabahno and Khodadad (2025) chart (its Table 4) re
veals that the proposed chart is overall better in detecting localized 
shifts (except for large shifts in the smaller areas; areas 1, 2, and 3) and 
also small shifts.

Case 3: 30 × 30 grids.
For this case-scenario, after training the CNN, the validation accu

racy is computed as 92.51 % and the test accuracy is computed as 91.77 
%. The UCL in the case is estimated as 0.97, and the empirical false 
alarm rate as 0.0498.

Table 11 contains the result of this gridding case in this scenario. 
Regarding localized shifts detection, in some areas, the chart in this 
gridding case performs better, and in others, the chart in the previous 
gridding case performs better. The same applies when comparing the 
localized shifts detection of the same gridding under the first and second 
scenarios. Moreover, when detecting simultaneous shifts under this 
gridding case and the previous gridding case of this scenario, the chart’s 
performance is not only very well but almost similar; and in both cases it 
is much better than detecting any localized shift individually. In addi
tion, when the whole image is shifted uniformly, the chart in the pre
vious gridding case performs better than the current gridding case (i.e., 
50 × 50 case better than 30 × 30 case).

Furthermore, comparing this table’s results to the previous scenario 
gives us different outcomes. Regarding the first area, the chart designed 
in the spatial domain without windowing is the only one able to detect 
its shifts. Regarding the second area, the current chart performs much 
better, except for very large shift size detection which the spatial domain 
charts perform much better. The shifts in the third area are faster 
detected under the current scenario. The shifts in the fourth and fifth 
areas (larger areas), and also simultaneous shifts are detected better 
when the analysis is performed in the spatial domain. The whole image 
shifts are detected better when the analysis is performed in the spatial 
domain with windowing.

Finally, comparing the proposed chart in this gridding case to the 
chart of Sabahno and Khodadad (2025) (its Table 5) reveals that while 
localized and simultaneous shifts are detected much faster by the pro
posed chart, their chart is a bit faster in detecting the whole image shifts.

4.2. Online monitoring and localization

In this section, we demonstrate how the proposed methodology can 
be implemented for real-time process monitoring. Since the imple
mentation is similar regardless of the domain (scenario) and also the 
grids size, we select the third gridding case of the second scenario for this 
purpose (frequency domain with 30 × 30 grids). We also select a few 
scenarios for implementing artificial shifts. In each scenario, we take 
consecutive samples and continue process monitoring until 10 samples 
have been taken, regardless of how many signals are received before 
then.

First, we only shift the third area by 2: i.e., N(2,I). Note that, as in our 
simulation analyses, when any of the areas is shifted, the other parts of 

Fig. 9. The shifted areas in the speckle pattern, when the grids size is 30 × 30.
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the image are uniformly shifted by N(0,I) to represent normal fluctua
tions. The result of this shifting scenario is outlined in Table 12. Ac
cording to this table, the chart signals three times during the first ten 
samplings, and in all cases correctly identifies the shifted grid’s number 
as 295. Fig. 9 shows that the third area is completely located inside grid 
295. So, the actual affected grid in this case is grid 295.

Next, we similarly shift the fourth area (with mean 2). Table 13
shows that, as before, the chart signals three times during the first ten 
consecutive samplings. However, the identified grids are not the same 
each time. Fig. 9 shows that the fourth area completely covers grid 285 
and the second share belongs to grid 265, and then grids 286 and 266, 
respectively. So, the actual affected grids in this case are grids 265, 266, 
285, and 286. However, during the first ten samplings, grid 265 is the 
one that gets always identified, and at sample 9, 285 is also identified 
alongside 265.

To see how the localization is done under different shift sizes, we 
increase the mean shift to 5 in the previous scenario and perform our 
online monitoring again. According to Table 14, the chart signals four 
times during the first ten samplings. In two of those signals, grid 265 is 
identified, and in the other two, grid 285 is identified. In both scenarios 
of the fourth area shifting (Tables 13 and 14), grids 266 and 286 never 
get identified and this must be because of their lowest share in the fourth 
area.

In the next shifting scenario, we shift the third, fourth, and fifth areas 
simultaneously, each shifted separately using N(2,I). Fig. 9 shows that 
the actual affected grids by shifts in these three areas are grids 94, 95, 
114, 115, 265, 266, 285, 286, and 295.

As can be seen in Table 15, the chart signals much faster when these 
areas shift simultaneously, and all the samples show OC during the first 
ten consecutive samplings. The first sample correctly identifies all the 

Table 12 
Online process monitoring of consecutive samples, with the grids size 30 × 30 
and the mean shift size 2, when the third area shifts.

i MPri UCL Process 
Status

Identified Grids 
Numbers

Identified Grids Pri 

Values

1 1 0.97 Out-of- 
Control

295 1

2 0.995 0.97 In-Control − −

3 0.96 0.97 In-Control − −

4 0.96 0.97 In-Control − −

5 0.84 0.97 In-Control − −

6 0.999 0.97 Out-of- 
Control

295 0.999

7 0.977 0.97 Out-of- 
Control

295 0.977

8 0.80 0.97 In-Control ¡ ¡

9 0.95 0.97 In-Control − −

10 0.96 0.97 In-Control ¡ ¡

Table 13 
Online process monitoring of consecutive samples, with the grids size 30 × 30 
and the mean shift size 2, when the fourth area shifts.

i MPri UCL Process 
Status

Identified Grids 
Numbers

Identified Grids Pri 

Values

1 0.94 0.97 In-Control − ​
2 0.95 0.97 In-Control − ​
3 0.83 0.97 In-Control − ​
4 0.93 0.97 In-Control − ​
5 0.88 0.97 In-Control − ​
6 0.997 0.97 Out-of- 

Control
265 0.997

7 0.94 0.97 In-Control − ​
8 0.98 0.97 Out-of- 

Control
265 0.98

9 0.995 0.97 Out-of- 
Control

265, 285 0.995, 0.978

10 0.92 0.97 In-Control − ​

Table 14 
Online process monitoring of consecutive samples, with the grids size 30 × 30 
and the mean shift size 5, when the fourth area shifts.

i MPri UCL Process 
Status

Identified Grids 
Numbers

Identified Grids Pri 

Values

1 0.973 0.97 Out-of- 
Control

285 0.973

2 0.91 0.97 In-Control − −

3 0.93 0.97 In-Control − −

4 0.94 0.97 In-Control − −

5 0.975 0.97 Out-of- 
Control

265 0.975

6 0.88 0.97 In-Control − −

7 0.93 0.97 In-Control − −

8 0.973 0.97 Out-of- 
Control

285 0.973

9 0.972 0.97 Out-of- 
Control

265 0.972

10 0.86 0.97 In-Control − −

Table 15 
Online process monitoring of consecutive samples, with the grids size 30 × 30 
and the mean shift size 2, when the third, fourth, and fifth areas shift.

i MPri UCL Process 
Status

Identified Grids 
Numbers

Identified Grids Pri 

Values

1 0.997 0.97 Out-of- 
Control

265, 285, 295, 95 0.985, 0.993, 0.996, 
0.997

2 1 0.97 Out-of- 
Control

95, 295 0.989,1

3 0.999 0.97 Out-of- 
Control

285, 265, 295 0.984, 0.998, 0.999

4 1 0.97 Out-of- 
Control

265, 295 0.999,1

5 0.999 0.97 Out-of- 
Control

95 0.999

6 0.999 0.97 Out-of- 
Control

95, 295, 265 0.976, 0.981, 0.999

7 1 0.97 Out-of- 
Control

95 1

8 0.999 0.97 Out-of- 
Control

265, 295 0.995, 0.999

9 1 0.97 Out-of- 
Control

95, 265 0.996,1

10 0.996 0.97 Out-of- 
Control

295 0.996

Table 16 
Online process monitoring of consecutive samples, with the grids size 30 × 30 
and the mean shift size 5, when the third, fourth, and fifth areas shift.

i MPri UCL Process 
Status

Identified Grids 
Numbers

Identified Grids Pri 

Values

1 0.96 0.97 In-Control ¡ ¡

2 0.99 0.97 Out-of- 
Control

295 0.99

3 0.97 0.97 Out-of- 
Control

265 0.97

4 1 0.97 Out-of- 
Control

295 1

5 0.980 0.97 Out-of- 
Control

285,295 0.978, 0.980

6 1 0.97 Out-of- 
Control

265,295 0.972,1

7 0.998 0.97 Out-of- 
Control

95 0.998

8 0.991 0.97 Out-of- 
Control

265,295 0.981, 0.991

9 0.993 0.97 Out-of- 
Control

265,295 0.978, 0.993

10 1 0.97 Out-of- 
Control

95, 265 0.982,1
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main grids involved with these areas, but the other samples identify 
fewer grids. However, none of them incorrectly identifies any grid as 
shifted (same as before).

We also apply the shift of N(5,I) to the previous shifting scenario, and 
the results are presented in Table 16. The results show fewer OC signals 
during the first ten consecutive samplings, and also, fewer grids are 
identified at each sampling compared to the previous case (yet correctly 
identified).

To better analyze the identification and localization capability of the 
proposed scheme, we also test the gridding case of 50 × 50 as well for 
the previous simultaneous shift scenario. We also increase the mean shift 
size for all three areas to 3. As it is clear in Fig. 8, all the affected grids by 
these three areas are grids 33, 45, 99, 100, and 105. However, the main 
(highly affected) grids involved with these three areas are grids 33, 99, 
and 105. Table 17 shows that during the first ten consecutive samplings, 
at least two of them are identified at each sampling, and in half of the 
samplings, all three are identified and reported. However, grid 105 is 
always identified, and this must be because the third area is completely 
positioned inside this grid.

5. Concluding remarks

In this paper, we designed a custom CNN architecture and used it to 
construct a control chart for detecting localized and subtle speckle shifts. 
We also carefully designed the training methodology to achieve these 
goals. Moreover, to facilitate localization and simultaneous shifts 
detection, instead of using the entire images, we divided them into 
equal-sized grids and fed these grids into the CNN for training. We 
considered two-channel inputs: one containing the shifted grids and the 
other representing the difference between the shifted and reference 
grids. We divided the input dataset into equal IC and OC datasets, each 
uniquely generated to improve the performance. The control chart was 
designed based on the maximum out-of-control probability among all 
the grids of the image. The way this control scheme was designed not 
only enabled the detection of localized and simultaneous shifts but also 
allowed for the identification (localization) of the shifted grids within 
the image; all in a single step. We estimated the chart’s control limit 
based on that maximum probability to first detect signals, and then 
considered the grids with their OC probability over that limit, as shifted. 
For our simulation studies, we considered two different scenarios. In the 
first scenario, grids were fed into the CNN in their spatial form. In the 
first scenario, two sub-scenarios were considered as well: with and 
without windowing. In the second scenario, the analysis was performed 
in the frequency domain and windowing, Fourier transform, and high- 
pass filtering were applied to the grids before being fed into the CNN 
for training. We also examined different grid sizes (small, medium, and 
large) and evaluated the control chart’s performance under various shift 
sizes and shifted areas. Additionally, through illustrative examples, we 
demonstrated how the proposed scheme can be used for online moni
toring, detecting, and localizing shifted grids.

The simulation results indicated that the CNN-based control chart’s 

performance heavily depends on grid size, shift size, and the location 
and size of the affected area, with no clear overall winner among the 
considered scenarios and sub-scenarios. However, each has its strengths. 
In the spatial domain, the control chart performed better for detecting 
whole-image shifts, while windowing generally improved the detection 
of localized and simultaneous shifts, especially in medium-sized grids. In 
contrast, the control chart in the frequency domain generally performed 
better for detecting small localized shifts when the grid size was suffi
ciently large to resolve spatial patterns effectively, yet remained con
strained enough to avoid averaging out subtle local variations. 
Additionally, real-time monitoring effectively detected and localized 
shifts, though grid identification, especially in simultaneous shift cases, 
was dependent on the shift size, affected areas, and grid size. Moreover, 
the proposed CNN-based control chart outperformed existing methods, 
particularly in detecting small global shifts, localized shifts, and simul
taneous shifts.

Several promising directions can further enhance this framework. 
First, detecting more complex shift types — such as rotational shifts — 
would broaden the model’s applicability beyond translational motion. 
Second, incorporating adaptive or dynamic grid selection strategies may 
improve both detection sensitivity and localization accuracy. Third, 
future works can focus on improving within-grid interpretability. 
Importantly, validating the framework on experimentally acquired 
speckle images from real industrial systems (e.g., wear or deformation 
monitoring) is beneficial for assessing practical viability. Finally, eval
uating the method against a broader range of image-based monitoring 
models and analyzing statistical properties such as multiple testing ef
fects across grids would further strengthen its reliability and bench
marking value.
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Appendix. Fundamentals of convolutional neural networks

CNNs consist of many different layers: Input Layer, Convolutional Layers, Batch Normalization Layers, Activation Layers, Pooling Layers 
(downsampling), Fully Connected Layers, Dropout Layers, Softmax & Classification Layers.

The input layer ensures that the image data fed into the network matches the dimensions expected by the subsequent layers, allowing the CNN to 
process and learn from the image data effectively.

The convolutional layer is the core building block of a CNN. The more convolutional layers a CNN has, the deeper it becomes. It applies a series of 
filters (kernels) to the input images to produce feature maps. Each filter is a small matrix that slides over the image, performing element-wise 
multiplications and summing the results. This operation is known as convolution: 

(I*K)(i, j) =
∑h− 1

m=0

∑w− 1

n=0
I(i+m, j+ n)K(m, n), (1) 

where I is the H × W input image and K is the h × w kernel/filter applied to the image. The number of filters determines how many such kernels are 
used in the layer, (i,j) are the coordinates in the output feature map with i from 0 to H-h and j from 0 to W-w, and (m,n) are the coordinates within the 
filter K. In addition, in convolution layers, padding is the process of adding extra pixels (usually zeros) around the input image before applying a 
convolution operation. This helps control the output size and preserve spatial information, especially near the edges. If no padding is used (also called 
valid convolution in this case), the convolution shrinks the image and edge pixels get used less, leading to loss of detail. The same padding keeps the 
input and output size the same, while full padding makes the output size larger than the input. Another operation considered in convolution is called 
dilation. Dilation expands the receptive field without increasing filter size by inserting gaps (zeros) between kernel elements. This helps detect larger 
patterns while preserving details. If the dilation factor = 1 (standard convolution), there will be no gaps, and it is suitable for a small receptive field. If 
the dilation factor = 2, there will be one zero between kernel elements and it suits a larger receptive field. If the dilation factor = 3+, there will be more 
gaps and it covers even larger spatial features.

The batch normalization layer normalizes the activations of the previous layer for each mini-batch. This helps to stabilize and accelerate training. 
Mathematically, if x is the input to the batch normalization layer, the output x̂ is computed as: 

x̂ =
x − μ
̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2 + ε

√ .γ + β, (2) 

where μ is the mean of the mini-batch, σ2 is the variance of the mini-batch, ε is a small constant for numerical stability, and γ and β are learnable scaling 
and shifting parameters.

The activation function introduces non-linearity into the network, enabling it to learn more complex patterns. The Rectified Linear Unit (ReLU) 
function is commonly used, which is defined as: 

ReLU(x) =
{

x ifx > 0
0 ifx ≤ 0 , (3) 

The pooling layer reduces the spatial dimensions (height and width) of the feature maps while retaining the most important information. Max pooling is 
a common pooling technique where the maximum value is taken from each patch of the feature map.

The dropout layer is a crucial component in neural network architectures which can be used to prevent overfitting by randomly dropping units 
during training. The output h̃i of neuron i after applying dropout is given by: 

h̃i =

{
hi/(1 − p) if ri = 1

0 if ri = 0 , (4) 

where ri is the dropout mask indicating whether the neuron is dropped or not. Note that the kept neurons are then scaled by 1/(1 − p) to compensate for 
the fact that dropout reduces the number of active neurons.

The fully connected layers connect each neuron in the current layer to every neuron in the previous layer. They are typically used at the end of the 
network to produce the final output. For a fully connected layer with input vector x and weight matrix W, the output vector y is computed as: 

y = W.x+ b, (5) 

where b is the bias vector.
The softmax Layer converts the raw output scores (logits) of the network into probabilities that sum up to 1, which represent the likelihood of each 

class. Given the input vector z = [z1, z2,⋯, ztc], where tc is the number of classes, the softmax function for class i is applied as: 

pi =
ezi

∑tc
j=1ezj

, (6) 

where pi is the probability of class i and zi is the raw score (logit) for class i. The output in this layer is a vector where each element in it represents the 
probability of a class, i.e., p = [p1, p2,⋯, ptc].
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The purpose of the classification Layer is to compute the classification loss and to evaluate the performance of the network during training and 
validation. It also handles the final step of converting the network’s output into a predicted class label. It contains two components: 

i) Loss Function: For a multi-class classification problem, the classification Layer typically uses the cross-entropy loss function. For true labels y =
(
y1,y2,⋯,ytc

)
, where yc is 1 if class c is the true class, and 0 otherwise, and predicted labels ŷ =

(
ŷ1, ŷ2,⋯, ŷtc

)
, where ̂yc is the predicted probability 

for class c, the cross-entropy loss is calculated as L(ŷ,y) = −
∑tc

c=1yclog
(
ŷc
)
.

ii) Output: The classification Layer outputs the loss value for a batch of data, which is used to update the network’s weights during training. It also 
determines the predicted class by selecting the class with the highest probability from the softmax Layer.

The Softmax and Classification layers are typically used together at the end of a neural network to handle the final stage of classification. Here is 
how these layers work together:

Forward Pass: 

• The network’s final fully connected (dense) layer produces raw scores (called logits) for each class.
• The Softmax layer converts these logits into a probability distribution over the classes.
• The Classification layer (or loss layer) computes the loss (e.g., cross-entropy loss) based on the true class labels and the predicted probabilities from 

the Softmax layer.

Backward Pass (Training): 

• During backpropagation, the Classification layer computes the gradient of the loss function with respect to the network’s output.
• These gradients are propagated backward through the Softmax and earlier layers to compute gradients with respect to the weights.
• Finally, the network’s weights are updated (e.g., via gradient descent) to minimize the loss.

Other than layers, which define the main structure of a CNN, another crucial factor in designing a CNN model is the choice of hyperparameters, and 
their values/types should be carefully selected for any specific need.

The main hyperparameters in a CNN architecture are learning rate, mini-batch size, number of epochs, number of filters (kernels), dropout rate, 
weight decay, and optimizer type.

The learning rate (η) controls the step size at each iteration while moving toward a minimum of the loss function (see optimizer types below for 
details; Equations 10 and 11).

The mini-batch size (B) is the number of training examples used to calculate the gradient at each iteration. The batch gradient descent is: 

∇θJ(θ) =
1
B
∑B

i=1
∇θJ(θ; xi, yi), (7) 

where θ represents the parameters of the model (weights and biases), B is the mini-batch size, and (xi,yi) represents the training samples (xi) and their 
corresponding labels (yi).

The number of epochs is the number of complete passes through the entire training dataset. Each epoch involves one full cycle of updating the 
weights with all the training samples.

The number of iterations in each Epoch is calculated as NumberofTrainingSamples
B .

Number of filters determines the number of features detected in each layer. Filters (or kernels) are used in convolutional layers to detect features in 
the input image.

Dropout is a regularization technique to prevent overfitting by randomly setting a fraction p of the input units to 0 at each update during training. 

h̃ =
h

1 − p
.r, (8) 

where h is the input to the dropout layer (the activations from the previous layer), p is the dropout rate, r is a random binary mask where each element 
is 1 with probability 1 − p and 0 with probability p, and h̃ is the output after applying dropout.

Weight decay (λ) is a regularization technique that adds a penalty proportional to the magnitude of the weights to the loss function. The regula
rization term is: 

Jtotal = J(θ) + λ‖θ‖2
, (9) 

where J(θ) is the original loss function and λ‖θ‖2, with ‖θ‖2
=

∑
iθ

2
i (sum of squared weights), is the weight decay term.

Optimizers play a crucial role in the efficiency and effectiveness of the training process, addressing various challenges in gradient-based optimi
zation. Common optimizers include Stochastic Gradient Descent (SGD) and Adaptive Moment Estimation (Adam). Adam is built on concepts from two 
other optimization methods: Momentum and RMSProp (Root Mean Square Propagation), combining them in a way that adapts the learning rate for 
each parameter. Below, the mechanisms of SGD and Adam are explained.

Stochastic Gradient Descent (SGD): In SGD, the parameters θ are updated at each iteration t according to the following rule: 

θt+1 = θt − η∇θJ(θt), (10) 

where t is the iteration step, η is the learning rate, and ∇θJ(θt) is the gradient of the loss function J with respect to θ at step t. Here, η directly scales the 

H. Sabahno and D. Khodadad                                                                                                                                                                                                               Computers & Industrial Engineering 210 (2025) 111538 

15 



gradient, controlling the size of the step taken towards the minimum of the loss function.
Adaptive Moment Estimation (Adam): In Adam, the update rule is more complex and involves the estimation of both the first and second moments of 

the gradients. The updates are as follows 

mt = β1mt− 1 +(1 − β1)∇θJ(θt),

vt = β2vt− 1 +(1 − β2)∇θJ(θt)
2
,

m̂t =
mt

1 − βt
1
, v̂t =

vt

1 − βt
2
,

θt+1 = θt − η m̂t
̅̅̅̅̅
v̂t

√
+ ε

, (11) 

where m and v are estimates of the first and second moments of the gradient, β1 (mean of the gradients, typically set to 0.9) and β2 (uncentered 
variance of the gradients, typically set to 0.999) are the hyperparameters for these estimates, and ε is a small constant (typically set to 10− 8). η scales 
the ratio of the bias-corrected first-moment estimate m̂t to the square root of the bias-corrected second-moment estimate ̂vt, ensuring that updates are 
well-scaled for different parameters.

Data availability

Data will be made available on request.
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