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Abstract

Teams are dynamic systems that develop, adapt, and change as members interact and
respond to their environments. Theory in organizational research emphasizes that
team phenomena are multilevel, temporal, and often nonlinear. Yet, the statistical
methods commonly used to study teams have lagged behind these theoretical ad-
vances, limiting empirical progress. This dissertation addresses this methodological
shortcoming through three papers.

In Paper I, we critically examine existing approaches to the empirical estimation
of consensus emergence, the process through which initially diverse individual per-
ceptions converge into a shared team perspective. We introduce a formal statistical
definition of consensus emergence and demonstrate common pitfalls, such as con-
flated variance components and model misspecification.

In Paper II, we extend heterogeneous variance models by integrating Gaussian
processes. This framework provides a flexible way to capture nonlinear changes in
variability over time, thereby allowing richer insights into how convergence and di-
vergence unfold within teams.

In Paper III, we turn to the evolution and consequences of emergent states. Using
the development of new venture teams as an empirical context, we propose a joint
modeling framework to study how trust trajectories are shaped by significant events
and, in turn, how trust predicts member departure. The model further accounts for
non-ignorable missing data through a shared-parameter specification.

Together, these contributions advance the methodological toolkit for studying
emergent team phenomena. By aligning statistical models more closely with theoret-
ical advances, the dissertation provides researchers with tools to rigorously examine
how collective states form, evolve, and influence outcomes in dynamic organizational
settings.
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Popular Science Summary

We spend much of our lives in groups - families, school classes, sports teams, or work
projects. Teams, in particular, are central to modern organizations. They are not static
entities: trust can build or erode, members can leave or join, and events can strengthen
or disrupt collaboration. Understanding these dynamics is crucial but studying them
is challenging. The dynamics are complex, they change over time, do not progress
smoothly, and they often look different across individuals and teams.

This thesis develops new statistical methods to help researchers better capture
how teams evolve. The first part focuses on how shared team states, such as team trust
or team cohesion, are formed. Researchers often assume that individuals in a team
gradually converge toward a common perspective, but current statistical measures can
give misleading results about whether this is happening or not. We propose a new way
of defining and estimating these processes, which avoids several common pitfalls.

The second part addresses how team dynamics unfold over time. Using advanced
tools from machine learning, we develop methods that allow for nonlinear patterns
such as rapid increases followed by plateaus, which traditional models cannot cap-
ture. These methods also make it possible to study how variability itself changes, for
example, whether team members are becoming more similar or more different over
time.

The third part investigates what happens once a shared state has formed. We
study trust in entrepreneurial teams, showing how significant events can disrupt or
strengthen trust, and how trust influences whether members stay or leave. To do this,
we combine models for changes over time with models for discrete events, while also
accounting for the fact that survey responses are often missing in ways that are not
random.

Altogether, the thesis shows how more flexible and precise statistical methods can
provide deeper insights into how teams function, adapt, and sometimes fall apart.
These tools bring researchers closer to answering important questions about collab-
oration in organizations. These questions matter not only for research but also for
practice in workplaces where teamwork is essential.
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1. Introduction

Humans tend to organize themselves in groups. We live in families, go to school where
students are gathered in classes, join teams at work, and often identify with broader
communities such as hobby groups or sports clubs. Exactly what constitutes a group
has been debated among social psychologists (see, e.g., Brown and Pehrson (2020)
and Forsyth (2018)), but here we adopt the broad definition that a group is “two or
more individuals who are connected by and within social relationships” (Forsyth, 2018,
p. 27). Group research spans many fields in the social sciences, encompassing interests
at the individual level, the group level, and the interplay between them. The unifying
interest lies in group dynamics; the scientific study of the processes that unfold within
and between groups over time (Forsyth, 2018). These processes shape how members
relate to one another, how groups respond to their environments, and ultimately what
they achieve.

Within this broad landscape of group dynamics, this dissertation focuses on teams
in organizational contexts. Teams are dynamic social systems: they form, develop, and
adapt as members join and leave, as roles and norms evolve, and as the external envi-
ronment shifts. To capture these complexities, organizational researchers increasingly
rely on multilevel theories that link individual behaviors, team-level properties, and
broader contextual factors (Mathieu et al., 2017). Such theories emphasize that teams
are embedded in time: team properties and processes emerge, evolve, and change in
response to both internal interactions and external demands. Yet, despite this recog-
nition, the statistical methodologies available to study temporal dynamics in teams
have not kept pace with theoretical developments (Eckardt et al., 2021; Kozlowski
& Chao, 2018; Marks et al., 2001). This creates a growing gap between theoretical
ambition and empirical practice.

A central distinction in the team literature is between processes and emergent states.
Processes are the interdependent actions through which members coordinate, moni-
tor, and regulate their joint work, whereas emergent states are cognitive, motivational,
and affective properties of the team that arise from interactions and in turn influence
subsequent processes (Marks et al., 2001; Mathieu et al., 2017). Examples of emer-
gent states include cohesion, trust, and shared mental models. These constructs are
not static: they vary as a function of prior experiences and team context, and they
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can shift rapidly in response to events. Team research therefore often examines both
the temporal unfolding of emergent states and the feedback loops between states and
processes (Mathieu et al., 2017).

Emergent states can arise through different forms of emergence, most commonly
described as composition and compilation (Kozlowski & Chao, 2018; Kozlowski &
Klein, 2000). In composition emergence, individual attributes or perceptions con-
verge over time as members share experiences and interact in a common context.
The result is a shared property at the team level, often captured by the aggregation
of member responses. The process that creates these shared properties is called con-
sensus emergence. Classic examples of composition emergent states include cohesion
or climate, where convergence in perceptions reflects a genuine team-level state. In
contrast, compilation emergence reflects the integration of differentiated, rather than
convergent, individual contributions. Here, a team-level property arises from a pat-
terned configuration of diverse inputs across members. For example, a transactive
memory system emerges when members develop specialized knowledge and a shared
understanding of “who knows what.” Both forms of emergence are central to team
functioning, yet they pose different theoretical and methodological challenges: com-
position requires modeling convergence and agreement over time, whereas compila-
tion requires attention to patterns, networks, and distributions across members.

Once higher-level properties emerge, they can shape behavior through both bottom-
up and top-down processes (Kozlowski & Chao, 2018). Concepts such as trust, co-
hesion, and consensus emergence illustrate why temporal, multilevel thinking is es-
sential. Trust, for instance, is theorized to emerge from interpersonal interactions,
to evolve dynamically over time, and to influence key outcomes such as performance
and member retention (Costa et al., 2018). Although trust is recognized as dynamic,
most empirical work has relied on static or cross-sectional designs. There is a need for
longitudinal research that investigates how trust evolves over time, what predicts tran-
sitions between stages of trust development, and how trust at different stages relates
to team outcomes (Costa et al., 2018).

Despite these theoretical advances, there remains a significant methodological
gap. Current statistical approaches often treat dynamic constructs as if they were
static, rely on overly simplistic aggregation with a heavy focus on means and cor-
relations, or impose (too) restrictive assumptions of linearity (Eckardt et al., 2021;
Kozlowski & Chao, 2018; Mathieu et al., 2017).

We can divide research on emergence into two complementary areas. The first
concerns how emergent states come to be: how individual-level perceptions and behav-
iors interact to form higher-level team properties, whether through composition or
compilation. The second concerns what happens once emergent states exist: how these
dynamic constructs evolve over time, what predicts their trajectories, and how they
relate to important outcomes. Both perspectives require methodological advances.

Methods for disentangling consensus emergence from other parallel processes are
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still underdeveloped (Dishop, 2022; Lang et al., 2019), and the models commonly
used in practice lack the flexibility to capture the nonlinear and discontinuous changes
that characterize many psychological phenomena (Failenschmid et al., 2025; Vowels,
2023). On top of these challenges, the practical realities of survey-based longitudinal
research such as participant fatigue, non-ignorable missing data, and arbitrary time
intervals, further complicate inference (Daniels & Hogan, 2008; Kozlowski & Chao,
2018). Taken together, these limitations mean that multilevel theory has advanced
more rapidly than available methodology, leaving key theoretical propositions empir-
ically underexamined.

To model emergence, we need methods that can separate the focal construct from
other parallel processes, account for multilevel dependence, and represent nonlinear
trajectories. To model the evolution of team dynamics, we need longitudinal frame-
works that can capture dynamic change, link to outcomes, and handle missingness
appropriately. Such methodological advances are required for the progression of the
research field.

In sum, team research is motivated by rich theoretical questions about emergent
and evolving collective phenomena. Yet to realize this ambition, statistical methods
must advance to capture the multilevel, temporal, and nonlinear nature of the data,
and to guard against conflated processes and spurious conclusions. The methodolog-
ical contributions of this dissertation are directed at closing that gap.

Paper I and II are devoted to methods for composition emergence. In the first
paper, we take measure of existing methods for consensus emergence and illustrate
common pitfalls, for instance caused by utilizing methods for static constructs on
dynamic constructs, or misspecified models that fail to account for dynamics present
in data. In the second paper, we extend commonly used multilevel models to allow for
nonlinear change by combining them with Gaussian processes, which gives a flexible
approach that allows deeper insights into the process of consensus emergence. The
third paper is devoted to the modeling of trajectories of dynamic concepts over time,
how they are affected by events, and how they relate to other outcomes of interest.

The remainder of the thesis is structured as follows. The next section outlines the
statistical foundations that underpin the work presented in the three papers. This is
followed by a summary of the papers themselves, and the thesis ends with conclusions
and an outlook for future research.
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2. Background

The introduction outlined a central gap in team research: theory emphasizes that
many team phenomena are dynamic, multilevel, and often nonlinear, yet many of
the statistical methods commonly applied does not account for this. Here we review
the foundations of the statistical methods on which the contributions of this disserta-
tion builds. Each subsection introduces a key class of models, starting with multilevel
models as the baseline framework, then extending to approaches that allow heteroge-
neous variances, nonlinear trajectories, and the integration of longitudinal processes
with discrete events and missing data. Together, these methods illustrate how increas-
ingly flexible models can better capture the complexities of group dynamics.

2.1 Multilevel Models

To begin, we consider how to handle the nested structure of group data. When study-
ing group dynamics, data are typically nested : repeated observations are collected from
individuals, and those individuals belong to groups such as teams or school classes.
This creates dependencies: observations from the same person are correlated, and peo-
ple from the same team share experiences that also make their responses correlated.
Standard linear regression models assume that residuals are independent. When this
assumption is violated, as in nested data, the residuals are positively correlated and
the model effectively treats dependent observations as if they were independent. This
leads to underestimated standard errors and inflated Type I error rates (Raudenbush,
2002; Snijders & Bosker, 2011).

Multilevel models, also known as mixed effects models, hierarchical linear models,
or random effects models, were developed to address this issue (Goldstein, 2011; Rau-
denbush, 2002; Snijders & Bosker, 2011). They provide a principled way to account
for dependencies by including random effects at each relevant level of the hierarchy.

A basic three-level model can be specified as follows:

ytij = x′
tijβ + ω0j + v0ij + etij ,

ω0j → N
(
0,σ2τ0

)
, v0ij → N

(
0,σ2v0

)
, etij → N

(
0,σ2e

)
.

(2.1)
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Here, ytij is the response at time t for person i in group j, where t = 1, . . . , Ti, i =
1, . . . ,mj , j = 1, . . . , J . The model contains a set of fixed effects x′

tijβ, a group-
specific random effect ωj , an individual-specific random effect vij , and a residual
term etij . Each random effect is assumed independent and normally distributed with
mean zero and constant variance. The group-level random effect ωj captures similari-
ties among members of the same group, reflecting shared experiences or environments
(for example, a common leadership style or group climate). The individual-level ran-
dom effect vij captures similarities among repeated measures from the same person,
reflecting person-specific tendencies such as being generally more or less trusting. By
including both group- and individual-level random effects, the model accounts for the
dependencies inherent in nested data: observations are no longer incorrectly treated as
independent, but their correlation structure is explained by shared latent components
at the relevant levels (Goldstein, 2011; Snijders & Bosker, 2011).

The random effects specified above are also know as random intercepts, which
can be interpreted as individual or group-specific deviations from the fixed intercept
β0. The model can also include random slopes. For example, one may allow different
individuals within a class to have different learning trajectories by including ttijvij in
the model. This way, we can study both the global average change over time and how
individuals deviate from it, some with steeper or flatter trajectories. Similarly, one can
allow for different group trajectories by including ttijωj , introducing random slopes
at the group level.

Example. Imagine we want to study how team trust among individuals within a
group develops over time. A classic linear regression would fit a single straight line,
describing the average change across all individuals and ignore the nested dependency
structure of repeated observations of individuals. In reality, individuals may differ:
some begin with higher or lower trust (different intercepts), and some build trust
faster than others (different slopes). A random intercept allows each person to start at
their own baseline trust level, while a random slope allows for individual differences
in how trust changes over time.

Figure 2.1 illustrates this idea. All three plots show observations from the following
multilevel model:

ytij = β1t+ v0ij + v1ijt+ etij ,

v0ij → N
(
0,σ2v0

)
, etij → N

(
0,σ2e

)

We then fit three models to this data; a standard linear regression model with
only fixed effects, a multilevel model with random intercepts, and finally a multilevel
model with both random intercept and slope. The figures show the fitted regres-
sion lines ŷtij , and colored dots for three different individuals. Figure 2.1a show the
population-level fitted trajectory, which is the same for all individuals. Figure 2.1b
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show subject specific fitted trajectories (using best linear unbiased predictors, BLUPs
(C. R. Henderson, 1975)) of the random intercepts. Here the model allows for differ-
ent initial levels of trust but assumes the same trajectory over time, seen by the parallel
lines. Finally, Figure 2.1c show subject specific fitted trajectories using BLUPs of the
random intercepts and slopes. Here the model captures both that individuals have
different initial trust levels, as well as different trajectories over time.

0

4

8

0 1 2 3 4
Time

y 
,  
ŷ

(a) Fixed effect model
ytij = β1t+ etij

0

4

8

0 1 2 3 4
Time

y 
,  
ŷ

(b) Random intercept:
ytij = β1t+ v0ij + etij

0

4

8

0 1 2 3 4
Time

y 
,  
ŷ

(c) Random intercept &
slope: ytij =

β1t+ v0ij + v1ijt+ etij

Figure 2.1: Fitted trajectories from three multilevel specifications applied to the same
repeated-measures data on team trust (three individuals shown). Lines are (subject
specific) fitted trajectories ŷtij . The panels contrast how different multilevel specifi-
cations allow for different trajectories across individuals.

While multilevel models provide a flexible framework for capturing average trends
and differences in individual or group trajectories, they assume that the variability
around these effects is constant. In practice, however, the amount of variability may
itself depend on individual or group characteristics, or change over time. To address
this, we turn to location–scale models, which explicitly model such heterogeneity in
variances.

2.2 Location-Scale Models

While multilevel models address dependencies, they assume constant variability across
groups, individuals, or time. Yet in team research, variability itself can be substantively
meaningful. The classic multilevel model (2.1) assumes that the variability around
group and individual effects is constant, that is, homoscedastic error terms and ran-
dom effects. In practice, however, this assumption is often too restrictive: the amount
of variability can itself differ between groups, between individuals, or across time. For
example, some groups may be more homogeneous than others, or some individuals
may show more fluctuation in their responses than others.
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Location–scale models (e.g. Cleveland et al. (2002), Foulley and Quaas (1995), and
Lee and Nelder (2006)), also called heterogeneous variance models, address this by
introducing separate submodels for the variances, known as scale models. Instead of
assuming constant variances, the distributional assumptions in the multilevel model
(2.1) are replaced with:

ωj → N
(
0,σ2τj

)
, σ2τj = exp

(
x′
jδτ
)
,

vij → N
(
0,σ2vij

)
, σ2vij = exp

(
x′
ijδv

)
,

etij → N
(
0,σ2etij

)
, σ2etij = exp

(
x′
tijδe

)
.

(2.2)

Here the variances are allowed to vary across groups, individuals, and/or time
points. To ensure positivity, they are modeled as exponential (or equivalently, log-
linear) functions of covariates x. These covariates can come from the current level or
higher. For instance, the between-individual variance σ2vij could vary as a function
of individual-level characteristics such as gender, or as a function of group-level char-
acteristics such as the group’s gender composition. The framework can be extended
further by including random effects also in the scale part of the model, e.g.

σ2vij = exp
(
x′
ijδv + ωj

)
, (2.3)

where ωj captures random group deviations around the expected between-individual
variability.

Example. Returning to the study of team trust, imagine that individuals differ not
only in their average trajectories, but also in how much variability there is around
those trajectories. Younger individuals may be more similar to each other in their
initial trust, while older individuals may show a wider spread due to more varied past
experiences. In this way, the variance itself becomes a quantity of interest, potentially
explained by covariates such as age or gender. One could also imagine that the vari-
ability in trust increases over time as individuals interpret events differently. Figure 2.2
illustrates how location scale models capture this.

First, consider the case of measurement-level heterogeneity, where the variability
of the residuals increases over time. Figure 2.2a shows observations, the model implied
mean trajectory and a pointwise 95% predictive interval for a singe observation at time
t around it, from the following model:

ytij = β1t+ etij ,

etij → N
(
0,σ2etij

)
,σ2etij = exp(δet).

The predictive interval (the shaded area) shows how the variability increases as a func-
tion of time.
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Next, consider the case where the individual-level variability varies as a function
of age. We use the following model:

ytij = β1t+ v0ij + etij ,

etij → N
(
0,σ2e

)
,

v0ij → N
(
0,σ2v0ij

)
,σ2v0ij = exp (δ0 + δ1(age− age)) .

Figure 2.2b show individual trajectories for two individuals of different age without
noise, i.e. β1t + v0ij , and observations including noise (points). The shaded areas
show the dispersion of latent individual means across hypothetical people of that age
around the trajectories, excluding measurement noise. Figure 2.2c show the scale
model; the variance as a function of age. The points mark the two individuals from
Figure 2.2b. The variability for individuals aged 25 (blue) is smaller than the variability
for individuals aged 47 (red).
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0 1 2 3 4
Time

y

(a) Measurement-level scale:
mean trend with pointwise

95% predictive band.
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(b) Individual-level scale by
age: two individuals’ fitted

trajectories and
between-person variability.

0.5
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1.5

2.0
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σ
v 0
ij

2

(c) Variability as a function
of age; points correspond to
the two individuals in (b).

Figure 2.2: Two different scale models for team trust. (a) Measurement-level het-
eroscedasticity. (b) Individual-level scale by age: two individuals’ trajectories. (c)
Variability function used in (b), with the same individuals marked.

Location-scale models thus extend multilevel models by allowing heterogeneity
in the amount of variability. However, both frameworks still assume linear trajecto-
ries of change over time. To capture nonlinear patterns in team trust, for instance,
rapid increases early on followed by plateaus, we turn toGaussian process models which
provide a flexible way to represent nonlinear trajectories.

9



2.3 Gaussian Processes

Beyond nested structures and variance heterogeneity, many group processes evolve
in nonlinear ways. While multilevel and location-scale models allow for individual
and group heterogeneity, they typically assume a predefined, most often linear or
polynomial, functional form for the trajectories over time. In many applications,
however, this is unrealistic: group processes may accelerate, decelerate, or fluctuate
over time, and a more flexible method is required. To model such complex nonlinear
patterns, Gaussian processes (GPs) can be used.

GPs are a flexible, nonparametric tool used for fitting continuous functions in
statistics and machine learning (Rasmussen, 2003; Rasmussen & Williams, 2006;
Roberts et al., 2013). The advantage compared to the traditional multilevel and location-
scale models is that we need not commit to a functional form in advance, but only
need to specify a mean function, which describes the average level of the process at
each time, and a covariance (kernel) function, which controls how strongly values at
two different times move together. Hence the GPs are often considered a nonpara-
metric method.

Restricting our treatment to the temporal setting, the function corresponds to a
trajectory over time, f(t). The observations at any set finite set of time points are
assumed to follow a multivariate Normal distribution. That is, at each time point
t, the estimate f(t) is a Normal random variable, and for two time points t and
t′ the joint distribution of [f(t), f(t′)] is bivariate Normal and so on. A Gaussian
process is fully specified by its mean function µ(t) = E[f(t)] and covariance function
Σ(t, t′) = C[f(t), f(t′)].

Several kernel functions are commonly used in practice (Rasmussen & Williams,
2006). Their basic components are the variance σ2 and a length-scale parameter, &,
that controls how quickly correlations decay with distance. One of the most common
kernels is the squared exponential kernel :

Σ(t, t′) = σ2 exp

(
−(t− t′)2

2&2

)
. (2.4)

It produces very smooth functions with strong correlations for points close in time.
To allow for different degrees of smoothness, kernels from the Matérn family can be
used. The general form is

Σ(t, t′) = σ2
21−ν

Γ(ν)

(√
2ν |t− t′|

&

)ν

Kν

(√
2ν |t− t′|

&

)
, (2.5)

where ν > 0 controls smoothness, Γ(·) is the gamma function, and Kν is the mod-
ified Bessel function. Larger ν yields smoother trajectories; the squared exponential
kernel is recovered as ν → ∞. If ν = 1/2, the exponential kernel is obtained, which
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models correlations that decay exponentially with distance, producing rougher, less
smooth sample paths compared to the squared exponential kernel:

Σ(t, t′) = σ2 exp

(
− |t− t′|

&

)
. (2.6)

The periodic kernel can be used to capture recurring patterns, such as cycles or
seasonal effects:

Σ(t, t′) = σ2 exp

(
−
2 sin2

(
π|t− t′|/p

)

&2

)
. (2.7)

Here, p is the period and & controls how quickly correlations decay away from exact
multiples of p, so that correlations are strongest for points separated by multiples of
the period.

Most standard kernels, as the ones introduced above, yield stationary processes
where the expected values and variances are assumed to be constant across time, and
the covariances depend only on time lag, not the actual values of time (Rasmussen
& Williams, 2006; Shumway et al., 2000). However, the kernels can be modified to
account for non-stationarity (see e.g. Rasmussen and Williams (2006).

Example. Returning again to the study of team trust, suppose that trust does not
evolve as a straight line but instead follows nonlinear trajectories where it can grow,
plateau, and dip over time. Such nonlinear patterns cannot be captured by a simple
random slope. Gaussian processes, however, provide the flexibility to represent these
curved and fluctuating trajectories. Figure 2.3 illustrates this idea, showing three in-
dividual trajectories (different colors) modeled using a Gaussian process. The data is
generated from the following model:

ytij = vij(t) + etij ,

etij → N
(
0,σ2e

)
,

where vij(t) is a GP with mean function set to zero, and a Matérn kernel with with
σ2 = 1, & = 3, and ν = 2.4. The residual variance is σ2e = 0.1. The GPs follow the
individual observations (points) in a more flexible way than the previously discussed
models.

Gaussian processes thus extend the multilevel framework by moving beyond lin-
earity, providing a powerful way to capture nonlinear dynamics in group processes.
Yet many research questions involve not only how a process evolves over time, but
also how it relates to discrete events (e.g., when individuals leave a team). To address
this, we turn to joint models, which combine longitudinal and event-history data in a
unified framework.
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Figure 2.3: Illustration of how Gaussian process models can capture nonlinear trajec-
tories in team trust. Unlike the linear patterns in multilevel or location-scale models,
Gaussian processes allow trajectories to bend and fluctuate smoothly over time, re-
flecting more complex and flexible patterns of change. The parameters are set in the
example in the main text.

2.4 Joint Models

So far, we have focused on modeling longitudinal processes such as changes in team
trust over time. In many applications, however, researchers are also interested in dis-
crete events, such as when individuals leave a team. The central question is how the
longitudinal process is related to the timing of the event. To address this, joint models
combine a longitudinal model with an event history (or survival) model in a single
framework (Asar et al., 2015; R. Henderson et al., 2000). The aim is to quantify the
association between the two processes, while appropriately accounting for uncertainty
in both.

Let Yit be the longitudinal outcome of individual i at time t, and (Ti, Di) the
event history outcome for the same individual. Here, Ti = min(T̃i, Ci) is the ob-
served event time variable, where T̃i is the time to event, and Ci the time to censoring
(i.e., the exact event time is unobserved). Di is an event indicator, Di = I(Ti = T̃i)
which indicates whether the event happened during the study period.

A basic joint model can then be specified as

Yit = Mit + εit = Xitβ + Zitvi + εit,

vi → N(0,σ2v),

εit → N(0,σ2ε ),

hi(t) = h0(t) exp (Wiα+Mitγ) .

(2.8)
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The longitudinal model is commonly specified as a linear mixed model, i.e. a
multilevel model. Here Mit = Xitβ +Zitvi is the linear predictor with fixed effects
β and individual-specific random effects vi, and εit are error terms. Individuals (and
thus their random effects) are assumed independent, and errors are assumed mutually
independent and independent of the random effects. The model can be generalized
to accommodate non-continuous outcomes or multiple longitudinal processes (Ri-
zopoulos, 2012).

The event history submodel models the hazard : the moment-to-moment risk that
an event happens now, given it hasn’t happened yet (e.g., the chance a team member
leaves at this instant, among those still on the team). It specifies the hazard of the
event of interest as a function of time and the longitudinal process. Here h0(t) is the
baseline hazard, Wi are covariates with fixed effects α, and Mit is the linear predictor
from the longitudinal model. The parameter γ captures the association between the
longitudinal process and the event: in the simplest case, a one-unit increase in the
current value of the longitudinal process corresponds to a γ-fold change in the hazard
of the event. Other association structures are the current slope, where the slope of the
longitudinal trajectory at a specific point in time is associated with the hazard, and
the cumulative association, where the accumulated information about the longitudi-
nal process up until the specific time point is used to explain the hazard rate. (see
Rizopoulos, 2012, Section 5.1)

As in traditional survival analysis, we assume non-informative censoring (Aalen et
al., 2008; Rizopoulos, 2012), meaning that the censoring time is independent of the
risk of experiencing the event. A further key requirement is the conditional indepen-
dence assumption: given the random effects, longitudinal outcomes are independent
of each other and of the time-to-event outcome. These assumptions make it possible
to factorize the joint likelihood into separate parts for the submodels.

Example. Consider the association between team trust and the decision to leave
the team. Joint models may capture this phenomenon by simultaneously estimating
the trajectory of trust and the risk of leaving the team, thereby quantifying how the
trust influences the hazard of leaving. Figure 2.4 illustrate a longitudinal trajectory
of trust, and how different association structure affect the hazard. The current value
association connects the value of trust at a time point to the hazard of leaving at that
same timepoint. The current slope association connects the rate of change in trust to
the hazard att that time point. This is suitable if we believe that rapid changes in trust
influence the risk of leaving more than than the actual value of trust. Finally, we have
the cumulative association structure, suitable if we believe that the full history of an
individuals team trust can explain the hazard of leaving the team.

Joint models thus extend the multilevel framework by linking longitudinal pro-
cesses with discrete events. This allows researchers to address substantive questions
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Figure 2.4: Joint model associations between team trust and the hazard of leav-
ing the team. Bottom row shows an example trust trajectory m(t); top row
shows the corresponding hazard λ(t) under three association structures: (A) current
value, λ(t) = h0(t) exp{γm(t)}; (B) current slope, λ(t) = h0(t) exp{γm′(t)}
(black segments mark local slope windows); and (C) cumulative (area), λ(t) =
h0(t) exp{γ

∫ t
0 m(u) du} (shaded area indicates the cumulative exposure). Verti-

cal dashed lines align the evaluation times across panels. Here γ < 0, so higher trust
implies lower hazard.

about how within-team dynamics (such as trust) relate to major transitions (such as
leaving the team). A further complication in empirical research, however, is that
longitudinal data are often incomplete. In the next section we therefore turn to the
problem of missing data.

2.5 Non-Ignorable Missing Data

In empirical research, missing data are almost inevitable, particularly in longitudinal
team studies where participant fatigue, attrition, and dropout are common (Kozlowski
& Chao, 2018). Rubin’s (1976) taxonomy distinguishes between three types of miss-
ingness: Missing Completely at Random (MCAR), where the probability of missingness
is unrelated to either observed or unobserved data; Missing at Random (MAR), where
missingness may depend on observed but not unobserved data; and Missing Not at
Random (MNAR), where the probability of missingness can depend, in addition to
the observed data, on the unobserved values themselves.
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When no data are missing, inference is based on the full-data model

p(y | x, θ), (2.9)

where y is the observed response vector, x the observed covariates, and θ the param-
eters of interest. With incomplete data, the setup must also account for the missing
observations ymis and missingness indicators r. Let Y = (Yobs,Ymis) denote the
complete responses and R are missingness indicators, with 1 indicating that Y is
observed and 0 that Y is unobserved. The full-data model can then be factorized as

p(yobs | x,ω) =
∫

ymis

∫

r

p(yobs,ymis, r | x,ω) dr dymis (2.10)

=

∫

ymis

∫

r

p(yobs,ymis | x, θ) p(r | yobs,ymis,x,ψ) dr dymis

with ω = (θ,ψ). Under MCAR, or MAR and some additional assumptions to en-
sure ignorability (Daniels & Hogan, 2008), inference may proceed using only the
observed-data likelihood based on p(y | x, θ). In contrast, under MNAR, the miss-
ingness mechanism p(r | y,x,ψ) must be modeled explicitly (Daniels & Hogan,
2008; Little & Rubin, 2020). If this mechanism is ignored, estimates can be severely
biased.

There are three types of main modeling approaches for MNAR data; selection
models, pattern mixture models, and shared parameter models (Daniels & Hogan,
2008). Common for them is that they allow the probability of missingness to depend
directly on unobserved values. For this relationship to be possible to identify from
observed data, additional assumptions are required. Unfortunately, these assumptions
cannot be verified empirically. Consequently, MNAR analyses are necessarily sensitive
to modeling choices, and transparency about these assumptions is essential (Daniels
& Hogan, 2008; Mason et al., 2012).

In studies of group dynamics, constructs of interest are often latent and mea-
sured indirectly through repeated indicators (e.g., team trust). In such cases, shared-
parameter models provide a natural approach. These models introduce random effects
b that are common to both the outcome and missingness processes:

p(y, r | x,ω) =
∫

p(y, r,b | x,ω) db. (2.11)

A typical specification links a dropout (event-history) model to the same random
effects that drive the longitudinal trajectories. Shared-parameter models are thus a
subclass of joint models, where both observed responses and missingness patterns
inform the estimation of the latent trajectory.
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Example. Consider studying how team trust develops over time. If individuals with
low trust are more likely to not respond to surveys, the missingness mechanism de-
pends on unobserved outcomes, i.e. an MNAR situation. A shared-parameter model
would assume that the same latent factors driving each person’s trust trajectory also
influence their risk of dropping out, indirectly linking the two processes. Assum-
ing we have made plausible assumptions regarding the missingness mechanism, the
model makes it possible to draw inferences about the development of trust despite
non-ignorable missingness, and also to learn how the latent trust affects the risk of
not answering the survey.
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3. Summary of the Papers

Paper I: Empirical Estimation of Consensus Emergence: Progress,
Pitfalls, and the Path Forward

The first paper addresses the first perspective outlined in the introduction: how emer-
gent states come to be. We focus on the empirical estimation of consensus emergence,
a central mechanism through which composition emergent states form. Consensus
emergence describes the process by which initially diverse perceptions within a team
align into a shared group perspective. Despite its theoretical importance, existing
statistical approaches risk producing misleading conclusions. The traditionally used
intraclass correlation coefficient (ICC) conflates individual- and group-level variance,
and the Consensus Emergence Model (CEM), proposed as an alternative, has been
cautioned to risk spurious conclusions.

We argue that debates around these measures conflate distinct statistical prob-
lems. To address this, we introduce a formal, model-independent definition of statis-
tical consensus emergence, which we use to clarify three fundamental pitfalls: (1)
non-identifiability of the consensus emergence process, (2) inappropriate statistics
that conflate sources of variance across levels, and (3) model misspecification. Us-
ing derivations and simulations, we show how these pitfalls can bias conclusions and
discuss strategies to mitigate them.

Methodologically, this work advances the foundations for studying emergent group
phenomena by clarifying what it means to capture consensus emergence in statistical
terms. By connecting the theoretical construct of consensus emergence to a proper
statistical representation, the paper directly addresses the gap outlined in the intro-
duction between multilevel theory and empirical practice. It also offers guidance for
applied researchers aiming to study how team-level states originate from individual
perceptions with greater conceptual clarity and statistical rigor.
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Paper II: Heterogeneous Variance Models with Gaussian Pro-
cesses

The second paper extends the discussion to another core challenge highlighted in the
introduction: modeling nonlinear dynamics in team processes. A recurring idea in
team research is that changes in variability over time can signal meaningful phenom-
ena, such as increasing convergence or divergence within a team. Existing approaches,
such as heterogeneous variance models (HVMs) and mixed-effect location–scale mod-
els, make it possible to study variability as a construct in its own right. However, these
models typically rely on restrictive functional forms, limiting their ability to capture
the nonlinear and irregular dynamics that characterize many emergent states.

In this paper, we extend HVMs by incorporating Gaussian Processes (GPs), yield-
ing a flexible framework for modeling heterogeneous variance in continuous time.
This integration allows us to represent nonlinear changes in variability across hier-
archical levels and to accommodate irregularly spaced measurement occasions, while
preserving the ability of HVMs to decompose variance into distinct sources. Through
simulations and empirical illustrations, we show that HVMs with GPs offer greater
flexibility, improved fit, and allow a deeper understanding of the pattern whereby the
variability decreases, compared to traditional HVMs.

Methodologically, the contribution lies in combining variance modeling with
nonlinear temporal dynamics, thereby equipping researchers with tools to better study
emergent team phenomena as dynamic systems. By addressing the lack of methods
that can capture nonlinear and time-dependent processes, this paper provides a path
toward better capabilities to empirically test multilevel theories about how emergent
states come to be.

Paper III: How Significant Events and Team Trust in New Ven-
ture Teams Predict Member’s Departure

The third paper turns to the second perspective outlined in the introduction: once
an emergent state has formed, how does it evolve over time and relate to important
outcomes? We focus on team trust, a central emergent state theorized to be dynamic
and consequential for team functioning (Costa et al., 2018). Despite its prominence
in theory, most empirical work on trust has relied on cross-sectional data or simple
longitudinal designs, leaving little insight into how trust develops, how it is disrupted
by events, and how it predicts team members’ decisions to stay or leave.

In this study, we investigate the longitudinal dynamics of team trust in the con-
text of new venture teams. We propose a joint modeling framework that unifies two
methodological challenges highlighted in the introduction. First, trust evolves dy-
namically and may change as a function of significant events, and in turn, trust may
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affect how individuals perceive these events. To model this, we extend the traditional
joint model to incorporate trust as a latent variable and model the longitudinal tra-
jectory and its relation with the events. Second, longitudinal team data are often
incomplete, with attrition that is likely related to unobserved trust levels; we address
this by modeling missingness as Missing Not at Random (MNAR) using a shared-
parameter model. The joint model thus combines a latent longitudinal process for
trust with a survival model for member departure, and a shared parameter model for
missing data, allowing us to estimate how both how trust changes over time and as
a function of events, and how trust relates to the hazard of leaving the team while
accounting for missing data.

Substantively, the findings illustrate how significant events shape trust trajectories
and, in turn, how trust shapes the perception of events, and how disruptive events act
as a mediator between trust and the risk of member exit. Methodologically, the contri-
bution lies in demonstrating how joint models can accommodate longitudinal latent
variables common in psychology and organizational behavior, relations between lon-
gitudinal trajectories and events, and MNAR missing data within a single framework.
This extends the methodological toolbox for studying emergent team states after their
formation, aligning statistical models with the temporal and multilevel complexity
of team dynamics emphasized in the introduction. In doing so, the paper illustrates
how advancing statistical methods makes it possible to empirically examine theoretical
propositions about the evolution and consequences of emergent states in teams.
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4. Conclusions and Outlook

This dissertation has been motivated by a central gap in the study of team dynamics:
while theory emphasizes that teams are multilevel, temporal, and nonlinear systems,
statistical methods have often lagged behind, treating dynamic constructs as static,
relying on simple aggregation, and imposing overly restrictive assumptions that fail
to adequately capture the necessary dynamic properties. As a result, key theoretical
propositions about how emergent states form, evolve, and influence outcomes remain
empirically underexamined.

Across the three papers, we take steps toward closing this gap. First, we clarify the
statistical foundations of consensus emergence and highlight pitfalls that arise when
inappropriate or misspecified models are used. Second, we extend existing multilevel
variance models by incorporating Gaussian Processes, thereby providing a flexible
framework for capturing nonlinear temporal dynamics. Third, we demonstrate how
joint models can integrate latent variables, dynamic longitudinal processes, significant
events, and non-ignorable missing data, enabling the study of how emergent states
evolve over time and relate to important outcomes such as team member departure.

Together, these contributions advance the methodological toolkit for studying
emergent phenomena in teams. They show how statistical methods can be adapted to
reflect the complexity of team dynamics, separating processes across levels, modeling
nonlinear change, and accommodating the realities of longitudinal data. By aligning
methods more closely with theory, this dissertation contributes to more rigorous and
conceptually faithful empirical research on how teams develop, adapt, and sustain
their functioning over time.

4.1 Outlook

While the methodological advances presented in this dissertation address several chal-
lenges in studying emergent team phenomena, much remains to be done. Rapid
developments in machine learning and the increasing availability of large-scale data
sources hold promise for new approaches within team and group dynamics. Equally
important is the adaptation of statistical methods that are already well established in
other fields but have yet to be applied in group research. The challenge lies in tailor-
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ing these tools so that they yield interpretable results and contribute meaningfully to
theory development.

Several important questions remain for composition emergence. For instance,
models that account for the patterns it can take, such as unequal contributions from
members or the role of emerging leaders. There is also a clear need for longitudinal
models that identifies theorized stages and transitions between them, for instance in
the development of trust from knowledge-based to identification-based forms (Costa
et al., 2018). At the same time, compilation emergence remains comparatively un-
derexplored (Eckardt et al., 2021; Kozlowski & Chao, 2018), calling for methods that
can capture differentiated, non-additive patterns such as transactive memory systems.
Future work should also address reciprocal feedback loops between emergent states
and team processes, where constructs such as trust or cohesion may both shape and
be shaped by ongoing interactions (Cronin et al., 2011; Marks et al., 2001; Math-
ieu et al., 2017). Finally, the joint modeling framework is promising for studying
team dynamics, and can be developed for more complex structures such as multiple-
membership and three-level settings (Tierens et al., 2021), and with richer association
structures than the simple current-value specification used here.

Taken together, these avenues underscore that the study of emergent team phe-
nomena remains both theoretically rich and methodologically challenging. Progress
will depend on continued efforts to develop models that disentangle complex forms of
emergence, capture stage-like transitions, represent reciprocal feedback loops, and ac-
commodate multilevel organizational structures. By advancing such methods, future
research can bring statistical practice closer to the temporal, multilevel, and nonlinear
complexity of team dynamics, thereby enabling more rigorous tests of the theoretical
propositions that motivated this dissertation.
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