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Abstract 

Background: Abdominal computed tomography (CT) is a vital diagnostic tool in 
modern healthcare. Contrast media (CM)-enhanced CT carries risks of ionising 
radiation-induced cancer and kidney injury from iodinated CM in patients with pre-
existing renal disease. Detecting small, low-contrast liver lesions, such as metastases, is 
challenging due to image noise. Recently introduced dual energy (DE) CT enables 
chemical element identification. 

Aims: I. To assess image quality in a CT protocol balancing radiation and CM doses 
by age, reducing radiation for younger patients and CM for the elderly. II. To 
investigate attenuation properties of chemical elements at varying energy levels in DE 
CT, identifying candidates for dual-CM use with iodine. III. To evaluate the effect of 
simulated radiation dose reductions on liver metastasis detection and characterisation. 
IV. To explore detection of small, low-contrast lesions in low-dose phantom images 
using standard and sharp convolution kernels, with and without iterative 
reconstruction (IR). 

Methods: I. Patients were stratified into four age groups, with radiation dose increasing 
and CM dose decreasing with age. Image quality was assessed objectively via contrast-
to-noise ratio (CNR) and subjectively using visual grading characteristics (VGC) in an 
observer study. II. Alongside iodine, gadolinium (Gd), tantalum (Ta), tungsten (W), 
gold (Au), and bismuth (Bi) were examined across energy levels in a DE CT scanner. 
DE ratios were calculated, and material decomposition (MD) was performed using 
software. III. Patients with and without hypovascular metastases were included. Images 
with reduced doses (75%, 50%, 25%) were simulated by adding noise, and lesion 
detection/characterisation were analysed using JAFROC in an observer study. IV. Six 
phantoms, with and without lesions, were scanned at a low dose to produce high-noise 
images, with lesion detection assessed in an observer study, this time using JAFROC1. 

Results and Conclusions: I. CNR remained consistent across groups, but subjective 
quality was poorer at the lowest radiation dose. Balancing radiation and CM is feasible, 
though noise impacts subjective quality. II. Ta, W, and Au are optimal for novel CM 
alongside iodine. III. Metastasis detection/characterisation was non-inferior at 75% 
dose, but benign lesion accuracy decreased; modest dose reduction is viable for younger 
patients. IV. A sharp kernel improved detection of small, low-contrast lesions, with no 
added benefit from IR. 
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Populärvetenskaplig sammanfattning 

Datortomografi, eller skiktröntgen som det också kallas, är en mycket viktig 
undersökningsmetod inom dagens sjukvård. Metoden bidrar med avgörande 
information i många olika situationer, såväl akuta sjukdomstillstånd som vid utredning 
av misstänkt eller känd allvarlig sjukdom, t.ex. cancer. 

Vid datortomografiundersökning av buken är två faktorer avgörande för kvaliteten av 
de bilder röntgenläkaren skall bedöma – Hur mycket röntgenstrålning och mängden 
kontrastmedel som används. För lite röntgenstrålning ger brusiga bilder, vilket kan 
försvåra upptäckt av viktiga fynd, å andra sidan är röntgenstrålning en riskfaktor för 
cancer och måste alltid minimeras så mycket som möjligt. Risken för framtida cancer 
efter en datortomografundersökning är ytterst minimal för den enskilda patienten, men 
strålningen kan orsaka skador på arvsmassan i cellerna vilka, efter många år, kan 
utvecklas till en cancersjukdom. 

Kontrastmedel i samband med datortomografi ges via en nål, direkt in i blodbanan. 
Därefter fördelas kontrasten i kroppens organ med blodcirkulationen. De 
kontrastmedel som idag används vid datortomografi innehåller grundämnet jod, vilket 
dämpar röntgenstrålarna och därför framträder ljust på bilderna. Den ökade kontrasten 
i bilden som kontrastmedel ger är avgörande för att kunna upptäcka många olika 
förändringar orsakade av sjukdom. Man kan likna det vid att man tänder en lampa som 
lyser upp datortomografibilderna. Även användning av kontrastmedel medför risk för 
biverkningar. Allergiska reaktioner kan uppstå, jodinnehållet kan påverka sköldkörteln, 
men den viktigaste risken är att jodkontrastmedel kan orsaka njurskada, främst hos 
patienter som redan har sjukdom eller skador i sina njurar och därigenom nedsatt 
njurfunktion. 

När man utformar en datortomografiundersökning för en specifik patient är det därför 
viktigt att anpassa såväl mängden röntgenstrålning som vilken dos kontrastmedel som 
skall ges. Det är viktigt att med hög sannolikhet kunna besvara de frågeställningar som 
föreligger och samtidigt minimera de risker som undersökningen medför. 

Jod är sedan lång tid tillbaka det grundämne som används i kontrastmedel via 
blodbanan i samband med datortomografi. Olika grundämnen har olika egenskaper 
vad gäller att dämpa röntgenstrålar. Ju större en atom är, desto mera energirik 
röntgenstrålning kan den dämpa. Energinivån i röntgenstrålarna som produceras i en 
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datortomograf är egentligen lite för höga för att jod på bästa sätt skall kunna dämpa 
dem. Till viss del kan man kompensera för detta genom att sänka energinivån så mycket 
som möjligt. Då blir jodkontrastmedlets nyans i bilderna ljusare, men dessvärre får 
röntgenstrålarna med låg energi samtidigt svårare att ta sig igenom kroppens vävnader 
varför bilderna får sämre kvalitet. Ett annat sätt att anpassa sig till energinivån i 
datortomografen hade varit att använda andra grundämnen i kontrastmedlet för att 
dämpa röntgenstrålarna. Denna idé är inte ny, det har under flera årtionden pågått 
forskning om nya kontrastmedel innehållande olika röntgentäta grundämnen. Det är 
dock inte känt vilket eller vilka grundämnen som är bäst lämpade för användning i 
dagens datortomografer. Utöver fördelen att alternativa kontrastmedel skulle kunna 
dämpa röntgenstrålarna mera effektivt, kan de också användas parallellt med 
jodkontrastmedel i en och samma undersökning.  Moderna datortomografer kan känna 
igen olika grundämnen och om två kontrastmedel används samtidigt, t.ex. ett i 
blodbanan och ett annat i tarmen, skulle man kunna inhämta mera information på en 
och samma gång. Vilket eller vilka grundämnen som är bäst lämpade för användning 
parallellt med jod är dock inte fastställt. 

Som beskrivits ovan medför exponering för röntgenstrålning en liten, men befintlig, 
risk för framtida cancerutveckling hos patienten. Det viktigaste är att alltid väga för och 
nackdelar för patienten med att över huvud taget genomgå en undersökning, att utföra 
en så kallad berättigandebedömning. I de flesta fall är nyttan med den kliniska 
informationen som undersökningen ger mycket större än den minimala risken för 
framtida cancer. Onödiga undersökningar bör dock undvikas och man skall överväga 
nyttan med datortomografi extra noga när det gäller unga patienter, då vissa vävnader 
är mera känsliga för röntgenstrålning när man är ung. Unga personer har även en längre 
kvarvarande livslängd, vilket ökar risken för att en skada på arvsmassan hinner utvecklas 
till cancer. 

Datortomografi av buken är en mycket viktig undersökning vid utredning av många 
olika cancersjukdomar. En vanlig följdeffekt av olika cancerformer är metastaser, även 
kallat dottersvulster, i levern, vårt största inre organ. Metastaserna i levern kan vara 
svåra att upptäcka då de kan vara små och deras nyans i bildernas gråskala endast avviker 
diskret från omgivande levervävnad. En faktor som försvårar upptäckten är bruset i 
bilderna. Som nämndes ovan ökar bruset i bilderna när man använder sig av minskad 
mängd röntgenstrålning. Men var går gränsen? Hur mycket brus är för mycket för att 
vi med god säkerhet skall kunna upptäcka metastaserna? Om det skulle visa sig att man 
kan upptäcka metastaserna även när brusnivån är lite högre skulle de rutinmässiga 
undersökningarna kunna utföras med mindre mängd strålning. 

Bruset i datortomografibilder avgörs dock inte enbart av stråldosen som använts. I en 
datortomografi sker väldigt avancerade matematiska beräkningar och procedurer där 
den ursprungliga informationen från de insamlade röntgenstrålarna omvandlas till 
bilder av patienten avbildad i olika plan. Ett steg inom dessa procedurer är en 
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matematisk filtrering av informationen. I detta steg kan olika typer av filter användas, 
vilket påverkar bildernas utseende. Filtren, som benämns med det engelska ordet 
”kernels”, kan vara skarpa eller mjuka. Ett skarpt filter förbättrar upplösningen i 
bilderna och ger mera kantförstärkning av olika konturer i bilden, medan ett mjukare 
filter ger en lite mera suddig bild. Att använda ett skarpt filter medför dock också att 
mängden brus i bilden ökar och att bruset blir mera finkornigt. Ett mjukare filter ger 
lägre brusnivå och lite mera grovkornigt brus. Mjuka filter brukar användas vid 
undersökning av buk och lever. Det är dock oklart vilken typ av filter som är bäst när 
det gäller att upptäcka små metastaser i levern. Kanske kan ett skarpare filter på grund 
av den förbättrade upplösningen förbättra möjligheterna till upptäckt, trots att 
brusnivån samtidigt ökar? 

Under det senaste decenniet har en helt ny typ av bildbearbetning inom datortomografi 
tillkommit. Metoden kallas ”iterativ rekonstruktion”, vilket betyder att bilderna 
bearbetas om och om tills bildkvaliteten uppnår en viss önskad nivå. Denna metod kan 
sänka brusnivån i bilderna ordentligt, men förändrar också upplösningen i bilderna och 
hur bruset ser ut, ungefär som när ett mjukt filter används. Det är därför oklart om och 
i så fall hur mycket användning av denna nya typ av bildbearbetning kan förbättra 
möjligheterna till upptäckt av metastaser i levern. 

Denna doktorsavhandling består av fyra delarbeten, vars syfte och metodik är: 

Delarbete I: Att undersöka om det går att balansera mängden röntgenstrålning och 
dosen av jodkontrastmedel mot varandra vid datortomografi av buken och erhålla 
likvärdig bildkvalitet. Genom att balansera dessa faktorer mot varandra skulle man 
kunna använda sig av olika undersökningsmetodik beroende på patientens ålder och på 
det viset minimera de risker som är viktigast för den aktuella åldern. Vid undersökning 
av unga patienter skulle stråldosen då kunna reduceras samtidigt som 
kontrastmedelsdosen ökas. För äldre patienter det omvända. Resultatet skulle bli lägre 
stråldos för unga patienter och att äldre patienter skulle få en lägre dos kontrastmedel, 
vilket är gynnsamt då äldre patienter oftare har nedsatt njurfunktion. Ett 
undersökningsprotokoll uppdelat i fyra åldersgrupper hade införts för akuta 
datortomografiundersökningar vid Skånes Universitetssjukhus i Malmö. 
Undersökningar av patienter i den yngsta åldersgruppen utfördes med halverad stråldos 
jämfört med en standardundersökning. Med stigande ålder ökades stråldosen samtidigt 
som kontrastmedelsdosen minskades. Den äldsta gruppen undersöktes med 50% ökad 
stråldos för att möjliggöra en 18%-ig sänkning av dosen kontrastmedel. 25 patienter i 
varje grupp (totalt 100) samlades in i efterhand och bildkvaliteten analyserades på två 
olika sätt: objektivt genom mätningar i bilderna och subjektivt genom att fyra 
röntgenläkare poängsatte hur väl olika organ och strukturer i buken avbildades. 

Delarbete II: Att undersöka vilket eller vilka grundämnen som lämpar sig bäst som 
kontrastmedel att användas parallellt med jodkontrastmedel samt att se om ett 
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datorbaserat bildbehandlingsprogram därefter kan känna igen de olika grundämnena 
och färgkoda dem olika i bilderna. Flera olika grundämnen valdes ut genom att 
information om deras förmåga att bryta röntgenstrålar med olika energinivå 
inhämtades från tabeller. Jod, gadolinium, wolfram, tantalum, guld och vismuth valdes 
ut och lösningar av dessa ämnen undersöktes i en datortomograf med alla tillgängliga 
energinivåer. Utvalda kombinationer av grundämnen och energinivåer analyserades 
därefter i bildbehandlingsprogrammet för att se om de kunde färgkodas olika. 

Delarbete III: Att undersöka om det går att minska mängden röntgenstrålning vid 
datortomografiundersökningar av buken, med bevarad förmåga att upptäcka metastaser 
i levern. En mjukvara som simulerar att en undersökning är utförd med lägre stråldos 
genom att lägga till brus i bilderna användes. Genom att använda redan befintliga bilder 
för att simulera undersökningar utförda med lägre stråldos undviker man risken att, 
som en del av studien, utföra undermåliga undersökningar. 39 patienter samlades in i 
efterhand, 19 med levermetastaser och 20 kontrollpatienter utan metastaser. Bilder 
motsvarande följande stråldosnivåer (jämfört standardprotokoll = 100%) simulerades: 
75%, 50% och 25%. Möjligheten att upptäcka metastaser i levern bedömdes av fem 
röntgenläkare.  

Delarbete IV: Att undersöka hur olika typer av brus i bilderna, skapade med olika filter, 
påverkar möjligheten att upptäcka små metastasliknande förändringar i ett konstgjort 
test-objekt. Test-objektet undersöktes i en datortomograf med väldigt lite 
röntgenstrålning för att skapa bilder med mycket brus. Därefter användes tre filter med 
olika grad av skärpa, utan och med ”iterativ rekonstruktion”. Möjligheten att upptäcka 
förändringarna bedömdes av fem granskare. 

Resultat och bedömning: 

I delarbete I visade den objektiva bedömningen av bildkvalitet likvärdiga resultat mellan 
alla åldersgrupper, oavsett hur röntgenstrålning och kontrastmedel balanserades mot 
varandra. Dessa resultat visar att det går att balansera röntgenstrålning och 
kontrastmedel och ändå erhålla likvärdig bildkvalitet. I den subjektiva bedömningen, 
där röntgenläkare betygsatte avbildningen av strukturer i buken fick dock den yngsta 
gruppen, där patienterna undersökts med lägst stråldos och brusnivån i bilderna var 
högst, sämre resultat än övriga grupper. Då objektiv och subjektiv bedömning inte 
överensstämmer avseende den yngsta gruppen är det svårt att avgöra om bildkvaliteten 
i den gruppen var tillräckligt bra. Det är möjligt att metoden som användes för subjektiv 
bildkvalitet inte riktigt lyckades bedöma den ljusare nyansen i bilderna från den ökade 
mängden kontrastmedel. 

I delarbete II visade sig grundämnena tantalum, wolfram och guld vara optimala 
kandidater för kontrastmedel som kan användas samtidigt som jodkontrastmedel. 
Dessa grundämnen kunde urskiljas och färgkodas effektivt av bildbehandlings-
programmet. Gadolinium och vismuth var däremot mindre lämpliga, då de ej kunde 
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separeras lika effektivt från jodkontrastmedlet. Det finns i dagsläget inga alternativa 
kontrastmedel baserade på de grundämnen som gav bäst resultat i studien, men 
forskning pågår och experimentella kontrastmedel är under utveckling. 

I delarbete III visade resultaten att bilder med 75% simulerad stråldos, alltså 
motsvarande en minskning av mängden röntgenstrålning med 25%, vara lika bra som 
100%-bilder för att upptäcka levermetastaser. Möjligheten att upptäcka metastaser var 
klart sämre i bilder med 50% och 25% stråldos. Redan vid 75% stråldos visade det sig 
dock vara svårare att skilja godartade förändringar från metastaser, en oönskad effekt 
som kan leda till onödig uppföljning av patienter.  

I delarbete IV visade sig möjligheten att upptäcka små förändringar vara klart bättre i 
bilder skapade med det skarpaste filtret och tillägg av iterativa rekonstruktioner gav 
ingen ytterligare förbättring. Detta resultat är intressant då bilderna skapade med det 
skarpaste filtret även var de som hade den högsta brusnivån. Detta betyder sannolikt 
att det mera finkorniga bruset och den förbättrade upplösningen i bilderna underlättar 
upptäckt av metastaser trots att det samtidigt föreligger en ökning av den totala 
brusnivån. 

Sammanfattningsvis visar resultaten från de fyra delarbetena att datortomografi-
undersökningar av buken kan utföras på olika vis, där mängden röntgenstrålning och 
kontrastmedel balanseras mot varandra, med bevarad objektiv bildkvalitet. Upptäckt 
av levermetastaser är likvärdig vid undersökning med standardmässig och 25% 
reducerad stråldos. Tillsammans medför dessa resultat en möjlighet att undersöka unga 
patienter med lägre stråldos utan att riskera att man missar viktiga fynd. Att använda 
sig av skarpare filter i de bildskapande processerna kan ytterligare förbättra den 
diagnostiska bildkvaliteten. Slutligen är grundämnena tantalum, wolfram och guld 
optimala kandidater för att användas i framtida kontrastmedel, tillsammans med 
befintliga jodkontrastmedel. 
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Introduction 

History of Computed Tomography 

In 1971, at Atkinson Morley Hospital in London, a radiologist carefully removes the 
Polaroid camera from the small screen of the viewing unit attached to the first 
experimental computed tomography (CT) scanner. The camera has just captured an 
image displayed on the screen: an axial slice of a patient's head with a resolution of 80 
x 80 pixels. 

The image was produced two days after the patient’s examination, during which she 
positioned the top of her head inside the water-filled gantry of the scanner. Each of the 
approximately eight slices took around five minutes to acquire. The delay between 
acquisition and final image production is due to the computational demands of image 
reconstruction, which had to be performed on an offsite mainframe computer—the 
only available system capable of handling such demanding calculations (1–4).  

The difference between the scenario described above and today's incredibly fast CT 
scanners is remarkable—modern systems can scan large sections of a patient's body in 
just a few seconds and produce high-resolution multi-planar images almost instantly. 
In the following section the extraordinary progress of CT science and technology in the 
last half century will be briefly described, focusing on a few particularly influential 
individuals and important developments. 

The two men being primarily recognised for the invention of computed tomography 
are Sir Godfrey Hounsfield and Allan MacLeod Cormack, sharing the 1979 Nobel 
Prize in Physiology or Medicine. 

Allan MacLeod Cormack was a Cambridge-educated, South African physicist starting 
his academic career at Cape Town University and after a few years moving to Tufts 
University in the US. Here he got an opportunity to work in collaboration with the 
Harvard Cyclotron Laboratory. While the primary focus of Cormack’s research was the 
polarization and scatter of proton beams, he pursued a long-standing side project in his 
personal time. This project stemmed from a problem he encountered during a brief 
period overseeing radiotherapy at Groote Schuur Hospital in Cape Town. To optimize 
radiation treatment, Cormack realized that knowledge of the attenuation properties of 
the tissues surrounding the target organ would be valuable. This led Cormack to 
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perform experiments using a basic setup with a gamma ray emitting Cobalt-60 source 
and a Geiger counter as the detector. The objects scanned in this experimental setup 
were discs made from different materials. The discs were first horizontally translated in 
41 positions through the beam of gamma rays, whereafter the disc was rotated and the 
procedure repeated at 25 positions, 7.5 degrees apart. The data from these experiments 
gave Cormack the means to eventually find a solution to the “line integral problem” as 
he named it, i.e. to establish a mathematical solution making it possible to calculate the 
attenuation coefficients of the different materials within the disc using only data from 
external readings. Cormack assumed a solution to this mathematical problem already 
existed and he searched the literature as well as asking prominent physicists and 
mathematicians at prestigious Universities, but to no avail (5).  

Cormack´s method was published in an article named “Representation of a Function 
by Its Line Integrals, with some Radiological Applications” in 1963 (5,6).  

However, it is now recognized that earlier scientific research in diverse fields, including 
mathematics, astronomy, and electron microscopy, had already explored similar 
problems (3–5). The publication which today is considered most important is “Über 
die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser 
Mannigfaltigkeiten” by Radon in 1917 (7). Radon describes a mathematical procedure 
now called the “Radon transfer” which, just like Cormack, describes a function, or 
object, by its line integrals from all angles. The Radon transfer is a foundation of image 
reconstruction techniques still used in computed tomography - more on that in a later 
section. Rediscovered after many years was also the work by Tetel’baum and colleagues 
in the Soviet Union in the 1950s. This group had theoretically and experimentally 
developed a working version of computed tomography (8). The research never led to 
any clinical implementations, though, and knowledge of its existence did not reach the 
western world until much later. 

The person who undoubtedly played the most important part in the actual 
development of early computed tomography scanners was the British engineer Godfrey 
Hounsfield. Hounsfield was employed at EMI Ltd in London and had previously led 
EMI’s development of the EMIDEC 1100 computer. In the late 1960s, after working 
several years on an eventually discontinued project trying to develop a new type of 
computer memory storage, Hounsfield was given freedom to explore ideas for new 
products. He was intrigued with the problem of determining the contents of a box by 
examining it from the outside. This led to Hounsfield inventing a computational 
method for determining individual values within the cells of small matrices such as 3 x 
3 and up to 8 x 8, from the sums of horizontal, vertical and diagonal rows. Even if 
Hounsfield, just like Cormack before him, was unaware of the earlier research he soon 
realized that the most promising application for his ideas was to use X-ray in a new 
way, better determining the internal structures of a human (9). In a fascinating 
document, a project proposal asking for external funding, Hounsfield in 1968 describes 
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theories and possible practical applications of CT with astonishing clarity. The 
document contains description of his computational reconstruction method, as well as 
sketches of how a tumour within a body might be depicted with CT. Hounsfield even 
introduces the concept of “windowing” to be able to handle different levels of contrast 
within images (3,9). 

At the time, many radiologists struggled to recognize the potential of Hounsfield’s 
ideas. In radiology, detail resolution had long been considered one of the most critical 
image quality criteria. As a result, many radiologists could not see the value of 
Hounsfield's vision: lower-resolution images capable of accurately describing the X-ray 
properties of internal structures (2,3). This serves as an important lesson: we must 
remain curious and receptive to new ideas and technologies, even when their potential 
benefits are not immediately obvious. In today’s world, where technological 
advancements occur at an unprecedented pace, this kind of open-mindedness is more 
crucial than ever. Eventually, Hounsfield struck a collaboration with neuroradiologist 
James Ambrose at Atkinson Morley Hospital who could envision the revolutionary 
potential in the technique.  

 

Figure 1 EMI Record label  
Contrary to the legend, the work of Godfrey Hounsfield’s team at EMI, developing the first CT-scanners, 
had a very tight budget and did not receive any funds from EMI’s music division. Copyright: KarleHorn 
From: https://commons.wikimedia.org/wiki/File:Label_LP_Sgt_Pepperjpg.jpg. 

Another problem during this early development phase was the severely constrained 
budget for the project. EMI, at the time, did not have a division for medical technology 
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and the available funds at the research lab were limited. By using technical parts left 
over from earlier projects, keeping the team small and eventually securing some 
financial support from the government (Department of Health and Social Security) it 
was possible to carry on and in 1971 the first prototype of a clinical CT scanner, the 
one described in the first paragraph of this text, was produced. The famous first clinical 
examination, of a patient with a cystic brain lesion, was performed on October 1st 1971 
(9). 

 

Figure 2 Early clinical CT scan of a brain with a lesion  
One of the first images produced by the CT-scanners developed at EMI, revealing a cystic lesion within the 
right frontal lobe. Copyright Oliver Taubmann, Martin Berger, Marco Bögel, Yan Xia, Michael Balda, 
and Andreas Maier. Reproduced under Creative Commons CC BY-SA 4.0. 
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Figure 3 EMI Brain scanner  
One of the first clinically used CT-scanners, located at Atkinson Morley Hospital, London in 1971. To 
reduce the attenuation difference between the head and its surroundings the top of the head is placed in 
a rubber cap within the gantry, surrounded by water. Copyright: Science Museum Group. EMI CT Brain 
Scanner. 1980-811 Science Museum Group Collection Online. Accessed 13 September 2025. 
https://collection.sciencemuseumgroup.org.uk/objects/co134790/emi-ct-brain-scanner. Reproduced under 
Creative Commons CC BY-SA 4.0. 

As groundbreaking as Hounsfield’s purely computational image reconstruction method 
was, it had a serious flaw - it was computationally demanding, making the 
reconstruction process on the computers of the era excruciatingly slow. Fortunately, 
there were other parallel developments that made the first commercial CT, the EMI 
Mark 1, possible, namely the launch of the “minicomputers” and more importantly the 
development of the filtered back projection (FBP) image reconstruction technique. 
Minicomputers were hardly small by today’s standard, being the size of a cupboard, but 
compared to the off-site mainframe computers used prior, they made possible the 
commercial product of a CT scanner with its adjoining computer (3). FBP technique 
will be discussed in more detail in a later section, but it was a leap forward in terms of 
the reduced computational demand from image reconstruction, reducing the time 
needed manifold. It is not easy to establish exactly how FBP came into being as similar 
techniques were developed simultaneously but important work was performed by 
Ramachandran who in 1971 published mathematical works on how to reconstruct the 
structure of an object from its “shadowgrams” from different angles.(10) Soon 
thereafter FBP was demonstrated for positron images by Chesler et al and the 
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mathematician Christopher Lemay, working with Hounsfield at EMI, is often credited 
with creating the version used in the EMI scanners (1,11). 

EMI presented their first commercial CT scanner at the annual meeting of the 
Radiological Society of North America (RSNA) in 1972 to a warm reception, and 
several orders of scanners were received (9). 

Hounsfield and Ambrose each published one article in 1973 describing the system and 
early experiences from the clinical cases examined (12,13). From this point on a 
multitude of different producers entered the field of CT, small firms as well larger 
players already established in the field of radiology, and the progress accelerated further. 

 

Figure 4 CT-scan of Godfrey Hounsfield’s abdomen  
A “portrait” of the main inventor of the CT-scanner is called for and what can be more appropriate than 
an image produced by his invention. This is one of the earliest CT-images of a human abdomen and was 
presented by Hounsfield himself at an international symposium in Bermuda in 1975. Copyright: Beckmann 
EC. CT scanning the early days. The British Journal of Radiology. 2006 Jan;79(937):5–8. Available from: 
https://academic.oup.com/bjr/article/79/937/5-8/7443496 Reproduced with permission from British 
Institute of Radiology. 
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CT-Scanner Generations  

First generation 
Early EMI scanners were so-called first-generation CT scanners as they were 
constructed with a pencil X-ray tube emitting a single ray through the object with a 
single detector on the opposite side of the gantry. Using the translate-rotate technique, 
the tube and detector were moved stepwise across the object measuring the linear 
attenuation one position at a time. Readings were made in 160 positions along the 
object after which the tube and detector setup was rotated one degree, and the process 
repeated. This way the scanner worked its way around the half circumference of the 
gantry producing in total 160 x 180 measurements per slice, a process of around 5 
minutes (3,4). The X-ray tube had tube potential values of 100 – 140 kVp and the 
detector was a sodium iodide scintillator coupled to a photomultiplier tube. While still 
being considered first generation, the EMI scanners were soon equipped with two 
separate detectors placed on top of each other in the cranio-caudal direction, facilitating 
the data collection of two slices at one time (3). 

The scanners of this first generation are long gone, but knowledge and understanding 
of these systems are still important as its basic geometry makes the principles of CT 
physics and reconstruction techniques more approachable as compared to the more 
complex later generations. 

Second generation 
The second generation of CT scanners added more detectors, placed in a row along the 
slice and collecting measurements from a fan shaped beam. For example, if the scanner 
had 6 detectors and a fan beam with an angular width of 6 degrees, each position of the 
tube and detectors along the circumference collected 6 rays traversing the object at 
different angles. In a first-generation scanner all these rays would have been measured 
one at a time. Therefore, in this example, the gantry positions can be reduced by a 
factor of 6, substantially decreasing the scan time (4,9). Within this second generation 
of scanners, the first whole body scanners were released. As the scan time was still long, 
scanning of the thorax and abdomen was very difficult due to e.g. breathing motion 
(2,3). 

Third generation 
If the first two generations of CT scanners were quite similar, the third generation was 
a big leap forward and made possible several succeeding developments. The defining 
attribute of the third generation was that the detector row now was so wide that the fan 
beam covered the whole object. This rendered the “translate”-part of translate-rotate 
obsolete (4). The now multiple detector elements were initially of the ionization 
chamber type, e.g. Xenon detectors. Siemens then introduced a detector constructed 
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from a solid scintillator coupled to a photodiode and this technique has since been the 
most commonly used type – at least until the recent emergence of photon counting 
detectors (3). More on detector technique later. 

Slip ring and multislice scanning 

There were fourth- and fifth- generation CT scanners, but they never became dominant 
and modern scanners are based on the third generation, with several important 
improvements. Among the most significant improvements are the slip ring technology 
and multislice scanning. The slip ring is a technical part within the gantry of a CT 
scanner transferring power to the X-ray tube and collecting data from the detector in a 
continuous manner obviating the need for cables. In this way the slip ring facilitates 
uninterrupted rotation of tube and detector as compared to the stop-and-reverse 
procedure needed when cables are used. The slip ring thereby opened the door for 
helical scanning covering larger part of the body in a single scan (1,4). 

Multislice scanning is based on the introduction of multiple rows of detectors along the 
length of the patient, examining more “slices” at the same time. During the 1990’s and 
2000’s the number of detector rows steadily increased to eventually reach todays levels 
of up to around 320 slices. These large numbers of detector rows enable very thin slices, 
to the sub-millimetre level. Thin slices in turn make the voxels (or volumetric pixels) 
of CT data isotropic and image reformation in multiple planes is possible, a 
functionality taken for granted in today’s radiology practice (14). Even more important 
in the context of this thesis is how helical, multislice scanning, by covering a larger 
anatomic area in a shorter time, opened new avenues for the use of intravenous contrast 
media in abdominal and urological imaging. As a scan covering the liver or kidneys 
could be performed in less than 25 seconds it was possible, for most patients, to perform 
a scan during a single breath hold, minimizing motion artefacts. The improved 
temporal resolution also facilitated the introduction of multiphase examinations, 
capturing different contrast media phases, i.e. scanning performed as the peak of the 
contrast enhancement is situated within specific blood vessels and/or tissues. The most 
prominent challenge complicating the multislice scanning was that the fan beam now 
was turned into a cone beam adding new planes in which the radiation passes through 
the patient. The geometry to be handled by the image reconstruction algorithms hence 
became much more complicated. However, after a few years even this challenge was 
overcome and the reconstructions worked well even when handling data from multiple 
rows of detectors (14). 
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Figure 5 Modern CT-scanner  
Copyright: Tomáš Vendiš. Reproduced under Creative Commons CC BY-SA 4.0. 

Basic X-ray Physics 

X-ray is a type of electromagnetic radiation with short wavelength and high energy. On 
the electromagnetic spectrum X-ray is located between ultraviolet light and gamma 
rays, with energies of about 10 – 150 kiloelectronvolt (keV). 

 

Figure 6 Electromagnetic spectrum  
The electromagnetic spectrum extends from long radio waves, with low frequency and energy, to gamma 
radiation, with the highest frequency and energy levels. X-rays are positioned between ultraviolet light (UV) 
and gamma rays. The relevant energy range for photons used in CT imaging is 20–150 keV (note the use 
of the unit eV in the figure, hence CT photons fall within the range of 2 × 10⁴–1.5 × 10⁵ eV). Copyright: 
Philip Ronan. Reproduced under Creative Commons CC BY-SA 2.5.  
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X-rays were discovered by German physicist Wilhelm Conrad Röntgen in 1895. 
Mystified by the radiation he had produced in his laboratory, he named it X-ray – a 
name it still goes by in large parts of the world. However, in several European countries 
it is called “Röntgen rays” to honour its discoverer.  

Just like light, X-rays are considered to travel through space and interact with particles 
in small units of energy, called photons. X-ray is a type of ionizing radiation as it has 
the potential for ejecting electrons from atoms it interacts with, creating positive ions. 
Different types of interaction between electrons, atoms, photons and transfers of energy 
are involved in the creation of X-rays as well as with how they interact with matter it 
passes through. For this reason, the following section will be an overview of the basic 
physics underlying X-ray (15). 

Atomic structure 
Atoms comprise a nucleus containing positively charged protons and neutral neutrons, 
with the atomic number (Z) determined by the number of protons. Surrounding the 
nucleus are negatively charged electrons, equal in number to the protons, arranged in 
shells. Contrary to the schematic representations familiar to all readers, atomic nuclei 
are exceedingly small, with a diameter of about 1/10,000th of the atom. If you picture 
the nucleus as a 1 cm marble, the nucleus of the neighbouring atom would be about 
100 m away, roughly the length of a football field.  This vast inter-nuclear space 
contains the electrons organised in various shells, exhibiting binding energies that 
diminish with increasing distance from the nucleus. The innermost shell, known as the 
K-shell, accommodates two tightly bound electrons. Subsequent shells, designated L, 
M, and so forth, house progressively greater numbers of electrons. The electrons in the 
outermost shell are weakly bound, and in certain metals, they have the potential to 
move freely (15). 

X-ray generation 
X-rays are generated by accelerating electrons and directing them to interact with a 
target material. This acceleration is achieved by applying a high electric potential, or 
voltage, between the cathode and anode in an X-ray tube. In computed tomography 
(CT), tube potentials typically range from 70 to 140 kVp, imparting maximum 
energies of 70–140 keV to the electrons striking the anode. The primary interactions 
producing X-rays are bremsstrahlung and characteristic radiation, though the process 
is highly inefficient, with over 99% of the energy dissipated as heat (15,16). 

Bremsstrahlung is when an electron, travelling with high velocity and high energy, its 
trajectory is impacted by the attracting force of an atomic nucleus. As the electron 
changes direction, it loses energy, which is emitted in the form of an X-ray photon. 
Photons produced by bremsstrahlung can have any level of energy from the maximum 
(at the keV corresponding to the kVp-level), when an electron passes very close to a 
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nucleus and loses all of its energy, to zero. There are very few interactions producing 
maximum energy photons with increasing number of photons as the energy decreases 
(15,16). 

 

Figure 7 X-ray generation  
The two primary interactions of accelerated incident electrons with target atoms: (a) Characteristic 
radiation, where the electron ejects an inner-shell electron, ionizing the atom; an outer-shell electron then 
fills the vacancy, emitting an X-ray photon with energy equal to the shell difference. (b) Bremsstrahlung, 
where the electron is deflected by the nucleus, decelerating and emitting a photon; the continuous X-ray 
spectrum arises from variable energy losses in this process. Copyright Hapugoda S, Characteristic radiation 
(diagram). Radiopaedia.org doi.org/10.53347/rID-51796 and Bremsstrahlung radiation (diagram) 
doi.org/10.53347/rID-51794. 

Characteristic radiation occurs when an incident electron displaces a K-shell electron 
from the target atom, provided its energy surpasses the K-shell binding energy. This 
process ionises the atom, leaving it in an excited state with a vacancy in the K-shell. 
The vacancy is filled by an electron from an outer shell "dropping" into the position, 
releasing energy in the process. This energy is emitted as X-ray radiation at a specific 
energy level, corresponding to the difference in binding energy between the two shells 
involved (measured in keV). The incident electron and the ejected electron then share 
the remaining energy, minus the binding energy (15,16). 

X-ray Spectrum 
The resulting X-ray spectrum, unique to the anode material, combines bremsstrahlung 
and characteristic photons. Bremsstrahlung production scales with the square of the 
atomic number (Z) of the anode material. Tungsten, also known as wolfram (W; Z = 
74), is often used due to its high Z and heat resistance. The X-ray spectrum of W is 
displayed in Figure 8. The peaks of the curve are formed by characteristic radiation, 
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representing the energy difference between the K-shell and the L- and M-shells 
respectively.  The intensity of X-rays is reduced at the lower end of the energy spectrum 
due to filtration, which is partly attributable to the anode material and other 
components of the X-ray tube, as well as intentionally added filtration. Filtering out 
low-energy photons is advantageous, as they contribute to the radiation dose received 
by the patient without possessing sufficient energy to reach the detector (15,16). 

 

Figure 8 X-ray energy spectra at different peak kilovolt (kVp)-levels.  
Schematic of X-ray spectra from a CT scanner at varying kVp settings. Decreasing kVp lowers the 
maximum photon energy, reduces mean energy, and substantially decreases total number of photons (area 
under curve) due to fewer effective electron-target interactions and lower photon yield. Adding tin (Sn) 
filtration removes low-energy photons, hardening the beam and raising the mean energy. Image created in 
BioRender. https://BioRender.com/65wsrbg. 

X-ray Interaction with Matter 
The interactions of X-rays with matter are similar to the processes involved in their 
production. In this context, highly energetic X-ray photons are incident, encountering 
a wide variety of target elements. X-ray photons within the energy spectrum employed 
in computed tomography (CT) interact with matter through two primary mechanisms: 
the photoelectric effect and Compton scatter (15,16). 
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Photoelectric Effect 
The photoelectric effect occurs when a photon, possessing energy equal to or exceeding 
the binding energy of an inner-shell electron, transfers its entire energy to the electron, 
resulting in its ejection and ionisation of the atom. During this process, the photon is 
annihilated and will not reach the detector. The probability of this interaction peaks 
when the photon energy aligns with the binding energy of an electron shell within an 
atom. In CT, the binding energies of the K-shells of different elements are the most 
relevant, and consequently the K-edges the most important energy levels. Below the K-
edge, the interaction probability diminishes sharply as the photon lacks sufficient 
energy to dislodge an electron; for instance, iodine’s interaction likelihood drops to 
one-sixth just below its K-edge (17). At energies above an edge the probability for 
interaction is inversely proportional to the cube of the increasing photon energy. For 
low-Z elements prevalent in human soft tissues (such as oxygen, carbon, hydrogen, and 
nitrogen) the photoelectric effect is minimal due to their low K-edge energies, which 
fall well below typical CT X-ray spectra. Conversely, this interaction is the predominant 
mechanism for larger atoms with higher Z values.  

The binding energies of other shells, located at much lower keV levels, are of lesser 
relevance in this context (15,16). 

Compton Scatter 
Compton scatter occurs when a photon collides with a loosely bound or free electron, 
transferring energy and scattering at an angle. The photon retains significant energy 
post-interaction, potentially interacting again or exiting the patient. This process is 
independent of binding energies, instead it is the electron density of the material that 
determines the likelihood of interaction. Compton scatter is the dominant type of 
interaction when photon energy is far above the K-edge, thus for most elements in the 
upper range of the X-ray spectrum and at levels as low as 30 keV for human soft tissue 
(15,16). 

X-ray Tube and Detector 

X-ray tube 
The X-ray tube accelerates electrons from the cathode to the anode, where interactions 
generate X-rays. The anode, i.e. the positively charged pole, as described above, is 
typically made from W. The negatively charged cathode, heated by an independent 
circuit, releases electrons via thermal energy, with temperature and electron flux 
controlled by the cathode current. The generator applies the high voltage (70–140 
kVp), driving electron acceleration. The other commonly adjusted setting of an X-ray 
tube is the tube load in milliampere-seconds (mAs). This is a measure of the number 
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of electrons accelerated across the tube and thereby the number of X-ray photons 
produced. The adjustment of the tube load is a complex interplay of the cathode current 
determining the number of available electrons and the tube potential. Modern X-ray 
tubes feature rotating anodes to distribute heat over a larger area. The angled anode 
surface aligns the X-ray beam perpendicular to the electron flow. The cathode and 
anode operate in a vacuum within a housing, ensuring efficient electron movement 
(15). 

 

Figure 9 The CT X-ray tube  
Schematic of the X-ray tube in a CT scanner. The anode ("Tungsten target") is a rotating disc to disperse 
heat generated during X-ray production. The cathode, a separate electrical circuit, heats a filament (coil in 
the diagram) to emit electrons. The emitted electrons are accelerated across the vacuum towards the anode 
by the tube potential (“X-ray tube voltage”). The flow of accelerated electrons is the tube current. X-ray 
photons, produced at the anode, are depicted in yellow. Used with permission of Springer Nature BV, from 
Tatsugami F, et al, Dual-energy CT: minimal essentials for radiologists. Vol. 40, Japanese Journal of Radiology. 
Springer; 2022. p. 547–59. 

Energy-integrating detector technology 
Like the X-ray tube, the function of the detector relies on the principles of X-ray 
physics. In contemporary CT scanners, the detector is made from solid scintillating 
material, most commonly gadolinium oxysulfide. When X-ray photons that have 
traversed the patient strike this material, photoelectric interactions occur, ejecting 
photoelectrons that travel a short distance within the scintillator. These photoelectrons 
excite neighbouring atoms, which subsequently return to their ground state, emitting 
visible light in the process. Essentially, the scintillating material converts X-ray photons 
into visible light (16,18). The detector consists of numerous small elements, each less 
than 1 millimetre (mm) in size, separated by reflective, non-transparent walls. These 



37 

walls minimise crosstalk between elements and direct the emitted light photons towards 
a photodiode, which converts the light into an electrical signal. The detector integrates 
the photodiode and the subsequent data acquisition system (DAS) (including 
amplifiers and analogue-to-digital converters) into a single chip attached to the 
scintillating material. Additional important parts of the detector are the collimator 
blades, mitigating noise from scattered photons arriving at an angle (16,18). 

This type of detector is classified as energy-integrating, as it accumulates the energy 
from multiple X-ray photons striking a single detector element over the duration of a 
projection (typically less than one millisecond), without distinguishing the energy of 
individual photons. As a result, low-energy X-ray photons contribute 
disproportionately less to the overall signal, thereby diminishing the information from 
the lower end of the X-ray spectrum (18). 

A limiting factor in the efficacy of this detector design is the necessity for non-
transparent walls separating the elements. As these walls must maintain a certain width, 
they occupy a portion of the potential detector surface area, rendering photons striking 
these regions ineffective in generating a signal (18). The electronic noise has been 
reduced considerably by integrating all electrical parts in the detector but can still 
impair image quality as the number of X-ray photons diminishes in very low radiation 
dose scans. 

 

Figure 10 CT X-ray detectors  
Schematic of an energy-integrating detector (left: a) side view, b) top view) and a photon-counting 
detector (right: c) side view, d) top view). In energy-integrating detectors, signals from photons of varying 
energies striking the detector during a projection are combined into a single output. Non-transparent walls 
create "dead zones," reducing the active detector area. In photon-counting detectors, made of 
semiconductor material under high voltage, the striking photons generate voltage spikes proportional to 
individual photon energies. The active area of the detector material is greater in this type of detector, and, 
as shown in the image, the anode is divided into sub-pixels, potentially enhancing spatial resolution. 
Copyright Springer Nature. Reproduced with permission. Flohr T,et al. Basic principles and clinical potential 
of photon-counting detector CT. Vol. 3, Chinese Journal of Academic Radiology. Springer; 2020. p. 19–34. 
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Photon-counting detector technology 
Although photon-counting detector technology (PCDT) is not employed in the studies 
presented in this thesis, it warrants a brief overview due to its anticipated significant 
role in CT imaging in the near future. 

The principle of photon-counting detectors is completely different from the energy-
integrating type. It utilises a semiconductor material, such as cadmium telluride, as its 
detection medium. A high-voltage potential is applied over the semiconductor layer, 
between a cathode on the upper surface and an anode on the bottom surface. The anode 
is segmented into small, pixel-sized elements. Unlike scintillator-based detectors, the 
semiconductor material remains undivided, eliminating the need for separating walls 
and maximising the effective area available for X-ray photon detection (Figure 10) 
(18,19). When an X-ray photon strikes the semiconductor, it generates an electron-
hole pair: the electron migrates towards the anode, while the "hole", which is not a real 
particle but rather the absence of an electron being transferred between atoms, drifts 
towards the cathode. This movement induces a voltage spike in the circuit, the 
magnitude of which correlates with the energy of the incident photon. These voltage 
spikes are sorted into multiple energy "bins," enabling the utilisation of individual 
photon energy data, which facilitates advanced applications such as spectral imaging. 
Electronic noise is mitigated by excluding the lowest energy bin, where noise is most 
prevalent. Additionally, the absence of physical segmentation enhances spatial 
resolution, offering potential superiority over scintillator-based detectors. Collimator 
blades remain necessary in front of the detector, but the spacing between them can be 
subdivided into sub-pixels defined by the anode pixel size, which can be as fine as 0.2 
mm. There are potential issues with PCDT as well, most prominently the risk of 
photons interacting with the detector in the border zone of two anode pixels. In this 
case the energy from one X-ray photon can erroneously be split into two counts of 
lower energy photons (18,19). 

 

Image reconstruction in CT 

The CT Image 

As discussed in the section on CT development, CT image data consists of voxels, each 
assigned a value on the Hounsfield unit (HU) scale. The Beer–Lambert law describes 
the exponential attenuation of X-ray intensity as it passes through matter: 



39 

𝐼 = 𝐼#e$%& 

where I is the intensity of the attenuated X-ray beam after traversing a material of 
thickness x cm with a linear attenuation coefficient µ. I0 represents the initial, 
unattenuated beam intensity (15). 

The purpose of CT image reconstruction algorithms is to determine the attenuation 
coefficient µ of the material within each voxel, based on the projection data measured 
by the detectors. 

The HU assigned to a voxel is calculated as: 

𝐻𝑈 = &'!"#$%&"'	$	')"#$%
')"#$%

' ∙ 1000  

where µmaterial and µwater are the linear attenuation coefficients of the material and water, 
respectively. Using this formula, air has a HU of –1000 and water has a HU of 0, which 
are the fixed reference points of the HU scale (15). A hypothetical material with double 
the attenuation coefficient of water would have an HU of +1000. 

Once HU values have been determined for all voxels, images are generated by mapping 
greyscale intensities to HU values, thereby creating a visual representation of the 
attenuation properties of tissues. 

Filtered Back Projection 

The following section is a simplified description of the algorithms used for image 
reconstruction in CT. As mentioned earlier, the work by Johann Radon laid the 
mathematical foundation for image reconstruction technologies still used in CT. The 
Radon transform is a procedure used to reconstruct a function from its line integrals 
from all angles (7). The line integrals in this context are represented by the attenuation 
of all parallel X-rays traversing the object, acquired at a particular angle, or “projection”. 
These line integrals form an intensity profile of that particular projection. The 
collection of the intensity profile for all angles around the object is called the Radon 
transform and by “stacking” greyscale representations of them continuously next to one 
another a sinogram is produced. The sinogram is a graphical representation of the 
Radon transform (15,20,21). In the example in Figure 11, a line formed at each 
position on the x-axis of the sinogram corresponds to one detector element and the 
different projections are placed continuously along the y-axis (15). 
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Figure 11 Back projection concept  
Illustration of sinogram creation and back projection in CT imaging. Parallel black dashed arrows represent 
X-ray paths, generating an intensity profile. This profile, depicted as a two-dimensional greyscale strip, is 
placed in the sinogram along the white dashed line. Stacked intensity profiles from all projections form the 
complete sinogram. Back projection "smears" each profile’s data along the original X-ray paths to 
reconstruct the image. Used with permission of SPIE. Hsieh J. Computed Tomography Principles, Design, 
Artefacts, and Recent Developments. Bellingham, Washington: SPIE; 2022. Permission conveyed through 
Copyright Clearance Center, Inc. 

The term back projection means that the intensity profiles obtained from the scan of 
one CT-slice are “smeared” back across the potential image one by one, eventually 
forming an image including information collected at all angles. However, if back 
projection is performed using the raw, unfiltered projection data a very blurry image 
will be produced (Figure 12).  
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Figure 12 Back projection (without filtering)  
Image reconstruction using simple back projection. The intensity profiles of all projections are sequentially 
“smeared” back along the original X-ray paths in a) – f). This technique yields blurry images as the 
information with the highest spatial frequencies are lost in relation to the lower frequencies.  

A way to remedy this inferior image quality is to instead perform the FBP. This requires 
the data to be transformed into the frequency domain through a Fourier transform, 
which in this instance means that the intensity profiles from the Radon transform are 
deconstructed into their frequency content. For all angles (q) the frequency function 
resulting from the Fourier transform of the intensity profile of the same angle is plotted 
in a graph with polar coordinates (i.e. a “circular” graph with the frequency curves for 
each q radiating evenly on each side of the origin). This is called the “Fourier slice 
theorem”. The lowest frequencies are placed centrally in the graph, with frequencies 
getting higher towards the periphery (Figure 13) (15,21,22).   
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Figure 13 Fourier slice theorem  
The one-dimensional (1D) Fourier transform of a CT projection's intensity profile is positioned at the 
corresponding angle within the two-dimensional (2D) Fourier transform. Created in BioRender. (2025) 
https://BioRender.com/4tk6msr. 

 

Having transformed the data in this way, filters can be applied in a process called 
convolution. In the frequency domain Fourier transforms of different functions can be 
combined or “convolved” by basic multiplication. The most elementary filters are called 
Ramp- or RamLak-filters and consist of linearly increasing amplification of signal 
intensities with increasing frequencies. This amplification of the higher frequencies 
results in improved depiction of details and edges. After filters are applied, the 
frequency function of each angle q is returned to intensity profiles in projection space 
through an inverse Fourier transform. Back projection can then be performed using the 
filtered, “sharper” intensity profiles of each projection, i.e. FBP. This process yields an 
improved depiction of the scanned object (Figure 14) (20,21,23,24). 
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Figure 14 Filtered back projection  
Adding a filtering step to the back projection process amplifies the high spatial frequency information, 
enhancing edges and increase the clarity in the images. The more pronounced edges in the intensity 
profiles and the resulting image is obvious in comparison to the simple back projection in Figure 12. 

The filters applied in the frequency domain impact image quality in two main ways, 
spatial resolution and the texture and magnitude of the noise. There are several different 
basic filters, all amplify mid-frequency data compared to low frequencies. The 
difference between the filters is to what degree they amplify the intensity at high-
frequencies. For example, the Ramp-filter mentioned above, increasing the 
amplification linearly up to the highest frequencies, is considered sharp, while others 
(e.g. Hann-filter) amplify mid-range frequencies but not the high frequency range and 
are accordingly called soft. This leads to differences in image appearance, with the sharp 
type yielding better spatial resolution but at the cost of a higher noise level, and the soft 
type producing images with lower spatial resolution while reducing the noise level 
(15,23,24). In the reconstruction algorithms of commercial CT scanners, the filters are 
referred to as convolution kernels. The exact function of the commercial kernels is not 
disclosed by the manufacturers, and they all use different nomenclature. However, all 
vendors have several different kernels ranging from sharp to soft, optimised for different 
imaging tasks. Traditionally sharper kernels are used when depicting anatomy with 
large inherent contrast, such as lungs or bone. Softer kernels are often recommended 
for examinations aimed at soft tissues. 
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Iterative Reconstructions 

FBP has been a cornerstone reconstruction technique in CT for decades, valued for its 
stability and speed. However, its performance is limited by simplifying assumptions 
that fail to fully reflect the reality of image acquisition. FBP assumes an idealised CT 
system geometry and measurements free from fluctuations, which deviates from reality, 
leading to noise and artefacts in reconstructed images. To address these limitations, 
iterative reconstruction (IR) methods were developed, and over the past decade, they 
have become the primary reconstruction approach in most modern CT scanners 
(22,25,26).  

CT manufacturers have developed their own versions and the information available on 
their inner workings is sparse. However, the underlying principle of iterative 
reconstructions is known and shared by the different versions: The repeated alterations 
of the image data between projection space and image space iteratively improving image 
quality during image reconstruction. Figure 15 demonstrates an overview of the 
iterative reconstruction process. 

 

Figure 15 Iterative reconstruction  
Schematic illustration of the iterative reconstruction process. Created in BioRender. (2025) 
https://BioRender.com/i3hy0o9 
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The IR process begins with raw data from the scan and an initial image is generated via 
back projection. In image space, a process called regularization is applied to denoise the 
image while preserving edges. This involves smoothing unrealistic large attenuation 
differences between adjacent voxels, enhancing overall clarity. The updated images are 
then forward projected to form synthetic, improved projection data in projection space, 
where further denoising is performed. Model-based corrections can also be 
implemented here, accounting for CT system geometry (e.g., X-ray tube focal spot, 
detector element size etc.), X-ray physics, and photon-object interactions. The updated, 
synthetic projection data is compared to measured, original data and unless the 
difference is below a threshold or a maximum number of iterations is reached, the cycle 
repeats with new back-projected images (22,25,26). 

Early IR algorithms, known as statistical iterative reconstructions, focused on noise 
reduction using statistical models, as use of the model-based corrections was too 
computationally demanding. Statistical methods rely on comparing measured 
projection data fluctuations to expected noise distributions and are paired with 
regularization in image space (25,26). 

More advanced full model-based IR incorporates detailed system and physics models, 
while hybrid iterative reconstructions blend elements of both, striking a balance 
between image quality, speed, and computational load. ADMIRE by Siemens, used in 
Paper IV of this thesis is considered a hybrid iterative reconstruction algorithm (22,26). 

Despite their advantages, IR methods face drawbacks. Initial versions suffered from 
prolonged reconstruction times and overly smooth image textures, which some 
radiologists found suboptimal. Recent advancements have mitigated these issues, 
improving efficiency and texture preservation. However, research reveals inconsistent 
findings on IR’s impact on detecting small, low-contrast lesions, partly due to the non-
linear nature of edge-preserving denoising. This can lead to heterogeneous spatial 
resolution and noise, potentially affecting diagnostic accuracy for such tasks, 
highlighting an area for further investigation (25,26). 

Dual Energy CT 

The concept of using more than one X-ray energy spectrum to differentiate materials 
based on their attenuation properties dates back to the early days of CT. In his 1973 
paper, Godfrey Hounsfield described an approach to approximate the atomic number 
of materials within a CT slice:  

“It is possible to use the machine for determining approximately the atomic number of 
the material within the slice. Two pictures are taken of the same slice, one at 100 kV 
and the other at 140 kV. If the scale of one picture is adjusted so that the values of 
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normal tissue are the same on both pictures, then the picture containing material with 
a high atomic number will have higher values at the corresponding place on the 100 
kV picture. One picture can then be subtracted from the other by the computer so that 
areas containing high atomic numbers can be enhanced” (12). 

This early insight highlights Hounsfield’s visionary understanding of CT technology. 
Today, the concepts he described are referred to as “Dual energy CT” and “Material 
decomposition” or “Spectral imaging”. 

The added value from dual energy CT (DECT) is the information that can be deduced 
from the difference in attenuating properties of different elements, when examining the 
same object using two different X-ray energy levels. Using this information applications 
such as material decomposition (MD), monoenergetic images and virtual non-contrast 
images can be produced. Ideally, the two different datasets should be spatially and 
temporally matched and acquired with sufficient energy separation. The quality of the 
data in the two datasets should also be as equal as possible, i.e. the noise level should be 
similar (27). Several different technical solutions to these demands have been 
introduced, of which the following are the most commonly used types of dual-energy 
technology (Figure 16): 

• Dual Source DECT, employs two X-ray tubes and detector arrays positioned 
at approximately 90° to each other within the gantry enabling simultaneous 
acquisition. As the kVp of the two tubes and the filtration of the X-ray spectra 
are adjusted individually, many different kVp combinations can be used, and 
large energy separation can be achieved. Drawbacks of this technology is that 
the field of view is limited as the secondary detector is slightly smaller due to 
limited space in the gantry. As there are two X-ray sources and detectors 
working concurrently, there is a risk of scattered photons reaching the wrong 
detector causing noise. Use of dual energy also demands specialised protocols 
that must be selected while planning the examination (27,28). 

• Rapid kVp Switching alternates the tube voltage between high and low settings 
thousands of times per second, facilitating near-simultaneous dual-energy data 
collection. A single X-ray tube and detector is used, and the dual energy data 
collection covers the whole field of view. The spectral separation is more 
limited, though, and it is hard for the tube load to increase swiftly enough to 
sustain the low kVp-setting. To compensate for this and achieve similar image 
quality between the datasets, asymmetric sampling is used, with longer interval 
for the low energy level (27,28). 

• Dual-Layer detectors use a single X-ray tube paired with a two-layered detector 
that separates high- and low-energy photons based on penetration depth. The 
lower energy photons from the single polychromatic spectrum are collected in 
the superficial layer of the detector while the high energy photons penetrate to, 
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and are detected by, the deeper layer. Combining the information from the 
two layers yield single energy data. This technology facilitates continuous use 
of standard examination protocols, and the dual-energy data can be retrieved 
retrospectively when needed. However, also this technology suffers from 
limited spectral separation and the noise level can differ between the datasets 
(27,28). 

 

Figure 16 Dual energy CT technologies  
Illustration of the three most common dual energy CT technologies. a) Dual source; b) Rapid kVp switching 
c) Dual layer detectors. In the bottom row the photon energy spectra of the two different scans/datasets is 
visualised. The technologies have different advantages, but regarding the separation of the energy spectra, 
dual source is the better performer due to the possibility for varying filtration of the two X-ray sources. 
Modified from Fredenberg E. Spectral and dual-energy X-ray imaging for medical applications. Vol. 878, 
Nuclear Instruments and Methods in Physics Research, Section A. Elsevier B.V.; 2018. p. 74–87. Used with 
permission of Elsevier Science & Technology Journals.  

Material Decomposition 

As MD constitutes a primary application of DECT and forms the focus of Paper II 
within this thesis, the following section provides a brief overview of this technique. 

A variety of algorithms have been developed for MD of DECT-acquired data, with 
processing options available in either projection space or image space. These algorithms 
enable the separation of two or three materials, depending on the underlying 
assumptions and data utilised (27,28). 
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In two-material decomposition, it is assumed that the linear attenuation coefficients are 
composed of the photoelectric effect and Compton scatter and that their sum decreases 
linearly with increasing photon energy. By analysing the attenuation coefficients of a 
voxel derived from two distinct energy spectra (e.g., 80 kVp and 140 kVp), the 
contributions of two selected basis materials, such as water and iodine, can be 
computed. For three-material decomposition, reliant on the same dual-energy dataset, 
additional information is needed. This is addressed by assuming that the voxel’s volume 
or mass in its entirety is composed of three basis materials, allowing the determination 
of each material’s contribution to the total linear attenuation coefficient of the voxel 
(21,28–30). The calculations involved in MD are complicated, but vector-based 
graphical methods, as illustrated in Figure 17, provide a more accessible means of 
understanding the process (28–30). 

In current abdominal CT practice, MD supports clinically important applications. One 
is the identification and isolation of iodine, generating “iodine maps” and virtual 
unenhanced images. Another is the production of virtual monoenergetic images - 
simulated CT acquisitions at user-selected monoenergetic levels. These images amplify 
the iodine content at lower energy levels and mitigate beam-hardening artefacts at 
higher energies. Monoenergetic images are generated by assessing the composition of 
basis materials within each voxel and calculating their attenuation at the specified keV 
level, based on the established relationships between linear attenuation and energy (28–
30). 
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Figure 17 Material decomposition  
a) Two-Material Decomposition: This method visualises the attenuation of two distinct materials at 

low and high peak kilovoltage (kVp) settings within a scatterplot. Provided the ratios of CT-
numbers at low to high kVp levels for the two materials differ sufficiently, a discriminator line 
can be drawn between them, enabling the materials to be separated and colour-coded in all 
voxels. Threshold levels must be established for both kVp settings, below which no colour-
coding is applied.  

b) Basis Material Decomposition: The CT-number of any voxel can be broken down into the 
contributions from two selected basis materials, such as water and iodine. This principle 
underpins widely used applications, including iodine maps and virtual non-contrast images. 

c) Three-Material Decomposition: Separating three materials using only two datasets requires the 
assumption that the voxel’s volume or mass comprises solely these three materials. If the 
unknown element X is positioned close to material A, the area attributed to A increases, 
indicating a greater contribution from material A. 

d) Subtraction of material A from the unknown material X, the star signifies the resulting CT-
number made up from materials B and E.  
Created in BioRender. (2025) https://BioRender.com/1qw63o1 
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Dosimetry in CT 

Given that X-ray radiation is ionising, and CT examinations deliver significantly higher 
doses than conventional X-ray, accurate dosimetry is critical to monitor patient 
radiation exposure effectively. The two primary metrics for assessing CT radiation dose 
are the Volume CT dose index (CTDIvol) and the dose-length product (DLP). 

Computed tomography dose index 

CT dosimetry has evolved in tandem with advancements in scanner technology 
(detailed in a later section), necessitating adaptations to the CTDI metric. Across all 
iterations, CTDI has been measured using standardised phantoms with diameters of 
16 centimetre (cm) (head) and 32 cm (body), employing an ionisation chamber placed 
in centrally and peripherally located holes to directly measure deposited dose. The 
radiation output of all CT-scanners is measured and calibrated using this standardised 
method (31,32). 

In its original form CTDI quantified the radiation energy per unit mass delivered 
during a single axial scan, expressed in milligray (mGy). However, abdominal scans 
reveal a highly inhomogeneous dose distribution, with peripheral doses at least double 
those at the centre. To address this, the weighted CTDI (CTDIw) was introduced, 
combining one-third of the central dose with two-thirds of the peripheral dose (31). 

CTDIvol, a version adapted to helical scans in multislice scanners, adjusts CTDIw by 
dividing it by the helical pitch, i.e. the ratio of table movement per rotation to beam 
width. A pitch of 1 indicates uniform coverage, while a pitch above 1 "stretches" the 
spiral (reducing dose) and below 1 "compresses" it (increasing dose) (31,32). 

Modern CT-scanners automatically display CTDIvol post-scan. However, a limitation 
to consider is that CTDIvol only truly reflects what the dose would have been in a 32 
cm phantom, given the X-ray output of the scan. CTDIvol therefore potentially 
overestimates dose in larger patients, while underestimating it in smaller ones (31). 

Dose-length Product and Effective Dose 

Dose-length product (DLP) is a measurement of the total amount of radiation energy 
transferred to the patient. It is calculated by multiplying the CTDIvol with the scan 
length in cm. The unit consequently is mGy×cm. 

The DLP further enables the calculation of effective dose, measured in Sieverts (Sv), by 
applying region-specific conversion factors (e.g., 0.015 mSv/mGy×cm for the adult 
abdomen and pelvis). The effective dose provides an approximate estimate of radiation-
induced risks, predominantly cancer and hereditary effects and the International 
Commission on Radiological Protection (ICRP) estimates the risk at 5% per sievert. 
However, effective dose was primarily designed for radiation protection purposes, 
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representing average risk in a population, necessitating cautious application to 
individual cases (16,33). 

Image quality analysis 

Noise 

Image noise in CT refers to the random variation in CT-number caused by different 
steps in the image acquisition and reconstruction process. Noise can be characterised 
in different ways, most commonly by determining its magnitude by using the standard 
deviation (SD) of a measurement of CT-number as a proxy value for the magnitude. 
The measurement is performed by placing a region of interest in a homogeneous area 
of the image. The major contribution to image noise is the randomness in the number 
of photons contributing to image information, called quantum noise. This is caused by 
the random interactions involved in X-ray generation as well as their attenuation and 
detection processes. Quantum noise is inversely proportional to the square root of the 
number of X-ray photons, i.e. radiation dose.  

Contrast-to-Noise ratio and Signal-to-Noise ratio 

One of the most commonly used image quality metrics is the contrast-to-noise ratio 
(CNR) conveying information on contrast resolution and noise magnitude in one 
numerical value. CNR can be calculated in different ways, where the standard method 
is to use the difference in CT-number between two adjacent structures as contrast, 
divided by the noise magnitude described above. CNR has long been considered to be 
proportional to detectability of lesions as it describes a balance between contrast 
facilitating detection and noise acting to its detriment (34–36). A schematic description 
of CNR is presented in Figure 18. 
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Figure 18 Schematic presentation of contrast-to-noise ratio (CNR)  
Four image panels with varying CNR. Noise magnitude is higher in the bottom row and lower in the top 
row. In the left column the contrast between lesions and background is smaller, while it is larger in the 
right column. This results in the highest CNR being present in the top right panel and the lowest bottom, 
left. Note that the smallest lesion cannot be detected in the image with the lowest CNR. Copyright Peter 
Leander, reproduced with permission. 

Signal-to-noise ratio (SNR) is a metric used in many types of analyses involving signal 
in different fields of science. In its most basic form, it is defined as the ratio of the 
measured signal to the noise. In the context of CT, the signal is the CT-number 
measured within a region of interest and the noise is the SD of the measurement 
(37,38). 
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Noise Power Spectrum (NPS) 

In addition to magnitude, image noise can also be characterised by its texture, i.e. its 
spatial frequency content. Noise can be coarse with large grains, or it can have a finer 
structure. To describe this quality of the noise, the NPS is used. The NPS is produced 
by performing a Fourier transform of the measured variation within a ROI, after 
subtraction of the mean CT-number. This yields a curve where the noise is distributed 
by its spatial frequency. Image noise with a coarse structure leads to an NPS-curve with 
a larger fraction of its noise located at low spatial frequencies, while more noise at higher 
spatial frequencies equals a finer noise texture (39). For a visual representation of noise 
with different texture and the matching NPS-curves, see Figures 35 and 36 in the 
Results section. 

Image quality analysis using observer studies 

In the context of this thesis two different types of observer studies employing human 
readers are important to mention. One type focuses on the visualisation of normal 
anatomic structures within the images and the grading of the visualisation of these 
normal structures is considered a proxy for image quality. Visual Grading Analysis 
(VGA) and Visual Grading Characteristics (VGC) are two closely related methods 
based on this type of image quality rating. VGC is an evolution of VGA that by using 
a non-parametric receiver operating characteristics (ROC)-like analysis more 
statistically correctly treats the ordinal data from the rating scale. A common critique 
of VGA/VGC is that these methods analyse image appearance rather than their 
performance in clinical decision making. Analyses more focused on specific diagnostic 
tasks, such as detection of a particular type of lesions, might be more important when 
comparing the performance of different types of examinations. However, a strength of 
VGC is that images of patients without a particular type of pathology can be used. 
Hence, these methods are economical with time and resources as the cumbersome 
process of identifying and including particular patients is avoided. VGC was developed 
at Gothenburg University by M. Båth and colleagues (40). 

Different types of ROC-based analyses are important in evaluating task-based 
performance of diagnostic methods. In image quality analysis ROC requires the use of 
a grading scale, rating, for example, the probability of a particular type of pathology. In 
basic ROC this probability is rated on a per patient basis, i.e. the probability graded is 
that the pathology is present anywhere in the images of the patient. Individual lesions 
are not graded or analysed. The free-response ROC (FROC) and the further 
development jackknife alternative FROC (JAFROC), on the other hand, are methods 
in which the observer localises and grades individual lesions within the images. This is 
a task very similar to image reading in clinical practice.  
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In ROC the true positive fraction (sensitivity) is plotted against the false positive 
fraction (1 – specificity) (Figure 19). A test with high sensitivity detects a large fraction 
of the pathological entities. High specificity, on the other hand, means that the test 
performs well when ruling out the condition. When deciding on a threshold level 
determining positive and negative outcome of a test, a trade-off between sensitivity and 
specificity has to be made. A high threshold means that positive cases with a low rating 
will be classified as negative, reducing sensitivity. Reversely, the same high threshold 
leads to fewer negative cases being classified as positive – specificity increases. The 
ROC-curve can be seen as a visualisation of this balance between sensitivity and 
specificity when adjusting the threshold level (39–41). An ideal test without any overlap 
in ratings between positive and negative cases gives an ROC AUC of 1, whereas a test 
performing no better than pure chance has a AUC of 0.5. Apart from the demanding 
process of identifying suitable patients, ROC-studies also demand a well-established 
gold standard for comparison of the observer ratings (39). 

JAFROC, being a version of ROC, is also based on the same type of curve, and the 
AUC is the figure of merit of the analysis. 

Figure 19 Receiver operating chacteristics (ROC)-curve  
The ROC curve plots the true positive rate against the false positive rate. An ideal operator’s curve rises 
vertically along the y-axis to the top-left corner, then horizontally to the point (1, 1), yielding an area under 
the curve (AUC) of 1. The diagonal, dashed line, with an AUC of 0.5, represents random guessing. The red 
ROC curve indicates the best-performing test among the three shown in the graph. Created in BioRender. 
Fält, T. (2025) https://BioRender.com/h3fyn1d 
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Ionising Radiation and Risk of Cancer Induction 

The effects from radiation on humans fall into two categories: deterministic effects of 
acute high radiation doses and stochastic effects that are more important after exposure 
to lower doses. The deterministic effects are caused by tissue damage due to cell death 
and inactivation and, above a threshold, their severity are proportional to the radiation 
dose. Stochastic effects, mainly cancer induction via DNA damage, happen by chance 
and their probability increase with increasing radiation dose, but the severity of the 
outcome does not (33).  

The association between ionising radiation and an increased incidence of cancer has 
been recognised for approximately a century. One of the earliest documented 
connections emerged among workers who, in the early 20th century, applied luminous, 
radium-containing paint to watches and dials. The workers often used their mouths to 
point the brushes, increasing the exposure of the mouth and jaw and within a decade 
several cases of osteosarcoma were identified (42). However, the primary 
epidemiological evidence linking radiation exposure to cancer incidence and mortality 
in humans stems from studies of survivors of the atomic bomb detonations over 
Hiroshima and Nagasaki, Japan, in 1945.  This cohort was exposed to ionising 
radiation, predominantly high-energy gamma and neutron radiation, in a single, brief 
event. The survivor cohort is investigated through the Life Span Study (LSS), including 
individuals exposed to doses up to 2 gray (Gy), though the mean exposure was 
approximately 200 milligray (mGy). The gray is the SI unit for absorbed radiation 
energy per unit mass (absorbed dose), calculated as energy in joule divided by kilogram.  

The LSS cohort, tracked for nearly 70 years, has provided robust epidemiological 
evidence linking radiation exposure to increased incidence and mortality from various 
cancers (43). Among these, leukaemia exhibits the highest relative risk elevation, 
though a significant association is also observed with solid cancers (43). Leukaemia also 
has a risk profile over time differing from solid cancers. The mortality from excess cases 
of leukaemia was highest during the first decade following the bombings, and then 
decreased gradually. Solid cancer mortality, on the other hand, has been shown to 
increase with age, with the risk from radiation adding to the baseline risk of cancer 
increasing with age. The magnitude of the risk increase regarding solid cancers is 
strongly influenced by the age at radiation exposure, with individuals exposed at 
younger ages exhibiting a heightened risk that persists throughout their lifetime 
(43,44).  

Occupational Exposure to Radiation 
Another well-studied population comprises individuals monitored over several years 
following occupational radiation exposure. This group primarily includes nuclear 
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power plant workers, alongside those employed in other sectors such as the nuclear and 
weapons industries.  

Unlike the Japanese atomic bomb survivors this group has predominantly been exposed 
to low doses of radiation over extended periods, known as low dose-rate exposure. The 
cumulative radiation dose within this group varies considerably, as does the type of 
radiation to which they have been exposed (45). A large cohort-study including over 
300,000 nuclear workers in France, the United Kingdom (UK) and the USA has been 
ongoing for many years. The most recent analysis demonstrates a clear relationship 
between radiation dose and cancer mortality, including leukaemia and solid cancers, 
despite a mean cumulative dose as low as 18 mGy (46,47). 

Low-Dose Radiation and the Linear No-Threshold Model 
As outlined above, high doses of radiation are well-established as increasing cancer risk. 
However, the relationship between lower radiation doses, particularly below 100 mGy, 
and cancer risk remains less certain. This is of major importance in the context of this 
thesis, as the radiation dose from a CT examination of the abdomen is well below this 
level. For decades, it has been assumed that the linear relationship observed at high 
doses extends to lower doses, down to zero, forming the basis of the Linear No-
Threshold (LNT) model. This model describes a linear dose-risk relationship without 
a threshold below which radiation exposure would be deemed harmless (48–50). 
However, it is important to recognise that the LNT model constitutes a broad 
assumption for radiation doses below 100 mSv and low dose rates (below 0.1 mGy / 
min), and there is still a lively scientific and regulatory debate regarding the cancer risks 
associated with low radiation doses. Some research groups propose the existence of a 
threshold dose, below which radiation may pose no harm - or could even have beneficial 
effects (51–53).   

The terms Low Dose Effectiveness Factor (LDEF) and Dose Rate Effectiveness Factor 
(DREF) have been introduced for estimations of the cancer risk after exposure to 
radiation at low doses and/or low dose rates. A numerical value above 1 means that the 
risk linearly approximated from higher dose levels is divided by this number at low 
doses and dose rates, reducing the risk assumptions (33). The International 
Commission on Radiological Protection (ICRP) has combined these two entities into 
the Dose and Dose-rate Effectiveness Factor (DDREF) and assigned it a value of 2 (33). 
The debate is still not settled though, and there is ongoing work by “Task force 91” 
appointed by ICRP. A preliminary report was released in 2025, and it reaffirms the 
view that there is a real risk of cancer from radiation at low doses and low dose rates. A 
carefully worded, preliminary conclusion says “an LDEF of much more than 3 is not 
supported, and much less than 1 likewise. Similarly, it is concluded that a DREF value 
much larger than 3 or less than 1 is also unlikely.” (54) 
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One reason the association between radiation exposure and cancer at doses below 100 
mGy has remained uncertain for many years is that any potential increase in risk is 
likely to be very small. Establishing such a relationship necessitates large-scale 
epidemiological studies with sufficient statistical power and extended follow-up periods 
to adequately assess potential cancer development. 

Early Evidence Linking CT Radiation to Cancer Risk 
At roughly the same time as this somewhat long-running thesis work started, the first 
epidemiological study establishing a direct relationship between radiation exposure 
from CT-examinations and an increased cancer incidence was published (55). A cohort 
study involving 170,000 patients in the United Kingdom (UK) who had undergone 
CT examinations during childhood or early adulthood (up to 22 years of age) reported 
a modestly elevated incidence of leukaemia and brain tumours.  Increased risk is often 
quantified using Excess Relative Risk (ERR), defined as: "The rate of disease in an 
exposed population divided by the rate of disease in an unexposed population, minus 
1.0.” This is typically expressed as the excess relative risk per Gy or per Sv" (ICRP, 
2007) (33). The ERR for leukaemia was 0.036 per mGy, while that for brain tumours 
was 0.023 per mGy. This association was observed at radiation doses as low as 30–50 
mGy, corresponding to an absolute risk increase of approximately one additional case 
of leukaemia and one additional case of brain tumour per 10,000 head CT 
examinations (56). 

Iodinated Contrast Media 

This section will focus on iodinated contrast media, starting with a summary of its 
history followed by a more in-depth analysis of the potential and much disputed 
relationship between intravenously administered iodinated contrast media and risk of 
subsequent kidney injury. Finally, the physical properties, such as the cross section at 
different levels of photon energy, of iodine and other potential contrast media elements 
will be discussed. 

History of Iodinated Contrast Media 

Since the early days of radiology, iodine has been used as a contrast medium, owing to 
its significantly greater ability to attenuate X-ray photons compared to most human 
tissues. The first commercially available iodinated contrast medium, Lipiodol, an 
iodine-containing oil, was introduced in the early 1920s and was predominantly 
utilized for the opacification of the subarachnoid space (57).  
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Within a few years, iodide salts, such as sodium iodide, were introduced for use in 
retrograde pyelography, replacing colloidal silver, which had been demonstrated to 
induce renal damage and even fatalities. During the early 20th century, sodium iodide 
was also employed in the treatment of infectious diseases, including syphilis. Osborne 
and colleagues at the Mayo Clinic in the USA observed that the urinary bladder 
occasionally appeared radiopaque on X-ray images following such treatments. This 
observation prompted the hypothesis that sodium iodide could be used for excretory 
urography following intravenous administration. However, initial experiments proved 
unsuccessful, as the opacification of the urinary tract was inadequate (58).  

During this period, chemists in Germany were synthesizing a variety of novel organic 
compounds, some of which incorporated iodine atoms. Although these compounds 
were primarily developed as antimicrobial agents, Moses Swick, a young American 
physician undertaking a fellowship in Germany, observed that the urine of animals 
administered these experimental substances had high concentrations of iodine. This 
discovery prompted him, in 1929, to propose the use of a pyridine derivative containing 
an integrated iodine atom as a contrast agent for excretory urography. While the first 
version caused severe adverse effects, subsequent iterations were developed, and di-
iodinated pyrimidine compounds were found to be well-tolerated. These compounds 
became the standard contrast media for urography and angiography in the decades that 
followed (58,59).  

The next advancement in the development of iodinated contrast media was the 
introduction of a new type of iodine containing organic compounds, based on a 
benzene ring. Once again, Dr. Swick played a pivotal role as one of the innovators, 
developing the initial, though unsuccessful, version as early as the 1930s. Not until two 
decades later the contrast media molecules based on the benzene ring were sufficiently 
refined to be introduced - but when they were, it was in the form of tri-iodinated 
molecules. This represented a significant leap forward and this type of molecule forms 
the basis for the iodinated contrast media still in use today. Well known molecules of 
this type are diatrizoate and iothalamate, among others (57–59).  

The initial versions of tri-iodinated molecules were ionic in nature and used as contrast 
media in the form of salts, typically bonded to sodium or meglumine ions. In solution, 
these salts dissociate into two ions, generating two osmotically active particles. At the 
concentrations required to achieve sufficient X-ray attenuation from the iodine atoms, 
the contrast media produce a markedly elevated osmolality - several times greater than 
that of blood plasma. Consequently, this class of agents is designated as high osmolar 
contrast media (HOCM). While the introduction of HOCM was a significant 
breakthrough and they remained a cornerstone of clinical practice for many years, these 
agents were associated with several adverse effects. The most severe adverse effects were 
painful intra-arterial injections, frequent allergy-like reactions, and an increased risk of 
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renal injury. Less severe, commonly reported side effects included nausea and a 
sensation of warmth following injection (59–61).  

The pain experienced by patients during angiographic procedures led Swedish 
radiologist Torsten Almén to investigate the underlying cause of this specific adverse 
effect (Figure 20). Drawing an analogy to the burning sensation in the eyes encountered 
while swimming in saline ocean water, Dr. Almén hypothesised that the high osmolality 
of contrast media solutions, when injected into the blood vessel, was responsible for the 
associated pain. Dr. Almén made the effort to study chemistry outside his work as a 
radiologist and formulated a theoretical approach to convert existing ionic contrast 
agents into non-ionic forms. He proposed that this transformation could be achieved 
by removing the dissociating carboxyl group and incorporating hydrophilic hydroxyl 
groups. These modifications were intended to eliminate the cation, thereby halving the 
number of osmotically active particles, while simultaneously enhancing the molecule’s 
water solubility. Despite his efforts to engage the industry with these innovations, Dr. 
Almén encountered scepticism, reminiscent of the initial resistance faced by Godfrey 
Hounsfield when he introduced his concept of computed tomography to the 
radiological community, delaying widespread acceptance of his ideas for an extended 
period (58,59).  

 

Figure 20 Torsten Almén and the King 
All theses on contrast media, written in Malmö, must include a picture of Torsten Almén. Here he is, in 
1987, honoured with the prestigious Fernström Prize, a distinguished Nordic award for medical research, 
presented by the King of Sweden. Copyright Unknown. 
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Eventually, though, by the late 1960s, Dr. Almén established a collaboration with the 
Norwegian company Nyegaard & Co., leading to the development of the first non-
ionic, low-osmolar iodinated contrast agent, metrizamide, marketed under the name 
Amipaque. Despite its groundbreaking nature, Amipaque had significant limitations 
that restricted its commercial potential. It was considerably more expensive than 
existing HOCM and was supplied as a powder that had to be dissolved in fluid before 
injection. 

Nevertheless, by introducing low-osmolar contrast media (LOCM) to the market, 
Amipaque represented a major advancement, inspiring other manufacturers to develop 
new compounds. In the early 1980s, several new LOCM agents were introduced, 
including iopamidol (Iopamiron, Bracco), iohexol (Omnipaque, Nyegaard & Co.), and 
ioxaglate (Hexabrix, Guerbet) (Figure 21). Over the following decades, LOCM 
gradually became the predominant class of contrast agents and remains the standard in 
clinical practice today. 

Nyegaard & Co., later rebranded as Nycomed, continued innovating in contrast media 
development. In the 1990s, the company introduced iodixanol (Visipaque), a molecule 
consisting of two tri-iodinated benzene rings fused into a single molecule. This design 
incorporates six iodine atoms per osmotically active particle, again reducing osmolality 
by half. Iodixanol is considered iso-osmolar to plasma, classifying it as an iso-osmolar 
contrast medium (57–59). 

 

Figure 21 Iohexol molecule  
The chemical structure of Iohexol. Note the three iodine atoms in purple, located on the central benzene 
ring. From: https://commons.wikimedia.org/wiki/File:Iohexol_Structural_Formula_V.1.svg 
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Risks associated with low-osmolar contrast media 

The pain experienced during injections of HOCM is no longer a concern, as it was 
directly caused by the high osmolality of older agents. However, LOCM are not 
without side effects. 

Iodine atoms in iodinated contrast media are covalently bound to large molecules, but 
the solutions inevitably contain a small concentration of free iodide ions. This free 
iodide can influence thyroid function, posing a significant risk for patients with 
hyperthyroidism by exacerbating their symptoms. Additionally, iodide exposure can 
saturate thyroid iodine uptake for several months, potentially diminishing the 
effectiveness of radioiodine therapy for thyroid tumours or hyperthyroidism. While 
these complications can be serious, they affect only a very small subset of patients (62). 

Allergy-like hypersensitivity reactions to LOCM range from mild symptoms such as 
urticaria to severe, life-threatening anaphylactic shock. Even though they still exist, 
hypersensitivity reactions are considerably less frequent after administration of LOCM 
as compared to HOCM (60,63). 

Contrast Induced Kidney Injury 
The most significant risk associated with LOCM - and the subject of extensive research 
over many decades - is kidney injury, both acute and long-term. Assessing this risk is 
an important task during a radiologist’s daily practice, as each contrast enhanced CT 
examination requires carefully balancing the assumed impact on renal function against 
the diagnostic value of contrast enhancement.  

Since the early days of HOCM, it has been well established that, following distribution 
in the extracellular space, contrast agents are almost exclusively eliminated by the 
kidneys, via glomerular filtration, in direct proportion to the individual's glomerular 
filtration rate (GFR) (64). Early animal studies demonstrated the nephrotoxic potential 
of both HOCM and LOCM, particularly when combined with other renal stressors, 
such as ischaemia or dehydration, when injected directly into the renal artery or when 
administered repeatedly (65–67). Several case reports also documented instances of 
renal failure following intravenous contrast administration in urography and CT 
examinations (68–70).  

Collectively, these findings contributed to a widely accepted consensus that contrast 
media pose a risk of inducing kidney injury, particularly in patients with preexisting 
chronic kidney disease (CKD). According to an article published by Stacul et al in 
2011, reporting updated guidelines from the Contrast Media Safety Committee of the 
European Society of Urogenital Radiology patients with estimated GFR (eGFR) below 
45 ml/min/1.73m2 were identified as at risk of contrast media-induced nephropathy 
(CIN). Additional risk factors included diabetes mellitus, dehydration, moderate-to-
severe congestive heart failure (New York Heart Association Grade 3–4), and advanced 
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age (71) A 2012 meta-analysis by Kooiman et al., encompassing 40 studies, reported a 
6% overall incidence of CIN following intravenous administration of LOCM. Patients 
with CKD (eGFR <60 ml/min/1.73m2) or diabetes mellitus exhibited a higher 
incidence of 9%. Recently updated guidelines from the Swedish Society of Urogenital 
Radiology designate eGFR thresholds of <30 mL/min/1.73 m² or <45 mL/min/1.73 
m² as indicators of increased risk for acute kidney injury, depending on the presence of 
concurrent risk factors and the volume of contrast media administered (72). 

Kidney Function and Acute Kidney Injury - Definitions 
Kidney function is most often classified by GFR, either as an absolute value in ml/min 
or normalised to the body surface area, relative GFR, with the unit ml/min/1.73 m2. 
eGFR means that kidney function is estimated from blood samples of either creatinine 
or cystatin C using formulae including other factors such as age and gender.(73) 

According to the Kidney Disease: Improving Global Outcomes (KDIGO) guidelines a 
relative GFR > 90 is considered normal kidney function. Below this value there are 
different categories of decreased function, with the most important in this context 
being: Category G3b, GFR 30 – 45: Moderately to severely decreased kidney function; 
Category G4, GFR 15 – 29: Severely decreased kidney function and Category G5, GFR 
< 15: Kidney failure (73).  

The KDIGO definition for AKI is: Increase in serum creatinine (SCr) by ≥ 26.5 µmol/l 
within 48 hours; or increase in SCr to ≥ 1.5 times baseline, which is known or presumed 
to have occurred within the prior 7 days; or urine volume < 0.5 ml/kg/h for 6 hours 
(74).  

High-Z elements as contrast media 

As outlined in the previous section, iodine serves as the attenuating element in currently 
available intravenously administered CM. Iodinated CM possess several advantageous 
properties, including high water solubility, molecular stability that allows for 
autoclaving, and complete renal elimination without metabolic alteration (75). 
However, from a purely physical standpoint, iodine is not the optimal element for CT 
contrast media. 

With an atomic number (Z) of 53, iodine’s K-edge at 33 keV lies below the energy of 
most photons in a CT scanner’s polychromatic X-ray spectrum. Consequently, the 
attenuation effect of iodinated contrast media increases as the kVp-level of the CT 
scanner decreases. This property is exploited in clinical practice, where low kVp 
protocols are often used to maximize LOCM attenuation, particularly when aiming to 
minimise CM dose in patients with CKD. However, lowering the kVp also increases 
the proportion of photons that undergo photoelectric interactions with atoms in 
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patient tissues, leading to a higher absorbed radiation dose. Additionally, low kVp 
settings significantly degrade image quality in obese patients, where adequate 
penetration of X-rays is challenging as a smaller fraction of the photons reach the 
detector. Therefore, relying on iodine-based CM inherently limits optimisation of CT 
imaging. 

 

Figure 22 Photon energy spectrum at 120 kVp and mass attenuation coefficient at different keV of four 
elements 
The mass attenuation coefficients (MAC) of iodine, gadolinium, tungsten (wolfram) and bismuth 
superimposed over a 120 kVp CT photon energy spectrum. The abrupt changes in levels of the MAC 
curves represent the K-edges. This figure illustrates the complex interaction underlying attenuation of 
different elements at a particular kVp-level. Copyright Wolters Kluwer Health, Inc. Jost G, New Contrast 
Media for K-Edge Imaging with Photon-Counting Detector CT. Vol. 58, Investigative Radiology. Lippincott 
Williams and Wilkins; 2023. p. 515–22. 

An alternative approach involves exploring contrast media containing elements other 
than iodine. Ideally, such elements would have K-edge energies more closely aligned 
with the X-ray spectrum of CT scanners, maximizing attenuation efficiency without 
necessitating reductions in kVp (Figure 22). This concept presents an appealing 
opportunity for future contrast media development. 

The X-ray attenuation characteristics of chemical elements are well-documented, with 
cross-sections and mass attenuation coefficients (indicating the probability of photon 
interaction at varying energy levels) readily available in reference tables (76). Elements 
with higher atomic numbers (high-Z elements) exhibit higher K-edge energies, more 
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closely aligning with the mean energy of CT X-ray spectra. In theory, these elements 
could attenuate photons more efficiently per atom and per unit mass compared to 
iodine, making them compelling candidates for alternative CM - up to Z ≈ 80, beyond 
which most elements are radioactive (76,77). 

For several decades, research has explored the use of high-Z elements in CM, though 
efforts have been impeded by toxicity or prolonged bodily retention, hindering the 
development of viable agents (78). 

Contemporary approaches to mitigate toxicity and enhance water solubility as well as 
renal excretion include nanoparticle formulation and the utilization of chelate-ligand 
complexes, as exemplified by gadolinium-based contrast media in magnetic resonance 
imaging (75,79). High-Z elements also constitute potential candidates for CM tailored 
for use in MD. Due to their high K-edge energies the X-ray properties of high-Z 
elements vary considerably from iodine at different kVp-levels. This facilitates 
separation of these potential CM from iodine. In 2012 two noteworthy papers were 
published, both exploring the use of dual contrast media - iodine and a high-Z element, 
either W or bismuth (Bi). Mongan et al demonstrated, in an animal model, the 
feasibility of separating two CM, either both intravascular, in different phases, or 
located in different organ systems, i.e. one given orally and the other intravascularly. 
Qu et al also explored the latter concept, but in a phantom study (80,81). 

However, the complex interplay between CT X-ray energy spectra and the intricate 
attenuation curves of individual elements complicates the identification of elements 
optimally suited for use in alternative CM (82). 
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Aims 

The overall aim of this thesis was to explore different aspects of optimisation of 
abdominal CT examinations, particularly regarding detection of liver metastases.  

 

Specific aims of each paper included in the thesis: 

Paper I To test the hypothesis that radiation dose and intravenous contrast 
medium dose can be balanced against each other, resulting in constant 
image quality - by evaluating an abdominal CT examination protocol 
in which patients were stratified by age. Young patients were examined 
using low radiation dose and high CM dose, while elderly were 
examined with high radiation dose and low CM dose.   

 

Paper II Primary: To determine the potential of different high-Z chemical 
elements to be used alongside iodine in dual-CM, DECT examinations. 

Secondary: To evaluate the possibility to separate the investigated 
elements using MD in an image-based software. 

 

Paper III Primary: To investigate how different levels of simulated radiation dose 
reduction in abdominal CT affect detection and characterisation of 
hypovascular liver metastases. 

 Secondary: To evaluate the relationship between lesion size, CNR, 
radiation dose and lesion detection rate. 

 

Paper IV Primary: To test the hypothesis that using a sharper convolution kernel 
in FBP, producing higher frequency noise and a better spatial resolution 
lead to improved detection of small, low-contrast lesions in low dose 
CT images, compared to the standard, softer kernel. 

 Secondary: To evaluate if using IR (ADMIRE) combined with standard 
as well as sharp kernel improves lesion detection, compared to FBP. 
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Materials and Methods 

This doctoral thesis comprises four papers: two retrospective observational studies 
involving patients who underwent computed tomography (CT) examinations (Papers 
I and III), and two experimental phantom studies (Papers II and IV). 

Study Population 

Papers I and III were retrospective observational studies conducted on patients 
examined using the clinically implemented CT protocols at Skåne University Hospital, 
Malmö. 

In Paper I, patients aged 16 years and above who underwent intravenous contrast-
enhanced (CE) abdominal CT for suspected acute illness, between May and December 
2009 were included. The protocol employed age-specific parameters by categorising 
patients into four age groups: 16–25, 26–50, 51–75, and >75 years. The target sample 
was 25 patients per group (100 in total). 

In Paper III, patients who underwent CE thoracoabdominal CT during one of four 
discrete periods totalling 138 days (from 17 January 2011 to 4 September 2012) were 
included. The division into separate periods was due to repeated technical disruptions 
affecting image processing hardware. Inclusion criteria were patients undergoing 
follow-up examinations for known malignancy with hypovascular liver metastases. 
Patients with more than 10 metastases were excluded to minimise clustering bias. To 
mitigate memory bias during observer assessments, patients with large lesions (>3 cm), 
or distinctive features such as prior liver surgery, large calcified gallstones, or significant 
ascites were also excluded. The study aimed to enrol 20 patients with hypovascular liver 
metastases and 20 controls without liver metastases. A study coordinator (a 
gastrointestinal radiologist with 5 years of experience in abdominal CT) reviewed all 
images, including thin slices and multiplanar reconstructions, recording lesion location 
and maximum diameter in the transverse plane. 

Lesion characterisation was performed collaboratively with a senior gastrointestinal 
radiologist (31 years’ experience), incorporating data from all available prior 
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radiological examinations and referral information. The study coordinator also 
reviewed subsequent CT or MRI scans within 3 years of the index examination. 

Phantoms 

In Paper II, an online resource was used to assess the X-ray attenuation properties of 
high atomic number (high-Z) elements. The key parameters were the energy level of 
the K-edge and total cross section (cm²/g) at specific keV values. Based on this data, 
five elements - gadolinium (Gd, Z=64), tantalum (Ta, Z=73), tungsten (W, Z=74), 
gold (Au, Z=79), and bismuth (Bi, Z=83) - were selected for comparison with iodine. 
Solutions (0.02 M) were prepared and placed into 20 ml plastic syringes. Due to 
solubility limitations, tantalum was suspended in a solid gelatinous medium at a similar 
concentration. To evaluate MD in detail, one syringe was prepared containing both a 
semi-cylindrical cast of the Ta-containing medium and a 0.02 M iodine solution. A 
non-anthropomorphic chest phantom (30 cm diameter, 10 cm length) made from 
Nylatron GSM Blue Nylon (Quadrant Engineering Plastic Products, Los Angeles, CA, 
USA) with cork inlays, housed the syringes in preformed slots. 

In Paper IV, six homogeneous agar-based phantoms containing 3.5 mg I/mL iodinated 
contrast medium (Omnipaque, GE Healthcare, Amersham, United Kingdom) were 
fabricated in-house, each containing 3.5 mg I/mL iodinated contrast. To simulate low-
contrast lesions, three phantoms included randomly placed 8 mm acrylic spheres, two 
contained 11 mm spheres (4D Modelshop, London, United Kingdom) and one served 
as a lesion-free control. 

Image Acquisition 

Papers I and III utilised a 16-slice CT scanner (SOMATOM Sensation 16, Siemens 
Healthcare, Forchheim, Germany) with a tube voltage of 120 kVp, pitch of 0.65, and 
collimation of 16 × 1.5 mm. 

In Paper III, the tube load was 200 Quality Reference mAs, and the contrast dose was 
420 mg I/kg body weight (Omnipaque, GE Healthcare, Amersham, UK) 

In Paper I, both the tube load, which is linearly proportional to radiation dose, and 
contrast dose were adapted according to a theoretical model accounting for age-specific 
risk profiles. The rationale was that risks from ionizing radiation are greater for younger 
patients, while older patients more often have reduced renal function making them 
more susceptible to contrast induced acute kidney injury. Radiation dose (tube load in 
mAs) was plotted linearly proportional to age, with quantum noise inversely related to 
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the square root of the radiation dose. To counteract resulting changes in image noise, 
a matching age-adjusted contrast dose curve was applied. This aimed to maintain 
consistent CNR for all age groups. (Figure 23) The 51–75 years group, using 
parameters identical to the previous standard protocol, served as the reference. 

 

Figure 23 Theoretic model behind the age-stratified CT-protocol in Paper I  
To determine the examination parameters for the age-stratified abdominal CT protocol in Paper I, this 
theoretical model was employed. The various age groups are represented by coloured bars: Group I (16–25 
years), Group II (26–50 years), Group III (51–75 years), and Group IV (>75 years). The previously utilised 
protocol featured a tube load of 200 mAs. From this baseline, the radiation dose was plotted, increasing 
linearly with age (A). The resulting arbitrary quantum noise, which is inversely proportional to the square 
root of the radiation dose, is depicted in (B). To counteract the rising noise levels in younger groups and 
enable dose reduction in older individuals, the contrast media doses were adjusted to align with the noise 
curve (C). In theory, this approach maintains a consistent contrast-to-noise ratio (CNR) across all age 
groups (D). Copyright Marcus Söderberg. Reproduced with permission. 

In Paper III artificial noise was added to the raw data prior to filtering and 
reconstruction, to simulate examinations performed at lower radiation dose levels. The 
software used was Dose Tutor version 4.7.0 (VAMP Gmbh, Erlangen, Germany), 
which had previously been validated at our institution and found to introduce noise 
with realistic magnitude and NPS (83). Images with simulated radiation dose levels of 
100% (DL100); 75% (DL75); 50% (DL50) and 25% (DL25) were produced. 



70 

In Paper II the phantom containing the solutions of different elements was scanned 
using a dual source, dual energy scanner (Siemens SOMATOM Definition Flash, 
Siemens Healthcare, Forchheim, Germany). Scanning was performed using all available 
kVp-settings in single energy mode, as follows (the mean energy level of the X-ray 
spectrum given in parenthesis): 70 kVp (49 keV), 80 kVp (54 keV), 100 kVp (62 keV), 
120 kVp (69 keV) and 140 kVp (76 keV). Two different dual energy settings were 
used: 80 kVp / 140 kVp and 80 kVp / Sn140 kVp. The “Sn140 kVp” setting means 
that an additional tin filter has been applied, more effectively filtering the low energy 
photons and thereby increasing the mean keV of the spectrum to 92 keV (Information 
on mean energies of the X-ray spectra was received in personal communication with 
Siemens Healthcare Sector Sweden on November 5, 2012). Tube load was set to 100 
mAs for all single energy scans and for the high kVp tube in DE scans. Rotation time 
was 0.28 s and collimation 64 x 0.6 mm.  

In Paper IV the phantoms were scanned in six positions, rotated 60° between scans, to 
produce multiple images with varying lesion locations. A dual source CT scanner 
(Siemens SOMATOM Drive, Siemens Healthineers, Forchheim, Germany) was used. 
Low radiation dose scans were performed of the phantoms in all positions to yield 
images with a high level of image noise, using the following parameters: tube voltage 
90 kVp, tube load 10 mAs, rotation time 0.5 s and pitch 1.4. A subsequent high-dose 
scan generated low-noise reference images. 

Image Reconstruction 

In Papers I, II, and III, images were reconstructed using FBP with kernel B30f, 5 mm 
slice thickness, and a 512 × 512 image matrix size. 

In Paper IV, three different convolution kernels were employed for image 
reconstruction. Br38, the standard kernel used in clinical practice, served as the 
reference. Two sharper kernels, Bf42 and Br43, were selected to test the hypothesis that 
higher-frequency noise with finer texture may improve the detection of small, low-
contrast lesions. Each of the three kernels was applied using FBP as well as ADMIRE 
at strengths 3 and 5 (maximum strength = 5), resulting in a total of nine reconstruction 
methods. Images were reconstructed in 3 mm slices with a 2 mm slice interval, and the 
image matrix size was 512 × 512. 
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Objective Image Quality Evaluation 

In Papers I and III, a region of interest (ROI) was placed in a homogeneous region of 
the right liver lobe in all patients, and simulated dose levels, to record CT-numbers and 
SD as a measure of noise. Measurements in Paper I were performed using the 
institutional Picture Archiving and Communication System (Sectra PACS, Sectra, 
Linköping, Sweden), while Paper III employed OsiriX DICOM viewer (version 3.9.2, 
Geneva, Switzerland). 

In Paper I SNR were calculated by dividing the CT-number in the right liver lobe by 
the SD representing the noise. Due to a lack of liver lesions a hypothetical hypovascular 
liver metastasis with a CT-number of 40 HU was used for CNR calculation. 

In Papers III and IV CT-numbers were measured by placing a ROI within all lesions. 
An additional ROI was placed in a homogeneous area in the adjacent 
parenchyma/medium measuring the CT-number, again with SD representing noise. 
CNR was calculated as the difference in CT-numbers divided by noise. 

Noise Power Spectrum 

In Paper IV the NPS-curves of the nine different reconstruction methods were 
generated using Auto QA Plus (version 1.8.11, QA Benchmark, LLC, Frederick, MD, 
USA). To generate NPS of all reconstruction methods, scans of the control phantom 
were used excluding 5 slices in either end of the phantom. Measurements of the central 
29 slices were averaged to yield representative NPS-curves. The area under the curve 
(AUC) was calculated using the trapezoidal rule in R (R Foundation for Statistical 
Computing, Vienna, Austria). Frequencies at the 10th, 50th, and 90th percentiles of 
the AUC were determined to help describe curve shapes. 

Dual-Energy Ratios and Material Decomposition 

In Paper II dual-energy ratios of the investigated elements were calculated as an 
objective descriptor of attenuation properties at different kVp-settings. The difference 
in attenuation between different elements, when exposed to distinct X-ray energy 
spectra, is the foundation of MD in DE CT. Therefore, the numerical value given by 
a ratio of the attenuation at low and high kVp can be used to compare elements, 
indicating the potential for separation using MD. Dual-energy ratios were calculated 
for the following kVp-combinations: 80/140; 80/Sn140, 70/140 and 70/Sn140. 
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MD experiments were performed using “VEn workflow, advanced VEn tool” in the 
software Aquarius iNtuition viewer (TeraRecon, Foster City, California, USA). DE 
data were loaded into the software and ROIs placed within the element-containing 
syringes, two at a time. As the most useful MD-application would be to separate a 
distinct element from iodine, MD of the five evaluated elements from iodine was 
investigated. Scatterplots with low kVp on the Y-axis and high kVp on the X-axis were 
generated.  

A manually placed discriminatory line through origo was placed between elements in 
the scatterplot, with voxels in image space colour-coded (green/red) based on their 
position relative to the line. (Figure 17) 

Subjective Image Quality Evaluation 

Papers I, III, and IV employed ViewDEX software (Region Västra Götaland and 
University of Gothenburg; versions 2.0 and 2.57) for observer studies. ViewDEX, an 
acronym for “Viewer for Digital Evaluation of X-ray images”, integrates a DICOM 
viewer with customisable tools for image evaluation and lesion localisation. Thus, the 
software makes it possible to set up different reader tasks in different studies. 

In Paper I a Visual Grading Characteristics (VGC) study was conducted with four 
readers (radiologists with 3 – 20 years of experience reading CT images) grading seven 
image quality criteria in pseudonymised images from all age-groups. The image quality 
criteria were selected from the European guidelines on quality criteria for CT and are 
displayed in Table 1 (84). A five-grade Likert scale was used, with the following grades: 
1 – unacceptable; 2 – substandard; 3 – acceptable; 4 – above average and 5 – superior. 
Readers completed a calibration session and were allowed to adjust image settings while 
reading the images. A sub-analysis included 20 patients aged 16 – 25 and examined 
using the previous standard protocol employing the same parameters as age-group 51- 
75. This sub-group was compared to age groups 16 – 25 years and 51 – 75 years to 
analyse the impact on image quality from radiation dose reduction versus age-
dependent differences in body constitution, i.e. the smaller amount of intraabdominal 
fat in young patients.  
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Table 1 Image quality criteria from the European guidelines on quality criteria for CT 
 

Number Image Quality Criteria 

1 Visually sharp reproduction of liver parenchyma and the intrahepatic portal veins 

2 Visually sharp reproduction of the pancreatic contours 

3 Visually sharp reproduction of the kidneys and proximal ureters 

4 Reproduction of the gallbladder wall 

5 Visually sharp reproduction of the right adrenal gland from adjacent structures 

6 Visually sharp reproduction of the structures in the liver hilum 

7 Reproduction of of the ductus choledochus in the pancreatic parenchyma 

 

Lesion Localisation and Characterisation 
In Papers III and IV ViewDEX was set up to facilitate lesion localisation studies.  

In Paper III, five radiologists (4–20 years of experience) localised liver lesions and rated 
their malignancy probability on a 5-grade Likert scale: 5 – very high probability; 4 – 
high probability; 3 – moderate probability; 2 – low probability and 1 – very low 
probability. 

160 image stacks were read in total, divided into four sessions of 40 image stacks, 
presented in random order, with at least one month interval between sessions to 
minimize memory bias. Patients were included once per session and presented in 
random order. A localization mark placed within a lesion was considered a true positive 
marking and a mark placed outside of a lesion was recorded as a false positive. 

The results from the observer study in Paper III were analysed using Jackknife Free-
response Receiver Operating Characteristics (JAFROC) in a non-inferiority analysis 
(see Statistical methods below for further description). 

Lesion detection and characterisation were further explored in Paper III by applying 
two different cut-off levels to the Likert scale: below grade 3 and below grade 4. This 
approach was intended to simulate clinical practice, in which radiologists typically 
report lesions with a moderate or higher probability of malignancy as suspicious. 
Fractions of metastases graded above the cutoff levels were compared between the 
simulated radiation dose levels. The 100% radiation dose level served as reference in all 
analyses. 

To assess whether the relationship between lesion size, CNR and lesion detection 
remained consistent at different dose levels, lesions were stratified into nine groups 
based on size and CNR. The proportion of correctly localised lesions within each 
subgroup was calculated. 

In Paper IV, 8-slice image stacks—each containing either one lesion or no lesion—
were extracted from the full image datasets using the free software Horos (version 3.3.6; 
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Nimble Co LLC d/b/a Purview, Annapolis, MD, USA). These image stacks were 
imported into ViewDEX for the observer study. A pilot study involving two readers 
who assessed 45 image stacks was first conducted. Based on the results, a sample size 
analysis using RJafroc (R Foundation for Statistical Computing, Vienna, Austria) 
indicated that a study with five readers and 80 cases would achieve a statistical power 
of 0.854, assuming a significance level of 0.05 and an effect size of 0.05. 

Five readers were subsequently recruited: four radiologists with 3 to 20 years of 
experience in CT interpretation, and one CT-specialised medical physicist with 15 
years of experience. Eighty 8-slice image stacks were selected for the observer study from 
images reconstructed using each of the nine reconstruction methods, resulting in a total 
of 720 unique image stacks. An additional 80 image stacks were duplicated to assess 
intra-reader agreement. 

The image stacks were evaluated in ViewDEX across five reading sessions, each 
comprising 160 image stacks, presented in random order. A minimum interval of one 
week between sessions was enforced to reduce memory bias. Reader markings were 
compared with lesion locations identified in the corresponding high-dose reference 
scans. Markings placed within a lesion boundary were classified as true positives; those 
outside lesions were considered false positives (Figure 24). 

A separate analysis of lesion detection performance among reconstruction methods was 
conducted by calculating and comparing the proportion of true and false positive 
markings with a confidence score of 2–4 on the Likert scale. 
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Figure 24 Overview of study in Paper IV  
Copyright: The Authors. 

Ethical considerations 

The studies described in Papers I and III are retrospective observational studies 
involving patients who had previously undergone standard clinical imaging procedures 
at our institution. No modifications to examination techniques or patient care were 
made for the purposes of these studies. The age-stratified abdominal CT protocol 
evaluated in Paper I had already been implemented as standard clinical practice prior 
to the initiation of the study. Nevertheless, the selection and inclusion of patients in 
these studies raise considerations regarding patient integrity. This must be balanced 
against the benefits of conducting research potentially improving CT imaging 
protocols, thereby enhancing the quality of care for future patients. All images were 
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pseudonymised following selection, and patient-identifiable information was securely 
stored in coded lists.  

The studies were approved by the Regional Ethics Committee in Lund, and the 
requirement for informed consent was waived (Ethical approvals: Dnr 2011/571 and 
Dnr 2014/266). The studies presented in Papers II and IV are phantom-based and, 
therefore, did not require ethical approval. 

Statistical methods 

Visual Grading Characteristics (VGC) 

VGC was used in Paper I to compare and analyse the image quality between the four 
different age groups examined using different parameters. VGC is a non-parametric, 
rank-invariant method suitable for analysing ordinal data such as grades on a Likert 
scale from an observer study (40). This is important as it is incorrect to calculate means 
or assume normal distribution of ordinal data. A VGC-curve is produced in a procedure 
similar to receiver operating characteristic (ROC). To compare two different types of 
images, e.g. age-groups in Paper I, ordinal rating data from the different age-groups are 
plotted against each other in a diagram to produce a VGC-curve. The evaluated image 
type on the y-axis and the reference on the x-axis, both with a range from 0 to 1. Data 
are plotted cumulatively from origo starting with the highest ratings, with the curve 
ending up at the point (1, 1) in the top right corner. A line along the diagonal of the 
diagram means equal performance of the evaluated image types. An AUC larger than 
0.5 means that the evaluated system performs better. Observers will interpret a rating 
scale somewhat differently, why ratings cannot be compared across readers. Individual 
AUC for each reader and image quality criterion is therefore produced. The mean and 
confidence interval (CI) are then determined using a statistical resampling method 
called bootstrapping. The software “VGC analyzer” was used (85).  

Jackknife Alternative Free-Response Operating Characteristic (JAFROC) 

The studies in Papers III and IV investigated lesion localisation and grading. JAFROC 
is an appropriate method for data analysis in this type of studies. In JAFROC the figure-
of-merit (FOM) is the quantitative metric of observer performance. q is equivalent to 
the AUC of a ROC-curve, where, for each rating scale level, the fraction of true positive 
lesion localisations (relative to all lesions) is plotted on the y-axis against the fraction of 
cases with at least one false positive marking at that rating on the x-axis. Thus, q can be 
defined as the likelihood that a true positive localization is rated higher than any false 
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positive localisation. The plotting of the ROC-curve can be described as starting at 
origo, highest ratings first and then cumulatively and stepwise adding true and false 
positives with lower rates. This way correct localisations with high ratings are awarded 
by increasing the AUC while false positives with high ratings and missed lesions (false 
negatives) are penalised by lowering the AUC. JAFROC calculates an AUC for each 
reader and evaluated modality. The jackknife-procedure is a type of resampling in 
which one case is excluded while a new AUC (so called pseudovalue) is calculated for 
the remaining cases. This is repeated excluding all cases one at a time and the difference 
in mean pseudovalue between the evaluated modalities is then analysed using analysis 
of variance (ANOVA). ANOVA performs significance testing on a global level as well 
as between all modalities compared to one another. A difference between two 
modalities is only deemed significant if the p-value of the comparison of their FOMs 
and the global p-value of the ANOVA test both are < 0.05 (86). 

There are a few options within the JAFROC-methodology. In “standard JAFROC” 
only false positive localisations from non-diseased, control, cases are included in the 
analysis. “JAFROC1” is the other variant, where false positive localisations from all 
cases are included. This yields a higher statistical power. Initially the use of JAFROC1 
was not recommended by the developer as it was not deemed reliable. However, in a 
later simulation JAFROC1 was validated and approved for use (87). There are also 
“weighted” versions of JAFROC and JAFROC1. This means that lesions are weighted 
in a way that compensates for the varying number of lesions per case, so that each 
patient has equal influence on the results. This is desirable as multiple lesions in the 
same case cannot be regarded as independent from each other (87).  

JAFROC was developed by D. Chakraborty at the University of Chicago. In Paper III 
the JAFROC software for Windows (version 4.2.1) was used, in Paper IV RJafroc 
package version 2.1.2 in R (R Foundation for Statistical Computing, Vienna, Austria).  

The post hoc sample size analysis in Paper III was performed using the “Multi-reader 
sample size program for diagnostic studies” software by Hillis and Schartz at the 
Medical Image Perception Laboratory at the University of Iowa (88). 

Analysis of variance and Tukey’s test 

In Paper I, the difference in means of SNR and CNR between the age-groups was 
analysed using ANOVA and Tukey’s test. ANOVA is a parametric statistical method 
for comparison of differences between the means of multiple groups. The analysis 
calculates the ratio of the variance between the groups to the variance within groups. 
The resulting numerical value is the F-statistic which analysed together with the degrees 
of freedom gives the significance level of the null hypothesis test that there is no 
difference between the groups. A statistically significant result in an ANOVA analysis 
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indicates a significant difference between any of the groups included but does not 
specify where this significant difference is to be found. Therefore, if ANOVA yields a 
significant result, a post hoc analysis needs to be carried out, such as Tukey’s test. 
Tukey’s test compares all groups to each other specifying which are significantly 
different from each other, while at the same time correcting for multiple significance 
testing (89). 

Intraclass Correlation Coefficient 

In Papers III and IV, the Intraclass Correlation Coefficient (ICC) was employed to 
evaluate inter-reader agreement. In Paper IV, the ICC was additionally used to assess 
intra-reader agreement. The ICC is computed as the ratio of variance arising from 
differences between cases to the total variance, which encompasses both case and reader 
variance. When reader agreement is high, the variance attributable to differences 
between readers is minimal, thereby reducing the denominator in the calculation and 
yielding a higher ICC value. Consequently, the ICC ranges from 0 to 1, with higher 
values indicating greater agreement (90,91). 

Several forms of ICC are available, each appropriate for different study designs. For the 
inter-reader analyses, a two-way random-effects model with average measures and a 
consistency definition was used. For the intra-reader analysis, a two-way mixed-effects 
model with single measures and an absolute agreement definition was applied. 

A commonly cited guideline for interpreting ICC values was proposed by Koo and Li 
(2016): < 0.50: Poor reliability; 0.50–0.75: Moderate reliability; 0.75–0.90: Good 
reliability and > 0.90: Excellent reliability (90). 

Chi-squared test 

The chi-squared (χ²) test was used in Paper III to evaluate differences in the 
proportions of detected lesions between the various radiation dose levels. The χ² test is 
a statistical method designed to assess differences in proportions of categorical variables 
between groups. In its most common application, data are arranged into a 2 x 2 
contingency table, where observed numbers within each cell are compared to expected 
numbers under the null hypothesis of no difference in proportions. For each cell, the 
squared difference between observed and expected frequencies is divided by the 
expected frequency, and these values are summed across all cells. The resulting test 
statistic, combined with the degrees of freedom, is compared to the chi-squared 
distribution to determine the p-value. The test assumes sufficiently large sample sizes, 
with a minimum expected number of five in each cell, and independent observations. 
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The test assumes sufficiently large sample sizes, with an expected frequency of at least 
five in each cell, and that the observations are independent (89). 

McNemar’s test 

In Paper IV, McNemar’s test was used to analyse differences in rates of true and false 
positive markings between the different reconstruction methods. McNemar’s test is 
applicable to paired, dichotomous data and uses only discordant pairs in a χ² analysis 
to analyse if there is a statistically significant difference between groups (89). 

Student’s t-test 

The Student’s t-test is a classical parametric test commonly used to determine whether 
there is a statistically significant difference between the means of two independent 
groups. It is suitable for small sample sizes and assumes that the data are normally 
distributed and that the groups are independent. 

In Paper III, the Student’s t-test was used to assess whether the mean number of 
incorrectly graded benign lesions and false-positive localisations differed significantly 
between the various radiation dose levels, based on assessments from the five readers. 

Shapiro-Wilk test 

The Shapiro–Wilk test is used to assess the normal distribution of a sample. If the 
resulting p-value is >0.05 the sample can be considered to follow normal distribution. 
In Paper IV the Shapiro-Wilk test was used to test the normality of the measurements 
of CT-numbers, noise and CNR (89). 

Mann-Whitney U-test and Wilcoxon signed rank test 

As some of the data from measurement of CT-number, noise and CNR in Paper IV 
did not meet the assumption of normal distribution, it was not appropriate to use t-
test and paired t-test. Instead, the non-parametric counterparts Mann-Whitney U-test 
and Wilcoxon signed rank test were used. The Mann-Whitney U-test compares two 
independent samples by analysing their distribution in relation to one another. 
Wilcoxon signed rank test compares the if the median of the differences of each 
individual pair differs significantly from zero (89). 
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Results 

Paper I 

One hundred patients were recruited and allocated to four age groups: 16 – 25 years 
(Group 1); 26 – 50 years (Group 2); 51 – 75 years (Group 3) and >75 years (Group 
4). Gender distribution within the groups, radiation dose and CM dose is presented in 
Table 2. The implementation of the investigated examination protocol, designed to 
reduce radiation dose for younger patients and IV CM dose for the elderly, resulted in 
a 58% reduction in radiation dose for patients in Group 1 and an 18% reduction in 
CM dose for those in Group 4.  

Table 2. Gender distribution, mean radiation dose and IV contrast medium dose.  
Presented for the four age groups, percentage difference to reference group 3 also included. 

Group Age 
(years) 

Female-
to-Male 
Ratio 

CT Dose 
Indexvol 
(mGy) 

Effective 
Dose 
(mSv) 

Change in 
Radiation 
Dose 
(Group 3 
for 
reference) 

IV 
Contrast 
Medium 
Dose (mg 
I/kg) 

Change in 
IV 
Contrast 
Medium 
Dose 
(Group 3 
for 
reference) 

1 16 - 25 15:10 4.6 ± 0.62 3.6 ± 0.60 - 58% 594 ± 11 + 42% 

2 26 - 50 18:7 8.1 ± 1.3 6.6 ± 1.3 - 22% 492 ± 25 + 18% 

3 51 - 75 13:12 10.7 ± 1.4 8.5 ± 1.3 REFERENCE 418 ± 5.2 REFERENCE 

4 >75 16:9 15.9 ± 3.0 12.4 ± 3.2 + 46% 344 ± 15 - 18% 

 

Example images depicting an axial slice through the mid-portion of the liver for each 
group are shown in Figure 25. Notably, higher contrast enhancement in abdominal 
organs and blood vessels is observed in Group 1, diminishing with increasing age. As 
per the protocol design, this enhanced contrast is accompanied by an elevated image 
noise level, attributable to the reduced radiation dose, in Groups 1 and 2. Conversely, 
the reduced contrast enhancement in Group 4 is offset by a lower noise level. Objective 
image quality metrics, including mean CT-number in liver parenchyma, image noise, 
CNR, and SNR, are reported in Table 3, with CNR and SNR also illustrated in Figure 
26. 
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Figure 25 Image examples of patients in the four age-groups  
Axial slices at the level of the portal vein are presented, with one patient from each age group included for 
comparison: A = Group 1, B = Group 2, C = Group 3, and D = Group 4. Observe the variations in noise levels 
and contrast enhancement between the age groups. Copyright: The authors 
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Table 3 Mean CT-number in liver parenchyma, Noise, CNR and SNR. 
Presented for the four age groups. 

Group Mean CT-
number  
liver (HU) 

Noise 
(HU) 

CNR SNR 

1 123 ± 14 16.4 ± 1.7 5.1 ± 0.9 7.6 ± 1.0 

2 105 ± 14 14.9 ± 2.3 4.5 ± 1.3 7.3 ± 1.6 

3 94 ± 9 12.8 ± 1.9 4.3 ± 1.1 7.5 ± 1.5 

4 87 ± 10 10.7 ± 1.5 4.6 ± 1.2 8.4 ± 1.7 

 

Figure 26 Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) 
Mean liver SNR and mean CNR calculated using the contrast between liver parenchyma and a hypothetical 
metastasis with CT-number=40. Error bars indicate ±1 standard deviation (SD). Copyright: The Authors. 

VGC AUC values for each image quality criterion, combined across all readers, are 
presented in Figure 27. For Group 1, image quality was rated inferior to the reference 
(Group 3) for all seven criteria, with significantly lower AUC values for four criteria. 
For Group 2, the AUC was lower than Group 3 in six of seven criteria, achieving 
significance for only one criterion. No discernible difference was observed between 
Groups 3 and 4. 

When analysing the percentage of grades rated as “acceptable” or higher (3–5 on the 
Likert scale) for all readers, the results for the respective groups were: Group 1 – 71%; 
Group 2 – 80%; Group 3 – 85%; and Group 4 – 83%.  
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Figure 27 Area under the curve (AUC) values of visual grading characteristic (VGC) analysis 
The area under the curve for the groups 1, 2 and 4 when compared to the reference group (Group 3). 
AUCs for all seven image quality criteria are included. Error bars indicate 95% confidence interval (CI), if 
this does not cover 0.5 the difference between the evaluated and reference system is significant. Subjective 
image quality was graded worse for the group with the lowest radiation dose (Group 1), reaching 
significance for four criteria out of seven. In group 2 image quality was rated significantly worse for one 
criterion. No difference was seen between group 3 and 4. Copyright: The authors. 

A retrospective inter-reader agreement analysis, conducted using ICC following the 
publication of Paper I, demonstrated “good reliability” among the four readers (ICC = 
0.79, 95% CI: 0.67–0.86, with two-way random effects and absolute agreement; ICC 
= 0.84, 95% CI: 0.82–0.86, with two-way random effects and consistency). 

Paper II 

The CT-numbers of the investigated elements at all available kVp settings are presented 
in Figure 28. Notably, the curves for Ta, W, and Au remain approximately horizontal, 
indicating similar attenuation of the X-ray spectrum at both low and high kVp settings. 
In contrast, the curves for iodine, Gd, and Bi exhibit a decline in CT-number with 
increasing X-ray energy, with iodine displaying the most pronounced relative difference 
between low and high kVp levels. This relative difference in CT-numbers between low 
and high kVp levels corresponds to the DE ratios of the elements. DE ratios for the 
existing DE settings at the time of the study (80 kV/140 kV and 80 kV/Sn140 kV), as 
well as simulated DE settings (70 kV/140 kV and 70 kV/Sn140 kV), are detailed in 
Table 4 
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Figure 28 CT-numbers at different peak kilovolt (kVp)-levels  
One chart is provided for each investigated element, displaying their CT-numbers at all available kVp levels. 
Iodine displays the largest relative difference in CT-numbers between low and high kVp settings. 
Meanwhile, tantalum, tungsten (wolfram), and gold exhibit similar CT-numbers across all kVp 
levels.Gadolinium and bismuth fall in between, with a modest increase in CT-numbers at lower kVp 
settings. From: Fält T, et al. Material Decomposition in Dual-Energy Computed Tomography Separates 
High-Z Elements From Iodine, Identifying Potential Contrast Media Tailored for Dual Contrast Medium 
Examinations. Journal of Computer Assisted Tomography. 2015;39(6):975–80. Reproduced with 
permission from Wolters Kluwer Health Inc. 
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Table 4 K-edges and DE ratios for the examined elements 
 

Chemical 
Element 

K-edge 
keV 

80 kV/140 kV 80 kV/Sn140 kV 70 kV/140 kV 70 kV/Sn140 kV 

I 33.2 1.9 2.2 2.3 2.6 

Gd 50.2 1.5 1.9 1.5 1.9 

Ta 67.4 1.0 1.1 0.9 1.0 

W 69.5 1.1 1.2 1.0 1.1 

Au 80.7 1.0 0.9 1.2 1.1 

Bi 90.5 1.4 1.4 1.7 1.7 

Iodine has high DE ratios at all settings, well separated from the DE ratios of Au, Ta, and W. Gd and Bi have 
DE ratios closer to that of I. 

 

In Figure 29, a scatterplot from the MD software is presented, illustrating the positions 
of iodine and Au within the chart and the placement of the discriminatory line to 
achieve optimal separation between these elements in the colour-coded images. 

Figure 30 depicts varying degrees of element separation by MD. Au and iodine were 
fully distinguished by the software, coded in red and green respectively. Bi and iodine 
exhibited slightly less effective separation, with noticeable noise evident in the colour-
coding of iodine. Inferior separation was observed for Gd and iodine. The greater the 
similarity in DE ratios between two elements, the more pronounced the adverse effect 
of image noise, significantly impairing the separation of Gd and iodine. 
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Figure 29 Scatterplot from material decomposition (MD) software  
An example of scatterplot produced by the MD software. Iodine and gold are located well apart in the plot 
due to their varying CT-numbers at low and high kVp-levels. i.e. different dual energy-ratios. The blue 
discriminatory line was placed manually as were the threshold values. Iodine and gold were successfully 
separated and colour-coded by the system. From: Fält T, et al. Material Decomposition in Dual-Energy 
Computed Tomography Separates High-Z Elements From Iodine, Identifying Potential Contrast Media 
Tailored for Dual Contrast Medium Examinations. Journal of Computer Assisted Tomography. 
2015;39(6):975–80. Reproduced with permission from Wolters Kluwer Health Inc. 
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Figure 30 Colour-coded material decomposition (MD) images  
CT images of the phantom are presented with overlaid colour-coded MD information. Note the three 
distinct levels of MD effectiveness. Iodine and gold are fully separated and iodine and bismuth are nearly 
completely separated, though noise is starting to visibly impair the distinction. Iodine and gadolinium 
exhibit poor separation, marked by noticeable noisiness. From: Fält T, et al. Material Decomposition in 
Dual-Energy Computed Tomography Separates High-Z Elements From Iodine, Identifying Potential Contrast 
Media Tailored for Dual Contrast Medium Examinations. Journal of Computer Assisted Tomography. 
2015;39(6):975–80. Reproduced with permission from Wolters Kluwer Health Inc. 
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Figure 31 Detailed separation of iodine and tantalum  
A syringe containing a semicylindrical cast of tantalum suspended in a gelatinous medium. The tantalum is 
surrounded by an iodine solution. The CT-number difference between these materials varies distinctly 
between high and low kVp levels. It is this individual variation with kVp that enables material 
decomposition. Copyright: The Authors. 

Paper III 

Following patient selection, one individual from the metastasis group was excluded 
after the lesions were reclassified as being located on the liver surface. Following this 
exclusion, 39 patients were enrolled in the study, comprising 19 with hypovascular liver 
metastases and 20 control patients without metastases. The metastasis group included 
10 women and 9 men, with a mean age of 64.9 ± 13.2 years. The control group 
consisted of 11 women and 9 men, with a mean age of 63.3 ± 13.3 years. A median of 
5 additional studies per patient, conducted over a median time span of 25 months, were 
reviewed to establish the reference standard. 

 

The mean CTDIvol for the actual abdominal CT examinations, from which reduced 
radiation dose levels were simulated, was 11.5 ± 3.0 mGy with a DLP of 550 ± 172 
mGy×cm. The resulting mean CTDIvol values for the simulated dose levels were as 
follows: DL75 = 8.6 mGy; DL50 = 5.8 mGy and DL25 = 2.9 mGy. The corresponding 
mean image noise levels were: DL100 = 13.2 ± 2.3 HU; DL75 = 15.4 ± 2.5 HU; DL50 
= 17.7 ± 2.9 HU and DL25 = 23.3 ± 3.7 HU. 
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Figure 32 presents example images illustrating the image quality of the four different 
dose levels, highlighting the effect of increasing noise levels on the conspicuity of lesions 
of varying sizes. 

 

Figure 32 Image quality at different dose levels  
Abdominal CT images of a patient with liver metastases. The four simulated radiation dose levels are 
presented: (A) DL100; (B) DL75; (C) DL50 and (D) DL25. Two metastases are present in the images. The 
larger metastasis (Black arrow) was detected by all five readers at all dose levels. The conspicuity of the 
small metastasis (white arrow) was negatively affected by increasing image noise, detected by four readers 
at the higher dose levels, but not detected by any reader at DL25. From Fält T, et al. Simulated Dose 
Reduction for Abdominal CT With Filtered Back Projection Technique: Effect on Liver Lesion Detection and 
Characterization. American Journal of Roentgenology. 2019 Jan;212(1):84–93. Reproduced with 
permission by American Roentgen Ray Society. 
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Mean detection rates of all five readers are presented in Table 5. Comparable detection 
rates exceeding 90% for metastases, as well as for all lesions combined, were observed 
for DL100 and DL75, whereas DL50 and DL25 exhibited lower detection rates.  

Table 5 Detection rates of metastases and benign lesions for the different dose levels 
P values from comparison to the reference group DL100 (χ²) 

Group Metastases >5 mm 
(n=50) 

Benign lesions >5 mm 
(n=12) 

All lesions > 5 mm 
(n=62)  

Detection rate 
(%), mean 
(range) 

p-
value 

Detection rate 
(%), mean 
(range) 

p-
value 

Detection rate 
(%), mean 
(range) 

p-
value 

DL100 94 (88 – 100) REF 87 (83 – 92) REF 93 (87 – 97) REF 

DL75 92 (88 – 98) 0.39 83 (75 – 92) 0.61 90 (87 – 94) 0.32 

DL50 84 (80 – 88) <0.01 78 (67 – 83) 0.23 83 (81 – 87) <0.01 
DL25 74 (58 – 84) <0.01 68 (58 – 75) 0.016 73 (60 – 82) <0.01 

DL: Dose Level 

The FOMs from the JAFROC analysis, along with the differences in FOMs between 
the reduced dose levels and DL100, are detailed in Table 6. The results of the non-
inferiority analysis are illustrated in Figure 33. The FOM for DL75 is nearly identical 
to that of DL100, and with the lower bound of the 95% confidence interval (CI) for 
the difference between these two FOMs exceeding -0.05, non-inferiority of DL75 is 
confirmed. In contrast, DL50 and DL25 were deemed inferior to DL100 in the 
JAFROC analysis, as the 95% CIs for their differences from DL100 extend 
substantially below the non-inferiority threshold 

Table 6 Figures of merit (FOMs) of the JAFROC analysis  
The FOM of each dose level and the difference in FOM between reference level DL100 and all other dose 
levels. 

DL FOM 95% CI Difference in FOM 
compared with DL100 

95% CI of Difference 
compared with DL100 

100 0.962 0.928-0.997 Reference Reference 

75 0.961 0.927-0.994 -0.002 -0.049 to 0.046 

50 0.922 0.865-0.978 -0.041 -0.088 to 0.006 

25 0.874 0.797-0.952 -0.088 -0.135 to -0.041 

DL: Dose Level, FOM: Figure of Merit, CI: Confidence Interval 



93 

 

Figure 33 Results from JAFROC noninferiority analysis  
The difference in figure of merit (FOM) between the reference dose level (DL100) and the other dose 
levels. The lower bound of the 95% CI of the difference between DL75 and DL100 does not include the 
noninferiority level -0.05, and DL75 is therefore considered noninferior to DL100. DL50 and DL25 do not 
fulfil noninferiority. From Fält T, et al. Simulated Dose Reduction for Abdominal CT With Filtered Back 
Projection Technique: Effect on Liver Lesion Detection and Characterization. American Journal of 
Roentgenology. 2019 Jan;212(1):84–93. Reproduced with permission by American Roentgen Ray Society. 

Lesion characterisation was also evaluated by applying a cut-off on the Likert scale 
below grade 3 (“moderate probability of malignancy”), thereby dichotomising lesion 
ratings into correct and incorrect decisions. The proportions of metastases and benign 
lesions accurately rated are presented in Table 7, while the number of benign lesions 
and false positive localisations incorrectly graded as metastases are detailed in Table 8. 
Contrary to the non-inferiority of DL75 established in the JAFROC analysis, the 
number of benign lesions incorrectly classified as metastases was elevated at this dose 
level. When combining benign lesions and false positive markings graded as metastases, 
the total for DL75 was significantly higher than for DL100. 
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Table 7 Correctly graded lesions for the five readers using a cutoff level below grade 3 (“moderate 
probabilty of malignancy”) 
 

Lesions DL100 DL75 DL50 DL25 

Metastases graded 3-5 77 (62-88) 76 (60-88) 73 (68-78) 66 (58-80) 

p - 0.83 0.35 <0.01 

Benign lesions graded 1-2 75 (67-83) 52 (17-75) 58 (25-83) 58 (50-67) 

p - <0.01 0.05 0.05 

All values presented as % mean (range). DL: Dose Level. All p values are from comparisons to the reference 
level DL100 (χ² test). Italics indicate statistical significance. 

Table 8 Mean number of incorrectly graded benign lesions and false-positive localisations for the five 
readers 
 

Lesions DL100 DL75 DL50 DL25 

Benign lesions graded 3-5 1.4 (0-3) 3.8 (1-8) 2.4 (0-5) 1.2 (1-2) 

p - 0.11 0.37 0.72 

False-positive localisations, any grade 2.2 (0-5) 4.4 (1-11) 3.0 (1-8) 3.8 (1-9) 

p - 0.32 0.39 0.39 

False-positive localisations graded 3-5 0.4 (0-1) 1.2 (0-2) 0.4 (0-2) 1.2 (1-2) 

p - 0.11 1.00 0.04 

Non-metastasis localisations (benign 
lesions + false-positives) graded 3-5 

1.8 (0-4) 5.0 (3-9) 2.8 (1-5) 2.4 (1-4) 

p - 0.03 0.34 0.49 

All values presented as n mean (range). DL: Dose Level. All p values are from comparisons to the reference 
level DL100 (Student’s t test). Italics indicate statistical significance. 

 

Inter-reader agreement analysis, conducted using ICC, yielded a value of 0.86 (95% 
CI: 0.83–0.89), indicating “good reliability” according to the interpretation guidelines 
of Koo and Li (90). 
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Figure 34 Detection of liver lesions stratified by size and contrast-to-noise ratio (CNR)  
The mean percentage of detected liver lesions stratified by size and contrast-to-noise ratio (CNR) into nine 
subgroups and presented for the four dose levels: (A) DL100, (B) DL75, (C) DL50, and (D) DL25. Subgroups 
excluded from the graph contained fewer than four lesions (i.e., less than 20 potential reader localisations). 
At the lowest dose level (D), the detection rate for the smallest lesions with the lowest CNR is apparently 
reduced compared to similar lesions at higher dose levels. From Fält T, et al. Simulated Dose Reduction for 
Abdominal CT With Filtered Back Projection Technique: Effect on Liver Lesion Detection and 
Characterization. American Journal of Roentgenology. 2019 Jan;212(1):84–93. Reproduced with 
permission by American Roentgen Ray Society. 

To evaluate whether the relationship between lesion size, CNR, and lesion detection 
remained consistent across varying dose levels, lesions were stratified into nine groups 
based on size and CNR. The proportion of correctly localised lesions within each 
subgroup was subsequently calculated. The results of this analysis examining the 
relationship between lesion size, CNR, and detection at different dose levels are 
presented in Figure 34. The number of lesions within each subset remains limited, 
rendering the findings tentative. Nevertheless, a clear trend emerges from the charts, 
indicating that the detection of small lesions with low CNR is adversely affected by the 
increasing noise levels at lower dose levels. This detrimental effect surpasses the 
reduction in CNR that correlates with the rising noise. 
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Paper IV 

The CTDIvol of the low-dose phantom scans was 0.25 mGy and the high-dose scan for 
reference images had CTDIvol of 15.6 mGy. 

 

Figure 35 Images produced using the nine different reconstruction methods 
Note the difference in noise magnitude as well as texture between the different reconstruction methods. 
One 8 mm and one 11 mm lesion are also included in the images to demonstrate the challenging 
detection task. Copyright: The Authors. 
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Image quality and noise texture of the nine reconstruction methods are illustrated in 
Figure 35. NPS of all reconstruction methods are presented in Figure 36 and qualitative 
descriptors of the NPS-curves detailed in Table 9. The higher-frequency noise with a 
finer texture in images reconstructed with Bf42 is evident in both the example images 
and the NPS 

 

Figure 36 Noise power spectra (NPS) for all nine reconstruction methods 
The NPS-curves are presented in a separate graph for each convolution kernel, all including filtered back 
projection (FBP) as well as ADMIRE strength 3 and 5. The NPS-curves of convolution kernel Bf42 have a 
different shape compared to the others, with a less steep slope at higher spatial frequencies corresponding 
to a sharper noise texture and higher spatial resolution. Copyright: The Authors. 
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Table 9. Quantitative descriptors of the NPS-curve for each reconstruction method 
 

Reconstruction 
method 

Peak Noise 
Power 
(HU2mm2) 

Frequency 
of Peak 
Noise 
Power 
(mm-1) 

AUC 
(HU2

mm) 

Frequency of 
10% AUC 
(mm-1) 

Frequency of 
50% AUC 
(mm-1) 

Frequency 
of 90% 
AUC  
(mm-1) 

Br38 FBP 667 0.20 241 0.09 0.25 0.46 

Br38 ADMIRE 3 394 0.20 133 0.08 0.23 0.44 

Br38 ADMIRE 5 230 0.15 68 0.07 0.20 0.40 

Bf42 FBP 741 0.35 393 0.13 0.37 0.66 

Bf42 ADMIRE 3 355 0.20 183 0.11 0.33 0.64 

Bf42 ADMIRE 5 195 0.15 82 0.08 0.26 0.60 

Bf43 FBP 900 0.30 404 0.12 0.32 0.56 

Bf43 ADMIRE 3 466 0.20 201 0.10 0.29 0.54 

Bf43 ADMIRE 5 251 0.15 92 0.08 0.24 0.50 

NPS: Noise-Power Spectrum, AUC: Area Under Curve 

 

The JAFROC1 FOMs are displayed in Figure 37, with the differences in FOMs 
between all reconstruction methods and the reference Br38 FBP shown in Figure 38. 
In the latter figure, a 95% CI excluding “0” indicates a significant difference between 
the evaluated reconstruction method and the reference. The use of Bf42, whether 
combined with FBP or ADMIRE, resulted in significantly improved lesion detection 
when including 8 mm lesions and controls. 

When dichotomising the Likert scale grades into detected or undetected lesions by 
applying a cut-off below grade 2 (“possibly a lesion”), the proportion of detected lesions 
was significantly higher with Bf42 FBP alone. This reconstruction method also yielded 
significantly fewer false positive markings rated above the cut-off compared to Br38 
FBP (Tables 10 and 11) 
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Figure 37 JAFROC1 figures of merit (FOMs) of all nine reconstruction methods 
White columns represent JAFROC1 analysis of all image stacks (8 mm lesions, 11 mm lesions and controls) 
n=80. Grey columns represent analysis of 8 mm lesions and controls, n=60. Error bars represent the 95% 
confidence interval. Use of Bf42 leads to slightly higher figures of merit compared to the other kernels. 
Copyright: The Authors. 

 

Figure 38 Difference in JAFROC1 figure of merit (FOM) compared to reference  
Chart demonstrating the differences in FOM between Br38 FBP and the other eight reconstruction 
methods when including 8 mm lesions and controls. If the 95% confidence interval (error bars) does not 
include “0”, the difference is significant. Bf42 has significantly higher FOMs combined with FBP as well as 
ADMIRE 3 and 5. 
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Table 10 True positive markings rated 2 - 4 
Fractions of lesions detected 2 – 4 for all nine reconstruction methods. Comparison to the reference method 
Br38 FBP. Statistical analysis using McNemar’s test. Italics denote significant difference. 

Reconstruction  
Method 

True Positive 
Markings 
rated 2 – 4; 
All lesions 
(n=50) 

p-value, 
compared 
to Br38 
FBP 

True Positive 
Markings 
rated 2 – 4; 
8 mm 
lesions 
(n=30) 

p-value, 
compared to 
Br38 FBP 

True Positive 
Markings 
rated 2 – 4; 
11 mm lesions 
(n=20) 

Br38 FBP 67% Reference 45% Reference 100% 

Br38 ADMIRE 3 68% 0.76 47% 0.76 100% 

Br38 ADMIRE 5 68% 0.75 47% 0.75 100% 

Bf42 FBP 74% 0.014 57% 0.014 100% 

Bf42 ADMIRE 3 72% 0.05 54% 0.05 100% 

Bf42 ADMIRE 5 70% 0.38 49% 0.38 100% 

Br43 FBP 66% 0.76 43% 0.76 100% 

Br43 ADMIRE 3 70% 0.28 50% 0.28 100% 

Br43 ADMIRE 5 66% 0.79 43% 0.79 100% 

 

Table 11 Percentages of cases with false positive markings rated 2 - 4 
Statistical analysis using McNemar’s test. Italics denote significant difference. 

Reconstruction 
method 

Percentage of cases 
with false positive 
markings rated 2 – 4; 
All cases incl. controls 

p-value, 
compared to 
Br38 FBP 

Br38 FBP 7.7% Reference 

Br38 ADMIRE 3 5.0% 0.22 

Br38 ADMIRE 5 7.0% 0.88 

Bf42 FBP 2.3% 0.0062 

Bf42 ADMIRE 3 5.0% 0.24 

Bf42 ADMIRE 5 4.7% 0.15 

Bf43 FBP 5.7% 0.40 

Bf43 ADMIRE 3 3.3% 0.037 
Bf43 ADMIRE 5 7.3% 0.40 

 

Inter-reader agreement analysis, conducted using the ICC, demonstrated excellent 
reliability for all five readers (ICC = 0.95, 95% CI: 0.95–0.96). Intra-reader agreement, 
assessed for the 80 cases read twice, indicated “good reliability” for four readers and 
“excellent reliability” for one reader. 
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Discussion and Future Perspectives 

This doctoral thesis approaches optimisation of abdominal CT examinations, and 
imaging of liver metastases in particular, in different ways. 

The results of Paper I demonstrate equal CNR and SNR between groups of patients 
examined using an age-stratified protocol designed to reduce risks specific to patients 
of different ages – i.e. the risk from ionising radiation being more important when 
examining young patients and older patients being more at risk of kidney injury from 
contrast media. Since this protocol was designed, and the study evaluating it was carried 
out, important progress has been made in the research of risks from low doses of 
ionising radiation as well as the risk of contrast media induced kidney injury. Since 
these are the two risk categories the protocol in Paper I is meant to balance a review of 
recent research on both topics will follow: 

Recent advances in knowledge: Cancer risk from low radiation doses 

Following the groundbreaking study by Pearce et al. in 2012, subsequent research has 
continued to reinforce the epidemiological evidence linking increased cancer risk to 
ionising radiation exposure from CT examinations (56). These studies predominantly 
focus on paediatric head CT scans due to several key factors: 1) head CT is the most 
frequently performed CT examination in children; 2) the brain exhibits heightened 
radiosensitivity in children; and 3) children possess a greater proportion of active red 
bone marrow in the skull compared to adults (92,93). 

Insights from National Cohort Studies 

A large Australian cohort study, including both individuals exposed and unexposed to 
CT examinations during childhood, has demonstrated an elevated risk of multiple 
cancer types (92,94,95). The latest analysis of this cohort identified an increased risk of 
brain tumours, with an ERR per 100 mGy of 0.8, translating to one additional brain 
tumour case per 6,391 children undergoing a CT examination (94). 

Taiwan's national health database is extensive which makes it particularly suitable for 
retrospective cohort studies. A 2014 study conducted in Taiwan demonstrated an 
increased risk of brain tumours (benign and malignant combined) following paediatric 
head CT scans (Hazard Ratio [HR]: 2.56), but no significantly increased risk of 
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leukaemia (96) The findings were confirmed in a subsequent study published in 2020, 
which reported a significantly increased risk of malignant brain tumours (Odds Ratio 
[OR]: 1.55) (97).  

Several national cohort studies have also been conducted in Europe. In a Dutch cohort, 
a significantly increased risk of malignant brain tumours was identified following 
paediatric CT examinations (98). Similarly, the latest analysis from a French cohort 
revealed a significantly increased risk of brain tumours and leukaemia. In contrast, a 
German cohort study found no statistically significant associations between paediatric 
CT exposure and cancer risk (99,100). 

These national cohorts, combined with data from a total of nine European countries, 
form a large cohort within the European EPI-CT study. In 2023, analyses were 
published based on this combined cohort, which included nearly one million 
individuals who underwent CT examinations before the age of 22. The mean 
cumulative brain radiation dose was 47 mGy, median age at first examination was 10.7 
years, with a median follow-up period of 7.8 years (101). Representing the largest 
cohort study to date on patients exposed to CT radiation, it reported significant 
associations for brain tumours, with an ERR per 100 mGy of 1.27, and for 
haematological malignancies, with an ERR per 100 mGy of 1.96. This equals 1 
additional case of brain cancer and 1-2 additional cases of haematological malignancies 
in 10,000 patients and a follow-up of 10 years (102,103). 

Meta-Analyses of Low-Dose Radiation Risks 

Lastly, recent meta-analyses have pooled data from various studies exploring cancer risk 
associated with radiation doses below 100 mGy. In 2017, Lubin et al. conducted a 
meta-analysis focusing on the risk of thyroid cancer following childhood thyroid 
irradiation. The included studies analysed different types of medical, non-diagnostic 
radiation exposure, as well as data from the LSS cohort. For radiation doses to the 
thyroid gland below 100 mGy a significantly increased risk was observed, with a 
Relative Risk (RR) of 2.9. The estimated number of excess cases of thyroid cancer was 
very small, though, at about 10 cases per 10,000 individuals followed for 45 years (104). 

Another meta-analysis by Hauptmann et al. (2020), encompassing studies published 
between 2006 and 2017 that investigated cancer risk following radiation exposure at 
doses below 100 mGy, reported elevated risks for leukaemia in children (ERR per 100 
mGy = 2.84). For adults, the analysis demonstrated increased risks for both leukaemia 
(ERR per 100 mGy = 0.16) and solid cancers (ERR per 100 mGy = 0.03). This finding 
is significant, as it highlights a detectable cancer risk associated with exposure to low 
radiation doses in adulthood, albeit notably lower than that observed following 
exposure during childhood (105) 
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In 2021, Berrington de Gonzalez et al. compiled the relevant studies on the risk of 
leukaemia and brain cancer following CT examinations, primarily in children and 
young individuals, totalling 17 studies. A meta-analysis of the studies with appropriate 
data reported an ERR per 100 mGy of 1.78 for leukaemia (statistically significant, 
based on 5 studies) and 0.79 for brain tumours (statistically significant, based on 4 
studies). This finding is particularly important as it specifically examines the cancer risk 
associated with radiation from CT examination (106). 

Conclusions and remaining uncertainties 

This review of the literature shows that cancer risks associated with CT examinations 
have become increasingly well-documented in recent years. However, uncertainties 
remain regarding the relationship between low-dose radiation exposure and cancer risk. 
The demonstrated risk associated with a single CT examination is very small over the 
relatively short follow-up periods in most studies. From the LSS it is known that, unlike 
leukaemia, solid cancers typically manifest many years after radiation exposure. 
Therefore, the risk of solid cancers may be underestimated in current cohort studies 
due to insufficient follow-up durations (107). 

While cancer risk is higher following radiation exposure during childhood, a slightly 
elevated risk has also been observed in adults (105). As adult patients typically undergo 
more frequent CT examinations, often at higher radiation doses per examination, they 
can be exposed to a substantial cumulative radiation dose, potentially exacerbating the 
risk from radiation (108) 

Another noteworthy consideration is the biological impact of the low-energy, low-
Linear Energy Transfer X-ray radiation used in CT scans. Evidence suggests that this 
type of radiation may have a relatively higher biological effect compared to higher-
energy gamma radiation, to which atomic bomb survivors in Japan were exposed and 
that is used in radiotherapy. This difference is expressed through variations in the 
Relative Biological Effectiveness (RBE) (109,110). 

The reason behind this increased biological effectiveness lies in the low-energy 
secondary electrons produced following the primary interaction between photons and 
atoms in the cells. The low-energy secondary electrons are more likely to interact with 
atoms nearby, increasing the probability of double-strand breaks (DSBs) in DNA at 
comparable absorbed radiation doses. This has been demonstrated through both Monte 
Carlo simulations and radiobiological experiments and DSBs are directly associated 
with cancer induction (111,112). 

As a result, radiation energy levels associated with X-ray in CT examinations may 
theoretically carry a higher cancer risk per unit dose compared to radiation exposure 
from atomic bomb detonations, from which much of the risk data previously has been 
derived. However, the DDREF (assuming a value of 2) has an effect in the opposite 
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direction, reducing the risk at the doses used in CT examinations. Consequently, there 
are several factors complicating the estimation of cancer risks associated with CT 
imaging and further epidemiological studies with longer follow up times are needed to 
yield objective data. 

In conclusion, the association between radiation exposure from, or with magnitude 
equal to, CT examinations and an increased cancer risk can now be considered well-
established. However, uncertainties remain, particularly concerning the cancer risk for 
patients examined in adulthood and whether the risk of solid cancer types increases 
with extended follow-up periods. 

While the absolute risk associated with a single CT examination is very small, even a 
minimal risk becomes significant at the population level when a sufficiently large 
number of patients is exposed. The number of CT examinations is substantial and 
continues to grow, now contributing significantly to the overall population-level 
radiation exposure (113,114). In a recent publication, Smith-Bindman et al. estimated 
the number of CT examinations performed in the United States in 2023 and projected 
the associated lifetime cancer incidence. A total of 93,000,000 CT examinations were 
conducted in 61,510,000 patients. Using the National Research Council’s Biological 
Effects of Ionizing Radiation VII (BEIR VII) models, the authors approximated that 
these examinations could induce approximately 103,000 cancers. Notably, although 
the risk per examination is highest for younger patients, the largest number of projected 
cancers occurred in individuals aged 40–59 years at the time of examination. This is 
attributable to the high number of scans performed in this age group, combined with 
their relatively long remaining lifespan. The CT examination type associated with the 
greatest number of induced cancers in adults was abdomen and pelvis, with an 
estimated 37,000 cases. These figures exceed expectations based on earlier International 
Commission on Radiological Protection (ICRP) estimates. Projections of future risks 
should be interpreted with caution; nevertheless, they underscore the critical need for 
ongoing optimisation of CT examinations, adhering to the "As Low As Reasonably 
Achievable" (ALARA) principle for radiation dosing. Equally imperative is the rigorous 
implementation of justification assessments for each CT examination. While it is 
essential to remain mindful of the risks, for most individual patients, a comprehensive 
justification assessment typically indicates that the diagnostic benefits outweigh the 
associated radiation risks.(115)  

Contrast Media Induced Kidney Injury – Updated view 

When reviewing the literature on this subject, spanning several decades, an intriguing 
paradox is revealed: despite the large number of studies exploring many different 
hypotheses, the most fundamental question remains unresolved - does LOCM 
administration truly increase the risk of kidney injury, and if so, to what extent? This 
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knowledge gap arises from the paucity of randomized controlled trials. Even more 
concerning is that many otherwise well-designed studies - examining, for example, 
differences in nephrotoxicity between contrast agents or the efficacy of prophylactic 
strategies - have lacked a control group unexposed to contrast media. 

 

Figure 39 Happy kidney, sad kidney  
AI generated image illustrating the polarized views on the risk of kidney injury after intravenously used 
iodinated low osmolar contrast media. Image generated by Grok after prompt by the Author. 

How, then, did this situation develop?  

As mentioned in the introduction, in the early days of iodinated contrast media, a 
general consensus formed that contrast medium exposure carried a risk of subsequent 
kidney injury, especially in patients with pre-existing reduced kidney function. Rather 
than seeking to validate this central hypothesis, the research community moved on 
toward exploring strategies to mitigate this presumed risk and identifying the most 
significant risk factors.  

Another reason for the lack of control groups is that a large part of the research on 
kidney injury after LOCM administration has focused on cardiac procedures, such as 
percutaneous coronary interventions (PCI). These procedures are known to carry a risk 
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of acute kidney injury (AKI) while also being nearly indispensable in certain clinical 
scenarios involving acute coronary syndromes. Consequently, recruiting a control 
group of comparable patients who have not been exposed to contrast media presents a 
significant challenge. Acute cardiac conditions also increase the risk of haemodynamic 
instability, a known risk factor for AKI. 

The consensus that LOCM poses a significant risk for kidney injury in patients with 
impaired renal function has strongly influenced radiological practice, often resulting in 
patients with chronic kidney disease (CKD) undergoing imaging without intravenous 
contrast. This approach has led to a strong selection bias being present in retrospective 
clinical data, as patients with reduced renal function are disproportionately more often 
chosen for non-contrast CT scans. This imbalance presents a substantial challenge 
when designing retrospective observational studies to address existing knowledge gaps. 

Considering these challenges, how can this issue be effectively addressed? Conducting 
randomized controlled trials (RCTs) is challenging for several reasons, primarily ethical 
concerns, as it would require randomizing some patients to suboptimal imaging, 
potentially leading to negative health outcomes. Additionally, given that any potential 
increase in kidney injury risk from contrast media is likely small, an RCT would need 
to have a large number of participants to detect a statistically significant difference. 

Retrospective observational studies circumvent these ethical dilemmas but must 
contend with the selection bias in the unbalanced clinical data described above. 

A promising solution is propensity score matching (PSM), a statistical technique that 
has gained popularity in recent years. PSM involves retrospectively identifying patients 
from clinical databases and calculating a propensity score for each individual - 
representing the likelihood of receiving the treatment under investigation, in this case, 
contrast-enhanced CT. This score is derived from known confounding variables that 
influence treatment selection. In this context sex, age and known risk factors for 
contrast induced kidney injury are considered confounding variables. Once 
calculated—typically in a large patient cohort—patients who underwent the treatment 
are matched, often pairwise, with unexposed control patients with corresponding 
propensity scores. This method effectively creates a well-balanced control group, 
mimicking the conditions of a randomized study and improving the validity of 
retrospective analyses (116–118).  

Despite their methodological strengths, PSM studies also have notable limitations. A 
common critique is that PSM can only incorporate known and measurable confounders 
into calculations, whereas randomization distributes both known and unknown 
confounders equally between study groups. This limitation may introduce residual 
confounding from unmeasured variables, potentially biasing analytical outcomes. 
Additionally, the matching process inherently reduces sample size, which can 
compromise statistical power (116–119). Furthermore, confounders are typically 
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dichotomised in propensity score calculations as either present or absent, resulting in 
diminished granularity that may oversimplify complex relationships (120). 

Even considering these limitations, well-executed PSM studies likely constitute the 
most robust evidence currently available for assessing AKI risk following intravenous 
LOCM administration. The subsequent section critically examines selected high-
quality PSM studies and relevant meta-analyses addressing this clinical question. 

The earliest PSM studies on this subject were conducted in 2013 by Davenport et al. 
and McDonald R. et al. Both investigations stratified patients' kidney function using 
serum creatinine (SCr) levels rather than eGFR and employed an older, slightly 
different definition of AKI, making their results difficult to compare with more recent 
studies. Neither of these large studies demonstrated an increased risk of AKI following 
LOCM administration throughout their entire study populations. However, the 
findings diverged regarding subgroups with severely impaired renal function: 
Davenport et al. observed a significantly elevated incidence of AKI, while McDonald 
R. et al. found no difference between contrast-exposed and unexposed patients 
(121,122). 

McDonald R. et al. conducted a noteworthy sub-analysis including 4,265 patients who 
had undergone computed tomography (CT) both with and without LOCM during the 
study period. These patients effectively served as their own controls, and no increased 
incidence of AKI was observed following the contrast-enhanced examinations (122). 

The largest study to date was published in 2024 by Choi et al., comprising 182,170 
matched pairs of patients in South Korea undergoing CT with or without LOCM. This 
investigation did not demonstrate a significantly increased risk of AKI following 
LOCM administration when analysing the entire study population. The AKI incidence 
was 4.1% in the contrast group versus 3.9% in the non-contrast group, with an odds 
ratio (OR) of 1.036 (95% confidence interval [CI]: 0.968-1.109). Similarly, the risk of 
dialysis initiation within one month was not elevated, with an incidence of 0.4% in 
both groups. 

However, subgroup analysis revealed statistically significant differences in patients with 
impaired renal function. Among patients with eGFR 30 - 45 (12,208 matched pairs) 
and eGFR <30 (6,786 matched pairs), a modest but statistically significant increase in 
AKI incidence was observed following LOCM exposure. For patients with eGFR 30 - 
45, the absolute risk increase was 1.5 percentage points (11.5% vs. 10.0%), while for 
eGFR < 30, the difference was 2.9 percentage points (19.4% vs. 16.5%). 

Unfortunately, the investigators did not conduct subgroup analyses for dialysis risk in 
these populations with reduced renal function (123). 

Among seven additional, large propensity score matching studies stratifying patients 
according to eGFR and comprising between approximately 5,000 and 41,000 matched 
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pairs, the majority found no increased risk of AKI following LOCM exposure when 
analysing entire study populations (124–130). Only one study, by Su et al., 
demonstrated a significantly higher AKI incidence after LOCM administration, with 
an absolute risk increase of 2.7 percentage points (10.9% versus 8.2%). Collectively, 
these studies suggest that there is no elevated risk of AKI after LOCM exposure across 
the general population undergoing computed tomography (CT) examinations. 
Furthermore, none of these investigations demonstrated an increased risk of dialysis 
initiation for the entire population, with most studies employing a 30-day follow-up 
period. 

However, subgroup analyses of patients with severely reduced renal function (eGFR < 
30) yielded contrasting results. Consistent with the findings of Choi et al., four of the 
seven studies identified significantly increased AKI risk in patients exposed to 
intravenously administered LOCM, with absolute risk increases ranging from 3.1 to 
7.9 percentage points (124,127,129,130). Similar results were reported by Harrison et 
al. in a study specifically investigating patients with eGFR < 30, which found an 
increased AKI risk with an odds ratio of 1.49 (95% confidence interval: 1.06-2.10).  
(131) 

These findings are important, likely confirming a small, but real risk of AKI following 
intravenous LOCM administration in patients with eGFR < 30. This risk warrants 
consideration in clinical practice and should be incorporated into risk-benefit analyses 
when planning CT examinations for these patients. 

Although an increased incidence of AKI is observed in patients with eGFR < 30, the 
impact on long-term renal function, specifically the risk of dialysis initiation, remains 
less certain. Throughout the five studies examining this outcome in the eGFR < 30 
subgroup, four reported no significant difference, while only one study, Gorelik et al, 
demonstrated a modest absolute risk increase of 4.9 percentage points (10.9% vs. 6.0%) 
(124,126,129–131). Overall, the risk of persistent renal impairment requiring dialysis 
following LOCM-enhanced CT appears to be either minimal or non-existent, even in 
patients with eGFR <30. 

Regarding chronic kidney disease (CKD) category 3, subgroup stratification varied 
between studies. Some analysed patients with eGFR 30-60 as a single group, while 
others designated eGFR 30-45 as a separate subgroup. This methodological 
heterogeneity complicates direct comparison, but studies were approximately evenly 
divided between those showing an absolute risk increase of a few percentage points and 
those demonstrating no intergroup difference (123–127,129,130,132). 

The findings from the PSM studies reviewed above align with two meta-analyses 
conducted in 2018 (Aycock et al) and 2022 (Obed et al). These meta-analyses similarly 
found no evidence of an elevated risk to the general population. However, Obed et al. 
reported a small but statistically significant increase in risk at eGFR < 30 (4 percentage 
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points, 19% vs 15%). Neither meta-analysis identified an increased requirement for 
dialysis following low-osmolar contrast media (LOCM) exposure (133,134). 

Lastly, several smaller PSM studies have investigated the risk of acute kidney injury 
(AKI) and the need for dialysis following LOCM-enhanced CT in patient cohorts with 
specific risk factors. These include patients in intensive care units, patients with sepsis, 
patients with preexisting AKI, those already in dialysis, and individuals with cancer. 
None of these studies demonstrated an increased incidence of AKI or a delayed recovery 
of preexisting renal impairment following LOCM administration. These results suggest 
that contrast-enhanced imaging, which is often critical for these patient populations, 
can be performed without elevating the risk of AKI (135–138). 

With a modestly increased risk of AKI in patients with pre-existing severely decreased 
kidney function exposed to LOCM now established, the question of whether this risk 
correlates with the dose of CM requires investigation.  Well-designed studies analysing 
this relationship for intravenous LOCM administration in CT examinations are 
lacking. However, the association between contrast media dose and AKI risk is well-
documented in patients undergoing PCI. Using data mainly from this type of 
examinations the dose-risk relationship has been quantified, with an increased risk of 
AKI observed when the LOCM dose, expressed in grams of iodine, numerically exceeds 
the patient's absolute eGFR. This elegantly defined relationship has for many years 
been used in guidelines published by the Contrast Media Committee of the Swedish 
Society of Urogenital Radiology. 

The applicability of this dose-risk relationship to intravenous LOCM use in CT 
remains unclear, though. The uncertainty stems from the difficulty in isolating the 
contribution of CM to AKI following coronary interventions. Other procedural factors, 
such as catheterization-induced microembolism and more importantly, haemodynamic 
instability inherent to the clinical setting, confound the association (139).  

In the absence of definitive data, a dose-risk relationship for intravenous LOCM in CT 
remains speculative. However, given the established nephrotoxic potential of LOCM 
and the observed association between exposure and increased AKI risk in patients with 
renal impairment, it is plausible to hypothesize a dose-dependent relationship, with 
higher doses correlating with greater AKI risk, especially in patients with eGFR < 30. 

Balancing risks from ionising radiation and contrast medium 

Over the past decade, research has established that the risks of cancer induction from 
ionising radiation during computed tomography (CT) examinations, as well as contrast 
media-induced kidney injury in patients with severely impaired renal function, are real, 
albeit lower than previously estimated. This evolving understanding emphasises the 
necessity of tailoring abdominal CT examination protocols to individual patient risk 
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profiles. In Paper I, the subjective assessment of image quality in the youngest age 
group, examined at the lowest radiation dose, was found to be inferior compared to 
other groups. This may be attributable to methodological limitations, as the evaluation 
focused on the "visually sharp reproduction" of anatomical structures rather than 
pathological lesions. While this is a standard approach in VGC studies, it may not fully 
reflect the benefits of increased contrast enhancement for detecting hypovascular liver 
lesions. Conversely, the absence of significant differences in SNR between the age 
groups, including the youngest, indicates clinically acceptable image quality 
throughout. The consistent CNR, calculated based on the contrast between the liver 
and a hypothetical metastasis, supports this finding, though its reliance on simulated 
data requires cautious interpretation. 

Although the radiation dose from a single CT scan poses a minimal risk, even for young 
individuals, as noted previously, uncertainties persist regarding the long-term risk of 
solid cancers from low-dose ionising radiation. This underscores the importance of 
using the lowest reasonably achievable radiation dose when imaging young patients. 

Two subsequent studies have investigated similar age- and risk-stratified protocols 
aimed at balancing radiation dose and contrast medium dose. Camera et al. (2015) 
prospectively evaluated a comparable protocol involving three age groups. Although 
their approach involved substantially higher radiation doses, they achieved similar 
outcomes, with notably consistent SNR in the liver and uniform subjective image 
quality in all age groups (140). However, CNR varied between groups, likely due to 
the calculation method, which relied on the difference in CT-numbers between the 
liver and subcutaneous fat. 

More recently, Martens et al. (2024) investigated a modernised approach to this 
concept using an animal model with pigs and a CT scanner equipped with automatic 
tube voltage selection (ATVS). By adjusting ATVS settings, the scanner can prioritise 
either image noise reduction or enhanced iodine attenuation (accepting a higher noise 
level). Through matching the low-noise setting with a reduced CM dose and vice versa, 
they developed a stratified protocol that maintained consistent objective and subjective 
image quality (141). Collectively, the findings from Paper I, alongside those of Camera 
and Martens, demonstrate that CM and radiation doses can be balanced when 
individualising CT examinations for specific risk reduction, while preserving equivalent 
image quality. The most significant implication of this evidence is the potential to 
harness increased CM information—via higher CM doses or low-kVp scanning—to 
reduce radiation exposure, particularly in younger patients. At Skåne University 
Hospital, this principle is reflected in a dedicated abdominal CT protocol for patients 
under the age of 40 years without suspected malignancy, mirroring the second-youngest 
group in Paper I. This protocol, implemented in clinical practice, achieves a 30% 
reduction in radiation dose by increasing the CM dose by 20%.  
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Paper II of this thesis conducted an experimental investigation into the X-ray 
attenuation properties of high-Z elements and their potential for separation from iodine 
using MD. The findings indicate that Ta, W and Au exhibit X-ray properties rendering 
them ideal candidates for CM to be used alongside iodine. These elements were found 
to have DE ratios (CT-number at low energy divided by CT-number at high energy) 
around 1, contrasting with iodine’s DE ratios of 1.9 -2.6, depending on the DE 
settings. In image-based MD, iodine and these elements were effectively separated with 
MD data colour-coded and overlaid onto standard axial images. Ga and Bi, with DE 
ratios ranging from 1.4 to 1.9, were less distinctly separated from iodine. Nearly 
complete separation from iodine was achieved for Bi, while separation of Gd was less 
effective. The outcome for Gd was anticipated, given its K-edge at 50.2 keV, being 
most proximate to iodine’s 33.2 keV. The incomplete separation of Bi, despite its 
higher Z and K-edge at 90.5 keV, was more unexpected; its high DE ratio of 1.4–1.7 
is caused by the entire low-energy X-ray spectrum lying below the K-edge, where 
attenuation again increases toward the L-edge at around 16 keV (17).  

The interest in high-Z elements as potential CM in CT has surged in the last years, 
driven by technical developments in CT, particularly the introduction of PCDT CT.  

Although the specifics of multi-material decomposition using PCDT fall outside the 
scope of this thesis, it warrants mention as an emerging technology. As previously 
noted, PCDT segments the energy spectrum of the detected photons into multiple 
energy bins, generating multiple datasets. The distinct attenuation profiles of elements 
with varying K-edge energies between these bins enable the decomposition of a greater 
number of materials.  Energy bins can also strategically be positioned on either side of 
the K-edge of high-Z materials enabling precise identification of these elements, a 
procedure called K-edge imaging (28,29,142). 

Recent investigations have evaluated experimental CM, either as nanoparticles or 
chelate formulations, incorporating elements such as Gd, Au, W, Ta, Bi, ytterbium 
(Yb) and hafnium (Hf) (75,79,82,143–147). Although no high-Z element-based CM 
are currently available for clinical use, advanced developmental stages have been 
reported for Bi- and Hf-containing chelates (79,147). Ta-based nanoparticles exhibited 
superior hepatic enhancement compared to LOCM in an animal model, improving 
liver-to-tumour CNR (148). An experimental W-based CM improved the separation 
of CM from calcified plaque in phantom models of coronary and carotid arteries. 
Utilising higher keV data reduced the “blooming” effect of calcium within plaques, 
enhancing discrimination, while simultaneously optimising the attenuation of the W-
based CM, both factors improving MD of calcium and CM (75,149). Ta has long been 
employed as the radiopaque material in liquid embolic agents for intracranial vascular 
embolisation, necessitating high concentrations for fluoroscopic visibility during 
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interventions. This, however, introduces significant beam-hardening artefacts in 
subsequent CT examinations and complicates the differentiation of iodinated CM 
from the embolic material in CT angiography. PCDT addresses these challenges, with 
high-energy bin data reducing artefacts and MD effectively separating iodine from 
tantalum (150). 

Beyond MD, high-Z CM hold potential for broader optimisation of abdominal CT, 
particularly in reducing radiation dose. High-Z elements offer greater radiation dose 
efficiency than iodine, providing enhanced attenuation and improved CNR at higher 
keV levels. This advantage stems from their ability to attenuate higher-energy photons 
that might otherwise pass through the patient and reach the detector. In contrast, 
iodine primarily attenuates lower-energy photons, which are more likely to interact 
with patient tissues and thus less likely to contribute to the detected signal. To maximise 
the information from low-keV photons, the photon quantity must be increased. This 
is achieved by increasing the mAs, which consequently raises the radiation dose. This 
limitation of iodine is particularly pronounced in obese patients, where high-Z CM 
may facilitate dose reduction  

Sequential administration of distinct contrast agents, depicted in separate “phases” 
within a single scan using MD, can further minimise radiation exposure by obviating 
the need for multiple acquisitions (75,82). An example of such phase-separated contrast 
agents in an animal model is illustrated in Figure 40 (151). 

Consequently, the findings from Paper II, corroborated by subsequent research, 
underscore multiple potential benefits of high-Z CM in CT. Ongoing intensive 
research aims to expedite their clinical adoption. 

 

Figure 40 Multimaterial decomposition using photon-counting detector technology CT  
In an animal model, Symons et al. performed material decomposition of iodine, gadolinium, and bismuth. 
Iodine and gadolinium are in “different contrast phases”. Used with permission of John Wiley & Sons – 
Books. From: Symons R, et al. Photon-counting CT for simultaneous imaging of multiple contrast agents in 
the abdomen: An in vivo study. Medical Physics. 2017 Oct 1;44(10):5120–7. 
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Papers III and IV address, through distinct approaches, the detection of hypovascular 
liver lesions via CT, either in patients, at different simulated radiation dose levels, or in 
a phantom model evaluating the effect of different methods of image reconstruction. 

In Paper III, JAFROC analysis demonstrated non-inferior detection and 
characterisation of metastases at a modest 25% radiation dose reduction. However, 
further reductions (50% and 75%) resulted in diminished diagnostic performance. 
Notably, the characterisation of benign lesions was adversely affected, with an increase 
in false positive localisations graded as having “moderate probability for malignancy” 
or higher, already at the 25% dose reduction. These findings are significant, as the 
ability to exclude disease is as critical as its detection, necessitating diagnostic methods 
with high specificity alongside sensitivity (152). Furthermore, as there were only 12 
benign lesions in the 39 patients all analysis of this type of lesions must be treated with 
caution. As previously described, an examination protocol with 30% reduced radiation 
dose is used when examining patients under the age of 40 years at Skåne University 
Hospital. According to these results, this protocol could potentially lead to a degraded 
characterisation of benign lesions, leading to false positive findings and unnecessary 
follow-up examinations. However, as demonstrated in Paper I, the protocol also 
includes an increased CM dose, improving CNR and likely the evaluation of liver 
lesions. Additionally, the prevalence of benign liver lesions is low in younger patients; 
a large retrospective study of 45,000 patients undergoing liver ultrasound found benign 
lesions in 5% of those under 40 years, compared to 18% in those over 40 (153).  

A sub-analysis in Paper III, stratifying lesions by size and CNR relative to surrounding 
parenchyma, revealed a noteworthy trend. At the lowest simulated radiation dose, 
detection of lesions with diameters of 6–10 mm and CNR of 1.1 – 2.0 was apparently 
reduced compared to higher dose levels (Figure 34). This suggests that elevated noise 
levels may impair the conspicuity of small lesions beyond the decline in CNR. The 
convolution kernel employed, B30f, is a soft kernel generating low-frequency noise, 
which may influence these outcomes. 

In Paper IV, the influence of noise on the detection of small lesions was further 
explored. The phantom study, employing JAFROC1 analysis, revealed that a sharper 
convolution kernel (Bf42) significantly enhanced the detection of small, low-contrast 
lesions when images were reconstructed with FBP. IR (ADMIRE strength 3) combined 
with the standard kernel, improved detection to a lesser extent, achieving only 
borderline significance. Adding IR to images reconstructed with the sharp kernel did 
not further enhance lesion detection. Notably, the Bf42 kernel also reduced the number 
of false positive localisations. This kernel exhibited a distinct NPS profile, characterised 
by a less steep slope at higher frequencies, indicating a greater proportion of high-
frequency noise. This was further evidenced by elevated frequency values at the 50th 
and 90th percentiles of the NPS. Although modulation transfer function (MTF) was 
not assessed in this study, prior research has demonstrated that sharper kernels improve 
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spatial resolution in CT images (154–157). This combination of increased high-
frequency noise and enhanced spatial resolution is likely the mechanism underlying the 
improved detection of small, low-contrast lesions, achieved by subtly accentuating 
lesion edge reproduction. 

Lesion detection in images reconstructed with ADMIRE strength 5 was inferior to that 
with ADMIRE 3 for all three kernels, despite a substantially lower noise magnitude. 
This discrepancy may be attributed to the prevalence of lower-frequency noise, coupled 
with a slightly higher CT-number within lesions in ADMIRE 5-reconstructed images, 
resulting in reduced lesion contrast. A plausible explanation for this elevated CT-
number is the denoising and smoothing occurring during the regularisation step of the 
iterative process, which is intended to preserve edges. However, this process may 
degrade the edges of small, low-contrast lesions through smoothing rather than 
preservation (25). Supporting this hypothesis, reduced low-contrast spatial resolution 
compared to FBP has been observed with ADMIRE and other IR algorithms, including 
the latest generation of deep learning methods (158–161). Sugisawa et al investigated 
a way to mitigate this degradation of low-contrast spatial resolution from IR, by 
combining its use with sharper convolution kernels, and found spatial resolution and 
NPS comparable to FBP for some combinations of IR and sharp kernel (155). This 
aligns with the approach in Paper IV, where ADMIRE 3 paired with the sharper Bf42 
kernel likely improved spatial resolution compared to ADMIRE 3 with a softer kernel. 

An interesting finding in Paper IV is the marked discrepancy between lesion detection 
and CNR. The most effective reconstruction method was that in which lesions 
exhibited the lowest CNR relative to the background. This observation aligns with 
findings in Papers I and III, where discrepancies between CNR and reader-based 
metrics also were noted. In Paper I, the subjective image quality analysis using VGC 
revealed inferior results in the lowest radiation dose group, despite equivalent CNR for 
all groups. In Paper III, the detection rate of the smallest lesions diminished in the 
lowest radiation dose images, even when compared to lesions of corresponding size and 
CNR in higher dose images. 

CNR is a standard metric, widely employed in studies comparing image quality of 
different reconstruction methods or examination protocols. Various calculation 
methods for CNR exist, with the most clinically relevant approach utilising the contrast 
of pathological structures intended for detection by the evaluated protocol, such as 
hepatic lesions. In the absence of lesions, the contrast between the liver and other 
anatomical structures, such as muscle or subcutaneous fat, can serve as a proxy metric 
(38,162–164). In Paper I, an arbitrarily selected HU-value of 40 was used to simulate 
a hypovascular metastasis and this value was used in CNR calculations. But even when 
the CNR is calculated in an optimal way, how well does it correlate with more 
important image quality metrics, such as lesion detection in a study with human 
readers? There are many examples demonstrating considerable discrepancies between 
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CNR and low-contrast lesion detection. Jensen et al, in two different studies, compared 
detection of liver metastases between standard radiation dose images reconstructed with 
FBP and images acquired at 54 – 65% reduced dose reconstructed with two different 
types of IR. Although the mean CNR of metastases was higher in the low dose/IR 
images, the detection of metastases was superior in full dose FBP images - particularly 
regarding lesions smaller than 1 cm (165,166). Similar discrepancies were reported by 
Schindera et al. and Pickhardt et al (167,168).  

Another commonly used objective image quality metric, SNR, poses challenges in the 
context of CT. As the “0” point of the HU scale corresponds to the linear attenuation 
coefficient of water, which lies within the clinically relevant HU range, the “signal” 
component of SNR represents the contrast between the measured CT-number and 
water, rather than the total signal. While this may be a relevant metric, it does not 
reflect a true signal measurement. The signal perceived by CT image readers 
corresponds to the greyscale assigned to each voxel on the screen, determined by the 
measured CT-number and the window level settings of the image reading software. 
These settings comprise a centre value (the greyscale midpoint) and a width (the total 
HU range between fully white and fully black). Defining the signal as a greyscale level, 
the true signal becomes the HU difference between the measured CT-number and the 
value representing fully black. This signal, divided by the noise, yields the true SNR as 
perceived by the reader. Although this method could be applied in a fixed research set 
up, its variation with dynamically adjusted window level settings - common in clinical 
case reading by human observers - limits its utility in such studies. 

The limitations of using CNR and SNR as objective image quality metrics have long 
been recognised. A key weakness is that neither metric accounts for lesion size. Several 
decades ago, during the early development of signal detection theory and television 
broadcasting, Alfred Rose introduced the “Rose model.” This model describes the 
contrast required to detect a signal amidst noise, factoring in the signal’s size, with the 
required contrast being inversely proportional to the diameter of a circular signal area 
(169). However, this model applies only to uncorrelated noise, often termed “white 
noise,” and is not necessarily applicable to CT imaging, with its more complex NPS. 
Nonetheless, it provides a valuable conceptual framework, underscoring the 
significance of lesion size in assessing image quality and optimising imaging protocols 
- a principle clearly illustrated by the findings in Papers III and IV. In a study 
evaluating the impact of an IR algorithm on lesion detection, Solomon et al. introduced 
the “Rose Model Inspired SNR,” calculated by multiplying CNR by the square root of 
lesion area. This straightforward yet insightful approach demonstrated a stronger 
correlation with lesion detection accuracy than conventional CNR (160). Goodenough 
and Weaver, in 1984, posited that low-contrast resolution reflects an interplay of spatial 
resolution, noise, contrast, and lesion size and shape (170). More recent research into 
diverse image reconstruction techniques, including non-linear iterative methods, has 
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introduced further challenges to the utility of CNR and SNR as image quality metrics. 
As shown in Paper IV, the magnitude of image noise, when its texture is disregarded, 
holds limited relevance for lesion detection when comparing different reconstruction 
methods. In a report by Task Group 233 of the American Association of Physicists in 
Medicine (AAPM) titled “Performance evaluation of computed tomography systems,” 
Samei et al. assert that CNR is suitable only for basic analyses of low-contrast lesion 
detectability, and only when comparing images with consistent noise texture and 
resolution. They advise against using CNR when comparing different kernels or IR to 
FBP, as it may produce suboptimal or misleading results (171).  

This prompts the question of which metrics are most appropriate for assessing image 
quality in the context of low-contrast lesion detection. Observer studies, wherein 
radiologists undertake clinically relevant diagnostic tasks, remain the gold standard 
(172). However, these studies are time-intensive and susceptible to inter- and intra-
observer variability. Moreover, when conducted with patient images, the reliability of 
the reference standard introduces uncertainty regarding lesion presence. Beyond reader 
studies, various methods with differing levels of automation are in use or under 
development. The detectability index (d’) quantifies the distinguishability of a signal 
from background noise, incorporating the task transfer function (TTF), a metric of 
spatial resolution akin to the MTF, and NPS in CT image analysis. Mathematical 
model observers, such as the non-prewhitening matched filter or the channelized 
Hotelling observer, are also employed. As a measure of signal detectability with known 
properties (e.g., size and contrast), d’ has shown close agreement with human reader 
performance in images reconstructed with FBP and non-linear IR. Such analyses are 
typically conducted using phantoms, though Smith et al. have proposed and validated 
a method applicable to patient images. This approach uses AI-based liver segmentation 
to analyse homogeneous regions, calculating NPS, deriving TTF, and subsequently 
determining d’. This method demonstrated good concordance with an earlier reader 
study on the same image dataset (173). In a recent review, Hoeijmakers et al. provide 
an overview of proposed CT image quality assessment methods, encompassing 35 
papers describing methods beyond basic CNR and SNR metrics. These methods 
analyse noise, contrast, spatial resolution, and other factors, many being automated or 
AI-based. The authors conclude that a transition to advanced, automated, and AI-
driven techniques is underway, though a universally accepted reference standard 
remains lacking. They advocate for a comprehensive image quality score integrating 
noise, contrast, and spatial resolution, noting the promising role of convolutional 
neural networks (CNN) trained on large datasets of subjectively assessed images (172). 

In conclusion, CNR and SNR are no longer deemed sufficient metrics for assessing 
image quality, particularly with respect to low-contrast lesion detection. This 
perspective is substantiated by the findings in Paper IV, alongside indications from 
Papers I and III. Several more advanced techniques have been developed; however, no 
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consensus has emerged regarding the optimal methodologies. CNN-based methods 
hold considerable promise for the future, yet they require training on extensive datasets 
of images evaluated by human readers, a process that will be time-intensive to compile. 
Nonetheless, this represents a critical endeavour, and it may be an appropriate focus for 
radiologists at academic institutions in the near future, especially as the routine 
interpretation of clinical images in radiology increasingly shifts to other actors. 
Nevertheless, the inherent conservatism of radiologists and their scepticism toward 
novel technological advancements suggest that reader-based studies will remain 
necessary for the foreseeable future. These studies will be essential to validate and 
progressively enhance confidence in AI-based methods by correlating their outcomes. 
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Conclusions 

Paper I demonstrated that increasing the IV CM dose can compensate for a reduced 
radiation dose, and vice versa, while preserving CNR and SNR. Subjective image 
quality was affected by elevated noise levels but remained acceptable for all groups 
except the one receiving the lowest radiation dose. The discrepancy between objective 
and subjective image quality may be partly attributable to limitations in the evaluation 
method, which focused on rating normal anatomical structures. Within the assessed 
abdominal CT examination protocol, the radiation dose was reduced by 57% for the 
youngest patients, while the intravenous contrast medium dose was decreased by 18% 
for the elderly. 

In Paper II, Ta, W, and Au were effectively separated from iodine by both DE ratios 
and the image-based MD software, rendering them ideal candidates for dual-CM 
examinations alongside iodine. Bi, despite its high K-edge, exhibited DE ratios more 
akin to those of iodine. Nevertheless, it was nearly completely separated from iodine 
using MD and should also be regarded as a potential, albeit slightly weaker, candidate. 
Gd proved less suitable due to DE ratios too similar to iodine; however, the use of a 
lower energy setting of 70 kVp could potentially facilitate its application in dual-CM 
examinations. 

The study in Paper III shows non-inferior reader performance regarding detection and 
characterisation of hypovascular liver metastases at a simulated radiation dose of 8.6 
mGy CTDIvol, representing 75% of the clinically used standard level. Another 
complicating and potentially important finding is that characterisation of benign 
lesions was already negatively affected at DL75, a finding that requires caution due to 
the limited number of benign lesions included. Additionally, increased image noise 
disproportionately impaired the detection of small lesions, an effect not fully accounted 
for by the corresponding reduction in CNR. 

In Paper IV, a phantom study involving multiple readers demonstrated improved 
detection of small, low-contrast lesions in low-dose images when utilising a sharper 
(higher-frequency) reconstruction kernel, with or without IR. The study further 
suggests that CNR is an unreliable image quality metric and should be applied with 
caution. 
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Collectively, the findings in Papers IV, II, and I contribute to the emerging consensus 
that basic image quality metrics, such as CNR and SNR, are inadequate as proxies for 
low-contrast lesion detection, particularly when comparing images generated by 
different reconstruction methods or assessing lesions of varying sizes. 

In summary, the results from the four Papers included in this thesis illustrate that 
abdominal CT examinations can be conducted by balancing the amounts of radiation 
and contrast media while preserving objective image quality. The detection of liver 
metastases remains non-inferior with a 25% reduced radiation dose. Collectively, these 
findings indicate the potential to examine younger patients using lower radiation doses 
without jeopardising the identification of significant findings. The use of sharper filters 
in image reconstruction processes may further improve diagnostic image quality. CNR 
and SNR are inadequate metrics for assessing image quality. Finally, the elements Ta, 
W, and Au are optimal candidates for incorporation into future contrast media 
alongside existing iodine-based contrast agents. 
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pensionen kompis! 

Susanna Holst, vi växte upp på samma gata och hamnade i samma röntgengranskning, 
ganska galet. Ingen har, eller kan formulera sig med, en skärpa som du. 

ST-läkarna jag själv handlett på vägen. Maja Ekman, Nicole McMichael, Sampras 
Senya och Martina Lundh. Ni lärde mig mycket mera än tvärtom. 

Torbjörn Ahl, Peter Østergaard och Fredrik Holmquist, tur att det finns fler DT-
nördar i Skåne. Ert intresse för ämnet smittar! 

Håkan Sjunnesson - Jag blev så glad när du tackade mig för 23 år sedan, så tack själv! 

Mina äldsta vänner Anders Jedholt och Efrain Staino. Ni har båda lämnat Skåne bakom 
er, med olika distans. Även om vi ses sällan, känns det alltid som det var igår. Snacket 
fortsätter och ni plockar alltid ner mig på jorden igen. Era familjer skall ni vara oerhört 
stolta över. 

Släkten i Skåne och Finland. Kusiner som alltid varit mina extra syskon. Lotta och 
Kerstin. Svåger och svägerskor i Finland, alla barnen. Ni är en del av mig och jag en del 
av er.  

Matti-Ukki: Kiitos tuesta, saunasta ja oluesta kesän kirjoitusleirillä! Vaikka et fyysisesti 
voi olla läsnä arjessamme, olet tärkeä ja rakas osa elämäämme. Paljon lämpimiä 
ajatuksia! 

Johan, min storebror. Jag skulle ju gå min egen väg, men sen blev det ändå ”Katte”, 
läkarlinjen, ett liv tillsammans med en kirurg. Du var nog alltid en större förebild än 
jag ville erkänna. Din familj med Anna, Elsa och Elof ligger mig otroligt nära hjärtat. 
Elsa och Elof, att få vara er farbror är en av mina största lyckor. 

Lena, min mamma. Ni hittar inte en bättre person, alltid stöttande med oändlig kärlek. 
Och din självklara uppfattning att alla skall ha det lika bra har format mig. Kämpa på 
nu! 
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Forskning och arbete är ganska viktigt, men under min tid som doktorand har på riktigt 
viktiga händelser ägt rum. Alvar, Frans och Edit har kommit och vänt allting upp och 
ner och in och ut. Jag skulle inte vilja ha det på något annat vis. Jag älskar er och är så 
stolt varje dag - må det bli många tillsammans! 

Ursula, en gång pendlarkompis på Pågatågen och nu mitt Allt! Jag älskar dig och alla 
delar av vårt liv tillsammans. Tack för allt stöd och allt du gjort, utöver det vanliga, på 
senaste tiden 
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Figure 41 Low contrast subjects  
Three low contrast subjects, the author’s favourites, against a very grainy background. 
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