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Abstract

Water is essential for life, yet global water resources face increasing pressure from
rapid population growth, climate change, and intensified human activities.
Sustainable water management depends on a deep understanding of hydrological
systems, both the visible surface water and the often-overlooked groundwater
reserves. Traditional monitoring methods, however, are often too limited in
coverage and frequency to capture the full complexity of water-system dynamics.

Interferometric Synthetic Aperture Radar (InSAR), a satellite-based remote sensing
(RS) technology, is a powerful tool for detecting ground displacements as small as
a few millimetres over wide areas. When combined with appropriate models and
assumptions, these measurements can be used to infer variations in water storage
driven by seasonal fluctuations, groundwater extraction, or ecological processes.
Thanks to its high spatial and temporal resolution, InNSAR has become an important
tool in hydrological research.

A central theme of this dissertation is the use of InSAR to assess groundwater
dynamics, particularly in arid and semi-arid regions where over-extraction often
leads to land subsidence. By interpreting deformation patterns, it becomes possible
to infer subsurface parameters such as aquifer storativity, which describes the
capacity of geological formations to store and release water. When integrated with
machine learning (ML), InSAR data support comprehensive mapping of land
subsidence and the prediction of groundwater-related changes even in areas where
direct measurements are sparse or unreliable. These models offer scalable solutions
for groundwater monitoring in agriculturally intensive and data-scarce regions.

InSAR also complements physically based numerical and data-driven models that
simulate groundwater flow. By calibrating such models with deformation data, it
becomes feasible to estimate groundwater-level changes and characterize aquifer
behaviour more accurately than with conventional observations alone, especially
where monitoring networks are sparse. Moreover, combining satellite observations
with environmental variables enables spatial extrapolation of key aquifer
parameters, such as skeletal storage coefficients and characteristic lag times, to
simulate subsurface dynamics across entire aquifer systems.

The dissertation also examines the interplay between groundwater and surface
water, showing how interventions such as river regulation can have unintended
consequences. Reductions or redirection of surface flows may increase reliance on
groundwater, intensifying subsidence and threatening infrastructure and long-term
availability. This underscores the importance of integrated water management that
considers the coupled surface-subsurface system.

Beyond groundwater-focused applications, the research extends to wetland
environments, particularly temperate peatlands that retain water, mitigate floods,

iv



and act as carbon sinks. Using InSAR to track subtle surface elevation changes,
often described as “peat breathing”, the dissertation illustrates how these surface
motions can correspond to water-table dynamics and, in turn, to carbon fluxes when
interpreted with complementary hydrological and ecological information. This
highlights the potential of InSAR to support ecological monitoring and climate-
related assessments in vegetated landscapes.

Overall, this dissertation demonstrates how integrating Earth observation with
diverse modelling strategies advances both the science and practice of water
resource management. By applying InSAR across aquifers and ecosystems, the
research highlights new ways to monitor subsurface and surface water dynamics,
extends hydrological assessment to data-scarce regions, and underscores the broader
ecological and climatic relevance of deformation monitoring.



Populédrvetenskaplig sammanfattning

Vatten dr avgorande for liv, men vara globala vattenresurser star infor ett 6kande
tryck till foljd av snabb befolkningstillvéxt, klimatforandringar och intensifierade
minskliga aktiviteter. Héllbar vattenforvaltning krdver en djup forstaelse av
hydrologiska system — bade det synliga ytvatten och de ofta forbisedda
grundvattenreserverna som doljer sig under vara fotter. Traditionella
overvakningsmetoder dr dock ofta for begrdansade 1 tickning och frekvens for att
kunna fanga den fulla komplexiteten i vattensystemens dynamik.

Interferometrisk ~ syntetisk  aperturradar  (InSAR), en  satellitbaserad
fjarranalysteknik, har framtréitt som ett kraftfullt verktyg for att observera sma
forandringar 1 jordytan — rorelser sd sma som nigra millimetre — 6ver stora omraden.
Dessa ytfordndringar speglar ofta variationer 1 vattenlagring under marken, oavsett
om de orsakas av sdsongsmaissiga svdngningar, grundvattenutvinning eller
ekologiska processer. InNSAR:s formaga att fdnga sddana deformationer med hog
rumslig och tidsmissig upplosning har gjort tekniken banbrytande inom hydrologisk
forskning.

Ett centralt tema 1 denna avhandling dr anvéndningen av InSAR for att analysera
grundvattendynamik, sdrskilt i torra och halvtorra regioner dir dveruttag ofta leder
till marksédnkning. Genom att tolka deformationsmonster blir det mojligt att dra
slutsatser om underjordiska parametrar som akviferers lagringsforméga, vilket
beskriver geologiska formationers kapacitet att lagra och slidppa ifrin sig vatten. Nér
InSAR-data kombineras med maskininldrningsmodeller kan man skapa omfattande
kartor dver marksdnkning och forutsdga grundvattenrelaterade fordndringar dven i
omraden dér direkta mitningar dr glesa eller osdkra. Dessa modeller erbjuder
skalbara 16sningar for grundvattenovervakning 1 jordbruksintensiva och datafattiga
regioner.

InSAR kompletterar ocksa fysikaliskt baserade numeriska modeller som simulerar
grundvattenflode. Genom att kalibrera sidana modeller med deformationsdata blir
det mojligt att uppskatta grundvattennivaer och karakterisera akviferbeteende mer
exakt @n med konventionella métningar ensamma. Detta dr sdrskilt vardefullt i
regioner dér tdta overvakningsnédtverk saknas. Dessutom gor kombinationen av
satellitobservationer med miljovariabler och fjarranalysindex det mojligt att
extrapolera viktiga hydrologiska parametrar — sdsom elastiska lagringskoefficienter
— over hela akvifersystem.

Avhandlingen utforskar dven det komplexa samspelet mellan grundvatten och
ytvatten, och visar hur atgirder som reglering av floder kan fa oavsiktliga
konsekvenser. Till exempel kan omledning eller minskning av ytvattenfloden leda
till okad beroende av grundvatten, vilket 1 sin tur kan orsaka intensivare
marksdnkningar och hota bade infrastruktur och ldngsiktig vattentillgéng. Detta
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understryker vikten av integrerade vattenforvaltningsstrategier som beaktar det
omsesidiga beroendet mellan ytliga och underjordiska system.

Forutom grundvattenrelaterade tilldimpningar omfattar forskningen &ven
ytvattenfordndringar 1 vatmarker, sérskilt 1 tempererade torvmarker. Dessa
ekosystem spelar inte bara en viktig roll i vattenhallning och 6versvamningsskydd,
utan fungerar ocksd som kolsédnkor. Genom att anvéinda InSAR for att spéra subtila
fordndringar 1 markytans hojd — ofta beskrivna som "torvandning" — visar
avhandlingen hur dessa rorelser motsvarar fordndringar 1 grundvattennivdn och
darigenom paverkar kolfloden. Detta belyser InSAR:s potential for ekologisk
overvakning och klimatrelaterade bedomningar i vegetationsklddda landskap.

Genom att kombinera fjdrranalys, numerisk modellering och maskininldrning
presenterar denna forskning ett mangfacetterat ramverk for att forsta vattenresursers
dynamik 1 olika hydrologiska miljoer. Den visar att moderna
jordobservationsverktyg avsevirt kan forbéttra var formaga att overvaka, forutsdga
och forvalta bade grundvatten- och ytvattenresurser. Genom dessa innovationer tar
vi ett steg ndrmare hallbar vattenanvdndning — fran torkdrabbade akviferer till
koldioxidrika vatmarker — och bidrar till att skydda denna livsviktiga resurs for
kommande generationer.
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Preface

This dissertation presents the research I have carried out during my time as a
doctoral student at the Division of Water Resources Engineering at Lund University,
with a dual affiliation to the Centre for Advanced Middle Eastern Studies (CMES).
It is structured as a compilation of peer-reviewed papers, with the synthesis chapter
providing a cohesive narrative that frames the collective contributions of the
appended studies.

My journey into this research was shaped by a deep concern for the accelerating
water crisis in arid and semi-arid regions, particularly in the Middle East, where
groundwater depletion has reached alarming levels. In these regions, land
subsidence is not merely a scientific concept but a lived reality, damaging
infrastructure, displacing communities, and threatening long-term sustainability.
This context has continually fueled my motivation and given a strong sense of
purpose to my work. The challenge of bridging scientific rigor with real-world
urgency has guided how I approach, design, and communicate my research.

Working across disciplines, from remote sensing and machine learning to
hydrogeology and numerical modelling, has allowed me to explore the complexity
of water resource systems in ways that no single method could achieve alone. My
academic affiliations provided unique opportunities to engage with both technical
experts and scholars in policy and regional studies, shaping a perspective that is both
scientifically grounded and societally informed.

One of the most impactful aspects of this journey has been the chance to participate
in international conferences, research schools, and collaborations that expanded not
just my technical skills, but also my understanding of how interconnected global
water challenges truly are. These experiences reaffirmed the importance of pushing
research beyond academic boundaries, to inform policy, empower local
stakeholders, and support sustainable development where it is needed most.

As I finalize this dissertation, I carry with me a strong conviction that research can
and must be both innovative and responsible. I hope that the work presented here
contributes not only to academic knowledge, but also to practical solutions in
addressing one of the most pressing environmental issues of our time.
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1 Introduction

Water resources globally face increasing pressure due to a combination of factors
including population growth, climate change, and anthropogenic activities.
Sustainable water management requires a comprehensive understanding of both
surface water and groundwater availability, as well as the impacts of their depletion
or alteration. Traditional methods of water resources monitoring can be limited in
spatial and temporal coverage, making it challenging to effectively assess large-
scale changes and complex interactions within hydrological systems.

Remote sensing technologies, particularly Interferometric Synthetic Aperture Radar
(InSAR), have emerged as powerful tools for monitoring land surface deformation
with high precision and over extensive areas. These deformation measurements
provide valuable insights into hydrological processes such as aquifer storage
changes and wetland dynamics.

This dissertation explores how InSAR can be combined with diverse modelling
strategies, including physically assisted data-driven and numerical models, as well
as machine learning approaches, to advance groundwater and ecosystem monitoring
across varied hydrological settings.

1. Scope

This dissertation presents a comparative assessment of water availability and related
environmental changes by leveraging remote sensing, primarily InSAR, in
combination with complementary modelling approaches. The scope includes
monitoring surface deformation as an indicator of water storage variations in
groundwater aquifer systems as well as water-saturated ecosystems such as
peatlands. In aquifers, the integration of InNSAR with modelling frameworks is used
to estimate key hydrological parameters and assess impacts of drought, groundwater
extraction, and surface water regulation. In peatland environments, InSAR is
applied to study ecosystem responses and carbon-related processes, without direct
reference to groundwater behaviour. The dissertation draws upon findings from
multiple studies across diverse geographical and environmental contexts.



The research begins with the development of an InSAR-ML framework (Paper I)
that integrates sparse InSAR-derived deformation with geo-environmental factors
to generate full-coverage maps of groundwater-induced land subsidence in
agricultural areas. Using tree-based ensemble regression models, the approach
overcomes the spatial discontinuity typical of InSAR data in an agricultural and
highly vegetated areas, offering a scalable tool for subsidence modelling in data-
scarce environments.

The second article (Paper II) introduces a deformation-driven head estimation
(DHE) model that links InSAR-derived surface deformation with groundwater head
variations by estimating seasonal and long-term skeletal storage coefficients. Rather
than relying on dense monitoring networks, the method can reconstruct historical
groundwater head changes and predict future head dynamics at monitoring well
locations using deformation data, even in areas with limited in-situ measurements
or incomplete records.

Building on this, the third article (Paper III) employs ML to spatially extrapolate
storativity parameters, integrating remote sensing and ground-based data. This
enables aquifer-wide groundwater head simulations, clarifying seasonal and long-
term deformation behaviours.

Advancing the integration of InSAR with numerical modelling, the fourth article
(Paper IV) introduces a framework, which calibrates skeletal storage coefficients
using InSAR deformation within a MODFLOW-based numerical model. This novel
approach enables future groundwater head estimations primarily from remote
sensing data and estimated aquifer hydraulic parameters, and focuses on
characterizing subsidence caused by over-pumping.

The fifth article (Paper V) examines the interaction between surface water
regulation and groundwater depletion in an aquifer situated within a riparian zone.
By combining satellite remote sensing and in-situ hydrological data, the study
illustrates how river regulation reduces surface water availability, exacerbates
groundwater overuse, and triggers significant land subsidence, posing threats to
infrastructure.

Finally, the sixth article (Paper VI) explores surface water dynamics in temperate
peatland ecosystems in southern Sweden. Using InSAR to measure peatland surface
deformation, the study proposes a method to estimate carbon flux based on observed
changes. The findings indicate significant surface uplift associated with carbon
sequestration, highlighting InSAR's utility in monitoring ecological processes in
vegetated landscapes.

Collectively, these studies highlight the value of InSAR in monitoring hydrological
systems, from arid aquifers to temperate peatlands, and demonstrate how its
integration with complementary modelling frameworks can enhance traditional
groundwater assessments. The findings emphasize the interconnectedness of surface



and subsurface water systems and their combined role in sustainable water resource
management.

1.2 Aim and objectives

The overarching aim of this dissertation is to provide a comparative evaluation of
the application of InSAR technology and its integration with modelling approaches
for assessing water availability and related environmental changes in diverse
hydrological settings.

To achieve this aim, the following objectives are addressed:

1.  To evaluate the effectiveness of InSAR technology in monitoring
environmental changes related to water in different hydrological systems.

ii.  To assess the utility of integrating InSAR-derived deformation data with
physics-based models for characterizing aquifer properties and predicting
groundwater dynamics.

iii.  To investigate the potential of machine learning techniques, in conjunction
with InSAR data, for mapping and understanding spatial patterns of
groundwater-related phenomena.

iv.  Toexamine the impact of both natural climate variability and anthropogenic
pressures on water availability and associated land surface deformation in
the studied systems.

v.  To highlight the strengths and limitations of the employed methodologies
for water resource monitoring and management across different
hydrological contexts

vi.  To investigate peatland condition and surface dynamics through InSAR-
based monitoring, with consideration of associated carbon sequestration
processes as part of broader environmental change assessment.

1.3 Limitations

This dissertation is based on a comparative analysis of multiple case studies, and its
findings should be interpreted within the constraints of data availability, InSAR
measurement conditions, and model assumptions. The accuracy of deformation
measurements may be influenced by atmospheric effects, vegetation cover, and
satellite geometry, while the reliability of integrated modelling depends on the
quality of in-situ observations and auxiliary datasets. Both physics-based and data-



driven models remain sensitive to parameterization choices and training data. These
aspects, along with associated uncertainties, are further discussed in the concluding
chapter.

1.4 Brief overview of appended papers

[Paper I] This study presents an integrated InSAR-machine learning approach that
combines InSAR deformation data with geoenvironmental variables to model
groundwater-induced land subsidence in arid, agriculturally dominated regions. By
addressing the spatial discontinuity inherent in InSAR measurements, particularly
in vegetated areas, the approach enables the generation of continuous, high
resolution subsidence maps. The methodology demonstrates the potential of ML-
based, data-driven models to enhance deformation monitoring in data-scarce
environments.

[Paper II] This paper introduces a deformation-driven head estimation (DHE) model
to predict groundwater levels in arid and semi-arid regions using InSAR-derived
land deformation and piezometric well data. By estimating seasonal and long-term
skeletal storage coefficients, the model enables groundwater head simulation
without requiring detailed aquifer characterization. It effectively captures both
elastic and inelastic deformation responses, addresses time lags between head
decline and surface displacement, and is validated against semi-logarithmic
analytical methods. Applied to two hydrogeologically diverse aquifers in
northeastern and northwestern Iran, the DHE model demonstrates strong predictive
performance, providing a scalable and physically grounded approach for
groundwater monitoring in data-scarce regions.

[Paper III] This study presents a physics-assisted, machine learning framework for
spatiotemporal estimation of groundwater head dynamics in confined aquifers. By
integrating InSAR-derived deformation data with groundwater observations, the
framework first quantifies seasonal and long-term aquifer storativity parameters,
and lag-time using DHE model (previous study). These parameters are then
extrapolated across the aquifer using an eXtreme Gradient Boost (XGBoost)
regressor trained on diverse environmental variables. Applied to the Shabestar
aquifer in northwestern Iran, the model accurately simulates groundwater head
variations across space and time while significantly reducing reliance on in-situ
data. The approach highlights the potential of combining remote sensing, physics-
based modelling, and Al for efficient groundwater monitoring in data-scarce
regions.

[Paper 1V] This paper introduces SIGH-Map, an integrated INSAR-MODFLOW
framework for spatiotemporal groundwater head mapping in data-scarce aquifer



systems. By combining InSAR-derived land deformation with a calibrated
MODFLOW model, the framework infers aquifer skeletal storage coefficients and
simulates groundwater behaviour under over-pumping conditions. Applied to the
Neyshabour aquifer in northeastern Iran, the approach accurately reconstructs
groundwater head variations across time and space, relying solely on InSAR data
and storage parameters after initial calibration. SIGH-Map enables near real-time
head estimation, offering a scalable, cost-effective solution for spatio-temporal
monitoring of groundwater levels in subsidence-prone, confined aquifers.

[Paper V] This study examines how reduced surface water availability due to river
regulation contributes to groundwater depletion and land subsidence in the Isfahan-
Borkhar aquifer in central Iran. By integrating InSAR-based deformation
measurements, remote sensing-derived surface indicators, and in-situ hydrological
data, the research identifies a strong link between the loss of river flow and
accelerated subsidence. The findings underscore the role of surface water in
sustaining groundwater systems and highlight the infrastructure risks associated
with unsustainable groundwater withdrawal in urban environments.

[Paper VI] This study demonstrates the use of InSAR to monitor surface
deformation in temperate peatlands of southern Sweden, highlighting vertical
motion as a key indicator of peatland hydrological and ecological health. The
proposed approach links deformation patterns to subsurface dynamics, offering a
non-invasive tools to assess peat condition across large spatial scales. While the
study identifies substantial surface uplift that suggests peatland recovery, laboratory
evidence supports a potential association with enhanced carbon sequestration,
emphasizing the broader ecological implications of deformation monitoring.

Figure 1.1 presents an integrated conceptual framework that illustrates the
coherence and progression of six interconnected research studies focused on
advanced hydrological system monitoring using InSAR and complementary
modelling techniques. It is structured in four main sections (Inputs, Modelling
Approaches, Outputs, and Outcomes) to reflect the logical flow from raw data
acquisition to scientific insight and practical application. Key datasets such as
InSAR deformation measurements, piezometric well observations, and auxiliary
environmental information serve as foundational inputs. These are processed
through diverse modelling strategies, including numerical, data-driven, and machine
learning approaches, aided by physical constraints and domain knowledge. The
resulting outputs, such as groundwater head maps, deformation trends, and aquifer
parameters, feed into broader hydrological insights. Ultimately, the framework
contributes to enhanced understanding of groundwater dynamics, hydrological
interconnectivity, climate-driven land deformation, and the development of
scalable, data-efficient monitoring tools to inform sustainable water resources
management.
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Figure 1.1: Conceptual diagram showing the integrated framework developed across six research studies for hydrological system monitoring. The framework links INnSAR,
piezometric, and environmental data to advanced modelling approaches, producing outputs such as groundwater head estimates and deformation maps, which lead to
outcomes including improved aquifer characterization, spatiotemporal groundwater head dynamics, climate impact analysis, and support for sustainable water management.



1.5 Dissertation structure

Chapter 2 provides the theoretical background, outlining the key concepts,
processes, and tools relevant to groundwater systems, surface water interactions,
ecosystem dynamics, and remote sensing with a focus on InSAR.

Chapter 3 presents the materials and methods, describing the study areas, datasets,
and modelling frameworks that form the basis of the appended articles.

Chapter 4 discusses the results, offering a comparative synthesis of findings on
groundwater dynamics, aquifer properties, surface water interactions, and
ecosystem responses, along with validation, uncertainties, and broader implications.

Chapter 5 concludes the dissertation by summarizing the main contributions,
highlighting their significance for water resource management, and pointing to
future research directions.



2 Theoretical background

Groundwater is a foundational component of the Earth's hydrological cycle,
contributing substantially to freshwater availability for ecosystems, agriculture, and
human use. Beyond its individual importance, groundwater interacts continuously
with surface water bodies, soil moisture, and atmospheric processes, shaping
watershed-scale water balances and sustaining flows in rivers, wetlands, and lakes
(Winter et al.,, 1998). These interactions influence ecohydrological functions,
regulate land surface stability, and provide critical buffers against climatic extremes
such as droughts and floods. In human-modified environments, increasing pressures
from population growth, agricultural intensification, land use change, and climate
variability are placing unprecedented stress on groundwater resources (Famiglietti,
2014). This highlights the importance of integrated water resources assessments that
consider groundwater as an active component of broader hydrological and
environmental systems. Advances in computational hydrology have expanded our
ability to simulate, monitor, and manage groundwater systems with greater spatial
and temporal resolution. These tools support more comprehensive and predictive
understanding of groundwater behaviour and its implications for long-term water
security and environmental resilience.

2.1 Groundwater as a dynamic component of the
hydrological cycle

Groundwater is a vital component of the Earth's hydrological cycle, representing the
largest unfrozen freshwater resource and the principal liquid freshwater storage on
the planet. It plays a foundational role in sustaining ecosystems, agriculture, and
human water supply (Condon et al., 2021; Singh, 2014). Functioning at the bottom
of the hydrologic cycle, groundwater redistributes water across vast spatial and
temporal scales, from headwater catchments to continental aquifers, over periods
ranging from days to centuries (Condon et al., 2021). These dynamic interactions
link shallow and deep systems and connect land surface processes, surface water
bodies, and the atmosphere, helping maintain streamflows, wetlands, and aquifer
recharge under variable climatic conditions (Wo6rman, 2007).



Because of its slow movement, groundwater buffers fluctuations in the water and
energy cycles, enhancing predictability across hydrological systems (Sutanto et al.,
2020). Groundwater and surface water exchanges provide resilience during
droughts and allow vegetation to access deeper water stores, stabilizing ecosystems
during low-flow periods (Marchionni, 2020). Shifts in groundwater depth can also
influence biogeochemical processes, triggering transitions in groundwater-
dependent ecosystems between carbon sinks and sources (Genereux, 2013).
However, growing pressures from population expansion, land use change, climate
variability, and unsustainable extraction pose serious risks to groundwater
sustainability (Wu & Zeng, 2013; Doll et al., 2012; Gleeson, 2016). With
groundwater extraction accounting for 35 percent of global freshwater withdrawals,
managing these systems requires a deep understanding of both natural processes and
human influences (Canales et al., 2024).

To address these challenges, groundwater modelling has become an essential tool
for simulating aquifer dynamics, recharge processes, and interactions with surface
water systems (Sanford, 2002). Modelling supports improved resource management
by enabling forecasts of withdrawal impacts, assessing contamination risks, and
quantifying groundwater availability (Singh, 2014). Recent developments in
modelling approaches, such as surrogate modelling techniques, offer computational
efficiency while retaining predictive accuracy in simulating complex subsurface
behaviour (Asher et al., 2015). Uncertainty analysis has become integral to these
models, improving confidence in predictions and guiding risk-aware decisions (Wu
& Zeng, 2013).

Emerging computational techniques, especially machine learning and metaheuristic
optimization, further enhance groundwater modelling by enabling better parameter
estimation and capturing nonlinear system behaviour (Osman et al., 2022; Chen &
Dai, 2024). Additionally, agent-based modelling is increasingly employed to
incorporate socio-economic feedback and stakeholder behaviours, allowing for
more holistic assessments of groundwater and society interactions (Canales et al.,
2024). These modelling innovations, when integrated with observational data and
system-level understanding, are critical for addressing the multifaceted challenges
of groundwater sustainability and effective water resource management.

2.2  QGroundwater-surface water interactions

Groundwater interactions with surface water systems form a continuous,
hydraulically connected network that significantly influences water availability and
distribution across landscapes (Banerjee & Ganguly, 2023). These interactions
occur through processes such as surface water recharging aquifers (losing streams),
groundwater discharging into rivers (gaining streams), and variable exchanges that



shift seasonally or spatially along a single watercourse. In some cases, streams may
become hydraulically disconnected from aquifers when a substantial unsaturated
zone develops. Groundwater pumping near rivers can also induce riverbank
filtration, drawing surface water into aquifers (Rossetto et al., 2020; Alley et al.,
2002).

A key zone of exchange is the hyporheic zone, located beneath and alongside
streambeds, where surface water and groundwater mix. Its physical characteristics,
such as streambed topography and sediment permeability, control the magnitude
and direction of exchange flows. These flow dynamics influence residence times
and contribute to the spatial distribution of recharge and discharge areas (Banerjee
et al., 2023).

The intensity and pattern of groundwater-surface water (GW-SW) interactions are
controlled by multiple physical factors, including topography, subsurface hydraulic
properties, precipitation variability, and seasonal shifts in water levels (Winter et
al., 1998; Sophocleous, 2002). Continuous extraction also alters natural exchange
dynamics (Alley et al., 2002). At a broader scale, spatial variability in aquifer
heterogeneity, surface geomorphology, and transient surface flow events such as
floods govern the complexity of groundwater-surface water connectivity (Harvey &
Gooseff, 2015; Fleckenstein et al., 2010). Human interventions, such as irrigation,
dam construction, and land use change, further modify these interactions (Gleeson
et al., 2012; Kondoh et al., 2004).

These exchanges operate across multiple spatial scales, typically categorized as
sediment scale (less than 1 meter, related to hyporheic exchange), reach scale (up to
1,000 meters, local flow systems), and catchment scale (more than 1,000 meters,
regional systems) (Keery et al., 2007; Ma et al., 2024). The nature and magnitude
of interaction depend on factors such as the vertical position of the water table
relative to the streambed, aquifer anisotropy, and boundary conditions that influence
groundwater gradients and seepage directions (Banerjee et al., 2023).

Understanding GW-SW connectivity is essential for accurate water balance
assessments, flow forecasting, and aquifer recharge estimation. These interactions
are key in determining streamflow contributions during dry periods and quantifying
groundwater availability at multiple scales (Winter et al., 1998; Sophocleous, 2002).
Excessive groundwater extraction can lower piezometric surfaces, reducing
baseflow to rivers and diminishing surface water availability, especially in dry
climates (Gleeson et al., 2012). In coastal regions, overpumping can also lead to
seawater intrusion, altering the hydraulic gradient and further reducing freshwater
yield (Bear et al., 1999).

Quantitative assessment of these interactions is central to integrated hydrological
modelling frameworks. Advances in remote sensing, groundwater flow modelling,
and data-driven approaches now provide improved tools to simulate and monitor
the spatial and temporal dynamics of GW-SW exchange, supporting more effective
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water resource management under changing environmental conditions (Winter et
al., 1998; Kalbus et al., 20006).

2.3 Advances in global and multiscale groundwater
modelling

Given its critical role and dynamic interactions, accurately representing
groundwater within modelling frameworks is essential to fully understand global
hydrology dynamics. Transient global groundwater modelling is needed to obtain
spatially and temporally continuous and consistent information about this resource,
especially in the context of changing global conditions. A global groundwater
framework is necessary to address critical gaps in our understanding and predictive
capacity of the hydrologic cycle (Condon et al 2021).

There has been an international effort to develop global-scale groundwater
modelling and analysis, including a push to incorporate groundwater representations
into existing global land surface and earth system models (de Graaf et al, 2017,
Maxwell et al, 2015; Gleeson et al, 2016 & 2021). Significant progress has been
made in continental to global scale groundwater modelling (Gleeson et al, 2021),
but much additional work is required to achieve a consistent global framework that
seamlessly interacts with observational datasets and other Earth system models.
This requires community engagement and interdisciplinary collaboration on best
practices.

In this context, satellite-based remote sensing technologies have become
indispensable for supporting large- and small-scale groundwater modelling efforts.
Observational datasets derived from satellite missions such as GRACE (Gravity
Recovery and Climate Experiment) provide estimates of terrestrial water storage
anomalies, enabling coarse-scale evaluation of groundwater trends in areas lacking
sufficient in-situ data (Rodell et al., 2009; Long et al., 2015). Similarly, surface
deformation data from InSAR offer valuable spatial information on aquifer
compaction and subsidence, which can be used to infer changes in groundwater
storage and support calibration of numerical models at finer scales (Chen et al.,
2016; Jaramillo et al., 2024).

By integrating satellite observations with hydrological simulations, researchers can
reduce uncertainty in parameter estimation, improve spatial coverage in data-scarce
regions, and better assess the impacts of climate variability and human activities on
groundwater systems. While the detailed role of these remote sensing techniques is
discussed in later sections, it 1s important to recognize their contribution to evolving
multiscale modelling frameworks.
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Simulation models are often the only feasible means to provide input for
groundwater management decisions due to their predictive capabilities (Singh,
2014). They can help forecast the likely impacts of different water management
strategies, and the results of simulation studies can form the basis for identifying
suitable future management plans. Groundwater inverse modelling is a vital
technique for enhancing numerical simulation accuracy by estimating unmeasurable
model parameters (Chen & Dai 2024).

Accurate simulation and prediction require capturing the dynamic interactions
between groundwater and other parts of the system. Specifically, accurate
representation of anomalies in shallow groundwater and their connections to soil
moisture and evapotranspiration dynamics could further improve forecast
performance at sub-seasonal to decadal timescales and for assessing long-term
impacts of global change (Condon et al, 2021). Groundwater flow models must be
capable of capturing three-dimensional flow at multiple spatial scales and
resolutions and must be connected to land surface and overland flow processes.
They need to include both shallow and deep groundwater systems to encompass the
connections between them and the impact of human pumping. The integration of
human activities that influence the groundwater system, such as pumping and
irrigation, is also essential in modelling platforms.

While steady-state models provide estimates of static conditions, transient
simulations are needed to cover the dynamic changes within the groundwater
system. The vision for a Global Groundwater Platform (GGP) includes combining
observations and models to provide spatially and temporally continuous
groundwater information (Condon et al, 2021). Such a platform should be designed
to be compatible with observation networks to facilitate direct data assimilation and
model evaluation. It also requires spatially continuous and consistent datasets of
hydrogeologic properties, which are challenging to generate globally. Models can
be improved by progressively incorporating better data and hydro-stratigraphic
characterizations.

2.4  Groundwater flow and deformation processes

Groundwater 1s stored in different types of aquifers, each exhibiting distinct
hydraulic behaviours that influence how water flows and responds to stress.
Unconfined aquifers are directly recharged by precipitation and interact openly with
the atmosphere, while confined aquifers are bounded by low-permeability layers
(aquitards) that restrict vertical flow, leading to pressurized conditions. Semi-
confined or leaky aquifers allow limited vertical leakage through confining layers.
These classifications are fundamental for understanding aquifer response to
recharge, pumping, and deformation (Freeze & Cherry, 1979; Fetter, 2001). Aquifer
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characteristics such as storativity and compressibility vary significantly among
these aquifer types and directly affect both hydrodynamic behaviour and soil
compaction under stress.

Accurate characterization of aquifer types, confined, semi-confined, or unconfined,
and their extents traditionally necessitates extensive field investigations, including
borehole stratigraphy, pumping tests, and geophysical investigations (Morakaladi &
Atangana, 2023). However, such conventional methods become increasingly
challenging in regions characterized by complex or insufficiently understood
hydrostratigraphy, particularly under conditions of intense groundwater pumping.

Terzaghi’s theory of consolidation provides a foundational framework for
interpreting aquifer deformation in response to changes in hydraulic heads
(Terzaghi, 1943). The skeletal storage coefficient s, quantitatively links vertical
land surface deformation Ab with changes in hydraulic head Ah through the
relationship:

_Ab
Sk = A (1)

Given a known aquifer thickness b, this skeletal storage can further be related to
the specific storage coefficient sg, as:

Sk = SSkbO (2)

For unconfined aquifers, the relationship must be adjusted to account for specific
yield sy, leading to a modified skeletal storage coefficient s :

sk =(1—sy)sk (3)

(a) Surtace Level (t1) (b) Surface Level (t1)
l V]asL

Surface Level (£2

Unconfined

Aquitard Unconfined ki

Aquitard

Confined Confined

Aquitard Aquitard

Figure 2.1: (a) Shows the aquifer in a balanced state with stable groundwater levels in both unconfined and confined
zones. (b) Excessive groundwater withdrawal lowers water levels, most notably in the confined aquifer, causing
compaction of subsurface layers and ground surface subsidence.
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Groundwater extraction reduces pore-water pressures in the (semi-)confined unit,
triggering subsurface compaction primarily through rearrangement of soil particles
within the aquifer matrix. In unconfined aquifers, compaction arises predominantly
from gravity-driven drying and resulting structural adjustments of upper soil layers.
Confined aquifers experience additional stress from overlying layers (e.g.,
aquitards), resulting in significant deformation to maintain equilibrium under the
altered hydraulic conditions. Semi-confined aquifers demonstrate deformation
characteristics intermediate between these extremes, integrating the responses of
both confined and unconfined conditions. Figure 2.1 illustrates this concept clearly.

Surface deformation reflects the integrated mechanical response of multiple aquifer
types within a given region. While traditionally these responses are classified into
elastic and inelastic components based on pre-consolidation thresholds, such
delineations often lack clear field-derived boundaries. Land surface deformation
due to groundwater extraction primarily results from the compaction of fine-
grained, compressible layers such as clay and silt, where declining pore-water
pressures increase effective stress and drive vertical settlement of the aquifer system
(Terzaghi, 1943; Galloway & Burbey, 2011).

Numerous studies have integrated deformation data with in-situ groundwater
observations to estimate aquifer storativity parameters using diverse approaches,
including grid-search inversion, spatial regression, Markov Chain Monte Carlo
(MCMC)-based reconstruction, and component decomposition methods like PCA
and wavelet analysis (e.g., Chen etal.,2016; Ali etal., 2022; Smith & Li, 2021;
Chaussard et al., 2014; Miller & Shirzaei, 2015; Jiang et al., 2018), highlighting the
value of deformation monitoring for aquifer characterization (Motagh, 2017,
Ghorbani et al., 2022; Shanker et al., 2011).

A critical complexity in interpreting deformation data is estimating the time lag
between hydraulic head changes and observed surface deformation due to delayed
interbed drainage in low-permeability strata. Hoffman et al. (2003) offer an
analytical model to quantify this lag:

t (4)
Abinetastic(t) = Ssiv-bo-Ah. (1 — ; e * %)
where sgi,, 1 the inelastic skeletal storage coefficient, 7, is the system’s time
constant and denotes elapsed time since head alteration. In regions with limited
observational data, cross-correlation techniques effectively estimate this time lag
from seasonal deformation and groundwater head variations (Bai et al., 2022).

Despite considerable advances, previous research has largely concentrated on
elastic deformation parameters within well-characterized aquifer systems. This
study proposes an innovative yet streamlined methodological framework leveraging
InSAR-derived deformation combined with groundwater head data from
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piezometric wells to robustly infer aquifer storativity, even in settings with sparse
or incomplete hydrogeological information.

2.5 Peatlands as climate-sensitive hydrological
systems

Peatland ecosystems are distinct hydrological systems intricately connected to
groundwater and surface water processes. Their high water retention capacity and
sensitive water table dynamics reflect subsurface interactions and surface inputs,
making them particularly responsive to hydroclimatic variations, including shifts in
precipitation, temperature, and evaporation regimes (Holden, 2005; Waddington
etal.,2015). As such, peatlands act as critical indicators of landscape-scale
hydrological conditions, offering insight into GW-SW dynamics and ecosystem
responses to climate wvariability and change (Baird etal.,2009; Limpens
etal., 2008).

Although they occupy only a small fraction of Earth’s land surface, peatlands store
a disproportionately large share of global soil carbon, estimated at 21-30% despite
covering just 3-4% of terrestrial areas (Minasny et al., 2024; Ghazaryan et al., 2024).
Northern peatlands, in particular, represent vast carbon reserves (Antala
etal., 2022). These ecosystems also provide critical hydrological and ecological
functions, regulating water balances, mitigating floods, and contributing to climate
regulation through their coupled water and carbon cycling (Mozafari et al., 2023).
Their effectiveness depends on the interplay between hydrology, vegetation, and
carbon dynamics (Leifeld & Menichetti, 2018; Nordbeck & Hogl, 2024).

Water table fluctuations drive the most direct and measurable physical responses in
peatlands. Drawdown exposes peat to aeration, accelerating organic matter
decomposition and causing subsidence, while stable or rising water tables promote
organic accumulation and vegetation growth, driving surface uplift (Price, 2003;
Fritz etal., 2008; Potvin etal., 2015). These vertical motions are key indicators of
peatland hydrological and carbon states, as subsidence is often associated with
greenhouse gas release, whereas uplift typically corresponds to carbon sequestration
(Hooijer etal., 2012; Hoyt et al., 2020).

Monitoring these subtle yet widespread surface changes is challenging using
conventional ground-based methods, which are limited in spatial coverage and are
time- and cost-intensive. INnSAR on the other hand offers an effective alternative,
providing sub-centimeter precision in tracking seasonal and long-term vertical
deformation across extensive peatland landscapes (Alshammari et al., 2018; Zhou
etal., 2019). By capturing trends in uplift and subsidence, InNSAR enables direct
assessment of peatland responses to hydrological and climatic drivers, while also
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supporting evaluations of their role in regional and global carbon cycles. Continuous
deformation monitoring with InSAR can inform early detection of degradation,
guide restoration, and improve carbon budget assessments under changing climate
conditions.

2.6 ML in groundwater studies

Machine learning has emerged as a powerful complement to traditional physics-
based groundwater modelling, particularly in addressing data scarcity, high-
dimensional parameter spaces, and nonlinear system behaviours. These data-driven
approaches are well suited for estimating groundwater levels, predicting land
subsidence, and inferring aquifer properties using limited or remote observations
(Osman et al., 2022; Chen & Dai, 2024).

Supervised ML algorithms, such as decision trees, support vector machines, and
artificial neural networks, have been increasingly employed to forecast groundwater
head fluctuations using climatic, topographic, and satellite-based datasets.
Ensemble models such as boosted regression trees and extreme gradient boosting
have shown strong performance in spatiotemporal prediction tasks by capturing
complex interactions across variables (Naghibi et al., 2022).

Hybrid frameworks combining machine learning with physically based models are
also gaining attraction. These include surrogate modelling techniques that
approximate numerical simulations to reduce computational cost (Asher et al.,
2015), physics-informed neural networks for improved generalization, and ML-
assisted inverse modelling to support parameter estimation and uncertainty
reduction (Chen & Dai, 2024).

The growing availability of remote sensing products such as InSAR-derived
deformation, vegetation indices, and land use maps further enhances the utility of
machine learning for regional groundwater assessments, particularly in data scarce
environments (Jaramillo et al., 2024). In these contexts, ML approaches provide a
scalable and flexible alternative to traditional methods, facilitating near real time
monitoring and supporting more adaptive management decisions.

By integrating observational data and physical understanding, ML models now
serve as valuable tools for advancing quantitative water assessment in response to
increasing climatic and anthropogenic pressures on groundwater systems (Osman et
al., 2022; Canales et al., 2024).
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2.7 Remote sensing of ground deformation for
hydrological assessment

Given the increasing complexity of groundwater modelling and hydrological
assessments discussed above, accurate and extensive observational datasets are
essential. Remote sensing, particularly InSAR, provides critical observational
support to validate and enhance these modelling efforts. InSAR technology has
revolutionized the field of hydrological research by enabling detailed, precise, and
extensive spatial monitoring of Earth's surface changes associated with water
dynamics. It has also demonstrated its utility in surface water assessment, including
wetland monitoring, flood extent mapping, and evaluating changes in surface water
storage in wetlands, lakes, and reservoirs (Aminjafari et al., 2024; Das & Hossain,
2025), while its most transformative impact has been in groundwater assessment.
Its ability to capture millimetre-level surface deformation over vast geographic
scales makes it particularly powerful for groundwater-related applications,
especially in addressing contemporary challenges such as water availability
assessment, aquifer management, and sustainable water resource use (Smith, 2002;
Liu et al., 2020; Jaramillo et al., 2024).

The strength of InSAR lies in its unparalleled capacity to detect subtle changes in
land elevation caused by diverse geophysical processes such as tectonic movements,
volcanic activity, and, most relevant here, hydrological phenomena including
variations in groundwater storage, aquifer compaction, and hydrological cycle
dynamics. Groundwater depletion, a significant issue worldwide, particularly in arid
and semi-arid regions, has been effectively monitored through InSAR, enabling the
identification of land subsidence hotspots and quantification of aquifer overdraft
rates with high temporal and spatial resolution. Studies globally have demonstrated
its effectiveness, notably in regions suffering severe groundwater extraction
pressures, such as in Iran, where extensive land subsidence has been clearly mapped
and analysed through InSAR data (Haghshenas Haghighi & Motagh, 2024).

InSAR's utility extends beyond groundwater monitoring to include broader aspects
of hydrological connectivity and surface water storage changes. It is particularly
effective in identifying flow obstacles and tracking connections within complex and
patchy wetland systems. This capability significantly improves water management
strategies by providing crucial information about water movement, recharge zones,
and areas where aquifers may be at risk (Liu et al., 2020). This wide-area coverage
is especially valuable for decision-makers in regions with limited ground-based
monitoring infrastructure.

Furthermore, InSAR has facilitated advancements in understanding surface water
storage dynamics, critical for regions prone to droughts and floods. By integrating
InSAR-derived data with hydrological modelling, researchers can better assess
water availability and predict water scarcity risks, enabling proactive resource
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management and mitigation strategies (Papa & Frappart, 2021). The integration of
InSAR data into hydrogeodesy frameworks further allows for robust quantification
of water resources, essential for addressing sustainability and water security
concerns globally (Jaramillo et al., 2024).

The extensive spatial coverage, accuracy, and cost-effectiveness of InSAR position
it as an indispensable tool in water availability assessments, particularly beneficial
for regions experiencing limitations in conventional hydrological data availability
(Springer et al., 2023; Ibrahim et al., 2024). Its role in supporting sustainable
management practices, informed policymaking, and strategic planning cannot be
overstated, particularly in regions characterized by complex hydrological
interactions and escalating pressures from human and climatic factors (Jaramillo et
al., 2024; Bru et al., 2024).

This technique offers a spatially extensive and temporally consistent dataset,
bridging gaps between surface and subsurface hydrological monitoring. InSAR
complements traditional in-situ measurements by enabling large-scale assessments
of aquifer compaction, land subsidence, and their relationship to groundwater
fluctuations. It also contributes to better understanding the connectivity between
groundwater, surface water, and ecosystems such as wetlands and peatlands by
providing insights into hydrologic responses at various scales. As such, InSAR
represents a critical advancement in the integrated monitoring of hydrological
systems, enhancing modelling capabilities and supporting more informed water
resource management strategies in the context of global change.

2.8 Introduction to SAR and InSAR

Building upon the importance of remote sensing in hydrological studies established
in the previous sections, this section presents detailed information on SAR and
InSAR, outlining their operational principles, data handling, and applicability
within groundwater and hydrological studies. Synthetic Aperture Radar (SAR) is an
active microwave imaging system that emits electromagnetic waves and records the
energy backscattered from a target in the antenna's look direction (Ferretti et al.,
2007; Griffiths, 1995). It offers unique advantages for Earth observation due to its
all-weather, all-time capability, being able to penetrate clouds, fog, and depending
on wavelength and conditions, some vegetation, snow, and sand (Zhou et al., 2009;
Smith, 2002; Hong & Wdowinski, 2017; Lee et al., 2020). These characteristics of
SAR data make it valuable for a wide range of applications. Mapping, land cover
and land use classification are popular methodologies utilizing SAR data. SAR,
particularly through InSAR techniques, contributes to topographic products and
deformation detection maps (Ferretti et al., 2007; Osmanoglu et al., 2016). In
oceanography, SAR is used for wind and wave speed retrieval. It also plays a
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significant role in glaciology, geography, and geology (Smith, 2002; Zhou et al.,
2009). Parameter retrieval, such as soil moisture, is another key application
important for agriculture and climate monitoring (Smith, 2002; Hong & Wdowinski,
2017; Lee et al, 2020).

The strength and characteristics of this backscatter are used to calculate the Radar
Cross Section (RCS), which provides information about the physical and geometric
properties of surface features (Ferretti et al., 2007; Griffiths, 1995). SAR images are
maps of backscatter intensity in range-azimuth dimensions. SAR systems use
coherent, microwave-frequency signals (often chirped pulses) that allow
preservation of both amplitude and phase information. The amplitude (strength of
the backscattered wave) is influenced by the target’s shape, orientation, and
electrical properties, while the phase (the state of the wave as it propagates) is highly
sensitive to the distance between the sensor and the target. While SAR systems can
measure the phase of the return signal with great precision, directly measuring the
total range (number of wavelengths) is challenging, leading to phase measurements
that are “wrapped” between -m and +m. The wavelength (distance between two
consecutive maxima or minima) defines the unit distance for SAR phase
measurements, with each wavelength corresponding to 360° or 2x radians (Hu et al
2014; Osmanoglu et al 2016).

2.8.1 Satellite SAR data

Space-borne SAR technology has evolved significantly since the launch of the first
satellite SAR mission, Seasat, in 1978. Seasat, operating at L-band, demonstrated
the potential of SAR for Earth observation. Following this pioneering mission, a
series of satellite SAR systems with increasingly sophisticated capabilities were
developed. The Shuttle Imaging Radar missions, SIR-A and SIR-B, in the 1980s,
further explored SAR applications, with SIR-C/X-SAR in the 1990s marking a
significant advancement by operating at multiple frequencies (X-, C-, and L-bands),
with C- and L-band supporting full polarimetry (Freeman et al., 2019).

The European Remote Sensing satellites, ERS-1 and ERS-2, launched in the 1990s,
provided long-term C-band SAR data (Zebker et al., 1994). Japan's JERS-1 SAR
also contributed L-band imagery during this period. Canada's RADARSAT-1,
launched in 1995, offered versatile C-band data with varying resolutions and swath
widths (Kroupnik et al., 2021). The Shuttle Radar Topography Mission (SRTM) in
2000 was a landmark event, utilizing C-band SAR globally (with limited X-band
coverage) to generate a near-global digital elevation model (Farr et al., 2007).

The subsequent decades witnessed the deployment of advanced SAR missions with
enhanced spatial resolution, shorter revisit times, and multi-polarization
capabilities. These include the European ENVISAT with its Advanced SAR
(ASAR) instrument, the Japanese ALOS with its PALSAR sensor, and its successor
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ALOS-2. The German constellation SAR-Lupe and the Italian COSMO-SkyMed
constellation provided high-resolution X-band imagery with frequent revisits.
Germany's TerraSAR-X and its twin TanDEM-X offered very high-resolution X-
band data and enabled innovative interferometric applications like single-pass
interferometry for precise height measurements. In terms of temporal resolution
moderate-resolution satellites historically had revisit times of around a month (e.g.,
24 days for RADARSAT-1, 35 days for ERS-1/2 and ENVISAT, and 46 days for
JERS-1 and ALOS). However, high-resolution satellites now offer revisit times of
several days (e.g., 11 days for TerraSAR-X, and 1-16 days for COSMO-SkyMed).
This improved temporal resolution allows for more dynamic monitoring of the
Earth's surface, which is crucial for many applications (Hu et al., 2025).

The frequency (wavelength) of the microwave signal used in SAR provides band-
dependent information about surface interactions (Manavalan, 2018). While not a
continuous spectrum like optical sensors, different microwave bands interact
uniquely with the Earth's surface, offering some degree of spectral discrimination
(Tsang et al., 2022). L-, C-, and X-bands are the most widely employed. These
different frequencies interact uniquely with the Earth's surface, providing some
degree of discriminatory information in terms of how different materials and surface
conditions scatter microwaves at these specific bands (Arii et al., 2019). While not
directly analogous to the continuous spectral range of optical sensors, the use of
multiple frequencies (as in multi-frequency SAR) allows for discrimination based
on these interactions. Lower frequencies (longer wavelengths) generally allow for
increased penetration, depending on the medium’s properties such as moisture and
density. Early SAR instruments typically operated in a single polarization mode,
either VV (vertical transmit, vertical receive) or HH (horizontal transmit, horizontal
receive). Modern SARs offer dual- and quad-polarized images (Polarimetric SAR
or PolSAR), capturing diverse structural and texture information and enabling the
recognition of different scattering mechanisms (Verma et al., 2022). This
polarimetric capability adds another dimension of information beyond simple
backscatter intensity, aiding in various applications.

The spatial resolution of SAR imagery has significantly improved since the early
systems. Early SAR systems had coarser resolution, while advanced sensors now
provide fine resolution measurements. The spatial resolution is influenced by factors
like the processing of the synthesized antenna aperture and the chosen radar mode
(European Space Agency, 2012).

Among these, the Sentinel-1 mission, comprising Sentinel-1A (launched in 2014)
and Sentinel-1B (launched in 2016, though currently not operational), has become
a cornerstone for a wide array of applications (Piter et al., 2024; Cheng et al., 2025).
Its key characteristics include a wide Interferometric Wide swath (IW) mode with a
spatial resolution of 5 m by 20 m in Single Look Complex (SLC) products,
providing a balance between coverage and detail. SLC products preserve both the
amplitude and phase information of the radar signal in complex format, making
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them suitable for interferometric and advanced SAR analyses (European Space
Agency, 2012). The C-band SAR instrument operates with selectable dual
polarization modes (HH+HV and VV+VH), offering valuable information about the
scattering characteristics of the Earth's surface. A significant advantage of Sentinel-
1 is its high temporal resolution, with a repeat cycle of approximately 6 days when
both satellites were operational, facilitating the monitoring of dynamic phenomena.
Furthermore, the data from the Sentinel-1 mission are available free of charge,
making it highly accessible to researchers, practitioners, and policymakers globally.

2.8.2 InSAR as a technique

InSAR is a technique that combines two or more SAR images acquired over the
same area but at different times to extract information based on the phase difference
between these images. This phase difference, or interferometric phase (A@),
contains contributions from the topography, atmospheric effects, noise, and changes
in the path length between the satellite and the ground. By exploiting these phase
differences, InSAR can be used to construct Digital Elevation Models (DEM) and/or
measure ground movement that occurred between the acquisition times. For
mapping surface displacement, the technique is commonly referred to as differential
InSAR (D-InSAR). The ground movements detectable by D-InSAR can be caused
by various geophysical and anthropogenic phenomena, including inter-, co-, and
post-earthquake deformations, glacier motion, tectonic activity, volcanic eruptions,
landslides, underground mining, groundwater extraction, and land reclamation
(Massonnet & Feigl, 1998). Theoretically, D-InSAR allows the detection of surface
changes with centimeter and even millimetre precision.

2.8.3 Workflow of preparing InSAR data
i.  Individual interferogram generation:

The InSAR process begins with the acquisition of at least two SAR images of the
same area from slightly different look angles or at different times. These are often
referred to as the primary (master) and secondary images (Zhou et al., 2009). A key
criterion for successful interferometry is coherence between the two SAR images.
This means the radar reflectivity of the ground targets must remain relatively stable
between the two acquisitions. Short temporal and perpendicular baselines between
acquisitions help to maintain coherence (Raucoules et al., 2007; Yu et al., 2020).

The two SAR images (master and secondary) are then co-registered with sub-pixel
accuracy, ensuring that corresponding pixels in the two images represent the same
ground location (Keydel et al., 2007; Zhou et al., 2009). Accurate co-registration is
crucial for precise phase difference measurements (Zou et al., 2009). An
interferogram is formed by multiplying each pixel of a master image with the

21



complex conjugate of the corresponding pixel in a secondary image, which
effectively computes the phase difference between the two acquisitions (Besoya,
2021). This results in a complex-valued interferogram where the phase component
contains information about the range difference to the ground targets between the
two acquisitions (Griffiths et al., 1995; Sneed et al., 2003). Flat earth removal is
typically performed to remove the phase contribution due to the Earth's curvature
and the sensor geometry. Orbital information is vital for this step (Besoya et al.,
2021). The topographic phase component is often removed using an available DEM
(Xu et al.,, 2020). The remaining phase is then primarily related to surface
deformation and atmospheric delays. Phase filtering can be applied to reduce noise
and improve the visibility of the interferometric fringes (Loffeld et al., 2007). The
phase component of the interferogram, which is initially wrapped between -n and
+n radians, may undergo phase unwrapping to obtain continuous phase values
proportional to the displacement (Chen & Zebker, 2000; Ma et al., 2022). However,
notes that for some applications like averaging and differencing interferograms
using the phase gradient approach, phase unwrapping might be delayed until later
in the processing. Unwrapping errors can bias time-series analysis (Sandwell et al.,
1998; Yunjun et al., 2019).

ii.  Interferogram stacking:

For time series analysis, multiple interferograms spanning a period of time are
generated, forming an interferogram stack (Yunjun et al., 2019). These
interferograms are created from multiple SAR acquisitions over the same area. The
interferograms in the stack may have different temporal baselines (the time
difference between the two acquisitions) and spatial baselines (the perpendicular
separation between the satellite passes) (Sneed et al., 2003).

ili. InSAR time series production:

Once a stack of interferograms is available, time series analysis techniques are
applied to extract the temporal evolution of surface deformation (Yunjun et al.,
2019; Li et al., 2019). Different InSAR time series analysis techniques construct
networks of interferograms based on distinct criteria:

e Conventional InSAR uses two SAR images acquired at different times to create
an interferogram, which contains a combination of topography, potential
surface displacement, atmospheric effects, and noise (Sneed et al., 2003). The
phase component of the interferogram is analysed to map deformation.
However, conventional InNSAR can be limited by temporal decorrelation,
atmospheric artifacts, and the need for phase unwrapping (Besoya et al., 2021).

e Differential InNSAR (D-InSAR) focuses specifically on deformation monitoring
by removing the topographic phase, typically using a DEM (Zhang et al., 2021),
though residual DEM errors can propagate into the deformation signal. It shares
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limitations with conventional InSAR, including susceptibility to decorrelation
and atmospheric disturbances.

Persistent Scatterer Interferometry (PSInSAR) utilizes stacks of SAR images
over time, focusing on stable point scatterers (PS), such as buildings, bridges,
or rock outcrops, characterized by consistent radar backscatter (Ferretti et al.,
1999; Ferretti et al., 2002; Hooper et al., 2004; Devanthéry et al., 2016). By
analysing amplitude and phase stability of these scatterers, PSInSAR accurately
estimates surface deformation, atmospheric delays, and topographic errors
(Ferretti et al., 2000). It is particularly effective for detecting subtle, long-term
surface deformations in urbanized or infrastructure-rich areas but requires a
sufficient density of stable scatterers and adequate SAR acquisitions. However,
PS techniques might suffer from large errors in Near-Real-Time (NRT)
processing due to phase unwrapping errors more likely caused by steep phase
gradients, large noise, and atmospheric disturbance over long time spans,
especially in non-urban areas with poor spatial distribution of PS (Ma et al.,
2022). PSInSAR requires a sufficient number of images and PS points in the
area of interest.

Small Baseline Subset (SBAS) InSAR leverages interferograms with small
temporal and spatial baselines to minimize decorrelation, particularly suitable
for distributed deformation areas with fewer coherent scatterers (Berardino et
al., 2002; Schmidt & Biirgmann, 2003). It involves solving a system of linear
equations through least squares or L1-norm minimization, enabling detailed
displacement histories even in vegetated or rapidly changing environments
(Lauknes et al., 2010). Modern SAR satellites, with shorter revisit times, allow
for fully connected interferogram networks, simplifying inversion through
unbiased weighted least squares (WLS) estimation (Yunjun et al., 2019).

Phase Gradient Approach allows averaging and differencing interferograms
without prior phase unwrapping, using the phase gradient to enhance fringe
clarity and reduce errors. However, it is less commonly applied in modern large-
scale time series analyses. (Sandwell & Price, 1998).

A hybrid approach combining PSInSAR and SBAS methods merges the
strengths of stable point-based and distributed scatterer analyses, enabling
deformation monitoring in mixed urban-natural landscapes (Hooper, 2008).
This combined technique increases spatial coverage, accuracy, and reliability of
deformation measurements, particularly beneficial in regions with variable
scatterer distribution (Ma et al., 2022).

The choice among these techniques depends on factors such as deformation nature,
site characteristics (vegetation vs. urbanization), SAR data availability, and required
accuracy and resolution. Advanced methods like PSInSAR generally provide higher
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precision in coherent urban environments, while SBAS and combined PS-SBAS
approaches excel in mixed and less coherent regions.

A key step in time series analysis is network inversion, in which the system of linear
observation equations from the interferogram stack is solved to obtain the raw phase
time series (Berardino et al., 2002). For a fully connected interferogram network,
this inversion can provide unbiased estimates, often improved by applying
weighting schemes based on coherence or baseline length. To mitigate errors
introduced during phase unwrapping (particularly for 2D algorithms) various
correction strategies can be applied, including bridging, phase closure checks, and
coherence-based network modification (Chen & Zebker, 2002).

Correction for deterministic phase components is crucial for obtaining accurate
displacement time series (Hanssen, 2001; Li et al., 2009; Ferretti et al., 2011;
Yunjun et al., 2019). These corrections include:

e Tropospheric delay correction using global atmospheric models, delay-
elevation ratios, or spatio-temporal filtering. Atmospheric delays can introduce
significant errors in InNSAR measurements.

e Topographic residual correction.

e Phase ramp removal to account for orbital errors or other long-wavelength
errors. Residual interferograms (single interferogram minus stack) can show
tilts reflecting orbit error and atmospheric delay.

Outlier detection methods can be used to identify and exclude noisy SAR
acquisitions.

The resulting output of the time series analysis is typically a displacement time
series for each coherent pixel or selected point, representing the cumulative surface
deformation over the analysed period with respect to a reference acquisition.
Average velocity maps can also be estimated.

2.8.4 InSAR software and applications

Open-source InSAR software packages are highly flexible, customizable, and
supported by active communities, although they generally require a higher level of
technical expertise from users. Among these, GMTSAR and StaMPS/MTI are
particularly proficient and widely used in research due to their robust capabilities
and interoperability with other prominent software packages.

GMTSAR (Generic Mapping Tools Synthetic Aperture Radar), developed by
Scripps Institution of Oceanography and San Diego State University, is a widely
used open-source software known for its effective integration with Generic
Mapping Tools (GMT), offering users powerful command-line tools for processing
and visualizing InSAR data (Sandwell et al., 2011). It provides users with significant
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flexibility and precise control over interferometric workflows. GMTSAR is also
recognized for its computational efficiency, robust handling of interferogram
networks, and accurate co-registration using a geometric approach based on DEMs.
These features make it especially suitable for studies requiring comprehensive
spatial coverage and temporal continuity, such as groundwater monitoring aimed at
capturing long-term aquifer deformation dynamics (Sandwell et al., 2011; Xu et al.,
2020).

StaMPS/MTI (Stanford Method for Persistent Scatterers and Multi-Temporal
InSAR) is another highly regarded software, widely recognized for its effectiveness
in Persistent Scatterer Interferometry (PSI) and Multi-Temporal InSAR applications
(Hooper et al., 2012). StaMPS initially developed at Stanford University, addresses
decorrelation issues effectively by exploiting spatial correlations, making it
particularly valuable in regions with sparse or natural scatterers. It is especially well-
suited for vegetated and agricultural regions, where conventional persistent
scatterers are limited. By identifying and utilizing Slowly Decorrelating Filtered
Phase (SDFP) pixels, StaMPS provides robust deformation estimates in areas with
complex, time-variable land cover conditions (Hooper et al., 2012; Fattahi &
Amelung, 2015). The software is often integrated with foundational processing
packages such as DORIS (Kampes et al., 2004) and ISCE (Agram et al., 2013),
enabling comprehensive workflows from raw SAR data to advanced deformation
analysis. Additionally, it can seamlessly incorporate GMTSAR output, offering
users a flexible and powerful toolkit that combines the strengths of both platforms.

Other notable open-source tools complementing GMTSAR and StaMPS include
ISCE (Caltech/JPL and Stanford), highly customizable and technically robust,
especially useful in initial interferogram generation and baseline management.
ROI PAC (Caltech/JPL) shares similar features with ISCE but is more focused on
core interferometric processing tasks (Rosen et al., 2012). LICSBAS (Morishita et
al., 2020) specializes in Sentinel-1 time series analysis and integrates efficiently
with automated LiCSAR products, optimizing resource usage. MintPy (Miami
InSAR Time-series software in PYthon) provides powerful small-baseline time
series analysis capabilities, particularly strong in unwrapping error correction
(Yunjun et al., 2019). Its Python-based environment offers considerable flexibility,
making it highly complementary to GMTSAR for sophisticated post-processing and
temporal analyses.

Commercial alternatives such as ENVI SARScape (Sahraoui, 2006), DIAPASON
(Massonnet et al., 1997), Gamma SAR (Werner et al., 2000), and Sarproz (Perissin
et al., 2011) offer comprehensive, user-friendly interfaces, robust technical support,
and extensive processing capabilities but involve licensing costs.

Selecting the appropriate InNSAR software or a combination of them depends on
budget, technical skill, specific project goals, the type of SAR data available, and
desired levels of automation and support. Researchers frequently combine packages
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like GMTSAR and StaMPS to leverage their complementary strengths, creating
powerful and flexible workflows to suit their specific research objectives.

InSAR and its various techniques have a wide range of applications in Earth science
and other fields (Zhou et al, 2009), including seismic deformation monitoring
(Weston et al., 2012), volcano monitoring (Spaans & Hooper, 2016; Hooper et al.,
2020), landslide monitoring (Natijne et al., 2022), and studying glacier, permafrost,
and ice sheet dynamics (Sanchez-Gamez & Navarro, 2017; Zhang et al., 2021;
Zhang et al., 2022; Feng et al., 2023). InSAR is also crucial for land subsidence
monitoring related to groundwater withdrawal (Smith et al., 2019; Smith et al.,
2021; Ghorbani et al., 2022), mining (Yang et al., 2020), oil and gas extraction
(Filatov & Yevtyushkin, 2010), and natural compaction (Teatini et al., 2024), with
MT-InSAR offering high effectiveness for long-term trends (Luo et al., 2021).
Infrastructure deformation can be monitored using PSI techniques (Ibrahim et al.,
2024; Banic et al., 2025; Tao et al., 2025), while DEM generation relies on
interferometric phase data (Gao et al., 2017; Wang et al., 2018). InSAR contributes
to atmospheric studies (Miranda et al., 2019; Mateus et al., 2021), coastal
subsidence and shoreline change monitoring (Udugbezi et al., 2018; Zhao et al.,
2021), wetland water level changes (Hong & Wdowinski, 2017,
Mohammadimanesh et al., 2018; Lee et al., 2020), and tracking peatland surface
dynamics, an indicator of health and greenhouse gas emissions (Hrysiewicz et al.,
2024).
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3 Materials and methods

This dissertation applies an integrated methodological approach for advancing water
resource assessment with remote sensing. The work is organized around six
interrelated research papers, each contributing to the progressive combination of
remote sensing, physics-based modelling, and machine learning. Together, these
studies aim to improve the investigation of hydrological systems, with emphasis on
groundwater dynamics, land surface deformation, and interactions between
groundwater, surface water, and ecosystems.

A logical and coherent narrative guides the methodological progression across the
papers. Initially, comprehensive land surface deformation maps are generated,
which serve as foundational datasets for subsequent analyses. These deformation
maps facilitate inferences regarding aquifer behaviour, enable monitoring of
groundwater levels, and support the exploration of coupled GW-SW interactions,
thereby elucidating implications for ecohydrological stability.

The fundamental aspect across all subprojects in this dissertation is the
interpretation of groundwater-induced land deformation measured through InSAR,
particularly in relation to assessing water availability within complex hydrological
systems. Paper I investigates the interconnection between groundwater-induced
land subsidence and hydro-environmental factors, aiming to generate a full-
coverage map of deformation across the study area. Papers II to IV specifically
address groundwater quantity assessment, while Paper V examines interactions
between groundwater and surface water systems, and Paper VI focuses on peatland
ecosystems, using InSAR to assess peatland health and quantify their potential role
in carbon sequestration.

In arid and semi-arid regions, increasing domestic water demands intensify reliance
on groundwater resources. Combined with challenging hydrogeological conditions,
this reliance results in significant deformation due to extensive groundwater
extraction. Such measurable deformation provides a valuable proxy for monitoring
groundwater changes, especially in regions lacking sufficient ground-based
observational data, such as piezometric measurements, accurate geological maps,
and comprehensive well-log data.

Recognizing the limitations of traditional monitoring methods, this dissertation
incorporates auxiliary data sources into quantitative modelling efforts. Papers | &
[T address the identification and categorization of relevant auxiliary datasets,
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ensuring their meaningful interpretability and effective integration into data driven
ML-based models.

The estimation of groundwater level time series employs an inverse deformation-
hydrology approach, emphasizing the role of storativity parameters as reliable
indicators for quantifying groundwater changes. Papers III and IV share this
objective but apply different methodologies. Paper III builds upon the physical
foundation established in Paper II to extend groundwater head estimation across
space and time using a physics-assisted machine learning framework. Paper 1V, in
turn, employs a numerical groundwater flow model (MODFLOW), calibrated with
InSAR-derived deformation and groundwater observations, and extends inverse
Terzaghi’s theory to validate historical groundwater conditions and assess model
performance.

Building upon these foundations, Paper V expands the investigation by analysing
the critical interactions between groundwater and surface water in a river basin
characterized by substantial anthropogenic activity, including dense agricultural
practices and domestic water use. Finally, Paper VI broadens the scope further,
examining InSAR-deformation signals as health indicators for water-dependent
ecosystems. This paper specifically investigates peatlands in temperate regions,
emphasizing their crucial roles as climate indicators.

3.1 Study areas

The study areas considered within this research were consciously selected to
encompass a broad spectrum of hydrological and climatic conditions, ranging from
arid and semi-arid zones in Iran to temperate zones in southern Sweden. The
geographic distribution of the Iranian and Swedish case studies is presented in
Figures 3.1, while Figure 3.2 shows the monthly time series and long-term monthly
average precipitation based on IMERG data, revealing clear contrasts in rainfall
regimes across the study sites. This selection reflects a deliberate effort to evaluate
and validate the developed hydrological modelling frameworks and remote sensing
techniques across diverse environmental contexts, thereby demonstrating their
generality and adaptability.
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Figure 3.2.: Monthly precipitation time series and long-term monthly averages across the study areas, derived from
NASA's IMERG dataset for the period from January 2015 to December 2022.

In the arid and semi-arid regions of Iran, extensive groundwater extraction has led
to significant aquifer depletion and land subsidence. Groundwater supplies more
than half of the country’s freshwater consumption, making its sustainable use
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critical. Prolonged droughts and groundwater overexploitation, especially for
agricultural activities, accelerated groundwater depletion. Some selected aquifer
systems, such as those in Shabestar and Neyshabour, are geologically complex and
multi-layered, often containing clay-rich strata with varying compressibility, which
makes their precise classification challenging. The Mashhad aquifer (Paper I) is an
unconfined Quaternary system with heterogeneous thickness and finer sediments in
the central and southern portions, receiving groundwater inflow from northwest to
southeast. In Neyshabour, an arid to semi-arid sub-basin within the central desert
catchment (Paper Il & 1V), the aquifer is primarily classified as unconfined, but
documented evidence indicates the presence of confined units. The coarse piedmont
deposits offer high storage potential, while finer sediments dominate the central
areas. Here, flow is predominantly from the east and northeast to the southwest.
Shabestar (Paper II & III), located near Urmia Lake, comprises confined and
unconfined units with sediment textures transitioning from coarse near the
mountains to fine in the central plain, where salinity increases towards the lake due
to ancient saline entrapment and evaporation effects. The Isfahan-Borkhar aquifer
studied in Paper V, located in the Zayandeh-Rud River Basin, is largely
mountainous with a considerable average bedrock depth, and precipitation
decreases toward Isfahan City. Groundwater generally flows from the basin’s edges
toward its Centre, and numerous wells, Qanats, and springs withdraw substantial
volumes annually to meet agricultural, domestic, and industrial demands. Although
the river supplies part of the basin’s water needs, groundwater remains the primary
source. This case also illustrates the critical link between surface water management
and groundwater sustainability, as regulation of the Zayandeh-Rud River has
directly influenced aquifer recharge. In recent years, severe declines in water table
levels and drying of the river have contributed to land subsidence and structural
damage in the urban fabric of Isfahan, including heritage sites and critical
infrastructure.

Across all Iranian study aquifers, groundwater serves as the dominant water source
for agricultural, domestic, and industrial activities, making these systems highly
vulnerable to overexploitation and climatic variability. This reliance has already
caused widespread water table decline and land subsidence. The predominance of
agricultural and urban land use across these basins, illustrated in the Land Use Land
Cover (LULC) map of Figure 3.3, underscores the intensity of groundwater demand.
The same figure also presents the DEM and elevation contour lines of the study
areas, providing insight into how topography may influence groundwater
distribution and vulnerability.
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Conversely, southern Sweden presented a contrasting temperate hydrological
system. Here, the focus shifted towards peatland ecosystems, which serve as
significant carbon sinks and water storage systems. The study area encompasses
a large portion of Skine County which is the southernmost region of Sweden,
characterized by a temperate climate, relatively flat topography, and extensive
organic soils. The peatlands are surrounded by agricultural land, forests, and
wetlands, creating a heterogencous landscape influenced by both natural
processes and human activities. The region’s peat deposits vary in thickness and
hydrological connectivity, with some areas subject to drainage for agriculture,
while others remain in near-natural conditions. The Swedish peatland study area
is shown in Figure 3.1(c), indicating the spatial distribution of monitored sites
used for deformation and carbon flux analysis, with the average precipitation
illustrated in Figure 3.2 and the LULC and topography shown in Figure 3.3.

Overall, the comprehensive coverage of arid, semi-arid, and temperate
hydrological systems within this research not only justified the application of
diverse modelling approaches but also strengthened the overall storyline of this
dissertation, emphasizing the broad applicability and reliability of the developed
techniques across different environmental and hydrological conditions.

3.2 InSAR data processing

Satellite-based remote sensing, particularly InSAR, underpins the deformation-
driven groundwater modelling in this dissertation. Sentinel-1 SAR data form the
core of land surface monitoring across study areas, enabling both regional-scale
assessment and point-based validation. InSAR’s capability to measure millimetre-
scale surface displacements over time allows quantification of aquifer compaction
and hydrological responses in the absence of dense in-situ networks (Hooper et al.,
2004; Ferretti et al., 2007). To extract reliable deformation signals, the choice of the
InSAR processing package was carefully matched to the environmental
characteristics and objectives of each study. The two main processing packages
employed in this research are GMTSAR and StaMPS/MTI.

StaMPS/MTI is well-suited for vegetated and agricultural areas where conventional
persistent scatterers are limited. Therefore, StaMPS/MTI was strategically chosen
for deformation mapping in agriculturally intensive areas of the Mashhad Plain
(Paper I) and vegetation-rich regions and peatland ecosystems of southern Sweden
(Paper VI). In both studies, the identification of SDFP pixels was central to the
analysis, as these pixels were considered the most reliable deformation
measurement points, serving as the basis for characterizing land subsidence in Paper
[ and for evaluating surface dynamics and peatland health in Paper VI
StaMPS/MTT’s ability to handle highly decorrelated signals made it ideal for
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assessing deformation signals in croplands, vegetated landscapes, and peatlands
typically characterized by low radar coherence due to rapid vegetation growth and
seasonal variability (Hooper et al., 2012).

GMTSAR is well known for its computational efficiency and its ability to generate
consistent, large-scale interferogram networks with precise co-registration using
DEMs. In Papers II to V, GMTSAR was selected primarily for its robust
performance in generating spatially continuous and temporally coherent
deformation time series which are essential for the reliable assessment of aquifer
systems. These studies focused on characterizing hydrodynamics over broad
regions, where seamless deformation data were fundamental to capturing the spatial
variability of aquifer response. The resulting deformation products provided the
critical input for quantitative modelling efforts, including the DHE model in Papers
II and I1I and the MODFLOW calibration in Paper IV, enabling rigorous simulation
and interpretation of groundwater storage changes and aquifer compaction. In Paper
V, seamless deformation data were essential for assessing river regulation impacts
on land subsidence and GW-SW interactions.

Importantly, although StaMPS and GMTSAR packages differ significantly in the
approach and methods used in the interferometric phase unwrapping, both
methodologies relied on the GMT-based co-registration tools available within the
GMTSAR software. This co-registration method ensures precise alignment of SAR
image pairs by rigorously accounting for geometric distortions using orbital data
and a DEM-based procedure, crucially enhancing the reliability of subsequent
interferometric phase analyses (Sandwell et al., 2016).

The phase unwrapping processes of these two packages differ distinctly. StaMPS
employs a three-dimensional phase-unwrapping algorithm optimized for identifying
persistent and slowly decorrelating pixels, effectively handling spatially scattered
stable phase points typical in vegetated and dynamic landscapes (Hooper et al.,
2012). In contrast, GMTSAR integrates the SNAPHU (Statistical-Cost, Network-
Flow Algorithm for Phase Unwrapping) approach, adept at processing extensive
and spatially continuous interferogram networks commonly encountered in regional
groundwater studies (Chen & Zebker, 2002).

All projects in this dissertation employed the SBAS approach, chosen explicitly due
to the extensive non-urban coverage, including croplands and vegetated areas in all
studied aquifers and basins. Careful selection of appropriate spatial and temporal
baselines was essential to maintaining coherence and signal reliability. Additionally,
interferogram networks underwent rigorous evaluation, repair, and filtering
processes to remove unreliable interferograms, significantly enhancing the
robustness of final InSAR products, as detailed specifically in each paper.

Recognizing the computational demands of large-scale InSAR analyses, processing
speed was significantly enhanced by leveraging the parallel computation
capabilities provided by the GMTSAR package (Sandwell et al., 2016), executed on
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the supercomputing infrastructure at Lund University (LUNARC). This approach
enabled efficient handling of extensive data volumes inherent in regional-scale
deformation analyses, substantially reducing processing times and enabling
comprehensive methodological evaluations.

Furthermore, addressing the critical challenge of selecting reliable reference points
in regions lacking stable GNSS stations or permanent scatterers, an innovative
methodological advancement was introduced. This involved a custom-developed
analysis applied directly to the filtered interferometric phase grids. The algorithm
computed the mean and standard deviation of phase values across all interferograms
and derived the coefficient of variation and entropy over sliding spatial windows.
Areas exhibiting minimal variability across interferograms and low spatial entropy
were systematically identified as stable reference zones assumed to be deformation-
free. Once identified, these regions served not only for phase referencing in
visualization but also for numerically normalizing each interferogram prior to time
series analysis. Specifically, a GMT-based batch-processing script was employed to
subtract the mean phase value of the identified stable region from each unwrapped
interferogram. This step, often termed phase pinning, ensured that all interferograms
shared a common reference frame before interferogram stacking, significantly
enhancing the consistency and accuracy of the deformation time series. This
integrated and automated approach proved essential in improving the robustness of
InSAR analysis across all study areas, particularly in groundwater deformation
monitoring contexts characterized by low radar coherence and a lack of established
geodetic benchmarks.

Validation of InSAR results was performed rigorously. In study areas equipped with
GNSS satellite positioning stations, InSAR-derived time series were directly
compared against observed displacement data. Additionally, parallel InSAR
analyses provided complementary validation. These parallel analyses employed
either the same SAR datasets processed through alternative software packages or
utilized SAR data acquired from opposite orbit directions or complementary
satellite constellations. Detailed validation methodologies are comprehensively
presented within each respective paper. Figure 3.4 illustrates the InSAR analysis
workflow implemented across the different studies in this dissertation.

. Co-registration Interferogram generation .
SAR dat t Ph.
o R
GMTSAR) network optimization
Validation: GNSS
. . . . Phase referencing via Stable reference region
comparison & parallel ———  Time series analysis ———— . — ; : :
mean subtraction identification

InSAR analysis

Figure 3.4: Flowchart for INSAR analysis.
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3.3 Other remote sensing and in-situ data

Throughout this dissertation, an extensive range of remote sensing and in-situ
datasets were systematically prepared and utilized to advance groundwater
modelling and hydrological assessments across varied environmental contexts.
Besides InSAR, which has been elaborated in detail, several complementary
remote sensing datasets were integral to various analyses, particularly in Papers
I and III, where machine learning models were employed extensively.

DEM data, predominantly the void-filled Shuttle Radar Topography Mission
(SRTM) dataset with a resolution of 90 meters, provided essential topographical
information and were also utilized for InSAR processing, particularly for
topographic phase removal. These DEM data facilitated topographical and
hydrogeological analyses, including extracting slope, aspect, curvature, and
various other topo-hydrological variables. The preprocessing and extraction of
these variables were performed using the System for Automated Geoscientific
Analyses (SAGA) within QGIS.

Several hydrometeorological and environmental data were acquired from satellite
platforms, providing critical inputs for modelling and analysis. MODIS-derived
Enhanced Vegetation Index (EVI), Land Surface Temperature (LST), Landsat-
based Evapotranspiration (ET), Copernicus Soil Water Index (SWI), and
Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks (PERSIANN) were among these datasets. These data were
sourced from their respective online repositories (e.g., NASA’s Earthdata, USGS
EarthExplorer, and Copernicus Global Land Service) and systematically
processed, filtered, and resampled to match the spatial and temporal resolutions
required for ML analyses and hydrological modelling.

In-situ data played a crucial role across multiple studies, providing ground-truth
for wvalidation and model -calibration. Geological and hydrogeological
information, including aquifer thickness, transmissivity, fault locations, bedrock
geology, and horizontal hydraulic conductivity, were collected from regional
water authorities and geological surveys. Groundwater level and pumping data
from piezometric wells (regional water authorities and local contributors) were
extensively used, with quality control and temporal resampling applied to ensure
consistency with remote sensing datasets. In Papers II, III, and IV, these
observations formed a critical modelling foundation, supplemented in Paper IV
by deep percolation estimates derived from a previously calibrated SWAT (Soil
and Water Assessment Tool) model. Paper V extensively utilized groundwater
level records from the regional water company, alongside hydrological records
from the Zayandeh-Rud River flow rate to study GW-SW interactions.
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Additionally, cropland distribution and land use dynamics in Paper V were
analysed using MODIS Global land cover products, employing classification and
masking techniques to isolate cropland areas effectively.

In Paper VI, detailed peatland information was acquired from the Swedish
National Wetland Inventory (VMI), which has systematically mapped wetland
ecosystems since the 1980s. This dataset provided both spatial delineation and
ecological classification of peatlands based on vegetation composition and
conservation value.

GNSS data used for validating InSAR-derived deformation were obtained from
the National Cartographic Centre (NCC) of Iran and Lantméteriet in Sweden. In
Sweden, high-frequency positioning data were accessed from SWEPOS
permanent stations (Class A and B), while selected GNSS data from NCC were
similarly used in Iran to support validation in papers addressing groundwater-
induced subsidence.

Together, the integration and careful preprocessing of a wide array of remote
sensing and in-situ datasets formed the backbone of this dissertation. From
regional topography to dynamic surface processes, the reliability and richness of
these inputs have critically enhanced the modelling, interpretation, and scientific
impact of the groundwater and ecohydrological analyses across multiple
environmental settings.

3.4 Foundations: InSAR-ML synergy for deformation
mapping

The methodological foundation of this work was laid in Paper I, which addresses a
critical challenge in InSAR-based deformation analysis, specifically the spatial
incompleteness of InSAR observations due to vegetation decorrelation and land
cover variability, particularly in agricultural regions. In this study, deformation data
derived from Sentinel-1A using the SBAS technique and processed with
StaMPS/MTI were integrated with a suite of topographical, hydrogeological,
hydrological/climatic, and anthropogenic drivers to produce a full-coverage ground
deformation map for the Mashhad Plain in Iran. Figure 3.5 summarizes the
workflow in this study.
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Figure 3.5: Workflow for Paper |.

The long-term InSAR deformation rate (target) was resampled to a regular grid to
align with the input features and then used to train and validate machine learning
models. We employed Boosted Regression Tree (BRT) and eXtreme Gradient
Boosting (XGBoost) algorithms both known for their strong performance in
regression problems and ability to handle complex, nonlinear relationships.
XGBoost was applied using different boosters (tree, linear, and Dropouts meet
Multiple Additive Regression Trees (DART)) to evaluate predictive performance
from multiple perspectives. The input features comprised geo-environmental
variables categorized into topographical, hydrogeological, hydrological/climatic,
and anthropogenic groups, such as aquifer thickness, transmissivity, distance to
faults, land use, normalized difference vegetation index (NDVI), proximity to
pumping wells and qanats, and long-term groundwater level change. All features
were harmonized to the same grid as InSAR products. Prior to modelling,
multicollinearity was assessed using variance inflation factor (VIF) and tolerance
diagnostics, and variables were screened accordingly. The InSAR-derived
deformation measurements were partitioned into training and validation sets and
models were evaluated using standard regression evaluation metrics (i.e. Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and (Coefficient of
Determination) R? metrics, supported by visual analysis with a Taylor Diagram.
Additionally, Frequency Ratio (FR) analysis was used to interpret the spatial
relationship between the most influential predictors and the observed deformation
trends.

38



This work serves as a precursor to subsequent methodologies. By generating a
spatially continuous deformation dataset and analysing the contributions of various
geo-environmental factors, Paper 1 established a basis for assessing how land
subsidence correlates with groundwater exploitation patterns and aquifer
heterogeneity. Moreover, it introduced a reliable modelling structure for handling
large spatial datasets, integrating RS-derived inputs with ML techniques, and
validating outputs against ground truth data. This full-coverage deformation dataset
would later serve as a critical input for characterizing groundwater storage
dynamics. In particular, it provided the foundation for the physics-assisted machine
learning framework developed in Paper III, which further advanced groundwater
head estimation using InSAR-derived deformation.

3.5 Inference of groundwater head from InSAR
deformation: DHE model

Building upon the established connection between groundwater head changes and
surface deformation outlined in Paper I, we introduce an innovative deformation-
driven head estimation (DHE) model in Paper II. This model bridges remotely
sensed surface deformation with subsurface hydraulic head variations, particularly
beneficial in arid and semi-arid regions characterized by sparse borehole data and
limited stratigraphic information. The DHE model leverages the physical
relationship between land surface deformation and aquifer pressure changes
prevalent in confined and semi-confined systems, providing a streamlined, data-
efficient approach for groundwater monitoring.

As an initial step for aquifer characterization, the DHE model begins with the
extraction of deformation data and temporal resampling of deformation and
groundwater head time series at well locations. This resampling utilized a Finite
Impulse Response (FIR) anti-aliasing low-pass filter, effectively preserving signal
integrity and satisfying the Nyquist-Shannon sampling theorem (Harris, 2022).
Since deformation and groundwater measurements were initially acquired on
differing dates, temporal resampling standardized these signals to a common
temporal resolution which here is daily interval.

The periodic fluctuations observed in both groundwater head and deformation
signals are driven predominantly by seasonal recharge and discharge cycles linked
to precipitation and agricultural practices. Therefore, each signal was decomposed
into two distinct components: a seasonal component associated with annual
variations, and a long-term component reflecting the cumulative effects of sustained
groundwater pumping. Cross-correlation analysis was employed to estimate the lag-
time between groundwater head changes and associated deformation signals around
each well location, considering a maximum lag-time of up to two years (Chaussard
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et al., 2017). The optimal lag-time was identified by locating the peak in the cross-
correlation function, constrained by positivity and local extremum conditions of the
skeletal storage coefficients. This analysis proved especially insightful in
differentiating aquifer responses in clay-rich zones, where delayed compaction
effects were evident due to slow drainage from compressible layers.

Assuming a linear relationship between groundwater head variations and
consequent deformation, the skeletal storage coefficients for seasonal and long-term
components at each well location were calculated as:

ADq ADyr (5)

s~ AHy "M T AHL

Sk

where sp.; and sy, .. are seasonal (5) and long-term (LT) skeletal storage coefficients,

ADg and AD; 1 represent seasonal and long-term deformation components, and AHg
and AH;r correspond to the respective groundwater head changes components.
These coefficients were refined using a least-squares estimation method after
accounting for the calculated lag-times:

! (6)
-1
|ADZ) - ADs;ir] ~ AD{) 1+ AHs)1p
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The skeletal storage coefficients allowed the reconstruction (simulation and
prediction) of groundwater head changes using deformation data:

ADs AD
AHsimulated/predicted =— + = @
Sks Skrr

“Simulated” refers to groundwater head values reconstructed from deformation data
and estimated skeletal storage coefficients for the model calibration period while
“Predicted” refers to a one-year forecast based on deformation data from the
excluded final year, independent of calibration. Additionally, an independent
verification of the derived coefficients was performed using a semi-logarithmic
analytical approach based on soil mechanics principles (USACE, 1990; Hughes et
al., 2022; Rocscience Inc., 2025). In one-dimensional consolidation, the primary
settlement D over a compressible thickness H is:

D=—C Hiog, (2
T 1te, 800\g) ®)

where C is the compression index on the virgin branch (C,) or the recompression
index on the reloading branch (C,), e, is the initial void ratio, and ¢’ is effective
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stress. If vertical deformation is plotted against log,, ¢’, the semi-log slope mp,
satisfies:

_ dD _ H c
_d10g100'_1+€0 (9)

mp

H
. Under confined or
1+e,

semi-confined conditions, head change (Ah) maps to effective stress change (Ac”')
via Ag’ = y,Ah, which supports regression of deformation versus log;,(Ah) to
estimate mg, the semi-logarithmic slope of deformation with respect to head change.
This slope is mathematically equivalent to mp, defined with respect to effective
stress o', but expressed in terms of groundwater head as a proxy for o’
Operationally we regress deformation D against log,,(Ah + 1.65h), where the
constant 1.65h represents the effective overburden stress (Khodaei et al., 2025).
The offset h is systematically scanned and the first stabilized fit is selected based
on R?. The stabilized semi-log slope is therefore a direct proxy for C up to the

so C is proportional to the semi-log slope once scaled by

multiplicative factor 1:1 . Because reliable values of the compressible thickness H

€o

and initial void ratio e, are not available in the study areas, we do not convert these
slopes to absolute C,. or C,. Instead, we use the stabilized slopes solely as a
verification tool for the DHE-estimated storativity components. This provided
physical consistency checks for the DHE outputs and reinforced the model’s
reliability in estimating aquifer behaviour, even in the absence of detailed
subsurface information.

The DHE model was successfully implemented in two distinct hydrogeological
contexts in Iran: Shabestar and Neyshabour Plains. Demonstrating robust predictive
accuracy and flexibility, the model’s methodological rigor and minimal data
dependency enhance its applicability across various settings, particularly in data-
scarce environments. In addition to its forecasting ability, the DHE model also
provides insight into aquifer system properties, such as storativity and compaction
behaviour, making it a valuable diagnostic tool in regions lacking detailed
stratigraphic or geomechanical data. This model, therefore, serves as a foundational
methodological pillar within the comprehensive groundwater characterization
framework elaborated across Paper III of this dissertation.

3.6 Extending groundwater monitoring in space and
time: physics-assisted ML framework

Paper I1II builds upon the foundation established in Paper II by integrating the DHE
model into a physics-assisted ML framework. While the previous study focused on
point-based InSAR-derived groundwater head estimation at piezometric well
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locations, this work extends the approach to enable spatiotemporal prediction of
groundwater head dynamics across the entire aquifer system. The key
methodological advance is to use supervised ML to predict DHE parameters at
unsampled locations and then propagate those parameters through an inverse DHE
step to obtain groundwater-head levels. Specifically, we fuse DHE-derived
parameters (seasonal and long-term skeletal storage coefficients (si, Sk,,) and
estimated lag time (7)) with a supervised ML regression model to generate spatially
continuous parameter maps that drive head simulations in areas without direct
observations. The methodology was implemented in the Shabestar aquifer, a
stressed groundwater basin containing both confined and unconfined zones, where
the confined portion was the primary focus.

The workflow consisted of two main stages. First, DHE model was applied at the
well locations to estimate the three target variables, i.e. sk, Sk,,, and 7, through
joint analysis of deformation and groundwater head time series. These were
obtained by decomposing the time series into seasonal and long-term components,
followed by cross-correlation analysis and least squares estimation.

Boxes Color Code

DHE Model

ML Model

v

Figure 3.6: Flowchart of physics-assisted model implemented in Paper Ill.
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Before defining the feature categories, we performed feature engineering to make
temporally rich datasets usable in a static supervised-learning setup. Spatio-
temporal datasets (InSAR-deformation, land surface temperature, precipitation,
evapotranspiration, vegetation indices and soil moisture) were transformed into
static features by estimating lag at maximum cross-correlation between each pair of
time series, effectively encoding spatiotemporal dependencies into spatial
predictors. To counter the limited number of piezometric wells (small n) and
preserve informative structure, we expanded the auxiliary feature space by
systematically integrating environmental predictors that capture topographical,
hydrogeological, hydrometeorological, and anthropogenic controls. In addition, we
incorporated DHE-derived parameters (sy., Sk,,» and 7) as physics-based
constraints, ensuring that the regression was guided not only by statistical
correlations but also by process understanding of aquifer deformation and storage.
All datasets were harmonized to the spatial resolution compatible with the InSAR
data and resampled to daily temporal resolution for consistency. This combination
of environmental feature augmentation and physics-based constraints provides a
coherent input representation for the subsequent ML stage. The full modelling
workflow is illustrated in Figure 3.6, which outlines the sequential integration of
DHE-based parameter estimation, feature preparation, and XGBoost-driven
groundwater head simulation. To organize heterogeneous inputs, enhance
interpretability, and support diagnostics (correlation screening), we categorized all
input variables (features) into four physically motivated groups: (i) hydrogeological,
(i1) anthropogenic, (iii) topographical, and (iv) hydrometeorological. The complete
feature inventory, including their spatial and temporal resolutions, is provided in
Tables 3.1 and 3.2.

Table 3.1: List of input variables (with abbreviations) for the ML-based regression in Paper Ill.

Category Features

hydrogeological transmissivity (Tr), total thickness (ThTot), aquifer layer thickness (ThAg1 and ThAg2),
fault distance (Fdst)

anthropogenic village distance (Vdst), city distance (Cdst), road distance (Rdst), long-term InSAR-
deformation (INSAR-LT), enhanced vegetation index (EVI)

topographical closed depression (CD), profile curvature (PrfC), plan curvature (PInC), length slope

factor (LSfactor), stream power index (SPI), slope gradient (SIpG), valley depth (Vdpth),
convergence index (Cl), slope (Slp), relative slope position (RslpP), aspect (Aspct),
analytical hill-shading (AH), bedrock thickness (BR)

hydrometeorological | channel network distance (CND), channel network base level (CNBL), total catchment
area (TCA), river distance (Rvrdst), drainage density (DD), topographic wetness index
(TWI), lag-time values extracted from the joint analysis of precipitation (P),
evapotranspiration (ET), land surface temperature (LST), soil water index (SWI), and
INSAR-deformation time series: INSAR-ET, InSAR-LST, InSAR-PREC, InSAR-EVI,
INSAR-SWI, ET-LST, ET-PREC, ET-EVI, ET-SWI, LST-PREC, LST-EVI, LST-SWI,
PREC-EVI, PREC-SWI, EVI-SWI, INSAR-LT
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Table 3.2: List of the spatial and temporal variables used in Paper llI.

Type Features Resolution | Source of data
Tr, ThTot, ThAq1, - Extracted from the analysis of the available in-situ vector maps
ThAQ2, Fdst, provided by the Regional Water Authority of East Azerbaijan
Vdst, Cdst, Rdst Province and resampled to be consistent with the InSAR-
deformation data
© CD, PrfC, PInC, 90 m Extracted from the analysis of the void-filled version of the
g LSfactor, SPI, Shuttle Radar Topography Mission (SRTM) Digital Elevation
2 SIpG, Vdpth, ClI, Model (DEM) with a resolution of 3 arc-second with the System
Slp, RslpP, Aspct, for Automated Geoscientific Analyses (SAGA) tools in QGIS
AH, BR, CND,
CNBL, TCA,
Rvrdst, DD, TWI
INSAR 5x20 m/ Sentinel-1A SAR dataset acquired from descending orbit pass

12-24 days | with relative orbit number 79

_ P 4 km/ Precipitation Estimation from Remotely Sensed Information
g daily using Artificial Neural Network (PERSIANN) system developed
Q by the Centre for Hydrometeorology and Remote Sensing
§ (CHRS)
';93 ET 30 m/ Landsat Collection 2 (C2)
& 16 days
EVI 250 m/16 MODIS
days
LST 1 km/ Daily level 3 MODIS LST and Emissivity (MOD11A1)
daily
SWiI 1 km/ Copernicus Soil Water Index
10 days

Prior to model training we performed a correlation screening to characterize
redundancy and guide interpretation of the feature set. Specifically, we computed
feature-feature Pearson correlations for the full set and flagged high-correlation
pairs using a pre-specified threshold (|| > 0.90) and feature-target correlations for
each response (Dormann et al., 2013; Li et al., 2020). Because the study operates in
a large-p (43 predictors features), small-n (19 well location), and multi-target, (3
target variables) setting, classical multicollinearity diagnostics such as the VIF are
unstable or undefined when the predictor matrix is rank-deficient or nearly so (when
p =n or predictors are highly collinear), and VIF-based elimination risks
discarding informative signal (O’brien, 2007). We therefore retain the full feature
set and adopt XGBoost, which does not require matrix inversion, is comparatively
robust to multicollinearity (splits consider one feature at a time), captures
nonlinearities and interactions, and includes strong regularization to mitigate
overfitting under small-sample, correlated-feature conditions (Breiman et al., 2017;
Hastie et al., 2009; Ni et al., 2020; Osman et al., 2021; Niazkar et al., 2024).
Hyperparameters were tuned via grid search with k-fold cross-validation (He et al.,
2025; Kumar et al., 2025). The spatially predicted storativity and lag-time maps
over the entire aquifer were then used in inverse DHE modelling to simulate
groundwater head dynamics at every pixel across the study area. Model
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interpretation was supported by post-hoc gain-based feature-importance analyses to
relate predictions to hydro-environmental drivers.

This integrated physics-assisted ML approach not only addresses critical data
scarcity challenges but also establishes a scalable and generalizable framework
applicable to other aquifers facing similar hydrogeological complexities.

3.7 Numerical coupling of InSAR and MODFLOW:
SIGH-Map framework

Paper IV presents a novel integration of remote sensing and numerical groundwater
modelling through the development of the SIGH-Map (Satellite-Informed
Groundwater-Head Mapping) framework. This approach effectively couples
InSAR-derived land subsidence data with the MODFLOW-SUB groundwater
simulation package, enabling improved estimation and forecasting of aquifer
behaviour in data-scarce, groundwater-stressed environments. The study was
implemented in the Neyshabour Plain, a highly exploited semi-arid aquifer system
in northeastern Iran, where fine-grained interbeds and intensive abstraction make
hydro-mechanical coupling both relevant and observable. Although parts of the
Neyshabour aquifer are unconfined, borehole and historical evidence indicate
confined/semi-confined interbeds in the central plain where subsidence is
concentrated. The modelling therefore emphasizes these compactable units, while
results in marginal unconfined zones should be interpreted cautiously. The
modelling framework adopted a single-layer MODFLOW setup with the SUB
package configured to simulate both no-delay (elastic) and delay (inelastic) interbed
compaction processes.

The InSAR-deformation data, derived from Sentinel-1A SAR imagery using the
SBAS technique in GMTSAR, provided spatially continuous surface displacement
rates with high temporal resolution. Geospatial layers included a medium-resolution
(90-m) SRTM DEM, plain boundaries, regional geology, bedrock elevation, and
geoelectrical maps. These inputs supported delineation of hydrodynamic zones
(e.g., horizontal hydraulic conductivity and specific yield) consistent with the
mapped lithostratigraphy. Time-series data comprised monthly pumping rates
derived from a comprehensive well inventory using a simple trend assumption
following prior studies (Izady et al., 2014), long-term groundwater head records
from a network of monitoring wells distributed across the plain, and deep
percolation (recharge) from a previously calibrated SWAT model (Izady et al.,
2015). Together, these datasets provided the observations required for coupled
calibration.
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We built on the established MODFLOW model from 2000-2012 (Nazarieh et al.,
2018) and extended the simulation to a multi-decadal period (2000-2020) with
monthly stress steps and fine internal time stepping. Boundary conditions were
represented with General-Head Boundaries (GHB) for lateral inflows from alluvial
fans, along with standard Well (WEL) and Recharge (RCH) packages for distributed
stresses. Subsidence was simulated with the Subsidence (SUB) package, which
links head variations to effective-stress changes following Terzaghi’s principle.
Skeletal specific storage was partitioned into elastic and inelastic components, with
behaviour conditioned on preconsolidation stress. Both instantaneous (no-delay)
and diffusive (delay) interbed responses were included while the latter follows a
one-dimensional diffusion formulation with a characteristic delay time governing
the temporal lag between head decline and compaction.

SIGH-Map uses deformation and head data as dual calibration targets in a multi-
objective inverse modelling scheme. Estimated parameters included elastic and
inelastic skeletal storage for no-delay interbeds, elastic and inelastic skeletal specific
storage for delay interbeds, and the vertical hydraulic conductivity of delay
interbeds. Spatial parameterization followed deformation-informed zoning where
the aquifer was partitioned into polygons derived from InSAR deformation classes
to allow distributed estimation of storage terms while preserving geological
coherence. Clay interbed thickness was assigned from published subsurface
constraints (Nameghi et al., 2013). Initial storage terms were estimated from
colocated deformation-head changes, with elastic values set smaller than inelastic
ones. The initial vertical hydraulic conductivity of delay interbeds was tied to the
horizontal conductivity by a fixed fraction. Given widespread inelastic behaviour in
the main subsidence area, the preconsolidation head was taken as the initial head at
the start of simulation. Parameter estimation and sensitivity analysis were conducted
with PEST, with limited manual refinement to ensure physical realism and stable
convergence. We set aside the last part of the dataset to independently check the
head calculations.

Following calibration, the model was applied in forecasting mode, where InSAR-
derived subsidence time series were used inversely with the calibrated storage
parameters to reconstruct groundwater head dynamics. Calibrated storage
parameters particularly the inelastic component for delay interbeds together with
mapped clay thickness and the InSAR time series were inserted into the hydro-
mechanical relation at the pixel scale to recover heads through time and space.
Where the inferred delay time is non-negligible, the deformation series is temporally
shifted prior to conversion to ensure phase consistency between deformation and
head. This inverse application shows that deformation signals can stand in for
spatio-temporal head dynamics and, if aquifer properties remain roughly stable over
the update window, head maps can be generated directly from new InSAR using the
calibrated storage fields. The approach is most suitable for confined to semi-
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confined systems with compactable clay interbeds where pumping-induced
compaction is the dominant mechanism.

3.8 Coupling groundwater and surface water dynamics
in urban basins

In Paper V, we examined GW-SW linkages in a heavily managed system by
integrating river flow, groundwater levels, deformation, and land-use data over the
Isfahan-Borkhar aquifer. We assembled monthly groundwater level records from 31
piezometric wells (2000-2022), annual Zayandeh-Rud River flow series (1983-
2023), and a Sentinel-1A time-series InSAR dataset (November 2016-September
2021). MODIS global land-cover products at 500 m resolution (LC-Typel) were
used to extract cropland extent for 2001, 2010, and 2020 as a proxy for pumping
pressure.

All datasets were harmonized to monthly resolution for joint analysis. Aquifer-
average groundwater levels were computed from Thiessen-weighted well data, with
wells containing excessive gaps removed and short gaps conservatively interpolated
to preserve low-frequency variability. Spatiotemporal trends in groundwater, river
flow, and deformation were quantified using the non-parametric Innovative Trend
Analysis (ITA), applied at both well and aquifer scales. To relate deformation to
hydrologic forcing, InNSAR time-series values were extracted within buffers around
well locations and along river-adjacent urban zones, and synchronized trend slopes
were compared over rolling windows. Cross-correlation and lag scans were used as
a sensitivity check to explore possible lead-lag structure between river flow
anomalies, groundwater-level changes, and deformation rates. Cropland fraction
was derived by masking non-cropland classes in MODIS and summarized within
hydrologic reporting units (well buffers and river-adjacent belts) to contextualize
pumping intensity through time.

3.9 Extending InSAR application to peatlands and
carbon flux estimation

Paper VI marks a thematic shift from subsidence-driven aquifer studies to
ecohydrological monitoring in peatland environments. Here, InSAR was used not
only to monitor land surface dynamics but also to infer ecological processes such as
carbon sequestration. This study targets peatland ecohydrology across Skéane
County in southern Sweden, a temperate region with a substantial share of organic
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soils. We analysed peatland surface dynamics over June 2017-November 2020
using Sentinel-1B data processed with SBAS-InSAR in StaMPS/MTI.

Peatland boundaries, conservation status, and vegetation types were obtained from
VMI. VMI classes (I-1V) and site descriptors (including intactness and vegetation
category such as bog, fen, or mixed) were used to stratify analysis and to
contextualize potential anthropogenic influence (e.g., drainage, land use, historical
modification). From the InSAR products, we retained peat sites with sufficient
coherent sampling to derive site-level mean vertical deformation rates and
associated time series.

To connect surface dynamics with carbon cycling, we converted site-level mean
vertical deformation to carbon flux using a semi-empirical mass-balance relation:

Criux =% XDy X BD X Cyryg (10)

where ¢ is the site area, D,, is the mean vertical deformation rate, BD is the
representative dry bulk density and C,,, is the organic carbon fraction. Literature-
based values appropriate for temperate peat were adopted for BD and C,,4 in the
absence of site-specific measurements (Couwenberg & Hooijer, 2013; Liu &
Lennartz 2019; Hoyt et al 2020; Morris et al., 2022). Negative D,, (subsidence) was
interpreted as net carbon emission and positive D,, (uplift) as net carbon absorption.

Recognizing the combined climatic and anthropogenic pressures on Skane’s
peatlands, risk was defined as the overlap between persistent subsidence and
indicators of reduced intactness or intensive management from VMI. The
pronounced drought during the study period was explicitly considered as a key
climatic stressor when interpreting temporal patterns. This integration of satellite
deformation, national wetland inventory data, and a carbon-flux proxy enables
systematic screening of peatlands that are potentially most vulnerable to degradation
and carbon loss under ongoing climatic variability and human modification.

3.10 Synthesis

Collectively, these six studies contribute a cohesive and scalable methodology to
assessing groundwater systems, their interactions with the land surface, and their
role within the broader hydrological cycle. The approach integrates satellite-based
deformation monitoring, machine learning, signal processing, data-driven
modelling, and numerical modelling to provide tools for real-time, large-scale, and
data-efficient hydrological assessment. Papers II, III, and IV highlights the
methodological innovation in inferring and predicting groundwater head dynamics
without relying on dense monitoring networks. Papers I and V frame the problem
and extend the scope to InNSAR- and ML- assisted surface deformation modelling
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and coupled surface-groundwater systems, while Paper VI demonstrates the
extensibility of the approach to ecological domains.

The methodological framework developed herein is adaptable to various
environmental settings and scalable across geographic extents, offering a robust
solution for managing water resources under increasing climatic and anthropogenic
pressures.
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4 Results and discussions

The integration of InSAR with a range of modelling approaches has led to
substantial advancements in the understanding of complex hydrological processes
and associated environmental changes across various hydrological systems. As a
foundational step in each of the conducted studies, InSAR-based deformation
analyses were performed. The specific techniques and processing platforms
employed varied depending on the objectives and contextual characteristics of each
case study, with detailed methodologies outlined in the respective papers. The
accompanying figures (Figure 4.1 and Figure 4.2) presents long-term deformation
maps derived from InSAR analysis for each study area, corresponding to the
respective observational periods. The key findings from the collective body of
research are summarized in the subsections that follow.

Subsidence (mm/y’
o mm <-125

. 100 - -125

- 75 --100

.75 --50

.25 --50

33.000°N

59.00 3 ¥ X 51.800°F

Figure 4.1: InSAR-derived deformation in Iranian study areas with piezometric wells used directly in the groundwater
analyses overlaid. (a) Mashhad, StaMPS/MTI, Oct 2014-Mar 2019 (Paper 1), (b) Shabestar, GMTSAR, Jan 2016-
Apr 2022 (Paper Il & 1), (c) Neyshabour, GMTSAR, Oct 2014-Mar 2022 (Paper Il & IV), and (d) Isfahan, GMTSAR,
Nov 2016-Sep 2021 (Paper V).
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Figure 4.2: (a) InNSAR-derived deformation for the study area in Skane County, southern Sweden, StaMPS/MTI,
Jun 2017-Nov 2020 (Paper VI). (b) Location of VMI sites: all regional sites (n=1,239; circles), those within the
study region (n=834; diamonds), and sites with detected deformation (n=64; stars).

4.1 Ground deformation and groundwater dynamics

The analysis revealed a strong correspondence between land surface deformation
and groundwater fluctuations. This relationship, however, exhibits spatial
variability contingent upon the underlying geophysical and hydrogeological
characteristics of the study area. Specifically, in confined and semi-confined
aquifers located in arid and semi-arid regions, the deformation signal often reflects
a composite of long-term trends and seasonal variations. These seasonal oscillations
are particularly evident when the aquifer system remains within its elastic response
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regime, wherein changes in pore pressure are primarily accommodated through
reversible compaction and expansion of the aquifer matrix. This behaviour is
exemplified in the Shabestar aquifer, as discussed in Papers II and III, where the
InSAR-derived deformation patterns display a distinct periodicity synchronized
with recharge and withdrawal cycles. In contrast, prolonged over-extraction in the
Neyshabour aquifer has muted the seasonal component, with subsidence dominated
by long-term monotonic trends (Figure 4.3). This contrast between elastic
(Shabestar) and inelastic (Neyshabour) behaviour is clearly visible in the
deformation—head time series.

In aquifers where inelastic deformation dominates, the seasonal pattern is largely
absent because the mechanical properties of the aquifer have been altered, often due
to collapse of pore structures within fine-grained sediments. This inelastic
deformation not only reduces storage capacity (irreversible loss of porosity and
specific storage) but also obscures cyclic signals that normally reflect elastic
behaviour. As a result, land subsidence records show mainly long-term downward
trends, indicating a degraded hydro-mechanical response.
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Figure 4.3: Groundwater head versus InSAR displacement over four representative wells across (a) Shabestar (left
column, S1-S4) and (b) Neyshabour (right column, N1-N4) plains. The graphs illustrate the differing seasonal
behaviours between the two plains: while seasonal fluctuations are pronounced in both groundwater head and
INSAR displacement in the Shabestar Plain, they are significantly attenuated in both variables in the Neyshabour
Plain (Paper II).
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When inelastic compaction continues over extended periods, the rate of subsidence
itself evolves. The slope of the displacement time series (here referring to the
instantaneous deformation rate) may decrease as the soil structure approaches
residual consolidation, where further compaction potential is limited. However, this
evolution is not necessarily monotonic. Rates can slow during intervals of hydraulic
recovery, when effective stresses are reduced, and accelerate again when heads
decline below preconsolidation thresholds or when deeper layers enter the inelastic
range. Shorter-term oscillations are also superimposed due to aquitard drainage and
hydrodynamic lag, which delay pressure equilibration. These alternating phases of
acceleration and deceleration are signatures of non-stationary compaction governed
by stress-path history, evolving compressibility, and progressive loss of specific
storage. They indicate ongoing shifts in aquifer regime rather than a single, steady
trajectory toward consolidation (Galloway et al., 1999; Galloway & Burbey, 2011).
Figure 4.4 illustrates how these temporal rate changes manifest: Shabestar shows
bounded, relatively stable fluctuations consistent with elastic cycling, while
Neyshabour exhibits irregular accelerations and decelerations, including both
positive and negative excursions, reflecting evolving compressibility under
sustained over-extraction.
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Figure 4.4: InSAR-derived vertical displacement for four representative wells in Shabestar (S1-S4) and Neyshabour
(N1-N4) (blue) with a local linear trend (red dashed; 1-year span, Centred) and the corresponding local slope (green
dotted; mml/yr, right axis). Shabestar’s rate fluctuations cluster within a constant band, consistent with largely elastic
behaviour, whereas Neyshabour shows broader, inconsistent excursions (both positive and negative), indicative of
time-varying inelastic compaction and changing aquifer compressibility under over-abstraction.

From a hydro-mechanical perspective, analysing slope variations provides valuable
insight into aquifer state and trajectory. The time-varying slope serves as a proxy
for the instantaneous deformation rate, where more negative values indicate
accelerating subsidence and values closer to zero reflect slowing rates and possible
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elastic recovery. Tracking these shifts helps identify transitions from seasonal
elastic deformation to long-term inelastic compaction and eventually to residual
consolidation once pore collapse is largely complete. These patterns are consistent
with aquitard drainage and the role of preconsolidation stress in controlling delayed
or renewed compaction (Wisely & Schmidt, 2010; Galloway et al., 1999; Galloway
& Burbey, 2011). Evidence from InSAR and extensometer studies confirms that
subsidence can continue despite short-term head rises and then diminish once
pressures equilibrate and compressibility decreases (Miller et al., 2017). Such
diagnostics are essential for predictive modelling and for groundwater management,
since they highlight zones where irreversible compaction has reached critical
thresholds and where mitigation strategies such as artificial recharge or controlled
pumping may still preserve elastic behaviour.

Another factor influencing deformation patterns is the presence of nearby surface
water bodies. Lakes, rivers, and wetlands can act as hydraulic buffers, attenuating
drawdowns and subsidence through recharge or head stabilization. This buffering is
evident in both the Shabestar aquifer (Paper III) and the Isfahan-Borkhar aquifer
(Paper V), where areas close to perennial water features experienced less
deformation than more distant, heavily exploited zones (Neely et al., 2021). These
observations suggest that hydrological support from surface water can delay or limit
the transition to inelastic deformation.

Peatland systems add a different complexity. Unlike sedimentary aquifers, peat is
highly heterogeneous, elastic, and porous, leading to volumetric expansion and
contraction, the so-called “peat breath”, in response to water table fluctuations.
These reversible surface changes do not translate directly into groundwater head
dynamics, and deformation cannot be interpreted with the same hydro-mechanical
framework. Instead, understanding peat deformation requires integrating InSAR
with hydrological and ecological observations to distinguish natural variability from
anthropogenic effects. This distinction is critical for managing peatlands as
ecological buffers and carbon sinks (Price & Schlotzhauer, 1999; Lambert & Lissey,
2022).

4.2 Aquifer storativity: estimation and verification
(Papers I1-1V)

Ground deformation and groundwater head are linked through aquifer storativity,
which plays a pivotal role in quantifying this interrelationship. Here we compile all
storativity estimation across the dissertation. Seasonal and long-term skeletal
storage were first estimated from the DHE model (Paper II), then mapped using a
physics-assisted ML framework (Paper III), and finally calibrated as elastic and
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inelastic storage parameters in MODFLOW (Paper IV). This section also gathers
the verification against a semi-log compression-index analytical approach.

Using the DHE model introduced in Paper II, the skeletal storage coefficient was
partitioned into seasonal and long-term components, thereby capturing both
transient and sustained deformation behaviours. Although these components do not
correspond directly to purely elastic and inelastic states, their physical consistency
was evaluated using the semi-log compression-index relation. Even without explicit
values for compressible thickness (H) and initial void ratio (ey) (Whose importance
was described in Section 3.5), the semi-log slope varies monotonically with the
compression index (C). As long as H and e, vary modestly within an aquifer,
comparisons across wells preserve the relative ordering implied by C. Consequently,
strong cross-method correlations between DHE storativity and the semi-log slopes
indicate that both methods respond to the same stress-strain physics associated with
compression indices (C, and C,). In Neyshabour, the very high correlation for the
long-term component reflects sustained drawdown in clay-rich sequences that
produce persistent compaction behaviour. Under these conditions, the DHE long-
term storativity s, . and the semi-log slope track the same consolidation

mechanism, the one that would be quantified by C, if H and e, were known. In
contrast, seasonal responses are more sensitive to lag, partial drainage, and non-
stationary forcing, so agreement is naturally more site dependent. Figure 4.5 shows
this verification, with DHE-derived seasonal and long-term skeletal storage plotted
against the stabilized semi-log slopes, and the strongest agreement evident in
Neyshabour for the long-term component.
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Figure 4.5: Scatter plots comparing skeletal storage coefficients estimated by the DHE method and the semi-
logarithmic analytical approach for seasonal and long-term components in the Shabestar (a-b) and Neyshabour (c-
d) aquifers. In Neyshabour, the long-term DHE-verification correlation is consistently high across representative
wells (R? =~ 0.90), reflecting inelastic compaction dominance. In contrast, Shabestar shows moderate correlation for
both components, suggesting predominantly elastic behaviour in parts of the aquifer (Khodaei et al., 2025).
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Building upon this foundation, Paper III expands the analysis by mapping storativity
and lag (1) across Shabestar aquifer through a ML-based regression framework.
Specifically, an XGBoost regression model is trained to extrapolate the storativity
parameters (seasonal, long-term, and 1) from a limited number of observation wells
to the entire aquifer system. The model uses a broad array of remote-sensing and in-
situ datasets, including static spatial layers and dynamic indicators. Figure 4.6
provides an integrated view of the correlation structure, pairing the full feature-
feature matrix with feature-target correlations for the seasonal and long-term
skeletal storage and 1, with features grouped by category for direct comparison. The
correlation screening shows a small cluster of highly correlated features, mainly
temporally related remote-sensing composites (e.g., soil water index cross-products
with evapotranspiration, land surface temperature, vegetation, and precipitation)
and a few distance/terrain metrics, which exceed the high-correlation threshold
(0.9). Outside this cluster, most pairwise correlations are low to moderate, indicating
that many predictors contribute non-overlapping information. Feature-target
analyses further show that the three target variables, i.e. sy, S, ., and 7, align with

partially distinct subsets of predictors drawn from different families (topographic,
hydrogeological, hydrometeorological, anthropogenic), with only limited overlap
among the strongest correlates. This points to different physical controls for each
target. The correlation structure at the well locations closely matches the structure
computed over all pixels, indicating that the training sites represent the broader
feature space and that spatial extrapolation is unlikely to be biased by site selection.
Taken together, these findings support keeping the full feature set and using a model
that tolerates some collinearity while capturing nonlinear relationships, such as
gradient boosted decision trees.

It is worth noting that the systematic categorization and evaluation of auxiliary data
carried out in Paper I laid essential groundwork for this stage. By organizing static
and dynamic predictors ranging from topographical attributes and land use to clay
thickness and meteorological variables, according to their relevance for aquifer
deformation and groundwater storage, the earlier study improved feature selection
and interpretability in the present ML framework. This structured approach ensured
that auxiliary datasets contributed meaningfully to predictive performance rather
than functioning as black-box inputs, ultimately strengthening the ability of the
XGBoost model to capture spatial heterogeneities in aquifer behaviour.
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Figure 4.6: Integrated correlation view for the full feature set. The left panel shows feature-feature Pearson correlations while the right panel shows feature-
target correlations for the three target variables (s, s, 7). Features are grouped by category and labelled inside a coloured strip.
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Figure 4.7: XGBoost-based regression modelling for estimating and mapping key aquifer storativity parameters (z,
skg, and sk;r). Panels a-c shows spatial distribution of the estimated variables (z, skg, and sk;;, respectively),
highlighting zones of significant subsidence associated with moderate 1 (100-200 days), low s, and high sk,

indicative of irreversible deformation driven by prolonged groundwater extraction. Panels d-f display feature
importance rankings, emphasizing the dominant role of hydrometeorological variables in predicting aquifer
storativity, alongside contributions from topographical, hydrogeological, and anthropogenic factors (Paper Ill).
The resulting spatial storativity and T maps (Figure 4.7) reveal coherent patterns that
are physically interpretable and consistent with observed deformation bowls and
hydrostratigraphic contrasts. At the point scale, the DHE model quantifies seasonal
and long-term storativity coefficients at monitoring sites, enabling a classification
of mechanical state. Sites on aquifer margins and at higher elevations tend to exhibit
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larger seasonal storativity (elastic, recharge-driven, and recoverable responses),
whereas sites located within or adjacent to subsidence bowls show larger long-term
storativity (greater likelihood of irreversible compaction under sustained pumping).

Extending beyond the point scale, the XGBoost-based hybrid model generalizes
these storativity characteristics across the entire aquifer. Areas exhibiting short to
moderate lag (t) values and dominant long-term skeletal storage coefficients
coincide with zones of intense deformation and limited recharge potential,
underscoring the compounded impact of anthropogenic stress and unfavourable
hydrogeological conditions. In contrast, elevated t values in the upland or
stratigraphically complex areas reflects delayed deformation relative to head
change. Feature-importance analysis indicates that hydro-meteorological drivers
together with topographic, hydrogeologic, and anthropogenic factors are key
controls, underscoring the value of integrating multi-source data to explain
heterogeneous groundwater behaviour.

Complementing the numerical and ML based methods, Paper IV calibrates elastic
and inelastic skeletal storage using a MODFLOW-SUB model constrained by
InSAR-derived vertical deformation, groundwater observations, and geological
inputs. Two subsidence scenarios, i.e. delay and no-delay interbeds were evaluated
to distinguish short-term elastic from long-term inelastic responses. Calibration
under the delay-interbed assumption provided a more accurate representation of
inelastic processes in regions experiencing prolonged subsidence. Figure 4.8 shows
the spatial distribution of the calibrated storage parameters and associated vertical
hydraulic conductivity and delay time fields that help explain spatial variations in
aquifer response.

60



36.250°N

35.950°N

Ske ‘ N 3 Skv

= 0 - 0.000089 % o 1 2 (- 0.00092
0.000089 - 0.000408 o ¥ 0.00092 - 0.00305
0.000408 - 0.000981 AL - 0.

m 0.000981 - 0.00147

59.000°E

Sske ‘ TR : £ Sskv

= 0.00001 - 0.00014 &= A I { : = 0.00004 - 0.

0.000014 - 0.00031 5 % R 0.00038 - 0.

0.00031 - 0.00104 &t At 0.00068 - 0.
= =i 8 ¥ = 0.00136 - 0.

35.950°N

58.500°F - ' 59.000°F i 58.500°F

Figures 4.8: Spatial distribution of calibrated storage coefficients (S., Sky) and their thickness-normalized forms
(Sske» Ssiw) for no-delay (a-b) and delay (c-d) interbed cases, derived using the SUB package (Paper IV). The delay
interbed model (Sse, Ssiw) Shows stronger spatial correlation with INSAR-derived subsidence patterns, especially in
capturing localized elastic and inelastic deformation. Panels e-f presents the estimated time delay (t), in days and
vertical hydraulic conductivity (K,) in m/day, highlighting zones of slower vertical water flux from aquitards.

4.3 Estimating groundwater head
This dissertation employs a comprehensive suite of modelling approaches aimed at

quantifying groundwater head dynamics across spatial and temporal scales. At the
core lies DHE, a physically informed data-driven model (Paper II), that relates
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groundwater head variations to land surface deformation induced by groundwater
depletion at monitoring well locations. This connection is articulated through
storativity, expressed in seasonal and long-term components. By analysing these
temporal behaviours, DHE provides insight into the varying mechanical responses
of the aquifer under different hydrological stress regimes. Unlike studies that rely
on intricate parameterizations or purely empirical frameworks, this dissertation
adopts a simplified yet robust semi-analytical methodology. The DHE storativity
coefficients act as diagnostic indicators of aquifer behaviour, anchored in the
physics of subsurface compaction and validated using both groundwater head and
InSAR deformation time series. While the seasonal and long-term coefficients are
not strict proxies for elastic and inelastic deformation, they serve as useful
surrogates for the aquifer’s hydro-mechanical state.

Using the estimated storativity and lag, heads are reconstructed from deformation
at piezometric wells. The model effectively reproduces both seasonal fluctuations
and long-term trends, with stronger skill in areas where elastic storage changes
dominate and weaker performance where complex, non-linear seasonal effects
prevail. Error metrics (Figure 4.9) confirm robust predictive ability, particularly in
Shabestar where both seasonal cycles and long-term decline are well represented.
In contrast, performance in Neyshabour is primarily governed by inelastic
compaction, leading to more monotonic trends that the model captures with
moderate accuracy. These outcomes are consistent with the mechanistic
understanding elaborated in Paper II, where it was shown that integrating
deformation signals with groundwater head data through the DHE framework
improves predictive skill, while accuracy depends on the interplay between elastic
and inelastic aquifer responses.
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Figure 4.9: Simulated and predicted groundwater head (red) versus observed head (blue) for wells in the Shabestar
(S1-S4) and Neyshabour (N1-N4) aquifers, with error bounds based on RMSE values. In Shabestar, the model
effectively captures seasonal and long-term head dynamics, including slope shifts, though performance declines
near Urmia Lake probably due to non-linear seasonal effects. In Neyshabour, dominated by long-term, inelastic
deformation, the model successfully captures broad trends, but struggles with non-linear, semi-seasonal variations
(particularly in N3) due to diminished aquifer elasticity.
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In Paper III, we couple the DHE model’s physics-based constraints with an
XGBoost framework that infers seasonal and long-term storativity and lag from
sparse wells using multi-source remote-sensing and in-situ predictors. This
combination enables the simulation of groundwater head as a spatiotemporal
variable, thereby bridging the gap between point-based measurements and aquifer-
wide assessments. The result is a scalable and transferable framework capable of
producing high-resolution groundwater head time series across complex aquifer
systems, with clear benefits for resource management in arid and semi-arid regions.

Validation against independent test wells (Figure 4.10) showed strong agreement
between simulated and observed groundwater heads, with a mean correlation
coefficient of 0.84 and low RMSE values. The model achieved particularly high
accuracy at wells 7 and 11, while reduced agreement at well 18 was linked to
underestimated seasonal storage coefficient in a subsidence-prone zone (well
locations are shown in Figure 4.7). Importantly, the framework maintained good
performance even in hydrologically complex areas, such as near Urmia Lake and
fault-controlled zones, highlighting the value of integrating categorical and
environmental predictors.

1 - : : .
@ Error bound Well-No. 7

Observed GWH | RMSE=0.15 m
0.5 Estimated GWH| R2=0.71

PCC=0.84

T T T T T
(b) Well-No. 11
RMSE=0.31 m |
R2=0.8
PCC=0.9

Groundwater head (m)

Well-No. 18
RMSE=1.87 m
R2=0.43
PCC=0.77

Date (year)

Figure 4.10: Comparison of computed groundwater head (from the ML-based model presented in Paper Ill) and

observed head for three test wells (a-c), with accuracy metrics (R?, PCC, RMSE) shown in each panel.
Together, these results confirm that the physics-assisted ML framework effectively
extends point-based DHE estimations to aquifer-wide groundwater head
monitoring. Beyond producing high-resolution time series, it also enhances
interpretability of groundwater-deformation linkages, laying the groundwork for
real-time monitoring tools to support groundwater management under conditions of
data scarcity and climatic stress.
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In addition to the approaches developed in Papers II and III, Paper IV further
advanced groundwater head estimation by integrating InSAR deformation data with
a physics-based numerical model. In this framework, a MODFLOW model
equipped with the SUB package was calibrated using InSAR-derived deformation
and in-situ head observations from the Neyshabour aquifer. Through the calibration
process, we established that the storage coefficients derived under the delay interbed
assumption provided a more accurate representation of inelastic deformation
processes in regions experiencing prolonged subsidence. These -calibrated
coefficients, in conjunction with the InSAR deformation time series, were then used
to compute groundwater head variations across space and time. The resulting head
estimates showed strong agreement with observed well data, achieving correlation
coefficients exceeding 0.8-0.9 and RMSE values typically below 2-3 m over a 7.5-
year period (2014-2022). Accuracy was highest in the primary subsidence zone,
where the framework successfully reproduced both seasonal fluctuations and long-
term declines, while reduced performance was noted in marginal unconfined areas.
Spatial accuracy maps (Figure 4.11) demonstrate the model’s capacity to distinguish
zones of reliable prediction and highlight areas where head estimates remain
uncertain.

Overall, this INSAR-MODFLOW integration (SIGH-Map) provides a cost-effective
and transferable tool for producing high-resolution groundwater head time series,
complementing the DHE and ML-based approaches by offering a fully deterministic
extension to aquifer scale. The framework shows particular promise for near real-
time groundwater monitoring in confined and semi-confined aquifers prone to
subsidence.
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Figures 4.11: Model performance evaluation for groundwater head calculation in the Neyshabour aquifer using
InSAR-derived deformation and MODFLOW (delay interbed case, D _Ssk,,)- (a) Clay thickness map, (b) spatial
accuracy of calculated heads with four performance zones defined by RMSE and correlation, (c-f) scatter plots of
calculated versus observed groundwater heads at representative wells. Highest accuracy is achieved in areas with
thick clay interbeds, while reduced performance occurs in shallow or unconfined zones.

66



4.4 GW-SW interactions and ecosystem responses

Moving beyond groundwater quantity estimation, Paper V extended the scope of
the dissertation by investigating the hydrological connectivity between groundwater
extraction and surface water systems. While this study did not explicitly aim to
quantify groundwater content, it provided essential insights into the integrated
behaviour of groundwater and streamflow in a highly manipulated river basin. By
combining long-term InSAR deformation trends with spatial distribution of
irrigation wells and hydrograph data, the study i1dentified significant spatial overlaps
between intensive groundwater withdrawal zones and streamflow reductions. The
findings indicated that maintaining river flow into the Zayandeh-Rud River
significantly mitigates land subsidence, particularly in urban-adjacent agricultural
settings. This paper underscores the critical interdependence between groundwater
management and surface water sustainability, especially in basins subjected to
concurrent domestic and agricultural demand. It complements the earlier models by
emphasizing the hydroecological feedback that are often overlooked in
deformation-centric analyses. This relationship is illustrated in Figure 4.12, which
compares land subsidence at selected wells near the Zayandeh-Rud River with
corresponding river flow data. The figure clearly shows that subsidence rates
increased after river flow ceased, highlighting the direct impact of surface water
availability on aquifer stability.
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Figure 4.12: Time series of INSAR deformation (red) for three piezometric wells (number 1, 16, and 22) near the
Zayandeh-Rud River, compared with the river's average flow (green) and groundwater head (blue). Green rectangles
highlight periods (2016—2022) where subsidence rates decreased following temporary water releases into the river,
demonstrating the clear link between surface water availability, groundwater dynamics, and subsidence pattern
(Sharifi et al., 2024).
Finally, Paper VI broadened the dissertation's geographical and ecological scope by
focusing on peatland ecosystems in temperate climates, examining their
deformation behaviour and carbon sequestration capacity under drought stress using
InSAR. While not directly aligned with groundwater quantity estimation, this study
reinforced the dissertation’s central theme by emphasizing deformation as an
indicator of subsurface water dynamics. Here, the concept of “peat breathing” i.e.,
volumetric changes in peat due to fluctuating water tables, was applied to interpret
seasonal surface motion across classified peatland sites.
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The methodological framework combined InSAR-derived deformation with site
descriptors from the VMI, allowing classification of peatlands by type (bogs
(eccentric, concentric, and raised bogs), fens, and mixed types), environmental
value (Classes I-IV, from highest to lowest conservation and ecological
importance), and deformation behaviour (uplift, subsidence, or stability). A total of
64 sites with sufficient coherent scatterers were analysed. Raised bogs dominated
the sample (84%) and showed the most consistent uplift patterns, even under
drought stress, while mixed fens and wetlands accounted for smaller shares (13%
and 3%, respectively). Quantitative summaries indicated that 17%, 50%, 22%, and
11% of the sites fell into VMI Classes [-1V. Despite the extreme 2018 drought, 86%
of the monitored peatlands exhibited uplift, corresponding to an estimated annual
carbon uptake of ~47 kilotons, particularly in bog-type peatlands resilient to climatic
extremes (Khodaei et al., 2023).

Figures 4.13 and 4.14 illustrate this classification and highlight that deformation
signals, when combined with peatland type, conservation value, and drought
records, provide critical insights into ecosystem health, resilience, and carbon cycle
contributions. This expands the application of InSAR-based deformation analysis
beyond hydrogeology to ecological monitoring and climate change mitigation.

Together, Papers V and VI complement the quantitative modelling core of this
dissertation by offering qualitative depth, cross-system insights, and ecological
context. The GW-SW linkage (Paper V) illuminated broader resource management
implications, and the peatland deformation study (Paper VI) highlighted the
versatility of InSAR in assessing subsurface hydrological behaviour across diverse
environmental systems. Collectively, these contributions underscore the value of a
multidisciplinary approach in addressing the complex, interconnected challenges of
water resource monitoring and sustainability.

68



o
i
=3
S

°
e}

13.000°E 13.500°E 14.000°E

56.500°N

Deformation rate
(v in mm/y)
L v <-40
® 40<v<-20
® 20<v<-10
-10<v<-5
S<v<s
® 5<v<10
® 10<v<20
® 20<v<40
L] 40<v

Z
g

1=y
S
<
N
w|

55.500°N

g
g
g
£
o
=
&
2
2018 2019 2020 2021 2018 2019 2020 2021 2018 2019 2020 2021
g
g
g
£
o
g
&
g
2018 2019 2020 2021 2018 2019 2020 2021 2018 2019 2020 2021
Date (year) Date (year) Date (year)
200 -10
~150
g o
g )
@
g .
£ 100 -
= 3
(= ="
:
= =
& 50
0
2010 2012 2014 2016 2018 2020
Date (year)

Figure 4.13: Overview of the study area, deformation results, and climatic context from Paper VI. (a) Geographical
location of representative peatland sites; (b) INSAR-derived deformation at sites (a—f); (c) Climate panel showing
precipitation, temperature, and drought period (highlighted in bright red).
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4.5 Validation

Across the six studies presented in this dissertation, validation methodologies were
consistently employed to assess both the reliability of InSAR-derived deformation
data and the performance of hydrological models developed for spatiotemporal
assessment of groundwater systems and land deformation. These methodologies
were structured around several well-defined categories, ensuring consistency,
robustness, and interpretability across varying modelling frameworks and case
studies.

1.  Comparison with in-situ monitoring data

A primary validation approach involved comparing modelled or estimated outputs,
such as InSAR-derived deformation and groundwater head time series, with
observations from ground-based monitoring networks. These included piezometric
well measurements and permanent satellite-based positioning stations (such as
GNSS stations). Accuracy analysis was conducted using standard statistical metrics,
including Root Mean Square Error (RMSE), Pearson Correlation Coefficient (PCC
or PCoef), and Coefficient of Determination (R?), providing a comprehensive
assessment of model performance and predictive reliability.

ii.  Cross-validation and temporal splitting

For models that required training, such as the machine learning approaches, the
available datasets were divided into subsets for training and testing or validation.
The model’s performance was then evaluated on the independent validation set that
was not used during training (Papers 1 and III). For deformation-driven and
numerical modelling, temporal partitioning was applied by reserving data from a
specific period for validation after calibrating the model on an earlier period (Papers
IT and IV).

iii.  Comparison with alternative remote sensing/processing methods

To validate the InSAR data, results obtained from one InSAR processing package
or method (e.g., SBAS-InSAR processed with GMTSAR) were compared with
results from an alternative, independent package or method (e.g., StaMPS/MTI)
over the same area and period. This confirmed the consistency and reliability of the
remote sensing observations.

iv.  Verification with analytical and numerical approaches

Some studies extended validation by also verifying intermediate parameters derived
from InSAR and well data using independent physically based methods. For
example, skeletal storage coefficients estimated with the DHE model were
compared with values obtained using a semi-logarithmic analytical method (Paper
IT). This type of verification reinforced the physical basis of the proposed
methodologies.
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The validation efforts collectively support the reliability of the methods developed
and applied throughout this dissertation. Models used to predict or reconstruct
groundwater head, whether data-driven, numerical, or hybrid, showed consistent
agreement with observed well data, effectively capturing both seasonal fluctuations
and long-term depletion trends. Despite known limitations in observation density,
these models showed high potential for extending spatiotemporal groundwater
information beyond sparse monitoring networks. The convergence of statistical,
observational, and physical validation across the studies further confirms that
integrating InSAR with advanced modelling tools provides scientifically robust,
transferable, and operationally useful approaches for groundwater monitoring,
offering a scalable path toward sustainable resource management under conditions
of data scarcity, environmental stress, and ecological vulnerability.

4.6 Uncertainties

Despite the promising capabilities of InNSAR-derived deformation when integrated
with data-driven, numerical, and machine learning approaches for hydrological
monitoring, it is essential to critically acknowledge the inherent uncertainties and
limitations that may affect the robustness, accuracy, and generalizability of the
findings. These limitations arise from three principal domains: (1) remote sensing
and InSAR processing, (ii) input dataset quality and availability, and (iii) modelling
assumptions and geological complexity.

1. Remote sensing data and InSAR processing uncertainties

A primary source of uncertainty originates from the InSAR analysis itself.
Atmospheric artifacts can obscure ground deformation signals, although these are
partially mitigated through filtering techniques and temporal coherence analysis.
Phase unwrapping errors, while typically negligible for gradual processes such as
groundwater-induced subsidence, can still pose challenges in regions lacking a
continuous temporal series of SAR acquisitions. Vegetation-induced decorrelation
and complex topography further limit data continuity and signal stability,
particularly in agricultural or mountainous areas.

Another critical consideration is the selection of a stable reference area for
deformation calculation. In regions without permanent ground-truth stations (e.g.,
satellite positioning stations or leveling benchmarks), reference point selection often
relies on interferometric phase stability, which can introduce systematic bias.
Moreover, differences in deformation estimates obtained from distinct processing
software (e.g., GMTSAR vs. StaMPS/MTI) highlight the influence of processing
choices, with comparative metrics such as RMSE and R? used to quantify
variability.
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Additional uncertainties arise from other satellite-based datasets employed in the
modelling, including soil moisture, precipitation, evapotranspiration, land surface
temperature, and land cover products. These datasets are subject to errors from
sensor limitations, processing methods, and atmospheric conditions. Their temporal
and spatial resolutions are often inconsistent with each other and with InSAR data,
requiring resampling and harmonization that may smooth out extremes, distort
variability, or introduce artifacts. Such inconsistencies can affect correlation
structures, feature importance analyses, and ultimately the reliability of groundwater
head and storativity estimations.

1. Data availability and quality constraints

The limited availability and heterogeneous quality of auxiliary and in-situ datasets
constitute significant constraints. Groundwater head data are typically sparse,
especially in confined aquifers where well distribution is inherently limited. In
several case studies, the number of observation wells with reliable and complete
records was insufficient, compelling the exclusion of incomplete datasets or reliance
on minimal calibration data. This sparse sampling increases the risk of overfitting
in ML-based modelling and reduces model generalizability, although robust cross-
validation techniques are employed to mitigate such risks.

Additional uncertainties arise from auxiliary datasets such as clay thickness maps
and lithological profiles. Inaccuracies in well location or depth and mismatches
between logs and piezometric measurements can further limit their utility for
parameter estimation.

iii. Modelling assumptions and geological heterogeneity

The parameter estimation processes, in both numerical and data-driven models, are
susceptible to uncertainty due to simplified assumptions and incomplete geological
characterization. Skeletal storage coefficients, lag times, and transmissivity values
are often estimated from limited data using inverse modelling or analytical
approximations. These assumptions include attributing deformation solely to
groundwater withdrawal or assuming aquifer confinement in parameter derivation.
While verification against independent analytical approaches supports the
plausibility of derived parameters, this does not guarantee accuracy in simulated
groundwater heads or deformation magnitudes. In machine learning frameworks,
additional uncertainty arises from the sensitivity of model performance to training
data quality, feature selection, and the risk of overfitting when extrapolating beyond
observed conditions.

Intrinsic geological complexities, such as spatial variability in clay layer thickness,
aquitard presence, and aquifer stratification, contribute significantly to prediction
uncertainty. In particular, distinguishing between elastic and inelastic compaction
phases and accurately modelling their transitions remain challenging. These
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complexities remain poorly constrained in the absence of high-resolution geological
and geophysical data.

4.7

General implications and future recommendations

The cumulative effect of these uncertainties underscores the need for caution when
interpreting model outputs and transferring findings across hydrogeological
contexts. To enhance methodological robustness and applicability, future research
should prioritize:

Expanding the spatial and temporal density of in-situ observation networks.

Acquiring higher-resolution and harmonized remote sensing and geological
datasets.

Enhancing subsurface characterization through geophysical surveys,
borehole analysis, and laboratory testing.

Strengthening external validation with independent ground-truth datasets.

Incorporating diverse hydrogeological case studies to improve model
generalizability and predictive reliability.

Despite these limitations, the integrated methodology presented in this dissertation
demonstrates strong potential for large-scale hydrological monitoring in data-scarce
regions where traditional measurements are limited or unreliable.
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5 General conclusions

This dissertation employed a set of complementary modelling approaches,
combined with remote sensing, to explore, quantify, and interpret groundwater
dynamics and associated land surface deformation. Across six interrelated studies,
we developed and validated novel approaches to understand and manage
hydrological resources, with a particular focus on groundwater systems in arid,
semi-arid, and temperate regions, while also evaluating interactions between
groundwater, surface water, and ecosystems.

The initial research phase (Paper I) established a foundation by leveraging InSAR
data and advanced ML algorithms to overcome spatial discontinuities in
deformation data. A critical contribution of this study was the systematic
categorization and evaluation of auxiliary data, including topographical,
hydrogeological, anthropogenic, and hydrometeorological factors. This
classification process facilitated more precise and interpretable ML models, laying
a robust basis for subsequent modelling phases.

Building upon this foundation, the DHE model (Paper II) emerged as a pivotal
contribution by linking groundwater head variations directly to land surface
deformation measured through InSAR techniques. This physics-assisted data-driven
model proved capable of reliably simulating groundwater dynamics even in data-
scarce areas, advancing our capability to manage aquifers sustainably. Partitioning
storativity into seasonal and long-term components provided nuanced insights into
aquifer mechanics, enhancing both interpretability and practical applicability.

Further advancing this methodology, Paper III presented an integrated approach
combining the DHE model’s physics-informed insights with ML techniques. This
hybrid model successfully extrapolated the calculated storativity parameters to the
entire aquifer system, improving spatial coverage and predictive reliability.
Validation demonstrated strong correlations between observed and predicted
groundwater heads, while feature importance analysis highlighted the influence of
hydrometeorological and anthropogenic factors in aquifer deformation.

Recognizing the value of integrating multiple methodological perspectives, Paper
IV employed a modified MODFLOW-SUB model calibrated with InSAR-derived
deformation data. This physics-based numerical approach directly estimated
skeletal storage parameters, demonstrating the strengths of deterministic numerical
modelling combined with satellite-based constraints. The calibrated model
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effectively simulated groundwater head changes in time and space, offering a
reliable tool for timely groundwater resource management in subsidence-prone
regions.

In addition to groundwater quantity assessments, Paper V highlighted the critical
hydrological interdependencies between groundwater extraction and surface water
systems. By examining a key river system in one of Iran’s most densely populated
agricultural regions, this study underscored how both climatic variability and socio-
political decision-making influence the sustainability of groundwater resources.
These interconnected factors directly affect aquifer deformation and Iland
subsidence. The findings provide compelling evidence that sustaining river flows
can mitigate subsidence, reinforcing the need to integrate socio-economic priorities
and political realities into holistic water management strategies that balance surface
and groundwater systems.

Finally, Paper VI expanded the geographical and ecological scope by investigating
temperate peatland sites in southern Sweden and their role in carbon sequestration
using InSAR deformation data. Despite severe drought conditions during the study
period, most monitored peatland sites demonstrated resilience, characterized by
surface uplift and substantial carbon sequestration. This emphasized the ecological
importance of peatlands as carbon sinks and highlighted the value of InSAR as a
monitoring tool for assessing ecosystem health under climatic stress.

In conclusion, this dissertation demonstrated that the combined use of remote
sensing with physics-assisted, data-driven, numerical, and machine learning
modelling approaches provides powerful and scientifically rigorous means for
monitoring and managing complex hydrological systems. Through the development
of distinct yet complementary frameworks, the research not only enhanced
understanding of groundwater dynamics and land surface deformation but also
revealed critical interactions between groundwater, surface water, and ecosystems.
These findings provide essential insights for sustainable water resource
management under the pressing challenges of climate change and increasing
anthropogenic pressures, and they offer a transferable methodological foundation
for future applications in diverse hydrogeological settings.
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