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Popular science summary

Atrial fibrillation (AF) is the most common sustained heart rhythm disorder, affecting
millions worldwide. It is a progressive condition in which the upper chambers of the
heart (the atria) beat rapidly and irregularly due to disorganized electrical activity. This
electrical activity controls the contraction of the heart muscle and is influenced not
only by the arrhythmia itself but also by the autonomic nervous system, the body’s
control network for “fight-or-flight” (sympathetic) and “rest-and-digest” (parasym-
pathetic) responses. Breathing patterns and shifts in the balance between these two
branches can affect how the heart’s electrical signals are generated and conducted.
Understanding these interactions is important, as they may play a role in how AF de-
velops and progresses over time, offering clinicians potential markers to better assess
heart function and guide more personalized treatment.

This thesis investigates how information contained in the electrocardiogram (ECG)
can be used to study respiratory and autonomic influences on the heart, both during
AF and during exposure to environmental air pollution. Advanced signal processing
techniques are applied to ECG data from patients and healthy volunteers to reveal
patterns that cannot be seen through visual inspection alone.

The first part of the work focuses on AF, where the irregular rhythm makes it chal-
lenging to measure autonomic nervous system activity from the ECG. New methods
are developed to detect subtle variations in the small “f-wave” oscillations of the ECG,
characteristic of AF, that are linked to breathing cycles and changes in nervous system
activity. The second part applies techniques to study healthy individuals exposed to
exhaust from hydrotreated vegetable oil (HVO), a renewable diesel fuel, in order to
examine how short-term air pollution affects the heart’s regulation.
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ii Popular science summary

The results show that, even in the irregular rhythm of AF, it is possible to assess respi-
ratory modulation in the f-wave of the ECG. This modulation appears to be linked to
parasympathetic activity in the atrial tissue, offering a new way to study autonomic
influences despite the absence of normal heart rhythm. In the environmental exposu-
re studies, different signal processing techniques were applied to ECGs from healthy
individuals, but no consistent short-term changes in the heart’s autonomic regulation
were observed during exposure to exhaust.

Overall, the findings demonstrate that the ECG can serve as a valuable, non-invasive
tool for studying respiratory and autonomic function in both disease and environmen-
tal health contexts. In the long term, this research could contribute to earlier diagnosis,
more tailored treatments, and a better understanding of how environmental factors
influence heart health.



Abstract

Abstract

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and is asso-
ciated with increased risk of stroke, heart failure, and mortality. One of the systems
which AF is influenced by is the autonomic nervous system (ANS), which regulates
involuntary functions such as heart rate. Environmental stressors, such as air pol-
lution, may also affect these physiological systems and contribute to cardiovascular
morbidity. The electrocardiogram (ECG) provides a non-invasive tool to study these
influences, but the irregular rhythm of AF poses challenges for conventional respira-
tory and autonomic analysis. The overall aim of this thesis was to develop ECG-based
methods for assessing respiratory and autonomic modulation during AF, and to ex-
tend ECG analysis to explore autonomic responses to environmental stressors using
different methodological approaches.

The first aim was to develop and validate signal processing methods for modeling
and tracking respiratory f-wave frequency modulation during AF, as a potential non-
invasive marker of autonomic nervous system activity in the atria and of AF progres-
sion. This aim is addressed in Papers I and II, which introduced novel algorithms
for estimating respiratory f-wave frequency modulation from the ECG, and demon-
strated that such modulation can be robustly quantified from the ECG, with results
suggesting a contribution from parasympathetic activity.

The second aim was to examine the influence of autonomic modulation on atrial activ-
ity during AF by analyzing respiratory f-wave frequency modulation during tilt-test,
and to explore underlying mechanisms using computational modeling. This aim is ad-
dressed in Paper III, which combined clinical tilt-table testing in persistent AF patients
with biatrial computer simulations to investigate sympathetic and parasympathetic
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iv Abstract

contributions to observed modulation patterns. Results suggested that sympathetic
activity primarily influenced the mean fibrillatory rate, while parasympathetic activity
appeared to modulate respiration-related variations as a secondary effect rather than
as an independent driver.

The third aim was to apply ECG-based analysis to assess respiratory and autonomic
responses in healthy individuals exposed to hydrotreated vegetable oil (HVO) emis-
sions, using methods distinct from those developed for AF. This aim is addressed in
Paper IV, which employed ECG analysis techniques in a controlled human exposure
study and indicated that short-term exposure to HVO exhaust did not lead to signif-
icant alterations in autonomic or respiratory regulation.

In summary, this thesis presents new methods for extracting respiratory and auto-
nomic information from ECGs recorded under challenging conditions, including AF
and environmental exposure scenarios. These tools extend the capabilities of ECG
analysis, offering potential applications in clinical AF management, environmental
health research, and personalized medicine.
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Chapter 1

Background and Aims

1.1 Background and Motivation

Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia and a lead-
ing cause of cardiovascular morbidity worldwide [1]. Although the clinical features,
mechanisms, and management strategies of AF have been extensively studied and are
further reviewed in Chapters 2 and 3, many aspects remain under active investiga-
tion. Among these, the role of the autonomic nervous system (ANS) is of particular
interest, as impaired autonomic modulation has been linked to both the initiation
and progression of AF. Understanding these influences requires new non-invasive ap-
proaches, since existing methods are either invasive or inadequate in the absence of
sinus rhythm. Capturing autonomic modulation directly from surface electrocardio-
gram (ECG) recordings therefore represents a promising, yet underexplored, direction
of research. This thesis investigates whether respiratory variations in atrial activity, re-
flected in the frequency and morphology of f-waves, can serve as novel markers of
autonomic influence during AF. Since these variations are subtle and often masked
by other sources of variability, advanced signal processing techniques are essential for
their reliable assessment.

Beyond AF, the thesis also explores ECG-derived markers of autonomic and respi-
ratory regulation in healthy individuals exposed to environmental stressors such as
hydrotreated vegetable oil (HVO) emissions. Although the clinical contexts differ,
both applications rely on the same methodological foundation: the development of
signal processing techniques to extract autonomic and respiratory information from
surface ECG data. Together, these two branches aim to advance the use of the ECG
as a versatile, non-invasive tool for studying autonomic–cardiac interactions under
both pathological and physiological conditions.

3



4 Background and Aims

1.2 Thesis Aims

The overarching goal of this thesis is to develop and apply signal processing methods
for analyzing autonomic modulation based on surface ECG recordings. The specific
aims of the thesis, along with their connection to the individual studies, are as follows:

• Aim 1: To develop and validate signal processing methods for modeling and
tracking respiratory f-wave frequency modulation during AF. (Addressed in Pa-
pers I and II)

• Aim 2: To investigate the association between respiratory f-wave frequency
modulation and ANS activity. (Addressed in Paper III)

• Aim 3: To develop and validate signal processing methodology for continuous
monitoring of respiratory and autonomic responses in healthy individuals in
environmental exposure studies. (Addressed in Paper IV)

Together, these aims reflect a multidisciplinary effort to enhance the informational
value of ECG signals, providing new tools for both AF-specific monitoring and broader
cardiorespiratory assessment.

1.3 Thesis Structure

This thesis is divided into two main parts. Part I establishes the conceptual and
methodological foundation, while Part II presents the four original research papers
that form the core scientific contributions of this work.

The subsequent sections of Part I are organized as follows: Chapter 2 provides the
necessary medical background, including cardiac electrophysiology, autonomic regu-
lation, respiratory dynamics, and the pathophysiology of AF. Chapter 3 is devoted to
ECG-based analysis of AF, describing how AF manifests in the surface ECG, methods
for extracting and characterizing fibrillatory waves (f-waves), and modelling strategies
for quantifying atrial activity. Chapter 4 turns to ECG-derived respiration, outlining
the methods used to extract respiratory information and assess cardiorespiratory inter-
actions, with particular emphasis on respiratory rate estimation, orthogonal subspace
projection, and coupling analysis. Finally, Chapter 5 summarizes the four research
papers included in Part II, highlighting their individual contributions and showing
how they collectively address the overarching aims of the thesis.



Chapter 2

Medical Background

2.1 Anatomy and Function of the Heart

The human heart is a central organ in the circulatory system, tasked with continu-
ously pumping blood to sustain life. It is structurally divided into two sides, left and
right, each composed of an upper chamber (atrium) and a lower chamber (ventricle).
The heart’s ability to circulate blood effectively hinges on its coordinated electrical
and mechanical activity, which manifests as cyclic phases of contraction (systole) and
relaxation (diastole). Blood flow through the heart is regulated by four valves: the
atrioventricular valves (the tricuspid on the right and the mitral on the left) and the
semilunar valves (the pulmonary and aortic valves). These valves function to maintain
unidirectional blood flow, allowing forward progression while preventing backflow.

On the right side, deoxygenated blood returns from the systemic circulation via the
superior and inferior vena cavae, entering the right atrium (RA). Blood from the heart’s
own tissue drains into the RA through the coronary sinus. From the RA, blood passes
through the tricuspid valve into the right ventricle (RV), which serves as the main
pumping chamber of the right heart. During systole, the RV ejects blood across the
pulmonary valve into the pulmonary artery, directing it to the lungs for gas exchange.

In the lungs, oxygen is absorbed through alveolar-capillary diffusion, and the oxygen-
rich blood returns to the heart via four pulmonary veins, two from each lung, into
the left atrium (LA). The LA acts as a reservoir before the blood flows through the
mitral valve into the left ventricle (LV). The LV, the most muscular chamber of the
heart, propels oxygenated blood through the aortic valve into the aorta, supplying the
systemic circulation. An overview of the heart’s anatomical structures and blood flow
pathways is presented in Figure 2.1.

5



6 Medical Background

Figure 2.1: Anatomical overview of the heart chambers, valves, and blood flow direction. De-
oxygenated blood (blue) returns via the venae cavae to the right atrium and is pumped to the
lungs through the pulmonary artery. Oxygenated blood (red) returns via the pulmonary veins
to the left atrium and is distributed to the systemic circulation through the aorta. Adapted
from [2].

2.2 Cardiac Conduction System

The rhythmic contraction of the heart is governed by its intrinsic conduction system, a
specialized electrical network responsible for initiating and coordinating the impulses
that drive myocardial activity. This system ensures that atrial and ventricular contrac-
tions occur in a precise, timely sequence, an essential requirement for effective cardiac
output [2]. At the core of this system lies the sinoatrial (SA) node, located in the upper
wall of the right atrium near the superior vena cava. It acts as the heart’s primary pace-
maker. Composed of autorhythmic, self-excitable cells, the SA node spontaneously
generates electrical impulses at an intrinsic rate of approximately 100–120 beats per
minute in the absence of autonomic regulation [3]. These impulses are finely modu-
lated by the ANS, which adjusts the heart rate in response to physiological demands
such as stress, exercise, or rest.
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Once initiated in the SA node, the electrical activation spreads across the atrial my-
ocardium, triggering atrial contraction and promoting blood flow into the ventricles.
The impulse then reaches the atrioventricular (AV) node, located at the junction be-
tween the atria and ventricles. Here, the signal is briefly delayed, a critical pause
that allows the ventricles adequate time to fill following atrial contraction. Follow-
ing this delay, the electrical impulse proceeds along the bundle of His, which quickly
bifurcates into the right and left bundle branches running along the interventricular
septum. These branches carry the signal toward the apex of the heart, where it enters
the Purkinje fibers. This dense, rapidly conducting fiber network distributes the im-
pulse throughout the ventricular myocardium, ensuring a synchronized and powerful
contraction of both ventricles.

This highly structured sequence of depolarization and repolarization, originating in
the SA node and concluding with ventricular contraction, is what underlies the char-
acteristic waveforms seen in the surface ECG. The conduction system plays a vital
role in sustaining the heart’s rhythmic pumping function, and any disruption to this
system can lead to serious arrhythmias or compromised cardiac output. An overview
of this electrical pathway is illustrated in Figure 2.2.

Figure 2.2: Illustration of the cardiac conduction system. Electrical impulses originate at the
sinoatrial (SA) node and propagate through internodal tracts to the atrioventricular (AV) node.
The impulse is then transmitted via the bundle of His, dividing into the right and left bundle
branches, and dispersed throughout the ventricles via Purkinje fibers to ensure coordinated
contraction. Adapted from [2].



8 Medical Background

2.2.1 Cellular Electrical Activity

At the cellular level, the electrical behavior of cardiomyocytes is governed by the dy-
namic interplay of ion movement across the cell membrane. This membrane is com-
posed of a semi-permeable phospholipid bilayer embedded with a variety of proteins,
including ion channels, pumps, transporters, and receptors. These components are
essential not only for maintaining the ionic homeostasis of the cell but also for medi-
ating signal transmission and supporting metabolic processes. Ion channels facilitate
passive movement of ions along electrochemical gradients, driven by both concen-
tration differences (chemical gradient) and voltage differences across the membrane
(electrical gradient). In contrast, active transport mechanisms, such as ion pumps and
exchangers, move ions against their gradients. These processes are energy-dependent
and typically regulated by shifts in membrane potential, intracellular ion concentra-
tions, or the presence of signaling molecules [4]. In addition to these transmembrane
mechanisms, cardiomyocytes are electrically coupled to one another through gap junc-
tions. These specialized intercellular connections, formed by connexin proteins, create
low-resistance pathways that allow ions and small molecules to pass directly between
neighboring cells. Gap junctions are critical for the rapid spread of action potentials
across the atrial and ventricular myocardium, ensuring coordinated contraction at the
tissue level.

In a resting atrial cardiomyocyte, the membrane potential is typically between −65
and −80 mV, with the cell interior being more negatively charged than the exte-
rior. This resting membrane potential arises from a high intracellular concentration
of potassium ions (K+) and lower concentrations of sodium (Na+) and calcium (Ca2+)
ions. Extracellularly, Na+ and Ca2+ are abundant, while K+ levels are relatively low [5].

Upon electrical stimulation, the cardiomyocyte generates an action potential (AP), a
rapid and transient depolarization of the membrane followed by repolarization. The
AP is conventionally divided into five phases, illustrated in Figure 2.3. These phases
are as follows:

• Phase 0 – Rapid depolarization: A sudden influx of Na+ through voltage-gated
sodium channels increases the transmembrane potential sharply, generating the
fast sodium current (INa).

• Phase 1 – Initial repolarization: As Na+ channels inactivate, transient outward
K+ currents (Ito) initiates a brief repolarization of the cell.

• Phase 2 – Plateau phase: A balance forms between inward Ca2+ current through
L-type calcium channels (ICaL) and outward delayed rectifier K+ currents (IKur),
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producing a relatively stable membrane potential. A small persistent Na+ cur-
rent (INaL) may also contribute, extending the duration of the plateau.

• Phase 3 – Repolarization: Ca2+ channels inactivate while outward K+ currents
dominate. These include the rapid (IKr) and slow (IKs) delayed rectifier cur-
rents, as well as the inward rectifier current (IK1), which gradually restores the
membrane to its resting state.

• Phase 4 – Resting state: The membrane potential stabilizes at its resting level.
IK1 remains active, and the Na+/K+ ATPase pump helps maintain ion gradients
by moving Na+ out and K+ into the cell.

Figure 2.3: Schematic representation of the cardiac action potential and corresponding ionic
currents in each phase. Adapted from [6].

Additional ionic mechanisms refine the atrial action potential. For example, voltage-
gated and calcium-activated chloride channels contribute to fine-tuning repolariza-
tion. Similarly, the Na+/Ca2+ exchanger plays a dual role. During rest, it removes in-
tracellular Ca2+, contributing to an inward current. During early repolarization, it can
operate in reverse mode, briefly generating an outward current before switching back
to help extrude calcium. Another player is the small-conductance calcium-activated
potassium (SK) channel, which becomes active in response to increased intracellular
Ca2+ during the plateau phase. This activation leads to a potassium efflux, aiding in
repolarization [6].

The morphology and kinetics of action potentials vary between cardiac regions. In
humans, atrial action potentials (APs) typically display a triangular profile, distinct
from the spike-and-dome configuration of ventricular APs (see Figure 2.4.A). A com-
mon measure of AP duration is APD90, defined as the time interval from the initial
depolarization to 90% repolarization. In atrial cells, APD90 can vary significantly,
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from 150 to 500 ms depending on heart rate and experimental conditions. The rest-
ing potential in atrial cells is also more depolarized than in ventricular cells, largely
due to lower IK1 density [7].

Electrophysiologically, the AP cycle includes distinct refractory periods that are es-
sential for maintaining normal cardiac rhythm. The absolute refractory period refers
to the phase during which no stimulus, regardless of its strength, can trigger a new
AP, as the sodium channels remain inactivated. This is followed by the relative refrac-
tory period, during which a new AP can be initiated, but only by a stimulus that is
stronger than usual. Finally, the cell enters the resting phase, where membrane po-
tential returns to baseline and normal excitability is restored. Together, these phases
ensure orderly depolarization and prevent the heart from undergoing abnormal or
premature re-excitation [8].

2.2.2 Electrocardiography (ECG)

The ECG is a widely used, non-invasive method for recording the electrical activity
of the heart. It is obtained by placing electrodes at standardized positions on the body
surface, allowing the detection of voltage gradients generated by the depolarization
and repolarization of cardiac tissue. The resulting signal provides a composite view
of the heart’s electrical behavior during each cardiac cycle. A standard 12-lead ECG
configuration involves the use of 10 surface electrodes: 4 limb electrodes, positioned
on the arms and legs to capture activity in the frontal plane, and 6 precordial (chest)
electrodes, positioned across the thorax to capture activity in the horizontal plane.
These electrodes generate 12 distinct leads, comprising 3 bipolar limb leads (I, II, and
III), 3 augmented unipolar limb leads (aVR, aVL, and aVF), and 6 unipolar precor-
dial leads (V1–V6). Bipolar leads, such as leads I, II, and III, measure the potential
difference between two specific electrodes. In contrast, unipolar leads (augmented
and precordial) measure the potential difference between a positive electrode and a
calculated central terminal, which acts as a reference composed of a combination of
other limb electrodes.

The ECG waveform consists of several key components that reflect specific phases
of cardiac electrical activity. The P-wave corresponds to atrial depolarization, while
the QRS-complex represents rapid depolarization of the ventricles. Due to the greater
muscle mass of the left ventricle, it contributes more prominently to the ECG signal.
Atrial repolarization, though present, is typically obscured by the QRS complex. The
T-wave reflects ventricular repolarization.
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Additional intervals provide further information about cardiac function. The QT-
interval encompasses the full duration of ventricular depolarization and repolarization.
The ST-segment, typically an isoelectric period, marks the interval between ventricular
depolarization and the beginning of repolarization. The RR-interval indicates the
time between two consecutive R-waves and is commonly used to assess heart rate and
its variability. Figure 2.4.B illustrates the relationship between ECG waveforms and
action potentials recorded from various cardiac cell types. The figure emphasizes how
the coordinated electrical activity of atrial, ventricular, and nodal cells contributes to
the overall ECG signal.

Figure 2.4: Schematic representation of ECG waveforms and corresponding action potentials
from different cardiac cell types. Adapted from [9].

2.3 Autonomic Nervous System and Cardiac Regula-
tion

The ANS plays a vital role in maintaining homeostasis, ensuring stable internal con-
ditions such as pH, temperature, and nutrient levels despite changes in the external
environment. This system continuously monitors physiological parameters and initi-
ates appropriate adjustments to preserve a narrow range of values compatible with life
[10].

For the cardiovascular system, the ANS enables the heart to dynamically adapt to
both internal and external stimuli. It regulates heart rate and contractility through
a balance of sympathetic and parasympathetic activity. This autonomic modulation
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is critical for maintaining proper circulation and responding to varying physiological
demands. Dysregulation of autonomic input to the heart has been linked to multi-
ple cardiovascular pathologies, including heart failure, hypertension, and arrhythmias
[11]. Autonomic control of cardiac function is governed by a highly integrated system
comprising both intrinsic and extrinsic components, collectively referred to as the car-
diac autonomic nervous system [12]. The cardiac autonomic nervous system operates
through two primary branches: the sympathetic nervous system, which orchestrates
the body’s “fight-or-flight” responses, and the parasympathetic nervous system, which
promotes “rest-and-digest” activities associated with recovery and conservation of en-
ergy.

Both branches of the ANS are tonically active, meaning they provide continuous,
baseline levels of input. Typically, they exert opposing effects on target tissues. When
one branch increases its activity and the other decreases, this reciprocal relationship
enables rapid and precise modulation of physiological functions. In the context of
cardiovascular control, parasympathetic activation results in a reduction of heart rate
and cardiac output, leading to lower blood pressure. In contrast, sympathetic acti-
vation enhances heart rate and myocardial contractility, increases stroke volume, and
induces vasoconstriction. These changes elevate both cardiac output and systemic vas-
cular resistance, thereby increasing blood pressure [13].

The functional effects of ANS activation are mediated through the release of spe-
cific neurotransmitters. The two primary neurotransmitters involved are acetylcholine
(ACh), released by cholinergic neurons, and norepinephrine (NE), released by adren-
ergic neurons. Both the sympathetic and parasympathetic pathways are organized
into two-neuron chains consisting of a preganglionic neuron, which originates in the
central nervous system and projects to an autonomic ganglion, and a postganglionic
neuron, which extends from the ganglion to the target organ. In both systems, the
preganglionic neurons are cholinergic and release ACh. However, the postganglionic
neurons differ: in the parasympathetic system, they are predominantly cholinergic
and also release ACh, whereas in the sympathetic system, they are primarily adren-
ergic and release NE. This divergence in neurotransmitter output leads to distinct
physiological effects, enabling the ANS to finely regulate cardiac function under a
range of conditions [14].

2.3.1 Extrinsic and Intrinsic Cardiac Autonomic Nervous System

The cardiac autonomic nervous system operates through a hierarchical structure com-
posed of both extrinsic and intrinsic components. Together, these elements form a
complex neural network that coordinates autonomic control of the heart. The extrin-
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sic component includes central nervous system and intrathoracic extracardiac struc-
tures, while the intrinsic component consists of localized neural circuits embedded
within the heart itself.

The extrinsic cardiac ANS comprises neuronal structures originating from the brain
and spinal cord, whose axons project toward the heart. These include the vagosym-
pathetic trunk and other ganglionic chains that relay sympathetic or parasympathetic
input to cardiac tissues. The sympathetic arm of the extrinsic cardiac ANS primarily
derives from autonomic ganglia located along the cervical and thoracic spinal seg-
ments. These include the superior cervical ganglia (linked to C1–C3), the stellate or
cervicothoracic ganglia (linked to C7–T2), and thoracic ganglia [15, 16]. Parasympa-
thetic preganglionic fibers travel via branches of the vagus nerve, subdivided into supe-
rior, middle, and inferior pathways. These fibers often converge in a region known as
the “third fat pad,” located between the superior vena cava and the aorta, from where
they innervate the SA and AV nodes [17]. The activity of these parasympathetic fibers
is governed by cardiac vagal motor neurons located in the medulla oblongata, which
integrate inputs from higher brain centers, respiratory networks, and baroreceptor re-
flex pathways. This anatomical arrangement is illustrated in Figure 2.5.

By contrast, the intrinsic cardiac ANS is situated directly within cardiac tissue and
functions as the final relay station for the regulation of regional cardiac activity. It
is composed of afferent sensory neurons, interconnecting local circuit neurons, and
efferent neurons with either adrenergic or cholinergic phenotypes. These neurons
communicate with extrinsic ganglia and respond to both neural and humoral signals,
including input from the central nervous system and circulating catecholamines. The
intrinsic cardiac ANS modulates key physiological parameters such as heart rate, my-
ocardial refractoriness, conduction velocity, contractility, and coronary blood flow.
Notably, the intrinsic cardiac ANS can exert regulatory influence independently of the
extrinsic cardiac ANS, as evidenced by preserved cardiac control even after heart auto-
transplantation (a surgical procedure in which the heart is removed and reimplanted
in the same individual, thereby eliminating external neural inputs) [18, 19, 20].
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Figure 2.5: Anatomy of sympathetic and parasympathetic innervation of the heart. Repro-
duced with permission from Shen et al. [21], Neural mechanisms of atrial arrhythmias, Nature
Reviews Cardiology, 2011. © Springer Nature.

2.3.2 Cardiorespiratory Coupling and Heart Rate Variability

Respiratory sinus arrhythmia (RSA) is one of the most well-recognized manifestations
of cardiorespiratory coupling, the physiological interplay between the cardiovascular
and respiratory systems. Although anatomically distinct, these systems are function-
ally integrated through central autonomic pathways. Neural coupling originates in
the brainstem, specifically the medulla oblongata, which houses the primary respira-
tory centers. These centers modulate vagal efferent output to the heart (cf. Sec. 2.3.1),
primarily through cardiac vagal motor neurons [22]. This interaction produces phase-
locked inhibition of vagal tone during inspiration and its restoration during expira-
tion, giving rise to the beat-to-beat modulation observed in RSA, illustrated in Fig-
ure 2.6.

In addition to central neural control, mechanical factors also contribute. Changes in
intrathoracic pressure during respiration alter venous return and activate the barorecep-
tor reflex. Baroreceptors, located in the carotid sinus and aortic arch, sense fluctuations
in arterial pressure and trigger compensatory adjustments in heart rate and vascular
tone via autonomic pathways [24]. The combined neural and mechanical mechanisms
make RSA a sensitive index of parasympathetic responsiveness. It is typically more
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Figure 2.6: Schematic illustration of RSA, showing the ECG signal and respiratory trace. RR
intervals shorten during inhalation and lengthen during exhalation, reflecting vagal modula-
tion of heart rate. Adapted from [23].

pronounced at rest, particularly during slow and deep breathing, and attenuates under
stress, during physical exertion, or when sympathetic activity dominates. RSA is also
age-dependent, being strongest in healthy children and young adults, and progres-
sively declining with aging, cardiovascular disease, and autonomic neuropathies [25].

Heart rate variability represents a broader non-invasive marker of autonomic regu-
lation, reflecting the dynamic balance between sympathetic and parasympathetic ac-
tivity. Reduced HRV has been consistently associated with impaired cardiac auto-
nomic control and increased risk of adverse cardiovascular outcomes [26]. HRV is
also sensitive to environmental and physiological stressors; for instance, air pollution,
temperature extremes, and psychological stress can reduce HRV, signaling a shift in
autonomic balance and increased cardiovascular vulnerability [27]. The HRV can be
quantified using both time-domain and frequency-domain measures. In the time do-
main, commonly used indices include the standard deviation of normal-to-normal
intervals, which reflects overall variability, and the root mean square of successive
differences, which captures short-term vagal modulation. In the frequency domain,
spectral analysis of RR intervals decomposes variability into distinct components: the
high-frequency (HF) band (0.15–0.4 Hz), which reflects parasympathetic activity and
encompasses RSA, and the low-frequency (LF) band (0.04–0.15 Hz), which repre-
sents a combination of sympathetic and parasympathetic influences. These classical
HRV measures form the basis for assessing autonomic function in both clinical and
experimental studies, including those presented in Paper IV. However, it should be
emphasized that in arrhythmic conditions such as AF, conventional interpretation of
HRV metrics are not applicable, since ventricular rhythm is irregular and not initiated
by the sinus node.
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2.4 Atrial Fibrillation

Atrial fibrillation currently affects an estimated 30 to 46 million individuals world-
wide, with projections indicating that this number could double by 2050 due to pop-
ulation aging and improved detection methods [28]. AF is characterized by rapid,
disorganized electrical activity in the atria, leading to ineffective atrial contraction
and an irregular ventricular response. Clinically, this arrhythmia can manifest as pal-
pitations, fatigue, dyspnea, or may remain entirely asymptomatic. Despite variable
presentation, AF is strongly associated with an increased risk of stroke, heart failure,
and all-cause mortality [29].

According to the 2024 ESC Guidelines [1], AF should be classified using a combina-
tion of temporal pattern and additional descriptors:

• First-diagnosed AF : AF that has not previously been documented, regardless of
symptom status, temporal pattern, or duration.

• Paroxysmal AF : AF that terminates within 7 days, either spontaneously or with
intervention. Most self-terminating episodes last less than 48 hours.

• Persistent AF : AF that does not terminate spontaneously, with many clinical
studies using 7 days as a practical cut-off.

• Long-standing persistent AF : Continuous AF lasting ≥12 months.

• Permanent AF : AF in which no further attempts will be made to restore sinus
rhythm, following shared decision-making between patient and physician.

In addition to these categories, the 2024 ESC Guidelines emphasize complementary
descriptors that provide further clinical context. These include AF burden (the propor-
tion of time spent in AF during monitoring), recent-onset AF, trigger-induced AF (AF
occurring in proximity to a reversible precipitating factor), and early AF (defined as
3–24 months from first diagnosis). Moreover, the guidelines highlight the distinction
between self-terminating and non-self-terminating AF, which may have implications
for rhythm-control strategies. These classifications are based on observed temporal
patterns and clinical context rather than underlying mechanisms, and reclassification
may be required as the disease evolves. AF progression is common, with many patients
transitioning from paroxysmal to more sustained forms over time. Symptoms of AF
vary widely and may include palpitations, fatigue, and shortness of breath; however,
many patients remain asymptomatic [1].
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2.4.1 AF mechanisms

Atrial fibrillation is typically triggered by ectopic electrical activity, most frequently
originating from the pulmonary veins, especially the left superior pulmonary vein.
However, a trigger alone is not sufficient. For AF to persist, a permissive atrial sub-
strate must be present, shaped by remodeling processes and electrophysiological het-
erogeneity [30]. The development and maintenance of AF involve a complex interplay
of four key pathophysiological mechanisms: electrical remodeling, structural remod-
eling, autonomic nervous system alterations, and intracellular calcium handling ab-
normalities [28].

Electrical remodeling includes the down-regulation of the L-type calcium current
(ICa), up-regulation of background potassium currents such as the inward rectifier
current (IK1), and enhancement of the acetylcholine-activated potassium current. As
described in Sec.2.2.1 and illustrated in Fig.2.3, these ionic changes lead to shortened
action potential duration (APD), reduced refractoriness, and disrupted conduction,
all of which promote reentrant arrhythmias [31]. Altered gap junction coupling may
further contribute to conduction heterogeneity [32].

Structural remodeling encompasses atrial enlargement and fibrosis, both of which con-
tribute to slowed conduction and the formation of reentrant circuits. Fibrosis in par-
ticular creates regions of conduction block and anisotropy, increasing the likelihood
of wavebreaks. These structural changes are often driven by underlying conditions
such as hypertension, heart failure, or the presence of AF itself, supporting the con-
cept that “AF begets AF” [32, 33].

The role of ANS in AF has been recognized for decades. Early work by Coumel [34]
implicated autonomic imbalance in paroxysmal AF, and subsequent studies, includ-
ing HRV analysis [35] and direct nerve recordings in canine models [36, 37], demon-
strated that simultaneous sympathetic and parasympathetic activation may precede
AF onset. Mechanistically, both autonomic branches can shorten atrial refractory pe-
riods and promote triggered activity, while autonomic hyperinnervation, particularly
in atrial tissue, has been linked to spontaneous ectopic discharges and AF initiation.
These influences remain clinically relevant in permanent AF, where rate control strate-
gies act partly by modulating ANS tone [38, 39].

Calcium handling abnormalities further contribute to the initiation and maintenance
of AF. Defective regulation of intracellular Ca2+ leads to spontaneous sarcoplasmic
reticulum calcium release events, which in turn activate the sodium–calcium exchanger.
The resulting transient inward current can cause delayed afterdepolarizations, thereby
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triggering ectopic atrial activity [40]. In addition, impaired calcium reuptake and
altered ryanodine receptor function promote intracellular Ca2+ overload and electri-
cal instability, further facilitating abnormal impulse formation and arrhythmogenic
conduction [41].

2.4.2 AF management

The management of AF typically involves a combination of anticoagulation therapy
and one of two core strategies: rate control or rhythm control. While anticoagulants are
prescribed to mitigate the elevated risk of thromboembolic events, especially stroke,
the choice between rate and rhythm control depends on patient-specific factors, symp-
tom burden, and disease progression [42].

Rate control aims to regulate the ventricular response by slowing the heart rate with-
out necessarily restoring sinus rhythm. This approach is often preferred as a first-line
strategy, particularly in older or minimally symptomatic patients [42]. Pharmacolog-
ical agents such as beta-blockers and calcium channel blockers are commonly used to
decrease AV nodal conduction, thereby reducing the number of atrial impulses that
reach the ventricles. The target resting heart rate is typically set below 80 beats per
minute [43].

Rhythm control focuses on restoring and maintaining sinus rhythm and may be con-
sidered in patients who remain symptomatic despite adequate rate control or in those
with early-stage AF to prevent disease progression [1]. Cardioversion, either pharma-
cologic or electrical, can be used to restore sinus rhythm, and antiarrhythmic drugs
may be prescribed to prevent recurrence [1]. In patients with symptomatic AF who
fail or are intolerant to antiarrhythmic drug therapy, catheter ablation may be offered
as a rhythm control strategy. The primary purpose of ablation is to electrically isolate
the pulmonary veins, which are common sources of AF triggers, thereby reducing
arrhythmia recurrence. Ablation is particularly effective in patients with paroxysmal
AF and less so in advanced or long-standing forms, where structural remodeling limits
efficacy [44, 45].



Chapter 3

ECG Based Analysis of Atrial
Fibrillation

3.1 ECG in AF

The surface ECG shows AF in characteristic ways that are used for both clinical iden-
tification and quantitative analysis. The most typical features are the absence of orga-
nized P-waves, reflecting the loss of coordinated atrial depolarization; the presence of
rapid, low-amplitude oscillations known as fibrillatory waves (f-waves); and an “irreg-
ularly irregular” ventricular response, which produces beat-to-beat variability in RR
intervals due to unpredictable AV conduction.

These features are illustrated in Figure 3.1, which shows a representative ECG seg-
ment from a patient with persistent AF. Among the standard 12 leads, lead V1 is
often most informative for atrial activity, as its anatomical orientation enhances the
visibility of f-waves [46]. In contrast, limb leads typically display lower-amplitude
fibrillatory activity and more prominent ventricular complexes. While these char-
acteristics are sufficient for visual diagnosis of AF, quantitative analysis requires the
isolation of atrial activity from the dominating ventricular complexes. This motivates
the development of dedicated methods for f-wave extraction, which are described in
the following section.

19
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Figure 3.1: Example of ECG recording during AF.

3.2 Extraction of f-waves

The extraction of f-waves from surface ECG recordings during AF plays a central role
in the quantitative analysis and characterization of atrial activity. Historically, clinical
interpretation of f-waves was limited to descriptive assessments, such as distinguishing
between “coarse” and “fine” fibrillatory activity. However, a turning point occurred
in the late 1990s when two pivotal studies [47, 48] demonstrated that spectral analy-
sis of f-waves could provide meaningful insights into atrial refractoriness and predict
pharmacological cardioversion outcomes. These findings emphasized the need for ro-
bust signal processing techniques capable of isolating f-waves from the dominating
ventricular activity. In this context, the term f-wave extraction refers specifically to
the removal of ventricular components, primarily the QRST complex, from the ECG
to isolate atrial activity.

Designing an effective f-wave extraction method involves numerous considerations,
including the number of leads available, signal duration, presence of noise and ar-
tifacts, and the occurrence of ectopic beats like ventricular premature beats (VPBs).
While early methods operated on individual leads, it soon became evident that mul-
tilead analysis provides significant advantages, particularly through the use of signal
separation techniques that exploit the distinct spatial origins of atrial and ventricular
signals. Respiratory modulation, short recordings (e.g., 10-second ECGs), and VPBs
present additional technical challenges that must be carefully addressed to avoid resid-
ual artifacts or distortions in the extracted atrial signal. Given these complexities, a



21

wide variety of methods have been developed to tackle f-wave extraction, each with
its own strengths, assumptions, and limitations. These methods range from ensemble-
based subtraction techniques to adaptive and statistical filtering approaches. In the
following sections, several prominent extraction methods are briefly explained, begin-
ning with average beat subtraction and progressing toward more advanced strategies
such as adaptive filtering, principal component analysis, and independent component
analysis.

3.2.1 Average Beat Subtraction (ABS)

Average Beat Subtraction (ABS) is one of the most well-established techniques for ex-
tracting f-waves from individual ECG leads. Initially developed for detecting atrioven-
tricular dissociation during ventricular tachycardia, it has been widely adopted for pro-
cessing AF signals due to its conceptual simplicity and clinical applicability [49, 50].

The core principle of ABS is to treat the ECG signal as a combination of two compo-
nents: the ventricular activity (QRST complex) and a residual signal, which includes
both the atrial activity (f-waves) and extracardiac noise. Mathematically, each beat
segment xi(n) of the ECG signal is modeled as:

xi(n) = s(n) + zi(n), i = 1, . . . ,M, n = 0, . . . , N − 1, (3.1)

where s(n) represents the underlying QRST complex assumed common across beats,
and zi(n) is the residual component composed of the atrial signal di(n) and noise
vi(n):

zi(n) = di(n) + vi(n). (3.2)

Here, M is the number of beats in the ensemble, and N is the number of samples in
each beat. In its simplest form, ABS uses ensemble averaging to estimate the ventric-
ular template ŝ(n):

ŝ(n) =
1

M

M∑
i=1

xi(n). (3.3)

The f-wave estimate for beat i is then obtained by subtracting the average QRST
template:

d̂i(n) = xi(n)− ŝ(n). (3.4)

This method assumes that ventricular activity is relatively invariant across beats, while
atrial activity and noise are uncorrelated and randomly distributed. When this as-
sumption holds, the averaging process attenuates non-repetitive components (e.g.,
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f-waves), leaving behind a reliable QRST estimate.

However, ABS faces challenges in practice. Beat-to-beat variations in QRST mor-
phology, caused by respiration, noise, or ectopic activity, can degrade the accuracy
of the average template. To address this, morphology-specific averaging can be per-
formed, where beats are first clustered based on shape before averaging. The accuracy
of subtraction tends to be higher near the QRS complex, with increasing variance
towards the boundaries of the cardiac cycle, since fewer samples are aligned for av-
eraging. To address slow changes in QRST morphology over time, an exponential
averaging approach can be used [51]:

ŝi(n) = ŝi−1(n) + α(xi(n)− ŝi−1(n)), 0 < α < 1, (3.5)

where the weighting factor α controls the adaptability of the template. This recursive
formulation enables gradual tracking of morphological drift, which is common in
long recordings. Despite its simplicity and limitations, ABS remains a foundational
method for QRST cancellation and f-wave extraction. It often serves as a baseline
against which more advanced techniques, such as ICA and adaptive filtering, are com-
pared.

3.2.2 Adaptive Filtering

Adaptive filtering is one of the established approaches for extracting f-waves, where the
QRST complex is dynamically estimated and subtracted from the ECG [52]. Unlike
template-based methods that rely on averaging, adaptive filters continuously update
their estimate of the ventricular activity in real-time, allowing the system to adapt to
changes in QRS morphology caused by respiration, noise, or ectopic beats. In the
context of f-wave extraction, adaptive filtering typically operates using a reference sig-
nal that is highly correlated with the QRST complex but uncorrelated with the atrial
activity [53]. This reference may be derived from another lead in a multichannel ECG
or generated by combining multiple leads using spatial filtering techniques. The most
common implementation involves the least mean squares (LMS) algorithm, which
iteratively adjusts filter coefficients to minimize the error between the primary signal
and the estimated ventricular component.

Let x(n) represent the primary ECG signal containing both atrial and ventricular
activity, and let r(n) be the reference signal. The adaptive filter generates an estimate
ŝ(n) of the ventricular activity using a linear filter:

ŝ(n) =

L−1∑
k=0

wk(n)r(n− k), (3.6)



23

where wk(n) are the time-varying filter coefficients and L is the filter length. The
f-wave signal is then obtained as the residual:

d̂(n) = x(n)− ŝ(n). (3.7)

The coefficients are updated recursively using the LMS rule:

wk(n+ 1) = wk(n) + µ · e(n) · r(n− k), (3.8)

where µ is the step-size parameter and e(n) = x(n) − ŝ(n) is the estimation error.
Adaptive filtering offers several advantages, including the ability to track slow varia-
tions in ventricular morphology and to operate in real-time. It is particularly useful
in long-duration recordings where beat-to-beat variability may be substantial. How-
ever, its performance heavily depends on the availability of a clean and informative
reference signal. If the reference signal contains significant atrial content or is poorly
correlated with the ventricular activity in the primary signal, the subtraction may be
incomplete or introduce artifacts. Despite this limitation, adaptive filtering remains a
valuable tool for f-wave extraction, especially when combined with multilead record-
ings or in conjunction with other preprocessing techniques that enhance reference
signal quality.

3.2.3 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical technique used for dimensionality
reduction and signal separation, which has been effectively applied to the extraction
of f-waves in multilead ECG recordings. The method exploits the fact that ventricu-
lar activity typically dominates the surface ECG and is highly correlated across leads,
while atrial activity tends to be spatially more diverse and contributes less variance [54].
PCA transforms the multilead ECG data into a new set of orthogonal components,
principal components, ranked by the amount of variance they explain in the signal.
The first few components generally capture most of the QRST-related variance, while
later components retain information with lower energy, such as the f-waves and noise.

Let the multilead ECG signal be represented by a matrix X ∈ RN×L, where each
column corresponds to one of the L leads and each row to a time sample. PCA
computes the covariance matrix:

C =
1

N − 1
X⊤X, (3.9)

and performs eigenvalue decomposition:

C = UΛU⊤, (3.10)
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where U contains the eigenvectors (principal components) and Λ is a diagonal matrix
of eigenvalues. To remove the ventricular component, only the first K principal com-
ponents corresponding to the largest eigenvalues are retained and used to reconstruct
the QRST activity:

Ŝ = XUKU⊤
K , (3.11)

where UK contains the first K columns of U. The estimated f-wave signal is then
obtained as:

D̂ = X− Ŝ. (3.12)

PCA is especially useful when a sufficient number of leads (e.g., 8–12) are available,
and when beat morphology is relatively consistent across the recording. It is fully
data-driven and does not require explicit beat detection or QRST alignment, which
can be advantageous in noisy or artifact-prone signals. However, PCA is limited by
its assumption of orthogonal sources and its reliance on energy dominance for signal
separation. If the f-waves or noise dominate some leads, they may be inadvertently
included in the leading components and removed during subtraction.

3.2.4 Independent Component Analysis (ICA)

Independent Component Analysis (ICA) is a blind source separation technique that
extends the concept of principal component analysis (PCA) by aiming to recover sta-
tistically independent, rather than merely uncorrelated, components. In the context
of AF, ICA models the multilead ECG as a linear mixture of physiologically distinct
sources, including ventricular activity, atrial activity (f-waves), and background noise.
The central assumption is that atrial and ventricular signals originate from indepen-
dent electrophysiological processes, which can therefore be separated by maximizing
the non-Gaussianity of the extracted components. This enables isolation of compo-
nents corresponding to QRST complexes and f-waves without requiring explicit prior
knowledge of their morphology.

Different ICA implementations have been proposed for atrial activity extraction. Ri-
eta et al. [55] applied the FastICA algorithm, identifying the atrial component by
its sub-Gaussian distribution (low kurtosis) and the presence of a dominant spec-
tral peak in the AF frequency range. Castells et al. [56], on the other hand, in-
troduced a maximum-likelihood ICA approach that explicitly incorporates prior as-
sumptions about the source distributions (super-Gaussian for ventricular activity and
sub-Gaussian for atrial activity). Both approaches exploit the same underlying in-
dependence assumption and linear mixing model, but they differ in their degree of
reliance on prior statistical models: FastICA is data-driven with minimal assumptions,
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whereas maximum-likelihood ICA leverages predefined source distributions to poten-
tially improve separation and allow quantitative evaluation in simulations.

Let the multilead ECG signal be represented by a data matrix X ∈ RN×L, whereN is
the number of samples and L the number of leads. The observed signals are modeled
as a linear mixture:

X = AS, (3.13)

where A is an unknown mixing matrix and S contains the independent source signals.
ICA estimates an unmixing matrix W such that:

Ŝ = WX, (3.14)

where Ŝ contains the statistically independent components. Among these compo-
nents, those representing QRST activity are identified based on their temporal mor-
phology and amplitude. To reconstruct their contribution in the original signal space,
the corresponding columns of the mixing matrixA are needed. These can be estimated
as the pseudo-inverse of the unmixing transformation, i.e. A ≈ W−1, after which the
QRST-related submatrix AQRST is obtained by retaining only the columns associated
with ventricular components. The ventricular contribution is then reconstructed as
ŜQRST · AQRST and subtracted from the raw ECG to isolate the atrial signal:

D̂ = X− ŜQRSTAQRST. (3.15)

ICA has proven highly effective in multilead recordings where the number of leads
exceeds the number of underlying sources. It does not require beat detection, QRST
alignment, or template averaging, making it suitable for continuous, unsegmented
ECG analysis. Moreover, ICA is robust to overlapping atrial and ventricular activity
due to its statistical formulation.

However, ICA has limitations. Its success depends on the validity of the independence
assumption and the number of available leads. In underdetermined systems (fewer
leads than sources), ICA cannot uniquely resolve all components. Additionally, com-
ponents extracted by ICA may not be easily interpretable without post-processing or
validation.

3.2.5 Spatiotemporal QRST Cancellation

The f-wave extraction in this thesis was performed using the spatiotemporal QRST
cancellation method developed by Stridh and Sörnmo [57]. This approach generalizes
ABS by introducing both spatial and temporal alignment in order to compensate for
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variations in QRS morphology that arise from respiration, electrode placement, and
beat-to-beat variability. These factors frequently cause incomplete cancellation with
simpler techniques, leaving ventricular residuals that obscure the atrial activity. In the
spatiotemporal framework, each observed beat in the multilead ECG is modeled as
the sum of atrial activity (YA), ventricular activity (YV ), and additive noise (W0):

Y = YA + YV +W0. (3.16)

The ventricular contribution is represented by an averaged beat template X that is
aligned to the observed beat through a combination of temporal and spatial trans-
formations. Temporal alignment is achieved with a shift matrix Jτ , which corrects
for small misalignments in QRS timing, while spatial alignment is performed with a
transformation matrix S defined as

S = DQ, (3.17)

where D is a diagonal amplitude-scaling matrix and Q is a rotation matrix. The ven-
tricular activity is therefore modeled as

YV = JτXS. (3.18)

The cancellation task consists of estimating the optimal parameters D, Q, and τ
by minimizing the squared error between the observed beat and the aligned template:

min
D,Q,τ

∥Y− JτXS∥2F , (3.19)

where ∥ · ∥F denotes the Frobenius norm. Because the presence of f-waves may bias
parameter estimation, an intermediate estimate of the atrial activity is first constructed
from adjacent TQ intervals and subtracted, yielding a residual signal Z with reduced
atrial content. The optimization is then performed on Z, after which the final cancel-
lation is applied to the original signal. This iterative procedure converges rapidly and
provides robust estimates of the alignment parameters.

The spatiotemporal method has been shown to reduce QRS-related residuals by nearly
40% compared to ABS, with the largest improvements during the QRS complex it-
self [57]. This performance advantage is particularly important for spectral and time–
frequency analysis of f-waves, where contamination from ventricular activity can bias
frequency estimation or obscure autonomic modulations. The main limitations of the
method are its dependence on multilead ECGs, increased computational complexity
relative to ABS, and a tendency for residuals to remain during the T wave when its
morphology varies substantially. Nonetheless, these drawbacks are outweighed by the
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significant improvements in cancellation accuracy. For these reasons, the spatiotem-
poral QRST cancellation method was selected for all studies in this thesis. Its ability
to exploit multilead information and adapt to beat-to-beat variations ensured a more
faithful isolation of atrial activity, which was essential for investigating autonomic
modulation, respiratory influences, and methodological extensions of f-wave analy-
sis.

3.3 Characterization of f-waves

Once the ventricular activity has been effectively removed, the residual signal primar-
ily reflects atrial activity, which can be analyzed using a variety of signal processing
techniques. Commonly used descriptors include time-domain metrics such as ampli-
tude, frequency-domain parameters like atrial fibrillatory rate (AFR), and measures
of signal complexity or regularity. These features provide different views of how the
atria behave during AF and are useful for both clinical assessment and AF monitoring
[58, 59].

3.3.1 Amplitude

One of the earliest and most intuitive features used to characterize f-waves is their
amplitude. Historically, f-waves were classified as either “coarse” (≥0.1 mV) or “fine”
(<0.1 mV) based on visual inspection, with this categorization typically performed in
leads II and V1 [60, 61]. Coarse f-waves are generally associated with more organized
atrial activity, while fine f-waves are typically associated with increased atrial remod-
eling, fibrosis, and a more disorganized substrate [62].

Several methods have been proposed for quantifying f-wave amplitude. It can be
measured directly from the f-wave signal, for example by averaging the largest peak-
to-peak values in a 10-s recording, or by computing the root-mean-square value of the
f-wave signal samples, which reflects the average signal amplitude over time. An alter-
native technique involves envelope detection based on local extrema. In this method,
the amplitude estimate â is calculated from Nx samples of the f-wave signal x(n) as:

â =
1

Nx

Nx−1∑
n=0

|xmax(n)− xmin(n)|, (3.20)

where xmax(n) and xmin(n) represent interpolated local maxima and minima, respec-
tively, typically derived using piecewise cubic Hermite interpolation [63].
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However, accurate amplitude estimation can be confounded by residual ventricular
activity that remains after QRST cancellation. Even small QRS-related residuals may
distort the atrial signal and artificially increase the estimated amplitude. To address
this, some studies restrict the analysis to carefully selected QRS-free segments of the
ECG, while others apply alternative definitions such as averaging only the largest f-
wave peaks within a segment [64, 65]. These strategies aim to minimize ventricular
contamination and improve the robustness of amplitude estimates.

3.3.2 Atrial Fibrillatory Rate (AFR)

Atrial Fibrillatory Rate (AFR) is one of the most widely used and clinically informative
features for quantifying atrial activity during atrial fibrillation. It reflects the average
activation frequency of the atria and serves as an indirect indicator of atrial refrac-
toriness [66]. AFR is most commonly estimated in the frequency domain following
QRST cancellation, where it is defined as the frequency corresponding to the domi-
nant peak of the power spectral density (PSD) of the f-wave signal. Welch’s method
is typically used for PSD estimation, as it reduces variance by averaging spectra from
overlapping windowed segments. Specifically, if x(n) is divided into K overlapping
segments xk(n) of length M , each weighted by a window w(n), the periodogram of
segment k is given by

Pk(f) =
1

MU

∣∣∣∣∣
M−1∑
n=0

xk(n)w(n)e
−j2πfn

∣∣∣∣∣
2

, (3.21)

where U is a normalization factor for window energy. The Welch estimate of the PSD
is obtained by averaging across all segments:

P̂ (f) =
1

K

K∑
k=1

Pk(f). (3.22)

AFR is then identified as the dominant frequency fAFR within the physiological range
of 3–10 Hz (commonly 4–9 Hz) [67]. Figure 3.2 illustrates an example of an extracted
f-wave signal and its corresponding Welch spectrum, with the AFR marked at 4.9 Hz.
Lead V1 is often favored for AFR estimation due to its prominent atrial signal content,
although multilead averaging can improve robustness by mitigating localized noise or
electrode variability [68].

Clinically, AFR has proven valuable for stratifying AF severity and predicting treat-
ment outcomes. Higher AFR values are associated with more disorganized atrial ac-
tivity, long-standing persistent AF, and lower success rates of cardioversion [69]. In
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Figure 3.2: Example of (a) an extracted f-wave signal and (b) its corresponding power spec-
trum estimated with Welch’s method. The AFR at 6.7 Hz, is indicated by a star.

contrast, lower AFR values are typically observed in paroxysmal AF and may reflect
a more organized and reversible atrial substrate [69]. Nevertheless, AFR estimation
remains sensitive to imperfect QRST cancellation and residual noise, making careful
preprocessing and lead selection essential for reliable results.

3.3.3 Time-Varying AFR Analysis

Beyond static estimation, AFR can vary considerably over short time scales, reflecting
the dynamic nature of atrial activation. Tracking these variations provides additional
insight into AF mechanisms and their modulation by interventions, vagal activity, or
spontaneous rhythm changes [70]. A range of time–frequency and adaptive methods
have been developed for this purpose.

Short-Time Fourier Transform (STFT)
The simplest approach is the short-time Fourier transform (STFT), in which the f-
wave signal x(n) is multiplied by a sliding analysis window w(n) and transformed to
yield

X(n, ω) =
∞∑

l=−∞
x(l)w(l − n)e−jωl. (3.23)
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The squared magnitude Sx(n, ω) = |X(n, ω)|2 produces a spectrogram that reveals
the temporal evolution of the dominant frequency. STFT is easy to implement and
widely used, but it suffers from a fundamental trade-off: short windows yield good
time resolution but poor frequency resolution, and vice versa [71].

Wigner-Ville and Cross Wigner-Ville Distributions

Quadratic time–frequency methods, such as the Wigner–Ville distribution (WVD),
provide higher joint time–frequency resolution compared to linear approaches like
STFT [72, 73]. For a signal x(n), the discrete-time WVD is defined as

Wx(n, ω) =

∞∑
m=−∞

x
(
n+ m

2

)
x∗

(
n− m

2

)
e−jωm, (3.24)

where x∗(·) denotes the complex conjugate of x(·). The WVD produces a time–
frequency distribution that is highly concentrated around the instantaneous frequency
of the signal. This makes it attractive for tracking rapid AFR changes that may be
missed by STFT due to its resolution trade-off.

However, the quadratic formulation introduces cross-terms when multiple compo-
nents are present, such as harmonics of the fibrillatory frequency or residual ventric-
ular activity. These cross-terms appear as spurious oscillatory structures in the time–
frequency plane and complicate interpretation in real ECG signals with low SNR.
The cross Wigner–Ville distribution (XWVD) reduces these artifacts by computing
the distribution between the signal of interest x(n) and a reference sinusoid y(n),
typically based on an initial STFT estimate of the dominant frequency ω0(n) [70].
Iterative refinement is then performed:

Wx,y(n, ω) =

∞∑
m=−∞

x
(
n+ m

2

)
y∗
(
n− m

2

)
e−jωm. (3.25)

The updated dominant frequency ω̂0(n) is extracted from Wx,y(n, ω) and used to
construct a new reference signal, iterating until convergence. This iterative XWVD
framework allows smoother tracking of AFR dynamics [70]. The main advantages
of WVD/XWVD are their high joint time–frequency resolution and ability to reveal
rapid AFR fluctuations. Their limitations are sensitivity to noise, computational cost,
and the persistence of cross-term artifacts, especially when multiple atrial wavelets
contribute to the signal.
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Spectral Profile Method
The spectral profile method was developed to overcome the smearing and harmonic
distortion often observed in STFT- or WVD-based analyses. Instead of treating each
time segment independently, this method aligns and averages spectra from consecutive
segments on a logarithmic frequency scale, thereby enhancing harmonic structure and
suppressing noise [74]. Given a segment xp(n) with N samples, the nonuniform
discrete-time Fourier transform is computed as

qp(νℓ) =
N−1∑
n=0

xp(n)w(n)e
−jνℓn, ℓ = 0, . . . , L− 1, (3.26)

where w(n) is a window function and νℓ are logarithmically spaced frequencies de-
fined by

νℓ = νlow π
ηℓ
L , ℓ = 0, . . . , L− 1. (3.27)

Here, νlow is the lowest frequency of interest (in normalized digital frequency), η deter-
mines the spacing factor, and L is the number of frequency bins. The corresponding
upper frequency is given by νhigh = νlowπ

η.
The resulting spectra |qp(νℓ)| are shifted and scaled to align their dominant peaks,
after which an exponentially weighted average is performed to update the spectral
profile ϕ̂p:

ϕ̂p+1 = (1− αp)ϕ̂p + αpJ−θ̂p

|qp|
∥J−θ̂p

|qp|∥
, (3.28)

where J−θ̂p
is a shift operator aligning the first harmonic to a fixed reference position,

and αp is a forgetting factor controlling update speed.

The main advantage of this method is a much cleaner harmonic representation com-
pared to Welch’s method or the spectrogram, enabling reliable tracking of the har-
monic structure even in noisy signals. Importantly, while the spectral profile itself is
aligned to a reference, the AFR is obtained from the sequence of alignment shifts θ̂p.
Specifically, the frequency of the first harmonic in the p-th segment is estimated as

ω̂0,p = ω̂0,0 − θ̂p, (3.29)

where ω̂0,0 is the initialization point of the spectral profile. Thus, the profile provides
robustness to noise and spectral leakage, while the shift estimates yield accurate AFR
tracking. The limitations of the spectral profile method are its higher computational
complexity, its dependence on accurate alignment, and the fact that it has seen limited
use in large-scale clinical studies compared to simpler approaches.
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Adaptive Frequency Tracking
An alternative is adaptive line enhancement, which models the analytic representation
of the signal as

x(n) = A0e
jω0n + v(n), (3.30)

where A0 and ω0 denote the amplitude and fundamental frequency, respectively, and
v(n) is additive noise. Although the measured signal is real-valued, its complex-valued
analytic representation, obtained using the Hilbert transform, is employed here, since
this formulation simplifies the estimation of instantaneous frequency while remaining
fully applicable to real signals [75, 76].

A time-varying first-order bandpass filter H(z;n) with complex coefficients is then
applied to enhance the sinusoidal component:

H(z;n) =
1− β

1− βejω(n)z−1
, (3.31)

where ω(n) is the time-varying center frequency and 0 < β < 1 controls the band-
width. The filter has unit gain and zero phase delay at ω(n), ensuring that the har-
monic component is preserved without distortion. The center frequency ω(n) is
adapted on a sample-by-sample basis using a recursive error-minimization approach.
Specifically, the filter output y(n) is assumed to satisfy the discrete oscillator relation

y(n) ≈ ejω(n+1)y(n− 1). (3.32)

The instantaneous frequency ω(n) is then estimated by minimizing the mean square
error

J(n) = E{|y(n)− ejω(n+1)y(n− 1)|2}. (3.33)

This leads to the recursive definition

Q(n) = Q(n− 1) + α
(
y(n)y∗(n− 1)−Q(n− 1)

)
, (3.34)

ω̂0(n+ 1) = arg(Q(n)), (3.35)

where α is a smoothing factor (0 < α < 1). Here, Q(n) represents the exponen-
tially smoothed correlation between consecutive filter outputs, i.e., a running average
of y(n)y∗(n − 1). The phase angle of Q(n) provides a robust estimate of the in-
stantaneous frequency ω̂0(n). The recursion is typically initialized with Q(0) = 0,
although in practice one may also use Q(0) = y(1)y∗(0) to accelerate convergence.
Since exponential averaging ensures rapid convergence, the specific choice of initial-
ization has little influence on long-term tracking performance [52]. This adaptive
mechanism allows the filter to track slow variations in ω0 while suppressing noise,
thereby enabling robust frequency tracking [75, 76].
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3.3.4 Complexity and Regularity

Beyond amplitude- and frequency-based measures, the complexity and regularity of
f-waves offer additional insight into the organization of atrial activity during AF [77].
These nonlinear measures quantify the unpredictability or irregularity of a time series,
with higher values indicating greater disorder. In the context of f-waves, increased
entropy values typically correspond to more chaotic and fragmented atrial activation,
which may reflect advanced structural remodeling or persistent AF [78, 79]. Several
entropy-based measures have been proposed:

• Shannon entropy and spectral entropy: Shannon entropy is a classical mea-
sure of uncertainty for a discrete probability distribution pi:

H = −
M∑
i=1

pi log pi. (3.36)

In f-wave analysis, two domains are typically considered:

– Time domain: pi represents the normalized probability of occurrence of
amplitude levels within the f-wave segment, usually estimated from a his-
togram of the signal. Higher values indicate more irregular atrial activity,
whereas lower values correspond to more organized activity [80].

– Frequency domain (spectral entropy): Shannon entropy applied to the nor-
malized power spectrum P (fk):

P (fk) =
Sx(fk)∑L
j=1 Sx(fj)

, Hs = −
L∑

k=1

P (fk) logP (fk), (3.37)

where Sx(fk) is the spectral power at frequency fk. A narrowband spec-
trum (organized activity) yields low entropy, while a broadband spectrum
(disorganized activity) yields high entropy [81].

• Approximate entropy (ApEn): Quantifies the likelihood that similar sequences
of length m remain similar when extended to m+1 points [82]. Given a time
series {x(1), . . . , x(N)}, vectors of length m are formed as

Xm(i) = [x(i), x(i+1), . . . , x(i+m−1)], 1 ≤ i ≤ N −m+1 (3.38)

For each Xm(i), the fraction of neighboring vectors Xm(j) within distance r
is

Bm
i (r) =

1

N −m+ 1
#{j : d[Xm(i), Xm(j)] ≤ r}, (3.39)
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where d[·] is the maximum absolute difference between corresponding elements.
The average logarithmic probability of similarity is then

Φm(r) =
1

N −m+ 1

N−m+1∑
i=1

logBm
i (r), (3.40)

Finally,
ApEn(m, r,N) = Φm(r)− Φm+1(r). (3.41)

Higher ApEn values indicate less predictable temporal dynamics. In AF re-
search, ApEn has been widely used to quantify f-wave complexity in surface
ECGs, providing insight into atrial organization [83]. However, studies con-
firmed that ApEn and related metrics are sensitive to signal irregularities and
artifacts such as spikes, which is critical when analyzing atrial activity [84].

• Sample entropy (SampEn): A refinement of ApEn that reduces bias for short
data segments by excluding self-matches [85]. Like ApEn, SampEn evaluates
the conditional probability that sequences of lengthmwhich are similar within
tolerance r remain similar at length m + 1. If B and A denote the counts of
matches of length m and m+ 1, respectively, then

SampEn(m, r,N) = − ln
A

B
. (3.42)

By avoiding self-matches, SampEn provides a less biased and more consistent
measure, particularly for shorter recordings. In AF analysis, SampEn has been
applied to f-waves to quantify irregularity, and has even been shown to predict
spontaneous AF termination after catheter ablation [83, 86].

These entropy-based measures are particularly useful for distinguishing between differ-
ent AF types (e.g., paroxysmal vs. persistent) or for tracking changes in atrial dynamics
over time. Several studies have demonstrated their value for patient characterization
and clinical stratification [66, 80, 83].

3.4 Modelling of f-waves

While ECG signal databases, such as those available on PhysioNet [87], are essential
for developing and evaluating analysis methods, simulated signals offer distinct advan-
tages in controlled experimental settings. Simulated data allow precise control over
signal characteristics through parameterization, making it possible to systematically
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assess algorithm performance. This enables the use of quantitative metrics to com-
pare estimated values against known ground truth. Furthermore, simulations can be
generated under varying signal-to-noise ratios, facilitating robustness testing under
realistic conditions.

A widely used model for simulating f-waves is the saw-tooth model, first introduced
in [57] and subsequently applied in several studies for algorithm development and
validation [88, 89]. In this model, the synthetic f-wave signal is constructed as the
sum of K sinusoids with harmonically related amplitude and frequency modulation.
The simulated signal xsim(n) is defined as:

xsim(n) =
K∑
k=1

ak(n) sin
(
2πkf0n+ k

△F

Fm
sin(2πFmn)

)
, (3.43)

where f0 is the fundamental frequency (corresponding to the AFR), △F and Fm

define the maximum frequency deviation and modulation frequency, respectively. The
time-varying amplitude of the kth harmonic is given by:

ak(n) =
2

kπ
(a+△a sin(2πFan)) , (3.44)

where a is the average amplitude, and △a and Fa define the amplitude modulation
depth and frequency, respectively.

In Paper I [90], we proposed an enhanced version of the saw-tooth model to enable
more comprehensive performance evaluation. This modified model includes both
respiratory-induced frequency modulation and random variability in the f-wave signal.
The simulated waveform is constructed as:

x′sim(n) =
K∑
k=1

ak(n) sin(2πkf(n)n), (3.45)

where the instantaneous frequency f(n) varies over time according to:

f(n) =
f0
fs

+
∆f

2πfrn
sin

(
2πn

fr
fs

)
+

Φ(n)

2πkn
, (3.46)

Here, fr and∆f represent the frequency and magnitude of respiratory-induced mod-
ulation, respectively. The term Φ(n) introduces random phase variation, modeled as
white Gaussian noise with standard deviation σΦ, to simulate stochastic fluctuations
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in the f-wave signal.

Figure 3.3 shows several examples of the simulated f-wave signal x′sim(n) for different
levels of phase noise, illustrating how increasing σΦ leads to increasingly irregular fre-
quency content. This model enables flexible and realistic simulation of f-wave signals
for robust validation of signal processing algorithms.

Figure 3.3: Example of the x′
sim(n) with K = 2, f = 5 Hz, fr = 0.2 Hz, ∆f = 0.1 Hz,

and σΦa
= 0, σΦb

= 0.25, σΦc
= 0.5, σΦd

= 0.75, σΦe
= 1.

3.4.1 Model-based analysis of f-waves

Traditional time–frequency methods (see Sec. 3.3.3) provide valuable insight into
AFR dynamics and harmonics, but they involve trade-offs between temporal and spec-
tral resolution, robustness to noise, and interpretability. Adaptive trackers can offer
high temporal precision but are often unstable under low-SNR conditions. To over-
come these limitations, model-based approaches explicitly incorporate physiological
and signal priors, enabling robust estimation of AFR trajectories even from short and
noisy ECG segments. This motivates the use of model-based methods in Papers I–III.
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Although the f-wave saw-tooth model has been widely used to simulate atrial fibrilla-
tory signals, its relatively large number of parameters can make it impractical for direct
parameter estimation. To address this limitation, a harmonic model for f-waves was
introduced in [91] for estimating key signal components such as instantaneous fre-
quency, amplitude, and phase. In this model, the f-wave signal is represented as a
sum of complex exponentials with a fundamental angular frequency ω0 and its har-
monics:

s(n;ω0,θ) =

M∑
m=1

Amej(mω0n+ϕm). (3.47)

where Am and ϕm are the amplitude and phase of the mth harmonic, respectively.
Hence, the full parameter vector describing the f-wave signal characteristics is given
by θ = [A1, . . . , AM , ϕ1, . . . , ϕM ]T . These parameters, along with the frequency
ω0, are estimated using a maximum likelihood (ML) framework. The modeled signal
of length N , denoted s(ω0,θ), is given by

s(ω0,θ) = Z(ω0)a(θ), (3.48)

where Z(ω0) is an N×M Vandermonde matrix containing the harmonic basis func-
tions:

Z(ω0) =


1 1 · · · 1

ejω01 ej2ω01 · · · ejMω01

...
...

. . .
...

ejω0(N−1) ej2ω0(N−1) · · · ejMω0(N−1)

 , (3.49)

and a(θ) is an M × 1 complex vector combining amplitude and phase:

a(θ) = [A1e
jϕ1 , A2e

jϕ2 , . . . , AMejϕM ]T . (3.50)

The observed f-wave signal is represented in analytic form as xa(n), obtained by ap-
plying the Hilbert transform to the real-valued f-wave signal extracted from the ECG.
This yields a complex-valued analytic signal in which negative frequency components
are suppressed, thereby facilitating spectral modeling. The modeled signal s(n;ω0,θ)
represents the fitted harmonic expansion of xa(n), parameterized by the fundamental
frequency ω0, harmonic amplitudes Am, and phases ϕm. An example of an extracted
f-wave signal x(n) is shown in Fig. 3.4(a), with the corresponding fitted model s(n)
in Fig. 3.4(b).
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The relationship between the analytic observed signal and the harmonic model is ex-
pressed as

xa(n) = s(n;ω0,θ) + e(n), (3.51)

where e(n) denotes additive white complex Gaussian noise. Assuming a known noise
variance σ2, the likelihood function for xa is given by [91]

p(xa;ω0,θ) =
1

πNσ2N
exp

(
−|xa −Z(ω0)a(θ)|2

σ2

)
. (3.52)

The corresponding log-likelihood function becomes:

L(ω0,θ) = ln p(xa;ω0,θ) ∝ − 1

σ2
|xa −Z(ω0)a(θ)|2. (3.53)

Direct joint ML estimation of ω0 and θ is computationally intensive due to the high
dimensionality of the parameter space. In model-based spectral estimation, this is
typically addressed by first obtaining the least-squares (LS) estimate of a(θ) for a
fixed ω0:

â(θ) = (Z(ω0)
HZ(ω0))

−1Z(ω0)
Hxa, (3.54)

Substituting this estimate into the log-likelihood function reduces it to a function of
ω0 alone:

L(ω0) ∝ − 1

σ2

∣∣xa −Z(ω0)(Z(ω0)
HZ(ω0))

−1Z(ω0)
Hxa

∣∣2 , (3.55)

Finally, the ML estimate of the fundamental frequency ω0 is obtained by minimizing
this expression:

ω̂0 = arg min
ω0,min<ω0<ω0,max

∥∥xa −Z(ω0)(Z(ω0)
H Z(ω0))

−1Z(ω0)
H xa

∥∥2 , (3.56)

To estimate the fundamental frequency ω0, a grid search is performed over a prede-
fined frequency range where atrial fibrillatory activity is typically observed, i.e., be-
tween 4 and 12 Hz. Since this estimate is computed over the entire segment of length
N , it reflects a global frequency estimate for the full window. However, f-wave fre-
quency can vary substantially over time, as discussed in Sec. 3.3.3. To account for
such temporal variability, the analytic signal xa is divided into K overlapping subseg-
ments, denoted as xak , where k = 1, ...,K . Each subsegment contains L samples,
with L chosen to ensure that at least one f-wave cycle is present per segment. For
each subsegment, a local frequency estimate ω̂0,k is determined by minimizing the
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least-squares error, but constrained to lie within a specified range ∆ω0 around the
global frequency estimate ω̂0:

ω̂0,k = arg min
|ω0,k−ω0|<∆ω0

∥∥xak −ZL(ω0,k)(ZL(ω0,k)
H ZL(ω0,k))

−1ZL(ω0,k)
H xak

∥∥2 ,
(3.57)

Here, ∆ω0 sets the allowable range of deviation from the global frequency, and
ZL(ω0) is the Vandermonde matrix computed for subsegment length L. The ex-
tracted f-wave frequency trend f(n) from such subsegment analysis is illustrated in
Fig. 3.4(d).

The analytic representation of the f-wave signal is xa(n), while the modeled signal is
denoted by s(n). The modeling error is defined as

ê(n) = xa(n)− s(n; ω̂0, θ̂). (3.58)

Based on this error, a signal quality index S is calculated as

S = 1− σê
σxa

, (3.59)

where σê and σxa denote the sample standard deviations of the residual ê(n) and the
analytic f-wave signal xa(n), respectively. The signal quality index S ranges from 0
to 1, with values closer to 1 indicating a better fit between the modeled and observed
signals, as illustrated in Fig. 3.4(c).
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Figure 3.4: Illustration of the model-based f-wave analysis. (a) Extracted f-wave signal x(n).
(b) Corresponding modeled signal s(n). (c) Signal quality index S . (d) Extracted f-wave
frequency trend f(n).



Chapter 4

ECG Based Analysis of
Respiration

4.1 ECG-derived respiration

ECG-derived respiration techniques allow non-invasive estimation of respiratory ac-
tivity directly from the ECG. Instead of relying on dedicated respiratory sensors, these
methods exploit respiration-induced changes in ECG morphology to reconstruct a
surrogate respiratory signal. Such techniques are particularly useful in studies where
ECG data are already available and the use of additional equipment would be imprac-
tical or undesirable.

The EDR approaches considered in this thesis are applicable to recordings in both
sinus rhythm and atrial fibrillation (AF). Methods based on RR-interval variability,
which reflect respiratory sinus arrhythmia (RSA) as discussed in Sec. 2.3.2, become
unreliable in AF because of the irregular ventricular response. Morphology-based ap-
proaches, by contrast, remain valid since they rely on respiration-induced changes in
QRS morphology rather than rhythm regularity, making them especially suitable for
AF studies.

This chapter therefore focuses on morphology-based EDR methods. The considered
approaches include single-lead techniques based on R-wave amplitude and R-wave
morphology (angle and slope range), as well as multilead methods such as the QRS
loop rotation angle. Although many additional EDR methods have been proposed in
the literature, the emphasis here is placed on those most relevant to AF. Among these,
the slope range method was employed in Papers II, III, and IV, while the R-wave
amplitude method was specifically applied in Paper I due to the challenges introduced

41



42 ECG Based Analysis of Respiration

by pacing spikes in pacemaker recordings. The remaining methods are included to
illustrate alternative strategies. For each approach, the essential processing steps for
deriving a surrogate respiration signal from single-lead or multilead ECG recordings
are described.

4.1.1 R-wave amplitude

A straightforward approach to EDR is based on the beat-to-beat variation in R-wave
amplitude. These variations arise from respiration-induced changes in thoracic impedance,
electrode position, heart geometry, and lung volume. By tracking successive R-wave
amplitudes, a surrogate respiratory signal can be reconstructed [92]. In Paper I, the
R-wave amplitude approach was selected because the study population consisted of
pacemaker patients with permanent atrial fibrillation. The presence of pacing spikes
in the ECG made alternative morphology-based methods more difficult to apply reli-
ably.

In Paper I, respiration was extracted from amplitude modulation of the ECG, pri-
marily reflecting R-wave amplitude variations. To emphasize slow respiratory-related
changes, the ECG was first decimated to 50 Hz and low-pass filtered using a zero-
phase first-order Butterworth filter with a cut-off frequency of 2 Hz, thereby pre-
serving the respiratory band (0.1–0.5 Hz) while attenuating higher-frequency com-
ponents. The envelope of the amplitude-modulated ECG was then obtained using
homomorphic filtering, which relies on a logarithmic transformation of the analytic sig-
nal to separate multiplicative components such as amplitude modulation. Let x(n)
denote the decimated ECG sequence. The analytic representation is computed using
the Hilbert transform,

xa(n) = x(n) + jH{x(n)}, (4.1)

where H{·} denotes the Hilbert transform, which shifts the phase of each frequency
component by −90◦ to form the analytic signal representation. The homomorphic
envelope is then extracted as

x̃(n) = exp
(
H{ln |xa(n)|}

)
, (4.2)

Finally, x̃(n) was smoothed using a Savitzky–Golay filter, which applies a local poly-
nomial regression within a sliding window. For each window of length 2M + 1, a
polynomial of order p is fitted by least squares, and the central point is replaced with
the fitted value. This filter preserves local trends and peak morphology while reducing
noise, making it particularly suitable for physiological signals. The resulting signal is
denoted dA(n), representing the extracted EDR signal. An illustrative schematic of
the processing pipeline is shown in Fig. 4.1.
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Figure 4.1: (a) Decimated ECG (50 Hz); (b) Low-pass filtered ECG with RMS envelope
(2 Hz cutoff); (c) Smoothed envelope using a Savitzky-Golay filter, downsampled to 5 Hz.
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4.1.2 R-wave Angle and Slope Range

Both the R-wave angle and slope range methods quantify respiratory modulation of
the QRS complex by tracking beat-to-beat changes in its slopes. Respiratory-induced
variations in thoracic impedance and electrode–heart geometry subtly alter the mor-
phology of the QRS complex, and these slope-based features can be leveraged to derive
an EDR signal [93, 94].

For each beat i, the QRS complex was defined over a 140 ms interval, starting 110 ms
before and ending 30 ms after the R peak. Within this interval, two distinct features
were extracted:

• R-wave angle: Two short windows were centered at the points of maximum
positive slope (up-slope) and maximum negative slope (down-slope). The slopes
of the best-fit lines in these windows are denoted IUS,i and IDS,i, respectively.
The R-wave angle is then defined as

dRA(i) = arctan
(

IUS,i − IDS,i

1 + IUS,iIDS,i

)
. (4.3)

This feature captures the relative orientation between the QRS up- and down-
slopes, providing a geometric descriptor of QRS shape. The use of line fitting
increases robustness to high-frequency noise and minor morphological variabil-
ity.

• Slope range: The discrete derivative of the ECG signal within the QRS interval
is computed as

y′i(n) = xi(n)− xi(n− 1), (4.4)
where xi(n) denotes the ECG samples for beat i. The slope range is defined as

dSR(i) = max
n

{y′i(n)} − min
n

{y′i(n)}, (4.5)

capturing the difference between the most extreme positive and negative slopes
in the QRS complex. This method avoids line fitting, making it computation-
ally efficient, though potentially more sensitive to high-frequency noise.

Both dRA(i) and dSR(i) vary slowly over time, primarily reflecting respiratory mod-
ulation. The resulting sequences can be detrended and low-pass filtered to suppress
noise and enhance the respiratory component before use as EDR signals. In summary,
the R-wave angle method provides a more noise-robust, geometry-based measure of
QRS morphology, whereas the slope range method offers greater computational sim-
plicity and slightly better performance in respiratory rate estimation, as shown in a
comparative study of AF patients [94].
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4.1.3 QRS Loop Rotation Angle

The QRS loop represents the trajectory of the QRS complex in a two-dimensional
space formed by two simultaneously recorded ECG leads. For each beat, the samples
of the QRS complex from the two leads are plotted against each other, yielding a loop
that captures the relative amplitude and timing between the leads. Respiration mod-
ulates the orientation of this loop because thoracic impedance and electrode–heart
geometry change with lung volume [95].

Let Yi ∈ R2×N denote the QRS loop of beat i, where the rows contain theN samples
of the QRS complex from two selected leads. In practice, the two leads are chosen
to maximize orthogonality and signal quality, typically using standard limb and pre-
cordial leads known to exhibit clear respiratory modulation [95]. A reference loop,
YR, is defined as the average of the first ten beats with consistent morphology, where
similarity is assessed by a cross-correlation coefficient greater than 0.8.

Each observed loop Yi can be approximated as a rotated, scaled, and time-shifted
version of the reference loop YR:

Yi ≈ Jτ YR DQ, (4.6)

where Jτ is a temporal shift (synchronization) matrix, D is a diagonal amplitude scal-
ing matrix, and Q is a 2× 2 rotation matrix. This model accounts for differences in
temporal alignment, amplitude, and orientation between Yi and YR.

To align the loops, a spatiotemporal registration is performed by minimizing the
squared error between Yi and the transformed YR. This procedure yields an estimated
rotation matrix Q̂i that best maps YR onto Yi. The respiratory signal is then derived
from the angular deviation of the loop, reflected in the off-diagonal elements of Q̂i.
Specifically, the respiratory surrogate signal dLA(i) is obtained as

dLA(i) = arcsin
(
Q̂i(2, 1)

)
, (4.7)

where Q̂i(2, 1) denotes the element in the second row and first column of Q̂i. Taking
the arcsine emphasizes the angular interpretation of this matrix element, ensuring that
the resulting signal varies approximately linearly with the respiratory-induced rotation
of the QRS loop. In practice, the sequence dLA(i) provides a beat-to-beat respiratory
surrogate. A low-pass filter is typically applied to suppress high-frequency noise and
retain the dominant respiratory component.
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4.2 Robust Assessment of Respiratory Information

When multiple ECG leads are available, respiration-related information can be de-
rived from each lead (or pair of leads for dLA) individually and then combined to
form a more robust estimate of respiratory activity. This can be achieved using di-
mensionality reduction and source separation methods, which exploit inter-lead cor-
relations and reduce the influence of noise or artifacts present in individual leads.
In this section, two complementary approaches are described: principal component
analysis (PCA) and periodic component analysis (πCA). An additional strategy, peak-
conditioned spectral averaging, is presented as a general tool for reliable respiratory
rate estimation.

4.2.1 Dimensionality Reduction Approaches

Principal Component Analysis (PCA)
Principal component analysis (PCA), introduced in Sec. 3.2.3, transforms a set of cor-
related signals into an orthogonal set of components ordered by explained variance.
In the present context, PCA is applied to combine multiple single-lead EDR signals
into a joint-lead respiration signal.

Let the lead-specific respiration signals be arranged in X ∈ RN×L, where each of the
L columns corresponds to one lead and each of the N rows to a uniformly resampled
time point. Since the single-lead signals are originally defined at irregular beat times,
they are resampled to a common uniform grid prior to PCA. The covariance matrix
is computed as

C =
1

N − 1
X⊤X, (4.8)

and eigendecomposition yields

C = UΛU⊤, (4.9)

whereU = [u1, . . . , uL] contains eigenvectors as columns andΛ = diag(λ1, . . . , λL)
contains eigenvalues. The k-th PCA component is obtained by projecting the multi-
lead signals onto the eigenvector uk:

zk(n) = X(n, :) uk, (4.10)

where X(n, :) denotes the n-th row of X, i.e., the vector of all lead values at time in-
dex n. The respiratory component is identified as the one exhibiting (i) a pronounced
spectral peak in the respiratory frequency range (0.1–0.4 Hz), and (ii) a substantial
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eigenvalueλk, reflecting the fraction of variance explained by the corresponding eigen-
vector. The selected respiratory component is denoted dPCA(n). The selection is
guided by the criterion that each eigenvalue corresponds to the variance explained
by its associated component. Larger eigenvalues indicate components that capture
more of the variability across leads, whereas components with very small eigenvalues
typically represent only residual fluctuations and are therefore less informative for res-
piration estimation. This approach was employed to obtain a joint-lead EDR signal
in Paper II.

Periodic Component Analysis (πCA)
Periodic component analysis (πCA) is a blind source separation method designed to
extract the most periodic signal from multichannel data [96]. Unlike PCA, which
is variance-based, πCA maximizes periodicity, making it well suited for respiration
extraction.

Let the preprocessed EDR signals be arranged in X ∈ RN×L, where N is the number
of uniformly resampled time points and L is the number of leads. As in PCA, the
covariance matrix is defined as

C =
1

N − 1
X⊤X, (4.11)

with eigendecomposition
C = UΛU⊤, (4.12)

where U contains the eigenvectors and Λ = diag(λ1, . . . , λL) contains the eigenval-
ues. The whitening transformation is then

Z = Λ−1/2U⊤X⊤, (4.13)

where Λ−1/2 denotes the diagonal matrix with entries λ
−1/2
i , i.e., the reciprocal

square roots of the eigenvalues. This operation scales the data so that the rows of
Z are uncorrelated and have unit variance, thus facilitating the subsequent periodicity
analysis. Given Z, πCA seeks a weight vector w such that the projected signal

s(n) = wTZ(n), (4.14)

is as periodic as possible. Here, s(n) represents a candidate joint-lead component
formed as a linear combination of the whitened signals. Periodicity is quantified using
the non-periodicity measure

ϵ(w, τ,Z) =
∑

n [s(n)− s(n− τ)]2∑
n s(n)

2
, (4.15)
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evaluated over candidate lags τ corresponding to plausible respiratory periods (0.1–
0.4 Hz). The lag τo yielding the smallest ϵ defines the optimal weight wo, and the
selected joint-lead respiration signal is

dπCA(n) = wT
o Z(n). (4.16)

The respiratory rate (fr) can be obtained directly from τo:

fr =
fs
τo
, (4.17)

where fs is the sampling frequency. In this way, πCA provides both a robust respi-
ration surrogate and an associated frequency estimate. This approach was applied in
Paper III for respiratory analysis during atrial fibrillation.

4.2.2 Peak-Conditioned Spectral Averaging

Beyond PCA and πCA, respiratory rate fr can be estimated from the spectral content
of an EDR signal d(n). A common approach is to compute the power spectral density
(PSD) and identify the dominant peak in the respiratory band (0.1–0.5 Hz). Welch’s
method (see Sec. 3.3.2) is typically used for PSD estimation, as it improves stability
by averaging across overlapping, windowed segments. The criteria can also be applied
in Welch’s to exclude spectra of windowed segments of insufficient quality from the
averaging. When multiple lead-specific signals are available, peak-conditioned spec-
tral averaging further improves robustness [95, 97, 98]. Each spectrum is retained
only if the respiratory peak is sufficiently pronounced (e.g., at least 85% of the global
maximum) [98]. The retained spectra are then averaged, and the most prominent
peak of the average is selected as fr. This reduces the influence of noisy or poorly
conditioned leads. Basic quality-control steps (e.g., checks on peak sharpness, band-
width, and temporal consistency) are recommended to avoid spurious detections due
to noise or transient artifacts.

4.3 Assessment of Cardiorespiratory Interactions

The interaction between cardiac and respiratory dynamics, often referred to as car-
diorespiratory coupling, can be investigated using a range of analytical techniques.
Such interactions provide insight into autonomic regulation and respiratory modula-
tion of cardiac activity. Several complementary approaches are commonly used: sig-
nal decomposition methods that isolate respiration-related components, linear spec-
tral methods that quantify frequency-specific coherence, and nonlinear information-
theoretic measures that capture more general dependencies. In this chapter, three
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representative methods are described: orthogonal subspace projection, coherent cross-
power spectral analysis, and mutual information. These techniques were applied in
Papers II–IV of this thesis to quantify respiratory modulation of atrial fibrillatory dy-
namics and to assess autonomic responses in experimental data.

4.3.1 Orthogonal Subspace Projection

Orthogonal subspace projection is a signal processing technique for separating the
part of a signal that is linearly related to a known reference from the part that is unre-
lated [99, 100]. In cardiorespiratory analysis, this approach was originally applied to
HRV to remove the linear influence of respiration on the tachogram, thereby allowing
a cleaner assessment of sympathovagal balance [100]. In this thesis, the same frame-
work is applied differently: instead of HRV, the target signal is the atrial fibrillatory
frequency trend, and the goal is to quantify the magnitude of respiratory modulation
(Papers II–III).

Let x ∈ RM denote the zero-mean version of the time series of interest (e.g., the
f-wave frequency trend f(n)), and let r(n) be the respiratory reference signal, both
sampled at the same uniform rate. To construct the respiratory subspace, a Hankel-
structured matrix V ∈ R(M−q)×q is formed from delayed versions of r(n):

V =


r(1) r(2) . . . r(q)
r(2) r(3) . . . r(q + 1)

...
...

. . .
...

r(M − q) r(M − q + 1) . . . r(M)

 , (4.18)

where q is the embedding dimension. The projection of x onto the subspace spanned
by the columns of V is given by

xr = V
(
VTV

)−1
VTx, (4.19)

with xr representing the component of x that is linearly related to respiration. An
illustrative example of this decomposition is shown in Figure 4.2. The factor

∆F =

√
2

M − q
xT
r xr (4.20)

quantifies the absolute magnitude of the respiration-related modulation. The prefac-
tor 2/(M − q) assumes sinusoidal modulation and provides an amplitude-equivalent
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measure over the analysis window length M − q. The relative contribution of respi-
ration is expressed as

Pr(%) =
xT
r xr
xTx

× 100. (4.21)

Figure 4.2: (a) The zero-mean atrial frequency trend x(m); (b) The respiration signal r(m)
defining the projection subspace; (c) The projected component xr(m) representing the part
of x linearly related to respiration.

4.3.2 Coherent Cross-Power Spectral Analysis

Like orthogonal subspace projection (Sec. 4.3.1), coherent cross-power spectral anal-
ysis is a linear method that assumes cardiorespiratory coupling can be approximated
as a linear process within the analysis window [101]. Given two uniformly sampled
signals x(n) and y(n), their auto-power spectra Pxx(f) and Pyy(f) and cross-power
spectrum Pxy(f) are estimated using Welch’s method (see Sec. 3.3.2). Based on these
segment-averaged estimates (Eqs. 3.21–3.22), the magnitude-squared coherence is de-
fined as

Cxy(f) =
|Pxy(f)|2

Pxx(f)Pyy(f)
. (4.22)
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which quantifies the linear correlation between x and y at frequency f , ranging from 0
(no coupling) to 1 (perfect coupling). The coherent cross-power spectral index (CPC)
further combines the strength of common oscillations with the stability of their phase
relationship:

CPC(f) = |Pxy(f)| · Cxy(f). (4.23)

Band-averaged CPC values are typically derived for physiologically relevant regions,
such as the low-frequency (LF: 0.04–0.15 Hz) and high-frequency/respiratory (HF:
0.15–0.4 Hz) bands [102]. Figure 4.3 illustrates the estimation of Pxx(f), Pyy(f),
Pxy(f), and Cxy(f) for representative HRV and respiration signals, highlighting the
LF and HF bands commonly analyzed in cardiorespiratory coupling studies.

In this thesis, CPC was applied in Paper IV to assess the stability of cardiorespira-
tory coupling in healthy volunteers exposed to HVO exhaust in a controlled chamber
study.
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Figure 4.3: Illustration of coherent cross-power spectral analysis between HRV and respira-
tion. (A) Normalized HRV signal (SHRV , a.u.) and (B) normalized EDR signal (SEDR,
a.u.) over a representative 60-second window. (C) Power spectral densities (PSD) of HRV
and EDR (Pxx(f) and Pyy(f), dB/Hz), together with the cross-power spectrum magnitude
(|Pxy(f)|, dB/Hz). (D) Magnitude-squared coherence Cxy(f) (dimensionless), with shaded
regions indicating the low-frequency (LF: 0.04–0.15 Hz) and high-frequency (HF: 0.15–0.4
Hz) bands.
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4.3.3 Mutual Information

While linear methods detect frequency-specific coupling, they may miss more com-
plex dependencies. Mutual information (MUI) is an information-theoretic measure
that quantifies the amount of shared information between two random variables X
and Y [101]. It is defined as

MUI(X;Y ) = H(X) +H(Y )−H(X,Y ), (4.24)

where H(X) = −
∑

x p(x) log p(x) and H(Y ) = −
∑

y p(y) log p(y) are the
marginal entropies, and H(X,Y ) = −

∑
x,y p(x, y) log p(x, y) is the joint entropy.

MUI is zero if X and Y are statistically independent and increases with stronger de-
pendencies, whether linear or nonlinear. In practical implementations, continuous
signals are first discretized into a small number of amplitude states to enable robust
probability estimation. A common strategy is quantile-based binning, where the sig-
nal range is partitioned into equally populated bins, ensuring balanced histograms
and stable entropy estimates even for relatively short recordings [103].

By combining linear measures with nonlinear measures such as MUI, cardiorespira-
tory coupling analysis can provide a more comprehensive view of the interaction be-
tween cardiac and respiratory dynamics. Linear methods identify frequency-specific,
phase-locked coupling, while nonlinear methods reveal broader dependencies that
may arise from complex physiological interactions. In this thesis, these techniques
are applied in Paper IV to assess the stability of cardiorespiratory coupling in healthy
volunteers exposed to HVO exhaust in a controlled chamber study.
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5.1 Paper I - Respiratory InducedModulation in f-wave
Characteristics During Atrial Fibrillation

This study presents the first systematic attempt to quantify respiratory modulation
in the f-wave frequency trend during AF using resting ECG recordings. The motiva-
tion for this work stems from the observation that respiration influences atrial activity
through both autonomic and mechanical mechanisms, yet its effect on f-wave charac-
teristics had not been previously quantified.

Following QRST cancellation, the f-wave was extracted and its frequency trend esti-
mated using a model-based approach [104]. The respiratory rate was derived from the
ECG using the R-wave amplitude method and peak-conditioned spectral averaging
to ensure robustness [98], and was used to set the centre frequency of a narrow band-
pass filter applied to the f-wave frequency trend. The envelope of the filtered signal
was taken as an estimate of the amplitude of respiratory f-wave frequency modula-
tion. The method was first validated using simulated f-wave signals generated from
a sinusoidal harmonic model, showing that for high-quality signals (S > 0.5) the
modulation amplitude could be estimated with an error below 0.01 Hz.

The approach was applied to ECG data from eight pacemaker patients with persistent
AF recorded under three conditions: baseline, controlled respiration, and controlled
respiration after atropine administration to block parasympathetic influences. The re-
sults, summarised in Table 5.1, show that the respiratory f-wave frequency modulation
is higher during deep breathing and often lower after atropine injection, suggesting
that parasympathetic ANS regulation contributes to the modulation.
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Table 5.1: Estimated mean (± SD) respiratory modulation amplitude (∆f̂ ) and mean f-wave
frequency (f̂ ) across baseline (B), controlled respiration (CR), and post-atropine (PA) phases.
Subscripts {B, CR, PA} indicate the recording phase. An asterisk (∗) denotes significant dif-
ferences compared to B, and a bullet (•) denotes significant differences compared to CR. The
baseline recording from patient g was excluded due to insufficient signal quality (S).

Patient ∆f̂B (Hz) ∆f̂CR (Hz) ∆f̂PA (Hz) f̂B (Hz) f̂CR (Hz) f̂PA (Hz)

a 0.16± 0.06 0.17± 0.09∗ 0.16± 0.08• 6.84± 0.43 6.77± 0.45∗ 6.71± 0.41•∗

c 0.13± 0.06 0.16± 0.08∗ 0.13± 0.07• 6.17± 0.35 6.31± 0.37∗ 6.46± 0.36•∗

d 0.16± 0.08 0.17± 0.08∗ 0.14± 0.07•∗ 6.57± 0.43 6.75± 0.39∗ 6.36± 0.43•∗

e 0.16± 0.08 0.19± 0.10∗ 0.19± 0.10∗ 7.68± 0.51 7.39± 0.54∗ 7.57± 0.54•∗

f 0.14± 0.07 0.21± 0.10∗ 0.21± 0.12∗ 7.46± 0.46 7.29± 0.49∗ 7.14± 0.48•∗

g — 0.17± 0.08 0.16± 0.08• — 5.91± 0.41 5.96± 0.42•

h 0.15± 0.08 0.17± 0.07∗ 0.17± 0.07∗ 7.73± 0.43 8.11± 0.44∗ 7.98± 0.43•∗

Overall average 0.15± 0.01 0.18± 0.02 0.17± 0.03 7.07± 0.64 6.93± 0.73 6.88± 0.71
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5.2 Paper II - A Subspace ProjectionApproach toQuan-
tify Respiratory Variations in the f-wave Frequency
Trend

This study builds on the work of Paper I by introducing an orthogonal subspace pro-
jection (OSP) approach to quantify respiration-induced modulation in the f-wave
frequency trend during AF. Unlike the narrow-band filtering approach in Paper I,
which required accurate estimation of the respiratory frequency, OSP directly projects
the f-wave frequency trend onto a subspace defined by a respiratory reference signal,
enabling selective extraction of the respiration-related component without explicit
bandpass filtering.

The OSP method is described in detail in Sec. 4.3.1. In brief, it projects the f-wave
frequency trend onto a subspace spanned by delayed versions of a respiratory refer-
ence signal, thereby extracting the respiration-related component. In Paper II, the
respiratory reference r(m) was obtained as an ECG-derived respiration signal using
the slope range method (Sec. 4.1.2) applied beat-wise to the QRS complexes, with
principal component analysis used to form a joint-lead signal (Sec. 4.2.1). The f-
wave frequency trend f(m) was estimated from the analytic f-wave signal using the
harmonic model-based approach described in Sec. 3.4.1. Projection of f(m) onto
the respiratory subspace defined by r(m) yielded the respiration-related component,
from which the absolute modulation magnitude (∆fOSP) was computed.

The OSP method was evaluated using both simulated and clinical AF data. Results
from analysis of simulated data demonstrated that OSP more accurately recovered the
modulation amplitude than the previous bandpass filtering method, particularly in
noisy conditions and when respiration frequency varied over time. Clinical recordings
from 28 patients with persistent AF were analysed during baseline and deep breathing
phases. Group-level analysis showed no statistically significant difference in ∆fOSP
between baseline and deep breathing, although individual responses varied, as shown
in Figure 5.1. While some individuals exhibited higher values during deep breathing
compared to baseline, others showed little or no change, illustrating the marked inter-
individual variability in respiration-induced modulation of the f-wave frequency.
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Figure 5.1: Estimates of respiration-induced f-wave frequency variations (∆fOSP) for all one-
minute segments from each patient during baseline (black circles) and deep breathing (red
points) phases.
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5.3 Paper III - Tilt-induced Changes in f-wave Charac-
teristics During Atrial Fibrillation: An Experimen-
tal and Computational Investigation

This study applied the methodology developed in Paper II to investigate how the
ANS influences AF dynamics during postural changes, and to examine the impact
of sympathetic and parasympathetic activity on the mean f-wave frequency (Ff ) and
respiration-related modulation of the f-wave frequency (∆Ff ). The findings were
compared with computational simulations of atrial tissue during AF under varying lev-
els of acetylcholine (ACh, parasympathetic stimulation) and isoproterenol (Iso, sym-
pathetic stimulation).

Electrocardiograms recorded from patients with persistent AF during a tilt test in-
cluding baseline supine rest, head-down tilt (HDT), and head-up tilt (HUT) were
analyzed [105]. Each phase was divided into a transient period (first two minutes)
and a steady-state period (last three minutes). The mean Ff , ∆Ff , and the respira-
tory power ratio Pr were estimated for each period using the harmonic model-based
frequency estimation and the orthogonal subspace projection method proposed in
Paper II. In parallel, 2D and 3D biatrial simulations were performed under different
levels of ACh and Iso to mimic parasympathetic and sympathetic stimulation, respec-
tively.

Figure 5.2 summarizes the results of the analysis across the tilt test. The mean heart
rate (FHR) and f-wave frequency (Ff ) exhibited heterogeneous patient-specific re-
sponses, although at the group level Ff tended to decrease from baseline to HDT
and increase again during HUT. The respiration-related modulation index (∆Ff )
and the percentage of respiratory contribution (Pr) also varied substantially among
individuals. Group-level analysis showed that ∆Ff increased during transient HDT,
decreased during steady HDT, and increased again during early HUT. Simulation
results demonstrated that Iso consistently increased Ff , whereas cyclic fluctuations
in ACh concentration primarily determined the magnitude of ∆Ff , with larger ACh
variations producing stronger respiration-related modulation. Their combined action
produced complex interactive effects that mirrored the diverse clinical responses.

In summary, tilt maneuvers induced clear, phase-dependent changes in f-wave pat-
terns that reflect shifts in autonomic balance: sympathetic activity predominantly in-
fluenced the mean fibrillatory rate (Ff ), whereas parasympathetic activity modulated
respiration-related variations (∆Ff ). Combining tilt-test analysis with computational
simulations provides a non-invasive framework for assessing autonomic function in
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AF and may help tailor therapies to individual patients.

Figure 5.2: Individual patient trends for (a) FHR, (b) Ff, (c) ∆Ff, and (d) Pr across the tilt
test. Responses relative to the preceding period are illustrated by point shapes and line colors:
increases are shown by green squares with green lines, decreases by red triangles with red lines,
and minimal variations (less than 1%) by black circles with gray lines.
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5.4 Paper IV - A Chamber Study of Respiratory and
Autonomic Responses to Hydrotreated Vegetable
Oil Exhaust Using ECG-Derived Respiration

This study investigated physiological effects of short-term exposure to hydrotreated
vegetable oil (HVO) exhaust in healthy adults. The specific objectives were to eval-
uate whether autonomic and respiratory regulation, as reflected in HRV, EDR, and
cardiorespiratory coupling, were altered by exposures to dilute HVO exhaust. In the
context of this thesis, Paper IV extends the application of cardiorespiratory coupling
as a non-invasive marker of autonomic modulation in healthy individuals exposed to
environmental stressors.

Nineteen volunteers (10 men, 9 women, aged 20–55 years) participated in a ran-
domized, double-blind, crossover chamber study. Each participant underwent four
three-hour exposures: (A) filtered air, (B) filtered air with NaCl particles, (C) HVO
exhaust with aftertreatment, and (D) HVO exhaust without aftertreatment. Con-
tinuous ECG recordings were acquired and processed to extract time-domain and
frequency-domain HRV features, respiratory frequency and amplitude from EDR,
and cardiorespiratory coupling indices including coherent cross-power spectral cou-
pling in the low- and high-frequency bands (CPCLF, CPCHF, CPCLF/HF) and mutual
information (MUI). A linear mixed model (LMM) was fitted to evaluate time- and
exposure-related effects:

Yijp = β0+βtTimej+βBTimej+βCTimej+βDTimej+b0ip+b1ipTimej+ϵijp,
(5.1)

where Yijp denotes the measurement of a given feature for subject i at time point j
under exposure p. The term β0 is the fixed intercept representing the baseline level in
the reference exposure, while βt captures the overall effect of time. The coefficients
βB , βC , and βD represent additional time-related effects specific to exposure scenar-
ios B, C, and D relative to the reference. The random effects b0ip and b1ip account for
subject-specific deviations in intercept and slope within each exposure scenario, and
ϵijp denotes the residual error.

Table 5.2 summarizes the estimated fixed effects from the LMM across HRV, EDR,
and cardiorespiratory coupling indices. The group-level time effects (βt) were small
and likely reflected normal intra-day variations. Results indicate no significant effects
of the exposures (βB , βC , βD). Thus, short-term exposure to HVO exhaust at concen-
trations near EU occupational exposure limits did not measurably affect autonomic
or respiratory regulation in this healthy cohort.
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Feature β0 βt βB βC βD

HRV features
PLF (s2) 0.0053∗ −2.37×10−6 −2.67×10−7 −3.35×10−6 −1.18×10−8

PHF (s2) 0.0029∗ −2.80×10−6 1.50×10−6 −2.20×10−6 −5.46×10−7

LF/HF (n.u.) 2.2032∗ 1.28×10−3 9.32×10−4 5.01×10−4 1.32×10−3

LFnorm (n.u.) 0.6103∗ 2.66×10−4∗ −2.57×10−5 −5.98×10−5 −7.87×10−5

HFnorm (n.u.) 0.3897∗ −2.66×10−4∗ 2.57×10−5 5.98×10−5 7.87×10−5

NNmean (s) 1.0159∗ −1.97×10−4∗ −1.49×10−5 −1.98×10−4 2.26×10−5

SDNN (s) 0.0661∗ 1.20×10−5 −8.44×10−6 −3.75×10−5 −4.24×10−5

RMSSD (s) 0.0611∗ −1.75×10−5 −1.21×10−5 −4.47×10−5 −2.08×10−5

SDSD (s) 0.0612∗ −1.76×10−5 −1.21×10−5 −4.47×10−5 −2.08×10−5

EDR features
FR (Hz) 0.2592∗ 2.61×10−5 −2.15×10−6 −1.06×10−5 2.63×10−5

AR (a.u.) 0.2885∗ −2.53×10−5 7.82×10−5 3.17×10−5 2.63×10−5

CRC features
MUI (n.u.) 0.1012∗ −3.11×10−5 4.70×10−5 −3.92×10−5 −1.80×10−5

CPCLF (n.u.) 0.1615∗ 1.12×10−5 −8.38×10−6 −3.57×10−5 −1.52×10−5

CPCHF (n.u.) 0.1222∗ 7.34×10−6 −3.54×10−6 −2.78×10−5 1.06×10−5

CPCLF/HF (n.u.) 1.9399∗ −1.94×10−4 −2.48×10−4 9.44×10−5 4.02×10−4

Table 5.2: Fixed effects coefficients from linear mixed models in Paper IV. Significant coeffi-
cients (p < 0.05) are marked with an asterisk (*).
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The autonomic nervous system (ANS) is an important factor in cardiac arrhythmia, and

information about ANS activity during atrial fibrillation (AF) may contribute to personalized

treatment. In this study we aim to quantify respiratory modulation in the f-wave frequency

trend from resting ECG. First, an f-wave signal is extracted from the ECG by QRST

cancelation. Second, an f-wave model is fitted to the f-wave signal to obtain a high

resolution f-wave frequency trend and an index for signal quality control (S ). Third,

respiratory modulation in the f-wave frequency trend is extracted by applying a narrow

band-pass filter. The center frequency of the band-pass filter is determined by the

respiration rate. Respiration rate is estimated from a surrogate respiration signal, obtained

from the ECG using homomorphic filtering. Peak conditioned spectral averaging, where

spectra of sufficient quality from different leads are averaged, is employed to obtain a

robust estimate of the respiration rate. The envelope of the filtered f-wave frequency trend

is used to quantify the magnitude of respiratory induced f-wave frequency modulation.

The proposed methodology is evaluated using simulated f-wave signals obtained using

a sinusoidal harmonic model. Results from simulated signals show that the magnitude of

the respiratory modulation is accurately estimated, quantified by an error below 0.01 Hz,

if the signal quality is sufficient (S > 0.5). The proposed method was applied to analyze

ECG data from eight pacemaker patients with permanent AF recorded at baseline,

during controlled respiration, and during controlled respiration after injection of atropine,

respectively. The magnitude of the respiratory induce f-wave frequency modulation was

0.15± 0.01, 0.18± 0.02, and 0.17± 0.03 Hz during baseline, controlled respiration, and

post-atropine, respectively. Our results suggest that parasympathetic regulation affects

the magnitude of respiratory induced f-wave frequency modulation.

Keywords: atrial fibrillation, autonomic nervous system, ECG processing, f-wave frequency, parasympathetic

regulation, respiratory modulation

1. INTRODUCTION

Despite progress in atrial fibrillation (AF) treatment, such as ablation procedures, stroke-
prevention procedures, and anti-arrhythmic drugs, AF still is associated with significant mortality
in middle-aged and older adults, and it constitutes a substantial burden to the health economy
(Hindricks et al., 2020). The current estimate of AF prevalence for adults in the United States is
ranged between 2 and 4% (Benjamin et al., 2019). The prevalence of AF increases with age and is
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higher in men. In a Swedish study including 30,447 individuals,
AF prevalence was 1.5% higher in men and increased from 2 per
1,000 in ages 45–49 to 29 per 1,000 in ages 70–74 (Smith et al.,
2010). There are some substantial modifiers which contribute to
the maintenance and progression of AF, such as atrial fibrosis
and aging, ion-channel dysfunction, autonomic imbalance, and
genetic background (Fabritz et al., 2016). Better understanding
and monitoring of these AF-causing factors can contribute to
personalized AF treatment.

Autonomic dysfunction is one of the main factors which
can contribute to AF (Fabritz et al., 2016). The autonomic
nervous system (ANS) plays an important role in cardiac
arrhythmogenesis. Previous research has established an
understanding of the cardiac ANS and provided evidence to
support the relationship between autonomic tone and cardiac
arrhythmia (Shen and Zipes, 2014). For example, low-level
vagal stimulation has been shown to suppress AF episodes in
ambulatory dogs (Shen et al., 2011). Further, experimental studies
has shown that changes in sympathetic or parasympathetic tone
may change the atrial action potential and refractory period (Liu
and Nattel, 1997; Sharifov et al., 2004).

The atrial electrical activity during AF can be characterized
from the f-waves in the ECG; f-wave amplitude, f-wave frequency,
f-wave morphology, f-wave regularity, and f-wave complexity
has been proposed for this purpose (Petrutiu et al., 2006; Meo
et al., 2013; Lankveld et al., 2014; Sörnmo, 2018). Such f-wave
characteristics has been suggested for prediction of treatment
outcome, e.g., a low f-wave amplitudes predicted AF recurrence
after catheter ablation in a study including 54 patients with
persistent AF (Cheng et al., 2013), and large f-wave amplitude
predicted termination of AF during catheter ablation in another
study including 90 patients with persistent AF (Nault et al., 2009).
Also, Lankveld et al. (2016) found the chances of successful in
cather ablation in patients with persistent AF can be predicted
by AF complexity and frequency parameters; the study included
91 patients for training of the prediction models and validated
by 83 patients.

The f-wave frequency, often referred to as the atrial fibrillatory
rate, has received considerable clinical attention (Platonov et al.,
2014). Low f-wave frequency can predict successful outcome in
patient with persistent AF undergoing cardioversion (Bollmann
et al., 2008) and high f-wave frequency predicts early AF
recurrence (Bollmann et al., 2003). The f-wave frequency can
increase with the progression of AF, and patients with persistent
AF often have a higher f-wave frequency than patients with
paroxysmal AF (Alcaraz et al., 2011; Park et al., 2019). Further,
it has been shown that a low f-wave frequency is associated
with spontaneous conversion of recent-onset AF (Choudhary
et al., 2013). However, the link between f-wave frequency and
progression of disease is ambiguous since a low f-wave frequency
is also associated with poor outcome in heart failure patients with
long-standing AF (Platonov et al., 2012).

Previous studies have shown that the f-wave frequency can
change in response to changes in autonomic tone. The f-wave
frequency has been shown to increase in response to head-up tilt
(Ingemansson et al., 1998; Östenson et al., 2017) and decrease
in response to head-down tilt (Östenson et al., 2017). Further,

the f-wave frequency has been shown to follow a circadian
pattern where it increases during daytime and decreases at
night (Meurling et al., 2001; Sandberg et al., 2010). Controlled
respiration can induce cyclic fluctuations in the f-wave frequency.
Holmqvist et al. (2005) found that the spectral power of the f-
wave frequency trend in the respiratory frequency band increased
in response to controlled respiration and decreased in response to
vagal blockade for eight patients with permanent AF. However,
individual variations were large. In another study using a similar
methodology, the f-wave frequency was influenced by controlled
respiration and attenuated by the vagal blockade in only two out
of eight patients with permanent AF (Stridh et al., 2003).

The aim of this study is to develop a methodology that can
be used to quantify respiratory induced variations in the f-
wave frequency from resting ECG. This is challenging, since (1)
respiratory induced f-wave frequency modulation is very small
and may be concealed by other variations and (2) the respiration
rate is unknown andmay vary over time. A preliminary version of
this work, where the respiration rate was assumed to be known,
was presented at the CinC conference 2020 (Abdollahpur et al.,
2020). In contrast, the respiration rate in the present study is
estimated from the ECG.

2. MATERIALS AND METHODS

A schematic outline of the methodology is shown in Figure 1.
An f-wave signal x(n) is extracted from the ECG by QRST
cancelation (section 2.3). A model-based approach to f-wave
characterization is applied to estimates an f-wave frequency

trend f̂ (n) and a signal quality index S from x(n) (section 2.4).

Respiratory modulation in f̂ (n) is estimated using a bandpass

filtering approach (section 2.5). A respiration rate estimate f̂r(n),
which is required for the bandpass filtering, is derived from the
ECG (section 2.6). The accuracy of the estimated respiratory
modulation magnitude 1f̄ is evaluated using simulated f-wave
signals xsim(n) (section 2.1). Finally, the method is applied to
analyse data from a clinical study (section 2.2).

2.1. Simulated Data
A modified version of the saw-tooth model (Stridh and Sörnmo,
2001) is used to simulate f-wave signals. The simulated f-waves
consists of the sum of a sinusoid with time-varying frequency and
its harmonic

xsim(n) =
2

∑

k=1

ak(n) sin(2πkf (n)n)+ v(n) (1)

The time-varying frequency is given by

f (n) = f

fs
+ 1f

2π frn
sin(2πn

fr

fs
)+ 8(n)

2πkn
(2)

where f defines the average fundamental frequency, and
respiratory f-wave frequency modulation is quantified by fr and
1f , defining the modulation frequency and the modulation
magnitude, respectively. Random phase variation, 8(n), is added
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FIGURE 1 | Schematic of the proposed method.

to account for other variations in the f-wave frequency; it is
modeled as white Gaussian noise with standard deviation σ8.
The amplitude of the kth harmonic is given by

ak(n) =
2

kπ

(

a+ 1a(n)
)

(3)

where a is the average f-wave amplitude, and 1a(n) quantifies
random amplitude variation and is assumed to have a Gaussian
distribution with mean zero and standard deviation a/5.

The following parameters are used for the simulations f-
wave signals: f = {5, 6, 7} Hz, fr = {0.1, 0.2, 0.3} Hz, 1f =
{0, 0.1, 0.2} Hz, a chosen such that standard deviation of signal
σx = 50 µV, and σ8 = {0, 0.25, 0.5, 0.75, 1}. White Gaussian
noise v(n) with standard deviation of 0.1a is added to form
realistic f-wave signals and the sampling frequency was set to
fs = 50Hz. For each parameter setting 10 realizations of xsim(n)
were considered, resulting in a total of 1,350 simulated signals.
Examples of xsim(n) with different values of σ8 are displayed in
Figure 2.

2.2. Clinical Data
The study population consists of eight pacemaker patients
with permanent AF and complete atrioventricular block that
participated in a clinical study (Holmqvist et al., 2005). The
clinical characteristics of the study population is summarized
in Table 1. The study was conducted in accordance with the
Declaration of Helsinki, and the protocol was approved by the
local Ethics Committee. All subjects gave their informed consent
for inclusion before they participated in the study. The study
protocol consisted of three phases; baseline rest (B), controlled
respiration (CR), and controlled respiration following injection

FIGURE 2 | Example of the xsim(n) with f = 5 Hz, fr = 0.2 Hz, 1f = 0.1 Hz,

and (A) σ8= 0, (B) σ8= 0.25, (C) σ8= 0.5, (D) σ8= 0.75, (E) σ8=1.

of atropine to induce full vagal blockade (PA), respectively.
Each phase lasted 5 min, and standard 12-lead ECG at 1 kHz
sampling rate was recorded throughout the study protocol.
During controlled respiration, the patients inhaled for 4 s and
exhaled for 4 s, following instructions from the study nurse.

2.3. Preprocessing and QRST Cancelation
Following preprocessing, atrial activity was extracted from
ventricular activity in the ECG using a spatiotemporal QRST
cancelation technique (Stridh and Sörnmo, 2001). Briefly, a
scaled, spatial, and temporally aligned average QRS complexes is
subtracted from each QRS complex in the ECG, the Cardiolund
ECG Parser was used for this task. Since the resulting f-wave
signal has negligible frequency content above 25 Hz, it was down-
sampled to 50 Hz. In the present study, the extracted f-wave
signal from lead V1 was subjected to analysis; this signal is
denoted x(n).

2.4. Model Based f-Wave Characterization
The harmonic f-wave model (Henriksson et al., 2018) is
employed to estimate the local f-wave frequency, phase, and
amplitude. In this model, f-waves are formulated by the complex
signal s(n; θ), defined as the sum of a complex exponential signal
with fundamental frequency f and its second harmonic,

s(n; θ) =
2

∑

m=1

Ame
j(m2π f

fs
n+φm) (4)

where Am and φm define the amplitude and phase, respectively,
of them:th harmonic, and fs is sampling frequency of x(n).

The model is fitted to the complex-valued analytic
representation of x(n), denoted xa(n), and obtained
using Hilbert transformation. The parameter vector
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TABLE 1 | Patient characteristics.

Patient Age, yr Gender EF,%
Left atrial

diameter (mm)

AF duration,

mo

Number of

cardioversions

Heart active

drugs
Comorbidity

a 62 Female 55 41 7 10 Diltiazem None

b 64 Male 45 43 5 15 None COPD

c 65 Female 35 37 9 4 Metoprolol HT, CHF

d 64 Female 55 32 30 4 None None

e 54 Male 55 46 24 7 Losartan None

f 59 Male 55 53 32 10 Losartan HT

g 68 Female 55 45 7 26 Spironolactone None

h 53 Male 55 32 24 7 Enalapril HT

Gross

average
61± 5 51± 7 41± 7 17± 11 10± 7

CHF, chronic heart failure; COPD, chronic obstructive pulmonary disease; EF, ejection fraction; HT, hypertension.

θ = [f A1 A2 φ1 φ2]T is estimated using a maximum
likelihood approach

θ̂ = argmin
θ

||xa(n)− s(n; θ)||2 (5)

The model is fitted to 20 ms overlapping 0.5 s segments of xa(n);

the local estimates f̂ results in an f-wave frequency trend f̂ (n)
sampled at 50 Hz.

In the present study, we analyse 5 min recordings obtained
during stable conditions and therefore we assume that the f-
wave frequency will not change drastically within the recording.

Hence, the local estimation of f̂ is constrained to the interval [f̂0−
1.5, f̂0 + 1.5] Hz, where f̂0 is an initial f-wave frequency estimate
determined by the maximum spectral peak in the interval [4, 12]
Hz of the Welch periodogram of the entire recording x(n).

The model error ê(n) = xa(n) − s(n; θ̂) is used to estimate a
signal quality index,

S = 1− σê

σxa
(6)

where σê and σxa denote the standard deviation of ê(n) and
xa(n), respectively (Henriksson et al., 2018). For any reasonable
estimate of s(n; θ̂), S is limited to the interval [0, 1], where one
represents the best model fit. A poor model fit, quantified by
a low value of S suggests that the parameter estimates θ̂ are
unreliable. In the present study, S is estimated based on the entire
5-min recording.

2.5. Estimation of Respiratory f-Wave
Modulation
A forth-order Butterworth band pass filter with a fixed bandwidth
β (Raja Kumar and Pal, 1985) and a center frequency determined

by the respiration rate f̂r(n) is employed to extract respiratory

modulation in f̂ (n). The bandwidth of filter is set to 0.06 Hz since
the magnitude of respiration rate estimation error is expected to

be constrained to this range (Kontaxis et al., 2020). The transfer
function of the filter is given by

H(z) = a0 + a2z
−2 + a4z

−4

1+ b1Wz−1 + (b2W2 + b2′)z−2 + b3Wz−3 + b4z−4

(7)
where the coefficients are given by

a0 = 1/(k2 +
√
2k+ 1)

a2 = −2a0

a4 = a0

b1 = −2k(2k+
√
2)a0

b2 = 4k2a0

b2′ = 2(k2 − 1)a0

b3 = 2k(−2k+
√
2)a0

b4 = (k2 −
√
2k+ 1)a0

(8)

and k andW are given by

k = cot(πβ/fs)

W = cos(2π fr/fs)

cos(πβ/fs)

(9)

respectively. The output of the filter is denoted f̃ (n). An estimate
of the magnitude of the respiratory f-wave frequency modulation

is given by the envelope of f̃ (n), obtained as the magnitude of
its analytic equivalent using Hilbert transformation. The estimate

is denoted 1f̂ (n). Since 1f̂ (n) varies over time, we use its 5
min average 1f̄ to quantify the magnitude of respiratory f-wave
frequency modulation in this study.

2.6. Estimation of Respiration Rate
A surrogate respiration signal is derived from the ECG leads
(V1, V2, V3, V4, V5, V6, I, II, III) by using homomorphic
filtering to extract slow variations in the amplitudes (Rezek and
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Roberts, 1998). First, the ECG signal is decimated to 50 Hz
and a zero-phase first-order Butterworth low-pass filter with a
cut-off frequency of 2 Hz is applied to emphasize slow variation

in the ECG amplitude caused by chest movements during the
respiratory cycle. Then, the peak envelope of the filtered ECG
signal is determined and smoothed using a Savitzky-Golay filter

FIGURE 3 | Left subplots indicate rl (n) from lead V1, V2, V3, V4, V5, V6, I, II, and III during baseline in the patient (b), and middle subplots are corresponding Welch

periodogram. The prominent peak in the respiratory interval (red solid line) is shown with red marker. The averaged spectra and respiration rate estimate can be seen

in the right subplot.
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with polynomial order four and frame length 251 corresponding
to 5 s, and the resulting envelope is down-sampled to 5 Hz.
A similar approach is applied separately to each ECG lead; the
surrogate respiration signal obtained from lead l is denoted rl(n).
A robust estimate of the respiration rate is obtained by combining
rl(n) obtained from all ECG leads using peak conditioned spectral
averaging (Bailón et al., 2006; Lázaro et al., 2013; Sandberg et al.,
2019). In this technique,Welch periodograms are estimated from
sliding segments of rl(n) from each lead, and periodograms of
sufficient quality are averaged to produce a power spectrum from
which the respiration rate can be estimated more robustly. In the
present study, Welch periodograms were computed based on 80
s sliding 75 s overlapping segments of rl(n), by averaging power
spectra of 50% overlapping 24 s subintervals. A periodogram is
considered to be of sufficient quality if it has a prominent peak in
the respiratory interval, defined by at least 85% of the maximal
peak height in the spectrum. The respiration rate estimates

obtained from the averaged spectra every 5 s are denoted f̂r(n).
An example of rl(n), corresponding Welch periodograms, and
averaged power spectra obtained from an 80 s time segment from
patient b in phase B, is displayed in Figure 3. In this example, the
average spectrum used for respiration rate estimation is based
on all leads except lead V5, for which the periodogram was
considered of insufficient quality.

3. RESULTS

The estimation accuracy of1f̄ is evaluated using simulations and

the estimation accuracy of f̂r(n) is evaluated using the CR and PA
phases of the clinical data for which the respiration rate is known.
Finally, results from analysis of clinical data during B, CR, and PA
are presented.

3.1. Estimation Accuracy of Respiratory
f-Wave Modulation
Signal quality S and 1f̄ were estimated from the simulated f-
wave signals using the methods described in sections 2.4 and
2.5, respectively. The sampling frequency fs in Equation (4) was
set to 50 Hz to match the sampling frequency of the simulated
f-wave signals. The respiration rate used for the band-pass
filtering was set to fr as used for the corresponding simulation.
Results from the analysis of simulated data are presented in
Figures 4, 5. Figure 4 shows that S decreases with increasing σ8

independently of the other parameter settings. The estimation
error, quantified by the absolute difference between 1f and 1f̄ is
displayed in Figure 5. Results suggest that 1f can be accurately
estimated if S is above ŴS = 0.5; 95% of the estimates has an
error below 0.01 Hz if S > 0.5. For S < 0.5 the estimation error
becomes large which indicates that the estimate 1f̄ is unreliable.
Hence a threshold ofŴS = 0.5 was used to determine if the signal
quality is sufficient for analysis.

3.2. Estimation of Respiration Rate in
Clinical Data
Respiration rate f̂r(n) was estimated from the clinical dataset
using the method described in section 2.6. Table 2 summarizes

FIGURE 4 | Signal quality S of xsim(n) plotted vs. σ8. Red dots indicate the

mean and blue whiskers indicate the std of S.

FIGURE 5 | Estimation error |1f̄-1f | and corresponding signal quality S of

xsim(n).

the estimated respiration rates f̂r(n) for each patient during B, CR,

and PA, respectively. The standard deviation of f̂r(n) within each
recording is smaller than the bandwidth of the filter β , implying
that the center frequency fr can be fixed to the mean f̄r .

The estimation accuracy of f̂r(n) was evaluated on the CR and
PA phases, for which the respiration rate is known to be 0.125

Hz. In all patients except one, f̂r(n) gave an accurate estimate of
the true respiration rate in the CR and PA phases (see Table 2). It

should be noted that patient b, for which f̂r(n) did not correspond
to 0.125 Hz in CR and PA, has a considerable amount of ectopic
beats, which may explain why the respiration rate estimation
failed. This patient was excluded from further analysis.
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TABLE 2 | Estimated respiration rate f̂r (n) (mean ± std) for B, CR, and P,

respectively.

Patient f̂rB (Hz) f̂rCR (Hz) f̂rPA (Hz)

a 0.268± 0.007 0.125± 0.000 0.125± 0.000

b 0.252± 0.006 0.162± 0.000* 0.180± 0.056*

c 0.208± 0.008 0.125± 0.000 0.125± 0.000

d 0.215± 0.007 0.125± 0.000 0.125± 0.001

e 0.232± 0.003 0.125± 0.000 0.125± 0.000

f 0.308± 0.002 0.125± 0.000 0.125± 0.000

g 0.232± 0.019 0.125± 0.000 0.125± 0.000

h 0.163± 0.003 0.125± 0.000 0.125± 0.000

Gross average 0.235± 0.043 0.129± 0.013 0.131± 0.019

*Indicates that f̂r (n) differed significantly from the true respiration rate.

3.3. Estimation of Respiratory f-Wave
Modulation in Clinical Data
The methodology as described in sections 2.3–2.6 was applied to
analyze the clinical data described in section 2.2. The sampling
frequency fs in Equation (4). was set to 50 Hz to match the
sampling frequency of the f-wave signals. Figure 6 illustrates the
signals obtained in each step of the analysis for patient b in
phase B.

The signal quality was sufficient for analysis (S > ŴS ) in all

recordings except one. The mean and standard deviation of f̂ (n)

and 1f̂ (n) are shown in the Table 3. A Kruskal-Wallis test with
Dunn-Sidak correction was applied to analyze if the differences
between phases for each patient were significant. Results indicate

that1f̂ (n) was significantly larger in CR than in B for all patients,

and that1f̂ (n) was significantly smaller in PA than in CR for four

patients (p< 0.05). For f̂ (n) the results weremore heterogeneous;

f̂ (n) was significantly larger in CR than in B for three patients
and significantly smaller in CR than in B for three patients (p

< 0.05). Further, f̂ (n) was significantly larger in PA than in CR
for four patients and significantly smaller in PA than in CR for

three patients (p < 0.05). The gross average 1f̂ was 0.15± 0.01
Hz (mean±std) during B, 0.18± 0.02 Hz during CR, 0.17± 0.03
Hz during PA. There is a trend toward increased 1f̄ during CR
and decreased 1f̄ during PA (see Figure 7). A Friedman test was
applied to analyze if the differences in 1f̄ between B, CR, and PA
were significant. Results indicate that only the changes between B
and CR are significant.

The modulation magnitude 1f̄ is plotted vs. the average f̂ (n),
denoted f̄ , in Figure 8. There is no correlation between 1f̄ and f̄
in any of the phases.

4. DISCUSSION

The aim of the study was to develop a method to quantify
respiratory modulation in the f-wave frequency. Simulation

FIGURE 6 | Signals obtained in each step of the analysis of patient b in phase

B. (A) ECG from lead V1, (B) corresponding extracted f-waves x(n), (C)

estimated f-wave frequency trend f̂ (n), and (D) corresponding (solid blue)

filtered f̂ (n), (dashed purple) 1f̂ (n), and (solid red) estimated 1f̄ . Note the that

(A,B) shows 10 s excerpts of the signals, whereas (C,D) shows the full 5 min

signal.

results shows that the method works accurately provided that the
signal quality is sufficient (cf. Figure 5). Our results from analysis
of clinical data suggest that the magnitude of the respiratory f-
wave frequencymodulation provide complementary information
to the average f-wave frequency (cf. Figure 8).

In previous studies that have investigated respiratory
modulation in the f-wave frequency, a spectral approach was
used (Stridh et al., 2003; Holmqvist et al., 2005). In this study,
we use a recently proposed model-based approach that allows
more detailed f-wave characterization and provides a signal
quality metric S that can be used to exclude unreliable frequency
estimates caused by artifacts in the f-wave signal (Henriksson
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TABLE 3 | Estimated f-wave frequency f̂ (n) and respiratory frequency modulation 1f̂ (n) (mean ± std) from clinical data.

Patient 1f̂B(n)(Hz) 1f̂CR(n)(Hz) 1f̂PA(n)(Hz) f̂B(n)(Hz) f̂CR(n)(Hz) f̂PA(n)(Hz)

a 0.16± 0.06 0.17± 0.09∗ 0.16± 0.08• 6.84± 0.43 6.77± 0.45∗ 6.71± 0.41•∗

c 0.13± 0.06 0.16± 0.08∗ 0.13± 0.07• 6.17± 0.35 6.31± 0.37∗ 6.46± 0.36•∗

d 0.16± 0.08 0.17± 0.08∗ 0.14± 0.07•∗ 6.57± 0.43 6.75± 0.39∗ 6.36± 0.43•∗

fe 0.16± 0.08 0.19± 0.10∗ 0.19± 0.10∗ 7.68± 0.51 7.39± 0.54∗ 7.57± 0.54•∗

f 0.14± 0.07 0.21± 0.10∗ 0.21± 0.12∗ 7.46± 0.46 7.29± 0.49∗ 7.14± 0.48•∗

g — 0.17± 0.08 0.16± 0.08• — 5.91± 0.41 5.96± 0.42•

h 0.15± 0.08 0.17± 0.07∗ 0.17± 0.07∗ 7.73± 0.43 8.11± 0.44∗ 7.98± 0.43•∗

Gross average 0.15± 0.01 0.18± 0.02 0.17± 0.03 7.07± 0.64 6.93± 0.73 6.88± 0.71

Subscripts {B, CR, PA} indicates phase of recording, (∗ ) indicates significant differences to B and (• ) indicates significant differences to CR. The phase B recording from patient g was

excluded from analysis due insufficient signal quality (S < ŴS ).

FIGURE 7 | 1f̄ estimated from phase B, CR, and PA recordings, respectively.

Each curve corresponds to a patient.

et al., 2018). It should be noted that the settings in the present
study were different from the ones used in Henriksson et al.
(2018), to facilitate analysis of respiratory modulation in f-wave
frequency trend. Since the recordings in the present study were
obtained during stationary conditions, the initial frequency
estimate was based on the entire 5 min recording rather than
on 5 s segments of the recording. Further, we allowed a larger
local frequency deviation from the initial estimate; 1.5 Hz rather
than 0.25 Hz. In Henriksson et al. (2018), it was shown that S
larger than 0.3 was sufficient for accurate estimation of f̂ (n).
Our simulation results indicate that a similar S is required for
accurate estimation of the average f-wave frequency with the
present settings. Analysis of small variations in the frequency
trend, however, requires better signal quality, and our simulation
results indicate that S larger than 0.5 is required for accurate
estimation of respiratory f-wave frequency modulation.

The proposed methodology relies on ECG derived respiration
rate estimation. It should be mentioned such estimation requires
ECG length sufficiently long due to respiratory frequency during

baseline phase. If the respiration was known the method
could be apply to shorter segment. Several methods have been
proposed to extract respiratory information from the ECG.
One of the most common approaches is to use respiratory
sinus arrhythmia, i.e., respiratory induced variations in the
heart rate (Charlton et al., 2018). However, such approach
is not feasible during AF where the heart beats result from
complex interactions between the atria and the atrioventricular
node. Another approach is to use beat-to-beat morphological
variations in the QRS complexes caused by chest movements,
using e.g., vectorcardiogram loop analysis (Bailón et al., 2006).
Such analysis is more challenging in AF due to presence of
f-waves, however, a recent study showed that respiration rate
could be accurately estimated from the ECG using a method
based on the differences between the maximal upslope and the
minimal downslope within a QRS interval (Kontaxis et al., 2020).
In the present study we analyze ECG recordings from patients
with pacemakers. The pacemaker causes sharp spikes in the
signal and, hence, the previously proposed methods based on
morphological variations in the QRS complex are not applicable.
Instead, we exploit variation in the ECG amplitude caused by
chest movements to estimate the respiration rate. Our results
show that the estimated respiration rate corresponded to the
expected respiration rate during controlled respiration in all
patients except one (cf. Table 3). For that patient we found that a
considerable amount of ectopic beats caused the respiration rate
estimation to fail.

In the present study we used a filtering approach to extract
respiratory variations in the f-wave frequency trend. Adaptation
of the filter to varying respiration rates is possible, however, in
the present data the respiration rate was found to be constant
within each phase and no adaptation of the filter was required.
Another approach to extract respiratory variations in the f-wave
frequency trendwould be to use orthogonal subspace projections.
In this approach the f-wave frequency trend can be decomposed
into two different components, one respiratory component, and
one residual component by a projection matrix. Such approach
has previously been used to remove respiratory influence in the
heart rate for improved heart rate variability analysis (Varon et al.,
2019). In contrast to the filtering approach which relies on the
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FIGURE 8 | The modulation magnitude 1f̄ plotted vs. average the f-wave frequency f̄ for each patient during (top) B, (middle) CR, and (bottom) PA phase,

respectively. Patients are identified with different colors.

respiration rate, the subspace projections approach requires that
a respiratory signal is available.

It has been shown that respiratory modulation in heat
rate, i.e., respiratory sinus arrhythmia, can be used for non-
invasive assessment of parasympathetic activity (Katona and
Jih, 1975; Alcalay et al., 1992). In this study we aim to
quantify respiratory modulation in the atrial activity during
AF. Our results from clinical data shows that the magnitude
of respiratory f-wave frequency modulation increase with deep
breathing (increased parasympathetic activity) and decrease with
vagal block (decreased parasympathetic tone), suggesting that
respiratory modulation in the f-wave frequency trend can be
partly attributed to parasympathetic regulation in the atria during
AF. This is supported by a recent simulation study that showed
that the parasympathetic neurotransmitter acetylcholine could
be an important factor involved in f-wave frequency modulation
(Celotto et al., 2020). After injection of atropine, there is still
considerable variation in the respiration frequency band; these
variations may be caused by other factors such as the endocrine
system (Gordan et al., 2015) or stretch of the atrial tissue induced
by respiratory chest movements.

4.1. Limitations
The proposed methodology requires ECG recordings longer than
the 10 s clinical standard. The requirement that is motivated by

the respiratory cycle length, which is assumed to be between 10
and 2.5 s corresponding to a respiration rate of 6–24 breaths
per minute. Therefore, a 10 s ECG segment may contain
only one complete respiratory cycle which is insufficient for
robust analysis of respiratory modulation. The methodology
was tested in a small group of AF patients with pacemakers in

controlled settings and the feasibility of the methodology has

to be verified in a larger study population. Further, the clinical
significance of respiratory induced f-wave modulation remains
to be established.

5. CONCLUSIONS

We introduce a novel approach to quantify respiratory
induced variations in the f-wave frequency from the
ECG. Results from simulated signals indicate that
respiratory modulation can be accurately estimated
when the signal quality is sufficient. Results from
analysis of clinical data suggest that respiratory f-wave
frequency modulation increase during deep breathing
and decrease after injection of atropine, implying that
parasympathetic ANS regulation is a contributing factor to
the modulation.
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Background: The autonomic nervous system (ANS) is known as a potent

modulator of the initiation and perpetuation of atrial fibrillation (AF), hence

information about ANS activity during AF may improve treatment strategy.

Respiratory induced ANS variation in the f-waves of the ECG may provide

such information.

Objective: This paper proposes a novel approach for improved estimation of

such respiratory induced variations and investigates the impact of deep

breathing on the f-wave frequency in AF patients.

Methods: A harmonic model is fitted to the f-wave signal to estimate a high-

resolution f-wave frequency trend, and an orthogonal subspace projection

approach is employed to quantify variations in the frequency trend that are

linearly related to respiration using an ECG-derived respiration signal. The

performance of the proposed approach is evaluated and compared to that

of a previously proposed bandpass filtering approach using simulated f-wave

signals. Further, the proposed approach is applied to analyze ECGdata recorded

for 5 min during baseline and 1 min deep breathing from 28 AF patients from the

Swedish cardiopulmonary bioimage study (SCAPIS).

Results: The simulation results show that the estimates of respiratory variations

obtained using the proposed approach are more accurate than estimates

obtained using the previous approach. Results from the analysis of SCAPIS

data show no significant differences between baseline and deep breathing in

heart rate (75.5 ± 22.9 vs. 74 ± 22.3) bpm, atrial fibrillation rate (6.93 ± 1.18 vs.

6.94 ± 0.66) Hz and respiratory f-wave frequency variations (0.130 ± 0.042 vs.

0.130 ± 0.034) Hz. However, individual variations are largewith changes in heart

rate and atrial fibrillatory rate in response to deep breathing ranging from −9% to

+5% and −8% to +6%, respectively and there is a weak correlation between

changes in heart rate and changes in atrial fibrillatory rate (r = 0.38, p < 0.03).

Conclusion: Respiratory induced f-wave frequency variations were observed at

baseline and during deep breathing. No significant changes in themagnitude of

these variations in response to deep breathing was observed in the present

study population.
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1 Introduction

Atrial fibrillation is known as the most common heart

arrhythmia and is a growing public health concern worldwide.

Atrial fibrillation has been estimated to affect 10 million people in

theUnited States by 2050 (Miyasaka et al., 2006) and 17.9million in

Europe by 2060, with more than half of these patients aged 80 years

or older (Krijthe et al., 2013). Atrial fibrillation is associated with

increased mortality and morbidity resulting from stroke and

congestive heart failure, and increased hospitalization costs

(Patel et al., 2014). Despite progression in AF treatment,

including medications aimed at controlling heart rate, rhythm,

or both, and ablative therapy, finding the most accurate therapy for

an individual patient is still problematic (Crandall et al., 2009).

Historically, research has shown that multiple etiological

mechanisms, such as atrial fibrosis, ion-channel dysfunction,

autonomic imbalance, and genetic background, likely drive the

factors associated with the maintenance and progression of AF (Lip

et al., 2010; Fabritz et al., 2016).

This study focuses on respiratory modulation in the atrial

activity during AF. It is well established from a variety of studies

that the refractory period of the atria during atrial fibrillation can be

influenced by various underlying mechanisms, including

pathological changes, electrophysiological dynamics, and an

imbalanced autonomic tone (Waldo, 2003; Nitta et al., 2004;

Saksena et al., 2005). The refractory period of the atria has been

found to have linear correlation with f-waves frequency (Capucci

et al., 1995). The frequency of the f-waves in the ECG, also referred

to as the atrial fibrillatory rate (AFR) (Platonov et al., 2014), has

previously been analyzed with respect to ANS induded changes

during AF. For instance (Stridh et al., 2003; Holmqvist et al., 2005),

have shown that variation in the f-wave frequency during

controlled respiration can be linked to the parasympathetic

activity. Östenson et al. studied changes in the f-wave frequency

in response to changes in ANS tone induced by tilt-test in

40 patients with persistent AF, results showed f-wave frequency

decreased during head-down tilt (HDT) compared to baseline and

increased during head-up tilt (HUT) (Östenson et al., 2017). In a

previous study, we investigated changes in f-wave frequency

variations in response to controlled respiration (Abdollahpur

et al., 2021). In a study population of eight pacemaker patients

with permanent AF recorded at baseline, during controlled

respiration, and during controlled respiration after injection of

atropine. Briefly, a high-resolution f-wave frequency trend

obtained using model-based approach was filtered using a

narrow bandpass filter with center frequency corresponding to

respiration rate and fixed bandwidth. The envelope of the filtered

frequency trend served as an estimate of the magnitude of the

respiratory variation; the results indicated that this magnitude was

affected by parasympathetic regulation (Abdollahpur et al., 2021).

The present study addresses main weaknesses of our previous

study. In contrast to the previous study, where the AF patients

had pacemakers set at a fixed heart rate, the present study is based

on AF patients without pacemaker whose heart rate varies over

time. Such variations in heart rate may affect the ANS and hence

the ANS induced variations in atrial electrical activity. Second,

the previous approach to quantify respiratory variation in the

f-wave frequency is sensitive to noise and cannot handle time-

varying respiration rates. Hence, the objectives of the present

study were twofold: 1) To propose a novel subspace projection

approach to quantify respiratory variation in the f-wave

frequency trend that is robust to noise and can handle time-

varying respiration, and 2) to investigate the impacts of deep

breathing on the f-wave frequency in a population of AF patients

without a pacemaker.

2 Materials and methods

A schematic overview of themethodology is shown in Figure 1.

The clinical data is described in Section 2.1, the ECG processing

aiming to obtain an f-wave signal x(n) is explained in Section 2.2.

As follow, a model-based approach is applied to the extracted

signal x(n) to estimate an f-wave frequency trend f(n) (Section 2.3).

An ECG-derived respiration signal r(n) is estimated using the slope

range approach (Section 2.4). Respiratory variation in f(n) is

estimated using orthogonal subspace projection method (Section

2.5). Simulated f-wave signals are used to evaluate the performance

of the proposed methodology (Section 2.6). Finally, statistical tests

are applied to the results from analysis of clinical data to determine

if there is a significant differences in heart rate, f-wave frequency,

and respiratory variation in f-wave frequency trend between deep

breathing phase and baseline (Section 2.7).

2.1 ECG data

The study population consists of a subset of 28 participants

from the Swedish cardiopulmonary bioimage study (SCAPIS)

(Bergström et al., 2015) that were diagnosed with AF. The clinical

characteristics of the study population are summarized in

Table 1. The subjects performed a deep breathing task. The

task was 5-s inhalation and 5-s exhalation as deep-breathing (D)

phase for 1 min, and as follows 5 min during baseline (B); the

patients were in AF during the recordings. For further details on

the study protocol, the reader is referred to (Engström et al.,
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2022). A standard 12-lead ECG at 500 Hz sampling rate was

recorded throughout the protocol.

2.2 ECG processing

TheCardioLund ECGparser (CardioLundResearchAB, Lund,

Sweden) is used for preprocessing, beat-detection, and beat

classification and QRST cancellation. Briefly, in this software, a

linear-phase high-pass filter is applied to the ECG to eliminate

baseline wander, and fiducial points in the QRS complexes are

detected; also, the QRS complexes are classified based on their

morphology. The ectopic beats were identified based on correlation

to template beats and were clustered and treated as a separate class

for the QRST-cancellation. The QRS interval yil(n) is set to

140 ms, starting 110 ms before the end of the S wave and

finishing 30ms after the end of the S wave, where i and l

denotes beat-number and lead, respectively. A spatiotemporal

QRST cancellation approach (Stridh and Sörnmo, 2001) is

employed to extract f-wave signals from the ECG. This average

beat subtraction method compensates for minor morphological

variations in the QRST complex by combining beat averages from

different leads. For each beat class, one beat average is calculated

and used for QRST cancellation in the corresponded beats in the

ECG leads. The extracted f-wave signal is downsampled from

1 kHz to 50 Hz using appropriate low-pass filtering and

decimation since such signals have negligible frequency content

above 25 Hz. In the present study, the extracted f-wave signal from

lead V1 denoted x(n), is subjected to analysis. For further analysis,

the ECG data was divided into 1-min segments, resulting in five

segments at baseline and one segment during deep breathing. The

AFR and respiratory f-wave modulation was estimated from each

1-min segment of x(n) as described in Section 2.3 and Section 2.5,

respectively. A respiration signal, which is required for estimation

of respiratory f-wave modulation, was obtained from the

corresponding QRS intervals yil(n) as described in Section 2.4;

ectopic beats were removed for this analysis. For each patient,

results from the 1-min segments recorded at baseline were

averaged to obtain the heart rate (HRB), atrial fibrillatory rate

FIGURE 1
Schematic representation of the methodology.

TABLE 1 Clinical characteristics of patients.

Number

Age (mean ± SD, range) 60.1 ± 4.0 [50.1–64.9]

Men (%) 23 (82)

BMI (mean ± SD, range) 31.8 ± 7.2 [18.8–50.8]

Systolic BP 124 ± 23 [90–188]

Diastolic BP 79.9 ± 11 [61–104]

Hypertension*(%) 17 (61)

Diabetes (%) 2 (7)

Never smokers (%) 9 (32)

Heart failure (%) 2 (7)

Previous AMI or angina (%) 2 (7)

Treatment

Beta blocker (%) 15 (54)

Ca-antagonist (%) 6 (21)

Antiarrhythmic drug (%) 4 (14)

p ≥140/90 mmHg or treatment for hypertension.
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(AFRB), and respiratory f-wave frequency modulation (ΔfOSP
B),

respectively. The corresponding estimates during deep breathing

(HRD, AFRD, ΔfOSP
D) were based on one segment.

2.3 Estimation of f-wave frequency trend

For the estimation of a high-resolution f-wave frequency

trend, a harmonic f-wave model (Henriksson et al., 2018) is

employed. The model f-wave signal is defined as the sum of a

complex exponential signal with fundamental frequency f and its

second harmonic,

s n; θ( ) � ∑2
m�1

Ame
j m2π f

fs
n+ϕm( ), (1)

where Am and ϕm denote the amplitude and phase of m:th

harmonic, respectively, and fs is sampling frequency. The use of

two harmonics in the model is motivated by the observations in

(Henriksson et al., 2018), that additional harmonic results in more

noise due to the additional degrees of freedom of this model. The

parameters θ � [f A1 A2 ϕ1 ϕ2]T, are estimated by fitting

the harmonic model s (n; θ) to the analytic equivalent of x(n),

denoted xa(n), using maximum likelihood approach.

θ̂ � arg min
θ

‖xa n( ) − s n; θ( )‖2, (2)

The model is fitted to 20 ms overlapping 0.5-second segments of

xa(n). For this fitting, f is constrained to the interval [f0 ± 1.5] Hz,

where global frequency estimate (f0) is the maximum peak in the

interval [4,12] Hz of the Welch periodogram of the whole x(n).

The estimates of f result in an f-wave frequency trend f(n)

sampled at 50 Hz. Then, correspond to the sampling rate of

the respiration signal (cf. Section 2.4), f(n) is resampled to 5Hz.

To quantify accuracy of the fitted model, a signal quality index,

denoted S, is computed

S � 1 − σ ê
σxa

, (3)

where σ ê and σxa denote the standard deviation of the model

error (ê(n) � xa(n) − s(n; θ̂)) and xa(n), respectively. In this

study, S is computed for non-overlappning 5 s segments. S
ranges from 0 to 1, where a higher value corresponds to a

better fit. Only segments with S > 0.3 is considered for further

analysis, since previous studies has shown that S larger than

0.3 was sufficient for accurate estimation of f(n) (Henriksson

et al., 2018). The atrial fibrillatory rate (AFR) is estimated by the

median of f(n).

2.4 Estimation of ECG-derived respiration

The slope range method (Kontaxis et al., 2019) is applied to

each lead of the ECG separately to obtain a respiratory signal. The

method quantifies variations in the QRS morphology, which are

assumed to reflect respiratory activity, using the difference between

the maximum and minimum derivative in the QRS interval,

rl i( ) � max
n

yil
′ n( ){ } −min

n
yil
′ n( ){ }, (4)

where i and l denotes beat-number and lead, respectively, and

yil
′(n) � yil(n) − yil(n − 1). The resulting signal rl(i) is resampled

to 5Hz using cubic spline interpolation to obtain a uniformly

sampled signal rl(n). Principal component analysis (PCA) is

applied to the set of rl(n) to derive a joint respiratory signal

from all leads. The principal component that has the greatest

variance and a significant periodic component in the respiratory

interval ([ 0.1 0.5 ] Hz) is selected as the respiratory signal,

denoted as r(n). A principal component is considered to have

a significant periodic component if the magnitude of the largest

peak in the respiratory interval of its spectrum is at least 85% of

the largest peak in the whole spectrum. The spectra are estimated

by Welch periodograms based on 30 s sliding 25 s overlapping

segments of PCA components. If none of the principal

component accounting for more than 5% of the total variance

has a significant periodic component in the respiration interval,

no respiration signal is extracted.

2.5 Orthogonal subspace projection

To extract variations in the f-wave frequency trend that are

linearly related to the respiration, an orthogonal subspace

projection approach is employed (Chang, 2005). The demeaned

f(n) denoted as ~f(n) is projected onto a subspace defined by the

matrix V, constructed using the respiratory signal r(n),

V � r0, r1, . . . , rd, . . . , rm[ ], (5)
rd � r 1 + d( ), r 2 + d( ), . . . , r N −m + d( ){ }T, (6)

The model order m is determined by analysis of the simulated

data (cf. Section 3.1). After creating the matrix V, the signal ~f(n)
is projected onto the respiratory subspace using

f x � V VTV( )−1VTf � Pf , (7)

where f is a length N vector of ~f(n), P is the projection matrix of

size N − m × N − m, and fx is the component of f that is linearly
related to respiration. The power of the variations linearly related

to respiration (fux f x) is a fraction of the total power of the

variations (fuf). Assuming that the variations in fx are sinusoidal,
the peak-to-peak amplitude is given by

Δ�fOSP �
									
2 · fux f x( )

N

√
, (8)

In the present study, Δ�fOSP serves as an estimate of the

magnitude of the respiratory induced f-wave frequency

variations.
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2.6 Performance evaluation

Simulated f-wave signals were used in order to assess the

performance of the orthogonal subspace projection approach

and its dependence onmodel orderm (Section 2.5), signal quality

S (Section 2.3) and characteristics of the f-wave signals. The

f-wave signals were simulated by a modified version of the saw-

tooth model proposed by (Stridh and Sörnmo, 2001). The f-wave

signal is the sum of a sinusoid and its harmonic with time-

varying frequency

xsim n( ) � ∑2
k�1

Ak n( )sin 2πkF n( )n( ) + v n( ), (9)

F n( ) � F

Fs
+ ΔF
2πFrn

sin 2πn
Fr

Fs
( ) + Φ n( )

2πkn
, (10)

where F defines the average fundamental frequency, and

respiratory f-wave frequency variation is quantified by Fr and

ΔF, defining the variation frequency and the variation

magnitude, respectively. To incorporate other forms of

variation in the f-wave frequency, random phase variation,

Φ(n), is added; it is modeled as white Gaussian noise with

standard deviation σΦ. The amplitude of the k:th harmonic is

given by

Ak n( ) � 2
kπ

A + ΔA n( )( ), (11)

where A is the average f-wave amplitude, and ΔA(n)
quantifies random amplitude variation and is assumed to have

a Gaussian distribution with mean zero and standard deviation

A/5; the parameter A was chosen to obtain a signal standard

deviation of signal σx equal to 50. The following parameters were

used for simulating oneminute-long f-wave signals: F = {4, 5, 6, 7,

8, 9, 10} Hz, Fr = {0.1, 0.15, 0.20, 0.25, 0.30} Hz, ΔF = {0, 0.025,

0.05, . . . , 0.3} Hz, σΦ = {0.27, 0.40, 0.55, 0.67, 0.80}. White

Gaussian noise v(n) with σv = {0.1A, 0.2A, 0.3A, 0.4A, 0.5A} is

added to form realistic f-wave signals and the sampling frequency

was set to Fs = 50 Hz. Ten realizations of xsim(n) for each

parameter setting were considered, resulting in a total of

113,750 simulated signals.

Through these simulated signals, the accuracy of Δ�fOSP as an

estimate ofΔF is compared to our previously proposed band-pass

filtering approach to quantify respiratory induced variations in

the f-wave frequency trend (Abdollahpur et al., 2021). In that

method, respiratory variation is estimated by applying a narrow

band-pass filter with a fixed bandwidth of 0.06 Hz and a center

frequency corresponding to the Fr. The f-wave frequency trend

f(n) obtained as described in Section 2.3. The average envelope of

the filtered f(n), denoted Δ�fBP, is used to quantify the magnitude

of the respiratory variation. The absolute difference between ΔF
and Δ�fBP, denoted as ϵBP, and the absolute difference between

ΔF and Δ�fOSP denoted as ϵOSP are used to assess the performance

of the methods.

2.7 Statistical analysis

Results are presented as mean ± std, and as median (range)

for Gaussian and non-gaussian variables, respectively; the

Lilliefors test is used to test for gaussianity. Student’s t-test

and Wilcoxon signed-rank test are applied to determine if

differences are significant for Gaussian and non-gaussian

variables, respectively. Hence, a paired t-test is applied to

evaluate the difference between ϵOSP and ϵBP, and a Wilcoxon

signed-rank test is applied to determine whether differences in

HR, AFR, and ΔfOSP between baseline and deep breathing are

significant. Further, Spearman rank correlation is used to

evaluate the relationship between changes in HR, AFR, and

ΔfOSP in response to deep breathing. The level of statistical

significance is considered p < 0.05.

3 Results

3.1 Simulations

Results from the analysis of simulated data are presented

in Figures 2–5. From Figure 2, it is apparent that the smallest

ϵOSP was achieved for m = 15, and hence, m was set to 15 for

the remaining analysis. The effect of the time-varying

respiration is illustrated in Figure 3 where Fr changes from

0.1 to 0.3 Hz during 1 minute. As shown in Figure 3, the

FIGURE 2
Mean estimation error ϵOSP from simulation plotted versus
model order m.
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respiratory variations can be accurately extracted using the

orthogonal subspace projection approach, while the

previously proposed bandpass filtering approach fails. The

ϵOSP was significantly smaller than ϵBP (0.017 ± 0.012 vs.

0.021 ± 0.015, p < 0.001). The improved accuracy obtained

with the orthogonal subspace projection approach is more
prominent for lower values of S, corresponding to higher

noise levels, cf. Figure 4. The accuracy of the estimates was

FIGURE 3
(A) Simulated signal xsim(n) and (B) corresponding estimated frequency trend f(n), respectively. (C,D) Modeled respiration signal (red) and
extracted respiratory component (blue) obtained using (C) orthogonal subspace projection and (D) bandpass filtering.

FIGURE 4
Box-plot of ϵBP (red) and ϵOSP (blue) from simulation as a
function of signal quality S. (p) denotes significant differences
(p <0.05).

FIGURE 5
Mean estimation error ϵOSP (red) and ϵBP (blue) from
simulations plotted versus the magnitude of respiratory
modulation ΔF.
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not affected by the f-wave frequency and the respiration rate

(results not shown). However, for both approaches the

estimates were less accurate for respiratory variations of

small magnitudes (Δf < 0.075 Hz), cf. Figure 5.

3.2 Heart rate and f-wave frequency

An example of a 30-second f-wave signal x(n) and the

corresponding model signal s (n; θ), signal quality index S,
and extracted f-wave frequency trend f(n) is displayed in

Figure 6. The signal quality was sufficient (S > 0.3) for

estimation of f(n) in 98% of the data. The AFRB was 6.93

(4.65–6.97) Hz and AFRD was 6.94 (4.56–6.99) Hz, a paired

t-test showed no significant difference between baseline and

deep breathing. The HRB was 75.5 (37–150) bpm and HRD

was 74 (37–146) bpm; there were no significant differences

between baseline and deep breathing. The changes in AFR

versus changes in HR are displayed in Figure 7. The changes

in AFR range between −8 and 6%, and the changes in HR

range between −9 and 5%. There was a weak correlation

between changes in HR and changes in AFR (r = 0.38, p <
0.03). The linear dependence between changes in HR and

changes in AFR appears to be more pronounced for patients

where the heart rate decreases in response to deep breathing,

cf. Figure 7.

3.3 Respiration

Figure 8 gives an example of extracted respiratory signals

rl(n) and the corresponding principal components for one

patient during deep breathing. In this example, both rPC1(n)
and rPC2(n) have a significant periodic component according to

definition in Section 2.4. The rPC1(n) is selected as respiration

signal (r(n)) since it has the largest variance. Respiration signals

r(n) could be obtained from 118 out of 168 (70%) of the analyzed

1-min segments. The estimated respiration rate Fr was

FIGURE 6
(A) Extracted f-wave signal x(n), and (B) corresponding modeled signal s(n), (C) signal quality index S and (D) extracted f-wave frequency trend
f(n) obtained from a 30 s ECG segment from one of the patient at baseline.
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significantly higher at baseline (0.20 ± 0.06) Hz than during deep

breathing (0.10 ± 0.01) Hz; the Fr estimated during deep

breathing corresponded to the respiration frequency in

controlled of the study protocol.

3.4 Respiratory f-wave variation

The Δ�fOSP could be obtained from all 1-min segments with a

valid respiration signal, i.e., 118 out of 168.; these estimates are

displayed in Figure 9. The ΔfOSP
B was 0.130 (0.045–0.260) Hz

and ΔfOSP
D was 0.130 (0.056–0.230) Hz. A paired t-test showed

no significant differences between baseline and deep breathing.

The changes in Δ�fOSP from phase from baseline to deep

breathing plotted versus the corresponding changes in the

AFR in Figure 10. The changes ranged from −100 to 100% for

Δ�fOSP. The Spearman method showed no correlation between

changes in Δ�fOSP and changes in the AFR.

FIGURE 7
Relative changes between AFRD and AFRB plotted versus
relative between HRD and HRB

FIGURE 8
(A) Respiration signals rl(n) (blue line) and rl(i) (red dots) derived from 1-min ECG during deep breathing and (B) corresponding PCA components.
In this example r(n) is set to rPC1(n) since it has a significant periodic component and accounts for most of the total variance.
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4 Discussion

In the present study, we propose a novel methodology, based

on orthogonal subspace projection, for quantifying respiratory

variations in the f-wave frequency trend. Results from analysis of

simulated data show that the estimation accuracy of the proposed

approach is comparable to that of our previously proposed

bandpass filtering approach (Abdollahpur et al., 2021).

However, the proposed approach is better suited for analysis

of standard ECG recordings since it can handle time-varying

respiration (Figure 3) and provides more accurate estimates of

respiratory variations at low SNR (Figure 4).

Orthogonal subspace projection has previously been

proposed for removing respiratory influences in heart rate

variability signal for improved estimation of sympathovagal

balance (Varon et al., 2018). In contrast, in this study we

aimed to keep variations in f-wave frequency trend that were

linearly related to respiration and remove other variations. Such

respiratory–induced f-wave frequency variations have previously

been shown to be affected by parasympatetic regulation in a

cohort of AF patients with complete AV block and pacemaker set

at a fixed pacing rate (Abdollahpur et al., 2021).

The orthogonal subspace projection relies on an ECG-derived

respiration (EDR) signal. It should be noted that standard RR

interval-based algorithms for ECG-derived respiration (Widjaja

et al., 2014) are not applicable during AF since variations in

heart rate during AF do not originate from the sinus node.

Hence, the slope range method was selected for this since

previous studies (Kontaxis et al., 2019) has shown that this

method is robust during AF and provides more accurate

estimates compared to QRS loop rotation angle (Bailón et al.,

2006) and the R-wave angle (Lázaro et al., 2014). In the slope range

method f-wave suppression is not needed and its performance is

less affected by the presence of f-waves (Kontaxis et al., 2019). An

EDR signal is derived from each lead separately, and PCA is

employed to merge respiratory information from EDR signals

from different leads. It is assumed that the PCA component that

has a significant periodicity in the 0.1–0.4 Hz interval and accounts

for the largest part of the variations in the EDR signals contains the

respiratory information. Respiration signals couldn’t be obtained

from 30% of the analyzed 1-min segments due to criteria defined in

Section 2.4. Since this methodology aimed for the effect of time-

varying respiration on the f-wave frequency, we used PCA to find

respiration signal. The PCA uses a maximum-variance criteria to

separate respiration signal and noise into orthogonal subspaces. Its

components are sensitive to the high variance noise, whichmay not

be the best way to find respiration signals. An alternative solution

would be to use periodic component analysis (Saul and Allen,

2000), which has previously been proposed for decomposition of

multilead ECG (Sameni et al., 2008) and applied for analysis of, e.g.,

t-wave alternans (Monasterio et al., 2010; Palmieri et al., 2021).

Whereas PCA uses a maximum-variance criteria to decompose

signals, periodic component analysis maximizes the periodic

structure. Periodic component analysis has the advantage of

being less sensitive to large amplitude noise, however, it is

requires prior knowledge on the periodicity of the desired signal.

Respiratory induced f-wave frequency variations has previously

been shown to be affected by parasympathetic regulation. In our

previous study, (Abdollahpur et al., 2021), 5-min ECGs recorded

from eight patients during controlled respiration before and after full

vagal blockade were analyzed; in 50% of the patients, respiratory

variation was significantly reduced after the vagal blockade.

Moreover, results from computational simulations of human

FIGURE 9
Estimates of respiratory f-wave frequency variations ΔfOSP

B

(black circle) and ΔfOSP
D (red p) from all 1-min segments for each

patient.

FIGURE 10
Relative change between ΔfOSP

B and ΔfOSP
D plotted versus

relative change between AFRB and AFRD.
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atrial tissues confirmed that the pattern of the parasympathetic

neurotransmitter acetylcholine release could be an important factor

involved in f-wave frequency variation (Celotto et al., 2020). These

results suggest that respiratory f-wave frequency variations can

potentially be used to quantify ANS activity, which is of clinical

interest since ANS activity is an important factor on the

maintenance and progression of AF (Linz et al., 2019). For

example, vagus nerve stimulation has been shown to shorten the

atrial effective refractory period and suppress autonomic remodeling

in dogs with obstructive apnea induced AF (Yu et al., 2017). Further,

it has been shown that AF progression through cellular remodeling

could be reduced by minimizing sympathetic or increasing

parasympathetic tone (Bashir et al., 2019). In a recent study

(Sohinki et al., 2021), investigated the impact of low-level

electromagnetic fields (LL-EMF) which is specifically targeted for

vagal stimulation, on AF inducibility in humans.

In present study no significant differences were found between

f-wave frequency variations at baseline and during deep breathing.

Several factors could contribute to this observation. Firstly, the

duration of the deep breathing task was just 1 min which may

not be sufficient time to observe the effect of changes in autonomic

tone on the f-wave frequency trend. Further, considering the large

variation ofΔ�fOSP from the 1-min segments at baseline (cf Figure 9),

recordings of longer duration during deep breathing are desired for

robust estimation. Secondly, the heterogeneous behavior of changes

in Δ�fOSP in response to deep breathing may be due to individual

differences in AF progression which may effect the ANS regulation

(Linz et al., 2019). The patients in the present study have paroxysmal

and persistentAFwith unknownduration.However, due to the small

study population subgroup analysis is not possible. Thirdly, the

fluctuations in intrathoracic pressure as a result of respiration

have an important effect on the heart rate during normal sinus

rhythm. The effect of these fluctuations on the heart rate during AF

are largely unknown. It is possible that variations in heart rate

counteract the impact of respiration on the fluctuations in

acetylcholine level in the atrial tissues and, as a result, the f-wave

frequency variation. In the previous study, the effect of the

parasympathetic activity was investigated in a cohort of AF

patients with complete AV block and fixed-rate (60 beat/min)

pacemaker (Abdollahpur et al., 2021) and hence the effect of

changes in ANS activity induced by variations in heart rate was

eliminated. In contrast, the present dataset consists of patients

without a pacemaker. Finally, it should be noted that the

estimation accuracy of the proposed methodology sets a lower

bound for changes that can be detected (cf. Section 3.1), and we

cannot exclude the possibility that there are changes below this limit

that remain undetected.

5 Conclusion

We propose a novel orthogonal subspace projection

approach to quantify respiratory variations in the f-wave

frequency trend obtained from the ECG during AF. Results

from simulated f-wave signals show that the proposed

approach offers more robust performance in respiratory

variation estimation compared to the previously proposed

bandpass filtering approach. Results from analysis of clinical

data were heterogeneous and no significant differences in HR,

AFR and respiratory f-wave frequency variations Δ�fOSP between

baseline and deep breathing were found in SCAPIS dataset.
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Introduction: This study explores transient and stationary effects of sympathetic
and parasympathetic stimulation on f-wave characteristics in atrial fibrillation
(AF) patients undergoing a tilt test. Transient phase is defined as the initial 2-
minute interval following each postural change, reflecting immediate autonomic
adaptation, whereas steady phase refers to the subsequent interval (from 3
minutes post-change until phase end) representing a stable autonomic state.

Methods: Our primary aim is to investigate how the two branches of the
autonomic nervous system (ANS) influence the f-wave frequency time series
( f(m)). An analysis of f(m) in terms of the mean over time (Ff) and the
magnitude of respiration-modulated f(m) variations (ΔFf) is conducted during
baseline supine rest (B), head-down tilt (HDT) and head-up tilt (HUT). We
analyzed data from a previous study in which 24 patients with persistent
AF underwent a tilt test protocol, during which electrocardiograms (ECGs)
were recorded. A model-based method was used to extract f(m) series
from the ECG. Subsequently, an orthogonal subspace projection method was
employed to quantify ΔFf, considering an ECG-derived respiratory signal.
Electrophysiological computational simulations were conducted on 2D and
3D human atrial persistent AF models to aid the interpretation of clinical
findings. Various levels of cholinergic stimulation by acetylcholine and β-
adrenergic stimulation by isoproterenol were tested in themodels. The temporal
modulation of acetylcholine, representing changes associated with respiration,
was cyclically modeled using sinusoidal waveforms.

Results: Analysis of the clinical data showed a decrease in Ff from B to HDT
and an increase from HDT to HUT. During HDT, ΔFf initially increased in the
transient phase before decreasing in the steady phase, then rose again during
HUT. Analysis of the simulated data showed that increasing the concentration
of Isoproterenol and/or acetylcholine resulted in a rise in Ff. Additionally, the
magnitude of ΔF f was shown to be associated with the extent of acetylcholine
fluctuation.

Discussion: These results suggest that changes in f-wave frequency
characteristics during HUT and HDT could be linked to changes in sympathetic
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activity, with parasympathetic activity possibly modulating the effects of
sympathetic activity rather than being an independent driver of fibrillatory
rate changes.

KEYWORDS

atrial fibrillation, autonomic nervous system, ECG processing, f-wave frequency,
parasympathetic regulation, respiratory modulation

1 Introduction

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia
characterized by irregular and rapid electrical impulses in the
atria, leading to ineffective atrial contractions. This condition
disrupts the heart’s normal rhythm posing serious health risks,
including stroke, heart failure and decreased quality of life. As
the incidence of AF continues to rise globally, understanding
the mechanisms underlying this condition becomes increasingly
important (Hindricks et al., 2021). However, despite advancements
in the treatment of AF, identifying the most suitable therapy for
each individual patient remains challenging (Hindricks et al., 2021;
Joglar et al., 2024). The pathophysiology of AF is complex and
involves various modulators that act via multiple mechanisms.
Several studies have described a role of the autonomic nervous
system (ANS) in the onset and perpetuation of AF (Gould et al.,
2006; Chen et al., 2014; Vandenberk et al., 2023).

In healthy subjects, the sympathetic and parasympathetic
branches of the ANS work together in coordination, with
sympathetic activation increasing heart rate and contractility, and
parasympathetic activation decreasing them. An imbalance in the
activity of the ANS can lead to electrical instability in the heart, both
acting as anAF trigger and contributing to the AF substrate required
for the perpetuation of AF (Dimmer et al., 1998; Herweg et al.,
1998; Fioranelli et al., 1999; Tomita et al., 2003; Chang et al.,
2016). Therefore, assessing ANS activity in AF patients could be
highly relevant, as inter-patient variability in ANS activity might
contribute to explain the large differences in the effectiveness of anti-
AF therapies between patients and might help in the development
of personalized treatments.

Parasympathetic stimulation (PSS) triggers the release of the
neurotransmitter acetylcholine (ACh). ACh binds to muscarinic
receptors in atrial myocytes, ultimately causing the activation
of a specific subset of potassium channels known as G protein-
activated inwardly rectifying potassium channels. The ACh-
activated potassium current, denoted as IKACh, is involved in the
slowing of the impulse formation at the sinoatrial node (SAN),
leading to bradycardia, and in the shortening of the action potential
(AP) duration (APD) and the hyperpolarization of the resting
membrane potential in atrial myocytes. These effects, which are
concentration-dependent, enhance the dispersion of refractoriness
in atrial tissue and render the atria more susceptible to reentry
and AF by reducing the wavelength of reentry (Rohr et al., 1998).
Conversely, sympathetic stimulation (SS) increases the firing rate
of the SAN and causes a variety of changes in the activity of atrial
myocytes by activating the β-adrenergic signaling cascade, which
triggers the phosphorylation of various cellular substrates by protein
kinase A (Xie et al., 2013). Sympathetic hyperactivity induces
arrhythmias by different mechanisms, including the enhancement

of Ca2+ influx into the cell and the promotion of spontaneous
releases of Ca2+ from the sarcoplasmic reticulum (Chelu et al.,
2009). The increase in the intracellular Ca2+ concentration can lead
to an abnormal automaticity of atrial cells, manifested as early or
delayed afterdepolarizations.

During AF, the P waves of the ECG, representative of atrial
activation, are replaced with irregular and erratic waveforms
of smaller amplitude denoted f-waves (Sornmo, 2018). With
the aim to characterize the atrial electrical activity during AF,
the f-wave frequency has received considerable clinical attention
(Lankveld et al., 2014; Platonov et al., 2014). Particularly, the
atrial dominant frequency, often referred to as the atrial fibrillatory
rate and here denoted as Ff, can be derived either through
spectral (frequency domain) analysis by identifying the frequency
presenting the highest peak in the power spectral density of the f-
wave signal (Park et al., 2019), or through time-domain analysis
of the ECG using model-based approaches (Henriksson et al.,
2018a). Previous studies have shown that variations in ANS
activity can result in f-wave frequency variations, an aspect
which can not be studied by restricting the analysis to the
dominant frequency Ff, but requires detailed analysis of the
f-waves frequency time series f(m) (Abdollahpur et al., 2021;
Abdollahpur et al., 2022). Slow controlled breathing (0.125 Hz)
in persistent AF (psAF) patients with permanent pacemaker
has been shown to cause f(m) modulation at the respiration
frequency (Stridh et al., 2003; Holmqvist et al., 2005), with the
magnitude of the respiratory f-wave frequency modulation ΔFf
being reduced after vagal blockade (Abdollahpur et al., 2021). This
suggests a link between f(m) modulation through respiration and
parasympathetic activity.

Also, we conducted computational simulations to
shed light on the mechanisms underlying those findings
(Celotto et al., 2022; Celotto et al., 2024). We evaluated the role
of the spatiotemporal release pattern of ACh, considered to vary
in phase with inspiration and expiration, in modulating the f-wave
frequency and reported that changes in the ACh concentrations
were linearly correlated with changes in the f-wave frequency.

A common way used in clinical settings to assess autonomic
function is the tilt test, which can provide valuable information
about the ability of the ANS to regulate blood pressure and heart rate
in response to postural changes (Freeman, 2006). A study examined
changes in the f-wave frequency in response to changes in ANS
activity induced by head-down tilt (HDT) and head-up tilt (HUT)
in 40 patients with psAF and reported a reduction in the f-wave
frequency duringHDT compared to the baseline (B) and an increase
in f-wave frequency in response to HUT (Östenson et al., 2017).
Our further analysis of the data from that study showed that a
change in the sign of the derivative of the population averaged f-
wave frequency trends is noticeable after the initial 2 min of each
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5-minute tilt phase (Plappert et al., 2022).Thismay indicate an initial
transient response of the ANS (Fois et al., 2022), after which the
system begins to return to baseline.

In this study, we investigated the relationship between
autonomic influences and changes in Ff, ΔFf and heart rate (FHR)
during HUT andHDT in psAF patients. To assess both the transient
and the steady-state responses, we separately analyzed the ECG
signals for the first 2 and the last 3 min of baseline, HDT and HUT.

To provide further insight into the autonomic modulation of
changes in heart rate and f-wave characteristics, we developed 2D
and 3D atrial computational models under different combinations
of cholinergic and β− adrenergic stimulation. Preliminary results
of this study were presented at the 2023 Computing in Cardiology
conference (Celotto et al., 2023).

2 Materials and methods

The description of the clinical tilt test data is provided in
Section 2.1. A brief description of the methods for ECG-based
estimation of heart rate FHR, f-wave frequency Ff, and the
respiratory modulation quantified in terms of ΔFf is provided
in Sections 2.2–2.4 (Abdollahpur et al., 2022). The human
atrial models with incorporation of autonomic effects and the
numerical simulations are expanded from Section 2.5 to Section 2.8
(Celotto et al., 2023; 2024). Section 2.9 describes the statistical
analysis performed to identify significant differences in the extracted
characteristics between B, HDT and HUT.

2.1 Materials

The present study is based on analysis of data acquired in a
previous study (Östenson et al., 2017) where patients admitted with
persistent AF and planned for elective cardioversion were screened
for participation. Patientswith abnormal levels of thyroid hormones,
severe renal failure requiring dialysis, or heart valve disease were
excluded as well as were patients ablated for AF or on any of the
Class I or Class III antiarrhythmic drugs. The 40 patients that were
included in that study were all on anticoagulant therapy. Table 1
lists the clinical characteristics of this population. Standard 12-lead
ECGs, sampled at 1 kHz, were recorded in three different phases:
5 minutes in the baseline supine rest (B) position (0°), 5 minutes
in the HDT position (−30°), and 5 minutes in the HUT position
(+60°), respectively. Details about the tilt test protocol can be found
in Östenson et al. (2017). In this study, we analyzed ECG recordings
from a subgroup of 29 patients, since 11 patients were excluded due
to missing ECG data. This subgroup is consistent with the subgroup
previously examined in Plappert et al. (2022).

2.2 ECG preprocessing

The ECG preprocessing, ectopic beat detection, and QRST
cancellation were performed using the CardioLund® ECG parser,
developed by CardioLund Research AB, Lund, Sweden. The original
ECG sampling rate of 1 kHz provides high-resolution suitable
for QRS cancellation and f-wave extraction. However, this high

TABLE 1 Clinical characteristics of the original study
population (Östenson et al., 2017).

Variable Value

Age (years) 64 ± 12

Gender (male/female) 25/15

AF duration (days) 90 (1–350)

Congestive heart failure 8

Hypertension 32

Ischemic heart disease 4

Diabetes mellitus 3

Beta-blockers 32

Digoxin 7

sampling rate would lead to a considerable computational burden
in subsequent f-wave analysis which is not needed given that f-
wave frequency contents can be assumed constrained well below
25 Hz. Consequently, the extracted f-wave signals from lead V1
were resampled to 50 Hz to obtain an f-wave signal (x(n)). Each
recording was split into six segments; first 2 minutes of baseline rest
(B1), last 3 minutes of baseline rest (B2), first 2 minutes of HDT
corresponding to the transient phase (HDT1), last 3 minutes ofHDT
corresponding to the steady-state phase (HDT2), first 2 minutes
of HUT corresponding to the transient phase (HUT1) and last
3 minutes of HUT corresponding to the steady-state phase (HUT2).
The baseline segment was subdivided into B1 and B2 to improve
the reliability of phase comparisons. Ectopic beats were disregarded
for computation of the average heart rate FHR in each phase (B1,
B2, HDT1, HDT2, HUT1, HUT2), by assessing the consistency
in the shape and timing of each beat relative to the established
normal template, identifying those that deviate significantly from
the template as ectopic beats.

2.3 Estimation of the f-wave frequency
trend from patients’ ECGs

A harmonic f-wave model was used to estimate the high-
resolution trend of the f-wave frequency, f(m) (Henriksson et al.,
2018b). This model represents the f-wave signal as the sum of a
complex exponential signal with the fundamental frequency f and
its second harmonic (Equation 1):

s (n;θ) =
2

∑
p=1

Ape
j(p2πfn/ fs+ϕp), (1)

The model parameters θ = [ f A1 A2 ϕ1 ϕ2]
T were

estimated by fitting the harmonicmodel to the analytic equivalent of
x(n), denoted as xa(n), using a maximum likelihood approach. The
fitting process was performed on 0.5-s segments of xa(n), with 20 ms
overlapping, to obtain the f-wave frequency trend f(m) sampled at
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50 Hz. For the fitting, the fundamental frequency f was constrained
to the interval [ f0 ± 1.5]Hz, where f0 corresponds to the maximum
peak in the interval [4, 12] Hz of the Welch periodogram of each
x(n) recording.

To assess the accuracy of the fitted model, a signal quality index
S was computed (Equation 2):

S = 1−
σ ̂e
σxa

(2)

where σ ̂e and σxa denote the standard deviation of the model
error and xa(n), respectively. In this study, S was computed for
non-overlapping 5-s segments. Only segments with S > 0.3 were
considered for further analysis, as previous studies have indicated
that S larger than 0.3 is sufficient for accurate estimation of f(m)
(Henriksson et al., 2018b). Details on the estimation of S can
be found in Abdollahpur et al. (2022). If more than 10% of the
segments in an ECG recording were considered insufficient for
further analysis, the recordingwas completely excluded from further
analysis. The f-wave frequency Ff in each phase (B1, B2, HDT1,
HDT2, HUT1, HUT2) was obtained by calculating the median of
the corresponding f(m) trend within each phase.

2.4 Respiratory f-wave modulation

An orthogonal subspace projection technique (Varon et al.,
2019) was used to extract respiration-related fluctuations in the f(m)
series as proposed in Abdollahpur et al. (2022). This procedure
was performed separately for each phase (B1, B2, HDT1, HDT2,
HUT1, HUT2). For the extraction of an ECG-derived respiration
signal, a lead-specific respiration signal was extracted from each
ECG lead separately by employing the slope range approach
(Kontaxis et al., 2019), which uses the difference between the
maximum and minimum derivative in the QRS interval to quantify
variations in the QRS morphology related to respiratory activity.
Subsequently, a joint-lead respiration signal, r(m), was obtained
by employing the periodic component analysis (πCA) approach
proposed by (Plappert et al., 2024); an estimate of the respiration
rate (FRR) was also provided by this method.

With r(m) in a window of M samples, an (M− q) × q subspace
projectionmatrix,V , was constructed, where each column consisted
of a delayed version of r(m) (Equations 3, 4):

V = [r0,r1,…,rd,…,rq] , (3)

rd = [r (1+ d) , r (2+ d) ,…, r (M− q+ d)]
T. (4)

Then, f(m) was detrended by subtracting its mean, and
the resulting signal, denoted as ̃f(m), was projected onto the
respiratory subspace generated by V to estimate the respiratory-
related variations (Varon et al., 2019) (Equation 5):

f r = V(V
⊺V)−1V⊺ ̃f , (5)

where ̃f = [ ̃f(1),…, ̃f(M− q)]T.The vector f r = [ fr(1),…, fr(M− q)]
T

represents the variations in the f-wave frequency series linearly
related to the respiration signal r(m).

The average peak amplitude in f r, considered as an estimate
of the magnitude of the respiratory-induced f-wave frequency

variations (ΔFf)1, was determined by (Equation 6):

ΔFf = √
2 ⋅ f ⊺r f r
M− q
. (6)

Furthermore, to quantify the relative contribution of respiration
to the variations in f r compared to ̃f , the relative power of f r, denoted
as Pr(%), was computed as (Equation 7):

Pr (%) =
f ⊺r f r
̃f ⊺ ̃f
× 100. (7)

2.5 2D and 3D human atrial
electrophysiological models

Computational models of human atrial electrical activity were
built to run simulations that could aid in the interpretation of
the clinical data recorded during tilt tests in patients with psAF.
Stationary conditions with different levels of SS and PSS were
simulated to gain insight into their contribution to f-wave frequency
characteristics.

Human atrial electrical activity was simulated both in 2D
square sheets of tissue as well as in 3D biatrial anatomical models
representative of psAF. The 2D models represented square pieces
of 7 × 7 cm2 tissue, discretized in square elements of 200-μm
side. A uniform bottom-to-top fiber direction was assigned to
the tissues. For the 3D biatrial models, the anatomy was in all
cases defined as in Ferrer et al. (2015). The 3D anatomical model
was discretized in a multi-layer mesh using linear hexahedral
elements with an average edge length of 300 μm. This resulted
in a total of 754,893 nodes and 515,010 elements. The model
included detailed regional descriptions of fiber direction and
functional heterogeneity, considering eight regions with different
electrophysiological properties (Celotto et al., 2024).

In the 3D models, we used longitudinal conductivity values
and transverse to longitudinal conductivity ratios adapted from
(Ferrer et al., 2015), as detailed in (Celotto et al., 2024). With these
conductivity values in healthy atrial tissue (without fibrosis and
without electrical remodeling), the total activation time (TAT) was
130 ms, which is consistent with values reported in the literature.
Introducing electrical remodeling caused a slight increase in TAT to
134 ms. Additional incorporation of fibrosis elevated TAT to 180 ms,
consistent with findings from (Wesselink et al., 2022) in patients
with psAF. In the 2D models, we applied the same longitudinal
conductivity values and transverse-to-longitudinal conductivity
ratios as those used in the left atrial (LA) region of the 3D model.
This configuration resulted in a longitudinal conduction velocity
(CV) of 94.12 cm/s without fibrosis and 58 cm/s with fibrosis. These
findings are consistent with values reported in previous studies
involving patients with and without AF (Bayer et al., 2019).

The electrophysiological activity of human atrial
cardiomyocytes was described by the Courtemanche AP model
(Courtemanche et al., 1998). All the myocardial nodes in the
2D tissue mesh were assigned with the same electrophysiological

1 In the original publication Abdollahpur et al. (2022), this ΔFf was denoted

Δ fOSP to indicate that it was estimated with the Orthogonal Subspace

Projection method.
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characteristics representative of LA tissue. In the 3D models,
the Courtemanche model was adapted to represent different
atrial regions by varying the ionic current conductances as in
Ferrer et al. (2015). These adjustments were made based on
experimental observations regarding AP morphology and duration
reported in several studies (Wang et al., 1990; 1993; Li et al., 2001;
Cha et al., 2005; Seemann et al., 2006).

Parasympathetic stimulation effects were described by
introducing the ACh-activated potassium current IKACh in the
cellular models. The IKACh formulation was based on the study
by Kneller et al. (2002) and subsequently updated as proposed by
Bayer et al. (2019). The effects of β-adrenergic stimulation were
modeled as proposed in González de la Fuente et al. (2013). In brief,
the effects of the nonspecific β-adrenergic agonist Isoproterenol
(Iso) were modeled by increasing the maximal conductances of
the L-type calcium current (ICaL) and the slow delayed rectifier
potassium current (IKs) and by decreasing themaximal conductance
of the transient outward potassium current (Ito), following the
experimentally reported concentration-dependent conductance
modulation curves reported in González de la Fuente et al. (2013).
Specifically, for 0.005 μMIso, the conductance values were increased
by 169% for gCaL, by 76.6% for gKs, and decreased by 54.8% for gto.
At the higher concentration of 1 μM, these values were increased by
300% for gCaL, by 79.2% for gKs, and decreased by 61.4% for gto.

Since the simulations aimed to replicate conditions similar to
those observed in psAF patients, both electrical and structural
remodeling (Sanders et al., 2003) was incorporated into the
models, as follows. Electrical remodeling associated with psAF
was represented by reducing the conductances of Ito, ICaL and
the ultrarapid delayed rectifier potassium current (IKur) by 50%,
70% and 50%, respectively, as in Courtemanche (1999), by
increasing the conductance of the inward rectifier potassium
current (IK1) by 100% (Dobrev et al., 2001), and by increasing
the conductance of IKs by 100% (González de la Fuente et al.,
2013). To incorporate psAF-induced structural remodeling in the
2D and 3D models, we introduced 20% diffuse fibrosis based
on the ranges reported experimentally (Platonov et al., 2011).
Specifically, we randomly selected 20% of the nodes based on
a uniform distribution and we assigned them the MacCannell
active fibroblast computational model (MacCannell et al., 2007).
The fibroblast-fibroblast gap-junctional conductance was reduced
4-fold with respect to the myocyte-myocyte conductance. When
myocytes were coupled to fibroblasts, the junctional conductance
was linearly adjusted depending on the number of fibroblasts
coupled to a myocyte.

2.6 Simulated ACh and Iso release patterns

In both the 2D and 3D models, 30% of nodes were randomly
chosen to be either ACh- or Iso-release nodes. This resulted in four
possible scenarios: nodes that released onlyACh, nodes that released
only Iso, nodes that released both Iso and ACh and nodes that
released neither Iso nor ACh.

To model the respiratory modulation of ACh concentration, the
temporal pattern of ACh release was modeled as cyclically varying
following a sinusoidal waveform with a frequency equal to the
average respiration frequency measured in patients (0.14 Hz), see

Table 2. A mean ACh level of 0.05 μM was considered, while two
different peak-to-peak variation ranges of ACh (ΔACh) equal to 0.1
and 0.025 μM, were tested, all of them laying within the ACh ranges
used in previous studies (0.0 − 0.1 μM) (Bayer et al., 2019). The
effects of β-adrenergic stimulationwere simulated by administration
of Iso at spatially and temporally fixed concentrations of 0.0, 0.005
and 1.0 μM.

2.7 Numerical methods and simulations

To establish steady-state conditions, single cells were paced
at a fixed cycle length (CL) of 800 ms over a period of
16 min (Celotto et al., 2024). The resulting steady-state values
of the cellular model’s state variables were used to initialize the
multi-cellular models.

In the 2D models, four stimuli at a CL of 800 ms were
administered at the lower edge of the 2D tissue to pre-excite
the model. Subsequently, a cross-stimulation protocol (S1-S2) was
employed to induce a rotor.The first stimulus (S1) was applied at the
lower edge of the tissue, while the second stimulus (S2) was applied
onto a 3.5 by 3.5 cm square at the bottom right corner.

In the 3D whole-atria models, an S1-S2 protocol was applied
to trigger arrhythmias too. The S1 stimulus was administered at a
line connecting the region between the superior and inferior left
pulmonary veins with the area between the right pulmonary veins.
Subsequently, the S2 stimulus was applied parallel to the first one
starting from the inferior left PV and covering only half of the length
of the S1 line (Celotto et al., 2024).

Following the delivery of the S1 stimulus, the simulations were
conducted for a duration of 24 s, and results are presented for
the last 10 s.

In both the 2D and 3D simulations, the S1-S2 intervals varied
mainly based on the underlying Iso concentration, ranging from
130 ms at Iso = 0μM, to 110 ms at the highest concentration of Iso =
1μM.

Electrical propagation in the atria was described by the
monodomain model and solved with the Finite Element Method in
combination with the operator splitting numerical scheme using the
software ELVIRA (Heidenreich et al., 2010).

2.8 Estimation of the simulated atrial
activation frequency trend

From the simulations, transmembrane voltage time series were
extracted from 169 uniformly distributed points in the 2D tissue
models and 223 points manually selected to be approximately
uniformly distributed in the 3D whole-atria models. For each
extracted point c, the time instant tc,i corresponding to themaximum
upstroke velocity of the i-th action potential was determined.

The simulated instantaneous frequency, fsc(m), was computed
by resampling the series 1/(tc,i+1 − tc,i) to a sampling frequency
of 10 Hz, for all beat indices i in the recording. The time series
fsc(m) was subjected to power spectral analysis. Spectral “peak-
conditioned” selection was performed as in Bailon et al. (2006) so
that the series whose spectrum was not sufficiently peaked were
discarded. The frequency trend of this simulated signals, fs(m),
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TABLE 2 Results of the evaluated parametersFf,FHR,FRR, ΔFf and Pr in the tilt test phases B1, B2, HDT1, HDT2, HUT1, and HUT2.

Median (IQR) B HDT HUT

mean ± SD B1 B2 HDT1 HDT2 HUT1 HUT2

Ff (Hz) 6.74 (6.36− 7.30) 6.69 (6.43− 7.35) 6.49 (6.32− 7.10)
∗,∗∗ 6.55 (6.13− 6.91)

∗∗
6.77 (6.42− 7.27)†,‡ 6.72 (6.48− 7.22)‡

FHR (bpm) 93.5 (80− 105) 89.75 (80− 104) 90.25 (80− 106)
∗∗

93.5 (82− 107)
∗∗,† 98.5 (84.5− 114)†,‡ 96 (82− 111)#

FRR (Hz) 0.13 (0.11− 0.16) 0.13 (0.11− 0.24) 0.15 (0.12− 0.21) 0.16 (0.12− 0.25) 0.12 (0.11− 0.14) 0.15 (0.12− 0.16)

ΔFf (Hz) 0.077± 0.028 0.070± 0.025 0.090± 0.038
∗∗

0.063± 0.019† 0.081± 0.022‡ 0.079± 0.024‡

Pr (%) 2.84± 1.69 1.97± 1.04
∗

3.22± 2.21
∗∗

1.66± 0.85† 2.86± 1.40‡ 2.36± 1.37

Significant differences are denoted by “∗” for B1, “∗∗” for B2, “†” for HDT1, “‡” for HDT2, and “#” for HUT1.

was computed as the mean over the remaining fsc(m) series for all
points c not discarded for the analysis [more details can be found
in Celotto et al. (2024)].

F s
f was calculated as the median over time of fs(m). ΔF s

f was
computed using the method described in Section 2.4, considering
as the respiration signal a sinusoidal waveform of frequency
equal to 0.14 Hz.

2.9 Statistical analysis

The Lilliefors test was employed to assess the normality of the
data. Results for Gaussian-distributed variables are presented as
mean±std, while results for non-Gaussian-distributed variables are
presented as median (lower quartile−upper quartile). The Wilcoxon
signed-rank testwas used to assess statistically significant differences
in FHR, Ff, ΔFf, and Pr between phases. To account for multiple
comparisons, a Bonferroni correction was applied, adjusting the
statistical significance threshold. The corrected significance level
was set at p < 0.05/n, where n is the number of pairwise
comparisons made.

Figure 1 illustrates the comparisons that were performed in
the study. Specifically, we compared each sub-phase (transient
and steady-state) with the immediately preceding sub-phase.
Additionally, we compared each steady-state phasewith the previous
steady-state one and each transient phase with the previous
transient one.

3 Results

An example of an original ECG signal and the corresponding
extracted f-wave signal, estimated f-wave frequency trend f(m),
extracted respiratory signal r(m), and respiratory-related f-wave
frequency variations fr(m), from a 30-s ECG segment during phase
B2, are displayed in Figure 2.

The estimated f-wave frequency trend f(m) from the entire
recording of one patient is displayed in Figure 3, highlighting
the variations in f(m) across phases (B1, B2, HDT1, HDT2,
HUT1, HUT2). The signal quality index S , displayed for a 1-
min subsegment of phase B1, shows that the f-wave signal quality is

sufficient for analysis in a majority of the subsegment and pinpoints
critical areas where the estimated f-wave frequency trend f(m) is
considered unreliable.

3.1 Heart rate and f-wave frequency

Five out of the 29 patients were excluded entirely from further
analysis based on the exclusion criteria outlined in Section 2.3
and thus the results are based on 24 patients. For the remaining
24 patients, 2.2% of the 5-s segments in B1, 1.7% in B2,
0.8% in HDT1, 2.9% in HDT2, 4.3% in HUT1, and 1.9% in
HUT2 exhibited S < 0.3, leading to their exclusion from further
analysis. Regarding the prevalence of ectopic beats in our analyzed
segments, they accounted for approximately 1.07% of the total
beats identified.

Table 2, first row, shows the results for Ff in the first
2 min (transient) and last 3 min (steady state) of each tilt phase
B, HDT and HUT. As can be seen from the table, there was a
significant reduction in Ff from B2 to HDT1 and no significant
differences between HDT1 and HDT2. Conversely, a substantial
rise from HDT2 to HUT1 was observed, again with no significant
differences between HUT1 and HUT2. The second row in Table 2
shows results for FHR. A significant increase was observed from
B2 to HDT1, from HDT1 to HDT2, from HDT2 to HUT1 and
finally a significant decrease was observed from HUT1 to HUT2.
Focusing on the steady state, a significant increase was observed
from B2 to HDT2. Focusing on the transients, a significant increase
was observed from HDT1 to HUT1.

The subplots (a) and (b) of Figure 4 show the values of FHR and
Ff for each patient during each phase segment.The colors and shape
of the points display the individual behavior of each patient in terms
of increase (green squares), decrease (red triangles) and minimal
variation (black circles, differences thives 1%) with respect to the
previous phase segment, for Ff and FHR, respectively. The behavior
of FHR and Ff notably varies among individuals. Note that heart
rate FHR is expressed in bpm for consistency with other works and
clinical conventions. However, it can be easily converted to Hz by
dividing by 60:FHR(Hz) =FHR(bpm)/60.This conversion highlights
the significantly higher frequency of f-waves compared to R-peaks
repetition, i.e., the heart rate.
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FIGURE 1
This table displays the comparisons that were made between phases. Red arrows represent comparisons between each sub-phase and the previous
one; blue arrows represent comparison between transient phases; magenta arrows represent comparison between steady-state phases.

FIGURE 2
Example of the signal processing methodology applied to a 30-second segment from phase B2. The figure presents: (1) the original ECG signal, (2) the
ECG signal after preprocessing and QRST cancellation, (3) the extracted f(m) signal over time, (4) the extracted respiratory signal r(m), and (5) the
projected frequency trend fr(m) after applying OSP.

3.2 Respiration related f-wave variation
and its relative power

The third row of Table 2 presents the results for the respiration
rate FRR in each of the analyzed phase segments. There were

no significant changes in respiration rate between the tilt phases.
The fourth row of Table 2 shows the results for ΔFf. There was
a significant increase in ΔFf from B2 to HDT1 and a significant
decrease from HDT1 to HDT2. Also, there was a significant
increase from HDT2 to HUT1. Comparing steady-states, there
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FIGURE 3
Frequency variation and signal quality across different phases for a subject. Top panel: Displays the frequency trend, f(m), across baseline (B1, B2),
head-down tilt (HDT1, HDT2), and head-up tilt (HUT1, HUT2) phases, with distinct colors marking the different phases. Dashed lines connect the mean
f-wave frequency in each phase. Middle panel: Zoom in of a 60-s interval of f(m) corresponding to the shaded area in the top panel with dashed black
line indicating segments where f(m) is excluded from further analysis. Bottom panel: Signal quality index S with red line indicating values below the
threshold 0.3.

are no significant differences between phases, while considering
transients there is a significant increase from HDT2 to HUT2. The
last row of Table 2 shows the results for Pr, indicating a significant
decrease from B1 to B2, a significant increase from B2 to HDT1, a
significant decrease from HDT1 to HDT2 and, finally, a significant
increase fromHDT2 toHUT1, similar towhatwas observed forΔFf.

The subplots (c) and (d) of Figure 4 illustrate the comparison of
ΔFf and Pr in each patient for each phase segment. The colors and
shape of the points display the individual behavior of each patient
in terms of increase (green squares), decrease (red triangles) and
minimal variation differences thives 1%)with respect to the previous
phase (black circles), for ΔFf and Pr, respectively. Both ΔFf and Pr
exhibited heterogeneous behavior across different patients.

3.3 The f-wave frequency analysis from
computational simulations

In the 2D tissue models, a single stable rotor was initiated
after application of the S1-S2 protocol, while in the 3D
biatrial models, S1-S2 stimulation was able to generate multiple
stable rotors, as illustrated in Figure 5 and in the videos
provided in the Supplementary Material. An increase in the number

of stable rotors (from 1 to 3) was observed when adding 0.005 or 1
μMIso toACh varying from0 to 0.1 μM.WhenΔAChwas 0.025 μM,
the addition of 1 μM Iso increased the number of rotors from 1 to 5.

Table 3 reports the values of F s
f and ΔF s

f for the different
simulations. Figure 6 shows the temporal evolution of fs(m)
compared to ACh concentration for each case. Additionally,
Supplementary Figure S2S in the Supplementary Material displays
the APD at 90% repolarization (APD90) over time across different
locations within the tissue for the 3D simulations. 2D and 3Dbiatrial
simulations render qualitatively and quantitatively comparable
results in terms of fs(m), with F s

f ranging from 7.12 Hz to
9.12 Hz in the different simulated cases. It can be observed that
an increase in the minimum ACh level (from 0 μM to 0.0375 μM,
corresponding to ΔACh = 0.025 μM) resulted in slightly higher
F s

f values, with increases of 0.04−0.32 Hz in both the 2D and
3D simulations.

β-adrenergic stimulation via Iso significantly increasedF s
f in all

cases, with effects dependent on the concentration used (Table 3).
In both the 2D and 3D models, an Iso concentration of 0.005 μM
resulted in an increase inF s

f ranging from 0.31 to 1.13 Hz compared
to the control condition (no Iso). At a higher Iso concentration
of 1 μM, the increase was more pronounced, ranging from 0.81
to 1.75 Hz (Figure 6).
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FIGURE 4
Individual patient trends for FHR (a), Ff (b), ΔFf (c), and Pr (d) across different phases of the tilt test. Responses relative to the preceding phase are
illustrated by point shapes and line colors: increases are shown by green squares with green lines, decreases by red triangles with red lines, and minimal
variations (less than 1%) by black circles with gray lines.

FIGURE 5
Voltage maps representative of the induced fibrillatory pattern after application of S1-S2 stimulation. The ACh values represent the range of variation
(ΔACh). All snapshots were taken at the 20th second from rotor initiation.
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TABLE 3 F s
f and ΔF s

f (Hz) computed from 2D and 3D simulations.

ACh
release
0.14 Hz

2D 3D Mean
values

Iso (μM) Iso (μM)

ΔACh 0.0 0.005 1.0 0.0 0.005 1.0

0.1
F s

f 8.02 8.35 8.97 7.12 8.25 8.80 F s
f 8.25

ΔF s
f 0.14 0.14 0.14 0.13 0.13 0.13 ΔF s

f 0.13

0.025
F s

f 8.20 8.51 9.01 7.37 8.50 9.12 F s
f 8.37

ΔF s
f 0.03 0.03 0.03 0.03 0.03 0.03 ΔF s

f 0.03

Regarding the variations in ΔF s
f with ACh and Iso, we found

that ΔF s
f was mainly dependent on the range of ACh concentration

variation, with its magnitude augmenting as the range increased,
while Iso played a less relevant role. For the lowest ACh variation
range of 0.025 μM, ΔF s

f was around 0.03 Hz. For the largest ACh
variation range of 0.1 μM, ΔF s

f varied from 0.13 Hz (for the 2D
cases) to 0.14 Hz (for the 3D cases).

4 Discussion

In this study, we analyzed ECGs of psAF patients
undergoing a tilt table test and we computationally simulated the
electrophysiology of the human atria to assess the relationship
between ANS activity and f-wave frequency characterization.

We decided to analyze phases by distinguishing between
transient and steady-state responses to postural changes in
patients. In the study by Fois et al. (2022), the transient phases
lasted approximately 1–1.5 min. In our dataset, these phases
seemed to conclude around the 2-min mark. To avoid potentially
overestimating the transient effects, we opted to consider slightly
longer transient durations potentially including some of the
steady-state.

Based on the analysis of the clinical data, substantial changes
in Ff were observed across B, HDT and HUT, both in transient
and steady states. There was a decrease in Ff transitioning from
B to HDT, followed by an increase when transitioning from HDT
to HUT. A similar behavior was observed in FHR. The most
pronounced change in ΔFf occurred during the HDT phase, with
a significant increase from B2 to HDT1 and a significant decrease
from HDT1 to HDT2. During the HUT phase, ΔFf increased
from HDT2 to HUT1 and then stabilized. A similar behavior was
observed for Pr.

Generally, the behavior of FHR and Ff was shown to
largely vary among individuals, with a relevant number of cases
deviating from the overall trend. Inter-patient variability may
arise from physiological differences among individuals, such as
underlying health conditions, genetic predispositions and individual
pharmacokinetic profiles, as well as from the use of β-blockers.

Through simulations, we found that increasing or decreasing
the Iso concentration caused a corresponding increase or decrease
in F s

f . Additionally, increasing the minimum ACh concentration

led to a reduction in APD and resulted in a slight increase
in F s

f (Supplementary Figure S1 in the Supplementary Material).
Moreover, the level of ACh variation was found to be correlated
with ΔF s

f , as already shown in Celotto et al. (2024). Regarding
the effects of the respiratory frequency, we only simulated a
frequency of 0.14 Hz, corresponding to the average respiratory
frequency of the patients in the various phases. Based on our
previous study, we expect that variations in the respiratory rate
within the 0.125−0.33 Hz range would not significantly affect F s

f ,
ΔF s

f , or phase matching between ACh concentration variation and
f(m) (Celotto et al., 2024).

A large number of studies have postulated an increase in SS
during HUT in subjects in sinus rhythm (SR) (Cooke et al., 1999;
Furlan et al., 2000; Whittle et al., 2022). This could be explained
by the fact that during the transition to the HUT position, there
is a sudden decrease in venous return, prompting a compensatory
response from the sympathetic nervous system to maintain blood
pressure. In our study, this observation is further reinforced in the
context of AF. Specifically, the increase in Ff that we observed in
response to the HUT maneuver in AF patients is consistent with the
increase inF s

f that wemeasured for increased Iso in our simulations.
Although there is scarce research on the autonomic effects

during HDT, some studies in SR have associated the slowing ofFHR
during HDT with both an increase in PSS and a decrease in SS
(Whittle et al., 2022; Porta et al., 2014). Only one study reported a
decrease in both PSS and SS (Malhotra et al., 2021). In the case of
AF or atrial flutter, some studies have linked the observed outcomes
to an increase in PSS (Mase et al., 2008; Östenson et al., 2017). The
findings of this work are not fully in line with those studies in AF,
since PSS, causing a shortening of the effective refractory period,
actually leads to an increase in F s

f , as reported in the literature and
confirmed by our simulations (Sarmast, 2003). In our observations,
there is a slight reduction in Ff when going from B2 to HDT1 and
no significant difference from HDT1 to HDT2. However, patients
exhibit heterogeneous behavior, with 25% of patients showing an
increase, 50% showing a decrease in Ff and 25% showing no
substantial change during HDT1 with respect to B2 and HDT2
with respect to HDT1, with larger inter-subject variability observed
during HDT2. Simultaneously, in the majority of patients (75%), an
increase in ΔFf was observed during HDT1, which may indicate
an increased parasympathetic predominance. Based on the results
of our study, these HDT-induced changes could be explained by a
reduction in SS and an increase in PSS predominance. In the case
of Ff, the reduction in SS and the increase in PSS may be balanced
in some cases and not in others, leading to either an increase or
a decrease in Ff depending on which effect is predominant (if
the extent of SS decrease predominates over the PSS increase, a
reduction in Ff would be expected, and vice versa).

During HDT2, we observed a decrease in ΔFf compared to
its value in HDT1, followed by an increase in ΔFf during HUT1.
This behavior could be attributed to the differing time course of
PSS and SS effects. Parasympathetic activation affects the heart rate
almost immediately and briefly,with inputs occurring every 2–4 s. In
contrast, SS has longer latency effects, receiving inputs every 20–40 s
and producing effects that last longer (Pizzo et al., 2022; Nair et al.,
2023). Additionally, the continued stimulation by AChmight lead to
the build-up of inhibitory substances that counteract its effects. This
could dampen the ΔFf response even while Ff remains elevated.
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FIGURE 6
fs(m) (blue) and ACh(t) (red) from 2D simulations [panels (a) and (b)] and 3D biatrial simulations [panels (c) and (d)]. Solid, dashed, and dotted lines
represent 0.0, 0.005, and 1 μM Iso, respectively.

This is supported by the fact that the release of ACh in the
mammalian heart has been reported to be modulated by a negative
feedbackmechanism (Wetzel and Brown, 1985;Manabe et al., 1991).

The inclusion of simulations in our study provided useful
insights into the expected direction of the changes in the mean f-
wave frequency and themagnitude of respiratorymodulation during
PSS and SS.

We did not incorporate studies involving direct
microneurography measurements of sympathetic activity or
in vivo ACh concentration changes during maneuvers such
as tilt testing for model validation, as we could not identify
studies specifically linking tilt testing, microneurography,
and AF. Instead, we based our validation on more global
electrophysiological markers, such as CV and total atrial activation
time (Bayer et al., 2019; Sanders et al., 2003), as well as f-
wave frequencies (Stridh et al., 2003; Holmqvist et al., 2005),
which have been extensively studied in relation to autonomic
modulation and AF.

The simulation methods employed in this study build
upon well-established modeling approaches that have been
previously validated in the literature. The Courtemanche model
and its adaptations have been widely used to simulate atrial
electrophysiology, including the effects of autonomic modulation
(Courtemanche et al., 1998). The ionic current modifications used
to implement the effects of ACh and β-adrenergic stimulation on
atrial electrophysiology were based on experimentally characterized
data (Kneller et al., 2002; González de la Fuente et al., 2013).

The observed discrepancies in the absolute values in clinical data
and simulations (around 2 Hz in Ff and 0.1−1 Hz in ΔFf) could
be attributed to various factors, which can arise from limitations in
either the clinical data or the simulations.

In this regard, we performed one additional simulation at the
2D level (Supplementary Figure S1 in the Supplementary Material).
Particularly, we reduced the level of psAF electrical remodeling
by 50%, resulting in an increase in APD90 of the baseline AP (no
ACh, no Iso) of 25%. These modifications led to a reduction in
ΔFf of 0.85 Hz. However, with the longer APD90, it would have
been more difficult to establish long-lasting rotors in the 2D tissue.
Nevertheless, we believe that the qualitative conclusions remain
valid, and that the observed differences can be partially attributed
to generally longer APs in the patients. In this sense, matching the
dominant frequency observed in simulations and clinical recordings
may be useful to estimate the degree of electrical remodeling in
each patient.

Furthermore, while in the simulations the modulation of
the fibrillatory rate is determined only by ACh and Iso, in the
clinical signals the changes in the f-wave frequency characteristics
in response to HDT and HUT can possibly be attributed to
additional factors beyond the ANS modulation. Among such
factors, mechanical stretch and mechano-electrical feedback should
be considered, as they have been reported to exert significant
contribution to atrial electrical activity in patients with atrial flutter
(Mase, et al., 2009; Ravelli et al., 2008; Waxman et al., 1991).
A study conducted by Waxman et al. (1991) examined various
interventions, including passive upright tilting, the strain phase
of the Valsalva maneuver and expiration, and all of them were
found to reduce the cardiac size. Interestingly, regardless of the
autonomic activity, these interventions were found to independently
increase the rate of atrial flutter. Similarly, Ravelli et al. (2008)
found that acute atrial stretch caused by ventricular contractions
and respiratory movements resulted in a shortening of the atrial
flutter CL in humans. Importantly, even after blocking autonomic
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influences, oscillations in the atrial flutter CL were still present,
further supporting the idea that factors beyond autonomic activity
contribute to these oscillations.

The simulation results suggest that impaired sympathetic
activity leads to a reduced increase in Ff in response to HUT,
while impaired parasympathetic activity results in lower ΔFf
values. The results from the analysis of clinical data reveal
moderate changes in Ff and low ΔFf values, potentially
indicating impairments in both sympathetic and parasympathetic
activity, consistent with the clinical characteristics of the study
cohort (Table 1).

From a clinical point of view, by elucidating the specific effects
of sympathetic and parasympathetic activity on f-wave frequency
modulation, clinicians could tailor pharmacological interventions
targeting the ANS more effectively. For example, medications
that selectively modulate sympathetic or parasympathetic activity
could be prescribed based on an individual patient’s autonomic
profile, potentially leading to improved rhythm control and
symptom management (Vandenberk et al., 2023; Chen et al.,
2014). Additionally, autonomic modulation of f(m) could serve
as a marker for stratifying patients based on their risk of AF
progression or complications. Identifying these patients early on
could promptmore intensivemonitoring and intervention strategies
to mitigate their risk. Finally, insights into autonomic influences
on f(m) modulation could also inform personalized lifestyle
interventions aimed at reducing AF burden and improving overall
cardiovascular health.

4.1 Limitations

Some limitations of this study should be acknowledged to
provide direction for further work.

One of the main limitations of the present study is the small
sample size. The results suggest that changes in Ff and ΔFf
in response to HUT and HDT are moderate, with considerable
interpatient variability. Consequently, these findings should be
validated in a larger study population.

This study analyzed ECG recordings from a subset of 24 patients
from an original cohort of 40 patients (Östenson et al., 2017).
The exclusion was based on the availability and quality of ECG
signals: 11 patients were excluded due to missing ECG recordings,
and 5 additional patients were excluded due to insufficient ECG
signal quality for f-wave analysis. Although excluding low-quality
ECGs improves the reliability of the results, it also limits the
representativeness of our sample in relation to the full 40-patient
cohort (cf. Table1).

The dataset did not provide access to individual patient data,
such as age, sex, AF duration, comorbidities and use of drugs.
These factors are known to influence the ANS, and hence lack
of detailed patient information hampers a deeper exploration of
how these factors might interact with the autonomic responses
measured, potentially affecting the interpretation and applicability
of our results.

Given that 80% of the original 40-patient cohort were diagnosed
with hypertension and treated with β-blockers, it is highly
likely that the majority of the 24 patients analyzed share these
characteristics. However, without detailed individual-level data, we

cannot explicitly confirm these conditions for each patient included
in our analysis. These characteristics of the study cohort may limit
the generalizability of our findings across the broader population
of AF patients, potentially biasing our results toward individuals
with more pronounced autonomic disturbances associated with
hypertension and the use of β-blockers.

Another limitation of this study is the absence of a direct
ground truth measurement for respiration, as we did not use
an independent reference method (e.g., spirometry or respiratory
belts) to validate the ECG-derived respiratory signal. While
the ECG-derived respiratory signal has been widely used in
prior studies (Kontaxis et al., 2019) and provides valuable insights
into respiration-related cardiac modulation, it remains an indirect
estimate, and potential inaccuracies cannot be entirely ruled out.
Additionally, the observed respiratory rate (0.13 Hz) is lower
than typical resting respiration rates. Several physiological factors,
including the use of beta-blockers, the supine position during tilt-
table testing, and the controlled quiet room environment, likely
contributed to a slower spontaneous breathing rate. Despite these
plausible explanations, the lack of direct respiratory measurements
prevents us from direct verification of this effect. Future studies
incorporating simultaneous direct respiratory monitoring would
help validate and refine the precision of the ECG-derived respiration
analysis in similar patient populations.

Focusing on the simulations, due to a lack of reported knowledge
on the spatial distribution of sympathetic and parasympathetic
innervation in the atria, we simply considered a randomdistribution
of an equal number of sympathetic and parasympathetic nodes,
to provide some evidence for the effects of the cholinergic and
β-adrenergic stimulation.

Our computational models are deterministic and based on
averaged patient data. Thus, they do not reproduce all the spectra
of inter-patient variability but are representative of a mean psAF
patient. Particularly, the use of a single anatomical model and a
single model describing cellular electrophysiology may not have
fully captured the inter-patient variability observed in the clinical
scenario. Further investigations using other computational AP
models with different steady-state APD values, as well as using
populations of models, could be conducted to assess the impact of
AP properties on f-wave frequency characterizations. Furthermore,
AF-related structural remodeling of the atria may present with
various alterations such as an enlarged atrial chamber, hypertrophy
of cardiomyocytes, increased mismatch between epicardial and
endocardial myofibers’ orientations, changes in atrial wall thickness
and, notably, an increased amount of fibrotic or connective tissue
(Wyse et al., 2014; Schotten et al., 2011; Heijman et al., 2016). We
represented psAF-related structural remodeling by a combination
of gap junction remodeling, modeled through tissue conductance
reduction in fibrotic regions, and fibroblast proliferation. Future
studies incorporating different degrees of fibrosis as well as other
psAF characteristics not accounted for in our model could delve
deeper into the collective impact of these factors on Ff and ΔFf.

Finally, our current computational models do not allow us to
assess the effects of ACh and Iso on FHR. However, future studies
could incorporate a network model of the human AV node into
the 3D model (Plappert et al., 2022), thereby making it suitable for
evaluating fibrillatory effects on FHR.
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5 Conclusion

The findings of this study suggest that elevated and reduced
sympathetic activity following HUT and HDT, respectively, could
contribute to the increase and decrease in Ff measured in psAF
patients. Parasympathetic activity, assessed by themagnitude of ΔFf,
could exert a modulating role on the effects of sympathetic activity.
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Abstract

Background: Air pollution is a major public health concern, contributing
to cardiovascular and respiratory diseases. One of the main pathways by
which air pollution affects cardiovascular health is through dysregulation
of the autonomic nervous system (ANS), which impairs cardiac control.
Hydrotreated vegetable oil (HVO) is a renewable fuel with unknown toxicity
in comparison to conventional diesel, and the effects of HVO exhaust on
autonomic and respiratory regulation remain unclear. Objective: This
study investigates the physiological responses to HVO exhaust exposure by
assessing heart rate variability (HRV), ECG-derived respiration (EDR) and
cardiorespiratory coupling (CRC). Methods: A controlled exposure study
was conducted with 19 healthy volunteers (10 males, 9 females, aged 20–55)
who underwent four different exposure scenarios in a randomized, double-
blind design: filtered air, filtered air with NaCl particles, HVO exhaust with
an aftertreatment system, and HVO exhaust without aftertreatment. ECG



signals were continuously recorded, and HRV, EDR, and CRC features were
extracted. A linear mixed model was used to assess time- and exposure-
dependent changes. Results: No statistically significant differences in HRV,
EDR, or CRC features were found between exposure scenarios. Conclusion:
In this study, short-term exposure to HVO exhaust, corresponding to EU
OELs for one workday, did not significantly alter autonomic or respiratory
regulation in healthy volunteers at the studied pollutant concentrations.
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Mutual Information (MUI), Air Pollution

Open Access of this manuscript

The full manuscript will be available for open access after publication in a
peer reviewed journal.

2


