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Abstract

NTRU is a public-key cryptosystem, where the underlying mathematical problem
is currently safe against large-scale quantum computer attacks. The system is
not as well investigated, as for example RSA and the company behind NTRU
has created the NTRU Challenges, to remedy this. These challenges consist of
27 different public keys of increasing size, where the task in each challenge is
to calculate (something similar to) the private key. The goal of this thesis was
to examine different attacks against the NTRU Challenges and solve as many
challenges as possible. By lattice reduction attacks, using a recently published
new progressive BKZ algorithm, the first five challenges were solved, while the
current biggest solved challenge by any researcher is challenge number seven.
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Chapter1
Goals and Overview

1.1 Goals
NTRU is a public-key cryptosystem, where the underlying mathematical problem
is currently safe against large-scale quantum computer attacks. The system is not
as well investigated, as the older and more established public-key cryptosystems.
To combat this the company behind NTRU has created the NTRU Challenges, to
test the strength of NTRU. These challenges consist of 27 different public keys
of different sizes, where the task for each challenge is to, given the public key,
calculate (something similar to) the private key.

One goal of this thesis is to investigate what different types of attacks there are
against the NTRU Cryptosystem. Another goal is to develop lattice reduction
based software specialised at attacking NTRU, using available open-source soft-
ware. A final goal is to use these attacks to solve as many of the NTRU Challenges
as possible.

1.2 Overview
Starting with Chapter 2, we introduce the reader to cryptography in general and
in particular public-key cryptography, giving RSA as a classic example. In Chap-
ter 3 we introduce the NTRU and the NTRU Challenges, and connect them to the
SVP problem in lattices. Then in Chapter 4 we explain the original BKZ algorithm
and the concept of pruned enumeration. In Chapter 5 we explain how extreme
pruning and some other tricks gave rise to BKZ 2.0. Thereafter, in Chapter 6, we
explain how several more optimizations created the new progressive BKZ algo-
rithm. In Chapter 7 we explain the method of solving the NTRU Challenges, us-
ing the progressive BKZ algorithm in conjunction with some more specific tricks,
and in Chapter 8 we go through the implementation of this method. Finally we
go through the simulation results in Chapter 9 and discuss these in Chapter 10.

Appendix A illustrates the process of lattice reduction attacks by breaking NTRU
using a toy sized key. For convenience, Appendix B contains a list of the most
important acronyms of this thesis. For a popular scientific summary of the thesis,
written in Swedish, see Appendix C.
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Chapter2
Preliminaries

In cryptography, a basic problem is the following. Alice is sending a secret mes-
sage to Bob over an insecure channel. The enemy Eve can listen to the channel
and Alice must thus encrypt the message in a way, such that Bob, but not Eve, can
decrypt it1. This can be done in two different ways, symmetric key cryptography
and public-key cryptography.

A historic example, perhaps the most famous example of encrypting messages,
is the Caesar cipher, in which each letter of a message is shifted a certain number
number of positions in the alphabet (if a letter gets shifted beyong ’z’ the shift
starts over at ’a’ again). Caesar himself famously shifted the letters 3 steps, but
any number of steps between 1 and 25 works equally well.

2.1 Symmetric Key Cryptography
In symmetric key cryptography Alice and Bob has decided on a common secret
key k, from a set K of possible keys, beforehand through a secure channel. Every
such key defines an invertible function fk from a set M of plaintexts to a set of
ciphertexts C.

In the Caesar cipher above, for example, the shared key is the number k of steps
to shift each letter. Representing the letters of the English alphabets as numbers
between 0 and 25 the function fk for encrypting each single letter m is

c = fk(m) = m + k (mod 26),

and obviously the inverse function to decrypt each letter c of the ciphertext is

m = f−1
k (c) = c− k (mod 26).

This cryptosystem is of course trivial to break. The currently most used symmet-
ric cryptosystem is the Advanced Encryption standard (AES) [29]. It is currently

1To avoid unnecessarily complicated sentences such as "The receiver of the secret mes-
sage distributes the public key to the sender of the message", placeholder names are used.
The names Alice, Bob and Eve are the standard names for the sender of and receiver of the
message, and the enemy trying to decipher it respectively. In more complicated scenarios
a longer list of standard names are used.

3



4 Preliminaries

able to safely and quickly encrypt plaintexts. AES and other symmetric key cryp-
tosystems do have one big problem though. How do Alice and Bob safely estab-
lish the shared key in the first place? One elegant way of solving this problem is
to establish the shared key using public-key cryptography, discussed in Section
2.2.

2.2 Public-key Cryptography
In public-key cryptography (also known as asymmetric key cryptography in con-
trast to symmetric key cryptography from Section 2.1) Bob uses two keys. One
public key, available to anyone, with which anyone can encrypt a message and
send it to Bob. One private key, only available to Bob, which is needed to decrypt
messages, encrypted by the public key.

Before we can have a look at a specific public-key cryptosystem, we need the
concepts of a one-way function and a trapdoor one-way function. A one-way
function can informally be defined in the following way.

Definition 2.1. (One-way function). A one-way function f is a function from a set X
to a set Y, such that for all x ∈ X it is easy to compute f (x), but for essentially all y ∈ Y
it is computationally infeasible to find an x ∈ X such that f (x) = y.

Here computationally infeasible means that it takes impractically much time us-
ing available computing power. Depending on the patience and computers this
limit can vary greatly. A one-way trapdoor function can be defined informally
like this.

Definition 2.2. (Trapdoor one-way function). A trapdoor one-way function f is a one-
way function defined as above, but containing so called trapdoor information T. If and
only if one has access to T, given a value y ∈ Y, it is easy to find an x ∈ X such that
f (x) = y.

The idea of public-key cryptography is, that for Alice to encrypt the message cor-
responds to calculating a value of a one-way trapdoor function, which is always
easy. Only Bob has access to the trapdoor information, and thus only he can de-
crypt the message, corresponding to inverting the value Alice computed.

Below follows a description of the first public-key cryptosystem, Rivest-Shamir-
Adleman (RSA), named after its inventors Ron Rivest, Adi Shamir and Leonard
Adleman, publicly described in 1977 [19]2.

2.3 Description of RSA
RSA is based on the fact that factoring a product of two big, unknown, prime
numbers is computationally difficult. Before we can explain RSA we need defini-
tions of two numbers being relatively prime and Euler’s totient function.

2It should be mentioned that Clifford Christopher Cocks independently developed an
equivalent system in 1973, working at the United Kingdom Government Communications
Headquarters. The idea was classified and became publicly known first in 1997.
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Definition 2.3. (Relatively prime). Two integers a and b are called relatively prime if
the only positive integer that divides both a and b is 1.

Definition 2.4. (Euler’s totient function). Given a positive integer n, Euler’s totient
function, denoted as φ(n), counts the number of positive integers less than n that are
relatively prime to n.

As an example, if n = pq, where p and q are prime numbers, then

φ(n) = φ(p)φ(q) = (p− 1)(q− 1).

2.3.1 Public Key
As part of the public key Bob uses a big composite number n, a factor of two (to
everybody except Bob) unknown prime numbers p and q. He also uses a number
e such that e and φ(n) are relatively prime.

2.3.2 Private Key
One part of the private key is the two prime numbers p and q such that n = p · q.
Another part of the private key is φ(n) = φ(p) · φ(q) = (p− 1)(q− 1). The final
part of the private key is d = e−1 (mod φ(n)). Since e and φ(n) are relatively
prime such a value is guaranteed to exist due to Bezout’s identity. The value can
be calculated using the extended Euclidean algorithm.

2.3.3 Encryption
To send a message M, encoded as a number between 0 and n− 1. Alice uses the
private key to calculate

C = Me (mod n). (2.1)

To speed up this calculation Alice can for example use exponentation by squaring,
so that only roughly log e multiplications are needed3.

2.3.4 Decryption
Given an encrypted number C ∈ [0, n− 1], Bob decrypts it by calculating

Cd (mod n) = (Me)d (mod n) = Med (mod n) = M1 (mod n) = M.
(2.2)

Below follows a proof that this calulation always gives the original plaintext num-
ber.

3There are of course even faster methods for efficient exponentiation, but this method
is more than half as fast as the fastest method possible.
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Proof 2.1. If p is a prime number and p does not divide the number a, then Fermat’s
little theorem states that

ap−1 ≡ 1 (mod p).

We want to show that Med = M (mod p · q). By construction ed = 1 (mod φ(n)),
which means that there is an integer h such that

ed− 1 = h · φ(n) = h · (p− 1) · (q− 1).

According to the Chinese remainder theorem, to show that M and Med are congruent
modulo p · q, it is sufficient to show that the numbers are congruent to p and q separately.
Let us show this for p, the proof for q is of course analogous. We divide the proof into two
parts. If M = 0 (mod p) then Med is a multiple of p and thus Med = 0 = M
(mod p). Otherwise, since p does not divide M, using Fermat’s little theorem we get

Med = Med−1 ·M = Mh·(p−1)·(q−1) ·M =

(Mp−1)
h·(q−1) ·M = 1h·(q−1) ·M = M (mod p).

2.3.5 Example of RSA

The following small example of how RSA works is from the the original RSA
paper [19, p. 10]. Bob’s public key is (n, e) = (2773, 17). Bob also knows that

n = p · q = 47 · 59.

Next

φ(n) = φ(p) · φ(q) = φ(47) · φ(59) = 46 · 58 = 2668.

Finally

d = e−1 (mod φ(n)) = 17−1 (mod 2668) = 157.

Thus Bob’s private key is (p, q, d, φ(n)) = (47, 59, 157, 2668). If Alice wants to
encrypt the message 920 she calculates

C = Me (mod n) = 92017 (mod 2773) = 948.

Receiving this encrypted message Bob decrypts it by calculating

Cd (mod n) = 948157 (mod 2773) = 920 = M.
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2.3.6 Attacks on RSA
Knowing any of the numbers in the private key makes calculating the other parts
trivial. It is believed, but not known, that there is no faster way of calculating
all these numbers than to first factor n. It should be mentioned that when imple-
menting the RSA system in practise, a lot of aspects outside the basic description
above, such as hashing of the message, padding schemes and so on, has to be
considered.

A classical computer stores data in bits, that can only take the value 0 or 1. A clas-
sical computer using n bits can be in 2n different states. A quantum computer on
the other hand uses quantum bits, or qubits in short. This means that a quantum
computer using n qubits can be in a superposition of the 2n different states.

In 1994 Peter Shor developed a new algorithm for factoring integers [24]. The al-
gorithm consists of first reducing the factoring problem to the problem of finding
the period of a certain function, and then finding the period of that function. The
first step can be done in polynomial time on a classical computer (with respect
to the number of digits in the number to factor). The second step is slow on a
normal computer, but can be done in polynomial time on a quantum computer.

Currently, quantum computers are small and limited in the number of qubits.
The largest number factored by a quantum computer is just 56153 = 233 · 241
[6], using only 4 qubits. This number is of course trivial to factor on a classical
computer too. However, if there exists large scale quantum computers in the
future, then RSA is broken. To combat this other public-key cryptosystems than
RSA are needed. One such public-key system is the subject of Chapter 3.
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Chapter3
Introduction

3.1 The NTRU Cryptosystem

In 1996 Hoffstein, Pipher and Silverman developed a public-key cryptosystem
called Nth Degree Truncated Polynomial (NTRU)1[11].

3.1.1 Description of the NTRU system

In mathematical terms, polynomials in the polynomial ring

R[x]/(xN − 1),

are used for plaintexts, ciphertexts, public and private keys etc., in NTRU. Here
the underlying ring R is the finite field Zn, for some integer n ≥ 2. Consider two
such polynomials

a(x) = aN−1xN−1 + · · ·+ a1x + a0, b(x) = bN−1xN−1 + · · ·+ b1x + b0.

Adding these polynomials is done elementwise the usual way (remember to re-
duce the elements modulo n). The product of a and b is

(a ∗ b)(x) =
N−1

∑
k=0

 ∑
0≤i,j≤N−1

i+j≡k (mod N)

ai · bj

 xk, (3.1)

where the dot multiplication refers to the usual multiplication of two elements
in Zn. Below follows how Alice sends a secret message to Bob and how Bob
decrypts it.

1It should be mentioned that there are alternative definitions for the acronym like
"Number Theorists aRe Us" and "Number Theory Research Unit"

9



10 Introduction

System Parameters

The NTRU cryptosystem has three integer parameters, N, p and q. The above
mentioned N has to be a prime number2. The p is a small number, almost always
equal to 3. The description below assumes that p = 3. Changing the value p in the
description below would essentially just change the coefficients in the message
polynomial to integers in the set [−p/2, p/2]. Finally q is a number relatively
prime to p and much bigger than p.

Key Generation

Bob randomly chooses two private key polynomials f and g from the polynomial
ring above with coefficients in {−1, 0, 1}3. Also f must have an inverse mod-
ulo p, called fp with coefficients in Zp and an inverse modulo q, called fq with
coefficients in Zq. In other words, these polynomials must satisfy

f ∗ fq ≡ 1, f ∗ fp ≡ 1,

in Zq/(xN − 1) and Zp/(xN − 1) respectively. As the public key polynomial he
chooses

h = p · fq ∗ g (mod q), (3.2)

where the modulo operation is applied elementwise and the order of the opera-
tions does not effect the result.

Encryption

Alice puts her plaintext message in a polynomial m with coefficients in {−1, 0, 1}.
She also picks a random polynomial r with small coefficients (not necesarily lim-
ited to the set {−1, 0, 1}). Using Bob’s public key she encrypts the message as

e = r ∗ h + m (mod q). (3.3)

Decryption

Using his private key f , Bob first calculates

a = f ∗ e (mod q) = f ∗ (r ∗ h + m) (mod q) =
= f ∗ (p · r ∗ fq ∗ g + m) (mod q) = p · r ∗ g + f ∗m (mod q).

All the coefficients in a are shifted to the interval [−q/2, q/2]. This guarantees
that p · r ∗ g + f ∗ m has coefficients in [−q/2, q/2], since m, g, r and f all have

2As is shown in [9] letting N be composite significantly reduces the security of the
NTRU system.

3There are several forms of these polynomials. The original NTRU system used binary
coefficients and the NTRU challenge uses a more complex form of f . The point of this
section is to explain how NTRU works without going too deep into all the details.
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small coefficients. Reducing modulo q does thus not change the coefficients. Then
he computes

b = a (mod p) = p · r ∗ g + f ∗m (mod p) = f ∗m (mod p).

Finally he computes

c = fp ∗ b (mod p) = fp ∗ f ∗m (mod p) = m.

3.1.2 Example
The following is a toy example of this whole process from [30]. In this example
n = 11, p = 3 and q = 32. Bob’s private key is the polynomials

f (x) = −1 + x + x2 − x4 + x6 − x9 + x10,

g(x) = −1 + x2 + x3 + x5 − x8 − x10.

Using the polynomial extended Euclidean algorithm the inverses of f modulo q
and modulo p are calculated as

fq(x) = 1 + 2x + 2x3 + 2x4 + x5 + 2x7 + x8 + 2x9 (mod 32),

fp(x) = 5 + 9x + 6x2 + 16x3 + 4x4 + 15x5 + 16x6+

+22x7 + 20x8 + 18x9 + 30x10 (mod 3).

This creates the public key

h(x) = 3 · fq(x) ∗ g(x) (mod 32) = 8− 7x− 10x2 − 12x3 + 12x4 − 8x5+

+15x6 − 13x7 + 12x8 − 13x9 + 16x10 (mod 32).

Let us say Alice wants to send the message [−1, 0, 0, 1,−1, 0, 0, 0,−1, 1, 1] corre-
sponding to the polynomial

m(x) = −1 + x3 − x4 − x8 + x9 + x10,

using the random polynomial

r(x) = −1 + x2 + x3 + x4 − x5 + x7.

This results in the encrypted message

e(x) = r(x) ∗ h(x) + m(x) (mod 32) = 14 + 11x + 26x2 + 24x3 + 14x4+

+16x5 + 30x6 + 7x7 + 25x8 + 6x9 + 19x10 (mod 32).

Having received this encrypted message from Alice, Bob first calculates

a(x) = f (x) ∗ e(x) (mod 32) = 3− 7x− 10x2 − 11x3 + 10x4 + 7x5+

+6x6 + 7x7 + 5x8 − 3x9 − 7x10 (mod 32),
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using the fact that he knows the private key polynomial f (x). Then he calculates

b(x) = a(x) (mod 3) = −x− x2 + x3 + x4 + x5 + x7 − x8 − x10 (mod 3).

Finally he gets

c(x) = fp(x) ∗ b(x) (mod 3) = −1 + x3 − x4 − x8 + x9 + x10 (mod 3),

which corresponds to the original message [−1, 0, 0, 1,−1, 0, 0, 0,−1, 1, 1].

3.1.3 Attacks on the NTRU system

Brute-force

The most obvious way of attacking the NTRU system is by brute force. For a
given format of the set of possible private keys f , Eve can test each such possible
key to see if it is the actual private key. For a candidate private key f ′, she can cal-
culate f ′ ∗ h. For the correct key f this calculation gives g, which is a polynomial
with very small coefficients. For a randomly chosen polynomial r this calcula-
tion typically gives a polynomial also containing large coefficients. It should be
mentioned that getting a polynomial with small coefficients does not guarantee
that the correct private polynomial f was found. For the polynomial fk = xk f the
calculation gives

fk ∗ h = xk ∗ f ∗ h = xk ∗ g,

which is a polynomial also containing the correct coefficients, but circularly right
shifted k steps. To check that a potential candidate polynomial f ′ is correct Eve
tries to decrypt a message she herself has encrypted. To protect against brute
force attacks the private keys has to be picked from a sufficiently large set, making
these attacks computationally infeasible.

Meet-In-The-Middle Attack

Andrew Odlyzko originally described a meet-in-the-middle attack against NTRU
private keys. This short description of the attack is from [18]. While this type of
attack can be done in the more general case it is easiest to explain with binary
keys. The attack uses the fact that any circular shift of the actual private key f
generates the same coefficients (only shifted) when multiplied by h. Thus Eve
to begin with only has to test polynomials f ′ of a certain form. Suppose also,
for simplicity of explanation, that the system has an even size N and that f has
an even number d f of coefficients with the value 1 and N − d f coefficients with
the value 0. Modifying the attack for prime system sizes N and odd values d f is
trivial.

The attack uses the fact that no matter how the private key f looks, it has a rota-
tion such that there are d f /2 ones in the first N/2 coefficients and d f /2 ones in
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the last N/2 coefficients. It is enough to test keys on this format and once a can-
didate f ′ appears for which f ′ ∗ h gives a polynomial with small coefficients, then
all rotations of f ′ are tried until the actual private key f is found. This strategy
makes the the amount of private key candidates to test much fewer than in the
brute-force attack. To protect against this type of attack the set of possible private
keys has to be expanded.

Lattice Reduction Attacks and Hybrid Attacks

The next type of attacks is lattice reduction attacks. They need quite a lot of ex-
plaining theory, which will be provided in Chapters 4-7. Another type of attacks
is hybrids between meet-in-the-middle and lattice reduction attacks. They will
not be explained in this thesis, but the interested reader is referred to the original
hybrid attack paper [12].

3.2 Introduction to Lattice Reduction
This section will first introduce some notation and then introduce lattices and
how lattices and NTRU are connected. This theory will be needed in Chapters
4-7, where lattice reduction attacks against NTRU are explained.

3.2.1 Notation
Given d ∈ R let dde, bdc and ddc denote the rounding of d upwards, downwards
and to the closest integer respectively.

Let Rn denote the Euclidean space. Let bold letters denote row vectors. Given
a polynomial p(x) = p0 + p1x + · · · + pn−1xn−1, the vector p refers to the row
vector (p0, p1, . . . , pn−1). For two vectors x, y ∈ Rn, define the inner product and
norm as

〈x, y〉 =
n−1

∑
i=0

xi · yi,

||x|| =
√
〈x, x〉 =

√√√√n−1

∑
i=0

xi
2.

A set of vectors {x1, x2, . . . , xm} in Rn are linearly independent if and only if the
equation

m

∑
i=1

λixi = 0,

only has the solution λ1 = λ2 = · · · = λm = 0. The (row) rank of a matrix in
M ∈ Rm×n is the maximum number of linearly independent (row) vectors of M.
Given a set of vectors B = {b1, b2, . . . , bm} in Rn, we define the span as
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span(B) = {c1b1 + c2b2 + · · ·+ cmbm|ci ∈ R}.

Given a subset E ⊂ Rn, denote its orthogonal complement as

E⊥ = {x ∈ Rn : 〈x, y〉 = 0, for all y ∈ E}.

Now define the orthogonal projection of Rn on E⊥ as the unique linear map
πE : Rn → E⊥, such that

πE(x) = x, for all x ∈ E⊥,
πE(x) = 0, for all x ∈ E.

For s > 0 the gamma function is defined as

Γ(s) =
∫ ∞

0
ts−1e−tdt.

Let Bn(R) denote the n-dimensional Euclidean ball of radius R, or in other words
the set

Bn(R) =

{
(x1, . . . , xn) ∈ Rn :

n

∑
i=1

x2
i ≤ R2

}
.

Let Vn(R) denote its volume, which satisfies

Vn(R) = Rn · πn/2

Γ(n/2 + 1)
.

Similarly, let Sn−1(R) denote the n-dimensional sphere of radius R. When the
radius of Vn or Sn−1 is omitted R = 1 is implied.

3.2.2 Definition of Lattices and Lattice Notation
We start by defining a lattice.

Definition 3.1. (Lattice). A lattice L ⊆ Rn is a discrete, additive subgroup of (Rn,+).

By discrete we mean that every element in L has a neighbourhood containing
only that point. Next we define the rank of a lattice and what a lattice basis is.

Definition 3.2. (Rank). The rank of a lattice L is the maximum number of linearly
independent vectors in L.

Definition 3.3. (Basis). Let L be a lattice in Rm and let B = {b1, b2, . . . , bn} be a set
of linearly independent vectors in L. If for any vector v ∈ L there exists a unique set of
integers {x1, x2, . . . xn}, such that v = x1b1 + x2b2 + · · ·+ xnbn, then B is a basis of
L. L is said to be spanned by B.
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To indicate that a lattice L can be spanned by a basis B, we denote it L(B). A
change of lattice basis corresponds to multiplying the current basis with a uni-
modular matrix4. This does not change the absolute value of the determinant of
the basis. Thus we can define the volume of a lattice in the following way.

Definition 3.4. (Volume). The volume of a lattice L is the absolute value of the determi-
nant of any basis of L.

This is of course the same as the hypervolume of the parallelepiped spanned
by the basis vectors. One of the most important concepts in the theses is the
following.

Definition 3.5. (Shortest vector). The norm of the shortest (non-zero) vector of a lattice
L is denoted λ1(L) = minv∈L,v 6=0 ||v||.

The Shortest Vector Problem (SVP) is the problem of finding a vector in the lattice
of length λ1(L). A related problem is the Closest Vector Problem (CVP), where
the task is to find the lattice vector closest to a certain target vector. SVP is thus a
special case of CVP where the target vector is the zero vector.

Given a lattice L and a "nice" set S, the Gaussian Heuristic (GH) predicts that the
number of points in S ∩ L is about vol(S)/vol(L). If the GH is true for a lattice
we expect (heuristically, not in the probabilistic sense) that λ1(L) ≈ GH(L) =
(vol(L)/Vn(1))1/n. Next, we need definitions of sublattices.

Definition 3.6. (Sublattice). Let L be a lattice in Rm. A sublattice of L is a lattice L′ in
Rm, included in L.

Definition 3.7. (Primitive sublattice). A sublattice L′ of L is called primitive if and only
if for any basis {b1, b2, . . . , br} of L′ there exists {br+1, br+2, . . . , bn} ∈ L, such that
{b1, b2, . . . , bn} is a basis of L.

Given a lattice L(B) with B = {b1, b2, . . . , bn} and Br = {b1, b2, . . . , br}, then
L(Br) is a primitive sublattice of L(B). Finally we need projective sublattices.

Lemma 3.1. (Projective sublattice). Let L be a full-rank lattice in Rn and let L′ be an r-
rank primitive sublattice of L, where 1 ≤ r ≤ n. Let πL′ denote the orthogonal projection
over span(L′)⊥. Then πL′(L) is a lattice of rank n− r.

Proof 3.1. Proof. Suppose Br = {b1, b2, . . . , br} is a basis of L′, which can be completed
to a basis B = Br ∪ {br+1, . . . , bn} of L. Then πL′(L) is the lattice generated by the
basis {πL′(br+1), . . . , πL′(bn)}, where πL′(bi) are linearly independent vectors for all
i, such that r < i ≤ n.

Given an implied basis B = {b1, b2, . . . , bn} the projection πL(Bi−1)
is hence-

forth denoted πi for convenience of notation and for the sake of completeness
we let π1 denote the identity map. Let us also use B[i,j] to denote the basis
{πi(bi), . . . , ßi(bj)} and use L[i,j] to denote the lattice spanned by B[i,j], where
1 ≤ i ≤ j ≤ n.

4A unimodular matrix is an integer matrix with the determinant equal to 1 or -1. An
integer matrix has an integer matrix as inverse if and only if it is unimodular. This demand
corresponds to the determinant being non-zero for a real (complex) matrix.
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3.2.3 Connection Between Lattices and NTRU
Consider an NTRU cryptosystem with parameters (n, q, p), private keys f , g and
a public key of the format

h = p · f−1 ∗ g (mod q)⇔ p−1 · h = f−1 ∗ g (mod q).

Let us denote h′ = p−1 · h and rewrite the equation;

h′ = f−1 ∗ g (mod q)⇔ f ∗ h′ = g (mod q).

There exists an integer polynomial λ such that

f ∗ h′ + q · λ = g.

On matrix form this can be written as

(
f λ

) ( I H′

0 qI

)
=
(
f g

)
, (3.4)

where the element on row i and column j in H′ is h′ij = h′j−i (mod n), if the first
row and column are numbered as 0. Let L be the lattice generated by the rows of
this matrix. We call this lattice the NTRU lattice. By construction the private key
( f , g) is a vector in L. The determinant of L is qN . By the GH the expected norm
of the smallest vector in L (with dimension n and determinant qN) is√

Nq
πe

. (3.5)

The norm of (f, g) is typically much less than this limit. Thus the task of finding
the private key (f, g) can be solved by searching for the shortest vectors in L.
This is typically done using lattice reduction followed by vector enumeration.
How this is done is explained in Chapters 4-6. How to exploit the structure of the
NTRU lattice to speed up this process is explained in Chapter 7. A small example
from scratch of how the NTRU lattice is created and how the private key is found
in this lattice, using lattice reduction, can be found in Appendix A.

3.3 The NTRU Challenges
The NTRU system has not undergone as much cryptanalytic testing as for ex-
ample the more famous RSA. To combat this, Security Innovation, the company
behind NTRU, issued the so called NTRU Challenge [13]. The challenge consists
of 27 different NTRU systems with public key h and some associated system pa-
rameters, where the size of the public key ranges from N = 107 up to N = 401.
The task for each system is to find the associated private key (f, g) or a similar
vector. The public key has the format h = f−1 ∗ g (mod q)5. The term simi-
lar vector refers to any vector (f′, g′) in the corresponding NTRU lattice that has

5Notice that the factor p is not a part of the definition of h. This is due to the fact that if
it would be there the first step of generating the NTRU lattice would be to multiply h by
p−1 to get rid of the factor p anyways, as explained in Subsection 3.2.3.
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a norm less than the GH, rounded upwards, in other words any vector (f′, g′)
satisfying

‖(f′, g′)‖ <
⌈√

Nq
πe

⌉
. (3.6)

The first correct submission for each problem receives a monetary prize. Each of
the first 11 problems gives a prize of $1000 and the last 17 problems gives $5000
each. Beyond just the private key (f′, g′), a short explanation of how the private
key was calculated, has to be provided.

3.3.1 Format of the Challenges
Each challenge has a problem size N, the parameter q being equal to 2n, where
either n = 9, n = 10 or n = 11 and the implied value p = 3. Each challenge also
has another 4 associated integer parameters; d1, d2, d3 and dg. The private key g
has dg + 1 coefficients equal to 1, dg coefficients equal to −1 and the rest equal to
0. The private key f has the format

f = 1 + p · F,

where

F = f1 ∗ f2 + f3.

Here each polynomial fi has di coefficients equal to 1, di coefficients equal to −1
and the rest equal 0 for i = 1, 2, 3.

3.3.2 Effects of the Format
For practical application this set of parameters has some advantages. First of all
f−1 (mod p) = fp = 1 and thus does not have to be calculated. Secondly we
have

f (1) = 1 + p · ( f1(1) ∗ f2(1) + f3(1)) = 1 + p · (0 · 0 + 0) = 1.

This makes the probability of a polynomial of this format being invertible modulo
q high according to [26]. If N = 2M + 1 also is a safe prime6 the probability that
our random private key f is invertible is at least

1− 2
2M = 1− 1

2M−1 .

Since f (1) = 1 and f ∗ fq = 1 (mod q) we have fq(1) = 1 + kq, for some k ∈ Z.
By construction g(1) = 1. Thus

6A safe prime N is a prime such that M = (N− 1)/2 also is a prime. The smaller prime
is called a Sophie Germain prime, named after the french mathematician with the same
name. Generally safe primes are very useful in cryptography. For example in RSA the two
private primes typically are safe primes.
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N−1

∑
i=0

hi = h(1) = g(1) fq(1) = 1 + kq.

Now consider the vector

(1, 1, . . . , 1,−k,−k, . . . ,−k) = (1,−k),

where 1 and k refer to vectors of length N with all elements being equal to 1 and
k respectively. If we multiply this vector with the NTRU lattice basis we get

(
1 −k

) ( I H
0 qI

)
=
(
1 h(1) · 1− qk1

)
=
(
1 1 + qk1− qk1

)
=
(
1 1

)
.

Thus the vector with all elements equal to 1 is always a vector in L using this
format of h. Obviously this vector and any vector parallel to it are not valid
solutions to the NTRU Challenge.



Chapter4
BKZ

Much of the descriptions in this chapter is based on the PhD thesis [3], which also
is a reference for a more thorough explanation of the lattice reduction algorithms
covered in this chapter. Since the focus of the thesis is on the newest improve-
ments of BKZ, rather than the basic algorithm, the explanations in this chapter
are kept quite compact.

4.1 Gram-Schmidt Orthogonalization Process
Before we can examine lattice reduction algorithms in detail we need the Gram-
Schmidt orthogonalization process.

Definition 4.1. (Gram-Schmidt Orthogonalization Process). Consider a set of linearly
independent vectors {b1, b2, . . . , bn} in Rn. The Gram-Schmidt Orthogonalization
(GSO) family is the set of vectors {b∗1 , b∗2 , . . . , b∗n} in Rn recursively defined as

b∗i = bi −
i−1

∑
j=1

µi,jb∗j ,

where for all 1 ≤ j < i ≤ n

µi,j =
〈bi, b∗j 〉

||b∗j ||
2 .

By construction all the vectors in the GSO are orthogonal towards each other. In
principle this would be an excellent basis to use for a lattice, except for the fact
that since the coefficients µi,j mostly are not integers, the basis vectors are not
vectors in the lattice and can not be used as a basis. The GSO process is still an
important part of lattice reduction, as explained in Section 4.2.

4.2 LLL
In 1982 Lenstra, Lenstra and Lovász developed the Lenstra-Lenstra-Lovász (LLL)
lattice reduction algoritm to be able to factorize polynomials with integer coeffi-

19
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cients into irreducible factors in polynomial time [16]. In the context of this re-
port LLL is used to reduce the basis of lattices. While being fast LLL does not,
sufficiently in itself, reduce a basis for our purposes. It is however used as a
subroutine in slower but better reduction algorithms.

Before explaining the LLL algorithm we need some notions of what it means for
a basis to be reduced. The easiest to achieve, but also weakest notion of lattice
reduction, is simply called size reduction.

Definition 4.2. (Size-reduced). A basis {b1, b2, . . . , bn} of a lattice L ⊂ Rn is called
size-reduced if the GSO-coefficients µij satisfy |µij| ≤ 1/2, for all 1 ≤ j < i ≤ n.

Pseudo-code for size reducing a basis is contained in Algorithm 4.1, where d·c
denotes rounding of a number to the nearest integer.

Input : A basis B = {b1, b2, . . . , bn} of a lattice L
Output: A size reduced basis of B = {b1, b2, . . . , bn} of L

1 Calculate the GSO coefficients µij;
2 for i = 2 to n do
3 for j = i− 1 downto 1 do
4 bi ← bi − dµijcbj;
5 for k = 1 to j do
6 µik ← µik − dµijc;
7 end
8 end
9 end

Algorithm 4.1: Size Reduction Algorithm

The size reduction algorithm essentially is the GSO process, but with the coeffi-
cients rounded to integers. The next notion of reduction is LLL reduction.

Definition 4.3. (LLL-reduced). A basis {b1, b2, . . . , bn} of a lattice L ⊂ Rn is called
LLL-ε reduced with a factor ε, 0 < ε < 3/4, if it is size-reduced and

||b∗i+1 + µi+1,ib∗i ||
2 ≥ (1− ε)||b∗i ||

2,

for 1 ≤ i < n. The second condition is called the Lovász condition. If a certain value of ε
is implied (typically ε = .01) the basis is simply called LLL-reduced.

A way of achieving an LLL-reduced basis is explained in Algorithm 4.2. The
algorithm essentially performs size-reduction and swaps basis vectors if it finds
an index where the Lovász condition is not satisfied.

4.3 BKZ
The Block Korkine Zolotarev (BKZ) lattice reduction algorithm is originally from
[20]. It generalizes the LLL algorithm by introducing a blocksize β ≥ 2. To in-
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Input : A basis B = {b1, b2, . . . , bn} of a lattice L, a parameter ε
Output: An LLL-ε reduced basis B = {b1, b2, . . . , bn} of L

1 i = 2;
2 while i ≤ n do
3 Size-reduce (Bi);
4 if ||b∗i+1 + µi+1,ib∗i ||

2 ≥ (1− ε)||b∗i ||
2 then

5 Swap(bi, bi−1);
6 if i > 2 then
7 i← i− 1;
8 end
9 else

10 i← i + 1;
11 end
12 end

Algorithm 4.2: LLL Reduction Algorithm

troduce the algorithm we first need to define what it means for a basis to be BKZ
reduced.

Definition 4.4. (BKZ-reduced). A basis {b1, b2, . . . , bn} of a lattice L ⊂ Rn is called
BKZ-β reduced with a blocksize β ≥ 2, if it is LLL-reduced and for each 1 ≤ j < n,
b∗j = λ1(L[j,k]), where k = min(j + β− 1, n).

In other words LLL is a special case of BKZ with β = 2. The description of the
algorithm is explained on three different levels, first the outermost level, then the
each so called tour and finally the so called enumeration is explained. Pseudo-
code for the outermost level is found in Algorithm 4.3.

Input : A basis B = {b1, b2, . . . , bn}, a blocksize β ∈ {2, . . . , n}
Output: A BKZ-β reduced basis B = {b1, b2, . . . , bn}

1 B← LLL(B) ; /* LLL-reduce the basis B */
2 Calculate the GSO coefficients U and GSO vectors B∗;
3 f lag← true;
4 while f lag = true do
5 ( f lag, B)← BKZTour(B, β,U, B∗);
6 end

Algorithm 4.3: BKZ Reduction Algorithm

On this outermost level the algorithm essentially consists of first LLL-reducing
the basis and then running BKZ tours on it until such a tour does not change the
basis, or in other words returns the value false. Pseudo-code for each such tour is
found in Algorithm 4.4.
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Input : A basis B = {b1, b2, . . . , bn}, a blocksize β ∈ {2, . . . , n}, the
GSO coefficients U and the GSO vectors B∗

Output: The basis B = {b1, b2, . . . , bn} after one tour of BKZ, f lag
with the value true if the tour changed the basis and f alse
otherwise

1 j← 0;
2 f lag← f alse;
3 for j = 1 to n− 1 do
4 /* j defines the beginning of the local block */

k← min(j + β− 1, n) ; /* Defining k in local block

*/
5 h← min(k + 1, n) ; /* Defining h in local block */

6 v← Enum(L[j,k]) ; /* Find v = {vj, . . . , vk} ∈ Zk−j+1 \ {0}
such that ||πj(∑k

i=j vibi)|| < ||b∗j || */
7 if v 6= (1, 0, . . . , 0) then
8 f lag = true ; /* Enumeration was successful */

9 LLL(b1, . . . , bj−1, ∑k
i=j vibi, bj, . . . , bh) ; /* Insert v

before the current block, then do
LLL-reduction */

10 else
11 LLL(b1, . . . , bh) ; /* LLL-reduce the next block

before the next enumeration */

12 end
13 Update the GSO coefficients U and GSO vectors B∗;
14 end

Algorithm 4.4: BKZ Tour Algorithm



BKZ 23

The parameter j defines the beginning of the local block. This parameter sweeps
through the interval {1, · · · , n}. The parameter k defines the end of this block
which has the blocksize β except for the last indices (when j > n− β the end of
the block k is still n which shrinks the blocksize to n− j + 1). The enumeration
algorithm searches through the projected sublattice L[j,k] for a vector v with size
less than ||b∗j ||. If such a v is found v is added to the basis. Finally part of the
basis is LLL-reduced to make sure that the basis as a whole basis still is LLL-
reduced. If a vector was added to the basis the last vector of the LLL reduced
part is removed, to make the basis have the correct number of vectors.

If any new vector was inserted into the basis the f lag returns the value true and
otherwise the value f alse. If no vector was added to the basis this means that
b∗j = λ1(L[j,k]), for all j ∈ {1, . . . , n}. In other words that the basis is BKZ-β
reduced. The enumeration algorithm is explained in Section 4.4.

4.4 Enumeration
In this context of explaining the BKZ algorithm the enumeration is a subroutine
for finding short vectors in a local block. However, the same algorithm can of
course be applied to the entire basis for finding a short vector in the entire basis.
Typically a short vector in the entire basis is found by first doing a lattice reduc-
tion on the entire basis and then enumerating through the entire reduced basis.
In the lattice reduction enumeration is performed on the local basis.

Enumerating through a basis B = {b1, b2, . . . , bn} essentially consists of trying
all possible vectors v = ∑n

i=1 xibi, where xi ∈ Z, looking for a vector with a norm
less than a certain enumeration radius R. This set of vectors is infinite so it has
to be limited somehow. The following explanation of why there are only a finite
number of possible vectors to try is from [28]. From the GSO we have that

bi = b∗i +
i−1

∑
j=1

µi,jb∗j .

Thus a lattice vector can be written as

v =
n

∑
i=1

xibi =
n

∑
i=1

xi

(
b∗i +

i−1

∑
j=1

µi,jb∗j

)
=

n

∑
j=1

(
xj +

n

∑
i=j+1

xiµi,j

)
b∗j .

Projections of v can now be written as

πk(v) = πk

(
n

∑
j=1

(
xj +

n

∑
i=j+1

xiµi,j

)
b∗j

)
=

n

∑
j=k

(
xj +

n

∑
i=j+1

xiµi,j

)
b∗j .

Since the GSO vectors are orthogonal towards each other by construction we have

‖πk(v)‖2 =

∥∥∥∥∥ n

∑
j=k

(
xj +

n

∑
i=j+1

xiµi,j

)
b∗j

∥∥∥∥∥
2

=
n

∑
j=k

(
xj +

n

∑
i=j+1

xiµi,j

)2

‖b∗j ‖
2. (4.1)
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We have the following inequalities

‖πn(v)‖2 ≤ ‖πn−1(v)‖2 ≤ . . . ≤ ‖π1(v)‖2 ≤ R2. (4.2)

By combining (4.1) and (4.2) we get the following n inequalities

n

∑
j=k

(
xj +

n

∑
i=j+1

xiµi,j

)2

‖b∗j ‖
2 ≤ R2, (4.3)

for k ∈ {1, . . . , n}. For k = n we get

x2
n ≤ R2/‖b∗n‖

2 ⇔ −R/‖b∗n‖ ≤ xn ≤ R/‖b∗n‖.
Thus xn can only take a finite number of values. Next rewrite (4.3) as

(
xk +

n

∑
i=k+1

xiµi,k

)2

≤
R2 −∑n

j=k+1

(
xj + ∑n

i=j+1 xiµi,j

)2
‖b∗j ‖

2

‖b∗k‖
2 .

Now fix values xk+1 = x
′
k+1, . . . , xn = x

′
n. Then we can limit xk to the interval

−
n

∑
i=k+1

x
′
iµi,k − K ≤ xk ≤ −

n

∑
i=k+1

x
′
iµi,k + K,

where

K =

√
R2 −∑n

j=k+1

(
x′j + ∑n

i=j+1 x′iµi,j

)2
‖b∗j ‖

2

‖b∗k‖
.

By induction we can thus limit all integers {x1, . . . , xn} to finite intervals. The
enumeration algorithm essentially tests all of these possible combinations of
{x1, . . . , xn}. If it finds a vector v = ∑n

i=1 xibi with norm less than R it returns
that vector and if no such vector exists it returns failure. Pseudo-code for the basic
enumeration algorithm can be found in Algorithm 4.5.

The enumeration works with a tree with n levels. At level k ∈ {1, . . . , n} the
algorithm tries to vary the coefficient xk such that (4.3) is satisfied, where the left
hand side of the inequality is denoted ρk. When (4.3) is satisfied the algorithm
goes down to level k− 1 and calculates ρk−1 as

ρk−1 = ρk +

(
xk +

n

∑
i=k

xiµi,k−1

)2

‖b∗k‖
2. (4.4)

By construction {ρn, . . . , ρ1} is an increasing sequence. To minimize ρk−1 the al-
gorithm first tries xk−1 = d−∑n

i=k xiµi,k−1c = x
′
k−1. Then it tries

x
′
k−1 + 1, x

′
k−1 − 1, x

′
k−1 + 2, x

′
k−1 − 2, . . . until ρk−1 ≥ R2.

To cut the work in half and guarantee that the algorithm does no test both v and
−v the last non-zero coefficient always has a positive value.
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Input : A basis B = {b1, b2, . . . , bn}, an enumeration radius R.
Output: A vector v ∈ L(B) such that ||v|| < R or failure if no such

vector exists in L(B).
1 Calculate the GSO coefficients µi,j and GSO vectors b∗k ;
2 (x1, . . . , xn)← (1, 0, . . . , 0) ; /* Current combination */
3 (ρ1, . . . , ρn, ρn+1)← (0, 0, . . . , 0) ; /* ρn+1 = 0 */
4 (c1, . . . , cn)← (0, 0, . . . , 0) ; /* ck = ∑n

j=1 xjµj,k−1 */

5 (w1, . . . , wn)← (0, 0, . . . , 0) ; /* Jumps frem previous ck */
6 k← 1, last_nonzero ← 1 ; /* Last k such that xk 6= 0 */
7 while true do
8 ρk ← ρk+1 + (xk + ck)

2 · ||b∗k ||
2;

9 if ρk < R then
10 if k = 1 then
11 return ∑n

j=1 xjbj;
12 else
13 k← k− 1;
14 ck ← ∑n

j=1 xjµj,k−1;
15 xk ← d−ckc;
16 wk ← 1;
17 end
18 else
19 k← k + 1;
20 if k = n + 1 then
21 return failure;
22 end
23 if k ≥ last_nonzero then
24 last_nonzero ← k;
25 xk ← xk+1 + 1 ; /* Only enumerate positive

half */

26 else
27 if xk > ck then
28 xk ← xk − wk;
29 else
30 xk ← xk + wk;
31 end
32 wk ← wk + 1;
33 end
34 end
35 end

Algorithm 4.5: Enumeration Algorithm
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If the algorithm finds a vector that satisfies ρ1 < R2, that vector is returned. If the
algorithm reaches k = n + 1 there exists no short enough vector in the lattice and
the algorithm returns failure.

4.5 Pruned Enumeration
If ρk is close to, but still below R2 for a big integer k even though (4.3) is satisfied
it is very unlikely that that branch contains a short enough vector. The idea of
pruned enumeration is to discard that branch.

More precisely pruned enumeration uses a sequence R = {R1, R2, . . . , Rn} satis-
fying R2

1 ≤ R2
2 ≤ · · · ≤ R2

n = R2. This sequence is called a bounding function.
Instead of demanding ρk < R2 the algorithm demands ρk < R2

n−k+1. In other
words line 9 in Algorithm 4.5 is changed to ρk < R2

n−k+1.

Pruned enumeration was first introduced by Schnorr and Euchner in [22]. Their
bounding functions were chosen such that the risk of missing a solution was min-
imal, while speeding up the algorithm significantly. We will revisit pruned enu-
meration in Chapter 5, where we discuss extreme pruning.

4.6 Example
A complete example of different lattice reduction algorithms applied on a toy
NTRU example lattice can be found in Appendix A.



Chapter5
BKZ 2.0

For many years the 1997 Number Theory Library (NTL) implementation of BKZ,
with Schnorr-Euchner pruned enumeration, was the best BKZ algorithm avail-
able at [25]. The first major improvement was made by Chen and Nguyen in
2012 [4]. The improvements mostly covered the enumeration subroutine, which
was a bottleneck for BKZ in higher dimensions. The four biggest improvements
are discussed in Sections 5.1-5.4 below. Given that the next improvement of the
BKZ algorithm, the progressive BKZ, described in Chapter 6, is the focus of this
thesis, the descriptions will be quite concise.

5.1 Early Abort
The most obvious improvement is aborting the algorithm prematurely. As is
shown in [10], it is possible to make an exponential speed-up by aborting the al-
gorithm early, without the quality of the reduced basis having to suffer too much.
They do not discuss this in much detail in the BKZ 2.0 paper and since BKZ 2.0 is
not the focus of this thesis, it is enough to know the idea of aborting early.

5.2 Optimized Pruned Enumeration
In their groundbreaking paper [8] Gamma, Nguyen and Regev made two im-
provements to the pruned enumeration algorithm.

5.2.1 More Precise Pruned Enumeration
First of all they developed a method for picking the Bounding function R =
{R1, R2, . . . , Rn} from Section 4.5, such that the probability of finding a vector
shorter than the enumeration radius R is p, for any p ∈ (0, 1]. This value p is
called the pruning probability.

To simplify the analysis some simplifying assumptions are made. First of all it is
assumed that the lattice L we enumerate has a unique shortest vector v = λ1(L)
(up to sign) and that we have a good estimation R of that vector to use as the
enumeration radius, such that the only vector in L with norm less than R is v.

27



28 BKZ 2.0

Some heuristic assumptions are also made. First of all the GH is made, that is

Heuristic 1. Given a lattice L and a nice set S the number of points in L ∩ S is approxi-
mately vol(S)/vol(L).

For the bounding function R, let us define the k-dimensional cylinder-intersection
as the set

CR1,...,Rk =

{
(x1, . . . , xk) ∈ Rk :

j

∑
l=1

x2
l ≤ R2

j , ∀j ≤ k

}
,

for 1 ≤ k ≤ n. The set at level k in the pruned enumeration tree is the set of
points in the projected lattice πn−k+1(L) that are inside CR1,...,Rk . Thus according
to Heuristic 1 the estimated number of points in the enumeration tree is approxi-
mately

N = NR1,...,Rn(‖b∗1‖, . . . , ‖b∗n‖) =
1
2

n

∑
k=1

VR1,...,Rn

∏n
i=n−k+1 ‖b∗i ‖

, (5.1)

where VR1,...,Rn denotes the volume of CR1,...,Rk and the fact that the volume of
πn−k+1(L) is ∏n

i=n−k+1 ‖b∗i ‖ is used. Here they calculated VR1,...,Rn using Monte-
Carlo methods. To speak of probabilistic results of a deterministic algorithm like
pruned enumeration we must make some assumption on the the distribution of v.
We state one more heuristic needed to estimate the p as a function of the bounding
function R.

Heuristic 2. The distribution of v when written in the normalized GSO basis
{b∗1/‖b∗1‖, . . . , b∗n/‖b∗n‖} of the input basis look like that of a uniformly distributed
vector of norm ‖v‖.

This heuristic was motivated empirically by the authors. Now assume that v
has the coefficients (x1, . . . , xn) in the basis{bn/‖bn‖, . . . , b1/‖b1‖} (notice the
reversed order of the coordinates). By definition v belongs to the pruned enumer-
ation tree if and only ∑n

j=1 x2
j ≤ R2

k , for all k ∈ (1, . . . , n). According to Heuristic
2 v is distributed like a uniform vector with the extra constraint ‖x‖ = ‖v‖. The
probability that v is in the pruned enumeration tree can thus be written

Pr
u∼Sn−1‖v‖/R

(
j

∑
l=1

u2
l ≤

R2
j

R2
n

: ∀j ∈ {1, . . . , n}
)

, (5.2)

where u ∼ Sn−1‖v‖/R refers to uniformly picking a vector u from a sphere in Rn

with radius ‖v‖/R. They also discussed how to numerically pick the bounding
function R, such that the number of nodes in the pruned enumeration tree (5.1) is
minimized, subject to that the pruning probability in (5.2) is a fixed probability p.

5.2.2 Extreme Pruning
They also noticed that an enumeration with a small pruning probability p is sig-
nificantly faster than 1/p times the speed of the enumeration with p = 1. Prior to
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this it was thought that enumeration should be done with p close to 1. By instead
doing many enumerations with a much lower p the enumeration process can be
finished much faster while keeping the probability that at least one enumeration
is successful close to 11.

Since the algorithm is entirely deterministic, to be able to do multiple enumera-
tions with different results the basis has to be randomized between each enumer-
ation. This is done by multiplying the basis with a random unimodular matrix.
How a random unimodular matrix can be created is explained in Subsection 6.6.1.

5.3 Preprocessing of the Local Basis
In the enumeration of the local block in the BKZ algorithm the local block is not
guaranteed to be better reduced than LLL. In BKZ 2.0 the local block is prepro-
cessed with a BKZ reduction with a smaller blocksize α first.

This inner BKZ reduction can in turn use preprocessing of the local blocks with
an even smaller blocksize. If this recursive strategy is used at some point there
has to be a base case blocksize where no deeper inner preprocessing is used.

5.4 Optimizing the Enumeration Radius
Empirically it turns out that, except for the last indices, the norm of the final
vector in the enumeration of a local block L[j,k] is mostly between 0.95 and 1.05
times the GH of the local block, whereas the ratio between the norm of the first
vector and the GH is mostly almost 1.1. To lower the enumeration radius and
thus speed up the enumeration they use the enumeration radius
R = min(

√
1.1GH(L[j,k]), ||b∗j ||), except for the last 30 indices where they use

R = ||b∗j ||.

1If, for example, N enumerations are done with a pruning probability of 1/N the prob-
ability of at least one enumeration succeeding is limN→∞ 1− (1− 1/N)N =
= limN→−∞ 1− (1 + 1/N)−N = 1− 1/e. The pruning probability can of course be in-
creased if a bigger total success probability is wanted.
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Chapter6
Progressive BKZ

6.1 Introduction

In May this year Aono et al. published a new BKZ algorithm and also some new
ideas for lattice enumeration [2]. While not being as groundbreaking as the paper
on extreme pruning, it does contain many interesting optimizations. We will go
though the major improvements, starting from the innermost optimizations of
pruning probability and enumeration radius and gradually working ourselves
out to how to compromise between BKZ reduction and vector enumeration.

First introduce some notation that is needed in this chapter.

6.1.1 Notation

Let [i : j], where j > i, denote the set {i, . . . , j} and [j] denote the set [1 : j]. For
convenience, in this chapter we let Bi denote the lattice L[i,j], if the ending index
j is clear by the context. For a blocksize β and an index i we use the notation
β′ = min(i + β − 1, n) for the size of the local block Bi. Given the basis B of a
lattice L, we introduce the expression

FEC(B) =
n

∑
k=1

Vk(GH(L))
∏n

i=n−k+1 ‖b∗i ‖
. (6.1)

The Full Enumeration Cost (FEC) is the expected number of processed nodes
in the enumeration tree with enumeration radius GH(L) (the expected value of
λ1(L) given that the GH is true). This is in other words a measure of the expected
computational work of enumerating the lattice to find the shortest vector. Given
a bounding function R = {R2

1, . . . , R2
n}, just as in Subsection 5.2.1, the expected

number of points in the pruned enumeration tree with enumeration radius R is

N = NR1,...,Rn(‖b∗1‖, . . . , ‖b∗n‖) =
1
2

n

∑
k=1

VR1,...,Rn

∏n
i=n−k+1 ‖b∗i ‖

. (6.2)

The pruning probability is
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Pr
u∼R·Sn−1

(
j

∑
l=1

u2
l ≤ R2

j : ∀j ∈ {1, . . . , n}
)

. (6.3)

We denote the minimum value of (6.2), given that (6.3) is fixed to p ∈ (0, 1] and
the enumeration radius is R = α · GH(L), by ENUMCost(B; α, p). We use the
analogous definition for a projective sublattice Bi. In the progressive BKZ paper
some heuristic assumptions are made.

6.1.2 Heuristic Assumptions
In [21] Schnorr introduced the Geometric Series Assumption (GSA), which says
that the squared norms of the GSO vectors decay geometrically in a BKZ-reduced
basis. More specifically the GSA states that ‖b∗i ‖

2/‖b1‖2 = ri−1, for some r ∈
[3/4, 1). Generally the GSA approximately holds except for the last and the first
indices, where generally ‖b∗i ‖ is lower than the GSA suggests.

In [4, Full version, appendix C] Chen and Nguyen noticed that the norm of the
shortest vector in a local block Bi usually is larger than GH(Bi), for small dimen-
sions β′. For 1 ≤ i ≤ 50 define the modified GH constant as

τi =
λ1(πn−i+1(L))

GH(πn−i+1(L))
. (6.4)

These constants were estimated empirically by Chen and Nguyen. Later in this
chapter in Section 6.3 it will be assumed that

λ1(Bi) ≈
{

τβ′ ·GH(Bi), if β′ ≤ 50
GH(Bi), if β′ > 50

. (6.5)

6.2 Optimizing Plain BKZ
The paper starts off by optimizing what they call plain BKZ, explained by the
pseudo-code in Algorithm 6.1. The optimization here consists of picking α and p
as a function of β, n and i.

6.2.1 Basic Parameter Settings
Under the GSA the authors showed numerically that the optimal values of α, p
and r satisfy the following three equations

p =
2

αβ
, (6.6)

r =
(

β + 1
αβ

) 4
β−1
·Vβ(1)

4
β(β−1) , (6.7)
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Input : A basis B of dimension n, a blocksize β
Output: A BKZ-β reduced basis B

1 B← LLL(B);
2 f lag← true ; /* f lag = true if the basis is updated */
3 while f lag = true do
4 f lag← f alse;
5 for i = 1 to n− 1 do
6 Set (α, p) for local block Bi of blocksize β

′
i = min(β, n− i + 1);

7 Execute lattice enumeration with probability p
8 and radius α·GH(Bi);
9 Save result in vector v;

10 if ||v|| < α·GH(Bi) then
11 Update basis B by v;
12 f lag← true;
13 end
14 end
15 end

Algorithm 6.1: The Plain BKZ Algorithm

log(r) =
{
−18.2139/(β + 318.978), if β ≤ 100
(−1.06889/(β− 31.0345)) · log(0.417419β− 25.4889), if β > 100 ,

(6.8)
for a blocsize β. Solving these equations gives us the so called basic parameter
setting. The authors also define another function which measures the minimum
cost of enumeration with blocksize β, called MINCost(β). Numerically they esti-
mate it as

log2(MINCost(β)) =

{
0.1375β + 7.153, if β ∈ [60, 105]
0.000898β2 + 0.270β− 16.97, if β > 105 . (6.9)

It is not clear from their article what value MINCost(β) takes for β < 60. In
Subsection 6.2.2 we will cover how to modify these settings for the first and last
indices where the GSA no longer holds.

6.2.2 Modified Parameter Settings

Having calculated p and α for a blocksize β and an index i the following modifi-
cations are made.
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Modifications for the First Indices

For small indices i, (it is not clear how small from their article), the blocksize of
the local block is increased to the smallest blocksize β such that
ENUMCost(Bi:i+β−1; α, p) > β ·MINCost(β).

Modifications for the Last Indices

For indices i > n − β the blocksize of the local block shrinks to β
′
= n − i + 1.

Then the pruning probability p′ is increased until ENUMCost(Bi, α
′
, p′) equals

β ·MINCost(β), where α′ = (2/p′)1/β from (6.6).

6.3 Basic Progressive BKZ
Next, the paper introduces the basic variant of the progressive BKZ algorithm, as
explained in Algorithm 6.2.

Input : A basis B of dimension n, a starting blocksize βstart, an
ending blocksize βend

Output: A reduced basis B
1 B← LLL(B);
2 for β = βstart to βend do
3 while FEC(B)>Sim-FEC(n, β) do
4 for i = 1 to n− 1 do
5 Set (α, p) for local block Bi

6 of blocksize β
′
i = min(β, n− i + 1);

7 Preprocess Bi by the progressive BKZ;
8 Execute lattice enumeration with probability p
9 and radius α·GH(Bi);

10 Save result in vector v;
11 if ||v|| < α·GH(Bi) then
12 Update basis B by v;
13 end
14 end
15 end
16 end

Algorithm 6.2: Basic Progressive BKZ Algorithm

The idea of progressive BKZ is to start off doing BKZ-tours (each while loop in
Algorithm 6.2 is called a tour) with a small blocksize β = βstart and then increase
the blocksize once a certain criterion is met. Then new tours are done with this
new blocksize until the criterion is met again and so on. This keeps on until
the criterion is met for the blocksize β = βend. The picking of p and α in each
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tour is done the same way as in Algorithm 6.1. As in BKZ 2.0 the local basis is
preprocessed before enumeration. Exactly how this is done is not clear from their
article.

In basic progressive BKZ the blocksize is increased by one each time. In Section
6.4 we quickly discuss how to pick a better strategy for how to increase the block-
size.

In Algorithm 6.2 the criterion for increasing the blocksize is whether
FEC(B) > Sim-FEC(n, β) or not. Here FEC(B) is defined in Subsection 6.1.1. This
expression decreases as more BKZ tours are performed.

The expression Sim-FEC(n, β) is a simulation of the FEC after having applied
Algorithm 6.1 to a basis B with lattice dimension n and blocksize β. It depends
only on n and β, in other words, the Sim-FEC(n, β) does not change with the BKZ
tours. How Sim-FEC(n, β) is calculated will be discussed in Subsection 6.3.1. First
we introduce some more notation.

We denote the lengths of the simulated GSO vectors (b∗1 , . . . , b∗n) by (l1, . . . , ln)
and call them Sim-GSO-lengths(n, β). We also define some functions on the sim-
ulated GSO lengths. First define the GH as

Sim-GH(l1, . . . , ln) :=

 Vn(1)

∏n
j=1 l1/n

j

 1
n

, (6.10)

then define the FEC as

Sim-FEC(l1, . . . , ln) :=
n

∑
k=1

Vk(Sim-GH(l1, . . . , ln))
∏n

i=n−k+1 li
. (6.11)

Let us define the Sim-ENUMCost(l1, . . . , ln; α, p) as ENUMCost(B; α, p) for a basis
B, where li = ‖b∗i ‖. For (l1, . . . , ln) = Sim-GSO-lengths(n, β) use the notation
Sim-FEC(n, β) := Sim-FEC(l1, . . . , ln).

6.3.1 Simulating the FEC
The simulation of the FEC consists of first simulating the GSO lengths (l1, . . . , ln)
and then calculating Sim-FEC(l1, . . . , ln). Calculating (l1, . . . , ln) consists of two
phases.

Phase 1

First let ln = 1 and then work backwards index wise and solve the following
equation for li

li = max(
β′

β′ + 1
α, τβ′) ·GH(li, . . . , li+β′−1). (6.12)
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Here α is the optimized parameter from Algorithm 6.1 (it is not entirely clear if
the basic or modified α is used) and τβ′ is the modified GH constant from Subsec-
tion 6.1.2. For β < 30 the simulated GSO lengths (l1, . . . , ln) from this phase are
enough, but if β ≥ 30 phase 2 is applied to (l1, . . . , ln) to change the li for small
and big i.

Phase 2

Quite analogously with the modification of p and α, li are modified for small and
big i. For the last indices, that is when i > n − β − 1, or in other words when
β′ < β, pi is changed such that Sim-ENUMCost(l1, . . . , ln; αi, pi) = MINCost(β),
where αi = (2/pi)

n−i+1. Here the values of (l1, . . . , ln) are taken from phase 1.
After having updated (αi, pi) for n− β + 1 < i ≤ n the simulated GSO lengths li
by solving

li = max(
β′

β′ + 1
αi, τβ′) ·GH(li, . . . , ln), (6.13)

for all i, such that n − β + 1 < i ≤ n, in other words essentially solving (6.12)
again.

For the first indices (it is not clear how many indices count as the first) we have
an integer b > 0 of size enlargement. At index i we reset the blocksize at i as βi :=
β+max((b− i + 1)/2, b− 2(i− 1)), where the division by 2 refers to integer divi-
sion. Using these modified blocksizes the simulated GSO lengths are recomputed
by again solving (6.12) from i = βi to 1. Then Sim-ENUMCost(l1, . . . , lβ+b; α, p) is
computed. The biggest b, such that the simulation enumeration cost is less than
2 ·MINCost(β), is picked.

After having finished phase 1 and 2, Sim-FEC(l1, . . . , ln) is calculated by (6.11).

6.4 Optimized Progressive BKZ
We say that a basis B is β-reduced if FEC(B)<Sim-FEC(n,β). For a triple of block-
sizes (βalg, βstart, βgoal) satisfying 2 ≤ βstart < βgoal ≤ βalg the notation

βstart βalg

−−→ βgoal ,

refers to the process of starting with a βstart-reduced basis B and using tours of the
BKZ-βalg algorithm, with parameters optimized according to Section 6.2 above,
until FEC(B)<Sim-FEC(n,βgoal). In other words until the basis is BKZ-βgoal re-
duced. A blocksize strategy is a sequence {(β

alg
j , β

goal
j )}

j=1,...,D
, referring to the

following progressive reduction of an LLL-reduced basis B

LLL
β

alg
1−−→ β

goal
1

β
alg
2−−→ β

goal
2

β
alg
3−−→ · · ·

β
alg
D−−→ β

goal
D ,
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where β
goal
D = β is the desired reduction blocksize. One of the most important

findings of the progressive BKZ paper is a method for finding the optimal block-
size strategy, to achieve a certain goal blocksize β. Sadly enough it turns out that
the optimal blocksize strategy is just marginally better than the simple blocksize
strategy, when the blocksize is larger than about 100. Then the simple strategy
is better, since it does not need the heavy precomputing of the optimal blocksize
strategy. Since we want to use blocksizes above 100 for the NTRU Challenges, we
will not discuss the optimal blocksize strategy in further detail.

6.5 Combining Progressive BKZ and Vector Enu-
meration

Given the task of finding a vector shorter than γ · GH(L) in a lattice L with a
given basis B the following method is used. First M different randomized bases
Bi are generated by multiplying B by M different random unimodular matrices
Ui. Each basis is BKZ-β reduced for a certain value β. Finally enumeration with
the enumeration radius γ · GH(L) and the pruning probability p = 2 · γ−n/M
is done on each basis. Thus the way progressive BKZ strategy makes use of the
extreme pruning strategy from BKZ 2.0, is to apply it to the entire basis, instead
of the local block.

Since a random lattice has about γn/2 pairs of vectors smaller than γ ·GH(L) the
probability of success for each enumeration is about γn/2 · 2 · γ−n/M = 1/M.
The probability of success for at least one enumeration is thus 1− (1− 1/M)M ≈
1− 1/e ≈ 0.63211. Obviously, by using a higher pruning probability, the success
probability can be increased at the cost of longer computation time.

The optimization problem here is, given a particular lattice, to pick the parameter
pair (β, M) that minimizes the computational cost of this process. The optimiza-
tion assumes that, the optimized and not the simple, blocksize strategy is used.
(This could of course modified to better fit the attacks on NTRU given that we
want to use the basic blocksize strategy.) However, as is shown in Chapter 7 be-
low, for the NTRU lattice in particular, it is possible to do multiple enumerations
on one reduced basis. Also NTRU has a lot more very short vectors than the aver-
age random lattice. Thus the analysis behind this method is not really applicable
to NTRU lattices and we will not discuss it further.

6.6 Some Other Aspects of Progressive BKZ

6.6.1 How to Randomize a Basis
The algorithm for creating a random unimodular matrix in the implementation
of the progressive BKZ algorithm [2], is essentially a slight modification of the
SageMath function

1limM→∞ 1− (1− 1/M)M = limM→−∞ 1− (1 + 1/M)−M = 1− 1/e
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random_unimodular_matrix, found in src/sage/matrix/special.py in version 7.1
of SageMath [7]. The default value for the upper element limit value is 1024, but is
easily modified. For the purpose of randomizing an NTRU lattice basis, a smaller
limit has to be used not to destroy the basis quality.

The algorithm for creating a random unimodular matrix consists of two parts.
First a random upper triangular matrix is generated, with the value 1 along the
main diagonal. Then for each row in the matrix, a random multiple of each other
row is added. These operations do not change the determinant of the matrix and
thus the matrix is still unimodular. Each step has to be repeated until the biggest
element in the modified row is smaller, in absolute value, than the upper limit.

It should be mentioned, that the generated matrices are by no means uniformly
picked among all unimodular matrices with a certain upper limit on the element
values. For this application that is not a problem.

6.6.2 Better Method for Finding Optimal Bounding Functions
The method for computing the bounding function for the pruned enumeration
is from [1]. This improved method makes the time to compute the bounding
function negligible. These computations used to be quite time consuming due to
heavy Monte-Carlo computations.

6.6.3 General note on the details of this chapter
It should be mentioned that while the descriptions in this chapter sometimes are
very detailed, especially in Subsections 6.2.2 and 6.3.1, there are still more details
to understanding the whole progressive BKZ algorithm. Diving too deep into
these would make it easy for the reader to loose the overall picture of the algo-
rithm. The interested reader who wants to know more about the progressive BKZ
algorithm is referred the original article [2] and especially to its implementation
[23].



Chapter7
BKZ Reduction Attacks Against

NTRU Challenges

In this thesis two ways of finding an acceptable vector to the NTRU Challenge
are considered.

7.1 BKZ Reduction
The first and most obvious method is to BKZ-β reduce the NTRU lattice with a
big enough β, such that the second vector of the reduced basis is a valid solution.
The first vector will always be the 1s or -1s only vector and is not a valid solution.
This method is the easiest to use but also the slowest.

The simple blocksize strategy was used. It turns out that for a blocksize around
β = 100, the time to precompute the optimal blocksize strategy is so long, that
it starts to get faster to just use the simple strategy [2, p. 22-23]. It would be
possible to use the optimized strategy up to a certain limit and then switch to the
simple strategy, but given that almost all the computational time is spent on the
last blocksizes, the potentially saved time would be small.

7.2 BKZ Reduction and BDD Enumeration
The first two NTRU challenges were solved using BKZ reduction only. Chal-
lenges 3-7 were solved by Ducas and Nguyen using a modified version of BKZ-
reduction followed by enumeration, explained in this section. On Security Inno-
vations web page there is a PDF with explanations of how the challenges were
solved [15].

In the NTRU Challenge the private key ( f , g) = (1 + 3F, g) and the public key h
has the following relationship

h = (1 + 3F)−1 ∗ g (mod q).

This equation can be rewritten as
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F ∗ 3h = g− h (mod q). (7.1)

This modulo expression means that there is a polynomial λ, such that

F ∗ 3h + qλ = g− h.

On matrix-vector form this can be written as

(
F λ

) ( I 3H
0 qI

)
=
(
0 −h

)
+
(
F g

)
, (7.2)

where the element on row i and column j in H is hij = h′j−i (mod n), if the first
row and column are numbered as 0. The block matrix above is referred to as the
modified NTRU lattice. To find a vector resembling the private vector, instead
of searching for a small vector or in other words searching for a vector close to
the zero vector, we search for a vector close to (0,−h). This vector is called the
target vector. The problem of finding a vector close to the target vector is called
Bounded Distance Decoding (BDD). BDD is essentially the CVP problem, but
with a guarantee that there exist vectors that are much shorter than the GH of the
lattice.

To solve BDD, first of all we do a BKZ-reduction on the modified NTRU lat-
tice. The BDD can then be solved by enumeration on the BKZ-reduced modified
NTRU lattice, by doing some minor changes in the enumeration algorithm (es-
sentially just searching for a vector close to the target vector instead of close to
the zero vector) [17].

Notice that (F, g) is a much shorter vector than (f, g). This means that we can use
a much smaller enumeration radius making the enumeration much faster. Since
we know the private keys of the first seven Challenges we can cheat and calculate
the norm of each key (F, g). We can then increase that value a little and use it as
enumeration radius. If we did not know the norm of the private key, we could
still generate a number of private keys on the correct format and use these to
estimate the norm of the actual private key.

If we multiply (7.1) by xi we analogously get the matrix-vector form

(
F ∗ xi λ

) ( I 3H
0 qI

)
=
(
0 −h ∗ xi)+ (F ∗ xi g ∗ xi) . (7.3)

Thus a new BDD enumeration can be done on the same basis by just rotating
the target vector. This way n different enumerations can be done on the same
reduced basis. If we want the probability of finding the solution vector to be 1-ε
for ε > 0, it is enough to have a probability of 1-ε1/n of finding a short vector on
each enumeration. If we want an even smaller probability on each enumeration,
we can of course use a smaller one and randomize and reduce the original basis
again, if all enumerations fail. Then we can do n more enumerations on the new
reduced basis and so on. Exactly what pruning probability should be used to
achieve a certain probability of success for each enumeration can be estimated
empirically.



Chapter8
Implementation

At the beginning of the project, attempts were made at solving the first NTRU
Challenge, using the NTL implementation of BKZ [25], using the first method
from Chapter 7. This turned out to be impossible and attempts were made at
implementing both the progressive BKZ algorithm and BKZ 2.0. During these at-
tempts the authors behind the progressive BKZ article published their implemen-
tation of their algorithm, the progressive BKZ library, available at the National
Institute of Information and Communications Technology (NICT) web page [23].
It was then decided that time was better spent doing simulations using their soft-
ware, than to try to reinvent the wheel and write another implementation of the
same algorithm.

The progressive BKZ library contains functions for BKZ reduction and vector
enumeration. The original version could only handle SVP enumeration, but af-
ter correspondence with the authors CVP enumeration was added in the second
version of the library. Also after correspondence with the authors, about enu-
meration problems when searching for very short vectors in high dimensional
lattices, a big bug in the code was found and fixed.

The library is heavily based on NTL. The core of both the BKZ reduction and the
vector enumeration is modified from the NTL library. NTL is also used for LLL
reduction, representation of big integers and floating point numbers and so on.

The procedure for solving the challenges was the following. First the NTRU lat-
tice or the modified NTRU lattice was generated, using the available public keys
from the challenges’ web page [13]. Using the first method from Chapter 7, the
lattice was then BKZ reduced, using the basic progressive BKZ algorithm, using
bigger and bigger blocksize, until the norm of the second basis vector was less
than the GH of the basis.

Using the second method from Chapter 7, the modified lattice was BKZ reduced
using a big blocksize. Then all the target vectors were created, again by using the
public key. The enumerations were then made, searching for vectors close to the
target vectors. The pruning probability was empirically tested to be low, so that
the enumerations were fast, but big enough, such that at least one enumeration
was successful. The norms of the private keys were calculated using the avail-
able solutions [15], these norms were then used as lower limits of how low the
enumeration radii could be set.
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To speed up the enumeration process and make it more automated, a Python
script was created that automatically started a new enumeration once the last
one finished.



Chapter9
Results

For convenience, information about the first 7 challenges is summed up in Table
9.1. Challenges 1 and 2 only have solution vectors similar to but not identical
to the private vectors available, which explains the lack of norms of their private
vectors. Given that Challenges 1 and 2 were solved using BKZ reduction only and
that the submitted solutions to Challenges 1 and 2 also only used BKZ reduction,
that is not really a problem.

The simulations were done on three computers. Two of the computers had an
AMD Phenom(tm) II X4 810 Processor CPU with 4 GB memory, both of them are
henceforth referred to as CAS. One of the computers had an Intel(R) Core(TM) i7-
6700K CPU @ 4.00GHz with 16 GB memory, henceforth referred to as BLUL. All of
the machines had 4 cores. Vector enumeration is very paralellizable and as many
available cores as possible were used to do the enumerations. BKZ reduction is
not as paralellizable and to be able to run multiple reductions at the same time
only one core was used per BKZ reduction.

Table 9.1: The parameter q, the key size n, the GH and the norms
of the private keys (where f = 3F + 1) corresponding to the
first 7 Challenges.

Challenge nr q n dGH(L)e ||(f, g)|| ||(F, g)||
1 512 107 81 - -
2 1024 113 117 - -
3 1024 131 126 30.4959 13.4866
4 1024 139 130 31.8119 13.9483
5 1024 149 134 32.4962 14.3720
6 1024 163 140 33.1662 14.7836
7 1024 173 145 33.0151 15.0074
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9.1 BKZ Reduction

9.1.1 Challenge 1 and 2
For both the first and the second NTRU Challenge (with n = 107 and n = 113
respectively), after a couple of days of computation on CAS, the progressive BKZ
library managed to do a BKZ-110 reduction on the NTRU lattice. The second vec-
tors of the reduced lattices had the sizes 25.3772 and 28.3549 respectively, which
is way below the respective GHs of 81 and 117 (The first vector is always either
the 1s or -1s only vector and is thus not allowed as a solution to the challenge).

9.1.2 Challenge 3
After around 10 days of computation on BLUL a BKZ-120 reduction was made on
the NTRU lattice for the 3rd Challenge (n = 131). The second row of the reduced
basis had the size 30.4959, which is way below the GH of 126.

9.1.3 Challenge 4
After first spending several days on doing a BKZ-110 reduction on the 4th Chal-
lenge (n = 139) on BLUL and then spending another 16 days on BKZ-120 reduce
the basis on BLUL, the second shortest vector was still above the GH of 130. This
seems to be close to the limit of what is possible to solve with the most basic
method, at least using the available hardware.

9.2 BKZ Reduction and BDD Enumeration

9.2.1 Challenge 4
Less than 2 days were spent on BKZ-110 reducing the modified version of the 4th
Challenge on BLUL. The private key (F, g) corresponding to the 4th Challenge
has a norm of about 13.96. Enumerations using 4 cores on BLUL were made with
an enumeration radius of 15 and a pruning probability of 0.01. After less than
a day of computation 4 different vectors were found. It was obvious that a too
big pruning probability was used. This solution was made even though the block
matrix 3H was forgotten to be reduced modulo q. The method of BKZ reduction
followed by BDD enumeration seemed promising.

9.2.2 Challenge 5
48 hours of computation were made on BLUL to BKZ-110 reduce the modified
version of the 5th Challenge (n = 149). Then pruned enumerations with radius
15 and pruning probability 0.001 were done on all three computers, using 3 cores
on BLUL and all 4 cores on the other 2. After almost 3 days of computation the
52nd enumeration was successful. It was probably still possible to use a lower
pruning probability.
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9.2.3 Challenge 6
A little more than 30 days were spent on BKZ-120 reducing the sixth Challenge
(n = 163), on BLUL. Since the time the progressive BKZ library expected each
enumeration to take, even using extremely low pruning probability, was too high,
hopes of solving the sixth Challenge in this project were abandoned.

Currently (as of 2016-08-17) 7 out of the 27 challenges are solved [13].

9.3 Comparisons to the Submitted Solutions

9.3.1 Project Solutions
Table 9.2 contains the time spent on BKZ reduction, BDD enumeration and in
total to solve the NTRU Challenges in this project. The first three challenges were
solved using only BKZ reduction and the fourth and fifth were solved using the
BKZ and BDD reduction method. The enumeration time was calculated as the
total time spent on enumeration, times the number of cores used, divided by the
number of solutions found.

For more details on each solved challenge, including how the simulations were
distributed between the different cores, see the Sections 9.1-9.2.

9.3.2 First Submitted Solutions
Table 9.3 contains the time spent on BKZ reduction, BDD enumeration and in
total for the first submitted solution to each NTRU Challenge.

The first three challenges used the fplll implementation of BKZ reduction [27],
which is similar to but somewhat faster than the NTL implementation. Chal-
lenges 4-7 used a modified version of the BKZ 2.0 algorithm from [4]. The enu-
meration used for the last five challenges was a modified version of the BDD
algorithm from [17].

The first two challenges were solved by a modified version of the BKZ only
method explained in Chapter 7. The last five were solved by the BKZ and BDD
enumeration method also covered in Chapter 7.

There is no information about the hardware used for the first two challenges.
Challenge 3 used a single core, 3.2 GHz processor. Challenge 4 used a 1.3 GHz
processor. Challenge 5 used a 1.3 GHz processor for BKZ reduction and a 2.5
GHz processor for enumeration. Challenges 6 and 7 used a 2.53 GHz processor.

For more details on how each solution was made, the hardware used and so on
see [15].
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Table 9.2: The time spent on BKZ reduction, BDD enumeration
and in total to solve the NTRU Challenges in this project.

Challenge Proj. BKZ Proj. Enumeration Proj. Total
1 < 2 days - < 2 days
2 < 2 days - < 2 days
3 10 days - 10 days
4 < 2 days < 1 day < 3 days
5 2 days 31 days 33 days

Table 9.3: The time spent on BKZ reduction, BDD enumeration
and in total for the first submitted solution to each NTRU
Challenge.

Challenge First BKZ First Enumeration First Total
1 10 h - 10 h
2 8 h - 8 h
3 12 h 6 h 18 h
4 10 h 1 h 12 h
5 48 h 4 h 52 h
6 30 days 11 days 41 days
7 240 days 50 days 290 days
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Discussion

The progressive BKZ algorithm works well. It was possible to solve the first three
NTRU Challenges by BKZ reduction only. The fourth Challenge turned out to be
very slow to solve by BKZ reduction only.

It should be said that the first two challenges were solved faster by the fplll BKZ
implementation. They did however BKZ reduce a modification of the NTRU
lattice, which is probably the explanation why their solution was faster. They did
not seem to be able to solve the third challenge, which was possible using the
progressive BKZ algorithm, which indicates that progressive BKZ is the faster
algorithm, they just used a faster method.

Both the fourth and the fifth NTRU Challenge turned out to be quite easy to solve
using the BKZ-reduction plus BDD enumeration strategy.

Then it was not possible to solve more challenges. Given that the challenges
increase very fast in computational difficulty it is not that strange that the attack
suddenly gets too slow. However, Ducas and Nguyen managed to solve seven
challenges. They also managed to solve the fourth and fifth challenge much faster
than this project did. There are a number of possible explanations to this.

It is not clear from their solution what enumeration, pruning probability or BKZ
blocksize they used. In this project these parameters were picked by trial and
error, until a solution was found, and by no means optimized.

According to the progressive BKZ article [2], the progressive BKZ algorithm is
around 50 times faster than BKZ 2.0 at solving the TU Darmstadt SVP Challenge
[5], up to 160 dimensions. The results in this project do not reflect that fact. The
factor 50 however, is based on a lot of assumptions that are not met in this case.

The most interesting challenges, that is Challenge 6 and harder, use lattices with
over 300 dimensions. The NTRU lattices have a very special structure, including
a lot of extremely short vectors. While both the BKZ reduction and enumeration
in the progressive BKZ library are written for very general purposes, the BKZ 2.0
algorithm used by Nguyen and Ducas might very well be optimized for finding
short vectors in NTRU lattices. The lattices in the SVP Challenge have the struc-
ture of a standard, random lattice, where the shortest vector’s norm is about the
GH of the lattice.

47



48 Discussion

The structure and size of the SVP Challenge lattices makes it possible to speed
up the progressive BKZ significantly, using the optimized blocksize strategy and
the optimal mixture of BKZ blocksize and the number of randomized bases to
reduce, as is explained in Sections 6.4-6.5. As is also discussed in those sections
these tricks do not apply to lattice reduction attacks against NTRU.

The factor 50 is estimated theoretically. It is possible that the implementation of
BKZ 2.0 is more efficiently written than the implementation of progressive BKZ.
This is not possible to investigate, since the implementation of BKZ 2.0 is not
publicly available.

In Section 10.1 some ideas for how to solve more challenges using the progressive
BKZ library and how to do further research, are discussed.

10.1 Suggested Further Research
The most obvious possible further research to do is to continue to try the BKZ-
reduction plus BDD enumeration strategy on harder NTRU Challenges, using
more time and/or more powerful hardware. The lack of these was a bottle-
neck that made it impossible to solve more challenges. Even solving Challenge 6
took 41 days for Nguyen and Ducas. With significantly more computing power
and/or time Challenge 6 should probably be breakable with the progressive BKZ
library.

The challenges in this project were solved using quite a lot of trial and error. It
would be interesting to investigate how to pick the BKZ blocksize β, the enu-
meration radius, the pruning probability and the number of randomized bases to
BKZ-β reduce M, to make the probability of at least one of the Mn BDD enumer-
ations to succeed, greater than 1− ε, for an NTRU Challenge of length n and a
parameter ε > 0. Next this expression could be optimized to minimize the com-
putation time, subject to the available hardware. After having done this it should
be possible to solve the NTRU Challenges faster.

Another idea for further research is to look into the possibility of implementing
the hybrid attack, combining the progressive BKZ with the Meet-In-the-Middle
Attack. For an introduction to this sort of attack, see [12].
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AppendixA
Toy Example of Reduction of an

NTRU Lattice

To give the reader a feel for how lattice reduction works, a couple of different
reductions on a small NTRU example are shown. This can be used to help to
understand Chapter 3 and 4. The example is from [14]. Bob uses the system
parameters (n, p, q) = (11, 3, 32) and the private key f (x) = −1+ X + X2−X4 +
X6 + X9 − X10 and g(x) = −1 + X2 + X3 + X5 − X8 − X10. First he calculates

fq(x) = f−1(x) (mod 32) = 5 + 9X + 6X2 + 16X3 + 4X4 + 15X5 + 16X6+

+22X7 + 20X8 + 18X9 + 30X10.

Then the public key is

h(x) = 3 · fq(x) ∗ g(x) (mod 32) = 8 + 25X + 22X2 + 20X3 + 12X4+

+24X5 + 15X6 + 19X7 + 12X8 + 19X9 + 16X10.

Multiplying this polynomial by p−1 (mod q) = 3−1 (mod 32) = 11 we get

h′(x) = 11 · h(x) (mod 32) = 24 + 19x + 18x2 + 28x3 + 4x4 + 8x5 + 5x6+

+17x7 + 4x8 + 17x9 + 16x10,

which is used to define the following NTRU lattice basis
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

1 0 0 0 0 0 0 0 0 0 0 24 19 18 28 4 8 5 17 4 17 16
0 1 0 0 0 0 0 0 0 0 0 16 24 19 18 28 4 8 5 17 4 17
0 0 1 0 0 0 0 0 0 0 0 17 16 24 19 18 28 4 8 5 17 4
0 0 0 1 0 0 0 0 0 0 0 4 17 16 24 19 18 28 4 8 5 17
0 0 0 0 1 0 0 0 0 0 0 17 4 17 16 24 19 18 28 4 8 5
0 0 0 0 0 1 0 0 0 0 0 5 17 4 17 16 24 19 18 28 4 8
0 0 0 0 0 0 1 0 0 0 0 8 5 17 4 17 16 24 19 18 28 4
0 0 0 0 0 0 0 1 0 0 0 4 8 5 17 4 17 16 24 19 18 28
0 0 0 0 0 0 0 0 1 0 0 28 4 8 5 17 4 17 16 24 19 18
0 0 0 0 0 0 0 0 0 1 0 18 28 4 8 5 17 4 17 16 24 19
0 0 0 0 0 0 0 0 0 0 1 19 18 28 4 8 5 17 4 17 16 24
0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32



.

On vector form the private key is
( f , g) = [−1, 1, 1, 0,−1, 0, 1, 0, 0, 1,−1,−1, 0, 1, 1, 0, 1, 0, 0,−1, 0,−1] . After an
LLL-reduction of this basis, made in NTL[25], with default parameters, we get



−1 −1 0 1 0 −1 0 0 −1 1 1 0 −1 −1 0 −1 0 0 1 0 1 1
0 0 1 −1 −1 1 1 0 −1 0 1 0 −1 0 −1 −1 0 1 1 0 1 0
−1 1 1 −1 −1 0 1 0 −1 0 0 0 1 1 0 −1 −1 0 −1 0 0 1
0 −1 0 1 0 0 1 −1 −1 1 1 1 0 1 0 0 −1 0 −1 −1 0 1
−1 0 1 0 0 1 −1 −1 1 1 0 0 1 0 0 −1 0 −1 −1 0 1 1
−1 0 1 0 −1 0 0 −1 1 1 −1 −1 −1 0 −1 0 0 1 0 1 1 0
−1 −1 1 1 0 −1 0 1 0 0 1 −1 −1 0 1 1 0 1 0 0 −1 0
1 0 0 1 −1 −1 1 1 0 −1 0 0 0 −1 0 −1 −1 0 1 1 0 1
0 1 −1 −1 1 1 0 −1 0 1 0 −1 0 −1 −1 0 1 1 0 1 0 0
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 −1 −1 0 1 0 −1 0 0 −1 1 1 0 −1 −1 0 −1 0 0 1 0 1
0 −1 0 −2 −1 1 −3 3 3 2 −2 2 −4 4 −3 −4 4 2 2 0 −7 4
3 −3 −1 −2 −5 3 0 6 −2 5 −1 0 0 2 −2 −1 3 −5 −1 5 −2 1
0 −1 −1 1 −2 2 2 3 −1 0 −2 5 −3 −4 3 2 1 −1 −7 5 3 −4
4 2 3 −2 1 1 −1 −1 0 0 −1 2 0 −7 5 3 −3 4 −3 −5 3 1
1 −1 3 −3 −3 −2 2 0 1 0 2 4 −4 −2 −2 0 7 −4 −2 4 −4 3
3 −7 3 −4 1 −2 4 4 −2 1 −4 0 −1 −2 −1 1 4 −3 −3 0 0 5
3 −2 6 −2 5 1 2 −5 −1 −2 −3 3 −4 −2 5 −3 1 0 −1 2 −2 1
−5 2 0 7 −2 5 0 2 −4 0 −1 0 3 −4 −1 5 −3 1 −1 −1 2 −1
1 −5 3 −6 1 −1 4 2 2 4 −1 4 2 −6 2 −2 0 1 −2 3 0 −2
6 −2 6 0 1 −4 0 −2 −4 3 −1 −2 4 −3 0 −1 −1 3 −1 1 4 −4
−2 2 −1 3 1 1 −1 −4 1 −2 3 −6 −1 −2 −5 −3 −6 −1 1 −6 −1 −2



.

Next we do a BKZ-8 reduction of the basis in NTL with default parameters and
end up with the final basis
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

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
−1 −1 0 1 0 −1 0 0 −1 1 1 0 −1 −1 0 −1 0 0 1 0 1 1
0 0 1 −1 −1 1 1 0 −1 0 1 0 −1 0 −1 −1 0 1 1 0 1 0
−1 1 1 −1 −1 0 1 0 −1 0 0 0 1 1 0 −1 −1 0 −1 0 0 1
0 −1 0 1 0 0 1 −1 −1 1 1 1 0 1 0 0 −1 0 −1 −1 0 1
0 1 0 0 1 −1 −1 1 1 0 −1 1 0 0 −1 0 −1 −1 0 1 1 0
−1 −1 1 1 0 −1 0 1 0 0 1 −1 −1 0 1 1 0 1 0 0 −1 0
−1 0 1 0 0 1 −1 −1 1 1 0 0 1 0 0 −1 0 −1 −1 0 1 1
0 0 −2 1 0 −2 0 −1 0 1 −2 0 −1 −1 −1 0 0 0 1 1 1 0
1 −1 −1 0 1 0 −1 0 0 −1 1 1 0 −1 −1 0 −1 0 0 1 0 1
0 −1 1 1 −1 −1 0 1 0 −1 0 1 0 1 1 0 −1 −1 0 −1 0 0
0 −1 0 −2 −1 1 −3 3 3 2 −2 2 −4 4 −3 −4 4 2 2 0 −7 4
−5 2 0 7 −2 5 0 2 −4 0 −1 0 3 −4 −1 5 −3 1 −1 −1 2 −1
5 −3 6 −1 1 −4 −2 −2 −4 1 −1 −2 6 −2 2 0 −1 2 −3 0 2 −4
−3 −2 2 0 1 0 2 1 −1 3 −3 0 7 −4 −2 4 −4 3 4 −4 −2 −2
−2 3 −3 2 −2 3 0 3 2 0 −2 0 −5 −2 −3 −6 −1 −1 −5 −1 −7 −1
1 2 −3 −1 −2 3 0 0 2 2 1 −3 −1 −2 0 7 −5 −3 3 −4 3 5
0 −7 2 −5 0 −2 4 0 1 5 −2 4 1 −5 3 −1 1 1 −2 1 0 −3
0 −1 −5 2 0 7 −2 5 0 2 −4 2 −1 0 3 −4 −1 5 −3 1 −1 −1
3 −3 0 −1 −2 −1 0 0 −4 2 3 −6 5 3 −3 3 −3 −5 4 0 2 0
0 −2 4 0 1 5 −2 0 −7 2 −5 −1 1 1 −2 1 0 −3 4 1 −5 3
3 0 0 2 2 1 1 2 −3 −1 −2 −5 −3 3 −4 3 5 −3 −1 −2 0 7



,

since doing a BKZ-reduction with a bigger blocksize does not change this par-
ticular basis. Also notice that the first vector is the shortest, but can not be the
private key. The problem of searching for the private key in the lattice is not the
same, as the problem of finding the shortest vector in the lattice. The problems
are very similar but not identical. None of the following vectors are equal to the
private key either.

Even after having made an excellent reduction on the basis, it is still not entirely
obvious how to find the private key in general. It is however not the focus of the
thesis to do that extra step and will not be further discussed.

Just to show that the private key indeed is a lattice vector, we use the fact that
we know the private key and notice that the private key equals the tenth row but
with opposite signs.



56 Toy Example of Reduction of an NTRU Lattice



AppendixB
List of Acronyms

BDD Bounded Distance Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

BKZ Block Korkine Zolotarev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

CVP Closest Vector Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

FEC Full Enumeration Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

GH Gaussian Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

GSA Geometric Series Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

GSO Gram-Schmidt Orthogonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

LLL Lenstra-Lenstra-Lovász . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

NTL Number Theory Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

NTRU Nth Degree Truncated Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

RSA Rivest-Shamir-Adleman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

SVP Shortest Vector Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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AppendixC
Populärvetenskaplig

sammanfattning

Gitterbaserade attacker mot potentiellt kvantsäkert
kryptosystem

För att kunna bedömma om ett nytt kryptosystem är säkert och i så fall hur
stor krypteringsnyckel systemet behöver för att vara säkert måste attacker mot
systemet analyseras ingående.

Att kunna skicka krypterade meddelanden är inte längre bara angeläget för mil-
itärer och underrättstjänster. Varje gång du betalar räkningar via din internet-
bank eller handlar varor över internet vill du kryptera datan du sänder så att inte
obehöriga kan ta del av känslig information.

Symmetrisk kryptering

Tänk dig situationen att Alice vill skicka ett hemligt meddelande till Bob. Inom
det som kallas symmetrisk kryptering använder Alice då ett hemligt ord (nyckel)
för att göra meddelandet oläsligt (kryptera). Bob använder sen samma nyckel för
att göra det krypterade meddelandet läsligt igen (dekryptera). Med symmetrisk
kryptering kan stora mängder data skickas snabbt och säkert. Ett problem är
dock hur Alice och Bob ska komma överens om en gemensam nyckel. Ett sätt
detta kan göras på är med asymetrisk kryptering.

Asymetrisk kryptering

Inom asymetrisk kryptering har Bob två nycklar, en publik nyckel som vem som
helst kan se och en privat nyckel som bara Bob kan se. Alice skickar nu ett
krypterat meddelande med hjälp av Bobs publika nyckel. Bob dekrypterar sen
meddelandet med hjälp av sin privata nyckel.
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Kvantdatorer
För att kunna göra det krypterade meddelandet läsligt igen utan tillgång till den
privata nyckeln måste en attackerare lösa ett matematiskt problem. Det mest
använda kryptosystemet är RSA och det matematiska problemet för att knäcka
RSA är att faktorisera en produkt av två stora primtal.

En kvantdator är en dator baserad på kvantvbitar, som kan anta värden mellan 0
och 1, till skillnad från bitarna i en vanlig dator som bara kan ha värdena 0 eller 1.
Idag kan kvantdatorerna bara hantera ett fåtal kvantbitar. Men får vi storskaliga
kvantdatorer i framtiden visar det sig att det är lätt att faktorisera stora tal och då
behövs en ersättare till RSA.

NTRU
Ett gitter är en matematisk struktur med diskret utspridda punkter. I tre dimen-
sioner är punkterna i ett gitter fördelade som atomerna i en kristall. I högre di-
mensioner, givet en målpunkt någonstans i ett gitter, visar det sig vara ett svårt
matematiskt problem att hitta den punkt i gittret som är närmast målpunkten.
NTRU är ett kryptosystem baserat på detta problem, med gitter på en speciell
form. Ju längre den publika nyckeln är desto högre är dimensionen på detta git-
ter och desto svårare är NTRU att knäcka. Å andra sidan tar en onödigt lång
nyckel onödigt mycket plats och gör att kryptering och dekryptering tar onödigt
mycket tid.

NTRU-utmaningarna
I motsats till RSA känner man i nuläget inte till något sätt att snabbt knäcka NTRU
med hjälp av kvantdatorer. Men NTRU är inte lika väl studerat som RSA. För at
försäkra sig om att det verkligen inte finns någon snabb lösning och för att bät-
tre kunna bedömma hur lång nyckel systemet behöver utlyste företaget bakom
NTRU de så kallade NTRU-utmaningarna. Tjugosex olika publika nycklar av
ökande längd publicerades och en liten ekonomisk ersättning utdelas till den
första personen som räknar ut den privata nyckeln tillhörande respektive pub-
lik nyckel.

Resultat
Med hjälp av ett nyutvecklat mjukvarubibliotek anpassat för att leta efter korta
vektorer i ett gitter försökte jag lösa så många NTRU-utmaningar som möjligt. Jag
lyckades lösa de första 5 utmaningarna. Med mer tid och/eller datorkraft hade
jag sannolikt även kunnat lösa utmaning 6. Utmaning 7 är den svåraste utmanin-
gen någon löst överhuvudtaget. Det ska sägas att utmaningarna ökar snabbt i
svårighetsgrad och att resultatet från det här projektet inte ändrar gränsen för
vilken nyckellängd som är tillräckligt säker.


