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Populirvetenskaplig sammanfattning pa svenska

Matematiken ir full av olikheter, regler som berittar hur en storhet forhéller sig till en
annan. Vissa ir enkla, som att ett tal 4r stdrre 4n ett annat. Andra ir djupgéende och avsldjar
grundliggande samband inom rymd, rérelse och till och med véagor och virme.

Bland de finns Sobolev-olikheter, som kopplar samman tv4 till synes olika saker: hur slit en
funktion ir (hur vil den beter sig nir man zoomar in), och hur stor den kan vara i sin helhet.
Med andra ord besvarar de fragor som: Om en funktion 4r mycket slit, kan den 4inda vara
mycket stor? Det 4r inte bara en abstrake fundering, det 4r en friga som har format hela
forskningsfil, fran fysik till datavetenskap.

Den hir frigan har fascinerat matematiker i 6ver hundra ér. P4 1850-talet studerade den
ryske matematikern Pafnutij Tjebysjev hur storleken pé ett polynom kunde kontrolleras via
dess koefhicienter. Senare undersokte Markov-bréderna och Sergej Bernstein hur derivator,
forandringshastigheter, kunde begrinsa en funktions storlek. Dessa idéer lade grunden for
Sobolevs genombrott dr 1938, som visade att kontroll 6ver en funktions derivator ocksa ger
kontroll 6ver funktionen sjilv.

Men inte alla olikheter ir lika. Vissa dr skarpa, vilket betyder att de dr de bista méjliga,
de kan inte forbdttras. Att hitta dessa skarpa olikheter dr som att uppticka exakt var en
klippkant gar, man vet precis var grinsen ligger.

I min forskning fokuserar jag pa en sirskild skarp Sobolev-olikhet i en dimension. Den
handlar om funktioner som forsvinner vid intervallets grinser och vars slithet mits via
hégre ordningens derivator. Olikheten ser ut sa hir,

Iy < el

Hir miter vinstersidan funktionens totala storlek, och hogersidan miter slitheten via dess
k:te derivata. Konstanten c¢;, dr den skarpa troskeln, det finns inga funktioner som bryter
denna grins.

Fram till nyligen var denna konstant endast kind f6r det enklaste fallet. Min forskning fyller
denna lucka: jag beriknar det exakta virdet pa ¢;, for alla k, och identifierar de funktioner
som uppnir likhet. Overraskande nog visar det sig att dessa extremala funktioner ir Landau-
kirnor, L (z) = (1 — 22)¥, vilkinda fran harmonisk analys.

Dessa resultat ir inte bara matematiska troféer. Konstanterna i sidana olikheter kodar djup
information om rummet och operatorerna som ir inblandade. De dyker upp i fysik, signal-
behandling, numerisk analys och till och med i algoritmdesign. Att kinna till den skarpa
konstanten kan hjilpa till att optimera system, losa ekvationer mer exake och forsta grin-
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serna for approximation.

Aven om min avhandling fokuserar pa kontinuerliga funktioner, undersoker jag ocksa dis-
kreta analoger, versioner av problemet dir funktioner lever pé gitter eller nitverk. Dessa
diskreta fall r mindre utforskade men erbjuder spinnande méjligheter f6r framtida forsk-
ning.
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Notation

We give some of the notation used throughout the thesis.

R Real numbers

N Natural numbers
Z  Integers

T  Unitcircle

R™  Euclidean n-space

c(Q) Continuous functions on 2 C R™

suppf  Support: {z € Q: f(z) # 0}

Cy(22)  Continuous functions with compact support in €2
Ck(Q)  k-times continuously differentiable functions

CHQ)  CHQ) N Cy(@)

C*(Q) Smooth functions ﬂ:il C*(Q)

C§° ()  Compactly supported smooth functions (test functions)

£l = ([f(@)|Pdz)” forl<p< oo
Ifl; o = supess|f] for p = oo

L?(a,b) Lebesgue space of functions with | f],, (ap) <00

WkP(a,b) Sobolev space of functions with weak derivatives f(*) € LP(a, b)
forl<a<k

Wg’p(—l, 1)  Sobolev space with boundary conditions f)(4+1) = 0
forj=0,1,....k—1

k ()P 1/p
£ lweo = (Sh_o IF@IE )~ forl<p<oo

k
[ flwrese = 2a_o 17 1o for p = oo
[ lyew = 1FP N Lo for1 <p<oo
P(z) = z;.lzo ajzj € C[7] polynomial of degree d
d 1/p
1Pler = (5 lasl?) for 1 <p < o

[ Pllpec = max; |a,] )

. p
1Pl = (§ 1P d0) " for1<p < oo
1Pl oo = max,_, [P(2)]



>

f(&) = [ fx)e >4 da
a(é) = Zjez aje’15]
a(k) = \/dlﬁ Zj:o ajGQﬂikj/(dJrl)

Kk m
Aka]' = Zm:O (7Z><_1) Gjm
laler = (32, laylP) /P

lallg= = max; [a;|

I'(x) Gamma function
I(x)l
B(z,y) Euler beta function, B(z,y) = F((:z’)—i-(yy))
nl! Double factorial, n!! = 2% (%)!, if n is even, and n!! =

Fourier transform on R

discrete-time Fourier transform

finite Fourier transform

discrete derivative

vi

L ifn is odd
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A left inverse approach to sharp
Sobolev inequalities

1 Motivation and background

I have a stern and serious secret. I study polynomial inequalities and inequalities that
relate functions with their derivatives. My colleagues study weighty and deep subjects,
random matrix theory, invariant subspaces, weakly branch actions, harmonic morphisms,
global bifurcation theory, joint diagonalization, reproductive boundaries, complexities in
the complex plane. But inequalities?

The demigods Hardy, Littlewood and Pélya wrote a comprehensive book [19] on the sub-
ject, titled "Inequalities”, already in 1934. What can a mere mortal add?

And yet, inequalities are primal impulses within all of analysis. Inequalities can be qualita-
tive or quantitative, and among the latter, the most difficult to obtain, are the sharp ones.
They serve as the organising principles behind approximation theory, partial differential
equations, and harmonic analysis. For example, they quantify the trade-off between size,
smoothness, and oscillation of functions.

Among the wide variety of inequalities in analysis, Sobolev-type inequalities occupy a major
position. They connect information about the derivatives of a function to information
about the function itself.

Would smoothness of a function tell how large the function can be? Mathematicians have
been asking versions of this question for more than a century. In 1854, Chebyshev [13]
considered polynomial inequalities where the size of the polynomial was measured in the
uniform norm, and the control came from its leading coefficient. Later, in 1890s and in
the early 20th century, inequalities involving derivatives, such as the one from Markov
brothers [29, 30] on the unit interval [—1, 1] and another from Bernstein [s, 6] on the unit
circle, became key tools in approximation theory. In 1938, Sobolev [40] formulated his



now-famous embeddings — results that show how bounds on derivatives, in a given LP-
norm, together with boundary conditions imply bounds on the function itself in another
Li-norm.

Since then, these inequalities have been studied in many variations. For example, we can
consider inequalities when the underlying domain is a continuum or when it is a discrete
set. Or we can control the function via its derivatives, its Fourier transform, its moments,
or its polynomial coefficients. Or we can use different norms, measuring size in L?, [P, or
with mixed norms, or norms with weights, each leading to distinct constants and extremal
problems.

The constants that appear in such inequalities are far from arbitrary, they encode informa-
tion about the underlying space and the operators involved. In some cases, they can be
interpreted as minimal eigenvalues of Toeplitz matrices [8], minimal eigenvalues of some
higher-order ordinary differential operators [8, 34], norms of the Green kernels of these
operators [8, 46, 33], or condition numbers in approximation schemes [8, 22].

Thus, a result about these inequalities are also useful in other areas of mathematics and
physics. For example a precise determination of the sharp constant not only settles an
extremal problem in analysis, but may also resolve a question in numerical linear algebra,
spectral theory, or mathematical physics.

The present work is concerned with a specific Sobolev-type embedding in one dimension,
from the Sobolev space W0k’2(—1, 1) into L'(—1,1), for integer k > 1. While classical

results tell us that such an embedding exists, the sharp constant in the inequality
k
1705 xS el Plley

was previously unknown for & > 1. Earlier work by Kalyabin [21] provided matching upper
and lower bounds up to a gap for the embedding constant, but the exact value remained
elusive.

In the paper that is included in the thesis, we close this gap by computing ¢;, exactly and
identifying all extremal functions. Interestingly, these extremals turn out to be the Landau
kernels, L;.(z) = (1 — x2)¥, familiar from the classical harmonic analysis.

While this thesis will primarily address the continuous case, we will also briefly discuss
related discrete analogues. The discrete case can be considered as a parallel problem where
similar techniques may be adapted and the landscape of known results is sparser.

In what follows, we survey the literature most relevant to our case, present our main result,
placing it in context with previous work, and briefly remark on discrete analogues and
possible extensions.



Figure 1: Sergei Sobolev (1908-1989).

2 Literature survey
Our problem belongs to the family of Sobolev inequalities for which the task can be for-
mulated as follows.

Problem 1. Given f in Wéc P(—1, 1) determine the smallest possible positive constant ¢y, , ,
in the inequality

£ 1.1) < g 1 lor 1 w

and indentify the extremal function.

For the qualitative character of the inequality and nested properties of the Lebesque and
Sobolev spaces see 5.1, below.

Knowing the sharp constant in the inequality (1) would tell the largest size the function
with compact support in [—1, 1] can have in L%-norm when we know the the size of its
k-th derivative in LP-norm. In another words, the sharp constant gives the sharp upper
bound for the exchange rate when we travel from a particular Sobolev space to a particular
Lebesque space trading regularity to integrability.

In the case p = 2, we have an additional interpretation. The inequality (1) can be stated as

“f”Lq(_LI) < Ck,q,p(Zﬂ-)k H|§|kf<€) (2)

L2(R)’



since by the Plancherel formula
1 —
[ 1r9@pds = [P
1 R
— (27)2k 2k| £(£)12 dE.
(2r) / EPHL ()2 de

This means that, when we fix a L?-norm for functions with a compact support in [—1, 1],
then the L?-norm of the Fourier transform of their k-th derivative cannot be smaller than
a sharp positive constant.

The family of inequalities (1) has attracted sustained attention for more than hundred years
since the work of Steklov [42]. But in the case of higher order derivatives, the search for
the sharp constants and the extremal functions has been particularly active and successful
research area during the last 15 years.

There is a group of researchers in St. Petersburg who have systematically studied and sur-
veyed the sharp constants and the extremal functions in Sobolev embeddings [25, 32].

Alone in the case k = 1, there are many contributions [4, 3, 1, 44, 2, 43, 10, 16, 17, 42, 27, 19],
sometimes independent of earlier work, that have rediscovered special cases or provided
alternative proofs. While the common theme in the proofs in the case £ = 1 was Euler-
Lagrange variational method, there is a notable exception by Cordero-Erausquin et al. [14]
who used the mass-transportation approach.

The first known result dates back to Steklov [42] in 1896 and concerns the first order deriva-
tive, k = 1, and exponents ¢ = p = 2. He found that ¢; 5 5 = 2 and tha the extremal
function is f(x) = cos (5x). This was among the earliest inequalities with sharp constant
that appeared in mathematical physics (for more to whom the result has been ascribed, see
5.4, below). Steklov applied the inequality to justify the Fourier method for the heat and

wave equations.

For the first order derivative, ¥ = 1, and all ¢,p € [1, 0], the problem was solved by
Schmidt [38] in 1940 stating that

ey
Lap 2(1+q/p)Y1B(1/q,1/p")’

where B stands for the Fuler beta function.

In this case, the extremal function can be expressed as a generalised trigonometric function
of Lindqvist-Peetre (for the definition and properties on these functions, see 5.5, below).
Interestingly, the result has been rediscovered many times [1, 44] and even as recently as in
2002 by Bennewitz and Saito [3, 4] (for comments on their extremal function, see 5.6).



Table 1: Known sharp constants ¢, , ,, discussed in Section 2. The empty set sign indicates no known result and the algorithm
of the case ¢ = 2, p = 2 is given in Theorem 2.

qQ | k=1| k=2 | k=3] k=4 | kez, p
1 1 0 0 0 0 1
1 2 ;\/E 1 /2 1 /2 1 9
3 3\ s 15\ 7 105 9 (2k71)!!\/@
1 1 ) 0 0 0 00
2 i 0 0 0 0 1
2 2 1 0.1795461... 2 | 0.004322... algorithm 2
2 0 0 0 0 00
0o i i + 0 0 1
o 1 1 1 1 _—l 2
2 2V6 8V10 48V14 Qk(k,l)!\/@
_ _ 3 +1 (1— 2\k
o0 1 % 212\/§ 813\25 wkk!;rlifl -1 1+(—1):x%(k-+1) dz | oo

During the last 15 years we have seen a rapid development in determining the sharp embed-
ding constants for higher order derivatives (¢ > 1). In 2010, Kalyabin [20] found the first
full solution and this was on the case ¢ = o0, p = 2. This was followed by Petrova [34]
in 2017, solving fully the case ¢ = 2, p = 2, and Kazimirov, Sheipak [22] in 2024 solving
fully the case ¢ = 00, p = 00. The paper that is included in the thesis gives a full solution
onthecaseq=1,p = 2.

Thus, we have full solutions on four crossroads out of nine on the (l, l)-plane. An il-
lustration of known sharp higher order constants is indicated on Figure 2 and in Table 1.

Kalyabin’s proof of the first full solution uses a similar left inverse of the differential operator
f = f% for functions f € W§72(—1, 1) that we are using in our paper. We give an
expository proof of his result.

Theorem 1 (Theorem 1 in Kalyabin [20]). For all integersk > 1 and f € Wéf ’2(—1, 1), we
have the sharp inequality

1
”fHLoo(,Ll) < Qk(k; B 1)\/@ ”f”v[/(’f’?(,l’l) :

The extremal functions are given by f(x) = Z;’ik (G+3) (P;ik) (x)) .

()

Proof. We consider the left inverses of the differential operator f + f*) for functions
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' ® sharp embeddings are known
: ---- two-sided estimates, Kalyabin ([1, 0], 2)
! - --- partial results, Watanabe (o0, [1, 00])
L E Kalyabin (00,2) Petrova (2, 2) Hindov et al. (1,2)
1 SEEEERERR o - °
1 Kazimirov-Sheipak (00, 00)
@

N
—_
Q |RY

Figure 2: Sharp Sobolev embeddings for all orders of derivatives are known at the black points on the (l, l)—plan-’e (for the

sharp embedding constants, see Table 1). Two-sided estimates are known on the dashed line. Partial results are known
on the thick dashed line. In the brackets, the values of ¢ and p are given as (g, p). (1,2) is the result of the paper
that is included in the thesis.

fe ng’Q(—l, 1) in the following form

1

f(x):m

/ (x —y)* 1P (y) dy.

Given f € W?(—1,1), denote g(z) := f*)(z). Then g € L?(—1,1) and repeatedly
integrating by parts gives

6 @)= gy [ o= e dy

k—1 7 — k—j ' s T
-S| SErw] [ rwds= e

forall z € (—1,1), since all the terms in the sum vanish.

The boundary condition f4)(£1) = 0 forall 0 < j < k and integration by parts gives us



a sequence of equivalences

+1
fPy)dy=0 = fEV(x1) =0
—1

+1
/ yf® () dy =0 <= fED(41)=0and fE2(£1) =0
1

+1
/ Y fE () dy =0 <= fU(£1)=0, j=0,1,....k—1.
-1

Hence, we have the family of orthogonality conditions
+1
/ ygly)dy =0, je{0,1,k—1}.
-1
Therefore, in the series expansion of ¢ in the orthogonal Legendre polynomials,
9(w) =>_a;(9)P;(y),
=0

the coefficients a;(g) must necessarily vanish for all j < k.

Recall that the classical Legendre polynomials defined as

1 d )
(1) = —— — (1 — z2)]
(@) = 5 qa =)
with ||Pj(:c)Hiz< Ly = ﬂ%, form an orthogonal family on L?(—1,1). Hence, for any
] 2

fixed x € (—1, 1), we have by the Cauchy-Schwarz inequality

2
—k
=13 a;(9)P (@)
j=k
1 2
o0 1 2
(—k) J+2)
= a P, x -
> aor e (513
[e'e] a? 2

<

2
= ”g”L2<,1’1) Ak:(x)’



where we denote

If we choose the coefficients a;(g) := (j + 3) P;ik) (x), then it follows from the above
computation that

2
F@P = Ll s 3 Ao)
and we can express the extremal function as

o0

s = (i+5) (P @)

J=Fk

It can be shown that Aj () = 0 at z = 0 and A} (0) < 0. Therefore, A, () attains its
maximum at £ = 0. However, since

(~H) 1 &
_ B o
B = g qurt =)
sk (j— k=1 ,
mo{(l)zkw foreven j — k
0 foroddj— k,

we have with the change of index j = 2m + k

z€[—1,1]
2
- (2m)! ) ( 1>
= 2m+k+ -
— (22(m+k)m!(m + k)! 2
1

T2 I((k—1))2(2k— 1)

Kalyabin also proved in [20] that the function A (z) can be expressed explicitly as

(1— 2%k 3

(4)
28(k— 1)y /k— 1

Ap(z) =



and then again the sharp constant follows by taking

A = A,(0).
xem[j‘ffl] k() 1(0)

The result was shortly after independently rediscovered by Watanabe et al. [46]. They made
a connection to a boundary value problem and then calculated the sharp constant using
the Green function of the differential operator. Later, in 2020, Sheipak and Garmanova
[39] found the explicit form for the extremal function.

The next full solution for finding the sharp constant concerned the case ¢ = p = 2. The
sharp constant was characterised first by Petrova [34] in 2017 and then again by Carneiro [12]
in 2024. Both methods use the smallest positive solution of a certain explicit determinant
equation.

Petrova uses a similar left inverse of the differential operator f — f (k) for functions f €
Wéf ?(—1,1) that Kalyabin was using in [20], namely

1

@) = = / (2 — ) £ (y) dy.

Then she connects the problem of finding the sharp constant with finding the minimal
positive eigenvalue of the boundary value problem

(=129 (z) = Ny (),
y(])(O) :y(-])(l) :07 j:07...,]€_1'
Theorem 2 (Petrova [34]). For all integers k > 1 and f € Wg’Q(—l, 1), we have the
inequality
||f||L2<_171) < Cp2,2 ||f“W§’2(_1,1) )

with the sharp constant cy, 5 5 = (Ap) %, where Ny, is the least positive root of the function
det Dk ()\) == 0,

where D, () is the k X k-matrix with entries

Dy (A= (A" Jaa (A2™),  jym =0, k=1,

Jjm

Here z = €'% and J, is the Bessel function of the first kind.

As an example, for k = 1, A, is the first positive root of cos(z) = 0, while for k = 2, A,
is the first positive root of tan(z) + tanh(z) = 0, and for k = 3, A4 is the first positive



Table 2: The first few values of the sharp embedding constant ¢ 5 ».

| k=1 k=2 k=3| k=4

0.004322...

0.179546T... ‘ %

root of cos(z) (tan(z) — tan (zel 3 ) + tan (ze’ 3 )) = 0, and similar conditions can be
obtained for all positive integers k from the determinant equation. As an example, the first
few values of the sharp embedding constant ¢, 5 5 are given in Table 2.

In this p = ¢ = 2 context, we would like to mention the result by Boulton and Lang [9]
from 2023.

Theorem 3 (Theorem 6.1 in Boulton and Lang [9]). For f € W%’p(—l, 1) = {f €
W2P(—1,1) : f(£1) = 0} with1 < p < 00, we have the inequality

1o 12y < G Dz ©

with the sharp constant

Cop'p

Il
[\]
S
+
N Je
|
S
/N
=
—

NG (ST
| T
[~
3 = [—

N———"
N—

where H () = L@t nd D, D" are the Hilder conjugate exponents with % + I% =1

T

The extremal functions are constant multiples of f(x) = sing (), where sing /() is a
generalised trigonometric function of Lindquist-Peetre (for the definition and properties on these
functions, see 5.5, below).

Boulton and Lang use the boundary condition that only f(£1) = 0 and not that both
f(£1) =0and f’(£1) = Oas in Problem 1. Interestingly, it makes a noticeable difference
in the case ¢ = p = 2. Namely, we can easily calculate the embedding constant in this
setting as

4

€222 = 5-

T
In contrast, with the boundary conditions of Problem 1, we had to numerically approxi-
mate to find the least positive solution to tan(z) + tanh(z) = 0 in order to calculate the
embedding constant ¢, 5 5 (see the numerically approximated value in Table 2)

The next full solution for finding the sharp constant concerned the case ¢ = p = 0.
Kazimirov and Sheipak [22] found the sharp constant in 2024 using Ll—approximation
theory.

I0



Table 3: The first few values of the sharp embedding constant ¢, o, -

Theorem 4 (Theorem 3 in Kazimirov and Sheipak [22]). For all integers k > 1 and f €
Wg’oo (—1,1), we have the inequality

”fHLoc(,l’l) < Ck, 00,00 ”f“WL]f’OO(fl,l)

with the sharp constant

LS S AR VSt L
Chyo0,00 = —p1gh—1 [ T+ (—1)ka2(i1) L.

For the proof, Kazimirov and Sheipak make a connection to the problem of finding the
best approximation in L' of certain splines by polynomials. As an example, the first few
values of the sharp embedding constant ¢, ., ., are given in Table 3.

Kazimirov and Sheipak also calculated the integral in the constant in terms hypergeometric
functions and found the asymptotic behaviour of the constant as k — 0o to be %\/% .

In the case ¢ = 0o and for the full range of p € [1, 00}, we have higher order results only
up to k = 3 (except for p = 2 and p = 00 where we have full solutions). Oshime [33]
proved the cases kK = 1 and k = 2, and Watanabe et al. [45] the case k = 3.

Oshime and Watanabe et al., both use the construction of left inverses to the differential
operator. Again, they use the same left inverse approach as Kalyabin and Petrova are using.

For these orders of derivative (k = 1, £k = 2, k = 3) the results of Oshime and Watanabe
et al. are in agreement with Kalyabin [20] when p = 2, and with Kazimirov, Sheipak [22]
when p = .

Theorem 5 (Theorem 10 in Oshime [33], Theorem 1.1 in Watanabe et al. [45]). For f €
W02 P(=1,1) with 1 < p < 00, we have the sharp inequalities

11
Iy <2575 Ul 1y

11
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Oshime gave also the explicit extremal function in the case k = 1 as
f@)=1-lel, (-l1<z<1)

up to the constant multiplication.

3 Our contribution

The paper included in this thesis considers a Sobolev-type embedding in one dimension,
from the Sobolev space W}*?(—1,1) into L'(—1, 1), for all integer orders of derivatives
k > 1. We have the following theorem from the paper in this thesis.

Theorem 6 (H., Nitzan, Olsen, Rydhe). For all integersk > 1 and f € Wg’Q(—l, 1), we
have the sharp inequality

1

HfHLl(—l,l) < (Qk B 1)”\/@ Hf”wgvz(_Ll) .

The extremal functions are given by the Landau kernels, L, (z) = (1 — x2)k.

The theorem tells us the largest size the function with compact support in [—1, 1] can have
in L'-norm when we know the the size of its k-th derivative in L2-norm. We also have an
interpretation, that when we fix a L!-norm for functions that belong to the Sobolev space
T/VéC ?(—1,1), then the L2-norm of the Fourier transform of their k-th derivative cannot
be smaller than a sharp positive constant,

Wl < (2k —1) u\/ﬁu ‘

For comparison, when we also control the size of the function by the size of the moment of

®)

the function, then we have the sharp inequality on the real line conjectured by Steinerberger
(41], fora > 2

1++ 1 o
Hf”Ll((:l’l) < 27’[’(& + 1)“ H|$’ f( HLI ~1,1) H|€‘f || (9)

L*(R)’
with the characteristic function f(z) = X(_1,1)(%) as the extremal function.

In Theorem 7, we have equality with the Landau kernel L, as the extremal function, so
that we have the L'-norm of the Landau kernel on the left hand side, and the L2-norm of

12



the Legendre polynomial P, on the right hand side. Recall that these functions are related
by the Rodrigues formula,

1 "

Py(z) = Skl dak [(?

~ 1)),

We would like to mention that the Landau kernel is also the extremal function in a Carlson-
type inequality (for the general form and other examples, see 5.7, below) by Laeng and
Morpurgo [26],

5 125 4
HfHLl(—l,l) < 7 ||$2f(37)||L1(71’1> Hf/<x)HL2(_1,1) .

In 2014, Kalyabin [21] found an upper and lower bound for the embedding constant in the
inequality (7)
1 <o < VT

kX .
2k—1/k+1 2K (k + $)4/k— 4

Kalyabin used the Landau kernel to calculate the lower bound for the embedding constant.
For the upper bound he used the function A, () (for the formulation see (4)) that gave the

sharp inequality in the ¢ = 00, p = 2 case. But these bounds leave a gap for the constant
intheq =1, p = 2 case.

Theorem 6 closes this gap for ¢ = 1, p = 2. For the proof of the theorem, we construct a
class of explicit left inverses of the differential operator f - f(¥) of the form

1

f(z) = / By(a.y)f®(y) dy, =€ R

By the Hélder inequality, we obtain from this the following integral representation that

1
/ By (z, )| da
1

sy < Mot 1

Then the idea is to construct the function By (x,y) in a such way that when we minimise
the LP(—1,1;dy)-norm we are free to choose the zeros y;, Y, ..., y;, of the polynomial

L11 By.(z,y) dx in y, while ‘fjl By(z,y) dx’ = L11 | B),(x,y)| dz. For this construction
of By, (x,y) we use the Lagrange interpolation polynomial.

Thus, the problem reduces to the classical problem in approximation theory to determine

polynomials of degree k with leading coefhicient one that have the minimal LP-norm on

the interval [—1,1], 1 < p < oo. The solution to this problem is well known in the cases
= 1,2, 00 (see, e.g., [36, Chapter II]).

13



* For p = 2, it is the Legendre polynomial and we get the result in Theorem 6.

* For p = o0, it is the Chebyshev polynomial of first kind and we get Corollary 1
below.

* For p = 1, it is the Chebyshev polynomial of second kind and we get Corollary 2
below.

Less is known about the cases 1 < p < 2 and 2 < p < 00, apart from the fact established
by Kro6 and Peherstorfer [24] that the minimal polynomials in these cases have zeros that
interlace with those of the Chebyshev polynomials of the first and second kind. However,
the known results of approximation theory for p = 0o and p = 1 give us the two corollaries
below.

Corollary 1. For all integersk > 1 and f € T/VéC ’2(—1, 1), we have the inequality

1

< gt Mlwer ) (10)

11

Proof. 'The approach we developed for the case p = 2 is easily adapted for p = 1. We just
need to find the minimal monic polynomial in L>°(—1, 1) of degree k, as described above.

We have

min o - -
p monic PlL -1.1) 2k—1 k Loo(—1,1) 2k—1 ’
deg p=Fk ’

where T}, is the Chebyshev polynomial of first kind of degree £,
1
T, (z) = 3 [(z + Va2 —1)* + (2 — Va2 — 1)’“] :
O

In 2019, Guessab and Milovanovi¢ 18, Theorem 4] studied the ¢ = p = 1 inequality. They
developed similar theory with a left inverse to the differential operator, but they did not
complete the calculations to find the sharp embedding constant.

Corollary 2. For all integersk > 1 and f € VV(;f ’2(—1, 1), we have the inequality

1
”fHLl(—l,l) < W “fHWO""’O(—l,l) : (11)

Proof. Similarly to the corollary above, we can also use our left inverse approach in the case
p = 00. Now we need to find the minimal monic polynomial in L!(—1, 1) of degree ,
as described above. We have

. 1 1
pﬂgx}ic ||p||L1(71,1) = 27[]1@ L) = ok-1
deg p=Fk ’

14



where Uy, is the Chebyshev polynomial of second kind of degree £,

(x+1/$2_1>k:+1 _(x_ $2_1>k+1
W12 —1 '

Uy(z) =
O

As already mentioned in the introduction, the progress and results from the continuous
case might be useful to making progress in the discrete case. For example, in the paper
included in this thesis, we show that the sharp embedding constant in (7) is equal to the
minimal eigenvalue of the following boundary value problem,

(—D)*uC¥ (@) = psgn(u(z)), = € [-1,1],

/ |u(z)|dz =1,

+1) =0, j=0,.. k1.

If in this setting we could show that u, that corresponds to the minimal eigenvalue, does
not change its sign inside (—1, 1), then we know that in the discrete sampled form of the
inequality, the extremal sequence does not change sign either. We think this would help to
prove the discrete analogue. Our progress in the discrete case, although not yet applying
the connection put forward here, is presented next in Chapter 4.

4 Related problem in the discrete setting

Recall that the Sobolev inequality in Problem 1 for the case p = 2 can be formulated
through the Fourier transform as

1@ 1 1) < 27| [FF€) (12)

L2(R)

Given this, we are also inspired to study the related problem in the discrete case. The
discrete analogue is presented in Problem 2, in the case p = 2. We can also consider the
Problem 2 for all 1 < p < oo for its own right.

Problem 2. Given a sequence a : {0, 1,2, ...,d} > C determine the smallest possible positive
constant Cy . ., in the inequality

lasll, < Cag|[A*a()

Jqu <

Lr(T)

and identify the extremal sequence.

I5



Since we have that -
Aka(g) = (e —1)ka(€)

we can express the inequality also as
ol < Cuap e ~ 14,1
and therefore as a polynomial inequality as well
PG < Capgp = DFPG, -

The {%-norm of a polynomial P(z) = Z _ @;% € C[2] is defined as
1P, = (Z |a;|? ) for 1 < ¢ < ocowith [P(2)], = max{la;[}.

4.1 An example of implication

The continuous Problem 1 and the discrete Problem 2 are related in the case p = 2, in the
sense that knowing the sharp constant in the discrete case allows us to calculate the sharp
constant in the continuous case. We present the cases k = 1 and k = 2 from our ongoing
work for ¢ = 0o, p = 2. The result for £ = 1 follows from a simple calculation presented
below, but for £ = 2 we only provide a conjecture. We also demonstrate how the lemma
and conjecture give asymptotically the continuous results.

Lemma 1. Leta : {0,1,2,...,d} = C be a sequence with d even. Then we have the sharp

inequality
SRGEE

lal,.. <

(13)

HAa

L3’

The extremal sequence is a constant mu[tz'ple of the triangle sequence

= {1,2,...,d—1,d,d—1,...,2,1}.
2 272

Proof. We have for every j € {0,1,2,...,d},
|aj’ < |aj - aj—l‘ + ‘%’—1 - aj—2| + oo+ lag = ag| + ag]
and also

;] <laj—ajq| +laj —ajol + .+ [ag_y — agql + |agl-

16



Adding these expressions, we get for every j € {0,1,2,...,d},

1 d
la;| < B (‘ao‘ + lag| + Z |ay, — akl’) .
k=1

Hence by the Cauchy-Schwarz inequality we have

\/m d+1 2
|aj| < Z |Aaj|2
=0

—

2
VITT
- 2 HAa(£>”L2(D ’

For k = 2 we have the following conjecture.

Conjecture 1. Let a : {0,1,2,...,d} — C be a sequence with d even. Then we have the
sharp inequality

(d+2)(d+4)

i13 IR,

1
ol < s+ 2@+ 3y 1) 43 .

These two discrete versions of the ¢ = 00, p = 2 inequalities of the order 1 and 2 imply the
corresponding continuous cases on the real line. Indeed, suppose that f(x) has support on
[—1, 1]. Then we can apply the inequality (13) with d = 2N to get

2)

. N+1 .
j OIN+2 (> <] )
ax =1 — Afl=-1
je{o,flz,...gz\/} ‘f <N )’ 2 ( Z ! N

Jj=0
Manipulating the right-most sum to make it a Riemann-sum, we arrive at

(SIS

NI

. 2

' 1 V2N +2 (2 Af(4£-1)] 1

Coma ()< LN S At dsbl IS
je{0,1,2,....2N} N VN 2 = 1/N N

Taking the limit N — 00, we arrive at the inequality

1 e
e [f(@)] < (/ s <m>r2dx>

2

17



Similarly with the case k = 2, we observe that

2N+2 2 +1
A f (* — 1) 1 N—o00 ” 2
7=0 1

whence

1 +1 , ) %
max 1] < 5 (/ (@) dx) .

These two last inequalities match exactly with the inequality (3) in Theorem 1, and with the
inequalities given in Theorem 5 with £ = 1 and k = 2.

4.2 Subplot with three equivalent problems

In 2021 Kravitz and Steinerberger [23] posed the problem of finding averaging function,

u: {—n,..,n} — R normalised to Z;L: = 1, such that when convolving it with

Uu -
-n J
functions f € [?(Z) we minimise

||Ak(f * u)||12(z)

sup
0£f€l2(Z) ”f”p(z)

Kravitz and Steinerberger showed that the minimisation problem is equivalent with deter-
mining the smallest positive constant in the Problem 2 with p = 00, in this form,

Zn: u; < Cp H@(S)HL%(F) '

j==n

This follows by using the Plancherel formula

S Ik (ux £)( /\e@ﬁ—u%\u O)1217(€)[2de

kez
<||(e® — I)Qkﬂ(f)gume o /’f@)gdf
T

= [l = M a(©), . g, - D_IF R

kez

After taking a square root we get

JAR (s Pl ) <l = DFUO] ) - 12z

18



By choosing f so that f(£) has L? mass concentrated at the £ in which the function |e® —
1)2*]6(€)|? achieves its maximum, we can make the above inequality arbitrary close to an
equality. Hence, we have two equivalent minimisation problems

AR )y,
min sup
Y orel2(z) Hf”lz(z)

= min |(¢" — D¥A(E)],.. o, -

Kravitz and Steinerberger also showed that there is a third way to formulate the problem
by reducing the setting to the unit interval with substitution = cos¢,

i ~ k k
(e = DA @O oy = | max 221 = ]2 |p(a)],

where p(x) is a polynomial of degree n that satisfies p(1) = 1.

Hence, we have three equivalent minimisation problems

min sup
Y fer2(z) Hf”lz(z)

‘Z@(g)” = min max 2|1 — 2|¥|p(z)|.

= min
u Loo(T) P xe[-1,1]

For k = 1, Kravitz and Steinerberger [23] solved the problem in the third formulation and
found that,

2n+1
Cn,l = 2
ith th =1 _asth 1
with the constant sequence u,; = as the extrema sequence.
J 2n+1

For k = 2, they also solved the problem in the third formulation, but with the additional
requirement that %(£) > 0, and found that,

c .- (n+1)2
7’L72 - 4
with the triangle sequence as the extremal sequence u; = 2=l
& q q J (n+1)2 *

In 2023, Richardson [35] removed the restriction that « has non-negative Fourier transform
and proved the following theorem.

Theorem 7 (Richardson [35]). Letw : {—n,...,n} > R be a sequence with d even. Then
we have the sharp inequality

n—+1 T

B °°t4(n+1)||@<€)HLoom'
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Richardson also gave the extremal sequence by defining u to be symmetric u; = u_ o then

J
/S dx
1—:c2

where T);(z) is the j-th Chebyshev polynomial, and

Sn1@3_.xi1-n<fji&%;J>.ﬂ1<1+ci(£J¢r+1)—1>.

for j > 0 setting

Richardson comments that the extremal sequence resembles sampling from a parabola, but
the extremal sequence does not quite lie on any parabola. However, he shows also that
choosing the discrete Epanechnikov kernel, E,, : {—n,...,n} — R, defined by

En(]) = 7”L2 _j2 + 1
is asymptotically close to the true extremiser.

We suggest here that perhaps it is somewhat easier to calculate the extremal sequence as
follows. Take the coefficients of the following polynomial

n

H 2?2 —22R(k,n) + 1),
k=1

where

2cos(%)—cos( x )—1—1

cos (2nﬂ+2) +1

R(k,n) =

Then we can calculate for the sharp constant as follows. First, we have

Z ul = Ip, (1
j=—n
= (1—R(k,n))
( 2 )n n+1
cos 2(n+1)) +1 sin (2(n+1))
and also

T —2(n+1)
||(2—1) HLOO =2 (cos 4(n—|—1)> ,

20



whence

’Z]—_n ]| _ n+1c0t T

1z =P e 4 dn+1)°

In the next few steps, we prove an extended and improved version of Kravitz and Steiner-
berger, in the case of k = 1. First we prove the discrete problem for ¢ = 2, p = 00, then
extend it for all ¢ € [1, 2], and so, in particular, we get the ¢ = 1, p = 00 sharp inequality.

Theorem 8. For a sequence a : {0, 1,2, ...,d} = C we have the sharp inequality
vd +

o], < [Aae)],.., (14)

with equality if and only if a is a constant sequence.

Proof. Let the finite Fourier transform of the sequence be defined in this form

1 d k12
a(k) = ae®™rrd k=0,1,..,d.
(%) Vd+1 ]Z; !
By the Plancherel formula, we have

Zla ? = Zla

1 d 14 kt1/2 ’
- _ - E E CLJ€27” T J
d+1 k=0 | j=0
2
k+1/2
d | d 2| e2mifH
1 o k12
= — i d+1 J
d+1z Zaje 122
k=0 [j=0 |1 — 2T

d+1 ger —= ‘1 eQﬂ_Zk;j{Q 2
1 , (d+1)?

- 15_1 2

dﬂ?ax\( Ja© P

d+1
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Corollary 3. Lera : Z + C be a finitely supported sequence of length d + 1. Then we have
the sharp inequality for all q € [1, 2]

—

DY Kae)], o (15)

2

lal,, <
with equality if and only if a is a constant sequence.

Proof. By the Holder’s inequality

and therefore

d 7 d ;
(Z|%‘|q> <(d+1)a> (Z|aj|2>
j=0 Jj=0

1
(d+1)« € ~
_erl i€ _ 1)a(e)|.
D (€~ 1))
O
In particular, for the case ¢ = 1, we have the sharp inequality
d+1—
ol < —5—[Ra@], .., (16)
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s Endnotes

5.1

In a Lebesque space on R all that matters in calculating the norm of a function is the width of the
domain and the height or amplitude of the function. For example, a component of a simple step

1
function, a constant function f(z) = A, we have its L”-norm, Hf||Lp<a b = |A||b — a|? that
combines the width and height of the function. Note that in the limit p — oo the width loses its
significance.

On one hand, we have a nice property that all LP spaces on a compact domain are nested in each
other

L*c..cL?>c..cL',

but on the other hand we have to live with the fact that taking a derivative of function in a LP-space
might take the function out of all Lebesque spaces.

In a Sobolev space, the norm of a function captures not only the width and height of the function,
but also the regularity of the function. Regularity of a function tells us how many times we can
differentiate the function before it ceases to be a function.

In a contrast to the Lebesque spaces, taking a derivative of a function in a Sobolev space takes the
function to another Sobolev space. For example, if u € W*P?(a,b), then v’ € W* 1P (a,b).

Similarly to the Lebesque spaces, the Sobolev spaces are nested in each other, so that W*? lies
automatically in every other Sobolev space W™ " with m < k and r > p. This means we can give
up regularity to gain integrability by moving from one Sobolev space to another. In particular, we
can embed a Sobolev space into a Lebesque space as shown by the next Lemma.

Lemma 2. For a function f € WP (a,b), there exists a positive constant C such that

“fHLOO(a,b) < C Hf”Wk,p(a,b) :

Proof. Forallk > 1and 1 < p < oo it suffices to show that
1l < O s,

By the fundamental theorem of calculus, we have

/ F()dt

for all z. Then, by the triangle inequality, we have
@) < @1+ 1l o -

By using © > b and that f has compact support, we also have that

|fla)] < ||f||W1,1<a7b) :

|f(x) = fla)] = <M prapy = 1l ap
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This means that for functions with compact support on the real line there exists an embedding
constant from every Sobolev space to every Lebesque space. In the one-dimensional case, on the
real line, there are no critical exponents in contrast to the case of the Euclidean space R” withn > 2
(for the critical exponent, see 5.2, below, and for the unbounded functions in Sobolev spaces, see
5.3, below).

5.2

When we want to embed a Sobolev space W*** into a Lebesque space LY in the Euclidean space
R™ with n > 2, then there is a limit for the exponent of the Lebesque space above which we can
not go, in the case k < . We have an embedding constant in the inequality

only for
np
Sn—kp

Usually the critical exponent is denoted as ¢ = p* := ni};p.

53

If we think about functions on a compact domain, then intuitively, it seems reasonable that if we
have a control over the derivative then the function itself cannot build up a large size. But it turns
out that the answer is more subtle than that, and it depends on how we measure the smoothness
and the size of functions, and also how many dimensions the domain has.

There are unbounded functions in Sobolev spaces when the domain is two or more dimensional.
For example, let u : {x € R™ : |z| < 1} -+ R be given by

() = log <1og (1 + ;)) . w0,
0, x = 0.

Thenu € WH({z € R" : |z| < 1}) whenn > 2, butu ¢ L®({x € R" : |x| < 1}). Thus,
in general the functions in WP 1 < p < n,n > 2are not continuous. In contrast, every wip
function with p > n coincides with a continuous function almost everywhere.

5-4

Mitrinovi¢ et al. [31] suggest that the first proof of the inequality (the case ¢ = p = 2 and k = 1)
may be attributed to Scheeffer [37]. Kuznetsov and Nazarov [25] have also examined the historical
development of the inequality, observing that while Scheeffer derived an identity from which the
inequality follows, he appears not to have emphasized its significance or stated it explicitly. Hardy
et al. [19], on the other hand, attribute the inequality to Wirtinger [47].
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5-5

The generalised trigonometric function sin 7 of Lindqvist-Peetre [28] is defined as the inverse of

the strictly increasing function F),  « [0, 1] = [0, 7, , /2] given by
Cdt
F, ,(r) :/ —, z€[0,1].
b (1—tn)

We have the connection to the usual sine function when p = ¢ = 2 since F,, 5(x) = arcsin(x).
We extend sin,, , to [0, 7, | by defining

sin, ,(z) = sin, (7, , — ), forx € [1, /2,7, ]

T

and further extension to [—7 )

p,q’

is made by oddness, and finally to the whole of R by 2, -periodicity.

The constant ,, , is given by
1
%ﬂ:2/(y4ﬂ4ma
0

with natural extensions

2
P f1<p<oo, ¢=1,
p—1
T(p,q: 271f1<p<00a q = 00,
o0, ifp=1, 1<g< o0,
2,if p = oo, 1< g¢g< .

The function cos,, , is defined to be the derivative of sin e and it follows that for all x € R,

. q P
‘Smp,q‘ +‘C°Sp>q| =1

5.6
Bennewitz and Sait6 study in their papers [3] and [4] the Sobolev embedding for the first derivative

”fHL‘?(fl,l) < Cl,q,p Hf“Wé’p(fl,l) (17)

and rediscover correctly the sharp embedding constant ¢; .
4,

ﬂp)ql‘
Y pa (75)
: o . .
in both papers, but unfortunately they use cos,, , (“25* ) for the explicit calculation of the extremal

functions. Therefore the extremals given in Theorem 4.2 in [3] and in the claim on p. 246 in [4] are
not correct. For example, in the case ¢ = 1 and 1 < p < 00, the extremal function is

While calculating the sharpness of the constant they use the correct extremal function sin

1—(1—2)77, not (1 —2)77, etc.
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Also, the calculations of the norms | F' and ||F'Hp ;. on p. 257 in [4] contain typos.
41

I|Qa11

_ p/ % p/
1El,;, =~ »mnot—
@i \p' +q P +q

qr qr
F _ P.q ) ot P.q
170y, (2(19/ +q) 2" +q
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In 1934, Fritz Carlson [11] found a sharp inequality, that

([wf(x)dxy <772[X)fz(ﬂﬁ)dﬂc/ooox2f2(a:)clx

holds for any measurable function f : R, = R_. Now, in general, by a Carlson-type inequality,
we mean an inequality of the form

Iflx <

where X and A, are normed vector spaces, and 6, are such that
m
E 0, =
i=1

The constant K is independent of f. Typically, we have m = 2, and the spaces involved are
Lebesgue spaces, weighted Lebesgue spaces or Sobolev spaces, etc.

In 1938, Beurling [7] found a similar sharp inequality to the original Carlson’s inequality,

1
2
1152 ) < V27 (1] 2 12 o )

We mention some other interesting examples. In 1999, Laeng and Morpurgo [26] proved the sharp
inequality for functions with compact support,

2 1 1
I£1 < ——= |2 11 2?7 s
L2(R) \//To L1(R) L2(R) H HLl([R)

where Ay = 0.428368.... In 1984, Cowling and Price [15] proved the qualitative inequality for any
a>0and 8> 1/2,

a+ﬁ @
11 22y < B N2 fl iy :

o

and in 2020, Steinerberger [41] proved the qualitative inequality for any & > O and 8 > 1/2,

Le(R)’

AT < K 22 £17 g €7 F]

Le(®)
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5.8

Classical inequalities can be used to build new ones, but we might loose sharpness, as we show in
the following example.

We have the classical inequality of Bernstein [s, 6] that for a polynomial P(z) = Z N 2 € Clz]

of degree d, we have
1P (2)] e < dP(2)] e -
If we apply the inequality on the polynomial (z — 1) P(z), then we get

[P <[P(z) + (z=DP' ()] <@+ 1D [(z=DP(2)] -

But Kravitz and Steinerberger [23] showed that the sharp constant is d“ , instead. That is
d
d+1
> ayl= S 5 IE=DPE) L,
§=0

with the extremal polynomial P(z) = Zj:o 2.
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1 | INTRODUCTION

In this paper, we give a proof of a Sobolev-type inequality with a sharp constant and an explicit
extremal function. This is motivated by the more general problem of calculating sharp con-
stants and identifying extremal functions for Sobolev embeddings Wg "P(-1,1) € L9(-1,1). That
is, inequalities of the form

([ e [

for functions f : R — R with support in [-1,1] and that satisfy f%) € LP(R). In particular, for
integers k > 1, f satisfies the boundary conditions f)(+1) = 0 forall 0 < j < k.

We shall consider the case ¢ = 1, p = 2, and integers k > 1, for which the sharp constants and
extremal functions do not seem to be known. See, for example, the surveys by Mitrinovi¢ et al. [5,
Chapter II], Kuznetsov and Nazarov [3], and Nazarov and Shcheglova [6].

Our main result is as follows.
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Theorem 1. Forall integersk > 1and f € Wg’z(—l, 1), we have the sharp inequality

[fGo)ldx < —( |f(k>(x)|2dx>. )
/ 2k — 1)1 /k /

The extremal functions are given by the Landau kernels, L, (x) = (1 — x?)~.

This theorem improves a bound due to Kalyabin [2]. Indeed, for p = 2,q € (0, 0)and k € Z_,
Kalyabin obtained that

\/ﬁ

2kk!

(2= ba) "

2k(k — 114 /k — %

where L(s) = f_ll(l —x?)*dx. A straightforward calculation reveals that the constant from
Theorem 1 is identical to Kalyabin’s lower estimate in the case g = 1, implying that it was
indeed sharp.

It is well known that sharp constants of Sobolev embeddings can be connected to minimal
eigenvalues of certain boundary value problems (see, e.g., [1]). In our case, the sharp constant in
Theorem 1 is connected to the minimal eigenvalue of the boundary value problem

2(L(kq)? < chng <

N

u(x)
[u()l

1
=Dk u@Ox) =2 /lu(t)ldt, x €[-1,1],
-1

ud(+1) = 0, j€ef{o,1,..,k—1}L

Indeed, we have

(DR, u) (u®,u®)
min = mil1

= n
u#0 u#0 2
<MIIUI|L1( L1)» ) el sy

o L2(-11) _ 1
- Iz?sion 2 “\ec ’
[lell k2,1

L1(-1,1)

where (-, -) is the inner product in L*(—1, 1) and the first equality follows upon k times partially
integrating and using the boundary conditions. In [1], a similar example is provided for the case
p=q=2

2 | PROOF OF THEOREM 1

The main idea of the proof is to consider a class of explicit left inverses of the differential operator
f = f% of the form

1
) = [ BP0y, xeR,
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=" .
G-D1 -

L )il

FIGURE 1 [Illustration of the support and values of b, (x, y). The thin dashed line indicates y = x. b, (x, y) is
equal to zero outside of the shaded area between the y-axis and the line y = x.

By the Cauchy-Schwarz inequality, we obtain from this integral representation that

[ <], ) s

Bt L2(-1,1:dy)

The inequality of Theorem 1 is then obtained by connecting the expression involving the
norm of By(x,y) to a minimization problem having Legendre polynomials as minimizers.
Finally, sharpness is obtained by noting that Landau kernels are extremal functions for the
resulting inequality.

Before proceeding with a proof, we discuss some notation. For integers k > 1 and p € [1, o),
we define the Sobolev space

WyP(-1,1) = {f :R—-R|suppfc[-1,1], fPe LP(R)}.

For each integer 0 < j <k, the derivative fU) is absolutely continuous since fU~D(x)=
/2 f9(0)de and LP(—1,1) € L(~1,1). Hence, as mentioned in the introduction, since f has
support in [—1,1], it follows that fU)(+1) = 0 for each such j. The norm of f in Wg‘p(—l, 1)is
defined by ||f||W§,p(_1,1) = ||f(k)||Lp(_1‘1). By 1y, we denote the function that equals 1 if condition

X is satisfied, and 0 otherwise. By §,,,,,, we denote the standard Kronecker delta function.

Now we give the details of the proof.

2.1 | Construction of the explicit left inverses

For integers k > 1, define the functions b, : R?> - R by

(x —y)!
b (x,y) = RV [Ty<x<o = Tysxs0)-

The support of b, is indicated in Figure 1.
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Proposition 1. For all integers k > 1, the following holds.

@ [ b(x,y)dx = %for ally eR.
(ii) The following one-sided limits hold.

0 for y>o,

lim by (x,y) = )kl
x=0- ((ky_)l)! for y<o.

—(=p*!
b, (0,y) = lim by (x,y) = (k=1)! for y>0,
x=0+ 0 for y<O.

(iii) Let f € Wg’z(—l, 1) and Q be a polynomial with deg Q < k. Then, forall x € R,

[ mien - e may = s,

0

Remark. By part (iii) of the proposition, the integral operator induced by b, is a left-inverse to
the differential operator f — f%). Moreover, such a left-inverse is not unique; the polynomial
Q, which may depend on x, provides a parametrization of a family of left-inverses. By part (ii),
by (x,y) is discontinuous across the y-axis whenever y # 0.

Proof. Property (i) follows by direct computation, and property (ii) follows immediately from the
definition of b (x, y).

To prove the reproducing property (iii), we use integration by parts repeatedly. Indeed, for x < 0,
we have

0 k1 (x — y)k=i i) x x
b, (x, dy = Z WV ek "(v)dy = )
‘/R GNP () dy = k= f (Y)] B + /_1 ' dy = f(x)

where all the terms in the sum vanish due to the boundary conditions on f. The case x > 0 is
treated similarly. Finally, since Q is a polynomial of deg Q < k, it follows that

(k) _
/R QW™ (y)dy =o0. O

Lemma 1. Given any integerk > 1, let

[ =y"",5, yeER
Moreover, let Q be a polynomial of degree at most k — 1, such that f(y,) = Q(y,,) for k + 1 distinct
real numbers y, < -- < yj,1. Then, either Q(y) = y*~! or Q(y) = 0. In particular, this implies that

either y; > 0 or y; . <O0.

Proof. If k = 1, then Q is a constant function. From this, it follows immediately thatif Q(y) — 1,
vanishes at two distinct points, then either Q(y) = 1 or Q(y) = 0. Moreover, these points have to
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be both nonpositive or both nonnegative. This argument is easily extended to k = 2 using the
linearity of Q and the hypothesis that Q(y) — ¥, is to vanish at three distinct points.

For general k > 2, we proceed by induction. To this end, suppose that Q is a polynomial of
degree at most k — 1 and that g(y) = Q(y) — yk‘lﬂy>0 vanishes at k + 1 distinct points. As ¢ has
a continuous derivative, the mean value theorem implies that ¢'(y) = Q(y) — (k — 1)yk‘21]y>0
vanishes at at least k distinct points. It follows by the induction hypothesis, that these k points
are either all nonpositive or all nonnegative. In particular, this means that Q(y) — y*11 y>0 van-
ishes at k points that are either all nonpositive or all nonnegative. Since Q is of degree k — 1, the
conclusion follows. O

Remark. Fork > 1, let f;(y) be as above. Then, the lemma implies that if a polynomial Q of degree
at most k — 1isequal to f(x* — y) at k 4 1 distinct points y; < -+ < y;.,1, then either y; > x* or
Vi1 S X7

We now fix k distinct real numbers y; <y, < -+ <y, and consider the corresponding
Lagrange interpolation basis { p,,}’;:1 given by

Y=Y
P(y) = =—.
IS];S[k; In _yj
Jj#n

These polynomials are of degree k — 1 and satisfy p,(y,,) = ,,,,- Using these polynomials, we
define functions By : R? - R by

k
Bi(x,) = b(x,3) = 3" pa¥)bic(x, y)-

n=1
Proposition 2. For all integers k > 1, the following holds.

(i) Foralln €{1,2,...,k} and x € R, we have Bi(x,y,) = 0.

(ii) Forall f € Wg’z(—l, 1) and x € R, we have /f:oBk(x,y)f(k)(y) dy=f(x).
(iii) Forally € R, the function x — By (x,y) is continuous.
(iv) Forally € R,

(x —y)!
(k _ 1)' 1]y<x’ X < A4t
By (x,y) =
(x —y)t
BTNl

(v) Forally € R, either B;(x,y) > 0 or Bi(x,y) < 0 forall x € R.

Proof. Property (i) is immediate from p,(y,,) = 6,,,,. Note that for fixed x, B;(x,y) = b, (x,y) —
Q(y) for a polynomial Q of degree at most k — 1. Hence, (ii) follows from Proposition 1 (iii).

To establish (iii), we note that by Proposition 1 (ii), for any fixed y € R, x = by (x,y) is con-
tinuous apart from a jump discontinuity at x = 0. Consequently, x — B, (x,y) can only fail to
be continuous at x = 0. We therefore compare lim,_, (- B;(x,y) with B;(0,y) = lim,_, o+ By (x, y).
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Y ' ' -
1 (x— y)k 1 ,»/
(k-1
r Yk 0 —
- Yk—1 —
- Y2 —
! 0
(=)t~ 1
) pr- (k—1)! Yy 'Yk
1 1 "L'

FIGURE 2 Indication of the values of B, in various regions separated by thick lines, when y, > 0. The thin
dashed line indicates y = x. The horizontal lines at y € {y,, ..., y,} indicate the zero set of B, for x in the convex

hull of {y;, ., ¥}

Assuming first that y > 0, we obtain from Proposition 1(ii) that

)k—l

1

(=Y
k=1 In<®

lim By (x,y) = an(y) (

k—1 k—1
( Y) +2pn(y)( yn) ) yn>0.

Jim Be(ey) = =Ty

By similar calculations for y < 0, it therefore holds for all y € R that
G2k

(yn>"1
k=1 Zn()(k !

As a function of y, the above right-hand side vanishes at each of the points y;, y,, ..., ¥, and since
it is a polynomial of degree at most k — 1, it must be identically equal to 0.

To establish (iv) for the case x < y;, we note that the desired conclusion is immediate from
the definition of B if x < 0. For the remaining case, we fix x so that 0 < x < y; and consider the
corresponding expression

k—1
lim B(x,y) — lim By (x,y) = )
x—=0~ x—=0+

(x—y )kt

=yt k
oy lex T ;Pn(ﬁw

(k—=1)

As a function of y, the sum in the above right-hand side is a polynomial of degree at most
k — 1. Moreover, it is equal to the polynomial (xz )11;-1
als must coincide. This establishes the case x < y;. For the case x > Yk, the result follows by
analogous arguments.

To establish (v), we first note that by (i) and (iii), the function x — B, (x, y) is continuous for all
¥ € R and identically equal to zero for each y € {y,, ..., y;}. Moreover, by (iv), B;(x,y) does not
changessign on thesets{(x,y) : x < y;}and{(x,y) : x > y;}, respectively (cf. Figure 2). Therefore,

Bk(X,y) ==

at each y,, and so, these polynomi-
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if x — By (x,y) changes sign for any fixed y* ¢ {y;, ..., y,}, there must exist a point x* € (y;,y;)
so that B, (x*,y*) = 0. In particular, this means that y — B, (x*,y) vanishes at the k + 1 distinct
points {yy, ..., ¥, ¥*}. To show that this leads to a contradiction, we consider the cases x* > 0 and
x* < 0 separately. In the first case, it holds that

G =yt
(k—1)!

where Q is some polynomial of degree at most k — 1. Hence, by Lemma 1 and the remark following
it, this implies that the points {y,, ..., y, y*} are either all smaller than x* or all greater than x*. In
particular, either y; < x* or y; > x*. This contradicts the assumption that x* € (y;, y;). The case
x* < 0 may be treated similarly. O

y— B (x*,y) = — 1oy — QO

2.2 | Connection to a minimization problem that leads to the
Sobolev-type inequality (1)

Suppose that f € Wg‘z(—l, 1) and By (x, y) as above. Then, we have

1
o) = [ BP0y, xeR

Applying the Cauchy-Schwarz inequality, we obtain that

1
/ By (x. )] dx
-1

/ By (x,y)dx

where the final equality is immediate from Proposition 2(v).
It follows from Proposition 1(i) that

[FAIATEERIRS ”f(k)“m(—l,l)

L2(-1,1;dy)

B

L2(-1,1;,dy)

-

L2(-1,1)

1 k
o/ By dr= (- = P90

n=1

Since the polynomials p,, are of degree k — 1 and satisfy p,(y,,) = 6,,,, for n,m € {1,2, ..., k},
the right-hand side of the above expression is a monic polynomial of degree k with distinct zeros
Y1, Y2, - » Yk Since we can choose the zeros y;, ,, ..., ¥, freely, any monic polynomial with distinct
zeros can be obtained in this way. It follows that

1F PN min [p]
k! p monic Pl
deg p=k

[WAFRTEERIES
It is well known that the unique minimizers are given by the monic Legendre polynomials
[< 2=

P (y) = (2k)' o
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Since we could not find a convenient reference explaining this fact, we point out that the min-
imizing property in the L?(—1,1) norm follows from the construction of the monic Legendre
polynomials as the orthogonalization of powers 1, x, x2,...on the interval —1 < x < 1 with respect
to the Lebesgue measure. From this, it follows that any monic polynomial p of order k can be
written in the form p(x) = Py + ¢;,_;P;_,(x) + -+ + ¢,. Hence,

k-1

2 2
”p”;(_l,l) = ||Pk”L2(—1,1) + 2 ci”PVl”LZ(—l,l)‘
n=1

Clearly, this expression is minimized by choosing ¢, = ¢; = ++- = ¢;_; = 0. Since the L?*(—1,1)
norm of the monic Legendre polynomial (see, e.g., [4]) is

2 k!
T
2k — D!y /k + 3

we conclude that,

1
(TR p—— T

2.3 | Sharpness of the inequality in Theorem 1

12(-1,1)

While the proof of the sharpness of the inequality in Theorem 1 is implicitly contained in [2], we
provide a proof for the sake of completeness.

Lemma 2. For all integers k > 0, we have equality in (1) if and only if f is equal to a constant
multiple of the Landau kernel L, (x). In particular, the best constant of the equality is given by

”Lk”L‘(—l,l) _ 1
(k) - ‘
(I e S TRy o

Proof. Recall that L;(x) = (1 — x2)K. Writing L(x)=Q1- x)K(1 + x)¥, we obtain by repeated
integration by parts that

1 2
_ (kl) 22k+1
/,1 Ll dx = o ¥ T

and moreover, that

1 2 2k+1
(k) — (22
/_1 (L00) dx = kb T
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‘We conclude that

”Lk”Ll(—l,l) _ Kk 22k+1 _ 1
@ TV 2k+1 T
(i @k — ity Jle+ 1 -
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