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Populärvetenskaplig sammanfattning på svenska

Matematiken är full av olikheter, regler som berättar hur en storhet förhåller sig till en
annan. Vissa är enkla, som att ett tal är större än ett annat. Andra är djupgående och avslöjar
grundläggande samband inom rymd, rörelse och till och med vågor och värme.

Bland de finns Sobolev-olikheter, som kopplar samman två till synes olika saker: hur slät en
funktion är (hur väl den beter sig när man zoomar in), och hur stor den kan vara i sin helhet.
Med andra ord besvarar de frågor som: Om en funktion är mycket slät, kan den ändå vara
mycket stor? Det är inte bara en abstrakt fundering, det är en fråga som har format hela
forskningsfält, från fysik till datavetenskap.

Den här frågan har fascinerat matematiker i över hundra år. På 1850-talet studerade den
ryske matematikern Pafnutij Tjebysjev hur storleken på ett polynom kunde kontrolleras via
dess koefficienter. Senare undersökte Markov-bröderna och Sergej Bernstein hur derivator,
förändringshastigheter, kunde begränsa en funktions storlek. Dessa idéer lade grunden för
Sobolevs genombrott år 1938, som visade att kontroll över en funktions derivator också ger
kontroll över funktionen själv.

Men inte alla olikheter är lika. Vissa är skarpa, vilket betyder att de är de bästa möjliga,
de kan inte förbättras. Att hitta dessa skarpa olikheter är som att upptäcka exakt var en
klippkant går, man vet precis var gränsen ligger.

I min forskning fokuserar jag på en särskild skarp Sobolev-olikhet i en dimension. Den
handlar om funktioner som försvinner vid intervallets gränser och vars släthet mäts via
högre ordningens derivator. Olikheten ser ut så här,

‖𝑓‖𝐿1(−1,1) ⩽ 𝑐𝑘 ∥𝑓 (𝑘)∥𝐿2(−1,1) .

Här mäter vänstersidan funktionens totala storlek, och högersidan mäter slätheten via dess
𝑘:te derivata. Konstanten 𝑐𝑘 är den skarpa tröskeln, det finns inga funktioner som bryter
denna gräns.

Fram till nyligen var denna konstant endast känd för det enklaste fallet. Min forskning fyller
denna lucka: jag beräknar det exakta värdet på 𝑐𝑘 för alla 𝑘, och identifierar de funktioner
som uppnår likhet. Överraskande nog visar det sig att dessa extremala funktioner är Landau-
kärnor, 𝐿𝑘(𝑥) = (1 − 𝑥2)𝑘, välkända från harmonisk analys.

Dessa resultat är inte bara matematiska troféer. Konstanterna i sådana olikheter kodar djup
information om rummet och operatorerna som är inblandade. De dyker upp i fysik, signal-
behandling, numerisk analys och till och med i algoritmdesign. Att känna till den skarpa
konstanten kan hjälpa till att optimera system, lösa ekvationer mer exakt och förstå grän-
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serna för approximation.

Även om min avhandling fokuserar på kontinuerliga funktioner, undersöker jag också dis-
kreta analoger, versioner av problemet där funktioner lever på gitter eller nätverk. Dessa
diskreta fall är mindre utforskade men erbjuder spännande möjligheter för framtida forsk-
ning.
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Notation

We give some of the notation used throughout the thesis.

ℝ Real numbers
ℕ Natural numbers
ℤ Integers
𝕋 Unit circle
ℝ𝑛 Euclidean 𝑛-space

𝐶(Ω) Continuous functions on Ω ⊂ ℝ𝑛

supp 𝑓 Support: {𝑥 ∈ Ω ∶ 𝑓(𝑥) ≠ 0}
𝐶0(Ω) Continuous functions with compact support in Ω
𝐶𝑘(Ω) 𝑘-times continuously differentiable functions
𝐶𝑘

0 (Ω) 𝐶𝑘(Ω) ∩ 𝐶0(Ω)
𝐶∞(Ω) Smooth functions ⋂∞

𝑘=1 𝐶𝑘(Ω)
𝐶∞

0 (Ω) Compactly supported smooth functions (test functions)

‖𝑓‖𝐿𝑝 = (∫ |𝑓(𝑥)|𝑝 d𝑥)
1
𝑝 for 1 ⩽ 𝑝 < ∞

‖𝑓‖𝐿∞ = sup ess |𝑓| for 𝑝 = ∞

𝐿𝑝(𝑎, 𝑏) Lebesgue space of functions with ‖𝑓‖𝐿𝑝(𝑎,𝑏) < ∞
𝑊 𝑘,𝑝(𝑎, 𝑏) Sobolev space of functions with weak derivatives 𝑓 (𝛼) ∈ 𝐿𝑝(𝑎, 𝑏)

for 1 ⩽ 𝛼 ⩽ 𝑘
𝑊 𝑘,𝑝

0 (−1, 1) Sobolev space with boundary conditions 𝑓 (𝑗)(±1) = 0
for 𝑗 = 0, 1, ..., 𝑘 − 1

‖𝑓‖𝑊 𝑘,𝑝 = (∑𝑘
𝛼=0 ‖𝑓 (𝛼)‖𝑝

𝐿𝑝)
1/𝑝

for 1 ⩽ 𝑝 < ∞
‖𝑓‖𝑊 𝑘,∞ = ∑𝑘

𝛼=0 ‖𝑓 (𝛼)‖𝐿∞ for 𝑝 = ∞
‖𝑓‖𝑊 𝑘,𝑝

0
= ‖𝑓 (𝑘)‖𝐿𝑝 for 1 ⩽ 𝑝 ⩽ ∞

𝑃(𝑧) = ∑𝑑
𝑗=0 𝑎𝑗𝑧𝑗 ∈ ℂ[𝑧] polynomial of degree 𝑑

‖𝑃‖ℓ𝑝 = (∑𝑑
𝑗=0 |𝑎𝑗|𝑝)

1/𝑝
for 1 ⩽ 𝑝 < ∞

‖𝑃‖ℓ∞ = max𝑗 |𝑎𝑗|
‖𝑃 ‖𝐿𝑝 = (∫1

0 |𝑃 (𝑒2𝜋𝑖𝜃)|𝑝 d𝜃)
1/𝑝

for 1 ⩽ 𝑝 < ∞
‖𝑃‖𝐿∞ = max|𝑧|=1 |𝑃 (𝑧)|
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̂𝑓(𝜉) = ∫ 𝑓(𝑥)𝑒−2𝜋𝑖𝜉𝑥 d𝑥 Fourier transform on ℝ
̂𝑎(𝜉) = ∑𝑗∈ℤ 𝑎𝑗𝑒−𝑖𝜉𝑗 discrete-time Fourier transform

̂𝑎(𝑘) = 1√
𝑑+1 ∑𝑑

𝑗=0 𝑎𝑗𝑒2𝜋𝑖𝑘𝑗/(𝑑+1) finite Fourier transform

Δ𝑘𝑎𝑗 = ∑𝑘
𝑚=0 ( 𝑘

𝑚)(−1)𝑚𝑎𝑗−𝑚 discrete derivative
‖𝑎‖ℓ𝑝 = (∑𝑗 |𝑎𝑗|𝑝)1/𝑝

‖𝑎‖ℓ∞ = max𝑗 |𝑎𝑗|

Γ(𝑥) Gamma function

𝐵(𝑥, 𝑦) Euler beta function, 𝐵(𝑥, 𝑦) = Γ(𝑥)Γ(𝑦)
Γ(𝑥 + 𝑦)

𝑛!! Double factorial, 𝑛!! = 2 𝑛
2 (𝑛

2 )!, if 𝑛 is even, and 𝑛!! = 𝑛!
(𝑛−1)!! , if 𝑛 is odd

vi



A left inverse approach to sharp
Sobolev inequalities

1 Motivation and background

I have a stern and serious secret. I study polynomial inequalities and inequalities that
relate functions with their derivatives. My colleagues study weighty and deep subjects,
random matrix theory, invariant subspaces, weakly branch actions, harmonic morphisms,
global bifurcation theory, joint diagonalization, reproductive boundaries, complexities in
the complex plane. But inequalities?

The demigods Hardy, Littlewood and Pólya wrote a comprehensive book [19] on the sub-
ject, titled ”Inequalities”, already in 1934. What can a mere mortal add?

And yet, inequalities are primal impulses within all of analysis. Inequalities can be qualita-
tive or quantitative, and among the latter, the most difficult to obtain, are the sharp ones.
They serve as the organising principles behind approximation theory, partial differential
equations, and harmonic analysis. For example, they quantify the trade-off between size,
smoothness, and oscillation of functions.

Among the wide variety of inequalities in analysis, Sobolev-type inequalities occupy a major
position. They connect information about the derivatives of a function to information
about the function itself.

Would smoothness of a function tell how large the function can be? Mathematicians have
been asking versions of this question for more than a century. In 1854, Chebyshev [13]
considered polynomial inequalities where the size of the polynomial was measured in the
uniform norm, and the control came from its leading coefficient. Later, in 1890s and in
the early 20th century, inequalities involving derivatives, such as the one from Markov
brothers [29, 30] on the unit interval [−1, 1] and another from Bernstein [5, 6] on the unit
circle, became key tools in approximation theory. In 1938, Sobolev [40] formulated his
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now-famous embeddings – results that show how bounds on derivatives, in a given 𝐿𝑝-
norm, together with boundary conditions imply bounds on the function itself in another
𝐿𝑞-norm.

Since then, these inequalities have been studied in many variations. For example, we can
consider inequalities when the underlying domain is a continuum or when it is a discrete
set. Or we can control the function via its derivatives, its Fourier transform, its moments,
or its polynomial coefficients. Or we can use different norms, measuring size in 𝐿𝑝, 𝑙𝑝, or
with mixed norms, or norms with weights, each leading to distinct constants and extremal
problems.

The constants that appear in such inequalities are far from arbitrary, they encode informa-
tion about the underlying space and the operators involved. In some cases, they can be
interpreted as minimal eigenvalues of Toeplitz matrices [8], minimal eigenvalues of some
higher-order ordinary differential operators [8, 34], norms of the Green kernels of these
operators [8, 46, 33], or condition numbers in approximation schemes [8, 22].

Thus, a result about these inequalities are also useful in other areas of mathematics and
physics. For example a precise determination of the sharp constant not only settles an
extremal problem in analysis, but may also resolve a question in numerical linear algebra,
spectral theory, or mathematical physics.

The present work is concerned with a specific Sobolev-type embedding in one dimension,
from the Sobolev space 𝑊 𝑘,2

0 (−1, 1) into 𝐿1(−1, 1), for integer 𝑘 ⩾ 1. While classical
results tell us that such an embedding exists, the sharp constant in the inequality

‖𝑓‖𝐿1(−1,1) ⩽ 𝑐𝑘 ∥𝑓 (𝑘)∥𝐿2(−1,1)

was previously unknown for 𝑘 > 1. Earlier work by Kalyabin [21] provided matching upper
and lower bounds up to a gap for the embedding constant, but the exact value remained
elusive.

In the paper that is included in the thesis, we close this gap by computing 𝑐𝑘 exactly and
identifying all extremal functions. Interestingly, these extremals turn out to be the Landau
kernels, 𝐿𝑘(𝑥) = (1 − 𝑥2)𝑘, familiar from the classical harmonic analysis.

While this thesis will primarily address the continuous case, we will also briefly discuss
related discrete analogues. The discrete case can be considered as a parallel problem where
similar techniques may be adapted and the landscape of known results is sparser.

In what follows, we survey the literature most relevant to our case, present our main result,
placing it in context with previous work, and briefly remark on discrete analogues and
possible extensions.
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Figure 1: Sergei Sobolev (1908-1989).

2 Literature survey

Our problem belongs to the family of Sobolev inequalities for which the task can be for-
mulated as follows.

Problem 1. Given 𝑓 in 𝑊 𝑘,𝑝
0 (−1, 1) determine the smallest possible positive constant 𝑐𝑘,𝑞,𝑝

in the inequality
‖𝑓‖𝐿𝑞(−1,1) ⩽ 𝑐𝑘,𝑞,𝑝 ‖𝑓‖𝑊 𝑘,𝑝

0 (−1,1) (1)

and indentify the extremal function.

For the qualitative character of the inequality and nested properties of the Lebesque and
Sobolev spaces see 5.1, below.

Knowing the sharp constant in the inequality (1) would tell the largest size the function
with compact support in [−1, 1] can have in 𝐿𝑞-norm when we know the the size of its
𝑘-th derivative in 𝐿𝑝-norm. In another words, the sharp constant gives the sharp upper
bound for the exchange rate when we travel from a particular Sobolev space to a particular
Lebesque space trading regularity to integrability.

In the case 𝑝 = 2, we have an additional interpretation. The inequality (1) can be stated as

‖𝑓‖𝐿𝑞(−1,1) ⩽ 𝑐𝑘,𝑞,𝑝(2𝜋)𝑘 ∥|𝜉|𝑘 ̂𝑓(𝜉)∥
𝐿2(ℝ)

, (2)

3



since by the Plancherel formula

∫
1

−1
|𝑓 (𝑘)(𝑥)|2 d𝑥 = ∫

ℝ
|𝑓 (𝑘)(𝜉)|2 d𝜉

= (2𝜋)2𝑘 ∫
ℝ

|𝜉|2𝑘| ̂𝑓(𝜉)|2 d𝜉.

This means that, when we fix a 𝐿𝑞-norm for functions with a compact support in [−1, 1],
then the 𝐿2-norm of the Fourier transform of their 𝑘-th derivative cannot be smaller than
a sharp positive constant.

The family of inequalities (1) has attracted sustained attention for more than hundred years
since the work of Steklov [42]. But in the case of higher order derivatives, the search for
the sharp constants and the extremal functions has been particularly active and successful
research area during the last 15 years.

There is a group of researchers in St. Petersburg who have systematically studied and sur-
veyed the sharp constants and the extremal functions in Sobolev embeddings [25, 32].

Alone in the case 𝑘 = 1, there are many contributions [4, 3, 1, 44, 2, 43, 10, 16, 17, 42, 27, 19],
sometimes independent of earlier work, that have rediscovered special cases or provided
alternative proofs. While the common theme in the proofs in the case 𝑘 = 1 was Euler-
Lagrange variational method, there is a notable exception by Cordero-Erausquin et al. [14]
who used the mass-transportation approach.

The first known result dates back to Steklov [42] in 1896 and concerns the first order deriva-
tive, 𝑘 = 1, and exponents 𝑞 = 𝑝 = 2. He found that 𝑐1,2,2 = 2

𝜋 and that the extremal
function is 𝑓(𝑥) = cos (𝜋

2 𝑥). This was among the earliest inequalities with sharp constant
that appeared in mathematical physics (for more to whom the result has been ascribed, see
5.4, below). Steklov applied the inequality to justify the Fourier method for the heat and
wave equations.

For the first order derivative, 𝑘 = 1, and all 𝑞, 𝑝 ∈ [1, ∞], the problem was solved by
Schmidt [38] in 1940 stating that

𝑐1,𝑞,𝑝 = 21+ 1
𝑞 − 1

𝑝 𝑞(1 + 𝑝′/𝑞)1/𝑝

2(1 + 𝑞/𝑝′)1/𝑞𝐵(1/𝑞, 1/𝑝′) ,

where 𝐵 stands for the Euler beta function.

In this case, the extremal function can be expressed as a generalised trigonometric function
of Lindqvist-Peetre (for the definition and properties on these functions, see 5.5, below).
Interestingly, the result has been rediscovered many times [1, 44] and even as recently as in
2002 by Bennewitz and Saitō [3, 4] (for comments on their extremal function, see 5.6).
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Table 1: Known sharp constants 𝑐𝑘,𝑞,𝑝 discussed in Section 2. The empty set sign indicates no known result and the algorithm
of the case 𝑞 = 2, 𝑝 = 2 is given in Theorem 2.

q 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 ∈ ℤ+ p

1 1 ∅ ∅ ∅ ∅ 1
1 √ 2

3
1
3 √ 2

5
1

15 √ 2
7

1
105 √ 2

9
1

(2𝑘−1)!!√𝑘+ 1
2

2
1 1 ∅ ∅ ∅ ∅ ∞

2 √ 1
2 ∅ ∅ ∅ ∅ 1

2 2
𝜋 0.1795461... 1

𝜋3 0.004322... algorithm 2
2 √ 2

3 ∅ ∅ ∅ ∅ ∞

∞ 1
2

1
4

1
16 ∅ ∅ 1

∞ √ 1
2

1
2

√
6

1
8

√
10

1
48

√
14

1
2𝑘(𝑘−1)!√𝑘− 1

2
2

∞ 1 1
4

2−
√

2
12

8−3
√

5
192

𝑘+1
𝜋𝑘!2𝑘−1 ∫+1

−1
(1−𝑥2)𝑘

1+(−1)𝑘𝑥2(𝑘+1) d𝑥 ∞

During the last 15 years we have seen a rapid development in determining the sharp embed-
ding constants for higher order derivatives (𝑘 > 1). In 2010, Kalyabin [20] found the first
full solution and this was on the case 𝑞 = ∞, 𝑝 = 2. This was followed by Petrova [34]
in 2017, solving fully the case 𝑞 = 2, 𝑝 = 2, and Kazimirov, Sheipak [22] in 2024 solving
fully the case 𝑞 = ∞, 𝑝 = ∞. The paper that is included in the thesis gives a full solution
on the case 𝑞 = 1, 𝑝 = 2.

Thus, we have full solutions on four crossroads out of nine on the (1
𝑞 , 1

𝑝)-plane. An il-
lustration of known sharp higher order constants is indicated on Figure 2 and in Table 1.

Kalyabin’s proof of the first full solution uses a similar left inverse of the differential operator
𝑓 ↦ 𝑓 (𝑘) for functions 𝑓 ∈ 𝑊 𝑘,2

0 (−1, 1) that we are using in our paper. We give an
expository proof of his result.

Theorem 1 (Theorem 1 in Kalyabin [20]). For all integers 𝑘 ⩾ 1 and 𝑓 ∈ 𝑊 𝑘,2
0 (−1, 1), we

have the sharp inequality

‖𝑓‖𝐿∞(−1,1) ⩽ 1
2𝑘(𝑘 − 1)!√𝑘 − 1

2

‖𝑓‖𝑊 𝑘,2
0 (−1,1) . (3)

The extremal functions are given by 𝑓(𝑥) = ∑∞
𝑗=𝑘 (𝑗 + 1

2) (𝑃 (−𝑘)
𝑗 (𝑥))

2
.

Proof. We consider the left inverses of the differential operator 𝑓 ↦ 𝑓 (𝑘) for functions

5



1
𝑞

1
𝑝

1
2 1

1
2

1

Kazimirov-Sheipak (∞, ∞)

Kalyabin (∞, 2) Petrova (2, 2) Hindov et al. (1, 2)

sharp embeddings are known
two-sided estimates, Kalyabin ([1, ∞], 2)
partial results, Watanabe (∞, [1, ∞])

Figure 2: Sharp Sobolev embeddings for all orders of derivatives are known at the black points on the ( 1
𝑞 , 1

𝑝 )-plane (for the
sharp embedding constants, see Table 1). Two-sided estimates are known on the dashed line. Partial results are known
on the thick dashed line. In the brackets, the values of 𝑞 and 𝑝 are given as (𝑞, 𝑝). (1, 2) is the result of the paper
that is included in the thesis.

𝑓 ∈ 𝑊 𝑘,2
0 (−1, 1) in the following form

𝑓(𝑥) = 1
(𝑘 − 1)! ∫

𝑥

−1
(𝑥 − 𝑦)𝑘−1𝑓 (𝑘)(𝑦) d𝑦.

Given 𝑓 ∈ 𝑊 𝑘,2
0 (−1, 1), denote 𝑔(𝑥) ∶= 𝑓 (𝑘)(𝑥). Then 𝑔 ∈ 𝐿2(−1, 1) and repeatedly

integrating by parts gives

𝑔(−𝑘)(𝑥) ∶= 1
(𝑘 − 1)! ∫

𝑥

−1
(𝑥 − 𝑦)𝑘−1𝑔(𝑦) d𝑦

=
𝑘−1
∑
𝑗=1

[(𝑥 − 𝑦)𝑘−𝑗

(𝑘 − 𝑗)! 𝑓 (𝑘−𝑗)(𝑦)]
𝑥

−1
+ ∫

𝑥

−1
𝑓 ′(𝑦) d𝑦 = 𝑓(𝑥)

for all 𝑥 ∈ (−1, 1), since all the terms in the sum vanish.

The boundary condition 𝑓 (𝑗)(±1) = 0 for all 0 ⩽ 𝑗 < 𝑘 and integration by parts gives us
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a sequence of equivalences

∫
+1

−1
𝑓 (𝑘)(𝑦) d𝑦 = 0 ⟺ 𝑓 (𝑘−1)(±1) = 0

∫
+1

−1
𝑦𝑓 (𝑘)(𝑦) d𝑦 = 0 ⟺ 𝑓 (𝑘−1)(±1) = 0 and 𝑓 (𝑘−2)(±1) = 0

...

∫
+1

−1
𝑦𝑘−1𝑓 (𝑘)(𝑦) d𝑦 = 0 ⟺ 𝑓 (𝑗)(±1) = 0, 𝑗 = 0, 1, ..., 𝑘 − 1.

Hence, we have the family of orthogonality conditions

∫
+1

−1
𝑦𝑗𝑔(𝑦) d𝑦 = 0, 𝑗 ∈ {0, 1, 𝑘 − 1}.

Therefore, in the series expansion of 𝑔 in the orthogonal Legendre polynomials,

𝑔(𝑦) =
∞

∑
𝑗=0

𝑎𝑗(𝑔)𝑃𝑗(𝑦),

the coefficients 𝑎𝑗(𝑔) must necessarily vanish for all 𝑗 < 𝑘.

Recall that the classical Legendre polynomials defined as

𝑃𝑗(𝑥) = 1
2𝑗𝑗!

d𝑗

d𝑥𝑗 (1 − 𝑥2)𝑗

with ∥𝑃𝑗(𝑥)∥2
𝐿2(−1,1) = 1

𝑗+ 1
2
, form an orthogonal family on 𝐿2(−1, 1). Hence, for any

fixed 𝑥 ∈ (−1, 1), we have by the Cauchy-Schwarz inequality

|𝑓(𝑥)|2 = |𝑔(−𝑘)(𝑥)|2

= ∣
∞

∑
𝑗=𝑘

𝑎𝑗(𝑔)𝑃 (−𝑘)
𝑗 (𝑥)∣

2

= ∣
∞

∑
𝑗=𝑘

𝑎𝑗(𝑔)𝑃 (−𝑘)
𝑗 (𝑥) (𝑗 + 1

2
𝑗 + 1

2
)

1
2

∣
2

⩽
∞

∑
𝑗=𝑘

𝑎2
𝑗(𝑔)

𝑗 + 1
2

∞
∑
𝑗=𝑘

(𝑃 (−𝑘)
𝑗 (𝑥))

2
(𝑗 + 1

2)

= ‖𝑔‖2
𝐿2(−1,1) 𝐴𝑘(𝑥),
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where we denote

𝐴𝑘(𝑥) ∶=
∞

∑
𝑗=𝑘

(𝑃 (−𝑘)
𝑗 (𝑥))

2
(𝑗 + 1

2)

=
∞

∑
𝑗=𝑘

( 1
2𝑗𝑗!

d𝑗−𝑘

d𝑥𝑗−𝑘 (1 − 𝑥2)𝑗)
2

(𝑗 + 1
2) .

If we choose the coefficients 𝑎𝑗(𝑔) ∶= (𝑗 + 1
2) 𝑃 (−𝑘)

𝑗 (𝑥), then it follows from the above
computation that

|𝑓(𝑥)|2 = ‖𝑔‖2
𝐿2(−1,1) 𝐴𝑘(𝑥)

and we can express the extremal function as

𝑓(𝑥) =
∞

∑
𝑗=𝑘

(𝑗 + 1
2) (𝑃 (−𝑘)

𝑗 (𝑥))
2

.

It can be shown that 𝐴′
𝑘(𝑥) = 0 at 𝑥 = 0 and 𝐴″

𝑘(0) < 0. Therefore, 𝐴𝑘(𝑥) attains its
maximum at 𝑥 = 0. However, since

𝑃 (−𝑘)
𝑗 (𝑥) = 1

2𝑗𝑗!
d𝑗−𝑘

d𝑥𝑗−𝑘 (1 − 𝑥2)𝑗

𝑥=0=
⎧{
⎨{⎩

(−1) 𝑗+𝑘
2

(𝑗 − 𝑘 − 1)!!
(𝑗 + 𝑘)!! for even 𝑗 − 𝑘

0 for odd 𝑗 − 𝑘,

we have with the change of index 𝑗 = 2𝑚 + 𝑘

max
𝑥∈[−1,1]

𝐴𝑘(𝑥) = 𝐴𝑘(0)

=
∞

∑
𝑚=0

( (2𝑚)!
22(𝑚+𝑘)𝑚!(𝑚 + 𝑘)!)

2
(2𝑚 + 𝑘 + 1

2)

= 1
22𝑘−1((𝑘 − 1)!)2(2𝑘 − 1).

Kalyabin also proved in [20] that the function 𝐴𝑘(𝑥) can be expressed explicitly as

𝐴𝑘(𝑥) = (1 − 𝑥2)𝑘− 1
2

2𝑘(𝑘 − 1)!√𝑘 − 1
2

(4)
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and then again the sharp constant follows by taking

max
𝑥∈[−1,1]

𝐴𝑘(𝑥) = 𝐴𝑘(0).

The result was shortly after independently rediscovered by Watanabe et al. [46]. They made
a connection to a boundary value problem and then calculated the sharp constant using
the Green function of the differential operator. Later, in 2020, Sheipak and Garmanova
[39] found the explicit form for the extremal function.

The next full solution for finding the sharp constant concerned the case 𝑞 = 𝑝 = 2. The
sharp constant was characterised first by Petrova [34] in 2017 and then again by Carneiro [12]
in 2024. Both methods use the smallest positive solution of a certain explicit determinant
equation.

Petrova uses a similar left inverse of the differential operator 𝑓 ↦ 𝑓 (𝑘) for functions 𝑓 ∈
𝑊 𝑘,2

0 (−1, 1) that Kalyabin was using in [20], namely

𝑓(𝑥) = 1
(𝑘 − 1)! ∫

𝑥

0
(𝑥 − 𝑦)𝑘−1𝑓 (𝑘)(𝑦) d𝑦.

Then she connects the problem of finding the sharp constant with finding the minimal
positive eigenvalue of the boundary value problem

(−1)𝑘𝑦(2𝑘)(𝑥) = 𝜆𝑘𝑦(𝑥),
𝑦(𝑗)(0) = 𝑦(𝑗)(1) = 0, 𝑗 = 0, ..., 𝑘 − 1.

Theorem 2 (Petrova [34]). For all integers 𝑘 ⩾ 1 and 𝑓 ∈ 𝑊 𝑘,2
0 (−1, 1), we have the

inequality
‖𝑓‖𝐿2(−1,1) ⩽ 𝑐𝑘,2,2 ‖𝑓‖𝑊 𝑘,2

0 (−1,1) (5)

with the sharp constant 𝑐𝑘,2,2 = (𝜆𝑘)−𝑘, where 𝜆𝑘 is the least positive root of the function

det 𝐷𝑘(𝜆) = 0,

where 𝐷𝑘(𝜆) is the 𝑘 × 𝑘-matrix with entries

𝐷𝑘𝑗𝑚
(𝜆) = (𝜆𝑧𝑚) 2𝑗−1

2 𝐽 2𝑗−1
2

(𝜆𝑧𝑚), 𝑗, 𝑚 = 0, ..., 𝑘 − 1.

Here 𝑧 = 𝑒𝑖 𝜋
𝑘 and 𝐽𝜈 is the Bessel function of the first kind.

As an example, for 𝑘 = 1, 𝜆1 is the first positive root of cos(𝑧) = 0, while for 𝑘 = 2, 𝜆2
is the first positive root of tan(𝑧) + tanh(𝑧) = 0, and for 𝑘 = 3, 𝜆3 is the first positive
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Table 2: The first few values of the sharp embedding constant 𝑐𝑘,2,2.

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4

𝑐𝑘,2,2
2
𝜋 0.1795461... 1

𝜋3 0.004322...

root of cos(𝑧) (tan(𝑧) − tan (𝑧𝑒𝑖 𝑝𝑖
3 ) + tan (𝑧𝑒𝑖 2𝑝𝑖

3 )) = 0, and similar conditions can be
obtained for all positive integers 𝑘 from the determinant equation. As an example, the first
few values of the sharp embedding constant 𝑐𝑘,2,2 are given in Table 2.

In this 𝑝 = 𝑞 = 2 context, we would like to mention the result by Boulton and Lang [9]
from 2023.

Theorem 3 (Theorem 6.1 in Boulton and Lang [9]). For 𝑓 ∈ 𝑊 2,𝑝
𝐷 (−1, 1) = {𝑓 ∈

𝑊 2,𝑝(−1, 1) ∶ 𝑓(±1) = 0} with 1 < 𝑝 < ∞, we have the inequality

‖𝑓‖𝐿𝑝′ (−1,1) ⩽ ̃𝑐2,𝑝′,𝑝 ‖𝑓‖𝑊 2,𝑝
𝐷 (−1,1) (6)

with the sharp constant

̃𝑐2,𝑝′,𝑝 = 22+ 1
𝑝′ − 1

𝑝 (
𝐻 (1

2 + 1
𝑝′ )

2𝐻 (1
2) 𝐻 ( 1

𝑝′ )
)

2

,

where 𝐻(𝑥) = Γ(𝑥+1)
𝑥𝑥 , and 𝑝, 𝑝′ are the Hölder conjugate exponents with 1

𝑝 + 1
𝑝′ = 1.

The extremal functions are constant multiples of 𝑓(𝑥) = sin2,𝑝′(𝑥), where sin2,𝑝′(𝑥) is a
generalised trigonometric function of Lindqvist-Peetre (for the definition and properties on these
functions, see 5.5, below).

Boulton and Lang use the boundary condition that only 𝑓(±1) = 0 and not that both
𝑓(±1) = 0 and 𝑓 ′(±1) = 0 as in Problem 1. Interestingly, it makes a noticeable difference
in the case 𝑞 = 𝑝 = 2. Namely, we can easily calculate the embedding constant in this
setting as

̃𝑐2,2,2 = 4
𝜋2 .

In contrast, with the boundary conditions of Problem 1, we had to numerically approxi-
mate to find the least positive solution to tan(𝑧) + tanh(𝑧) = 0 in order to calculate the
embedding constant 𝑐2,2,2 (see the numerically approximated value in Table 2)

The next full solution for finding the sharp constant concerned the case 𝑞 = 𝑝 = ∞.
Kazimirov and Sheipak [22] found the sharp constant in 2024 using 𝐿1-approximation
theory.
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Table 3: The first few values of the sharp embedding constant 𝑐𝑘,∞,∞.

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4

𝑐𝑘,∞,∞ 1 1
4

2−
√

2
12

8−3
√

5
192

Theorem 4 (Theorem 3 in Kazimirov and Sheipak [22]). For all integers 𝑘 ⩾ 1 and 𝑓 ∈
𝑊 𝑘,∞

0 (−1, 1), we have the inequality
‖𝑓‖𝐿∞(−1,1) ⩽ 𝑐𝑘,∞,∞ ‖𝑓‖𝑊 𝑘,∞

0 (−1,1)

with the sharp constant

𝑐𝑘,∞,∞ = 𝑘 + 1
𝜋𝑘!2𝑘−1 ∫

+1

−1

(1 − 𝑥2)𝑘

1 + (−1)𝑘𝑥2(𝑘+1) d𝑥.

For the proof, Kazimirov and Sheipak make a connection to the problem of finding the
best approximation in 𝐿1 of certain splines by polynomials. As an example, the first few
values of the sharp embedding constant 𝑐𝑘,∞,∞ are given in Table 3.

Kazimirov and Sheipak also calculated the integral in the constant in terms hypergeometric
functions and found the asymptotic behaviour of the constant as 𝑘 → ∞ to be 1

2√𝜋
𝑘 .

In the case 𝑞 = ∞ and for the full range of 𝑝 ∈ [1, ∞], we have higher order results only
up to 𝑘 = 3 (except for 𝑝 = 2 and 𝑝 = ∞ where we have full solutions). Oshime [33]
proved the cases 𝑘 = 1 and 𝑘 = 2, and Watanabe et al. [45] the case 𝑘 = 3.

Oshime and Watanabe et al., both use the construction of left inverses to the differential
operator. Again, they use the same left inverse approach as Kalyabin and Petrova are using.

For these orders of derivative (𝑘 = 1, 𝑘 = 2, 𝑘 = 3) the results of Oshime and Watanabe
et al. are in agreement with Kalyabin [20] when 𝑝 = 2, and with Kazimirov, Sheipak [22]
when 𝑝 = ∞.

Theorem 5 (Theorem 10 in Oshime [33], Theorem 1.1 in Watanabe et al. [45]). For 𝑓 ∈
𝑊 2,𝑝

0 (−1, 1) with 1 ⩽ 𝑝 ⩽ ∞, we have the sharp inequalities

‖𝑓‖𝐿∞(−1,1) ⩽ 21− 1
𝑝

1
2 ‖𝑓‖𝑊 1,𝑝

0 (−1,1) ,

‖𝑓‖𝐿∞(−1,1) ⩽ 22− 1
𝑝

1
8(𝑝′ + 1)− 1

𝑝′ ‖𝑓‖𝑊 2,𝑝
0 (−1,1) ,

‖𝑓‖𝐿∞(−1,1) ⩽ 23− 1
𝑝

1
16 min

𝛼∈(0,1)
(∫

1

0
𝑥𝑝′ |𝑥 − 𝛼|𝑝′ d𝑥)

1
𝑝′

‖𝑓‖𝑊 3,𝑝
0 (−1,1) .
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Oshime gave also the explicit extremal function in the case 𝑘 = 1 as

𝑓(𝑥) = 1 − |𝑥|, (−1 ⩽ 𝑥 ⩽ 1)

up to the constant multiplication.

3 Our contribution

The paper included in this thesis considers a Sobolev-type embedding in one dimension,
from the Sobolev space 𝑊 𝑘,2

0 (−1, 1) into 𝐿1(−1, 1), for all integer orders of derivatives
𝑘 ⩾ 1. We have the following theorem from the paper in this thesis.

Theorem 6 (H., Nitzan, Olsen, Rydhe). For all integers 𝑘 ⩾ 1 and 𝑓 ∈ 𝑊 𝑘,2
0 (−1, 1), we

have the sharp inequality

‖𝑓‖𝐿1(−1,1) ⩽ 1
(2𝑘 − 1)!!√𝑘 + 1

2

‖𝑓‖𝑊 𝑘,2
0 (−1,1) . (7)

The extremal functions are given by the Landau kernels, 𝐿𝑘(𝑥) = (1 − 𝑥2)𝑘.

The theorem tells us the largest size the function with compact support in [−1, 1] can have
in 𝐿1-norm when we know the the size of its 𝑘-th derivative in 𝐿2-norm. We also have an
interpretation, that when we fix a 𝐿1-norm for functions that belong to the Sobolev space
𝑊 𝑘,2

0 (−1, 1), then the 𝐿2-norm of the Fourier transform of their 𝑘-th derivative cannot
be smaller than a sharp positive constant,

‖𝑓‖𝐿1(−1,1) ⩽ (2𝜋)𝑘

(2𝑘 − 1)!!√𝑘 + 1
2

∥|𝜉|𝑘 ̂𝑓(𝜉)∥
𝐿2(ℝ)

. (8)

For comparison, when we also control the size of the function by the size of the moment of
the function, then we have the sharp inequality on the real line conjectured by Steinerberger
[41], for 𝛼 ⩾ 2

‖𝑓‖1+ 1
𝛼

𝐿1(−1,1) ⩽ 2𝜋(𝛼 + 1) 1
𝛼 ‖|𝑥|𝛼𝑓(𝑥)‖

1
𝛼
𝐿1(−1,1) ∥|𝜉| ̂𝑓(𝜉)∥

𝐿∞(ℝ)
, (9)

with the characteristic function 𝑓(𝑥) = 𝜒[−1,1](𝑥) as the extremal function.

In Theorem 7, we have equality with the Landau kernel 𝐿𝑘 as the extremal function, so
that we have the 𝐿1-norm of the Landau kernel on the left hand side, and the 𝐿2-norm of
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the Legendre polynomial 𝑃𝑘 on the right hand side. Recall that these functions are related
by the Rodrigues formula,

𝑃𝑘(𝑥) = 1
2𝑘𝑘!

d𝑘

d𝑥𝑘 [(𝑥2 − 1)𝑘] .

We would like to mention that the Landau kernel is also the extremal function in a Carlson-
type inequality (for the general form and other examples, see 5.7, below) by Laeng and
Morpurgo [26],

‖𝑓‖5
𝐿1(−1,1) ⩽ 125

9 ∥𝑥2𝑓(𝑥)∥𝐿1(−1,1) ‖𝑓 ′(𝑥)‖4
𝐿2(−1,1) .

In 2014, Kalyabin [21] found an upper and lower bound for the embedding constant in the
inequality (7)

1
(2𝑘 − 1)!!√𝑘 + 1

2

⩽ 𝑐𝑘 ⩽
√𝜋

2𝑘Γ(𝑘 + 1
2)√𝑘 − 1

2

.

Kalyabin used the Landau kernel to calculate the lower bound for the embedding constant.
For the upper bound he used the function 𝐴𝑘(𝑥) (for the formulation see (4)) that gave the
sharp inequality in the 𝑞 = ∞, 𝑝 = 2 case. But these bounds leave a gap for the constant
in the 𝑞 = 1, 𝑝 = 2 case.

Theorem 6 closes this gap for 𝑞 = 1, 𝑝 = 2. For the proof of the theorem, we construct a
class of explicit left inverses of the differential operator 𝑓 ↦ 𝑓 (𝑘) of the form

𝑓(𝑥) = ∫
1

−1
𝐵𝑘(𝑥, 𝑦)𝑓 (𝑘)(𝑦) d𝑦, 𝑥 ∈ ℝ.

By the Hölder inequality, we obtain from this the following integral representation that

‖𝑓‖𝐿1(−1,1) ⩽ ‖𝑓‖𝑊 𝑘,𝑝′
0 (−1,1) ∥∫

1

−1
|𝐵𝑘(𝑥, 𝑦)| d𝑥∥

𝐿𝑝(−1,1;d𝑦)
.

Then the idea is to construct the function 𝐵𝑘(𝑥, 𝑦) in a such way that when we minimise
the 𝐿𝑝(−1, 1; d𝑦)-norm we are free to choose the zeros 𝑦1, 𝑦2, ..., 𝑦𝑘 of the polynomial
∫1
−1 𝐵𝑘(𝑥, 𝑦) d𝑥 in 𝑦, while ∣∫1

−1 𝐵𝑘(𝑥, 𝑦) d𝑥∣ = ∫1
−1 |𝐵𝑘(𝑥, 𝑦)| d𝑥. For this construction

of 𝐵𝑘(𝑥, 𝑦) we use the Lagrange interpolation polynomial.

Thus, the problem reduces to the classical problem in approximation theory to determine
polynomials of degree 𝑘 with leading coefficient one that have the minimal 𝐿𝑝-norm on
the interval [−1, 1], 1 ⩽ 𝑝 ⩽ ∞. The solution to this problem is well known in the cases
𝑝 = 1, 2, ∞ (see, e.g., [36, Chapter II]).
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• For 𝑝 = 2, it is the Legendre polynomial and we get the result in Theorem 6.

• For 𝑝 = ∞, it is the Chebyshev polynomial of first kind and we get Corollary 1
below.

• For 𝑝 = 1, it is the Chebyshev polynomial of second kind and we get Corollary 2
below.

Less is known about the cases 1 < 𝑝 < 2 and 2 < 𝑝 < ∞, apart from the fact established
by Kroó and Peherstorfer [24] that the minimal polynomials in these cases have zeros that
interlace with those of the Chebyshev polynomials of the first and second kind. However,
the known results of approximation theory for 𝑝 = ∞ and 𝑝 = 1 give us the two corollaries
below.

Corollary 1. For all integers 𝑘 ⩾ 1 and 𝑓 ∈ 𝑊 𝑘,2
0 (−1, 1), we have the inequality

‖𝑓‖𝐿1(−1,1) ⩽ 1
𝑘!2𝑘−1 ‖𝑓‖𝑊 𝑘,1

0 (−1,1) . (10)

Proof. The approach we developed for the case 𝑝 = 2 is easily adapted for 𝑝 = 1. We just
need to find the minimal monic polynomial in 𝐿∞(−1, 1) of degree 𝑘, as described above.
We have

min
𝑝 monic
deg 𝑝=𝑘

‖𝑝‖𝐿∞(−1,1) = ∥ 1
2𝑘−1 𝑇𝑘∥

𝐿∞(−1,1)
= 1

2𝑘−1 ,

where 𝑇𝑘 is the Chebyshev polynomial of first kind of degree 𝑘,

𝑇𝑘(𝑥) = 1
2 [(𝑥 +

√
𝑥2 − 1)𝑘 + (𝑥 −

√
𝑥2 − 1)𝑘] .

In 2019, Guessab and Milovanović [18, Theorem 4] studied the 𝑞 = 𝑝 = 1 inequality. They
developed similar theory with a left inverse to the differential operator, but they did not
complete the calculations to find the sharp embedding constant.

Corollary 2. For all integers 𝑘 ⩾ 1 and 𝑓 ∈ 𝑊 𝑘,2
0 (−1, 1), we have the inequality

‖𝑓‖𝐿1(−1,1) ⩽ 1
𝑘!2𝑘−1 ‖𝑓‖𝑊 𝑘,∞

0 (−1,1) . (11)

Proof. Similarly to the corollary above, we can also use our left inverse approach in the case
𝑝 = ∞. Now we need to find the minimal monic polynomial in 𝐿1(−1, 1) of degree 𝑘,
as described above. We have

min
𝑝 monic
deg 𝑝=𝑘

‖𝑝‖𝐿1(−1,1) = ∥ 1
2𝑘 𝑈𝑘∥

𝐿1(−1,1)
= 1

2𝑘−1 ,
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where 𝑈𝑘 is the Chebyshev polynomial of second kind of degree 𝑘,

𝑈𝑘(𝑥) = (𝑥 +
√

𝑥2 − 1)𝑘+1 − (𝑥 −
√

𝑥2 − 1)𝑘+1

2
√

𝑥2 − 1
.

As already mentioned in the introduction, the progress and results from the continuous
case might be useful to making progress in the discrete case. For example, in the paper
included in this thesis, we show that the sharp embedding constant in (7) is equal to the
minimal eigenvalue of the following boundary value problem,

⎧{{
⎨{{⎩

(−1)𝑘𝑢(2𝑘)(𝑥) = 𝜇 sgn(𝑢(𝑥)), 𝑥 ∈ [−1, 1],

∫
1

−1
|𝑢(𝑥)| d𝑥 = 1,

𝑢(𝑗)(±1) = 0, 𝑗 = 0, ..., 𝑘 − 1.

If in this setting we could show that 𝑢, that corresponds to the minimal eigenvalue, does
not change its sign inside (−1, 1), then we know that in the discrete sampled form of the
inequality, the extremal sequence does not change sign either. We think this would help to
prove the discrete analogue. Our progress in the discrete case, although not yet applying
the connection put forward here, is presented next in Chapter 4.

4 Related problem in the discrete setting

Recall that the Sobolev inequality in Problem 1 for the case 𝑝 = 2 can be formulated
through the Fourier transform as

‖𝑓(𝑥)‖𝐿𝑞(−1,1) ⩽ 𝑐𝑘,𝑞,𝑝(2𝜋)𝑘 ∥𝑓 (𝑘)(𝜉)∥
𝐿2(ℝ)

. (12)

Given this, we are also inspired to study the related problem in the discrete case. The
discrete analogue is presented in Problem 2, in the case 𝑝 = 2. We can also consider the
Problem 2 for all 1 ⩽ 𝑝 ⩽ ∞ for its own right.

Problem 2. Given a sequence 𝑎 ∶ {0, 1, 2, ..., 𝑑} ↦ ℂ determine the smallest possible positive
constant 𝐶𝑑,𝑘,𝑞,𝑝 in the inequality

∥𝑎𝑗∥𝑙𝑞 ⩽ 𝐶𝑑,𝑘,𝑞,𝑝 ∥Δ̂𝑘𝑎(𝜉)∥
𝐿𝑝(𝕋)

and identify the extremal sequence.
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Since we have that
Δ̂𝑘𝑎(𝜉) = (𝑒𝑖𝜉 − 1)𝑘 ̂𝑎(𝜉)

we can express the inequality also as

∥𝑎𝑗∥𝑙𝑞 ⩽ 𝐶𝑑,𝑘,𝑞,𝑝 ∥(𝑒𝑖𝜉 − 1)𝑘 ̂𝑎(𝜉)∥𝐿𝑝(𝕋)

and therefore as a polynomial inequality as well

‖𝑃 (𝑧)‖𝑙𝑞 ⩽ 𝐶𝑑,𝑘,𝑞,𝑝 ∥(𝑧 − 1)𝑘𝑃(𝑧)∥𝐿𝑝(𝕋) .

The 𝑙𝑞-norm of a polynomial 𝑃(𝑧) = ∑𝑑
𝑗=0 𝑎𝑗𝑧𝑗 ∈ ℂ[𝑧] is defined as

‖𝑃 (𝑧)‖𝑙𝑞 = (
𝑑

∑
𝑗=0

|𝑎𝑗|𝑞)
1
𝑞

, for 1 ≤ 𝑞 < ∞ with ‖𝑃 (𝑧)‖𝑙∞ = max
𝑗

{|𝑎𝑗|}.

4.1 An example of implication

The continuous Problem 1 and the discrete Problem 2 are related in the case 𝑝 = 2, in the
sense that knowing the sharp constant in the discrete case allows us to calculate the sharp
constant in the continuous case. We present the cases 𝑘 = 1 and 𝑘 = 2 from our ongoing
work for 𝑞 = ∞, 𝑝 = 2. The result for 𝑘 = 1 follows from a simple calculation presented
below, but for 𝑘 = 2 we only provide a conjecture. We also demonstrate how the lemma
and conjecture give asymptotically the continuous results.

Lemma 1. Let 𝑎 ∶ {0, 1, 2, ..., 𝑑} ↦ ℂ be a sequence with 𝑑 even. Then we have the sharp
inequality

∥𝑎𝑗∥𝑙∞ ⩽
√

𝑑 + 2
2 ∥Δ̂𝑎(𝜉)∥

𝐿2(𝕋)
. (13)

The extremal sequence is a constant multiple of the triangle sequence

𝑎 = {1, 2, ..., 𝑑
2 − 1, 𝑑

2 , 𝑑
2 − 1, ..., 2, 1} .

Proof. We have for every 𝑗 ∈ {0, 1, 2, ..., 𝑑},

|𝑎𝑗| ⩽ |𝑎𝑗 − 𝑎𝑗−1| + |𝑎𝑗−1 − 𝑎𝑗−2| + ... + |𝑎1 − 𝑎0| + |𝑎0|

and also

|𝑎𝑗| ⩽ |𝑎𝑗 − 𝑎𝑗+1| + |𝑎𝑗+1 − 𝑎𝑗+2| + ... + |𝑎𝑑−1 − 𝑎𝑑| + |𝑎𝑑|.
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Adding these expressions, we get for every 𝑗 ∈ {0, 1, 2, ..., 𝑑},

|𝑎𝑗| ⩽ 1
2 (|𝑎0| + |𝑎𝑑| +

𝑑
∑
𝑘=1

|𝑎𝑘 − 𝑎𝑘−1|) .

Hence by the Cauchy-Schwarz inequality we have

|𝑎𝑗| ⩽
√

𝑑 + 2
2 (

𝑑+1
∑
𝑗=0

|Δ𝑎𝑗|2)
1
2

=
√

𝑑 + 2
2 ∥Δ̂𝑎(𝜉)∥

𝐿2(𝕋)
.

For 𝑘 = 2 we have the following conjecture.

Conjecture 1. Let 𝑎 ∶ {0, 1, 2, ..., 𝑑} ↦ ℂ be a sequence with 𝑑 even. Then we have the
sharp inequality

∥𝑎𝑗∥𝑙∞ ⩽ 1
8
√

3
√(𝑑 + 2)(𝑑 + 3)(𝑑 + 4) + 3(𝑑 + 2)(𝑑 + 4)

𝑑 + 3 ∥Δ̂2𝑎(𝜉)∥
𝐿2(𝕋)

.

These two discrete versions of the 𝑞 = ∞, 𝑝 = 2 inequalities of the order 1 and 2 imply the
corresponding continuous cases on the real line. Indeed, suppose that 𝑓(𝑥) has support on
[−1, 1]. Then we can apply the inequality (13) with 𝑑 = 2𝑁 to get

max
𝑗∈{0,1,2,...,2𝑁}

∣𝑓 ( 𝑗
𝑁 − 1)∣ ⩽

√2𝑁 + 2
2 (

2𝑁+1
∑
𝑗=0

∣Δ𝑓 ( 𝑗
𝑁 − 1)∣

2
)

1
2

.

Manipulating the right-most sum to make it a Riemann-sum, we arrive at

max
𝑗∈{0,1,2,...,2𝑁}

∣𝑓 ( 𝑗
𝑁 − 1)∣ ⩽ 1√

𝑁

√2𝑁 + 2
2

⎛⎜
⎝

2𝑁+1
∑
𝑗=0

∣Δ𝑓 ( 𝑗
𝑁 − 1)

1/𝑁 ∣
2

1
𝑁

⎞⎟
⎠

1
2

.

Taking the limit 𝑁 → ∞, we arrive at the inequality

max
𝑥∈[−1,1]

|𝑓(𝑥)| ⩽ 1√
2

(∫
+1

−1
|𝑓 ′(𝑥)|2 d𝑥)

1
2

.
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Similarly with the case 𝑘 = 2, we observe that

2𝑁+2
∑
𝑗=0

∣Δ
2𝑓 ( 𝑗

𝑁 − 1)
1/𝑁2 ∣

2
1
𝑁

𝑁→∞⟶ ∫
+1

−1
|𝑓″(𝑥)|2 d𝑥,

whence

max
𝑥∈[−1,1]

|𝑓(𝑥)| ⩽ 1
2
√

6 (∫
+1

−1
|𝑓″(𝑥)|2 d𝑥)

1
2

.

These two last inequalities match exactly with the inequality (3) in Theorem 1, and with the
inequalities given in Theorem 5 with 𝑘 = 1 and 𝑘 = 2.

4.2 Subplot with three equivalent problems

In 2021 Kravitz and Steinerberger [23] posed the problem of finding averaging function,
𝑢 ∶ {−𝑛, ..., 𝑛} ↦ ℝ normalised to ∑𝑛

𝑗=−𝑛 𝑢𝑗 = 1, such that when convolving it with
functions 𝑓 ∈ 𝑙2(ℤ) we minimise

sup
0≠𝑓∈𝑙2(ℤ)

∥Δ𝑘(𝑓 ∗ 𝑢)∥𝑙2(ℤ)
‖𝑓‖𝑙2(ℤ)

.

Kravitz and Steinerberger showed that the minimisation problem is equivalent with deter-
mining the smallest positive constant in the Problem 2 with 𝑝 = ∞, in this form,

𝑛
∑

𝑗=−𝑛
𝑢𝑗 ⩽ 𝐶𝑛,𝑘 ∥Δ̂𝑘𝑢(𝜉)∥

𝐿∞(𝕋)
.

This follows by using the Plancherel formula

∑
𝑘∈ℤ

|(Δ𝑘(𝑢 ∗ 𝑓))(𝑘)|2 = 1
2𝜋 ∫

𝕋
|𝑒𝑖𝜉 − 1|2𝑘|𝑢̂(𝜉)|2| ̂𝑓(𝜉)|2𝑑𝜉

⩽ ∥(𝑒𝑖𝜉 − 1)2𝑘𝑢̂(𝜉)2∥𝐿∞(𝕋) ⋅ 1
2𝜋 ∫

𝕋
| ̂𝑓(𝜉)|2𝑑𝜉

= ∥(𝑒𝑖𝜉 − 1)2𝑘𝑢̂(𝜉)2∥𝐿∞(𝕋) ⋅ ∑
𝑘∈ℤ

|𝑓(𝑘)|2.

After taking a square root we get

∥Δ𝑘(𝑢 ∗ 𝑓)∥𝑙2(ℤ) ⩽ ∥(𝑒𝑖𝜉 − 1)𝑘𝑢̂(𝜉)∥𝐿∞(𝕋) ⋅ ‖𝑓‖𝑙2(ℤ) .
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By choosing 𝑓 so that ̂𝑓(𝜉) has 𝐿2 mass concentrated at the 𝜉 in which the function |𝑒𝑖𝜉 −
1|2𝑘|𝑢̂(𝜉)|2 achieves its maximum, we can make the above inequality arbitrary close to an
equality. Hence, we have two equivalent minimisation problems

min
𝑢

sup
𝑓∈𝑙2(ℤ)

∥Δ𝑘(𝑓 ∗ 𝑢)∥𝑙2(ℤ)
‖𝑓‖𝑙2(ℤ)

= min
𝑢

∥(𝑒𝑖𝜉 − 1)𝑘𝑢̂(𝜉)∥𝐿∞(𝕋) .

Kravitz and Steinerberger also showed that there is a third way to formulate the problem
by reducing the setting to the unit interval with substitution 𝑥 = cos 𝜉,

∥(𝑒𝑖𝜉 − 1)𝑘𝑢̂(𝜉)∥𝐿∞(𝕋) = max
𝑥∈[−1,1]

2 𝑘
2 |1 − 𝑥| 𝑘

2 |𝑝(𝑥)|,

where 𝑝(𝑥) is a polynomial of degree 𝑛 that satisfies 𝑝(1) = 1.

Hence, we have three equivalent minimisation problems

min
𝑢

sup
𝑓∈ℓ2(ℤ)

∥Δ𝑘(𝑢 ∗ 𝑓)∥𝑙2(ℤ)
‖𝑓‖𝑙2(ℤ)

= min
𝑢

∥Δ̂𝑘𝑢(𝜉)∥
𝐿∞(𝕋)

= min
𝑝

max
𝑥∈[−1,1]

2 𝑘
2 |1 − 𝑥| 𝑘

2 |𝑝(𝑥)|.

For 𝑘 = 1, Kravitz and Steinerberger [23] solved the problem in the third formulation and
found that,

𝐶𝑛,1 = 2𝑛 + 1
2

with the constant sequence 𝑢𝑗 = 1
2𝑛+1 as the extremal sequence.

For 𝑘 = 2, they also solved the problem in the third formulation, but with the additional
requirement that 𝑢̂(𝜉) ⩾ 0, and found that,

𝐶𝑛,2 = (𝑛 + 1)2

4

with the triangle sequence as the extremal sequence 𝑢𝑗 = 𝑛+1−|𝑗|
(𝑛+1)2 .

In 2023, Richardson [35] removed the restriction that 𝑢 has non-negative Fourier transform
and proved the following theorem.

Theorem 7 (Richardson [35]). Let 𝑢 ∶ {−𝑛, ..., 𝑛} ↦ ℝ be a sequence with 𝑑 even. Then
we have the sharp inequality

∣
𝑛

∑
𝑗=−𝑛

𝑢𝑗∣ ⩽ 𝑛 + 1
4 cot

𝜋
4(𝑛 + 1) ∥Δ̂2𝑢(𝜉)∥

𝐿∞(𝕋)
.
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Richardson also gave the extremal sequence by defining 𝑢 to be symmetric 𝑢𝑗 = 𝑢−𝑗, then
for 𝑗 ⩾ 0 setting

𝑢𝑗 = 1
𝜋 ∫

1

−1
𝑆𝑛(𝑥)𝑇𝑗(𝑥) 𝑑𝑥√

1 − 𝑥2

where 𝑇𝑗(𝑥) is the 𝑗-th Chebyshev polynomial, and

𝑆𝑛−1(𝑥) = 1
𝑥 − 1 ⋅ 2 sin ( 𝜋

2𝑛)
𝑛 (1 + cos ( 𝜋

2𝑛)) ⋅ 𝑇𝑛 (1 + cos ( 𝜋
2𝑛)

2 (𝑥 + 1) − 1) .

Richardson comments that the extremal sequence resembles sampling from a parabola, but
the extremal sequence does not quite lie on any parabola. However, he shows also that
choosing the discrete Epanechnikov kernel, 𝐸𝑛 ∶ {−𝑛, ..., 𝑛} ↦ ℝ, defined by

𝐸𝑛(𝑗) = 𝑛2 − 𝑗2 + 1

is asymptotically close to the true extremiser.

We suggest here that perhaps it is somewhat easier to calculate the extremal sequence as
follows. Take the coefficients of the following polynomial

𝑝𝑛(𝑧) =
𝑛

∏
𝑘=1

(𝑧2 − 2𝑧𝑅(𝑘, 𝑛) + 1) ,

where

𝑅(𝑘, 𝑛) =
2 cos (𝜋(2𝑘+1)

2𝑛+2 ) − cos ( 𝜋
2𝑛+2) + 1

cos ( 𝜋
2𝑛+2) + 1 .

Then we can calculate for the sharp constant as follows. First, we have

∣
𝑛

∑
𝑗=−𝑛

𝑢𝑗∣ = |𝑝𝑛(1)|

=
𝑛

∏
𝑘=1

2 (1 − 𝑅(𝑘, 𝑛))

= ( 2
cos ( 𝜋

2(𝑛+1)) + 1
)

𝑛
𝑛 + 1

sin ( 𝜋
2(𝑛+1))

and also

∥(𝑧 − 1)2𝑝𝑛(𝑧)∥𝐿∞ = 2 (cos
𝜋

4(𝑛 + 1))
−2(𝑛+1)

,
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whence

∣∑𝑛
𝑗=−𝑛 𝑢𝑗∣

‖(𝑧 − 1)2𝑝𝑛(𝑧)‖𝐿∞
= 𝑛 + 1

4 cot
𝜋

4(𝑛 + 1).

In the next few steps, we prove an extended and improved version of Kravitz and Steiner-
berger, in the case of 𝑘 = 1. First we prove the discrete problem for 𝑞 = 2, 𝑝 = ∞, then
extend it for all 𝑞 ∈ [1, 2], and so, in particular, we get the 𝑞 = 1, 𝑝 = ∞ sharp inequality.

Theorem 8. For a sequence 𝑎 ∶ {0, 1, 2, ..., 𝑑} ↦ ℂ we have the sharp inequality

∥𝑎𝑗∥𝑙2 ⩽
√

𝑑 + 1
2 ∥Δ̂𝑎(𝜉)∥

𝐿∞(𝕋)
, (14)

with equality if and only if 𝑎 is a constant sequence.

Proof. Let the finite Fourier transform of the sequence be defined in this form

̂𝑎(𝑘) = 1√
𝑑 + 1

𝑑
∑
𝑗=0

𝑎𝑗𝑒2𝜋𝑖 𝑘+1/2
𝑑+1 𝑗, 𝑘 = 0, 1, ..., 𝑑.

By the Plancherel formula, we have

𝑑
∑
𝑗=0

|𝑎𝑗|2 =
𝑑

∑
𝑘=0

| ̂𝑎(𝑘)|2

= 1
𝑑 + 1

𝑑
∑
𝑘=0

∣
𝑑

∑
𝑗=0

𝑎𝑗𝑒2𝜋𝑖 𝑘+1/2
𝑑+1 𝑗∣

2

= 1
𝑑 + 1

𝑑
∑
𝑘=0

∣
𝑑

∑
𝑗=0

𝑎𝑗𝑒2𝜋𝑖 𝑘+1/2
𝑑+1 𝑗∣

2 ∣1 − 𝑒2𝜋𝑖 𝑘+1/2
𝑑+1 ∣

2

∣1 − 𝑒2𝜋𝑖 𝑘+1/2
𝑑+1 ∣

2

⩽ 1
𝑑 + 1 max

𝜉∈𝕋
|(𝑒𝑖𝜉 − 1) ̂𝑎(𝜉)|2

𝑑
∑
𝑘=0

1
∣1 − 𝑒2𝜋𝑖 𝑘+1/2

𝑑+1 ∣
2

= 1
𝑑 + 1 max

𝜉∈𝕋
|(𝑒𝑖𝜉 − 1) ̂𝑎(𝜉)|2 (𝑑 + 1)2

4
= 𝑑 + 1

4 max
𝜉∈𝕋

|(𝑒𝑖𝜉 − 1) ̂𝑎(𝜉)|2.
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Corollary 3. Let 𝑎 ∶ ℤ ↦ ℂ be a finitely supported sequence of length 𝑑 + 1. Then we have
the sharp inequality for all 𝑞 ∈ [1, 2]

∥𝑎𝑗∥𝑙𝑞 ⩽ (𝑑 + 1) 1
𝑞

2 ∥Δ̂𝑎(𝜉)∥
𝐿∞(𝕋)

, (15)

with equality if and only if 𝑎 is a constant sequence.

Proof. By the Hölder’s inequality

𝑑
∑
𝑗=0

1 ⋅ |𝑎𝑗|𝑞 ⩽ (
𝑑

∑
𝑗=0

1 2
2−𝑞 )

2−𝑞
2

(
𝑑

∑
𝑗=0

|𝑎𝑗|𝑞
2
𝑞 )

𝑞
2

and therefore

(
𝑑

∑
𝑗=0

|𝑎𝑗|𝑞)
1
𝑞

⩽ (𝑑 + 1) 1
𝑞 − 1

2 (
𝑑

∑
𝑗=0

|𝑎𝑗|2)
1
2

= (𝑑 + 1) 1
𝑞

2 max
𝜉∈𝕋

|(𝑒𝑖𝜉 − 1) ̂𝑎(𝜉)|.

In particular, for the case 𝑞 = 1, we have the sharp inequality

∥𝑎𝑗∥𝑙1 ⩽ 𝑑 + 1
2 ∥Δ̂𝑎(𝜉)∥

𝐿∞(𝕋)
. (16)
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5 Endnotes

5.1

In a Lebesque space on ℝ all that matters in calculating the norm of a function is the width of the
domain and the height or amplitude of the function. For example, a component of a simple step
function, a constant function 𝑓(𝑥) = 𝐴, we have its 𝐿𝑝-norm, ‖𝑓‖𝐿𝑝(𝑎,𝑏) = |𝐴||𝑏 − 𝑎| 1

𝑝 that
combines the width and height of the function. Note that in the limit 𝑝 → ∞ the width loses its
significance.

On one hand, we have a nice property that all 𝐿𝑝 spaces on a compact domain are nested in each
other

𝐿∞ ⊂ ... ⊂ 𝐿2 ⊂ ... ⊂ 𝐿1,
but on the other hand we have to live with the fact that taking a derivative of function in a 𝐿𝑝-space
might take the function out of all Lebesque spaces.

In a Sobolev space, the norm of a function captures not only the width and height of the function,
but also the regularity of the function. Regularity of a function tells us how many times we can
differentiate the function before it ceases to be a function.

In a contrast to the Lebesque spaces, taking a derivative of a function in a Sobolev space takes the
function to another Sobolev space. For example, if 𝑢 ∈ 𝑊 𝑘,𝑝(𝑎, 𝑏), then 𝑢′ ∈ 𝑊 𝑘−1,𝑝(𝑎, 𝑏).

Similarly to the Lebesque spaces, the Sobolev spaces are nested in each other, so that 𝑊 𝑘,𝑝 lies
automatically in every other Sobolev space 𝑊 𝑚,𝑟 with 𝑚 < 𝑘 and 𝑟 > 𝑝. This means we can give
up regularity to gain integrability by moving from one Sobolev space to another. In particular, we
can embed a Sobolev space into a Lebesque space as shown by the next Lemma.

Lemma 2. For a function 𝑓 ∈ 𝑊 𝑘,𝑝(𝑎, 𝑏), there exists a positive constant 𝐶 such that

‖𝑓‖𝐿∞(𝑎,𝑏) ⩽ 𝐶 ‖𝑓‖𝑊 𝑘,𝑝(𝑎,𝑏) .

Proof. For all 𝑘 ⩾ 1 and 1 ⩽ 𝑝 ⩽ ∞ it suffices to show that

‖𝑓‖𝐿∞(𝑎,𝑏) ⩽ 𝐶 ‖𝑓‖𝑊 1,1(𝑎,𝑏) .
By the fundamental theorem of calculus, we have

|𝑓(𝑥) − 𝑓(𝑎)| = ∣∫
𝑥

𝑎
𝑓 ′(𝑡) d𝑡∣ ⩽ ‖𝑓 ′‖𝐿1(𝑎,𝑏) = ‖𝑓‖𝑊 1,1(𝑎,𝑏)

for all 𝑥. Then, by the triangle inequality, we have

|𝑓(𝑥)| ⩽ |𝑓(𝑎)| + ‖𝑓‖𝑊 1,1(𝑎,𝑏) .
By using 𝑥 > 𝑏 and that 𝑓 has compact support, we also have that

|𝑓(𝑎)| ⩽ ‖𝑓‖𝑊 1,1(𝑎,𝑏) .
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This means that for functions with compact support on the real line there exists an embedding
constant from every Sobolev space to every Lebesque space. In the one-dimensional case, on the
real line, there are no critical exponents in contrast to the case of the Euclidean space ℝ𝑛 with 𝑛 ⩾ 2
(for the critical exponent, see 5.2, below, and for the unbounded functions in Sobolev spaces, see
5.3, below).

5.2

When we want to embed a Sobolev space 𝑊 𝑘,𝑝 into a Lebesque space 𝐿𝑞 in the Euclidean space
ℝ𝑛 with 𝑛 ⩾ 2, then there is a limit for the exponent of the Lebesque space above which we can
not go, in the case 𝑘 < 𝑛

𝑝 . We have an embedding constant in the inequality

‖𝑓‖𝐿𝑞 ⩽ 𝐶 ‖𝑓‖𝑊 𝑘,𝑝

only for
𝑞 ⩽ 𝑛𝑝

𝑛 − 𝑘𝑝 .

Usually the critical exponent is denoted as 𝑞 = 𝑝∗ ∶= 𝑛𝑝
𝑛−𝑘𝑝 .

5.3

If we think about functions on a compact domain, then intuitively, it seems reasonable that if we
have a control over the derivative then the function itself cannot build up a large size. But it turns
out that the answer is more subtle than that, and it depends on how we measure the smoothness
and the size of functions, and also how many dimensions the domain has.

There are unbounded functions in Sobolev spaces when the domain is two or more dimensional.
For example, let 𝑢 ∶ {𝑥 ∈ ℝ𝑛 ∶ ‖𝑥‖ ⩽ 1} ↦ ℝ be given by

𝑢(𝑥) =
⎧{
⎨{⎩

log (log (1 + 1
|𝑥|)) , 𝑥 ≠ 0,

0, 𝑥 = 0.

Then 𝑢 ∈ 𝑊 1,𝑛({𝑥 ∈ ℝ𝑛 ∶ ‖𝑥‖ ⩽ 1}) when 𝑛 ⩾ 2, but 𝑢 ∉ 𝐿∞({𝑥 ∈ ℝ𝑛 ∶ ‖𝑥‖ ⩽ 1}). Thus,
in general the functions in 𝑊 1,𝑝, 1 ⩽ 𝑝 ⩽ 𝑛, 𝑛 ⩾ 2 are not continuous. In contrast, every 𝑊 1,𝑝

function with 𝑝 > 𝑛 coincides with a continuous function almost everywhere.

5.4

Mitrinović et al. [31] suggest that the first proof of the inequality (the case 𝑞 = 𝑝 = 2 and 𝑘 = 1)
may be attributed to Scheeffer [37]. Kuznetsov and Nazarov [25] have also examined the historical
development of the inequality, observing that while Scheeffer derived an identity from which the
inequality follows, he appears not to have emphasized its significance or stated it explicitly. Hardy
et al. [19], on the other hand, attribute the inequality to Wirtinger [47].
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5.5

The generalised trigonometric function sin𝑝,𝑞 of Lindqvist-Peetre [28] is defined as the inverse of
the strictly increasing function 𝐹𝑝,𝑞 ∶ [0, 1] ↦ [0, 𝜋𝑝,𝑞/2] given by

𝐹𝑝,𝑞(𝑥) = ∫
𝑥

0

d𝑡
(1 − 𝑡𝑞) 1

𝑝
, 𝑥 ∈ [0, 1].

We have the connection to the usual sine function when 𝑝 = 𝑞 = 2 since 𝐹2,2(𝑥) = arcsin(𝑥).
We extend sin𝑝,𝑞 to [0, 𝜋𝑝,𝑞] by defining

sin𝑝,𝑞(𝑥) = sin𝑝,𝑞(𝜋𝑝,𝑞 − 𝑥), for 𝑥 ∈ [𝜋𝑝,𝑞/2, 𝜋𝑝,𝑞]

and further extension to [−𝜋𝑝,𝑞, 𝜋𝑝,𝑞] is made by oddness, and finally to the whole of ℝ by 2𝜋𝑝,𝑞-periodicity.

The constant 𝜋𝑝,𝑞 is given by

𝜋𝑝,𝑞 = 2 ∫
1

0
(1 − 𝑡𝑞)−1/𝑝 d𝑡

with natural extensions

𝜋𝑝,𝑞 =

⎧{{{
⎨{{{⎩

2𝑝
𝑝 − 1, if 1 ⩽ 𝑝 ⩽ ∞, 𝑞 = 1,

2, if 1 ⩽ 𝑝 ⩽ ∞, 𝑞 = ∞,
∞, if 𝑝 = 1, 1 ⩽ 𝑞 < ∞,
2, if 𝑝 = ∞, 1 ⩽ 𝑞 ⩽ ∞.

The function cos𝑝,𝑞 is defined to be the derivative of sin𝑝,𝑞, and it follows that for all 𝑥 ∈ ℝ,

∣sin𝑝,𝑞∣𝑞 + ∣cos𝑝,𝑞∣𝑝 = 1.

5.6

Bennewitz and Saitō study in their papers [3] and [4] the Sobolev embedding for the first derivative

‖𝑓‖𝐿𝑞(−1,1) ⩽ 𝑐1,𝑞,𝑝 ‖𝑓‖𝑊 1,𝑝
0 (−1,1) (17)

and rediscover correctly the sharp embedding constant 𝑐1,𝑞,𝑝.

While calculating the sharpness of the constant they use the correct extremal function sin𝑝,𝑞 ( 𝜋𝑝,𝑞𝑥
2 )

in both papers, but unfortunately they use cos𝑝,𝑞 ( 𝜋𝑝,𝑞𝑥
2 ) for the explicit calculation of the extremal

functions. Therefore the extremals given in Theorem 4.2 in [3] and in the claim on p. 246 in [4] are
not correct. For example, in the case 𝑞 = 1 and 1 < 𝑝 ⩽ ∞, the extremal function is

1 − (1 − 𝑥) 𝑝
𝑝−1 , not (1 − 𝑥) 1

𝑝−1 , etc.
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Also, the calculations of the norms ‖𝐹‖𝑞,𝐼1
and ‖𝐹 ′‖𝑝,𝐼1

on p. 257 in [4] contain typos.

‖𝐹‖𝑞,𝐼1
= ( 𝑝′

𝑝′ + 𝑞 )
1
𝑞

, not
𝑝′

𝑝′ + 𝑞

‖𝐹 ′‖𝑝,𝐼1
= ( 𝑞𝜋𝑝,𝑞

2(𝑝′ + 𝑞))
1
𝑝

not
𝑞𝜋𝑝,𝑞

2𝑝′ + 𝑞 .

5.7

In 1934, Fritz Carlson [11] found a sharp inequality, that

(∫
∞

0
𝑓(𝑥) d𝑥)

4
⩽ 𝜋2 ∫

∞

0
𝑓2(𝑥) d𝑥 ∫

∞

0
𝑥2𝑓2(𝑥) d𝑥

holds for any measurable function 𝑓 ∶ ℝ+ ↦ ℝ+. Now, in general, by a Carlson-type inequality,
we mean an inequality of the form

‖𝑓‖𝑋 ⩽ 𝐾
𝑚

∏
𝑖=1

‖𝑓‖𝜃𝑖
𝐴𝑖

,

where 𝑋 and 𝐴𝑖 are normed vector spaces, and 𝜃𝑖 are such that

𝑚
∑
𝑖=1

𝜃𝑖 = 1.

The constant 𝐾 is independent of 𝑓 . Typically, we have 𝑚 = 2, and the spaces involved are
Lebesgue spaces, weighted Lebesgue spaces or Sobolev spaces, etc.

In 1938, Beurling [7] found a similar sharp inequality to the original Carlson’s inequality,

‖𝑓‖𝐿1(ℝ) ⩽
√

2𝜋 (‖𝑓‖𝐿2(ℝ) ‖𝑥𝑓‖𝐿2(ℝ))
1
2 .

We mention some other interesting examples. In 1999, Laeng and Morpurgo [26] proved the sharp
inequality for functions with compact support,

‖𝑓‖𝐿2(ℝ) ⩽ 2𝜋
√Λ0

‖𝑓‖− 1
2

𝐿1(ℝ) ‖𝑓 ′‖𝐿2(ℝ) ∥𝑥2𝑓∥
1
2
𝐿1(ℝ) ,

where Λ0 = 0.428368.... In 1984, Cowling and Price [15] proved the qualitative inequality for any
𝛼 > 0 and 𝛽 > 1/2,

‖𝑓‖𝛼+𝛽
𝐿2(ℝ) ⩽ 𝐾 ‖𝑥𝛼𝑓‖𝛽− 1

2
𝐿1(ℝ) ∥𝜉𝛽 ̂𝑓 ∥

𝛼+ 1
2

𝐿∞(ℝ)
,

and in 2020, Steinerberger [41] proved the qualitative inequality for any 𝛼 > 0 and 𝛽 > 1/2,

‖𝑓‖𝛼+𝛽
𝐿1(ℝ) ⩽ 𝐾 ‖𝑥𝛼𝑓‖𝛽

𝐿1(ℝ) ∥𝜉𝛽 ̂𝑓 ∥
𝛼

𝐿∞(ℝ)
.

26



5.8

Classical inequalities can be used to build new ones, but we might loose sharpness, as we show in
the following example.

We have the classical inequality of Bernstein [5, 6] that for a polynomial 𝑃(𝑧) = ∑𝑑
𝑗=0 𝑎𝑗𝑧𝑗 ∈ ℂ[𝑧]

of degree 𝑑, we have
‖𝑃 ′(𝑧)‖𝐿∞ ⩽ 𝑑 ‖𝑃(𝑧)‖𝐿∞ .

If we apply the inequality on the polynomial (𝑧 − 1)𝑃(𝑧), then we get

|𝑃 (1)| ⩽ ‖𝑃 (𝑧) + (𝑧 − 1)𝑃 ′(𝑧)‖𝐿∞ ⩽ (𝑑 + 1) ‖(𝑧 − 1)𝑃(𝑧)‖𝐿∞ .

But Kravitz and Steinerberger [23] showed that the sharp constant is 𝑑+1
2 , instead. That is

∣
𝑑

∑
𝑗=0

𝑎𝑗∣ = |𝑃 (1)| ⩽ 𝑑 + 1
2 ‖(𝑧 − 1)𝑃(𝑧)‖𝐿∞ ,

with the extremal polynomial 𝑃(𝑧) = ∑𝑑
𝑗=0 𝑧𝑗.
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Abstract
We obtain sharp embeddings from the Sobolev space
𝑊𝑘,2

0
(−1, 1) into the space 𝐿1(−1, 1) and determine the

extremal functions. This improves on a previous esti-
mate of the sharp constants of these embeddings due
to Kalyabin.

MSC 2020
46E35 (primary)

1 INTRODUCTION

In this paper, we give a proof of a Sobolev-type inequality with a sharp constant and an explicit
extremal function. This is motivated by the more general problem of calculating sharp con-
stants and identifying extremal functions for Sobolev embeddings𝑊𝑘,𝑝

0
(−1, 1) ⊂ 𝐿𝑞(−1, 1). That

is, inequalities of the form

(
∫

1

−1

|𝑓|𝑞 d𝑥) 1
𝑞

⩽ 𝑐𝑘,𝑝,𝑞

(
∫

1

−1

|||𝑓(𝑘)|||𝑝 d𝑥
) 1

𝑝

for functions 𝑓 ∶ ℝ → ℝ with support in [−1, 1] and that satisfy 𝑓(𝑘) ∈ 𝐿𝑝(ℝ). In particular, for
integers 𝑘 ⩾ 1, 𝑓 satisfies the boundary conditions 𝑓(𝑗)(±1) = 0 for all 0 ⩽ 𝑗 < 𝑘.
We shall consider the case 𝑞 = 1, 𝑝 = 2, and integers 𝑘 ⩾ 1, for which the sharp constants and

extremal functions do not seem to be known. See, for example, the surveys by Mitrinović et al. [5,
Chapter II], Kuznetsov and Nazarov [3], and Nazarov and Shcheglova [6].
Our main result is as follows.
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behalf of University College London. This is an open access article under the terms of the Creative Commons Attribution License, which
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Theorem 1. For all integers 𝑘 ⩾ 1 and 𝑓 ∈ 𝑊𝑘,2
0
(−1, 1), we have the sharp inequality

∫
1

−1

|𝑓(𝑥)| d𝑥 ⩽
1

(2𝑘 − 1)!!
√
𝑘 + 1

2

(
∫

1

−1

|𝑓(𝑘)(𝑥)|2 d𝑥) 1
2

. (1)

The extremal functions are given by the Landau kernels, 𝐿𝑘(𝑥) = (1 − 𝑥2)𝑘 .

This theorem improves a bound due to Kalyabin [2]. Indeed, for 𝑝 = 2, 𝑞 ∈ (0,∞) and 𝑘 ∈ ℤ+,
Kalyabin obtained that √

𝑘 + 1

2

2𝑘𝑘!
((𝑘𝑞))1∕𝑞 ⩽ 𝑐𝑘,2,𝑞 ⩽

(((𝑘 − 1

2
)𝑞)
)1∕𝑞

2𝑘(𝑘 − 1)!
√
𝑘 − 1

2

,

where (𝑠) = ∫ 1
−1(1 − 𝑥2)𝑠 d𝑥. A straightforward calculation reveals that the constant from

Theorem 1 is identical to Kalyabin’s lower estimate in the case 𝑞 = 1, implying that it was
indeed sharp.
It is well known that sharp constants of Sobolev embeddings can be connected to minimal

eigenvalues of certain boundary value problems (see, e.g., [1]). In our case, the sharp constant in
Theorem 1 is connected to the minimal eigenvalue of the boundary value problem

⎧⎪⎪⎨⎪⎪⎩
(−1)𝑘𝑢(2𝑘)(𝑥) = 𝜆

𝑢(𝑥)|𝑢(𝑥)| ∫ 1

−1

|𝑢(𝑡)| d𝑡, 𝑥 ∈ [−1, 1],

𝑢(𝑗)(±1) = 0, 𝑗 ∈ {0, 1, … , 𝑘 − 1}.

Indeed, we have

min
𝑢≠0

(
(−1)𝑘𝑢(2𝑘), 𝑢

)(
𝑢|𝑢| ‖𝑢‖𝐿1(−1,1), 𝑢) = min

𝑢≠0

(
𝑢(𝑘), 𝑢(𝑘)

)
‖𝑢‖2

𝐿1(−1,1)

= min
𝑢≠0

‖‖‖𝑢(𝑘)‖‖‖2𝐿2(−1,1)‖𝑢‖2
𝐿1(−1,1)

=

(
1

𝑐𝑘,2,1

)2
,

where (⋅, ⋅) is the inner product in 𝐿2(−1, 1) and the first equality follows upon 𝑘 times partially
integrating and using the boundary conditions. In [1], a similar example is provided for the case
𝑝 = 𝑞 = 2.

2 PROOF OF THEOREM 1

The main idea of the proof is to consider a class of explicit left inverses of the differential operator
𝑓 ↦ 𝑓(𝑘) of the form

𝑓(𝑥) = ∫
1

−1

𝐵𝑘(𝑥, 𝑦)𝑓
(𝑘)(𝑦) d𝑦, 𝑥 ∈ ℝ.
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A SHARP HIGHER ORDER SOBOLEV EMBEDDING 3 of 9

F IGURE 1 Illustration of the support and values of 𝑏𝑘(𝑥, 𝑦). The thin dashed line indicates 𝑦 = 𝑥. 𝑏𝑘(𝑥, 𝑦) is
equal to zero outside of the shaded area between the 𝑦-axis and the line 𝑦 = 𝑥.

By the Cauchy–Schwarz inequality, we obtain from this integral representation that

∫
1

−1

|𝑓(𝑥)| d𝑥 ⩽
‖‖‖𝑓(𝑘)‖‖‖𝐿2(−1,1)‖‖‖‖‖∫

1

−1

|𝐵𝑘(𝑥, 𝑦)| d𝑥‖‖‖‖‖𝐿2(−1,1;d𝑦).
The inequality of Theorem 1 is then obtained by connecting the expression involving the
norm of 𝐵𝑘(𝑥, 𝑦) to a minimization problem having Legendre polynomials as minimizers.
Finally, sharpness is obtained by noting that Landau kernels are extremal functions for the
resulting inequality.
Before proceeding with a proof, we discuss some notation. For integers 𝑘 ⩾ 1 and 𝑝 ∈ [1,∞),

we define the Sobolev space

𝑊
𝑘,𝑝

0
(−1, 1) =

{
𝑓 ∶ ℝ → ℝ ∣ supp𝑓 ⊆ [−1, 1], 𝑓(𝑘) ∈ 𝐿𝑝(ℝ)

}
.

For each integer 0 ⩽ 𝑗 < 𝑘, the derivative 𝑓(𝑗) is absolutely continuous since 𝑓(𝑗−1)(𝑥) =

∫ 𝑥
−1 𝑓

(𝑗)(𝑡) d𝑡 and 𝐿𝑝(−1, 1) ⊂ 𝐿1(−1, 1). Hence, as mentioned in the introduction, since 𝑓 has
support in [−1, 1], it follows that 𝑓(𝑗)(±1) = 0 for each such 𝑗. The norm of 𝑓 in 𝑊

𝑘,𝑝

0
(−1, 1) is

defined by ‖𝑓‖
𝑊

𝑘,𝑝
0

(−1,1)
= ‖𝑓(𝑘)‖𝐿𝑝(−1,1). By 𝟙𝑋 , we denote the function that equals 1 if condition

𝑋 is satisfied, and 0 otherwise. By 𝛿𝑛𝑚, we denote the standard Kronecker delta function.
Now we give the details of the proof.

2.1 Construction of the explicit left inverses

For integers 𝑘 ⩾ 1, define the functions 𝑏𝑘 ∶ ℝ2 → ℝ by

𝑏𝑘(𝑥, 𝑦) =
(𝑥 − 𝑦)𝑘−1

(𝑘 − 1)!

[
𝟙𝑦<𝑥<0 − 𝟙𝑦>𝑥⩾0

]
.

The support of 𝑏𝑘 is indicated in Figure 1.
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4 of 9 HINDOV et al.

Proposition 1. For all integers 𝑘 ⩾ 1, the following holds.

(i) ∫ ∞
−∞ 𝑏𝑘(𝑥, 𝑦) d𝑥 =

(−𝑦)𝑘

𝑘!
for all 𝑦 ∈ ℝ.

(ii) The following one-sided limits hold.

lim
𝑥→0−

𝑏𝑘(𝑥, 𝑦) =

{
0 for 𝑦 > 0,

(−𝑦)𝑘−1

(𝑘−1)!
for 𝑦 ⩽ 0.

𝑏𝑘(0, 𝑦) = lim
𝑥→0+

𝑏𝑘(𝑥, 𝑦) =

{
−(−𝑦)𝑘−1

(𝑘−1)!
for 𝑦 > 0,

0 for 𝑦 ⩽ 0.

(iii) Let 𝑓 ∈ 𝑊𝑘,2
0
(−1, 1) and 𝑄 be a polynomial with deg𝑄 < 𝑘. Then, for all 𝑥 ∈ ℝ,

∫
∞

−∞
[𝑏𝑘(𝑥, 𝑦) − 𝑄(𝑦)]𝑓(𝑘)(𝑦) d𝑦 = 𝑓(𝑥).

Remark. By part (iii) of the proposition, the integral operator induced by 𝑏𝑘 is a left-inverse to
the differential operator 𝑓 ↦ 𝑓(𝑘). Moreover, such a left-inverse is not unique; the polynomial
𝑄, which may depend on 𝑥, provides a parametrization of a family of left-inverses. By part (ii),
𝑏𝑘(𝑥, 𝑦) is discontinuous across the 𝑦-axis whenever 𝑦 ≠ 0.

Proof. Property (i) follows by direct computation, and property (ii) follows immediately from the
definition of 𝑏𝑘(𝑥, 𝑦).
To prove the reproducing property (iii), weuse integration by parts repeatedly. Indeed, for𝑥 < 0,

we have

∫ℝ 𝑏𝑘(𝑥, 𝑦)𝑓
(𝑘)(𝑦) d𝑦 =

𝑘−1∑
𝑗=1

[
(𝑥 − 𝑦)𝑘−𝑗

(𝑘 − 𝑗)!
𝑓(𝑘−𝑗)(𝑦)

]𝑥
−1

+ ∫
𝑥

−1

𝑓′(𝑦) d𝑦 = 𝑓(𝑥),

where all the terms in the sum vanish due to the boundary conditions on 𝑓. The case 𝑥 ⩾ 0 is
treated similarly. Finally, since 𝑄 is a polynomial of deg𝑄 < 𝑘, it follows that

∫ℝ 𝑄(𝑦)𝑓
(𝑘)(𝑦) d𝑦 = 0.

□

Lemma 1. Given any integer 𝑘 ⩾ 1, let

𝑓𝑘(𝑦) = 𝑦𝑘−1𝟙𝑦>0, 𝑦 ∈ ℝ.

Moreover, let 𝑄 be a polynomial of degree at most 𝑘 − 1, such that 𝑓𝑘(𝑦𝑛) = 𝑄(𝑦𝑛) for 𝑘 + 1 distinct
real numbers 𝑦1 < ⋯ < 𝑦𝑘+1. Then, either 𝑄(𝑦) ≡ 𝑦𝑘−1 or 𝑄(𝑦) ≡ 0. In particular, this implies that
either 𝑦1 ⩾ 0 or 𝑦𝑘+1 ⩽ 0.

Proof. If 𝑘 = 1, then𝑄 is a constant function. From this, it follows immediately that if𝑄(𝑦) − 𝟙𝑦>0
vanishes at two distinct points, then either 𝑄(𝑦) ≡ 1 or 𝑄(𝑦) ≡ 0. Moreover, these points have to
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A SHARP HIGHER ORDER SOBOLEV EMBEDDING 5 of 9

be both nonpositive or both nonnegative. This argument is easily extended to 𝑘 = 2 using the
linearity of 𝑄 and the hypothesis that 𝑄(𝑦) − 𝑦𝟙𝑦>0 is to vanish at three distinct points.
For general 𝑘 > 2, we proceed by induction. To this end, suppose that 𝑄 is a polynomial of

degree at most 𝑘 − 1 and that g(𝑦) = 𝑄(𝑦) − 𝑦𝑘−1𝟙𝑦>0 vanishes at 𝑘 + 1 distinct points. As g has
a continuous derivative, the mean value theorem implies that g ′(𝑦) = 𝑄(𝑦) − (𝑘 − 1)𝑦𝑘−2𝟙𝑦>0
vanishes at at least 𝑘 distinct points. It follows by the induction hypothesis, that these 𝑘 points
are either all nonpositive or all nonnegative. In particular, this means that 𝑄(𝑦) − 𝑦𝑘−1𝟙𝑦>0 van-
ishes at 𝑘 points that are either all nonpositive or all nonnegative. Since 𝑄 is of degree 𝑘 − 1, the
conclusion follows. □

Remark. For 𝑘 ⩾ 1, let 𝑓𝑘(𝑦) be as above. Then, the lemma implies that if a polynomial𝑄 of degree
at most 𝑘 − 1 is equal to 𝑓𝑘(𝑥∗ − 𝑦) at 𝑘 + 1 distinct points 𝑦1 < ⋯ < 𝑦𝑘+1, then either 𝑦1 ⩾ 𝑥∗ or
𝑦𝑘+1 ⩽ 𝑥∗.

We now fix 𝑘 distinct real numbers 𝑦1 < 𝑦2 < ⋯ < 𝑦𝑘, and consider the corresponding
Lagrange interpolation basis {𝑝𝑛}𝑘𝑛=1 given by

𝑝𝑛(𝑦) =
∏

1⩽𝑗⩽𝑘;
𝑗≠𝑛

𝑦 − 𝑦𝑗

𝑦𝑛 − 𝑦𝑗
.

These polynomials are of degree 𝑘 − 1 and satisfy 𝑝𝑛(𝑦𝑚) = 𝛿𝑛𝑚. Using these polynomials, we
define functions 𝐵𝑘 ∶ ℝ2 → ℝ by

𝐵𝑘(𝑥, 𝑦) = 𝑏𝑘(𝑥, 𝑦) −

𝑘∑
𝑛=1

𝑝𝑛(𝑦)𝑏𝑘(𝑥, 𝑦𝑛).

Proposition 2. For all integers 𝑘 ⩾ 1, the following holds.

(i) For all 𝑛 ∈ {1, 2, … , 𝑘} and 𝑥 ∈ ℝ, we have 𝐵𝑘(𝑥, 𝑦𝑛) = 0.
(ii) For all 𝑓 ∈ 𝑊𝑘,2

0
(−1, 1) and 𝑥 ∈ ℝ, we have ∫ ∞

−∞𝐵𝑘(𝑥, 𝑦)𝑓
(𝑘)(𝑦) d𝑦=𝑓(𝑥).

(iii) For all 𝑦 ∈ ℝ, the function 𝑥 ↦ 𝐵𝑘(𝑥, 𝑦) is continuous.
(iv) For all 𝑦 ∈ ℝ,

𝐵𝑘(𝑥, 𝑦) =

⎧⎪⎪⎨⎪⎪⎩

(𝑥 − 𝑦)𝑘−1

(𝑘 − 1)!
𝟙𝑦<𝑥, 𝑥 ⩽ 𝑦1

−
(𝑥 − 𝑦)𝑘−1

(𝑘 − 1)!
𝟙𝑦>𝑥, 𝑥 ⩾ 𝑦𝑘

.

(v) For all 𝑦 ∈ ℝ, either 𝐵𝑘(𝑥, 𝑦) ⩾ 0 or 𝐵𝑘(𝑥, 𝑦) ⩽ 0 for all 𝑥 ∈ ℝ.

Proof. Property (i) is immediate from 𝑝𝑛(𝑦𝑚) = 𝛿𝑛𝑚. Note that for fixed 𝑥, 𝐵𝑘(𝑥, 𝑦) = 𝑏𝑘(𝑥, 𝑦) −

𝑄(𝑦) for a polynomial 𝑄 of degree at most 𝑘 − 1. Hence, (ii) follows from Proposition 1 (iii).
To establish (iii), we note that by Proposition 1 (ii), for any fixed 𝑦 ∈ ℝ, 𝑥 ↦ 𝑏𝑘(𝑥, 𝑦) is con-

tinuous apart from a jump discontinuity at 𝑥 = 0. Consequently, 𝑥 ↦ 𝐵𝑘(𝑥, 𝑦) can only fail to
be continuous at 𝑥 = 0. We therefore compare lim𝑥→0− 𝐵𝑘(𝑥, 𝑦)with 𝐵𝑘(0, 𝑦) = lim𝑥→0+ 𝐵𝑘(𝑥, 𝑦).
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6 of 9 HINDOV et al.

F IGURE 2 Indication of the values of 𝐵𝑘 in various regions separated by thick lines, when 𝑦1 > 0. The thin
dashed line indicates 𝑦 = 𝑥. The horizontal lines at 𝑦 ∈ {𝑦1, … , 𝑦𝑘} indicate the zero set of 𝐵𝑘 for 𝑥 in the convex
hull of {𝑦1, 𝑦𝑘, 𝑦}.

Assuming first that 𝑦 > 0, we obtain from Proposition 1(ii) that

lim
𝑥→0−

𝐵𝑘(𝑥, 𝑦) = −

𝑘∑
𝑛=1

𝑝𝑛(𝑦)
(−𝑦𝑛)

𝑘−1

(𝑘 − 1)!
𝟙𝑦𝑛<0,

lim
𝑥→0+

𝐵𝑘(𝑥, 𝑦) = −
(−𝑦)𝑘−1

(𝑘 − 1)!
+

𝑘∑
𝑛=1

𝑝𝑛(𝑦)
(−𝑦𝑛)

𝑘−1

(𝑘 − 1)!
𝟙𝑦𝑛>0.

By similar calculations for 𝑦 ⩽ 0, it therefore holds for all 𝑦 ∈ ℝ that

lim
𝑥→0−

𝐵𝑘(𝑥, 𝑦) − lim
𝑥→0+

𝐵𝑘(𝑥, 𝑦) =
(−𝑦)𝑘−1

(𝑘 − 1)!
−

𝑘∑
𝑛=1

𝑝𝑛(𝑦)
(−𝑦𝑛)

𝑘−1

(𝑘 − 1)!
.

As a function of 𝑦, the above right-hand side vanishes at each of the points 𝑦1, 𝑦2, … , 𝑦𝑘, and since
it is a polynomial of degree at most 𝑘 − 1, it must be identically equal to 0.
To establish (iv) for the case 𝑥 ⩽ 𝑦1, we note that the desired conclusion is immediate from

the definition of 𝐵𝑘 if 𝑥 < 0. For the remaining case, we fix 𝑥 so that 0 ⩽ 𝑥 ⩽ 𝑦1 and consider the
corresponding expression

𝐵𝑘(𝑥, 𝑦) = −
(𝑥 − 𝑦)𝑘−1

(𝑘 − 1)!
𝟙𝑦>𝑥 +

𝑘∑
𝑛=1

𝑝𝑛(𝑦)
(𝑥 − 𝑦𝑛)

𝑘−1

(𝑘 − 1)!
.

As a function of 𝑦, the sum in the above right-hand side is a polynomial of degree at most
𝑘 − 1. Moreover, it is equal to the polynomial (𝑥−𝑦)𝑘−1

(𝑘−1)!
at each 𝑦𝑛, and so, these polynomi-

als must coincide. This establishes the case 𝑥 ⩽ 𝑦1. For the case 𝑥 ⩾ 𝑦𝑘, the result follows by
analogous arguments.
To establish (v), we first note that by (i) and (iii), the function 𝑥 ↦ 𝐵𝑘(𝑥, 𝑦) is continuous for all

𝑦 ∈ ℝ and identically equal to zero for each 𝑦 ∈ {𝑦1, … , 𝑦𝑘}. Moreover, by (iv), 𝐵𝑘(𝑥, 𝑦) does not
change sign on the sets {(𝑥, 𝑦) ∶ 𝑥 ⩽ 𝑦1} and {(𝑥, 𝑦) ∶ 𝑥 ⩾ 𝑦𝑘}, respectively (cf. Figure 2). Therefore,
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A SHARP HIGHER ORDER SOBOLEV EMBEDDING 7 of 9

if 𝑥 → 𝐵𝑘(𝑥, 𝑦) changes sign for any fixed 𝑦∗ ∉ {𝑦1, … , 𝑦𝑘}, there must exist a point 𝑥∗ ∈ (𝑦1, 𝑦𝑘)

so that 𝐵𝑘(𝑥∗, 𝑦∗) = 0. In particular, this means that 𝑦 ↦ 𝐵𝑘(𝑥
∗, 𝑦) vanishes at the 𝑘 + 1 distinct

points {𝑦1, … , 𝑦𝑘, 𝑦
∗}. To show that this leads to a contradiction, we consider the cases 𝑥∗ ⩾ 0 and

𝑥∗ < 0 separately. In the first case, it holds that

𝑦 ⟼ 𝐵𝑘(𝑥
∗, 𝑦) = −

(𝑥∗ − 𝑦)𝑘−1

(𝑘 − 1)!
𝟙𝑦>𝑥∗ − 𝑄(𝑦),

where𝑄 is some polynomial of degree atmost 𝑘 − 1. Hence, by Lemma 1 and the remark following
it, this implies that the points {𝑦1, … , 𝑦𝑘, 𝑦

∗} are either all smaller than 𝑥∗ or all greater than 𝑥∗. In
particular, either 𝑦𝑘 ⩽ 𝑥∗ or 𝑦1 ⩾ 𝑥∗. This contradicts the assumption that 𝑥∗ ∈ (𝑦1, 𝑦𝑘). The case
𝑥∗ < 0may be treated similarly. □

2.2 Connection to a minimization problem that leads to the
Sobolev-type inequality (1)

Suppose that 𝑓 ∈ 𝑊𝑘,2
0
(−1, 1) and 𝐵𝑘(𝑥, 𝑦) as above. Then, we have

𝑓(𝑥) = ∫
1

−1

𝐵𝑘(𝑥, 𝑦)𝑓
(𝑘)(𝑦) d𝑦, 𝑥 ∈ ℝ.

Applying the Cauchy–Schwarz inequality, we obtain that

‖𝑓‖𝐿1(−1,1) ⩽ ‖‖‖𝑓(𝑘)‖‖‖𝐿2(−1,1)‖‖‖‖‖∫
1

−1

|𝐵𝑘(𝑥, 𝑦)| d𝑥‖‖‖‖‖𝐿2(−1,1;d𝑦)
=
‖‖‖𝑓(𝑘)‖‖‖𝐿2(−1,1)‖‖‖‖‖∫

1

−1

𝐵𝑘(𝑥, 𝑦) d𝑥
‖‖‖‖‖𝐿2(−1,1;d𝑦),

where the final equality is immediate from Proposition 2(v).
It follows from Proposition 1(i) that

𝑘!∫
1

−1

𝐵𝑘(𝑥, 𝑦) d𝑥 = (−𝑦)𝑘 −

𝑘∑
𝑛=1

(−𝑦𝑛)
𝑘𝑝𝑛(𝑦).

Since the polynomials 𝑝𝑛 are of degree 𝑘 − 1 and satisfy 𝑝𝑛(𝑦𝑚) = 𝛿𝑛𝑚, for 𝑛,𝑚 ∈ {1, 2, … , 𝑘},
the right-hand side of the above expression is a monic polynomial of degree 𝑘 with distinct zeros
𝑦1, 𝑦2, … , 𝑦𝑘. Sincewe can choose the zeros 𝑦1, 𝑦2, … , 𝑦𝑘 freely, anymonic polynomial with distinct
zeros can be obtained in this way. It follows that

‖𝑓‖𝐿1(−1,1) ⩽ ‖𝑓(𝑘)‖𝐿2(−1,1)𝑘!
min

𝑝 monic
deg 𝑝=𝑘

‖𝑝‖𝐿2(−1,1).
It is well known that the unique minimizers are given by the monic Legendre polynomials

𝑃𝑘(𝑦) =
𝑘!

(2𝑘)!

d
𝑘

d𝑦𝑘

[
(𝑦2 − 1)𝑘

]
.
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Since we could not find a convenient reference explaining this fact, we point out that the min-
imizing property in the 𝐿2(−1, 1) norm follows from the construction of the monic Legendre
polynomials as the orthogonalization of powers 1, 𝑥, 𝑥2, … on the interval−1 ⩽ 𝑥 ⩽ 1with respect
to the Lebesgue measure. From this, it follows that any monic polynomial 𝑝 of order 𝑘 can be
written in the form 𝑝(𝑥) = 𝑃𝑘 + 𝑐𝑘−1𝑃𝑘−1(𝑥) +⋯ + 𝑐0. Hence,

‖𝑝‖2
𝐿2(−1,1)

= ‖‖𝑃𝑘‖‖2𝐿2(−1,1) + 𝑘−1∑
𝑛=1

𝑐2𝑛
‖‖𝑃𝑛‖‖2𝐿2(−1,1).

Clearly, this expression is minimized by choosing 𝑐0 = 𝑐1 = ⋯ = 𝑐𝑘−1 = 0. Since the 𝐿2(−1, 1)
norm of the monic Legendre polynomial (see, e.g., [4]) is

‖‖𝑃𝑘‖‖2𝐿2(−1,1) =
⎛⎜⎜⎜⎝

𝑘!

(2𝑘 − 1)!!
√
𝑘 + 1

2

⎞⎟⎟⎟⎠
2

.

we conclude that,

‖𝑓‖𝐿1(−1,1) ⩽ 1

(2𝑘 − 1)!!
√
𝑘 + 1

2

‖‖‖𝑓(𝑘)‖‖‖𝐿2(−1,1).

2.3 Sharpness of the inequality in Theorem 1

While the proof of the sharpness of the inequality in Theorem 1 is implicitly contained in [2], we
provide a proof for the sake of completeness.

Lemma 2. For all integers 𝑘 ⩾ 0, we have equality in (1) if and only if 𝑓 is equal to a constant
multiple of the Landau kernel 𝐿𝑘(𝑥). In particular, the best constant of the equality is given by‖‖𝐿𝑘‖‖𝐿1(−1,1)‖‖‖𝐿(𝑘)𝑘

‖‖‖𝐿2(−1,1) =
1

(2𝑘 − 1)!!
√
𝑘 + 1

2

.

Proof. Recall that 𝐿𝑘(𝑥) = (1 − 𝑥2)𝑘. Writing 𝐿𝑘(𝑥) = (1 − 𝑥)𝑘(1 + 𝑥)𝑘, we obtain by repeated
integration by parts that

∫
1

−1

|𝐿𝑘(𝑥)| d𝑥 =
(𝑘!)2

(2𝑘)!

22𝑘+1

2𝑘 + 1
,

and moreover, that

∫
1

−1

(
𝐿
(𝑘)

𝑘
(𝑥)
)2

d𝑥 = (𝑘!)2
22𝑘+1

2𝑘 + 1
.
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We conclude that ‖‖𝐿𝑘‖‖𝐿1(−1,1)‖‖‖𝐿(𝑘)𝑘

‖‖‖𝐿2(−1,1) =
𝑘!

(2𝑘)!

√
22𝑘+1

2𝑘 + 1
=

1

(2𝑘 − 1)!!
√
𝑘 + 1

2

.
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