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“Tiger got to hunt, bird got to fly;  
Man got to sit and wonder ‘why, why, why?’ 

Tiger got to sleep, bird got to land; 
Man got to tell himself he understand.” 

 
 

- Kurt Vonnegut, Cat’s Cradle. 
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Abstract 

Each year as the seasons turn, the skies fill with millions of travellers. From the tundra 
to the tropics, birds embark on remarkable journeys guided by an innate programme 
and perform one of nature’s most remarkable phenomena: migration. In this thesis, I 
tackle the study of the genetic basis of migratory behaviour in several Phylloscopus 
species with a multimodal approach. Here, I combine geolocator data (Papers II, V and 
VI) with molecular analyses (Papers I, II, IV, V and VI), cytogenetics (Paper IV) and 
genomic exploration (Papers I, IV and V) in order to identify and dissect genomic 
regions that may influence the migratory phenotype. In Paper I, we described a repeat-
rich region (named MARB) that segregates across two migratory phenotypes of willow 
warblers P. trochilus with a high density of transposable elements (TEs) and other 
repetitive sequences. We developed a qPCR-based protocol that enabled us to genotype 
birds in further studies. In Paper II, we tracked 72 willow warblers throughout Sweden, 
overlapping the hybrid zone and genotyped them using the protocol from Paper I. We 
then studied the correlation between the migratory route (phenotype) and divergent 
genomic regions (genotype) in the willow warbler genome. In Paper III, we reviewed 
the current state of the field and provided hypotheses for the genetic basis of migratory 
traits across species. In Paper IV we generated a willow warbler karyotype to locate the 
MARB region, which explains most variation in migratory direction. We screened the 
genomes of two other migratory Phylloscopus taxa, the common chiffchaff P. collybita 
and the greenish warbler P. trohiloides, for comparative analyses. Such analyses also 
revealed a high amount of intact olfactory receptor sequences, posing the question of 
whether olfaction may play a role in migratory direction. In Paper V we combine 
geolocator data and genomic analyses in the closest relative to the willow warbler, the 
common chiffchaff, and we built a model that best explains the demographic history 
of two of its subspecies. In Paper VI we studied migratory differences between two 
chiffchaff species which are sister taxa, the Iberian chiffchaff P. ibericus and the 
common chiffchaff, which occur in northern Spain. We use pressure geolocators which 
provide us with high-resolution tracks, allowing for a more detailed comparison of their 
very distinct migratory behaviour. Hence, my thesis constitutes a big leap in the 
understanding of the proximal mechanisms behind migratory behaviour in birds, 
especially in relation to complex genomic regions and migratory routes.  
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Popular science summary 

The year was 1822. As every other morning, the white stork watched the first rays of 
sun flare out over the Congo Basin. Yet this day felt different. Thermal updrafts were 
powerful, the stork had been eating for long enough, and despite the annoying wooden 
stick stuck in its neck, it felt the urge to ascend in the skies. Joining others of its kind, 
the stork initiated a long journey across the vastness of the Sahara and over the 
Mediterranean Sea, back to the valley in Central Europe where it had been born. When 
nearing the familiar landscapes of home, the last thing the stork heard was a loud blow, 
and then everything turned black. This stork was pierced twice, once in Africa by 
hunters with a spear, and once again in Germany by villagers with a rifle. The unlucky 
bird, without knowing it, had just proved migration between continents.  

Ever since, scientific ringing, the use of radar, radio transmission and satellite tracking 
have greatly improved our understanding of the impressive journeys migratory birds 
undertake. Some migrants, like the white stork, travel in flocks and rely on social 
learning from experienced individuals to reach wintering grounds. However, it remains 
a mystery to us how an 8-gram bird, resembling a fluffball, flies alone for thousands of 
kilometres to a place where it has never been before. When did this hatchling learn to 
climb to a height of 4500 meters in the sky before a storm? How can it fly for 37 hours 
non-stop across a desert, or over the sea? How can this solitary migrant read the stars? 
And most impressively, how does it know where to go for the first time? The answer 
lies in its DNA.  

In this thesis, I studied several species of Phylloscopus warblers, small, greenish songbirds 
that migrate thousands of kilometres. I combined geolocators (small devices that record 
the birds’ positions) with genomic analyses, molecular methods, and chromosome 
mapping to investigate how genetic information translates into a migratory route. I 
described a repetitive region in the genome of these migrants that sorts them into 
different migratory directions. Interestingly, such region is also full of olfactory receptor 
genes. This opens the question of whether birds can “smell their way” to wintering 
grounds. By comparing patterns between species, this work shows that, although 
migration is an ancient phenomenon, it might have evolved in a very flexible way. This 
flexibility could be possible due to regulatory mechanisms that allow the birds to 
develop different migration routes without necessarily rewriting the genetic code.  
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Texto de divulgación científica 

Corría el año 1822. Como cualquier otra mañana, la cigüeña blanca observó los 
primeros rayos de sol expandirse sobre la cuenca del Congo. Pero ese día se sentía 
diferente. Las corrientes térmicas eran poderosas, había comido suficiente y a pesar del 
molesto palo de madera clavado en su cuello, sentía el impulso de ascender en el cielo. 
Uniéndose a otras de su especie, la cigüeña inició un largo viaje a través de la inmensidad 
del Sahara, sobre el mar Mediterráneo y de regreso al valle en Europa Central donde 
había nacido. Cuando sobrevolaba paisajes familiares, ya casi al final de su viaje, la 
cigüeña escuchó un disparo y todo se volvió negro. Esta ave fue alcanzada por dos 
proyectiles: una lanza en África que la hirió, y una bala en Europa que la mató. Sin 
saberlo, la desafortunada cigüeña acababa de demostrar la migración entre continentes. 

Desde entonces el anillamiento científico, el uso de radares y localizadores que 
funcionan con señales de radio o satélite han mejorado nuestra comprensión de los 
impresionantes viajes que emprenden las aves migratorias. Algunos migrantes como 
aquella cigüeña blanca viajan en bandadas y aprenden siguiendo a individuos 
experimentados para llegar a las zonas de invernada. Sin embargo, sigue siendo un 
misterio como un pajarillo de 8 gramos del tamaño de una pelusa, vuela solo durante 
miles de kilómetros hacia un lugar donde nunca ha estado. ¿Cuándo aprendió a 
ascender a 4500 metros de altura antes de una tormenta? ¿Cómo puede volar durante 
37 horas sin parar, cruzando mares y desiertos? ¿Cómo puede este migrante solitario 
orientarse con las estrellas? Y lo más intrigante para mí: ¿cómo sabe a dónde ir por 
primera vez? La respuesta está en su ADN.  

En esta tesis he estudiado varias especies de mosquiteros del género Phylloscopus, 
pequeños pájaros marrón-verdoso que migran miles de kilómetros. He combinado 
rastreo con geolocalizadores (pequeños dispositivos que registran la posición del pájaro) 
y análisis genómicos, métodos moleculares y mapeo cromosómico para investigar cómo 
la información genética se materializa en la ruta migratoria. Descubrí una región 
repetitiva en el genoma que influye la dirección de migración y curiosamente, dicha 
región contiene muchos genes de receptores olfativos. Esto nos hace plantearnos si estas 
especies pueden “oler” su camino hacia las zonas de invernada. Al comparar entre 
especies, mi tesis muestra que, siendo la migración un proceso muy antiguo, podría 
haber evolucionado de manera muy flexible. Esta flexibilidad sería posible gracias a 
mecanismos reguladores que permiten a las aves desarrollar diferentes rutas sin 
necesidad de reescribir el código genético.  
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Introduction  

Migration is an extraordinary phenomenon widespread across many animal groups, 
including fish (Thorpe, 1988), reptiles (Avise & Bowen, 1994), insects (Warrant et al., 
2016), mammals (Williamson et al., 1988), and, at a smaller scale, even amphibians 
(Semlitsch, 2008). It enables individuals to exploit favourable conditions for survival 
and reproduction year-round (Winger et al., 2019). But migratory birds are especially 
captivating to us, given the diversity of routes they display and the journeys they 
perform. A striking example is the Arctic tern Sterna paradisaea, which yearly flies more 
than 80,000 km between both poles, undertaking the longest recorded migratory 
journey (Egevang et al., 2010). Equally impressive, the bar-tailed godwit Limosa 
lapponica performs the longest non-stop known migratory flight from Alaska to New 
Zealand, covering more than 11000 km (Battley et al., 2012).  

To perform such migratory feats, birds have developed a set of integrated adaptations 
collectively referred to as the migratory syndrome (Dingle, 2006). Broadly, these 
comprise endogenous clocks for accurate timing (Gwinner & Helm, 2003), navigation 
systems based on the position of the sun (Muheim et al., 2018), the stars (Emlen, 1975) 
and the Earth’s magnetic field (Wiltschko & Wiltschko, 2002), as well as metabolic 
mechanisms for endurance flights, efficient fuel deposition (McWilliams & Karasov, 
2001) and behavioural strategies for optimal migration (Hedenström, 2007).   

Extensive evidence shows that the genetic basis of the expression of this complex 
behaviour is likely quantitative and follows a single threshold model (Pulido, 2011). 
Originally, this model was proposed by Wright (1934) and later applied to bird 
migration by Pulido et al. (1996). It poses that an underlying, normally distributed 
continuous trait called “liability” (in this case, a set of genetic mechanisms), influences 
a binary trait (migration/residency). When an individual’s liability exceeds a threshold, 
the migratory phenotype is expressed (Figure 1). These thresholds are not fixed and 
depend on both environmental and genetic stimuli. 
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Figure 1. Adapted from Pulido (2011). This illustration depicts the environmental threshold model of 
migration for a given trait. The trait shown is migratory propensity in a partially migratory population, 
defined by a threshold that is not fixed but responsive to the environment. A population of facultative 
migrants might remain resident if they are below the threshold. Environmental cues such as, for example, 
an unusually cold autumn, can shift this threshold to the left and induce migratory behaviour in individuals 
that would otherwise remain sedentary.  

 

This model defines migration as a highly dynamic, adaptable strategy. However, if 
migratory traits are not expressed for extended periods, how does selection maintain 
them in a population? In other words, how can a resident bird retain the ability to 
migrate if the species has not done so for thousands of years? 

From a molecular perspective, this is possible because the genetic machinery for 
migratory behaviour can coexist with resident behaviour within a species (Pulido & 
Berthold, 2003). Many genes involved in migration have functional significance in 
other ecological contexts (Dingle, 2006). For instance, genes that have been associated 
with migration such as CLOCK and ADCYAP1 may play roles in seasonal timing and 
behavioural plasticity while also being used in resident species (Mueller et al., 2011; 
Lugo Ramos et al., 2017). This flexibility allows birds to switch between migratory and 
sedentary lifestyles within a few generations. This was empirically demonstrated by 
Pulido et al. (1996) who selected for resident and migratory behaviour in blackcaps 
Sylvia atricapilla through breeding experiments, and showed high heritability for 
migratoriness and timing of migration.  

Field evidence also supports this evolutionary plasticity. For instance, cattle egrets 
Bubulcus ibis ibis colonised North America in the late 19th century and have since then 
developed both resident and migratory populations (Browder, 1973). Migratory 
common quails Coturnix coturnix seem to have colonised the Azores archipelago more 
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than 0.8 mya, where they became resident (Ravagni et al., 2023). Similarly, house 
finches Carpodacus mexicanus in western North America are sedentary, but they rapidly 
became migratory after being introduced to the East Coast (Able & Belthoff, 1998). 
Ecological niche modelling across many long-distance migrants in North America 
further supports this flexibility, showing that species can change between sedentary and 
migratory strategies in each glacial cycle (Zink & Gardner, 2017). However, this 
pattern is not general across the world. Species distribution models combined with the 
fossil record indicate that Eurasia-Africa migration was not interrupted in many species 
during the last glaciation. This discrepancy is likely due to differences in the 
distribution of ice sheets between America and Eurasia (Ponti et al., 2020). 

Regardless of the migratory flyway (across the American Continent or Eurasia to 
Africa), the literature underscores that partial migration, i.e. the existence of both 
migratory and resident individuals in a population, is a necessary intermediate state in 
the switch between residency and migration (Berthold et al., 1990; Pulido et al., 1996; 
Berthold, 1999; Bensch et al., 2023). Nevertheless, how migration has emerged might 
differ across species. 

How it started: evolutionary pathways that led to the 
current migratory diversity 

Phylogenetic research shows that migratory behaviour in birds is a polyphyletic trait 
that has evolved multiple times independently (Winger et al., 2012; Dufour et al., 
2020). This repeated evolution is likely a response to common selection pressures such 
as seasonality and competition (Cox, 1985; Helbig, 2003; Outlaw & Voelker, 2006). 
However, the ultimate causes that triggered migration for the first time are a subject 
under debate.  

To understand why birds migrate, we must begin with the well-established observation 
that most migrants breed in seasonal environments (Somveille et al., 2018; Winger et 
al., 2019). The literature broadly categorises them into two groups regarding the 
conditions they experience in a yearly cycle: “niche trackers” and “niche switchers” 
(Gómez et al., 2016). Niche trackers seek out similar environmental conditions year-
round (Fandos et al., 2020). A study comprising more than 100 New World passerines 
showed that migrants tend to track conditions more consistently than residents (Gómez 
et al., 2016). An example of this is the Swainson’s flycatcher Myiarchus swainsoni whose 
seasonal movement closely matched the predictions from a temperature-based model 
(Joseph & Stockwell, 2000). In contrast, niche switchers winter in climates different 
from those in their breeding grounds, as is the case with the Magnolia warbler 
Dendroica magnolia (Nakazawa et al., 2004). This pattern is also supported in broader 
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datasets: Dufour et al. (2020) performed a comprehensive phylogenetic analysis 
including nearly all extant bird species and showed that migratory species, especially 
long-distance migrants, often winter in warmer climates than would be expected if they 
were true niche trackers. Overall, the literature suggests that strategies vary and are 
taxon-specific, and that more complex ecological niche modelling is needed to make 
accurate predictions.  

As for the question of where migration originated, the answer is equally complex, and 
there are two main competing paradigms in this regard. The northern-home 
hypothesis, initially proposed by Bell (2000), sustains that migration evolved from 
temperate to tropical latitudes as birds shifted wintering grounds to escape harsh 
conditions. This hypothesis also integrates the notion that partial migration (Berthold, 
1999) is necessary for the species to transition from sedentary to long-distance migrant 
states. Fully migratory populations then emerge in either of two ways: 1) the extinction 
of sedentary behaviour in part of the breeding range due to harsh conditions, or 2) the 
colonisation of migrants from highly seasonal areas that outcompete the sedentary 
individuals. In contrast, the “southern home hypothesis,” which is the most widely 
accepted, states that tropical species, also driven by competition, evolved migration to 
exploit seasonally available resources in higher latitudes (Levey & Stiles, 1992). 

However, the selection pressures shaping the current patterns are likely more diverse. 
Salewski and Bruderer (2007) propose a migration-dispersal theory where, parting from 
a resident population, selection for better breeding grounds drives post-breeding 
dispersal. Simultaneously, individuals reaching new grounds that are unsuitable outside 
the breeding season will evolve regular migration under the threshold model. However, 
the origin appears to be different in each family depending on their unique evolutionary 
histories and ecological pressures (Dufour et al., 2020). For example, migration in 
Anseriformes seems to have tropical origins, in contrast to Charadriiformes, where they 
seem to have started migrating from temperate areas (Figure 2).  

 
Figure 2. Hypotheses of the origin of migratory behaviour across different avian orders. Anseriformes 
(left) seem to have developed migration from tropical latitudes during the lower Miocene. Charadriiformes 
(right) started migrating from temperate latitudes during the upper Miocene (Dufour et al., 2020).  
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In the case of passerines, it is particularly striking that although most extant species 
(85%) are resident, phylogenetic analyses provide strong support for their common 
ancestor to be a long-distance migrant. It is suggested that current migratory patterns 
are most likely due to repeated loss of migratory behaviour which facilitated rapid 
radiation from two main centres of origin in South America and Australia 40 to 50 mya 
(Dufour et al., 2020).   

Mechanisms shaping migratory routes: learning versus 
genetic programs  

To complete a migration cycle, birds rely on both their innate genetic programme and 
a learning process (Pulido & Berthold, 2003; Yoda et al., 2017; Abrahms et al., 2021; 
Züst et al., 2023). The relative influence of genetic mechanisms and learning in 
migratory behaviour follows a spectrum that varies across species and has been a topic 
of debate for a long time (Lack, 1968; Piersma et al., 2005).  

Juveniles of species that are typically long-lived and social, rely on experienced 
individuals to successfully migrate (Teitelbaum et al., 2016). Soaring migrants (those 
leveraging thermals to fly) also rely more on visual cues from topography and seem to 
benefit from social information provided by experienced conspecifics, for instance, to 
cross barriers (Panuccio et al., 2012). An iconic flag species that illustrates learning 
strategies is the white stork Ciconia Ciconia. Juveniles naturally migrate in large 
conspecific flocks together with experienced adults but are unable to reach wintering 
grounds when displaced (Chernetsov et al., 2004). Similar experiments in black-tailed 
godwits Limosa limosa limosa, claim that translocated juvenile birds have more similar 
migratory routes to those of their foster population, than their origin population and 
therefore heavily rely on social cues to migrate (Loonstra et al., 2023). This species 
forages, roosts and migrates in groups (Piersma et al., 1990) and consequently social 
influence is expected to be large. However, there are several caveats to consider. First, 
translocation was conducted between populations that followed a similar south-
westerly direction, masking any potential genetic effects on orientation. Second, 
translocated individuals show greater variation than birds from either population. In 
fact, a translocated bird reached the same wintering grounds as its source population. 
This variation was even more evident in spring migration, hinting at individual 
differences unlikely to be explained by social influence alone.  

On the opposite end of the spectrum of migratory strategies, solitary species (many of 
them songbirds) that fly mostly at night are often considered the epitome of genetically 
determined routes (Berthold & Helbig, 2008). A famous representative of this group 
is the common cuckoo Cuculus canorus which, despite being raised by other species, 



22 

still reaches their species-specific wintering grounds without conspecific guidance (Vega 
et al., 2016; Thorup et al., 2020). However, recent discussions re-evaluate this view, 
claiming that the co-occurrence of songbird species during migration sets the grounds 
for inter-specific interactions through calling, which could potentially influence 
migratory routes (Aikens et al., 2022; Van Doren et al., 2025). It has been previously 
observed that indeed, calls from other species provide valuable information and can, 
for instance, influence breeding site choice once migration is completed (Szymkowiak 
et al., 2017). However, the extent to which different species influence each other 
remains unclear. Studies in the Palearctic system show that the those who indeed utter 
flight calls during migration are mostly Turdus species (Hüppop & Hilgerloh, 2012) 
and some Emberiza buntings. Up to 50% of nocturnally migrating passerines remain 
undetected by acoustic monitoring despite being recorded by radar (Weisshaupt et al., 
2024). Some of the taxa that rarely call during night migration are the Old World 
flycatchers (Muscicapidae) and Old World warblers (Sylviidae) (Farnsworth, 2005), 
perhaps to avoid predation (Alerstam, 2009). Thus, it is difficult to envision how the 
many solitary species that reportedly produce no calls during migration nights rely on 
each other to reach a destination.  

But the evolutionary processes behind complex traits are seldom black or white and 
there are several examples showing that many species, especially long-lived ones, could 
rely on both learning and genetic programming to migrate. For instance, juveniles of 
streaked shearwaters Calonectris leucomelas follow an innate southward orientation 
crossing landmasses in their first migration, whereas adults make detours that allow 
them to fly over water, overriding compass navigation (Yoda et al., 2017). Similarly, 
only a few translocated juvenile lesser spotted eagles Clanga pomarina from Latvia to 
Germany successfully reached wintering grounds (Meyburg et al., 2017). Yet, most 
translocated individuals headed south, which is where the Bosphorus crossing would 
have been if they had parted from their source populations in Latvia. Many then 
perished in the Mediterranean crossing, and this is interpreted by the authors as 
evidence of the importance of observing experienced individuals during migration. This 
argues for an inherited sense of direction. In line with this, hybrids between lesser 
spotted eagles and greater spotted eagles C. clanga inherited timing from C. pomarina 
but reached the wintering grounds of C. clanga, highlighting the genetic determination 
of these traits (Väli et al., 2018). These examples illustrate that migration strategies 
often emerge from the complex interplay between genetic programming and learning 
through experience or social interactions. 
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The genetics behind different migratory traits: a lack of 
consensus  

The earliest proof of genetic determination of migratory behaviour was obtained in 
common garden experiments on the well-studied blackcaps, where migratory traits such 
as incidence, direction, timing and intensity can be selected for across a few generations 
(Helbig, 1991; Pulido et al., 1996; Berthold, 1999; Berthold & Helbig, 2008).  

Since then, the progressive miniaturisation of tracking methods combined with the 
advancements in sequencing technologies has enabled numerous correlational studies 
in wild populations. A particularly informative approach has been the study of hybrid 
zones where populations with distinct migratory behaviours interbreed, forming 
migratory divides (Helbig, 1991; Veen et al., 2006; Delmore & Irwin, 2014). These 
constitute natural crossbreeding experiments that can be explored to uncover the 
genetic architecture and inheritance patterns of different migratory traits. 

To illustrate this, the tracking and sequencing of hybrid individuals of Swainson’s 
thrushes Catharus ustulatus show that SNPs in chromosome 4 associate with wintering 
longitude (Delmore & Irwin, 2014; Delmore et al., 2016). In contrast, this trait 
associates with the VPS13A gene in two species of Vermivora warblers (Toews et al., 
2019). The blackcap system has yielded surprisingly little in terms of fixed 
polymorphisms associated with traits in the spectrum of migratory populations 
(Delmore et al., 2020), perhaps due to recent diversification (Pérez-Tris et al., 2004). 
However, recent studies suggest a possible role of structural variants in chromosome 27 
on migratory direction (Delmore et al., 2023).  

Regarding timing, which is largely heritable (Lamers et al., 2023), increased 
methylation of the photoperiodic CLOCK genes predicted spring migration phenology 
in barn swallows Hirundo rustica (Saino et al., 2017). In American kestrels, Falco 
sparverius, though, different CLOCK-linked genes correlate with migratory timing 
(Bossu et al., 2022). An association between the ADCY8 gene and migratory distance 
in peregrine falcons Falco peregrinus suggests a role of long-term memory in the 
establishment of longer migratory routes (Gu et al., 2021). 

The repertoire of genetic signatures behind different traits (Table 1) has led researchers 
to challenge the long-held hypothesis of a common genetic basis. Instead, attention is 
shifting toward the study of regulatory mechanisms over coding polymorphisms 
(Delmore et al., 2020; Louder et al., 2024). In line with this, a recent study comparing 
different populations of Common Yellowthroat Geothlypis trichas across North 
America, found that most identified loci were in non-coding regions of time-keeping 
genes (Zamudio-Beltrán et al., 2025). Interestingly, selection seems to target the same 
regions across populations, but the SNPs involved within each region differ, showing 
convergence at a finer scale to modulate migration.  
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Table 1. Representative bird studies that attempt migratory phenotype-genotype associations.  

Species Trait Genetic 
region(s) 

Function Methods 

Blackcap 
Direction, 
migratory 
activity 

Chromosome 27, 

CLOCK gene 

Regulatory, 
neuropeptide 
synthesis, 
circadian rhythms 

Tracking, 
genomic 
analyses, 
microsatellite 
typing 

Vermivora 
warblers 

Wintering 
longitude VPS13A gene Unknown in birds 

Tracking, 
genomic 
analyses 

Swainson’s 
Thrush 

Wintering 
longitude, 

Migratory 
activity 

Chromosome 4, 

gad1, 
Clock-controlled 
gene 

Tracking, 
genomic 
analyses, 
expression 
analyses 

Willow warbler Direction, 
distance 

InvP in 
Chromosomes 1 
and 5 

Lipid metabolism  

 

SNP array 
genotyping, 
whole-genome 
resequencing 

Peregrine falcon  Distance ADCY8 Long-term memory Satellite tracking, 
sequencing 

Barn swallow Timing CLOCK POLY-Q 
Transcriptional 
trans-activation 
domain 

Methylation 
analyses 

American 
Kestrel Timing top1, phlpp1, 

cpne4, peak1 
Clock regulator-
light input pathway RAD-seq 

White-crowned 
sparrow 

Migratory 
incidence 

GLUT1, heat 
shock protein 
family* 

Glucose 
transporter, 
unfolded protein 
response 

Expression 
analyses 
(microarray) 

Common 
Yellowthroat Timing 

Npas3, bmal, 
gria2, camk4, 
ntrk2, hivep2 * 
… 

Clock regulator-
light input and 
metabolic pathway 

Genomic 
analyses 

*For a complete list of genes, see Zamudio-Beltrán et al. (2025) and Jones et al. (2008).  
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Navigation: an intriguing ability  

One of the most captivating traits in solitary migrants is navigation, as it enables a 
juvenile bird without prior experience to follow a specific direction with remarkable 
determination and accuracy. It has been hypothesized that birds can do this relying on 
either of two orientation strategies, known as “clock and compass” and “goal-area 
navigation”. Understanding which strategy birds employ helps us answer a fundamental 
question: do birds inherit a detailed internal map or just a set of navigational cues?   

The clock and compass model states that young birds rely on an innate program 
indicating direction and length of journey, without any knowledge of a goal area. 
Therefore, they inherit a vector, or a set of time-specific vectors. This was shown in a 
classic and prominent experiment on common starlings Sturnus vulgaris (Perdeck, 
1958) where 11000 birds were displaced southeast during autumn migration, 
perpendicular to their trajectory. Only adults compensated for the displacement and 
reached their wintering grounds, whereas juveniles ended up in more southerly 
latitudes. This was later challenged (Piersma et al., 2020) with the criticism that 
Perdeck did not account for the possibility that the translocated juveniles could be 
guided by local adults, which would rule out the inherited cues. However, shortly after, 
Pot et al. (2024) analysed historical recovery data and provided strong evidence that 
juveniles did not follow adults nor local birds after displacement, supporting the 
inherited vector navigation. For several decades now, evidence for inherited restlessness 
(correlated with distance) and specific direction cues is well established (Berthold, 
1973; Helbig, 1991). Further experiments show that birds use magnetic cues 
(Kishkinev et al., 2015), celestial rotation (Emlen, 1970), and their combined 
integration (Able & Able, 1990) to calibrate this compass sense.  

The goal-area navigation hypothesis, also known as “true navigation” by Rabøl (1978), 
proposed that a specific goal point is inherited, a safer and more precise mechanism for 
the bird itself. Proving this concept unequivocally is quite challenging, as it would 
require egg translocation experiments in solitary migrants, in order to avoid maternal 
effects or potential imprinting at the birthplace. Nevertheless, satellite telemetry in 
wandering albatrosses Diomedea exulans shows that they were able to navigate as good 
as adults (Åkesson & Weimerskirch, 2005). Similarly, satellite tracks of common 
cuckoos show that both juveniles and adults corrected for displacement towards their 
goal area (Thorup et al., 2020).  

The clock and compass model of inheritance might appear more intuitive and simpler, 
but it raises evolutionary questions. The rapid changes in migratory routes that many 
migrants have experienced since the last glaciation (Hull & Girman, 2005; Gu et al., 
2021) would require equally rapid changes in the underpinning genetic mechanisms. 
This is possible under a quantitative basis model as populations could adjust routes 
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relatively quickly by shifting allele frequencies across many loci. However, direction 
specifically seems to be controlled by a few loci that follow Mendelian inheritance 
(Helbig, 1991; Väli et al., 2018; Sokolovskis et al., 2023), where changes depend on 
rare mutations on major-effect alleles. Therefore, the rapid changes in migratory 
direction that some species experience could seem hard to understand. For instance, 
novel northwestern directions have been recorded in blackcaps that recently started 
wintering in England (Berthold et al., 1992), and barn swallows changed timing and 
orientation in less than 35 years and now breed in Argentina (Winkler et al., 2017). In 
addition, presumably novel southwestern routes are being established by Richard’s 
pipits Anthus richardi, (Dufour et al., 2021). Nevertheless, there is a possible 
explanation behind such shifts: phylogenetic analyses show that quick changes in 
direction might need a state of residency to exist, whereas strict, long-distance migrants 
are unlikely to develop novel routes (Bensch et al., 2023). This is because residents can 
experience relaxed selection in the locus behind orientation, allowing alternative alleles 
to persist. When environmental conditions change, these alleles can change in 
frequency, leading to a “novel” direction. This hypothesis supports the idea of an 
evolutionarily constrained migration program in strict migrants (Liedvogel et al., 2011) 
while acknowledging relatively rapid direction shifts. 

Altogether, it is worth mentioning that while “clock and compass” and “goal-area 
navigation” are often presented as opposing hypotheses, there is likely an integration of 
both systems in solitary migrants. During the first migration, direction might be innate, 
but this can be overruled by navigation towards a goal once it has been experienced 
(Thorup et al., 2007; Yoda et al., 2017). 



27 

Aims 

Despite the advancements in the field of bird migration, many questions remain 
unanswered regarding the genetic underpinnings of migratory traits. In a broad sense, 
the migratory behaviour has a quantitative genetic basis, but some of the traits involved 
seem to be the result of few loci or genetic elements of strong effects that, integrated, 
give rise to the migratory routes. The diversity of mechanisms proposed in the literature 
highlights the complexity of the migratory behaviour, and gene regulation or structural 
variation are rapidly gaining attention. The study of hybrid zones between closely 
related taxa with different migratory phenotypes provides an ideal natural framework 
to establish phenotype-genotype associations. To this end, I leverage several Phylloscopus 
species breeding in Europe, which display distinct migratory routes.  

Two willow warbler subspecies with divergent migratory routes inhabit Sweden and 
meet in migratory divides around the Baltic (Hedenström & Petterson, 1987; Bensch 
et al., 1999; Lundberg et al., 2017). Before my studies, it was known that their genomes 
were virtually undifferentiated except for three divergent regions within inversion 
polymorphisms (InvP) in chromosomes 1, 3, and 5 (Lundberg et al., 2017) though 
only InvP1 and InvP5 are related to migration (Larson et al., 2014). In addition, a 
marker identified by AFLP (Amplified Fragment Length Polymorphism) had highly 
different frequencies in the two migratory phenotypes (Bensch, Åkesson, et al., 2002; 
Bensch et al., 2009). Similarly, ringing data suggested that two chiffchaff subspecies 
show parallel migratory directions to those exhibited by willow warbler subspecies and 
that these would also form hybrid zones on both sides of the Baltic Sea. Using these 
systems, the aims of this thesis are: 

 

1. To identify and describe genomic regions influencing migratory behaviour 

In Paper I we explore the AFLP-derived marker (previously known as WW2) to 
describe a complex, repeat-rich region, later known as MARB (Migration Associated 
Repeat Block) that associates with migratory phenotypes in the willow warbler. Due to 
a high GC and repeat content, this region is challenging to assemble. We combine 
genomic and molecular data to discern whether MARB is physically linked to any of 
the other divergent regions in the genome or is, instead, an independent locus.  
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2. To establish phenotype-genotype correlations in migratory traits 

In Paper II, we use tracking data from 72 willow warblers across both subspecies’ ranges 
and the migratory divide together with molecular methods, in order to establish 
phenotype-genotype correlations. We aim to assess the influence of candidate loci 
(MARB and the inversions on chromosomes 1 and 5) on several migratory traits and 
determine their inheritance pattern.  

 

3. To synthesize current knowledge and develop hypotheses on the evolution 
of genetic mechanisms behind migratory traits 

With the improvements of sequencing technologies, regions that have been 
traditionally overlooked can now be considered as candidates for migration traits. In 
Paper III, we aim to highlight the importance of such complex regions to study traits 
in the context of the current literature. We intend to propose hypotheses on how such 
regions and regulatory mechanisms, rather than just coding polymorphisms, can act as 
regulatory switches and influence migratory traits.  

 

4. To generate and analyse a willow warbler karyotype to locate a complex 
region underpinning migratory direction, and to investigate homology across 
closely related taxa.  

In Paper IV, we intend to visualise the chromosome location of MARB on a willow 
warbler karyotype to confirm that it is a single locus and estimate the length of this 
region. Leveraging on improved genome assemblies, we intend to characterize the 
genetic elements present in MARB and to understand how widespread it is across the 
Phylloscopus tree. For that, we investigate the greenish warbler (a basal taxon), and a 
sister species to the willow warbler, the common chiffchaff. 

 

5. To investigate the divergence of MARB across migratory phenotypes in other 
species. 

In Paper V, we aim to understand if MARB also diverges across chiffchaff subspecies 
that migrate differently. We hypothesize that, although different species seem to diverge 
in the genetic mechanisms behind migratory traits, the willow warbler and the common 
chiffchaff might share commonalities given that they are closely related.  
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6. To investigate migratory strategies across species and set the grounds for 
future phenotype-genotype studies 

In Paper VI, we aim to establish the basis for studying the genetics behind migratory 
traits in two hybridising sister chiffchaff species. For that, we track common chiffchaffs 
and Iberian chiffchaffs which are presumed to diverge in migratory distance. We 
investigate how different challenges related to being short or long-distance migrants 
have led to divergent migratory strategies. 

 

 
Willow warbler perching on an oak tree. Artist: Elsie (Ye Xiong).  
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General methodology 

Study species 

Two Phylloscopus species that breed in Sweden 

Two Phylloscopus warbler species, the willow warbler P. trochilus and the common 
chiffchaff P. collybita breed around the Baltic Sea in abundant numbers and display 
parallel migratory phenotypes. This makes them ideal candidates to perform 
comparative migration studies.  

The willow warbler is a long-distance migrant with two subspecies breeding in Sweden. 
The southern subspecies, also common throughout central Europe, P. t. trochilus, is 
generally smaller with a shorter wing length, presents an overall yellower plumage tone 
and follows a western migratory route to West Africa. In contrast, the northern 
subspecies which spreads further east into Russia, P. t. acredula, is larger, more long-
winged and greyer, and migrates eastward towards East and Southern Africa 
(Hedenström & Petterson, 1987; Chamberlain et al., 2000).  

Despite these average differences in plumage and size, the two subspecies show 
substantial overlap (Bensch et al., 2009) and so their distinct migratory routes 
constitute the main phenotypic difference between them. Trochilus and acredula meet 
and interbreed without signs of assortative mating (Liedvogel et al., 2014), forming at 
least three hybrid zones and migratory divides (Figure 3), one in central Scandinavia, 
one east of the Baltic (Bensch et al., 2009) and one in the Åland archipelago (Andersson 
et al., 2024). The narrowness of these contact zones despite the random mating suggests 
potential selection against hybrids, perhaps due to maladapted migration routes (Zhao 
et al., 2020).  
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Figure 3. Willow warbler distribution map showing breeding grounds (green) and wintering grounds 
(blue). Migratory divides are depicted as dashed lines on both sides of the Baltic. The western routes of 
trochilus are depicted in brown, and the eastern routes of acredula are depicted in grey. The subspecies 
acredula is replaced in central Siberia by the subspecies yakutensis, which also winters in southern Africa 
(Sokolovskis et al., 2018). The picture shows both phenotypes side by side (trochilus to the left and 
acredula to the right). Photo: Harald Ris.  

 

Previous studies identified three divergent regions between trochilus and acredula birds 
(Bensch, Åkesson, et al., 2002; Bensch et al., 2009; Lundberg et al., 2017). By mapping 
re-sequenced individuals to a short-read Illumina reference genome, the authors could 
identify the highly differentiated regions resulting from three inversion polymorphisms 
(InvP) in chromosomes 1 (11.6 Mb), 3 (13.2 Mb) and 5 (4.0 Mb). However, only the 
inversions in chromosomes 1 and 5 strictly segregate with the two migratory 
phenotypes. Another region that showed differentiation was an AFLP-derived marker 
named WW2 (Bensch, Åkesson, et al., 2002; Bensch et al., 2009) that occurs in narrow 
clines across migratory divides but failed to be detected in the Illumina genome.  

The common chiffchaff split from the willow warbler lineage approximately 5 million 
years ago (Alström et al., 2018). It is described as part of a cryptic species complex, 
presently containing at least eight taxa with species or subspecies status (Clement & 
Helbig, 1998; Alström et al., 2018; Rheindt et al., 2025). It is considered to be a 
facultative migrant as a fraction of individuals in some populations spend the winter in 
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breeding grounds, whereas others are medium and long-distance migrants (Hahn et al., 
2009; Lampila et al., 2009). Two subspecies breed in Scandinavia, P. c. collybita in the 
south (and most of continental Europe) and P. c. abietinus in the north (and East 
towards the Ural Mountains). They present subtle plumage and biometric differences 
(Hansson et al., 2000) and ringing recoveries suggest that collybita birds have a more 
western component in their migratory route, whereas abietinus follow an eastern route 
(Lindström et al., 2007). Like willow warblers, these chiffchaff subspecies meet in two 
contact zones (Figure 4), both in South-central Scandinavia and East of the Baltic 
(Hansson et al., 2000). However, the densities in the Swedish contact zone are still low 
as collybita birds have been recently colonising Sweden from the south (Lindström et 
al., 2007). 

 
Figure 4. Common chiffchaff distribution map showing breeding grounds (green) and wintering grounds 
(blue). Migratory divides are depicted as dashed red lines on both sides of the Baltic. Collybita directions 
are depicted in green arrows and abietinus directions are depicted in grey arrows. Dashed orange lines 
show the split between breeding ranges of abietinus and tristis subspecies, which winters in India (Salvin 
& Strickland, 1882). The picture shows both phenotypes side by side (collybita to the left and abietinus 
to the right). Photos: Michaëla Berdougo. 

 

In contrast to the willow warbler subspecies that do not differ in mtDNA (Bensch et 
al., 1999) the two chiffchaff subspecies carry slightly divergent (0.7%) mitochondrial 
haplotypes (Helbig et al., 1996; Raković et al., 2019). A study based on sequences from 
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three nuclear loci failed to find any difference between collybita and abietinus (Bensch 
et al., 2006) but whether this low level of divergence is representative for the rest of the 
genome was not known at the start of my studies.   

Two Phylloscopus that breed in Spain 

In the Iberian Peninsula, the common chiffchaff (subspecies collybita) and the Iberian 
chiffchaff Phylloscopus ibericus (Figure 5) have distinct breeding grounds. Collybita birds 
have a dispersed breeding distribution mostly restricted to the northern plateau and the 
Pyrenees (Balmori et al., 2002; Shirihai & Svensson, 2018), whereas ibericus breed 
throughout north and northwestern regions, Andalusia and Portugal (Salomon et al., 
2003). Wing morphology, isotope data and field observations (Catry et al., 2005; de la 
Hera et al., 2020) suggest that ibericus is a long-distance migrant that winters in sub-
Saharan Africa, although the migratory route remains unknown. In contrast, collybita 
birds breeding in Spain are considered shorter distance migrants with ringing recoveries 
that show a range of wintering grounds within the Iberian Peninsula, Morocco and 
Senegal (Pagani-Núñez et al., 2014; https://migrationatlas.org/node/1842). These two 
species also differ in song and call notes (Salomon, 1989; Hansson et al., 2000), and in 
genotype with a mitochondrial divergence of 4.6% in the cytochrome b gene (Helbig 
et al., 1996). However, there is substantial overlap in plumage and morphology (Gordo 
et al., 2017). Relevant for the research on migration genetics, they meet in a narrow 
migratory divide in the western Pyrenees where they hybridise (Bensch, Helbig, et al., 
2002a).  

 

Figure 5. The Iberian chiffchaff P. ibericus was 
previously considered a subspecies (P. 
collybita brehmii) part of the common chiffchaff 
complex. It acquired species status in 2003 and 
can be distinguished primarily by its song. 
Morphologically, they have a longer wing and 
yellower tone in the plumage. Photo: Ralph 
Martin. 

Study sites  

We have sampled individuals from different populations in a range of habitats across 
their breeding grounds in Europe using male song playback and mist nets. The data 
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used in this study spans more than 20 years, with blood samples dating back to the late 
90s (Figure 6).  

Willow warblers can be found in a wide range of habitats and prefer early seral stages 
of forest, often open and linked to human activity, with low tree heights (Sæther, 1983). 
They are found in both deciduous and coniferous forests (Stostad & Menéndez, 2014; 
Lapshin et al., 2020). The common chiffchaffs have a considerable habitat overlap with 
willow warblers, though they prefer a well-structured understory (Cody, 1978; Sæther, 
1983). The Iberian chiffchaff is more restricted to deciduous, slopy oak forest (Onrubia 
& Copete, 2022).  

In Sweden, birds (willow warblers and common chiffchaffs) were trapped in a 
latitudinal gradient that comprises subspecies in allopatric populations and the contact 
zones where the two subspecies and their hybrids live in sympatry. East of the Baltic, 
birds were trapped within and around the contact zone, from western Poland to central 
Lithuania. In Spain, birds were sampled in two locations in the north (ibericus) and 
northwest (collybita) of the country (Figure 6). 

 

 
Figure 6. A) Sampling sites for the willow warbler (blue), common chiffchaff (green), and Iberian chiffchaff 
(pink) included in this thesis. Mixed circles indicate shared sampling locations between species. Each 
point contains more than one location. B) Typical net setup (Álava, Spain). C) Staffan Bensch and 
Kristaps Sokolovskis setting up an unnecessarily difficult net in Jämtland (2019). D) Harald and I scouting 
for returning tagged willow warblers in Jämtland (2020). Photos B, C: author. Photo D: Kristaps 
Sokolovskis.  
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From phenotype to genotype 

Throughout this thesis, I employed four complementary approaches to link migratory 
traits to genomic regions.  

Tracking  

We tagged a total of 597 adult male birds across the 3 species included in this thesis 
(466 willow warblers in Sweden, 70 common chiffchaffs around the Baltic Sea, 31 
Iberian chiffchaffs and 30 common chiffchaffs in Spain). Given the mass of our target 
species (7,5-10g on average), we used the smallest possible tracking devices, a 
combination of light-level geolocators (Intigeo-W30Z11-DIP 12 ×  5 ×  4 mm, 0.32 
g; Paper II and V) and pressure geolocators (Intigeo, BARW30Z9-DIP, 0.38 g; Paper 
VI). These tags comprise 3 - 4,75% of the average species' lean body mass. They were 
attached using the leg-loop harness method (Figure 7; Naef-Daenzer, 2007). We 
programmed them to measure ambient light levels every 5 minutes, and atmospheric 
pressure (through a barometer) every 20 minutes. Data was recovered upon retrieval 
the following year, downloaded and processed. Light level geolocators estimate the 
approximate position of a bird based on day length (latitude) and sunrise/sunset times 
(longitude) (https://migratetech.co.uk/geolocation_9.html). Pressure geolocators 
estimate positions through a combination of measurements: pressure likelihood is 
obtained by querying the pressure measured by the device against the ERA5 reanalysis 
data of atmospheric pressure across the globe 
(https://raphaelnussbaumer.com/GeoPressureManual/). Light data is then 
implemented to narrow down the position probabilities, and a movement model is 
created with wind patterns, also obtained from the ERA5 data bank. 

   
Figure 7. Process of geolocator attachment (A, B) and blood sampling (C) across species. Photo A: 
Kristaps Sokolovskis. Photo B: author. Photo C: Harald Ris.  
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Molecular work 

Blood samples were collected in SET buffer from the brachial vein in the field (Figure 
7) and stored at -20°C until DNA extraction. Feathers (inner-most primary) were also 
collected and stored in envelopes. DNA extraction was performed in the lab following 
the ammonium acetate protocol (Richardson et al., 2001) and used for Quantitative 
Polymerase Chain Reaction (qPCR; both for measuring copy number variation and for 
genotyping). This technique amplifies specific DNA sequences and quantifies them in 
real time by detecting fluorescent signals. In addition, samples were also used for sexing, 
microsatellite typing, mitochondrial genotyping and genome resequencing.  

Cytogenetics 

Fresh testes were collected from trochilus breeding males in Czechia and used to 
generate the spermatocyte spreads. Then, we performed Fluorescence in situ 
Hybridisation (FISH) on them with a specific probe designed to bind to the region of 
interest (Figure 8; Paper IV). 

 

Figure 8. The principle behind FISH on a 
karyotype. The synaptonemal complex is 
labelled with green, fluorescent antibodies. The 
size of each synaptonemal complex is used as 
a proxy for chromosome size. The probe binds 
to MARB specifically and it is labelled with a 
contrasting colour (red). 

Genome analyses  

Throughout the thesis, we capitalize on resequencing data (Illumina) mapped against 
four high-quality genome assemblies. These genomes were previously generated de novo 
using a combination of long-read sequencing, linked-read sequencing and optical 
mapping. The oldest genome belongs to a male P. t. acredula, with 496 scaffolds (N50 
= 17 Mb). The P. t. trochilus genome (male) contains 547 scaffolds (N50 = 34 Mb) and 
the P. c. collybita genome (female) is a contig-level assembly consisting of 517 contigs 
(N50 = 28 Mb). All three genomes are available at NCBI under bioproject 
PRJNA550489. The P. t. viridanus genome is the latest assembly and consists of 555 
contigs (N50 = 34.5 Mb). 

We additionally re-sequenced 76 willow warblers and 24 common chiffchaffs 
belonging to the different subspecies. Such data was used to produce population 
statistics (Papers IV and V) and to build models of demographic inference between 
subspecies (Paper V).  
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Contributions to the field  

A repeat-rich, complex region correlates with migratory 
phenotypes in willow warblers 

The two willow warbler subspecies breeding in Europe (P. t. trochilus and P. t. acredula)  
have been the target of several studies investigating the genetic basis for their distinct 
migratory behaviours (Bensch et al., 2009; Bensch, Åkesson, et al., 2002; Larson et al., 
2014; Lundberg et al., 2017). Before sequencing technologies became accessible, the 
AFLP method was commonly employed to identify closely related taxa or genomic 
regions that may be under selection (Gobert et al., 2002; Joly & Bruneau, 2007). 
Bensch et al. (2002) identified the WW2 marker in willow warblers, a 5-base pair 
duplication which segregated across both migratory divides (Bensch et al., 2009). Once 
the first willow warbler genome assembly was available (Illumina, Bioproject 
PRJNA319295), such marker, surprisingly, could not be detected.  

In Paper I, we capitalised on the first long-read PacBio acredula genome (under 
Bioproject PRJNA550489). There, WW2 was indeed present, not in one copy as it was 
expected from the AFLP study, but in multiple copies and only in unmapped scaffolds 
that were not captured in the Illumina genome. Using qPCR techniques, we were able 
to quantify the WW2 copy number variation (CNV) between east-migrating acredula, 
and west-migrating trochilus birds from populations surrounding the Baltic. Given the 
bimodal distribution of the copy numbers across both subspecies (Figure 9), we were 
able to infer that this region was likely inherited as one block. This was further 
supported by the inheritance patterns of the WW2 copy numbers (Table S5 in Paper 
II) and by a trochilus karyotype (Paper IV).  
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Figure 9.  Copy number variation of the WW2 
marker across pure willow warbler subspecies 
(i.e., excluding the hybrid zone). The dashed 
line represents the migratory divide in central 
Scandinavia. Copy numbers of this transposon 
on each bird are our only aid to determine if the 
haplotype is MARB-a (acredula; pink) or 
MARB-t (trochilus; blue) in the absence of a 
correct assembly of the region.  
 

 
We therefore described such scaffolds as part of a region rich in transposable elements 
(TEs) and olfactory receptor sequences (ORs) of unknown functionality. WW2 itself 
was part of the Long Terminal Repeat (LTR) region of a transposon inserted during an 
ancient infection by an endogenous retrovirus (ERV) that contained the 5-bp 
duplication as a derived state. Whether this TE has a direct effect on migration routes 
is unlikely given that this marker only shows copy number variation across willow 
warbler subspecies, but not other taxa, as later seen in Papers IV and V. We highlight 
the importance of regions that are unresolved due to technological limitations. Such 
complex regions have traditionally been neglected and treated as “junk” DNA. 
However, they could be involved in speciation processes as important as the radiation 
of Oscine passerines into thousands of species (Suh et al., 2018). A very important 
outcome of this study was the development of the qPCR-based genotyping protocol of 
MARB that enabled us to understand how this region is linked to migration (Paper II). 

Genetics behind migratory direction  

In Paper II, we combine tracking data from 72 male willow warblers with molecular 
analyses to establish genotype-phenotype correlations. Birds were sampled across the 
full latitudinal range of Sweden, encompassing pure subspecies populations and the 
hybrid zone. We typed each bird for markers previously linked to migratory phenotype, 
these being the Inversion polymorphisms in Chromosomes 1 and 5 (Lundberg et al., 
2017), and the repeat-rich region described in Paper I (Caballero-López et al., 2022), 
which we named MARB (Migration Associated Repeat Block). Our analyses reveal that 
MARB is the primary region segregating east and west migrants, explaining 64% of the 
variation in migratory direction. MARB appears to have an epistatic interaction with 
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the inversion polymorphism in chromosome 1 (InvP1). More specifically, the MARB-
a haplotype (acredula birds) seems to have a dominant effect over InvP1 and is strongly 
associated with eastward migration (Figure 10). These findings align with results from 
the classic blackcap breeding experiments which concluded that direction was 
controlled by one or several loci of large effect (Helbig, 1991). Contrary to expectations, 
the return rates of hybrids were comparable to those of pure subspecies populations. 
Whether this indicates an absence of hybrid disadvantage or reflects survivor bias 
towards returning individuals remains unresolved.  

 
Figure 10. a Histogram depicting bimodality in the frequencies of where birds from the migratory divide 
crossed the Mediterranean. b Mean (whiskers depict ± standard deviations) winter longitudes for each of 
the nine combined genotypes of InvP-Ch1 and InvP-Ch5, illustrated separately for birds with (red) and 
without (dark gray) the MARB-a. On the Y-axis, the labels stand for genotype on InvP-Ch1, InvP-Ch5 
(Acr homozygote for acredula allele, Het heterozygote, Tro homozygote for trochilus allele) and whether 
MARB-a is absent “0” or present “1”. Dotted lines connect the genotypes of both chromosomal inversions 
that have or do not have MARB-a. c Breeding and winter locations for birds from the hybrid zone with 
(red) and without (dark gray) the MARB-a. Hollow circles show estimates of longitudes where birds 
crossed the Mediterranean Sea. The lines connect the locations of each individual. Error bars of locations 
in Africa show standard deviations in longitude and latitude of the main winter site of each bird. 
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A comprehensive review of the field of genetic mechanisms 
behind migratory traits 

Despite innovations in both sequencing technologies and tracking devices, phenotype-
genotype associations remain difficult to establish when studying complex behaviours. 
An increasing number of studies identify different genomic regions behind migratory 
traits, which is perhaps not unexpected, given that migration has been gained and lost 
several times across the avian tree. This has shifted the focus towards studying other 
aspects of the genome besides sequence polymorphisms, such as regulatory 
mechanisms, which offer flexible and rapid means of evolutionary change. They can 
affect behaviours like migration, which require dynamic responses to dynamic 
environmental pressures. Regulatory networks facilitate fine-tuned control over gene 
activity and can evolve faster than coding sequences, facilitating quick phenotypic shifts 
(Dsilva & Galande, 2024; Zamudio-Beltrán et al., 2025). 

In Paper III we review the state of the field and provide hypotheses on how different 
migrant species might display similar behaviours through a diverse range of regulatory 
mechanisms of expression. This emphasises the importance of the often-neglected non-
coding regions of the genome, epigenetic modifications and structural variants (SVs). 
We also present several hypotheses of how such wide array of mechanisms may work 
in different species. We conclude that this regulatory basis is likely species-specific at a 
fine scale but results in similar strategies as a response to similar environmental 
pressures. 

The MARB region is in a medium-sized chromosome that 
contains most olfactory receptor sequences (ORs) in the 
genome 

Given the limitations of sequence-only approaches commonly encountered in our field, 
in Paper IV we employ cytogenetics to identify MARB. Using MARB-specific probes, 
we conducted in situ hybridisation on spermatocyte cells and visually identified the 
region in a male willow warbler karyotype. The probe binds along 80% of the 11th 
largest chromosome, which has an estimated size of 34,4 Mbp. We further characterised 
MARB in two other Phylloscopus species (Figure 11), the common chiffchaff P. c. 
collybita and the greenish warbler P. trochiloides viridanus which is a basal species of this 
genus.  

We further discuss the high density of intact ORs across MARB in all analysed species. 
We highlight the importance of complex genomic regions that are often neglected in 
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other genome projects, particularly those with high OR content, which seem to be 
captured only in the most complete assemblies (Driver & Balakrishnan, 2021).  

Research on avian olfaction has traditionally focused on foraging behaviour, homing 
ability or conspecific recognition (Bang & Cobb, 1968; Grubb, 1973; Hutchison & 
Wenzel, 1980; Wenzel, 2007). However, the evidence suggests a broader role, perhaps 
in the successful execution of migratory journeys. Translocation experiments on lesser 
black-backed gulls, Larus fuscus fuscus, manipulated through olfactory nerve section, 
show that they rely on olfaction to correct for displacement during migration (Wikelski 
et al., 2015). Similarly, a study of olfaction in navigation of a songbird, the catbird 
Dumetella carolinensis showed that anosmic adults treated with zinc sulphate could not 
orient as well as controls (Holland et al., 2009).  

Our findings in this paper provide evidence that MARB is present in probably all 
Phylloscopus. We raise the question of whether olfaction plays a more significant role in 
avian migration than previously appreciated, potentially contributing to the evolution 
and diversity of migratory routes. 

 
Figure 11. Schematic representation of a comparison of MARB scaffolds in trochilus (#50) and collybita 
(#117). Dot plot of full length (a) and Mauve alignment over the first 120 kb. (b) Annotated genes 
illustrated in coloured boxes. Despite shared features across Phylloscopus (repeat families, OR, 
pseudogene density and GC content), the MARB region seems to have been through numerous 
rearrangements, resulting in divergent sequence architecture. 

MARB correlates with migratory phenotype in chiffchaff 
subspecies 

In Paper V we integrate genome resequencing, molecular and tracking data to 
investigate genetic differences associated with migratory phenotype in two common 
chiffchaff subspecies, P. c. collybita and P. c. abietinus. We demonstrate that this system 
mirrors the migratory divergence seen in P. t. trochilus and P. t. acredula with parallel 
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contact zones in Scandinavia and across the Baltic, making these chiffchaff subspecies 
an ideal target for comparative analyses.  

Population statistics and demographic modelling show that abietinus and collybita are 
still in early stages of divergence. Their highest differentiation (FST > 0.6), however, 
occurs in mitonuclear and fertility-related genes, suggesting that selection might be 
driving subspecies divergence. Notably, the MARB contigs also show high 
differentiation, although uncertainty in their assembly may affect population statistics. 
Nevertheless, the clear clustering by multidimensional scaling analyses (MDS) also 
supports that different migratory phenotypes present distinct MARB haplotypes. This 
turns MARB into the only region divergent between east and west migrants that is 
common to chiffchaffs and willow warblers.  

This has crucial implications for the understanding of the genetic basis of migratory 
behaviour across species. If MARB regulates migratory direction in chiffchaffs, it does 
so within a different genomic context than in willow warblers. These findings align 
with studies in common yellowthroats where populations with different migratory 
behaviours showed parallel evolution at the gene level ––same genes repeatedly 
involved–– but convergent evolution at the SNP level (different mutations within such 
genes; Zamudio-Beltrán et al., 2025). Importantly, many of the variants were found in 
noncoding regions, suggesting that control of gene expression plays a central role in 
shaping migratory phenotypes. This shows that different species may adapt to similar 
migratory challenges through distinct, yet partially predictable genetic pathways.  

Short and long-distance migrants differ in migratory traits  

Despite belonging to a cryptic species complex, the Iberian chiffchaff and common 
chiffchaff have been considered separate species for over two decades (Salomon et al., 
2003). In the final chapter of this thesis, Paper VI, we deployed pressure geolocators 
on 61 chiffchaffs in the Iberian Peninsula (30 P. c. collybita and 31 P. ibericus) to 
investigate differences in migratory strategies. Our findings confirm that P. ibericus are 
indeed long-distance migrants, wintering in West Africa. They fly higher, faster and 
longer than the sympatric Spanish P. collybita, which remain in the Iberian Peninsula 
year-round (Figure 12). These results pave the way for future studies in the narrow 
hybrid zone between the two species in the western Pyrenees (Bensch, Helbig, et al., 
2002). Combining resequencing data with geolocator tracks will enable us to study 
genetic differences behind the strategies of long and short-distance migrants.  
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Figure 12. Modelled trajectories from P. c. collybita (A) and P. ibericus (B) captured in Spain. Each 
individual is depicted with a different colour. Circles show stationary periods: breeding grounds, wintering 
grounds and stopover sites. The size of the circle is proportional to the time spent in the stationary period. 
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Conclusions and future directions 

This thesis constitutes a big leap in the study of the genetic architecture behind 
migratory behaviour and has implications that extend beyond species-specific insights. 
We identified a large, repetitive region (MARB) which explains most variation in 
migratory direction in European willow warblers and demonstrates that complex 
regions, often dismissed as junk-DNA, can play central roles in behavioural divergence. 
Our comparative analyses reveal that MARB is likely present in all Phylloscopus species, 
and it seems to correlate with migratory strategies in chiffchaff subspecies. The different 
genomic context in which MARB seems to have evolved across species suggests that 
similar behavioural traits may have emerged through convergent genetic pathways. An 
increasing number of studies support this, emphasizing the role of regulatory 
mechanisms, particularly in non-coding regions (Merlin & Liedvogel, 2019; Delmore 
et al., 2023; Louder et al., 2024; Zamudio-Beltrán et al., 2025). With the integration 
of cytogenetics, genomic, molecular and tracking data, we provide a robust framework 
to link genotype and phenotype even in such complex regions that remain unresolved 
in genome assemblies.  

Nevertheless, there are gaps in the field that still need to be addressed. We are aware 
that our data is male-biased, due to several reasons. First, in monogamous bird species, 
males are typically more philopatric than females (Liberg & von Schantz, 1985) which 
ensures a larger retrieval of geolocators. Second and most importantly, females are 
substantially harder to relocate and recapture after migration (McKinnon & Love, 
2018), as they remain inconspicuous among the vegetation and don’t react to playback; 
thus, targeted recapture would require relocating nests. This can mask patterns such as 
differential migration. This is a poorly understood phenomenon in birds that has been, 
for example, detected in chiffchaffs, blackbirds or northern flickers where males and 
females seem to exhibit distinct migratory strategies (Catry et al., 2005; Fudickar et al., 
2013; Gow & Wiebe, 2014). From a population genetics perspective, male-biased 
sampling can skew allele frequency estimates (and therefore gene flow estimates) and 
reduce the detection power of sex-linked loci (Prugnolle & De Meeus, 2002). Future 
studies should aim to incorporate balanced sex ratios and explore sex-specific genomic 
and behavioural variation to fully capture the complexity of migratory systems. 

Another caveat of using geolocator data is that, as we only retrieve loggers from birds 
that survived migration at least twice, our inferences are inevitably survivor-biased. This 
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hinders the estimation of potential hybrid disadvantage as our data does not represent 
individuals that might have lower survival due to maladapted intermediate routes 
(Rushing et al., 2021). However, if we want to test the selection against willow warbler 
hybrids (estimated to be a 10% difference in survival per generation) we would need 
survival data for more than 1000 individuals to confirm hybrid disadvantage (Zhao et 
al., 2020).  

Currently, tracking studies on juveniles of larger species show differences in timing 
(McKinnon et al., 2014; Patchett et al., 2022) and tortuosity (less direct routes) of 
migration (Mellone et al., 2013; Vega et al., 2016). A major tipping point for the field 
will take place when satellite tracking devices are small enough to be carried by small, 
solitary migrants. This will ensure life data input without the need of retrieval, and will 
provide us with first-time migrants and female migratory patterns, and overall mortality 
rates across different routes.  

Finally, the work with complex genomic regions is also challenging by itself. Despite 
using highly contiguous assemblies that combine long-read sequencing (PacBio Hi-Fi), 
link-read sequencing (10X Chromium) and optical mapping (Bionano Genomics), the 
MARB region remains challenging to map. In future assemblies we will attempt 
combining long read sequencing with Ultra-Long read sequencing (Oxford Nanopore) 
and Trio-sequencing with sequences from parents and offspring to resolve haplotypes 
and complex regions (Figure 13). These approaches have proved successful in resolving 
regions of comparable complexity in chicken that might indeed be homologous to 
MARB (Huang et al., 2023). 

 
Figure 13. Trio-based genome assembly strategy for a willow warbler family including parental 
individuals from the hybrid zone with different MARB haplotypes and their hybrid offspring. Paternal and 
maternal haplotypes can be used to fill the gaps in primary contigs.  

Our findings challenge traditional approaches that focus on coding sequences and 
highlight the need to explore underrepresented genomic regions. We also emphasize 
the value of studying cryptic species and hybrid zones to uncover the genetic basis of 
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several migratory traits. With an integrative approach, this thesis contributes to the 
understanding of the genetic basis of migration in birds. 

 

 

 

 
Figure 14. After eight days of torrential downpour, the clouds finally part one morning in Ribes de Freser, 
Spain –– one of the many trapping sites for Phylloscopus species in this thesis. Photo: Harald Ris.  
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