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“Tiger got to hunt, bird got to fly;

Man got to sit and wonder ‘why, why, why?’
Tiger got to sleep, bird got to land;

Man got to tell himself he understand.”

- Kurt Vonnegut, Cat’s Cradle.
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Abstract

Each year as the seasons turn, the skies fill with millions of travellers. From the tundra
to the tropics, birds embark on remarkable journeys guided by an innate programme
and perform one of nature’s most remarkable phenomena: migration. In this thesis, I
tackle the study of the genetic basis of migratory behaviour in several Phylloscopus
species with a multimodal approach. Here, I combine geolocator data (Papers II, V and
VI) with molecular analyses (Papers I, II, IV, V and VI), cytogenetics (Paper IV) and
genomic exploration (Papers I, IV and V) in order to identify and dissect genomic
regions that may influence the migratory phenotype. In Paper I, we described a repeat-
rich region (named MARB) that segregates across two migratory phenotypes of willow
warblers P. trochilus with a high density of transposable elements (TEs) and other
repetitive sequences. We developed a qPCR-based protocol that enabled us to genotype
birds in further studies. In Paper II, we tracked 72 willow warblers throughout Sweden,
overlapping the hybrid zone and genotyped them using the protocol from Paper 1. We
then studied the correlation between the migratory route (phenotype) and divergent
genomic regions (genotype) in the willow warbler genome. In Paper III, we reviewed
the current state of the field and provided hypotheses for the genetic basis of migratory
traits across species. In Paper IV we generated a willow warbler karyotype to locate the
MARB region, which explains most variation in migratory direction. We screened the
genomes of two other migratory Phylloscopus taxa, the common chiffchaff P. collybita
and the greenish warbler P. trohiloides, for comparative analyses. Such analyses also
revealed a high amount of intact olfactory receptor sequences, posing the question of
whether olfaction may play a role in migratory direction. In Paper V we combine
geolocator data and genomic analyses in the closest relative to the willow warbler, the
common chiffchaff, and we built a model that best explains the demographic history
of two of its subspecies. In Paper VI we studied migratory differences between two
chiffchaft species which are sister taxa, the Iberian chiffchaff P. ibericus and the
common chiffchaff, which occur in northern Spain. We use pressure geolocators which
provide us with high-resolution tracks, allowing for a more detailed comparison of their
very distinct migratory behaviour. Hence, my thesis constitutes a big leap in the
understanding of the proximal mechanisms behind migratory behaviour in birds,
especially in relation to complex genomic regions and migratory routes.
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Popular science summary

The year was 1822. As every other morning, the white stork watched the first rays of
sun flare out over the Congo Basin. Yet this day felt different. Thermal updrafts were
powerful, the stork had been eating for long enough, and despite the annoying wooden
stick stuck in its neck, it felt the urge to ascend in the skies. Joining others of its kind,
the stork initiated a long journey across the vastness of the Sahara and over the
Mediterranean Sea, back to the valley in Central Europe where it had been born. When
nearing the familiar landscapes of home, the last thing the stork heard was a loud blow,
and then everything turned black. This stork was pierced twice, once in Africa by
hunters with a spear, and once again in Germany by villagers with a rifle. The unlucky
bird, without knowing it, had just proved migration between continents.

Ever since, scientific ringing, the use of radar, radio transmission and satellite tracking
have greatly improved our understanding of the impressive journeys migratory birds
undertake. Some migrants, like the white stork, travel in flocks and rely on social
learning from experienced individuals to reach wintering grounds. However, it remains
a mystery to us how an 8-gram bird, resembling a fluffball, flies alone for thousands of
kilometres to a place where it has never been before. When did this hatchling learn to
climb to a height of 4500 meters in the sky before a storm? How can it fly for 37 hours
non-stop across a desert, or over the sea? How can this solitary migrant read the stars?

And most impressively, how does it know where to go for the first time? The answer
lies in its DNA.

In this thesis, I studied several species of Phylloscopus warblers, small, greenish songbirds
that migrate thousands of kilometres. I combined geolocators (small devices that record
the birds’ positions) with genomic analyses, molecular methods, and chromosome
mapping to investigate how genetic information translates into a migratory route. I
described a repetitive region in the genome of these migrants that sorts them into
different migratory directions. Interestingly, such region is also full of olfactory receptor
genes. This opens the question of whether birds can “smell their way” to wintering
grounds. By comparing patterns between species, this work shows that, although
migration is an ancient phenomenon, it might have evolved in a very flexible way. This
flexibility could be possible due to regulatory mechanisms that allow the birds to
develop different migration routes without necessarily rewriting the genetic code.
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Texto de divulgacién cientifica

Corria el afo 1822. Como cualquier otra manana, la cigiiena blanca observé los
primeros rayos de sol expandirse sobre la cuenca del Congo. Pero ese dia se sentia
diferente. Las corrientes térmicas eran poderosas, habia comido suficiente y a pesar del
molesto palo de madera clavado en su cuello, sentia el impulso de ascender en el cielo.
Uniéndose a otras de su especie, la cigiiena inicié un largo viaje a través de la inmensidad
del Sahara, sobre el mar Mediterrdneo y de regreso al valle en Europa Central donde
habia nacido. Cuando sobrevolaba paisajes familiares, ya casi al final de su viaje, la
cigiiefa escuché un disparo y todo se volvié negro. Esta ave fue alcanzada por dos
proyectiles: una lanza en Africa que la hirié, y una bala en Europa que la maté. Sin
saberlo, la desafortunada cigiiena acababa de demostrar la migracién entre continentes.

Desde entonces el anillamiento cientifico, el uso de radares y localizadores que
funcionan con senales de radio o satélite han mejorado nuestra comprensiéon de los
impresionantes viajes que emprenden las aves migratorias. Algunos migrantes como
aquella cigliena blanca viajan en bandadas y aprenden siguiendo a individuos
experimentados para llegar a las zonas de invernada. Sin embargo, sigue siendo un
misterio como un pajarillo de 8 gramos del tamano de una pelusa, vuela solo durante
miles de kilémetros hacia un lugar donde nunca ha estado. ;Cudndo aprendié a
ascender a 4500 metros de altura antes de una tormenta? ;Cémo puede volar durante
37 horas sin parar, cruzando mares y desiertos? ;Cémo puede este migrante solitario
orientarse con las estrellas? Y lo mds intrigante para mi: ;cémo sabe a dénde ir por
primera vez? La respuesta estd en su ADN.

En esta tesis he estudiado varias especies de mosquiteros del género Phylloscopus,
pequefios pdjaros marrdén-verdoso que migran miles de kilémetros. He combinado
rastreo con geolocalizadores (pequenos dispositivos que registran la posicion del pdjaro)
y andlisis gendmicos, métodos moleculares y mapeo cromosémico para investigar como
la informacién genética se materializa en la ruta migratoria. Descubri una regién
repetitiva en el genoma que influye la direccién de migracién y curiosamente, dicha
regién contiene muchos genes de receptores olfativos. Esto nos hace plantearnos si estas
especies pueden “oler” su camino hacia las zonas de invernada. Al comparar entre
especies, mi tesis muestra que, siendo la migracién un proceso muy antiguo, podria
haber evolucionado de manera muy flexible. Esta flexibilidad serfa posible gracias a
mecanismos reguladores que permiten a las aves desarrollar diferentes rutas sin
necesidad de reescribir el cédigo genético.
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Introduction

Migration is an extraordinary phenomenon widespread across many animal groups,
including fish (Thorpe, 1988), reptiles (Avise & Bowen, 1994), insects (Warrant et al.,
2016), mammals (Williamson et al., 1988), and, at a smaller scale, even amphibians
(Semlitsch, 2008). It enables individuals to exploit favourable conditions for survival
and reproduction year-round (Winger et al., 2019). But migratory birds are especially
captivating to us, given the diversity of routes they display and the journeys they
perform. A striking example is the Arctic tern Sterna paradisaea, which yearly flies more
than 80,000 km between both poles, undertaking the longest recorded migratory
journey (Egevang et al., 2010). Equally impressive, the bar-tailed godwit Limosa
lapponica performs the longest non-stop known migratory flight from Alaska to New
Zealand, covering more than 11000 km (Battley et al., 2012).

To perform such migratory feats, birds have developed a set of integrated adaptations
collectively referred to as the migratory syndrome (Dingle, 2006). Broadly, these
comprise endogenous clocks for accurate timing (Gwinner & Helm, 2003), navigation
systems based on the position of the sun (Muheim et al., 2018), the stars (Emlen, 1975)
and the Earth’s magnetic field (Wiltschko & Wiltschko, 2002), as well as metabolic
mechanisms for endurance flights, efficient fuel deposition (McWilliams & Karasov,
2001) and behavioural strategies for optimal migration (Hedenstrom, 2007).

Extensive evidence shows that the genetic basis of the expression of this complex
behaviour is likely quantitative and follows a single threshold model (Pulido, 2011).
Originally, this model was proposed by Wright (1934) and later applied to bird
migration by Pulido et al. (1996). It poses that an underlying, normally distributed
continuous trait called “liability” (in this case, a set of genetic mechanisms), influences
a binary trait (migration/residency). When an individual’s liability exceeds a threshold,
the migratory phenotype is expressed (Figure 1). These thresholds are not fixed and
depend on both environmental and genetic stimuli.
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Migration
threshold

Environmental effect
on threshold position

#\

Frequency

"obligate" "facultative"  "obligate"
residents migrants migrants

Figure 1. Adapted from Pulido (2011). This illustration depicts the environmental threshold model of
migration for a given trait. The trait shown is migratory propensity in a partially migratory population,
defined by a threshold that is not fixed but responsive to the environment. A population of facultative
migrants might remain resident if they are below the threshold. Environmental cues such as, for example,
an unusually cold autumn, can shift this threshold to the left and induce migratory behaviour in individuals
that would otherwise remain sedentary.

This model defines migration as a highly dynamic, adaptable strategy. However, if
migratory traits are not expressed for extended periods, how does selection maintain
them in a population? In other words, how can a resident bird retain the ability to
migrate if the species has not done so for thousands of years?

From a molecular perspective, this is possible because the genetic machinery for
migratory behaviour can coexist with resident behaviour within a species (Pulido &
Berthold, 2003). Many genes involved in migration have functional significance in
other ecological contexts (Dingle, 2006). For instance, genes that have been associated
with migration such as CLOCK and ADCYAPI may play roles in seasonal timing and
behavioural plasticity while also being used in resident species (Mueller et al., 2011;
Lugo Ramos et al., 2017). This flexibility allows birds to switch between migratory and
sedentary lifestyles within a few generations. This was empirically demonstrated by
Pulido et al. (1996) who selected for resident and migratory behaviour in blackcaps
Sylvia atricapilla through breeding experiments, and showed high heritability for

migratoriness and timing of migration.

Field evidence also supports this evolutionary plasticity. For instance, cattle egrets
Bubulcus ibis ibis colonised North America in the late 19th century and have since then
developed both resident and migratory populations (Browder, 1973). Migratory
common quails Coturnix coturnix seem to have colonised the Azores archipelago more
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than 0.8 mya, where they became resident (Ravagni et al., 2023). Similarly, house
finches Carpodacus mexicanus in western North America are sedentary, but they rapidly
became migratory after being introduced to the East Coast (Able & Belthoff, 1998).
Ecological niche modelling across many long-distance migrants in North America
further supports this flexibility, showing that species can change between sedentary and
migratory strategies in each glacial cycle (Zink & Gardner, 2017). However, this
pattern is not general across the world. Species distribution models combined with the
fossil record indicate that Eurasia-Africa migration was not interrupted in many species
during the last glaciation. This discrepancy is likely due to differences in the
distribution of ice sheets between America and Eurasia (Ponti et al., 2020).

Regardless of the migratory flyway (across the American Continent or Eurasia to
Africa), the literature underscores that partial migration, i.e. the existence of both
migratory and resident individuals in a population, is a necessary intermediate state in
the switch between residency and migration (Berthold et al., 1990; Pulido et al., 1996;
Berthold, 1999; Bensch et al., 2023). Nevertheless, how migration has emerged might
differ across species.

How it started: evolutionary pathways that led to the
current migratory diversity

Phylogenetic research shows that migratory behaviour in birds is a polyphyletic trait
that has evolved multiple times independently (Winger et al., 2012; Dufour et al.,
2020). This repeated evolution is likely a response to common selection pressures such
as seasonality and competition (Cox, 1985; Helbig, 2003; Outlaw & Voelker, 2000).
However, the ultimate causes that triggered migration for the first time are a subject
under debate.

To understand why birds migrate, we must begin with the well-established observation
that most migrants breed in seasonal environments (Somveille et al., 2018; Winger et
al., 2019). The literature broadly categorises them into two groups regarding the
conditions they experience in a yearly cycle: “niche trackers” and “niche switchers”
(Gémez et al., 2016). Niche trackers seek out similar environmental conditions year-
round (Fandos et al., 2020). A study comprising more than 100 New World passerines
showed that migrants tend to track conditions more consistently than residents (Gémez
etal., 2016). An example of this is the Swainson’s flycatcher Myiarchus swainsoni whose
seasonal movement closely matched the predictions from a temperature-based model
(Joseph & Stockwell, 2000). In contrast, niche switchers winter in climates different
from those in their breeding grounds, as is the case with the Magnolia warbler
Dendroica magnolia (Nakazawa et al., 2004). This pattern is also supported in broader
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datasets: Dufour et al. (2020) performed a comprehensive phylogenetic analysis
including nearly all extant bird species and showed that migratory species, especially
long-distance migrants, often winter in warmer climates than would be expected if they
were true niche trackers. Overall, the literature suggests that strategies vary and are
taxon-specific, and that more complex ecological niche modelling is needed to make
accurate predictions.

As for the question of where migration originated, the answer is equally complex, and
there are two main competing paradigms in this regard. The northern-home
hypothesis, initially proposed by Bell (2000), sustains that migration evolved from
temperate to tropical latitudes as birds shifted wintering grounds to escape harsh
conditions. This hypothesis also integrates the notion that partial migration (Berthold,
1999) is necessary for the species to transition from sedentary to long-distance migrant
states. Fully migratory populations then emerge in either of two ways: 1) the extinction
of sedentary behaviour in part of the breeding range due to harsh conditions, or 2) the
colonisation of migrants from highly seasonal areas that outcompete the sedentary
individuals. In contrast, the “southern home hypothesis,” which is the most widely
accepted, states that tropical species, also driven by competition, evolved migration to
exploit seasonally available resources in higher latitudes (Levey & Stiles, 1992).

However, the selection pressures shaping the current patterns are likely more diverse.
Salewski and Bruderer (2007) propose a migration-dispersal theory where, parting from
a resident population, selection for better breeding grounds drives post-breeding
dispersal. Simultaneously, individuals reaching new grounds that are unsuitable outside
the breeding season will evolve regular migration under the threshold model. However,
the origin appears to be different in each family depending on their unique evolutionary
histories and ecological pressures (Dufour et al., 2020). For example, migration in
Anseriformes seems to have tropical origins, in contrast to Charadriiformes, where they
seem to have started migrating from temperate areas (Figure 2).

Figure 2. Hypotheses of the origin of migratory behaviour across different avian orders. Anseriformes
(left) seem to have developed migration from tropical latitudes during the lower Miocene. Charadriiformes
(right) started migrating from temperate latitudes during the upper Miocene (Dufour et al., 2020).
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In the case of passerines, it is particularly striking that although most extant species
(85%) are resident, phylogenetic analyses provide strong support for their common
ancestor to be a long-distance migrant. It is suggested that current migratory patterns
are most likely due to repeated loss of migratory behaviour which facilitated rapid
radiation from two main centres of origin in South America and Australia 40 to 50 mya
(Dufour et al., 2020).

Mechanisms shaping migratory routes: learning versus
genetic programs

To complete a migration cycle, birds rely on both their innate genetic programme and
a learning process (Pulido & Berthold, 2003; Yoda et al., 2017; Abrahms et al., 2021;
Zist et al.,, 2023). The relative influence of genetic mechanisms and learning in
migratory behaviour follows a spectrum that varies across species and has been a topic
of debate for a long time (Lack, 1968; Piersma et al., 2005).

Juveniles of species that are typically long-lived and social, rely on experienced
individuals to successfully migrate (Teitelbaum et al., 2016). Soaring migrants (those
leveraging thermals to fly) also rely more on visual cues from topography and seem to
benefit from social information provided by experienced conspecifics, for instance, to
cross barriers (Panuccio et al., 2012). An iconic flag species that illustrates learning
strategies is the white stork Ciconia Ciconia. Juveniles naturally migrate in large
conspecific flocks together with experienced adults but are unable to reach wintering
grounds when displaced (Chernetsov et al., 2004). Similar experiments in black-tailed
godwits Limosa limosa limosa, claim that translocated juvenile birds have more similar
migratory routes to those of their foster population, than their origin population and
therefore heavily rely on social cues to migrate (Loonstra et al., 2023). This species
forages, roosts and migrates in groups (Piersma et al., 1990) and consequently social
influence is expected to be large. However, there are several caveats to consider. First,
translocation was conducted between populations that followed a similar south-
westerly direction, masking any potential genetic effects on orientation. Second,
translocated individuals show greater variation than birds from either population. In
fact, a translocated bird reached the same wintering grounds as its source population.
This variation was even more evident in spring migration, hinting at individual
differences unlikely to be explained by social influence alone.

On the opposite end of the spectrum of migratory strategies, solitary species (many of
them songbirds) that fly mostly at night are often considered the epitome of genetically
determined routes (Berthold & Helbig, 2008). A famous representative of this group
is the common cuckoo Cuculus canorus which, despite being raised by other species,
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still reaches their species-specific wintering grounds without conspecific guidance (Vega
et al., 2016; Thorup et al., 2020). However, recent discussions re-evaluate this view,
claiming that the co-occurrence of songbird species during migration sets the grounds
for inter-specific interactions through calling, which could potentially influence
migratory routes (Aikens et al., 2022; Van Doren et al., 2025). It has been previously
observed that indeed, calls from other species provide valuable information and can,
for instance, influence breeding site choice once migration is completed (Szymkowiak
et al.,, 2017). However, the extent to which different species influence each other
remains unclear. Studies in the Palearctic system show that the those who indeed utter
flight calls during migration are mostly 7urdus species (Hiippop & Hilgerloh, 2012)
and some Emberiza buntings. Up to 50% of nocturnally migrating passerines remain
undetected by acoustic monitoring despite being recorded by radar (Weisshaupt et al.,
2024). Some of the taxa that rarely call during night migration are the Old World
flycatchers (Muscicapidae) and Old World warblers (Sylviidae) (Farnsworth, 2005),
perhaps to avoid predation (Alerstam, 2009). Thus, it is difficult to envision how the
many solitary species that reportedly produce no calls during migration nights rely on
each other to reach a destination.

But the evolutionary processes behind complex traits are seldom black or white and
there are several examples showing that many species, especially long-lived ones, could
rely on both learning and genetic programming to migrate. For instance, juveniles of
streaked shearwaters Calonectris leucomelas follow an innate southward orientation
crossing landmasses in their first migration, whereas adults make detours that allow
them to fly over water, overriding compass navigation (Yoda et al., 2017). Similarly,
only a few translocated juvenile lesser spotted eagles Clanga pomarina from Latvia to
Germany successfully reached wintering grounds (Meyburg et al., 2017). Yet, most
translocated individuals headed south, which is where the Bosphorus crossing would
have been if they had parted from their source populations in Latvia. Many then
perished in the Mediterranean crossing, and this is interpreted by the authors as
evidence of the importance of observing experienced individuals during migration. This
argues for an inherited sense of direction. In line with this, hybrids between lesser
spotted eagles and greater spotted eagles C. clanga inherited timing from C. pomarina
but reached the wintering grounds of C. clanga, highlighting the genetic determination
of these traits (Vili et al., 2018). These examples illustrate that migration strategies
often emerge from the complex interplay between genetic programming and learning
through experience or social interactions.
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The genetics behind different migratory traits: a lack of
consensus

The earliest proof of genetic determination of migratory behaviour was obtained in
common garden experiments on the well-studied blackcaps, where migratory traits such
as incidence, direction, timing and intensity can be selected for across a few generations

(Helbig, 1991; Pulido et al., 1996; Berthold, 1999; Berthold & Helbig, 2008).

Since then, the progressive miniaturisation of tracking methods combined with the
advancements in sequencing technologies has enabled numerous correlational studies
in wild populations. A particularly informative approach has been the study of hybrid
zones where populations with distinct migratory behaviours interbreed, forming
migratory divides (Helbig, 1991; Veen et al., 2006; Delmore & Irwin, 2014). These
constitute natural crossbreeding experiments that can be explored to uncover the
genetic architecture and inheritance patterns of different migratory traits.

To illustrate this, the tracking and sequencing of hybrid individuals of Swainson’s
thrushes Catharus ustulatus show that SNPs in chromosome 4 associate with wintering
longitude (Delmore & Irwin, 2014; Delmore et al., 2016). In contrast, this trait
associates with the VPS13A4 gene in two species of Vermivora warblers (Toews et al.,
2019). The blackcap system has yielded surprisingly little in terms of fixed
polymorphisms associated with traits in the spectrum of migratory populations
(Delmore et al., 2020), perhaps due to recent diversification (Pérez-Tris et al., 2004).
However, recent studies suggest a possible role of structural variants in chromosome 27
on migratory direction (Delmore et al., 2023).

Regarding timing, which is largely heritable (Lamers et al., 2023), increased
methylation of the photoperiodic CLOCK genes predicted spring migration phenology
in barn swallows Hirundo rustica (Saino et al., 2017). In American kestrels, Falco
sparverius, though, different CLOCK-linked genes correlate with migratory timing
(Bossu et al., 2022). An association between the ADCYS8 gene and migratory distance
in peregrine falcons Falco peregrinus suggests a role of long-term memory in the
establishment of longer migratory routes (Gu et al., 2021).

The repertoire of genetic signatures behind different traits (Table 1) has led researchers
to challenge the long-held hypothesis of a common genetic basis. Instead, attention is
shifting toward the study of regulatory mechanisms over coding polymorphisms
(Delmore et al., 2020; Louder et al., 2024). In line with this, a recent study comparing
different populations of Common Yellowthroat Geothlypis trichas across North
America, found that most identified loci were in non-coding regions of time-keeping
genes (Zamudio-Beltrdn et al., 2025). Interestingly, selection seems to target the same
regions across populations, but the SNPs involved within each region differ, showing
convergence at a finer scale to modulate migration.
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Table 1. Representative bird studies that attempt migratory phenotype-genotype associations.

Blackcap

Vermivora
warblers

Swainson’s
Thrush

Willow warbler

Peregrine falcon

Barn swallow

American
Kestrel

White-crowned
sparrow

Common
Yellowthroat

Direction,
migratory
activity

Wintering
longitude

Wintering

longitude,

Migratory
activity

Direction,
distance

Distance

Timing

Timing

Migratory
incidence

Timing

Chromosome 27,

CLOCK gene

VPS13A gene

Chromosome 4,

gad1,

InvP in
Chromosomes 1
and 5

ADCY8

CLOCK POLY-Q

top1, phipp1,
cpne4, peak1

GLUT1, heat
shock protein
family*

Npas3, bmal,
gria2, camk4,
ntrk2, hivep2 *

Regulatory,
neuropeptide
synthesis,
circadian rhythms

Unknown in birds

Clock-controlled
gene

Lipid metabolism

Long-term memory

Transcriptional
trans-activation
domain

Clock regulator-
light input pathway

Glucose
transporter,
unfolded protein
response

Clock regulator-
light input and
metabolic pathway

Tracking,
genomic
analyses,
microsatellite

typing

Tracking,
genomic
analyses

Tracking,
genomic
analyses,
expression
analyses

SNP array
genotyping,
whole-genome
resequencing

Satellite tracking,
sequencing

Methylation
analyses

RAD-seq

Expression
analyses
(microarray)

Genomic
analyses

*For a complete list of genes, see Zamudio-Beltran et al. (2025) and Jones et al. (2008).
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Navigation: an intriguing ability

One of the most captivating traits in solitary migrants is navigation, as it enables a
juvenile bird without prior experience to follow a specific direction with remarkable
determination and accuracy. It has been hypothesized that birds can do this relying on
either of two orientation strategies, known as “clock and compass” and “goal-area
navigation”. Understanding which strategy birds employ helps us answer a fundamental
question: do birds inherit a detailed internal map or just a set of navigational cues?

The clock and compass model states that young birds rely on an innate program
indicating direction and length of journey, without any knowledge of a goal area.
Therefore, they inherit a vector, or a set of time-specific vectors. This was shown in a
classic and prominent experiment on common starlings Sturnus vulgaris (Perdeck,
1958) where 11000 birds were displaced southeast during autumn migration,
perpendicular to their trajectory. Only adults compensated for the displacement and
reached their wintering grounds, whereas juveniles ended up in more southerly
latitudes. This was later challenged (Piersma et al., 2020) with the criticism that
Perdeck did not account for the possibility that the translocated juveniles could be
guided by local adults, which would rule out the inherited cues. However, shortly after,
Pot et al. (2024) analysed historical recovery data and provided strong evidence that
juveniles did not follow adults nor local birds after displacement, supporting the
inherited vector navigation. For several decades now, evidence for inherited restlessness
(correlated with distance) and specific direction cues is well established (Berthold,
1973; Helbig, 1991). Further experiments show that birds use magnetic cues
(Kishkinev et al., 2015), celestial rotation (Emlen, 1970), and their combined
integration (Able & Able, 1990) to calibrate this compass sense.

The goal-area navigation hypothesis, also known as “true navigation” by Rabel (1978),
proposed that a specific goal point is inherited, a safer and more precise mechanism for
the bird itself. Proving this concept unequivocally is quite challenging, as it would
require egg translocation experiments in solitary migrants, in order to avoid maternal
effects or potential imprinting at the birthplace. Nevertheless, satellite telemetry in
wandering albatrosses Diomedea exulans shows that they were able to navigate as good
as adults (Akesson & Weimerskirch, 2005). Similarly, satellite tracks of common
cuckoos show that both juveniles and adults corrected for displacement towards their
goal area (Thorup et al., 2020).

The clock and compass model of inheritance might appear more intuitive and simpler,
but it raises evolutionary questions. The rapid changes in migratory routes that many
migrants have experienced since the last glaciation (Hull & Girman, 2005; Gu et al.,
2021) would require equally rapid changes in the underpinning genetic mechanisms.
This is possible under a quantitative basis model as populations could adjust routes
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relatively quickly by shifting allele frequencies across many loci. However, direction
specifically seems to be controlled by a few loci that follow Mendelian inheritance
(Helbig, 1991; Vili et al., 2018; Sokolovskis et al., 2023), where changes depend on
rare mutations on major-effect alleles. Therefore, the rapid changes in migratory
direction that some species experience could seem hard to understand. For instance,
novel northwestern directions have been recorded in blackcaps that recently started
wintering in England (Berthold et al., 1992), and barn swallows changed timing and
orientation in less than 35 years and now breed in Argentina (Winkler et al., 2017). In
addition, presumably novel southwestern routes are being established by Richard’s
pipits Anthus richardi, (Dufour et al., 2021). Nevertheless, there is a possible
explanation behind such shifts: phylogenetic analyses show that quick changes in
direction might need a state of residency to exist, whereas strict, long-distance migrants
are unlikely to develop novel routes (Bensch et al., 2023). This is because residents can
experience relaxed selection in the locus behind orientation, allowing alternative alleles
to persist. When environmental conditions change, these alleles can change in
frequency, leading to a “novel” direction. This hypothesis supports the idea of an
evolutionarily constrained migration program in strict migrants (Liedvogel et al., 2011)
while acknowledging relatively rapid direction shifts.

Altogether, it is worth mentioning that while “clock and compass” and “goal-area
navigation” are often presented as opposing hypotheses, there is likely an integration of
both systems in solitary migrants. During the first migration, direction might be innate,
but this can be overruled by navigation towards a goal once it has been experienced
(Thorup et al.,, 2007; Yoda et al., 2017).
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Aims

Despite the advancements in the field of bird migration, many questions remain
unanswered regarding the genetic underpinnings of migratory traits. In a broad sense,
the migratory behaviour has a quantitative genetic basis, but some of the traits involved
seem to be the result of few loci or genetic elements of strong effects that, integrated,
give rise to the migratory routes. The diversity of mechanisms proposed in the literature
highlights the complexity of the migratory behaviour, and gene regulation or structural
variation are rapidly gaining attention. The study of hybrid zones between closely
related taxa with different migratory phenotypes provides an ideal natural framework
to establish phenotype-genotype associations. To this end, I leverage several Phylloscopus
species breeding in Europe, which display distinct migratory routes.

Two willow warbler subspecies with divergent migratory routes inhabit Sweden and
meet in migratory divides around the Baltic (Hedenstrom & Petterson, 1987; Bensch
etal., 1999; Lundberg et al., 2017). Before my studies, it was known that their genomes
were virtually undifferentiated except for three divergent regions within inversion
polymorphisms (InvP) in chromosomes 1, 3, and 5 (Lundberg et al., 2017) though
only InvP1 and InvP5 are related to migration (Larson et al., 2014). In addition, a
marker identified by AFLP (Amplified Fragment Length Polymorphism) had highly
different frequencies in the two migratory phenotypes (Bensch, Akesson, et al., 2002;
Bensch et al., 2009). Similarly, ringing data suggested that two chiffchaff subspecies
show parallel migratory directions to those exhibited by willow warbler subspecies and
that these would also form hybrid zones on both sides of the Baltic Sea. Using these
systems, the aims of this thesis are:

1. To identify and describe genomic regions influencing migratory behaviour

In Paper I we explore the AFLP-derived marker (previously known as WW?2) to
describe a complex, repeat-rich region, later known as MARB (Migration Associated
Repeat Block) that associates with migratory phenotypes in the willow warbler. Due to
a high GC and repeat content, this region is challenging to assemble. We combine
genomic and molecular data to discern whether MARB is physically linked to any of
the other divergent regions in the genome or is, instead, an independent locus.
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2. To establish phenotype-genotype correlations in migratory traits

In Paper II, we use tracking data from 72 willow warblers across both subspecies’ ranges
and the migratory divide together with molecular methods, in order to establish
phenotype-genotype correlations. We aim to assess the influence of candidate loci
(MARB and the inversions on chromosomes 1 and 5) on several migratory traits and
determine their inheritance pattern.

3. To synthesize current knowledge and develop hypotheses on the evolution
of genetic mechanisms behind migratory traits

With the improvements of sequencing technologies, regions that have been
traditionally overlooked can now be considered as candidates for migration traits. In
Paper III, we aim to highlight the importance of such complex regions to study traits
in the context of the current literature. We intend to propose hypotheses on how such
regions and regulatory mechanisms, rather than just coding polymorphisms, can act as
regulatory switches and influence migratory traits.

4. To generate and analyse a willow warbler karyotype to locate a complex
region underpinning migratory direction, and to investigate homology across
closely related taxa.

In Paper IV, we intend to visualise the chromosome location of MARB on a willow
warbler karyotype to confirm that it is a single locus and estimate the length of this
region. Leveraging on improved genome assemblies, we intend to characterize the
genetic elements present in MARB and to understand how widespread it is across the
Phylloscopus tree. For that, we investigate the greenish warbler (a basal taxon), and a
sister species to the willow warbler, the common chiffchaff.

5. To investigate the divergence of MARB across migratory phenotypes in other
species.

In Paper V, we aim to understand if MARB also diverges across chiffchaff subspecies
that migrate differently. We hypothesize that, although different species seem to diverge
in the genetic mechanisms behind migratory traits, the willow warbler and the common
chiffchaff might share commonalities given that they are closely related.
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6. To investigate migratory strategies across species and set the grounds for

future phenotype-genotype studies

In Paper VI, we aim to establish the basis for studying the genetics behind migratory
traits in two hybridising sister chiffchaff species. For that, we track common chiffchaffs
and Iberian chiffchaffs which are presumed to diverge in migratory distance. We
investigate how different challenges related to being short or long-distance migrants
have led to divergent migratory strategies.

Willow warbler perching on an oak tree. Artist: Elsie (Ye Xiong).
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General methodology

Study species

Two Phylloscopus species that breed in Sweden

Two Phylloscopus warbler species, the willow warbler P. #rochilus and the common
chiffchaff P. collybita breed around the Baltic Sea in abundant numbers and display
parallel migratory phenotypes. This makes them ideal candidates to perform
comparative migration studies.

The willow warbler is a long-distance migrant with two subspecies breeding in Sweden.
The southern subspecies, also common throughout central Europe, P. # trochilus, is
generally smaller with a shorter wing length, presents an overall yellower plumage tone
and follows a western migratory route to West Africa. In contrast, the northern
subspecies which spreads further east into Russia, P. #. acredula, is larger, more long-
winged and greyer, and migrates eastward towards East and Southern Africa
(Hedenstrom & Petterson, 1987; Chamberlain et al., 2000).

Despite these average differences in plumage and size, the two subspecies show
substantial overlap (Bensch et al., 2009) and so their distinct migratory routes
constitute the main phenotypic difference between them. Trochilus and acredula meet
and interbreed without signs of assortative mating (Liedvogel et al., 2014), forming at
least three hybrid zones and migratory divides (Figure 3), one in central Scandinavia,
one east of the Baltic (Bensch et al., 2009) and one in the Aland archipelago (Andersson
etal., 2024). The narrowness of these contact zones despite the random mating suggests
potential selection against hybrids, perhaps due to maladapted migration routes (Zhao
etal., 2020).
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Figure 3. Willow warbler distribution map showing breeding grounds (green) and wintering grounds
(blue). Migratory divides are depicted as dashed lines on both sides of the Baltic. The western routes of
trochilus are depicted in brown, and the eastern routes of acredula are depicted in grey. The subspecies
acredula is replaced in central Siberia by the subspecies yakutensis, which also winters in southern Africa
(Sokolovskis et al., 2018). The picture shows both phenotypes side by side (frochilus to the left and
acredula to the right). Photo: Harald Ris.

Previous studies identified three divergent regions between trochilus and acredula birds
(Bensch, Akesson, et al., 2002; Bensch et al., 2009; Lundberg et al., 2017). By mapping
re-sequenced individuals to a short-read Illumina reference genome, the authors could
identify the highly differentiated regions resulting from three inversion polymorphisms
(InvP) in chromosomes 1 (11.6 Mb), 3 (13.2 Mb) and 5 (4.0 Mb). However, only the
inversions in chromosomes 1 and 5 strictly segregate with the two migratory
phenotypes. Another region that showed differentiation was an AFLP-derived marker
named WW?2 (Bensch, Akesson, et al., 2002; Bensch et al., 2009) that occurs in narrow
clines across migratory divides but failed to be detected in the Illumina genome.

The common chiffchaff split from the willow warbler lineage approximately 5 million
years ago (Alstrom et al., 2018). It is described as part of a cryptic species complex,
presently containing at least eight taxa with species or subspecies status (Clement &
Helbig, 1998; Alstrom et al., 2018; Rheindt et al., 2025). It is considered to be a
facultative migrant as a fraction of individuals in some populations spend the winter in
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breeding grounds, whereas others are medium and long-distance migrants (Hahn et al.,
2009; Lampila et al., 2009). Two subspecies breed in Scandinavia, P. ¢. collybita in the
south (and most of continental Europe) and P. c¢. abietinus in the north (and East
towards the Ural Mountains). They present subtle plumage and biometric differences
(Hansson et al., 2000) and ringing recoveries suggest that col/ybita birds have a more
western component in their migratory route, whereas abietinus follow an eastern route
(Lindstrom et al., 2007). Like willow warblers, these chiffchaff subspecies meet in two
contact zones (Figure 4), both in South-central Scandinavia and East of the Baltic
(Hansson et al., 2000). However, the densities in the Swedish contact zone are still low
as collybita birds have been recently colonising Sweden from the south (Lindstrém et
al., 2007).

Figure 4. Common chiffchaff distribution map showing breeding grounds (green) and wintering grounds
(blue). Migratory divides are depicted as dashed red lines on both sides of the Baltic. Collybita directions
are depicted in green arrows and abietinus directions are depicted in grey arrows. Dashed orange lines
show the split between breeding ranges of abietinus and tristis subspecies, which winters in India (Salvin
& Strickland, 1882). The picture shows both phenotypes side by side (collybita to the left and abietinus
to the right). Photos: Michaéla Berdougo.

In contrast to the willow warbler subspecies that do not differ in mtDNA (Bensch et
al., 1999) the two chiffchaff subspecies carry slightly divergent (0.7%) mitochondrial
haplotypes (Helbig et al., 1996; Rakovi¢ et al., 2019). A study based on sequences from
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three nuclear loci failed to find any difference between collybita and abietinus (Bensch
etal., 2006) but whether this low level of divergence is representative for the rest of the
genome was not known at the start of my studies.

Two Phylloscopus that breed in Spain

In the Iberian Peninsula, the common chiffchaff (subspecies collybita) and the Iberian
chiffchaft Phylloscopus ibericus (Figure 5) have distinct breeding grounds. Collybita birds
have a dispersed breeding distribution mostly restricted to the northern plateau and the
Pyrenees (Balmori et al., 2002; Shirihai & Svensson, 2018), whereas ibericus breed
throughout north and northwestern regions, Andalusia and Portugal (Salomon et al,,
2003). Wing morphology, isotope data and field observations (Catry et al., 2005; de la
Hera et al., 2020) suggest that ibericus is a long-distance migrant that winters in sub-
Saharan Africa, although the migratory route remains unknown. In contrast, collybita
birds breeding in Spain are considered shorter distance migrants with ringing recoveries
that show a range of wintering grounds within the Iberian Peninsula, Morocco and
Senegal (Pagani-Nufiez et al., 2014; https://migrationatlas.org/node/1842). These two
species also differ in song and call notes (Salomon, 1989; Hansson et al., 2000), and in
genotype with a mitochondrial divergence of 4.6% in the cytochrome b gene (Helbig
etal.,, 1996). However, there is substantial overlap in plumage and morphology (Gordo
et al., 2017). Relevant for the research on migration genetics, they meet in a narrow
migratory divide in the western Pyrenees where they hybridise (Bensch, Helbig, et al.,
2002a).

Figure 5. The Iberian chiffchaff P. ibericus was
previously considered a subspecies (P.
collybita brehmii) part of the common chiffchaff
complex. It acquired species status in 2003 and
can be distinguished primarily by its song.
Morphologically, they have a longer wing and

yellower tone in the plumage. Photo: Ralph
Martin.

Study sites

We have sampled individuals from different populations in a range of habitats across
their breeding grounds in Europe using male song playback and mist nets. The data
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used in this study spans more than 20 years, with blood samples dating back to the late
90s (Figure 6).

Willow warblers can be found in a wide range of habitats and prefer early seral stages
of forest, often open and linked to human activity, with low tree heights (Szther, 1983).
They are found in both deciduous and coniferous forests (Stostad & Menéndez, 2014;
Lapshin et al., 2020). The common chiffchaffs have a considerable habitat overlap with
willow warblers, though they prefer a well-structured understory (Cody, 1978; Sether,
1983). The Iberian chiffchaff is more restricted to deciduous, slopy oak forest (Onrubia
& Copete, 2022).

In Sweden, birds (willow warblers and common chiffchaffs) were trapped in a
latitudinal gradient that comprises subspecies in allopatric populations and the contact
zones where the two subspecies and their hybrids live in sympatry. East of the Baltic,
birds were trapped within and around the contact zone, from western Poland to central
Lithuania. In Spain, birds were sampled in two locations in the north (ibericus) and
northwest (collybita) of the country (Figure 6).

x
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Figure 6. A) Sampling sites for the willow warbler (blue), common chiffchaff (green), and Iberian chiffchaff
(pink) included in this thesis. Mixed circles indicate shared sampling locations between species. Each
point contains more than one location. B) Typical net setup (Alava, Spain). C) Staffan Bensch and
Kristaps Sokolovskis setting up an unnecessarily difficult netin Jamtland (2019). D) Harald and | scouting
for returning tagged willow warblers in Jamtland (2020). Photos B, C: author. Photo D: Kristaps
Sokolovskis.
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From phenotype to genotype

Throughout this thesis, I employed four complementary approaches to link migratory
traits to genomic regions.

Tracking

We tagged a total of 597 adult male birds across the 3 species included in this thesis
(466 willow warblers in Sweden, 70 common chiffchaffs around the Baltic Sea, 31
Iberian chiffchaffs and 30 common chiffchaffs in Spain). Given the mass of our target
species (7,5-10g on average), we used the smallest possible tracking devices, a
combination of light-level geolocators (Intigeo-W30Z11-DIP 12 x 5 X 4 mm, 0.32
g; Paper II and V) and pressure geolocators (Intigeo, BARW30Z9-DIP, 0.38 g; Paper
VI). These tags comprise 3 - 4,75% of the average species' lean body mass. They were
attached using the leg-loop harness method (Figure 7; Naef-Daenzer, 2007). We
programmed them to measure ambient light levels every 5 minutes, and atmospheric
pressure (through a barometer) every 20 minutes. Data was recovered upon retrieval
the following year, downloaded and processed. Light level geolocators estimate the
approximate position of a bird based on day length (latitude) and sunrise/sunset times
(longitude)  (https://migratetech.co.uk/geolocation_9.html). Pressure geolocators
estimate positions through a combination of measurements: pressure likelihood is
obtained by querying the pressure measured by the device against the ERAS reanalysis
data of atmospheric pressure across the globe
(https://raphaelnussbaumer.com/GeoPressureManual/).  Light data is  then
implemented to narrow down the position probabilities, and a movement model is
created with wind patterns, also obtained from the ERA5 data bank.

Figure 7. Process of geolocator attachment (A, B) and blood sampling (C) across species. Photo A:
Kristaps Sokolovskis. Photo B: author. Photo C: Harald Ris.
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Molecular work

Blood samples were collected in SET buffer from the brachial vein in the field (Figure
7) and stored at -20°C until DNA extraction. Feathers (inner-most primary) were also
collected and stored in envelopes. DNA extraction was performed in the lab following
the ammonium acetate protocol (Richardson et al., 2001) and used for Quantitative
Polymerase Chain Reaction (QPCR; both for measuring copy number variation and for
genotyping). This technique amplifies specific DNA sequences and quantifies them in
real time by detecting fluorescent signals. In addition, samples were also used for sexing,
microsatellite typing, mitochondrial genotyping and genome resequencing.

Cytogenetics

Fresh testes were collected from #rochilus breeding males in Czechia and used to

generate the spermatocyte spreads. Then, we performed Fluorescence in situ

Hybridisation (FISH) on them with a specific probe designed to bind to the region of
interest (Figure 8; Paper IV).

Figure 8. The principle behind FISH on a

karyotype. The synaptonemal complex is

/ labelled with green, fluorescent antibodies. The

‘ size of each synaptonemal complex is used as

* * a proxy for chromosome size. The probe binds

\ to MARB specifically and it is labelled with a
| contrasting colour (red).

Genome analyses

Throughout the thesis, we capitalize on resequencing data (Illumina) mapped against
four high-quality genome assemblies. These genomes were previously generated de novo
using a combination of long-read sequencing, linked-read sequencing and optical
mapping. The oldest genome belongs to a male P. . acredula, with 496 scaffolds (N50
=17 Mb). The P. z. trochilus genome (male) contains 547 scaffolds (N50 = 34 Mb) and
the P. ¢. collybita genome (female) is a contig-level assembly consisting of 517 contigs
(N50 = 28 Mb). All three genomes are available at NCBI under bioproject
PRJNA550489. The P. t. viridanus genome is the latest assembly and consists of 555
contigs (N50 = 34.5 Mb).

We additionally re-sequenced 76 willow warblers and 24 common chiffchaffs
belonging to the different subspecies. Such data was used to produce population
statistics (Papers IV and V) and to build models of demographic inference between
subspecies (Paper V).
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Contributions to the field

A repeat-rich, complex region correlates with migrato
p p g gratory
phenotypes in willow warblers

The two willow warbler subspecies breeding in Europe (. #. trochilus and P. t. acredula)
have been the target of several studies investigating the genetic basis for their distinct
migratory behaviours (Bensch et al., 2009; Bensch, Akesson, et al., 2002; Larson et al.,
2014; Lundberg et al., 2017). Before sequencing technologies became accessible, the
AFLP method was commonly employed to identify closely related taxa or genomic
regions that may be under selection (Gobert et al., 2002; Joly & Bruneau, 2007).
Bensch et al. (2002) identified the WW2 marker in willow warblers, a 5-base pair
duplication which segregated across both migratory divides (Bensch et al., 2009). Once
the first willow warbler genome assembly was available (Illumina, Bioproject
PRJNA319295), such marker, surprisingly, could not be detected.

In Paper I, we capitalised on the first long-read PacBio acredula genome (under
Bioproject PRINA550489). There, WW?2 was indeed present, not in one copy as it was
expected from the AFLP study, but in multiple copies and only in unmapped scaffolds
that were not captured in the Illumina genome. Using qPCR techniques, we were able
to quantify the WW?2 copy number variation (CNV) between east-migrating acredula,
and west-migrating #7ochilus birds from populations surrounding the Baltic. Given the
bimodal distribution of the copy numbers across both subspecies (Figure 9), we were
able to infer that this region was likely inherited as one block. This was further
supported by the inheritance patterns of the WW2 copy numbers (Table S5 in Paper
II) and by a #rochilus karyotype (Paper IV).
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Figure 9. Copy number variation of the WW2
1 marker across pure willow warbler subspecies
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We therefore described such scaffolds as part of a region rich in transposable elements
(TEs) and olfactory receptor sequences (ORs) of unknown functionality. WW?2 itself
was part of the Long Terminal Repeat (LTR) region of a transposon inserted during an
ancient infection by an endogenous retrovirus (ERV) that contained the 5-bp
duplication as a derived state. Whether this TE has a direct effect on migration routes
is unlikely given that this marker only shows copy number variation across willow
warbler subspecies, but not other taxa, as later seen in Papers IV and V. We highlight
the importance of regions that are unresolved due to technological limitations. Such
complex regions have traditionally been neglected and treated as “junk” DNA.
However, they could be involved in speciation processes as important as the radiation
of Oscine passerines into thousands of species (Suh et al., 2018). A very important
outcome of this study was the development of the qPCR-based genotyping protocol of
MARB that enabled us to understand how this region is linked to migration (Paper II).

Genetics behind migratory direction

In Paper II, we combine tracking data from 72 male willow warblers with molecular
analyses to establish genotype-phenotype correlations. Birds were sampled across the
full latitudinal range of Sweden, encompassing pure subspecies populations and the
hybrid zone. We typed each bird for markers previously linked to migratory phenotype,
these being the Inversion polymorphisms in Chromosomes 1 and 5 (Lundberg et al.,
2017), and the repeat-rich region described in Paper I (Caballero-Lépez et al., 2022),
which we named MARB (Migration Associated Repeat Block). Our analyses reveal that
MARRB is the primary region segregating east and west migrants, explaining 64% of the
variation in migratory direction. MARB appears to have an epistatic interaction with
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the inversion polymorphism in chromosome 1 (InvP1). More specifically, the MARB-
a haplotype (acredula birds) seems to have a dominant effect over InvP1 and is strongly
associated with eastward migration (Figure 10). These findings align with results from
the classic blackcap breeding experiments which concluded that direction was
controlled by one or several loci of large effect (Helbig, 1991). Contrary to expectations,
the return rates of hybrids were comparable to those of pure subspecies populations.
Whether this indicates an absence of hybrid disadvantage or reflects survivor bias
towards returning individuals remains unresolved.
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Figure 10. a Histogram depicting bimodality in the frequencies of where birds from the migratory divide
crossed the Mediterranean. b Mean (whiskers depict + standard deviations) winter longitudes for each of
the nine combined genotypes of InvP-Ch1 and InvP-Ch5, illustrated separately for birds with (red) and
without (dark gray) the MARB-a. On the Y-axis, the labels stand for genotype on InvP-Ch1, InvP-Ch5
(Acr homozygote for acredula allele, Het heterozygote, Tro homozygote for trochilus allele) and whether
MARB-a is absent “0” or present “1”. Dotted lines connect the genotypes of both chromosomal inversions
that have or do not have MARB-a. ¢ Breeding and winter locations for birds from the hybrid zone with
(red) and without (dark gray) the MARB-a. Hollow circles show estimates of longitudes where birds
crossed the Mediterranean Sea. The lines connect the locations of each individual. Error bars of locations

in Africa show standard deviations in longitude and latitude of the main winter site of each bird.
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A comprehensive review of the field of genetic mechanisms
behind migratory traits

Despite innovations in both sequencing technologies and tracking devices, phenotype-
genotype associations remain difficult to establish when studying complex behaviours.
An increasing number of studies identify different genomic regions behind migratory
traits, which is perhaps not unexpected, given that migration has been gained and lost
several times across the avian tree. This has shifted the focus towards studying other
aspects of the genome besides sequence polymorphisms, such as regulatory
mechanisms, which offer flexible and rapid means of evolutionary change. They can
affect behaviours like migration, which require dynamic responses to dynamic
environmental pressures. Regulatory networks facilitate fine-tuned control over gene
activity and can evolve faster than coding sequences, facilitating quick phenotypic shifts
(Dsilva & Galande, 2024; Zamudio-Beltrin et al., 2025).

In Paper III we review the state of the field and provide hypotheses on how different
migrant species might display similar behaviours through a diverse range of regulatory
mechanisms of expression. This emphasises the importance of the often-neglected non-
coding regions of the genome, epigenetic modifications and structural variants (SVs).
We also present several hypotheses of how such wide array of mechanisms may work
in different species. We conclude that this regulatory basis is likely species-specific at a
fine scale but results in similar strategies as a response to similar environmental
pressures.

The MARB region is in a medium-sized chromosome that
contains most olfactory receptor sequences (ORs) in the
genome

Given the limitations of sequence-only approaches commonly encountered in our field,
in Paper IV we employ cytogenetics to identify MARB. Using MARB-specific probes,
we conducted in situ hybridisation on spermatocyte cells and visually identified the
region in a male willow warbler karyotype. The probe binds along 80% of the 11th
largest chromosome, which has an estimated size of 34,4 Mbp. We further characterised
MARB in two other Phylloscopus species (Figure 11), the common chiffchaff P. ¢
collybita and the greenish warbler P. trochiloides viridanus which is a basal species of this
genus.

We further discuss the high density of intact ORs across MARB in all analysed species.

We highlight the importance of complex genomic regions that are often neglected in
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other genome projects, particularly those with high OR content, which seem to be
captured only in the most complete assemblies (Driver & Balakrishnan, 2021).

Research on avian olfaction has traditionally focused on foraging behaviour, homing
ability or conspecific recognition (Bang & Cobb, 1968; Grubb, 1973; Hutchison &
Wenzel, 1980; Wenzel, 2007). However, the evidence suggests a broader role, perhaps
in the successful execution of migratory journeys. Translocation experiments on lesser
black-backed gulls, Larus fuscus fuscus, manipulated through olfactory nerve section,
show that they rely on olfaction to correct for displacement during migration (Wikelski
et al., 2015). Similarly, a study of olfaction in navigation of a songbird, the catbird
Dumetella carolinensis showed that anosmic adults treated with zinc sulphate could not
orient as well as controls (Holland et al., 2009).

Our findings in this paper provide evidence that MARB is present in probably all
Phylloscopus. We raise the question of whether olfaction plays a more significant role in
avian migration than previously appreciated, potentially contributing to the evolution
and diversity of migratory routes.
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Figure 11. Schematic representation of a comparison of MARB scaffolds in trochilus (#50) and collybita
(#117). Dot plot of full length (a) and Mauve alignment over the first 120 kb. (b) Annotated genes
illustrated in coloured boxes. Despite shared features across Phylloscopus (repeat families, OR,
pseudogene density and GC content), the MARB region seems to have been through numerous
rearrangements, resulting in divergent sequence architecture.

MARB correlates with migratory phenotype in chiffchaff
subspecies

In Paper V we integrate genome resequencing, molecular and tracking data to
investigate genetic differences associated with migratory phenotype in two common

chiffchaff subspecies, P. ¢. collybita and P. c. abietinus. We demonstrate that this system
mirrors the migratory divergence seen in P. t. trochilus and P. t. acredula with parallel
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contact zones in Scandinavia and across the Baltic, making these chiffchaff subspecies
an ideal target for comparative analyses.

Population statistics and demographic modelling show that abietinus and collybita are
still in early stages of divergence. Their highest differentiation (Fsr > 0.6), however,
occurs in mitonuclear and fertility-related genes, suggesting that selection might be
driving subspecies divergence. Notably, the MARB contigs also show high
differentiation, although uncertainty in their assembly may affect population statistics.
Nevertheless, the clear clustering by multidimensional scaling analyses (MDS) also
supports that different migratory phenotypes present distinct MARB haplotypes. This
turns MARB into the only region divergent between east and west migrants that is
common to chiffchaffs and willow warblers.

This has crucial implications for the understanding of the genetic basis of migratory
behaviour across species. If MARB regulates migratory direction in chiffchaffs, it does
so within a different genomic context than in willow warblers. These findings align
with studies in common yellowthroats where populations with different migratory
behaviours showed parallel evolution at the gene level —same genes repeatedly
involved— but convergent evolution at the SNP level (different mutations within such
genes; Zamudio-Beltrdn et al., 2025). Importantly, many of the variants were found in
noncoding regions, suggesting that control of gene expression plays a central role in
shaping migratory phenotypes. This shows that different species may adapt to similar
migratory challenges through distinct, yet partially predictable genetic pathways.

Short and long-distance migrants differ in migratory traits

Despite belonging to a cryptic species complex, the Iberian chiffchaff and common
chiffchaff have been considered separate species for over two decades (Salomon et al.,
2003). In the final chapter of this thesis, Paper VI, we deployed pressure geolocators
on 61 chiffchaffs in the Iberian Peninsula (30 P. ¢. collybita and 31 P. ibericus) to
investigate differences in migratory strategies. Our findings confirm that P. ibericus are
indeed long-distance migrants, wintering in West Africa. They fly higher, faster and
longer than the sympatric Spanish P. collybita, which remain in the Iberian Peninsula
year-round (Figure 12). These results pave the way for future studies in the narrow
hybrid zone between the two species in the western Pyrenees (Bensch, Helbig, et al.,
2002). Combining resequencing data with geolocator tracks will enable us to study
genetic differences behind the strategies of long and short-distance migrants.
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Figure 12. Modelled trajectories from P. c. collybita (A) and P. ibericus (B) captured in Spain. Each
individual is depicted with a different colour. Circles show stationary periods: breeding grounds, wintering
grounds and stopover sites. The size of the circle is proportional to the time spent in the stationary period.
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Conclusions and future directions

This thesis constitutes a big leap in the study of the genetic architecture behind
migratory behaviour and has implications that extend beyond species-specific insights.
We identified a large, repetitive region (MARB) which explains most variation in
migratory direction in European willow warblers and demonstrates that complex
regions, often dismissed as junk-DNA, can play central roles in behavioural divergence.
Our comparative analyses reveal that MARB is likely present in all Phylloscopus species,
and it seems to correlate with migratory strategies in chiffchaff subspecies. The different
genomic context in which MARB seems to have evolved across species suggests that
similar behavioural traits may have emerged through convergent genetic pathways. An
increasing number of studies support this, emphasizing the role of regulatory
mechanisms, particularly in non-coding regions (Merlin & Liedvogel, 2019; Delmore
et al., 2023; Louder et al., 2024; Zamudio-Beltrdn et al., 2025). With the integration
of cytogenetics, genomic, molecular and tracking data, we provide a robust framework
to link genotype and phenotype even in such complex regions that remain unresolved
in genome assemblies.

Nevertheless, there are gaps in the field that still need to be addressed. We are aware
that our data is male-biased, due to several reasons. First, in monogamous bird species,
males are typically more philopatric than females (Liberg & von Schantz, 1985) which
ensures a larger retrieval of geolocators. Second and most importantly, females are
substantially harder to relocate and recapture after migration (McKinnon & Love,
2018), as they remain inconspicuous among the vegetation and don’t react to playback;
thus, targeted recapture would require relocating nests. This can mask patterns such as
differential migration. This is a poorly understood phenomenon in birds that has been,
for example, detected in chiffchaffs, blackbirds or northern flickers where males and
females seem to exhibit distinct migratory strategies (Catry et al., 2005; Fudickar et al.,
2013; Gow & Wiebe, 2014). From a population genetics perspective, male-biased
sampling can skew allele frequency estimates (and therefore gene flow estimates) and
reduce the detection power of sex-linked loci (Prugnolle & De Meeus, 2002). Future
studies should aim to incorporate balanced sex ratios and explore sex-specific genomic
and behavioural variation to fully capture the complexity of migratory systems.

Another caveat of using geolocator data is that, as we only retrieve loggers from birds
that survived migration at least twice, our inferences are inevitably survivor-biased. This
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hinders the estimation of potential hybrid disadvantage as our data does not represent
individuals that might have lower survival due to maladapted intermediate routes
(Rushing et al., 2021). However, if we want to test the selection against willow warbler
hybrids (estimated to be a 10% difference in survival per generation) we would need
survival data for more than 1000 individuals to confirm hybrid disadvantage (Zhao et
al., 2020).

Currently, tracking studies on juveniles of larger species show differences in timing
(McKinnon et al., 2014; Patchett et al., 2022) and tortuosity (less direct routes) of
migration (Mellone et al., 2013; Vega et al., 2016). A major tipping point for the field
will take place when satellite tracking devices are small enough to be carried by small,
solitary migrants. This will ensure life data input without the need of retrieval, and will
provide us with first-time migrants and female migratory patterns, and overall mortality
rates across different routes.

Finally, the work with complex genomic regions is also challenging by itself. Despite
using highly contiguous assemblies that combine long-read sequencing (PacBio Hi-Fi),
link-read sequencing (10X Chromium) and optical mapping (Bionano Genomics), the
MARB region remains challenging to map. In future assemblies we will attempt
combining long read sequencing with Ultra-Long read sequencing (Oxford Nanopore)
and Trio-sequencing with sequences from parents and offspring to resolve haplotypes
and complex regions (Figure 13). These approaches have proved successful in resolving
regions of comparable complexity in chicken that might indeed be homologous to
MARB (Huang et al., 2023).
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Figure 13. Trio-based genome assembly strategy for a willow warbler family including parental
individuals from the hybrid zone with different MARB haplotypes and their hybrid offspring. Paternal and
maternal haplotypes can be used to fill the gaps in primary contigs.

Our findings challenge traditional approaches that focus on coding sequences and
highlight the need to explore underrepresented genomic regions. We also emphasize
the value of studying cryptic species and hybrid zones to uncover the genetic basis of
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several migratory traits. With an integrative approach, this thesis contributes to the
understanding of the genetic basis of migration in birds.

Figure 14. After eight days of torrential downpour, the clouds finally part one morning in Ribes de Freser,
Spain — one of the many trapping sites for Phylloscopus species in this thesis. Photo: Harald Ris.
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