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Abstract

Data-driven modeling frameworks have become essential tools for guiding
surveillance strategies and informing public health policies across diverse
population health challenges. Accurate, fine-scale disease estimates often lacking
from direct surveys are critical for policy planning, given that spatial heterogeneity
and nonlinear dynamics among determinants of health challenge classical models,
limiting their utility for targeted public health interventions. Advances in geospatial
artificial intelligence (GeoAl), and increased computational power, have enabled
deeper insights into spatial non-stationarity, the shifting strength and direction of
relationships across space. These advances enhance both the accuracy and
contextual relevance of spatial modeling, supporting localized decision-making in
population health outcomes. Drawing on diverse spatial frameworks, this thesis
developed, tested, and applied localized spatially varying GeoAl methodologies,
offering integrated modeling approaches to address stunting among children in the
complexities of such public health concern. Paper I develops localized spatially
varying approaches to reveal significant intra-area variation in stunting prevalence
and nonlinear relationships using cross-sectional socioeconomic and fine-scale
remotely sensed climatic and agroecological data to better characterise household
microenvironments. The approach provided a more detailed understanding of how
local environments shape nutrition outcomes and demonstrating the importance of
considering both scale and nonlinearity in stunting research. Building on this, Paper
IT implements a hybrid spatial machine learning (ML) framework to detect fine-
scale heterogeneity in stunting prevalence, while also quantify localized disparities
that national-level surveys overlook. The framework captures spatially
heterogeneous outcomes across most areas, with predictors exhibiting regions-
specific effects that vary according to different thresholds of influence. Paper III
advances the analysis by implementing a hybrid spatially varying deep learning
(DL) approach, which captured convoluted nonlinear influence of fine socio-
economic determinants on child stunting outcomes. The algorithm fairly captured
variability in stunting outcomes, highlighting key child, maternal, and household
determinants whose contributions varied across space, though limitations in training
data size constrained broader generalizability. Paper IV further refines this
perspective by introducing a predictive multilevel spatial ensemble learning (SEL)
framework to produce small area estimates (SAEs) of stunting risk by combining
geomasked household data with agroecological and remote sensing (RS) indicators.
This approach demonstrated the capacity of predictive models to generalize beyond
sampled survey clusters and produce continuous prevalence surfaces at scales as
fine as 1 km?. Overall, these papers highlight that trade-offs between interpretability,
generalizability, and spatial scale in these analytical and predictive models remain
challenging to navigate and must be evaluated case by case according to research
priorities. The methodologies presented in this thesis aim to generate fine-scale,
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interpretable risk estimates that can support targeted nutrition interventions in data-
scarce settings.
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Popular summary

Population health outcomes emerge from complex spatial interactions among
biological, environmental, and socioeconomic determinants, among others.
Accurate understanding of these processes is critical for guiding targeted
interventions, particularly in resource-limited settings where optimal allocation can
substantially affect population well-being. Yet, many existing studies rely on
coarse-scale analyses, producing global metrics that obscure local heterogeneity and
limit both interpretability at fine scales and generalizability across contexts. This
limitation is especially greater in low- and middle-income countries (LMICs), where
health disparities are pronounced at local levels and interventions require precise
targeting. In these data-scarce regions, remote sensing (RS) leverages satellite data
combined with artificial intelligence (AI) to overcome limitations in data
availability, providing a valuable alternative for assessing socioeconomic and
agroecological factors critical to population health outcomes at a fine scale. Yet,
classical analytical methods often fail to capture the complex, nonlinear
relationships among health determinants, producing oversimplified models that
inadequately reflect real-world complexity. Addressing these challenges requires
methodologies that integrate localized interpretability, predictive generalizability,
and spatial scale while preserving the natural pattern of spatial data. Geospatial
artificial intelligence (GeoAl) has emerged as a powerful tool for population health
analytics, particularly for capturing localized stunting risk patterns and generating
high-resolution predictive models.

This study proposes an integrated approach allowing detailed local analysis across
varied scenarios, bridging gaps of prior approaches and providing a consistent
methodology applicable across varied epidemiological studies. Our framework
integrates spatially varying coefficient (SVC) models with advanced artificial
intelligence (Al) to capture nonlinear relationships, spatial dependencies, and local
feature importance in childhood stunting and its complex determinants. To validate
the proposed approach, we conducted analyses using two cross-sectional datasets
on childhood stunting in Rwanda across three and five-year age groups,
complemented by high-resolution climatic and agroecological data from multiple
RS sources, to refine analysis of the microenvironment around the household and
better capture the complex determinants of stunting among children.

The study found that sanitation deficits, topography, inadequate caregiving, poor
education, limited antenatal care, low degree of urbanization, and climatic factors
including rainfall and NDVI, proxies for several environmental processes may play
important roles in driving stunting risk at fine spatial scales. Consistently across
analyses, these influences were found to be convoluted and nonlinear, suggesting
that stunting risk does not increase uniformly, instead varies by local context. This
underscores the need for localized, easily adoptable methodologies to inform
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decision-making. In addition, we produced continuous surface maps covering
unsampled areas, leveraging RS data to explain spatial variation in risk across
vulnerable ecological areas. This twofold ability supporting both generalization and
local decision-making addresses a major gap in current childhood stunting analytics,
where models often struggle to balance interpretability and predictive accuracy
performance. In practice, the approach can guide precise, location-specific
interventions, optimize scarce health resources, and reduce spatial variation in
outcomes.

This study integrates descriptive, exploration, and predictive analysis within a
spatial framework, offering a blueprint for childhood stunting risk modeling,
indicating how hybrid GeoAl approaches can process spatial epidemiological data
into actionable insights for both research and policy. While spatial ensemble
learning (SEL) generalized well to new dataset, its low explainability and the need
to enhance causal analysis remain open challenges that future studies should
address. Overall, the papers of this thesis highlight that trade-offs between
interpretability, generalizability, and spatial scale in these analytical and developed
predictive models remain challenging to navigate and must be evaluated case by
case according to research priorities. The methodologies presented in this thesis aim
to generate fine-scale, interpretable stunting risk estimates that can support targeted
nutrition interventions under data-scarce conditions.
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Populérvetenskaplig sammanfattning

Befolkningshélsa &r resultatet av komplexa interaktioner mellan bland annat
biologiska, miljomaéssiga och socioekonomiska faktorer. En korrekt forstaelse av
dessa processer dr avgorande for att kunna styra riktade insatser, sérskilt i
resursbegransade miljder déir en optimal fordelning av insatser kan ha stor inverkan
pa befolkningens vilbefinnande. Méanga befintliga studier bygger dock pa grova
analyser, vilket doljer lokala variationer och begriansar bade tolkningsbarheten pa
detaljerad niva och mgjligheten att generalisera mellan olika sammanhang. Denna
begransning &r sdrskilt stor i 14g- och medelinkomstldnder (LMIC), dir det finns
stora skillnader i hdlsa mellan olika omraden och insatserna kraver precision. I dessa
regioner med brist pd data kan fjirranalys (RS) hjilpa till att mitigera
begransningarna i datatillgdngligheten och ar ddrmed ett anvindbart alternativ som
anviander satellitdata och artificiell intelligens (Al) for att bedoma socioekonomiska
och agroekologiska faktorer som &r avgorande for befolkningshélsa pa detaljerad
niva. Klassiska analysmetoder misslyckas dock ofta med att finga de komplexa,
icke-linjdra relationerna mellan hélsofaktorer, vilket resulterar i forenklade modeller
som inte aterspeglar verklighetens komplexitet. For att hantera dessa utmaningar
krévs metoder som integrerar lokal tolkningsbarhet, prediktiv generaliserbarhet och
rumslig skala samtidigt som det naturliga mdnstret i rumsliga data bevaras.
Geospatial artificiell intelligens (GeoAl) har visat sig vara ett kraftfullt verktyg for
analys av befolkningshélsa, sérskilt for att finga upp lokala monster av risk for
tillvaxthdmning och for att skapa hogupplosta prediktiva modeller.

Denna studie foreslar en integrerad metod som mojliggor detaljerad lokal analys i
olika scenarier, Overbrygger luckor i tidigare metoder och tillhandahaller en
konsekvent metodik som kan tillimpas i olika epidemiologiska studier. Vért
ramverk integrerar modeller med rumsligt varierande koefficienter med avancerad
artificiell intelligens (Al) for att fanga icke-linjdra relationer, rumsliga beroenden
och lokala sérdrag som ér viktiga for tillvixthimning hos barn och dess komplexa
determinanter. For att validera den foreslagna metoden genomforde vi analyser med
hjdlp av tva tvarsnittsdatauppséttningar om tillvixthdmning hos barn i Rwanda i
aldersgrupperna tre och fem ar, kompletterade med hogupplosta klimat- och
agroekologiska data fran flera RS-kéllor, for att forfina analysen av mikroklimatet
kring hushéllen och béttre fainga de komplexa determinanterna for tillvixthdmning
hos barn.

Studien visade att bristande sanitet, topografi, otillracklig vard, dalig utbildning,
begriansad modravérd, 1ag urbaniseringsgrad och klimatfaktorer som nederbdrd och
vegetation, som &r indikatorer for flera miljoprocesser, kan spela en viktig roll for
risken for tillvixthdmning pa fin rumslig skala. I alla analyser visade sig dessa
influenser vara komplexa och icke-linjira, vilket tyder pa att risken for
tillvaxthdmning inte 6kar enhetligt, utan varierar beroende pa lokala forhallanden.
Detta understryker behovet av lokaliserade, lattanvanda metoder for att underlatta
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beslutsfattandet. Dessutom har vi tagit fram jidmna prediktiva kartor som tdcker
omraden som inte ingdr i1 urvalet, med hjélp av fjarranalysdata for att férklara den
rumsliga variationen i risk mellan olika utsatta ekologiska omrédden. Denna dubbla
formaga att stodja bade generalisering och lokalt beslutsfattande fyller en viktig
lucka i den aktuella analysen av tillvixthdmning hos barn, dir modellerna ofta har
svart att balansera tolkningsbarhet och prediktiv noggrannhet. I praktiken kan denna
metod vigleda precisa, platsspecifika insatser, optimera knappa hilsoresurser och
minska den rumsliga variationen i resultaten.

Denna studie integrerar beskrivande, utforskande och prediktiv analys inom ett
rumsligt ramverk och erbjuder en mall for modellering av risker for tillvixthdmning
hos barn, vilket visar hur hybrid-GeoAl-metoder kan bearbeta rumsliga
epidemiologiska data till anvandbara insikter for bdde forskning och politik. Medan
rumsligt ensemble-ldrande generaliserades vél till nya data, forblir dess liga
forklarbarhet och behovet av att forbattra kausalanalysen Oppna utmaningar som
framtida studier bor ta itu med. Sammantaget framhéller artiklarna i denna
avhandling att avvigningarna mellan tolkbarhet, generaliserbarhet och rumslig
skala i dessa analytiska och utvecklade prediktiva modeller fortfarande &r svéra att
hantera och méste utvérderas fran fall till fall utifrdn forskningsprioriteringar. De
metoder som presenteras i denna avhandling syftar till att generera finférdelade,
tolkbara uppskattningar av risken for tillvixthdmning som kan stodja riktade
niringsinterventioner under forhallanden med brist pa data.
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Rationale and thesis structure

Population health outcomes arise from the interplay of diverse biological,
environmental, and socioeconomic factors, among others, all varying across space.
In low-resource settings, where more precision and targeted intervention are most
needed, classical analytical approaches are often inadequate, due to their reliance on
coarse spatial resolution data and linear assumptions that obscure critical local
variation, thereby limiting both actionable insight and transferability across regions.
Specifically, in the Northern of Rwanda, child stunting, a core component of the
undernutrition burden, has been observed for more than two decades, despite
sustained clinical and nutritional interventions (Habtu et al., 2022; McLean et al.,
2018). With most households dependent on rain-fed agriculture, food security and
income remain highly sensitive to climatic and ecological factors often overlooked
in child stunting analyses. Local, timely, and spatially explicit insights that
incorporate these dimensions are essential for more effective, targeted responses.
Despite the growing use of GeoAl in geospatial research, previous studies remain
largely confined to traditional ML and statistical methods, often overlooking
spatially varying relationships and failing to integrate interpretability with
prediction, both of which are critical for understanding complex population health
determinants.

This thesis addresses these limitations by proposing an integrative GeoAl
framework that integrates these dimensions, enabling scalable, locally informed
health analysis adaptable to varied contexts, aiming to describe, explain, and predict
the spatial heterogeneity of child stunting in Rwanda. This dissertation is organized
as a compilation of research papers, framed around the goal of using GeoAl to
deepen spatial epidemiological understanding of child stunting. Paper I developed
spatially varying models to explore nonlinear, location-specific relationships
between childhood stunting and socioeconomic, climate, and agroecological factors
among children under three. Paper II applied a hybrid ML framework to identify
global and local determinants of stunting risk among children below the age of five.
Paper III introduced a hybrid spatially varying DL model to capture complex
spatial dependencies and key factors of stunting in children under three. Paper IV
implemented a multilevel SEL approach to generate predictive SAEs maps of
stunting risk using household, agroecological, and RS data. Through these efforts,
the dissertation seeks to bridge the research and knowledge gaps by providing a
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more accurate and nuanced description of population health data, thereby
facilitating more effective spatial analysis and decision-making processes.

The thesis synthesizes cross-paper findings, discusses implications for public health
policy, and highlights future research directions. This thesis begins by outlining the
persistent challenge of childhood stunting and urgent need for locally targeted
interventions informed by a nuanced understanding of population health
determinants. It then presents the aims and methods focused on characterizing
spatial epidemiology of childhood stunting through localized analytical and
predictive approaches. The results and discussion sections evaluate the application
of GeoAl techniques, exploring both their analytical and predictive capabilities in
capturing complex population health outcomes’ patterns. Finally, future work is
proposed to enhance the developed models by advancing causal inference,
forecasting, and interpretability in spatial-temporal health data.
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Background, related studies and
motivation

In this section, we first review the epidemiology of childhood stunting, its
multifaceted determinants, emphasizing the need for localized decision-making
interventions. Second, we characterize geospatial population health data using
spatially explicit methods, highlighting the importance of localized analysis. Third,
we explore SVC and GeoAl approaches to enhance analytical and predictions of
stunting risk. Finally, we discuss the interpretability and the limitations of current
methods for geospatial health.

Childhood stunting: epidemiology, multifaceted
determinants, and public health implications

Stunting in children (low height-for-age) is a major global public health concern,
reflecting chronic undernutrition during the first 1000 days of a child growth
(UNICEF et al., 2025; WHO, 2006). Undernutrition, defined as insufficient intake
of energy and nutrients, manifests as wasting, underweight, or stunting (UNICEF et
al., 2025). Stunting, assessed using the HAZ, is a key indicator of long-term
nutritional deprivation, with children scoring below -2 SD classified as stunted, and
-3 SD severely stunted (WHO, 2006), reflecting both biological and environmental
growth constraints (Osgood-Zimmerman et al., 2018). Globally, around 151 million
children under five are affected, with the highest burden in Sub-Saharan Africa and
South Asia as depicted in Figure 1 (UNICEF et al., 2025). Within countries, stunting
disproportionately affects children from disadvantaged households and
marginalized communities (Mertens et al., 2023).
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Figure 1: Global geographical distribution of stunting among children under five, presented as percentage
prevalence by countries, with the highest levels in Sub-Saharan Africa, and Southern Asia. Colours
indicate severity: very low (<10%) to very high (=50%). Data reflect the most recent modeled estimates
as of 2019 (IHME, 2020).

Stunting, a core component of the undernutrition burden, is shaped by diverse
determinants: socio-economic inequality, poor education, limited access to
healthcare, inadequate sanitation, unsafe water, recurrent infections, and food
insecurity, among others (Baffour et al., 2023). In low- and middle-income countries
(LMICs), inadequate nutrition is the primary driver of child stunting, yet evidence
shows that climate change, agroecological conditions, and socio-economic factors
further exacerbate it through multiple pathways (Aheto & Dagne, 2021; Baffour et
al., 2023; Khaki et al., 2024; Nduwayezu et al., 2024). For example, extreme rainfall
and droughts disrupt crop production, while sparse vegetation and poor soil fertility
may reduce food availability, directly impacting dietary security (Christian & Dake,
2022; Khaki et al., 2024). Additionally, poor sanitation and waterborne diseases
further impair nutrition and growth (Aheto & Dagne, 2021). Livestock ownership
and access to Animal-sourced Foods (ASFs) are crucial for mitigating stunting, as
these foods provide essential nutrients for development (Christian & Dake, 2022;
Haileselassie et al., 2020). Studies show that children from livestock-owning
households or those receiving protein-rich supplements exhibit better growth,
emphasizing the need for integrated, multi-faceted solutions to tackle stunting
(Dusingizimana et al., 2024). These determinants interact to perpetuate malnutrition
across generations (UNICEF et al., 2025). The consequences extend beyond growth
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deficits to impaired cognitive and motor development, reduced school performance,
higher disease susceptibility, and lower adult economic productivity (Osgood-
Zimmerman et al., 2018), reinforcing cycles of poverty and health disparities
(Baffour et al., 2023). To address childhood stunting, this study aligns with the
SDGs, particularly SDG 2 (zero hunger), SDG 3 (good health and well-being), and
SDG 10 (reduced inequality) (UN-HABITAT, 2018), to design effective
interventions of such public health issue (Annan, 2018), which build on integrated
approaches across the wider range of determinants, supported by different
descriptive, analytical and geospatial predictive methodologies (Blanford, 2025).

Classical GIS approaches for spatial modeling of
population health

Population health is fundamentally shaped by geography (Moore & Carpenter,
1999). Geospatial data, as a unique form of data, recording the spatial health
attributes and their interactions of different locations (Moraga, 2019), allows
accurate comprehensive descriptive, analytical and predictive, pivotal tasks for the
success of spatial analysis in population health (Kirby et al., 2017). As such, the
success in representing and analyzing geospatial information is key to ensuring the
methodological rigor in public health (Wilson & Wakefield, 2020), calling for a
careful and detailed approach to describing geospatial data (Lin & Wen, 2022).
Understanding geospatial data and providing accurate descriptions are crucial for
designing effective spatial models across diverse analysis tasks (Clark et al., 2024).
In that context, spatial predictive models heavily relying on accurate descriptive and
analytical tasks (Blanford, 2025), involve constructing appropriate models based on
identified spatial patterns and interpreted relationships (Egana et al., 2025).

These population health data, heterogeneous across space, are modeled in either
continuous or discrete perspective (Anselin, 2010). The former assumes that spatial
relationships vary continuously across space, while the latter, by contrast, assumes
that coefficients vary across discrete subregions of the data (Guo et al., 2025), and
are often captured by various spatially stratified modeling frameworks (Wang et al.,
2024b; Wang et al., 2010). From a modeling perspective, population health
outcomes such as child growth failure are rarely uniform across regions; instead,
their prevalence shifts with socioeconomic, agroecological, and environmental
contexts (Moraga, 2019). The discrete approach, however, captures broad contrasts
between areas but risk oversimplifying health disparities by imposing hard
boundaries. Continuous models, by contrast, acknowledge that population health
determinants from nutritional to environmental change continuously with
geographic locations, revealing spatial risk gradients hidden by stratified models
(Konstantinoudis et al., 2020). The population health data are often collected at the
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household level, providing detailed spatial information on individual outcomes
(Tuson et al., 2020). Yet, it is rarely feasible to design policies tailored to every
individual location (Wang et al., 2010), meaning that even continuous models of
health heterogeneity are typically applied to aggregated areal data that align with
how public health interventions are implemented. To upscale sampled point data to
discrete areal data, aggregation- based geomasking is applied with the dual goals of
protecting privacy and providing a degree of utility for spatial analysis (Seidl, 2025).
This process prevents identification of specific locations, households, or individuals
represented in the dataset (Wang, 2024a). As shown in Figure 2, this dissertation
focused on exploratory, analytical, and predictive modeling within a continuous
spatial framework, applied to both point-referenced and aggregated areal data
(Wang, 2024a), which better reflect the gradual transitions in health risks shaped by
environment, behavior, and socioeconomics (Lin & Wen, 2022), and thus provide a
more precise basis for explanatory and predictive intervention.

A. Random spatial samples C. Aggregative geomasked data
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Figure 2: Workflow for exploring and modeling continuous spatial structure from random samples.
Random spatial samples (A) were used to reveal underlying spatial variation, followed by the generation
of a continuous surface estimates using geostatistical methods (B). Sample values were then
interpolated onto a continuous spatial grid to estimate localized means (C), which were further smoothed
and analyzed to reveal spatially varying trends centered around the mean (D).
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The main sources of these geospatial health data include GPS-tagged household
mostly from cross-sectional surveys (e.g., DHS and MICS) (Blanford, 2025), census
data, and climatic and agroecological indicators such as rainfall and vegetation
indices derived from RS imagery (Eberth et al., 2021; Kirby et al., 2017). Due to
data unavailability or temporal gaps in cross-sectional surveys, these remotely
sensed indicators continuously and consistently available, complement household-
level data, enabling more robust and dynamic analyses (Clark et al., 2024).
Therefore, spatial epidemiological studies integrate multi-scale datasets, to fuse
individual or household information with broader community and environmental
contexts, capturing the complex drivers of population health outcomes (Pradhan et
al., 2025). However, challenges remain, including inconsistent spatial resolution of
data, missing or incomplete data, and privacy concerns when linking sensitive
individual-level information to geographic locations (Seidler et al., 2025). In the
same vein, that privacy of surveyed household health data presents a significant
challenge, especially when working with multisource, misaligned datasets that
require aggregative geomasking (Alahmadi & Moraga, 2025; Hampton et al., 2010).
This process can introduce spatial issues, particularly the spatial change of support
(Lee et al., 2009), in the forms of the modifiable areal unit problem (MAUP), and
ecological fallacy (Openshaw & Taylor, 1979), where conclusions drawn from
aggregated spatial scales may fail to reflect individual-level variation. MAUP is a
fundamental issue in spatial analysis, where results are inherently dependent on the
choice of spatial units, while ecological fallacy refers to the incorrect application of
group-level inferences to individuals (Comber & Harris, 2022).

To address these issues, methods such as Moran's I or variogram modeling can be
utilized to assess spatial autocorrelation and variability, offering a more accurate
understanding of scale effects (Comber et al., 2022). This thesis adopted spatial
datasets with multiple geomasked resolutions, to support the ethical and
methodological requirements of childhood stunting researches to ensure respondent
confidentiality (Burgert-Brucker et al., 2018; Janocha et al., 2021), preserving
spatial structure (Bharti et al., 2019), and aligning with the scale of relevant socio-
demographic, environmental and agroecological covariates (Alahmadi & Moraga,
2025). The spatially balanced sampling design of these surveyed household data
also emerges as a key consideration to ensure representative spatial coverage
(Diggle et al., 2010), critical in population health studies such as childhood stunting.
This approach as opposed to classical sampling theories, ensure that sampling
locations are well spread out across the survey area (Koldasbayeva et al., 2024),
avoiding clusters of nearby samples and better capturing the spatial variation in
disease risk (Olatunji et al., 2021), to ensuring spatial dependency, and
heterogeneity in disease prevalence (Kamgno et al., 2025), critical for validity and
reliability of spatial varying model outcomes (Fratesi et al., 2025).
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Consequently, population health outcomes, such as childhood stunting, which are
rarely distributed uniformly, exhibit two main spatial effects, namely, spatial
heterogeneity and spatial dependency (Anselin, 2010), reflecting variations in socio-
economic status, access to healthcare, nutrition, sanitation, and education. Spatial
heterogeneity, often addressed with spatially varying models, captures non-
stationarity across space, while dependence reflects spatial autocorrelation among
nearby observations (Anselin, 1988a; Brunsdon et al., 1996). Recognizing these
patterns enables the identification of vulnerable populations and the targeting of
interventions where they are most needed (Moraga, 2019). National or regional
averages often mask localized "hotspots" where children are most vulnerable,
highlighting the need for fine-grained spatial analyses (Osgood-Zimmerman et al.,
2018). Epidemiologists can assess spatial dependency in health outcomes using
global spatial autocorrelation measures such as Global Moran’s I (Getis & Ord,
1992), which provide a single test statistic that summarize the spatial patterns for
the entire study area (Getis, 2010), and Lagrange Multiplier diagnostics (Anselin,
1988b), which provide targeted test statistics to identify spatial dependence in
regression models. While useful as an initial test, such global tests do not detect
localized clusters of high or low disease burden (Eberth et al., 2021). Methods to
identify localized patterns with consistently high or low disease burden statistics
include Anselin’s Local Moran’s I (LISA) (Anselin, 1995), or Getis-Ord Gi* (Hot
Spot Analysis) (Ord & Getis, 1995), pivotal in guiding targeted interventions and
resource allocation (Eberth et al., 2021). In the same vein, spatial econometric
models account for spatial autocorrelation by explicitly modeling outcomes at a
given location as dependent on those of neighboring locations (Anselin, 2010). This
is achieved by including spatially lagged terms in the regression model applied to
the dependent variable (SLM), explanatory variables (SLX), the error term (SEM),
or combinations thereof (Anselin, 1989). However, these models can account for
global autocorrelation in the spatial data, and neither method allows the
relationships to vary over space (Eberth et al., 2021). Hence, to further describe local
variability of these spatial data, a GWR in the form of Geographically Weighted
Summary Statistics (GWSS) model, a non-stationary spatial statistics (Brunsdon et
al., 2002), provides the spatial local mean, local Pearsons’s correlation, under the
premise of spatial autocorrelation to bridge gaps of these global descriptive
statistical techniques (Gollini et al., 2015). Most importantly, these spatial models
provide a descriptive picture of spatial data, significantly enhance the performance
of analytical and spatial prediction tasks in population health outcomes (Zhang et
al., 2024a). Overall, the inherent spatial structure and dependencies in such health
data violate assumptions of randomness (Eberth et al., 2021), necessitating
specialized spatially varying modeling approaches to ensure the validity of
conclusions and avoid misleading policy implications (Lin & Wen, 2022).
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GeoAl in population health: exploring analytical and
predictive boundaries

“Essentially, all models are wrong, but some are useful” - George E. P. Box

As noted in the section above, geospatial health data pose significant challenges
owing to inherent spatial dependence and heterogeneity, which are central to GeoAl
and demand specialized modeling techniques (Goodchild & Li, 2021).
Fundamentally, spatial heterogeneity arises in two distinct forms, namely form-
based, which reflects differences in observed values across locations, and process-
based, refers to the spatial variation in the relationships between variables across
different locations (Goodchild, 2004). This latter, process-based heterogeneity, is
often manifested as spatial non-stationarity and is captured by various SVC GeoAl
frameworks (Anselin & Amaral, 2024). In extreme cases of population health, local
spatial regression models are vital for uncovering such spatial heterogeneity that
global models can obscure, thereby limiting the effectiveness of spatial analysis (Lin
& Wen, 2022). While a global analysis may indicate a consistent positive
association between socio-economic deprivation and population health across a
region (Kanevski, 2025), local models can identify areas where this relationship
reverses due to differing environmental or agroecological conditions, such as
variations in food availability or water quality (Deng et al., 2025). Such spatial
variation underscores the need for local modeling approaches to accurately capture
the complex and heterogeneous drivers of population health outcomes (Maitra et al.,
2025). The integration of spatial statistical modeling and GeoAl methods have
proven effective (Li, 2020), in addressing spatial epidemiological issues exhibiting
spatial heterogeneity due to the complementary strengths each approach offers
(Oulaid et al., 2025).

SVC one of modeling backbone in subsymbolic GeoAl methodologies (Finley,
2011; Sahana et al., 2023; Wang et al., 2025), are an extension of traditional
regression models that capture how relationships between variables vary across
different locations (Comber et al., 2024), producing locally varying regression
coefficient estimates, suggesting that the importance of an explanatory variable may
vary over space (Brunsdon et al., 1996). The most common SVC formulated under
frequentist framework includes GWR (Brunsdon et al., 1996; Fotheringham, 2009),
extended in MGWR (Fotheringham & Sachdeva, 2022; Oshan et al., 2019), and
other variants to incorporate temporally explicit data (Fotheringham et al., 2015).
Under GWR modeling framework, the relationship between predictors and the
response varies continuously across geographic space using a local weighting
matrix (Comber et al., 2023). This local regression method captures spatial variation
by assigning greater weight to nearby observations using a kernel function, such as
Gaussian, exponential, or bi-square (Fotheringham et al., 2022), each differing
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slightly in how weights decline with distance (Fotheringham et al., 2023). This
kernel function needs a specified bandwidth that defines the neighborhood of
influence around each point (Lu et al., 2017). Depicted in Figures 3 and 4, the
bandwidth can be either fixed in terms of a geographic distance, or adaptive by
adjusting to a set number of neighboring observations (Fotheringham et al., 2023).
Larger bandwidths suggest broader regional trends by incorporating more distant
observations, while smaller bandwidths focus on nearby data to emphasize local
details (Brunsdon et al., 2002). The selection of the bandwidth is typically estimated
by cross-validation (Binbin et al., 2020), by minimizing a corrected AICc, balancing
a Dbias-variance trade-off to capture spatial trends and avoid overfitting
(Fotheringham et al., 2023). The general formulation of a GWR model and other
SCV and ML hybrids are summarized in Table 1. Typically, GWR explicitly
account for spatial nonstationarity resulting in a surface of local goodness-of-fit
metrics, and associated measures of uncertainty, enabling detailed understanding of
how predictors influence disease risk (Fotheringham et al., 2023). However, the
application of GWR may yield biased estimates due to repeated use of observations
to estimate local regression parameters, too few observations for each regression
that leads to overfitting (Binbin et al., 2020), and multicollinearity among local
coefficients (e.g. for instances of local collinearity overlooked by global estimates)
(Comber et al., 2024). MGWR addresses these issues by extending the flexibility of
the spatial scale, allowing relationships between exposures and outcomes to vary
across different spatial scales (Oshan et al., 2019). Within this framework, applied
to spatial epidemiology (Eberth et al., 2021), broad-scale predictors (e.g. climate)
operate over larger bandwidths, while localised factors (e.g. socio-economic) vary
over smaller bandwidths, reflecting spatial scale differences in influence (Wolf et
al., 2018). As displayed in Figure 5, MGWR adaptively selecting bandwidths for
each variable (Fotheringham et al., 2017), enhances both flexibility and
interpretability, making it particularly effective for modeling multiscale population
health phenomena (Eberth et al., 2021).
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Figure 3: Gaussian kernel functions with varying bandwidth parameters (8) (Modified from Fang et al.,
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Yet, both GWR and MGWR, due to their rudimentary kernel-based
parameterisation fail to handle very large, complex, and high-dimensional spatial
datasets with complex interactions and non-linearities (Fotheringham et al., 2017).
Therefore, MGWR is often viewed as better suited for exploratory rather than
inferential analysis (Comber et al., 2024). Conversely, ML methods like decision
trees (Breiman, 2001), SVM (Vapnik, 1995), and ANN (Hornik et al., 1989), excel
at detecting complex non-linear patterns (Kmoch et al., 2025). These approaches
also provide scalability and automation, enabling large-scale, high-resolution
mapping that can support timely, data-driven decision-making in public health
interventions (Ahmed et al., 2021). Although these ML capture such convoluted
non-linear relationships, they often ignore local spatial dependencies to provide
interpretable, location-specific coefficients like GWR does (Jiao & Tao, 2025). A
hybrid GeoAl approach synergizes GWR with ML techniques to accounts for spatial
heterogeneity by producing location-specific coefficients, and captures non-linear
relationships and interactions within health data (Credit, 2022). As shown in Figure
6, GWRF blends GWR's spatially varying coefficients with the non-linear predictive
power of RF to capture spatial context through localized training on neighborhood
data (Georganos et al., 2021; Santos et al., 2019). In doing so, GWRF introduces
two new hyperparameters bandwidth and local.w (Georganos & Kalogirou, 2022),
in addition to the standard RF hyperparameters number of trees (ntree or
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n_estimators) and features per split (mtry or max_features) (Breiman, 2001),
thereby enhancing model accuracy in spatially heterogeneous contexts. Similarly,
GNNWR employs neural attention mechanisms to estimate nonstationary weights
(Du et al., 2020), accommodating complex spatial dependencies and interactions of
spatial epidemiology data (Kianfar et al., 2025). Typically, GNNWR extends
standard GWR by employing a SWNN (Du et al., 2020), where globally estimated
OLS coefficients are modulated by neural-network-derived (Wu et al., 2021), non-
stationary spatial weights to yield spatially varying regression coefficients and
capture both local spatial heterogeneity and non-linear associations (Yin et al.,
2024). Another GeoAl approach, SRGCNNs (Zhu et al., 2022b), utilizes graph
convolutional networks to model spatial relationships in a way similar to GWR,
offering a DL paradigm for spatial regression health data analysis. Motivated by the
need for model transparency, these approaches generate localized performance
metrics, such as spatially explicit R? and residuals (Lin & Wen, 2022), crucial for
identifying geographic disparities and context-specific drivers of population health.
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Figure 5: Comparison of global and local regression models for spatially varying relationships. (a) OLS
provides a single global fit across all samples. (b) GWR applies fixed-bandwidth local linear models within
local neighborhoods. (c) MGWR uses adaptive bandwidths to account for spatial heterogeneity. (d)
GWRF and GNNWR fit local nonlinear models using RF and DL. Local bandwidths and regression points
illustrate how model structure adapts to spatial variation.
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While both GWRF and GNNWR models capture the nonlinear and complex
interactions between population health and socio-ecological conditions, their
applicability remains limited when extrapolating beyond observed data to
unsampled contexts. To this end, EL with geostatistics models have attracted many
attentions in spatial disease modeling due to their ability to capture complex
interaction among features (Ahmed et al., 2021), and for their limited expert
knowledge requirements (Davies & Van Der Laan, 2016), allowing for spatial
nonlinearity across the regions (Jemeljanova et al., 2024), for improving disease risk
predictions (Moraga, 2019). Built on that framework, recent advancements explored
the capabilities of both supervised learning (Zhang et al., 2024b), and geostatistics
(Wang et al.,, 2024c), within the hybrid geostatistical regression frameworks
(Fouedjio & Arya, 2024), to respectively predict, downscale, and to explicitly
capture local variation in surface earth properties. Similarly, (Hengl et al. (2018)
implemented a spatial RF and applied buffer distances on observations in the form
of a distance matrix, a method also used by Mila et al. (2024) to deal with model
bias and prediction suboptimality, as those from the aspatial RF. On the same basis,
Ahn et al. (2020) inspired by Hengl et al. (2018), applied the PCA to the distance
vector using only the geographic coordinates for spatial estimation without other
covariates. Inspired by Lundberg & Lee (2017), Li (2024) introduced GeoShapley
combined spatial data with coordinates to measure spatial effects in ML models for
advancing the model interpretability. Although these models offer predictive power,
coordinate-based frameworks, alone or with covariates, provide limited
interpretability for disease-risk decision-making (Jemeljanova et al., 2024), since
the influence of location cannot be directly assessed (Liu, 2024). Being said, they
are still issues related to the interpretability and transferability of these methods
which are conditioned by their rigorous parameterization and experiments made on
well generalized real cases with enough large structured datasets (Zhao et al., 2024).
This study advances the population health risk prediction by envisioning a hybrid
ML and geostastical classification approach as an alternative to the existing similar
studies to refine the explainability critical for localized public health decision
making. Overall, this robustness rooted in these models to capture complex, non-
linear interactions and handle high-dimensional data through learned relationships
instead of predefined kernels, makes these hybrid GeoAl methodologies ideal for
our study (Luo et al., 2021), providing a powerful tool for targeted interventions and
evidence-based public health planning. With this study, we provide critical insights
into selecting appropriate spatially varying GeoAl methodologies for spatial
modelling tasks, ultimately improving the reliability of localized descriptive,
analytical and predictive models of childhood stunting.
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Explainability and interpretability in population health
outcomes

Understanding why a model produces specific predictions is essential for designing
effective public health interventions (Loh et al., 2022). For instance, a variety of
classical ML tools, such as GLM (Nelder & Wedderburn, 1972), GAM (Hastie &
Tibshirani, 1995), and decision tree variable importance and partial dependence
plots (Ahmed et al., 2021), considered as early incarnation of IML, has been widely
used in scientific studies (Ahmed et al., 2025). Traditional approaches output single
regression coefficients, and global variable importance metrics, which provide
insight into predictor effects but have notable limitations (Molnar & Freiesleben,
2024). Coefficients assume linearity and global stationarity, while standard variable
importance measures indicate which predictors matter most without clarifying
directionality, interactions, or context-specific effects, often obscuring nuanced
relationships in complex, non-linear datasets (Jiang et al., 2024). To this end,
analytical spatially varying GeoAl models such GWRF offer local variable
importance, and GNNWR produces location-specific regression coefficients,
providing nuanced insights into how predictors vary across space (Santos et al.,
2019). These models visualize these local coefficients surfaces, and adhering to a
single-color bar ensures consistency across the maps, allowing for direct
comparisons of patterns and magnitude between variables (Stofer, 2016). This
broader visualization strategy enables users and analysts to assess both trends and
reliability across multiple variables. Complimenting these, XAl techniques, such as
SHAP, overcome these gaps by quantifying both global and local contributions of
predictors, capturing non-linear interactions and spatially varying effects (Lundberg
et al., 2020; Lundberg & Lee, 2017). In population health, SHAP can reveal how
socio-economic, environmental, and spatial factors drive outcomes like childhood
stunting, and, when combined with spatial visualization, highlights high-impact
drivers across regions (Nduwayezu et al., 2025b). Inspired by Lundberg & Lee
(2017), Li (2024) introduced GeoShapley to measure spatial effects in ML models
for advancing the interpretability of these spatial models. These recent advances in
spatial SHAP further allow visualization of geographic gradients in feature effects,
highlighting spatially varying drivers of outcomes such as childhood stunting. This
approach bridges the gap from traditional linear or tree-based models to advanced,
interpretable predictive frameworks capable of guiding targeted public health
interventions. Overall, this thesis generates fine-scale, interpretable risk surfaces
that can support targeted nutrition interventions in data-constrained settings, and
enable a more demystified modeling, providing interpretable insights into the
drivers of child undernutrition, enabling actionable intelligence for decision-
makers.
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Aim and objectives

The overall aim of this thesis is to develop, test, and apply methodologies for the
detection, explanation, and prediction of the spatial heterogeneity in population
health datasets. The thesis provides information on the potentials and challenges
associated with integrating multi-source geospatial, household survey, and remotely
sensed data to understand local determinants of stunting among children, map small-
area prevalence in Rwanda, and support geographically targeted public health policy
interventions to the areas of the most needs. The following three specific objectives
were pursued to accomplish this aim:

1.

To quantify and statistically analyze the spatial patterns of child stunting
prevalence using spatially varying and clustering approaches across
multiple scales (Paper I).

Identify and interpret localized nonlinear determinants of childhood
stunting by applying hybrid GeoAl approaches that integrate multisource
determinants (Papers 11 & III).

Develop and evaluate predictive GeoAl models that generalize to
unsampled locations using spatial ensemble methods to generate SAEs of
childhood stunting risk (Paper IV).

To achieve these objectives, this study addresses the following questions:

How can spatial patterns in childhood stunting be statistically and visually
quantified?

How can nonlinear relationships between localized stunting determinants
and spatial contexts inform targeted health policy models; and particularly,
how effective are climatic and agroecological indicators in analyzing
childhood stunting?

How predictive inference models generalize to produce probabilistic risk
estimates of childhood stunting, enabling localized interventions?

Figure 6 illustrates the overall structure of the thesis and how the contributing papers
are integrated into the final synthesis.
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Localized Nonlinear
Interactions

Hybrid GeoAl model combining
SVC and RF with SWRF for
nonlinear spatial inference

Predictive
Spatial Modeling

Hybrid ensemble ML and
geostatistical modeling for SAE
and fine-scale decision support

Demystifying the Interpretability
and Generalization of Localized
Spatial Varying Patterns
for Population Health Outcomes

Spatial Pattern
Identification

N

SVC modeling with clustering
and hotspot detection across
scales using multisource
covariates

Complex Dependencies
Analysis

Hybrid SVC and DL with
SWNN for modeling complex
spatial dependencies

\/

Figure 6: Dissertation structure showing linkages among four papers on spatial modelling (Paper 1), local
determinants (Papers Il & Ill), and predictive estimation of population health outcomes (Paper IV).
Arrows denote conceptual and methodological contributions across papers.
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Materials and methods

Overview and study area

Rwanda’s Northern Province historically exhibiting higher rates of child stunting
relative to other regions (NISR et al., 2021), served as the primary study area for
this research (Paper I, III, and I'V). This region is typified by rugged terrain, high
population density, and predominantly smallholder agricultural systems, which are
acutely susceptible to both agroecological and socioeconomic stressors. These
characteristics make it a critical landscape for investigating how local
environmental and social determinants interact to shape child nutritional outcomes.
To complement this regional focus, national-scale patterns were assessed using data
from the 2019-2020 RDHS (Paper II). The RDHS provided standardized
anthropometric data for children under five, alongside detailed maternal, household,
and demographic variables. To safeguard respondent confidentiality during data
curation, survey cluster coordinates were randomly displaced by up to 2 km in urban
areas and 5 km in rural areas (Burgert-Brucker et al., 2018; Janocha et al., 2021).
To address the resulting spatial uncertainty, data were aggregated at sector
jurisdictional and gridded resolutions (1 km? and 5 km?), minimizing positional error
while maintaining spatial reliability for subsequent analyses.
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Figure 7: Geographical location of Rwanda (the left upper figure), and stunting prevalence at household
cluster level in Rwanda (the main figure). These geo-located data formed the basis for the modeled
interpolated surface, and average stunting prevalence rate at the sector level, a jurisdictional zone in
Rwanda used in Paper Il.

45



29°30' 29°I45' 3(I)° 30‘;15‘

29°20"

-1°30'

[ District boundary
] Sector boundary

Surveyed households
HAZ score distribution

4.8
Villages population

-5.9 density

258 - 665
666 - 1072
1073 - 1479

B 1480 - 1886

1°45'

Figure 8: The location map of the Northern Province in Rwanda (the right upper figure), and the spatial
distribution of the sampled households in the study area (the main figure). These childhood HAZ
prevalence was initially collected at the household level (Paper lll), then aggregation-based geomasking
to generate continuous areal HAZ prevalence at the sector level (Paper 1), further gridded at 2.2 x 2.2
km resolution, and finally dichotomized into stunted and non-stunted categories for use in Paper IV.

Paper I

The aim of this study was to explore the spatial heterogeneity of stunting (low HAZ)
among children aged between one month and three years in Rwanda’s Northern
Province, and to analyze how socioeconomic, agroecological, and climatic factors
contribute to its variability. We utilized cross-sectional data from 601 households,
geomasked through aggregation at the local administrative level, and applied SVC
models and interpretable ML techniques. Built on balanced spatial sampling (Diggle
et al., 2010; Olatunji et al., 2021), and WHO anthropometric guidelines (WHO,
2006), we captured different child growth failure metrics and related socioeconomic
attributes in the northern province. To do this, two-stage cluster sampling was
employed (Katz, 1995), randomly selecting 137 from 2,744 villages using a spatial
grid to ensure geographic representativeness, followed by systematic household
sampling proportional to village population density. The sample size was calculated
using the standard formula for prevalence studies (Carlin & Hocking, 1999),
assuming a 40.5% stunting prevalence (NISR et al., 2021), 95% confidence, 5%
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margin of error, and a design effect of 1.5 (Katz, 1995), yielding 553 households.
Adjusting for 10% non-response (Jensen et al., 2022; Prince, 2012), the final sample
size was 615 households. Anthropometric measurements of children and mothers
were collected following standard protocols. After excluding 14 children with
missing anthropometric data, 601 samples were included in the analysis. Stunting
was the primary outcome, with predictors spanning seven categories: socio-
demographic factors, health, nutrition, childcare, violence, livestock, and healthcare
access. Motivated by existing health literature, the household survey data were
integrated with additional agroecological (soil fertility, slope, elevation), and
climate factors (rainfall, LST, NDVI), given their significant epidemiological
pathways that influence multiple dimensions of food security and contribute to
chronic undernutrition (Aheto & Dagne, 2021; Baffour et al., 2023; Khaki et al.,
2024; Nduwayezu et al., 2024). Grid-based aggregation was used to convert
household-level point data into spatially continuous aggregate data Gribov &
Krivoruchko (2020), while protecting respondent confidentiality. Spatial
incremental autocorrelation was assessed using Moran’s I and Getis-Ord Gi* to
identify clusters of stunting hotspots and coldspots (ESRI, 2024). We fitted multiple
SVC models, complemented by GAM as IML (Hastie & Tibshirani, 1995). First,
we fitted OLS regression, which served as a global benchmark but was limited by
its assumption of spatial stationarity. To overcome this, we further fitted a GWR
model (Brunsdon et al., 1996), which estimates local coefficients by weighting
observations according to geographic proximity. To reflect local variations in
stunting risk factors, we used an adaptive spatial kernel, and the optimal bandwidth
was selected through minimization of the corrected AICc, to ensure the model
robustness as described in Table 1. Building on this, we calibrated a MGWR model
(Fotheringham et al., 2023), by first selecting an adaptive spatial kernel to capture
local variations in the relationships between predictors and childhood stunting
prevalence. This process ensures that the model captures localized effects without
overfitting. We assessed the model performance with localized R? to measure
spatially explicit explanatory power and Local Moran’s I to detect spatial
autocorrelation in residuals, ensuring robust and interpretable spatial predictions.
Moreover, the interpretation focused on model coefficients the nonlinear effects of
predictors. Finally, to capture nonlinearities in predictor outcome relationships,
critical for localized public heath decision making, the analysis integrated GAM
(Hastie, 2017). These models were trained with thin plate regression splines, and
were used to reveal nonlinear effects such as U-shaped or bell-shaped responses to
slope, NDVI, and soil fertility. This paper integrated these SVC models to provide
a robust framework capable of uncovering both the spatial heterogeneity and the
nonlinear dynamics of stunting determinants in the Northern Province of Rwanda.
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Paper 11

The aim of this study was to investigate how different socioeconomic, maternal
health, and environmental factors affect the risk of childhood stunting in Rwanda,
and to examine how these relationships vary across space. We utilized Bayesian-
modeled surface prevalence data from the 2019-2020 RDHS (NISR et al., 2021), in
combination with geospatial covariates and hybrid RF models to quantify the
importance of localized determinants associated with childhood stunting. Stunting
prevalence was derived from modeled surface rasters (5%5 km resolution), which
interpolated RDHS cluster-level measurements using Bayesian geostatistical
methods (Burgert-Brucker et al., 2018). These surfaces provided a continuous
outcome variable, expressed as the percentage of children under five who were
stunted. Exposure variables were selected through a literature review and included
socioeconomic/demographic, maternal health, and environmental indicators known
to influence childhood nutrition, such as parental literacy, women’s anemia status,
use of improved water sources, open defecation, insecticide-treated net use,
antenatal care visits, and delivery care quality (Boah et al., 2022; Kismul et al.,
2017; Pattnaik et al., 2021; Tangena et al., 2023; Uwiringiyimana et al., 2019;
Vollmer et al., 2017). All predictors were scaled to 0-1 and aggregated to the sector
jurisdictional level to account for DHS cluster displacement. The core modeling
framework in this study contrasted the global RF with a GWRF to assess fine-scale
heterogeneity in stunting prevalence. We first trained the global RF as a benchmark
model (Breiman, 2001). However, because the global RF does not account for
spatial dependence as described in methods section, the study advanced to GWRF
(Georganos & Kalogirou, 2022), which integrates spatial kernels into the RF
algorithm by assigning higher weights to geographically proximate observations.
This hybrid GeoAl builds separate sub-models for each spatial unit, incorporating
only its neighboring units, which were defined either by a distance threshold (fixed
kernel) or by the number of nearest neighbors (adaptive kernel). Rooted in the
randomization inherent to training a RF (Breiman, 2001), this hybrid approach
allowed the model to simultaneously capture nonlinear predictor effects and local
spatial variation while mitigating overfitting risks. To prevent overfitting prior to
fitting the RF and GWRF models, we tested multiple hyperparameter combinations
using 10-fold cross-validation (Santos et al., 2019), selecting the optimal set based
on performance with the adaptive kernel. For comparison, we applied the same
parameters consistently to both the RF and GWRF models. Specifically, we used
GWREF for further inferences due to its local implications and interpretations, such
as spatially varying relationships, local feature importance, and targeted health
decision-making. Finally, to ensure interpretability, the study moved from GAM in
Paper I, to employ advanced IML tools such as global and interaction partial
dependence plots (Molnar, 2022), to identify thresholds in predictors and revealing
local interaction effects between childhood stunting with its factors. The
methodological frameworks in Paper II, demonstrated how hybrid GeoAl
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approaches improve predictive performance while preserving policy-relevant
interpretability.

Paper 111

This study introduced a spatially varying DL model to assess the spatial
heterogeneity of childhood stunting determinants among children under three in
Northern Rwanda. We cross-sectionally analyzed point household survey data from
601 households in Northern Rwanda to capture the fine-scale determinants of
stunting risk. The dependent variable was the HAZ, and predictor features were
child health and care (age, sex, birthweight, breastfeeding practices, childcare),
maternal factors (BMI, social support), and household conditions (sanitation,
electricity, kitchen gardens, farmland, milk consumption). Missing data were
addressed using ML-based imputation (Azur et al., 2011), and feature selection
combined RF importance, ridge regression, and forward selection. The
methodological framework of this paper extended GWR and MGWR to incorporate
neural network architectures through the GNNWR model. We first fitted GWR and
MGWR as baselines, each calibrated with adaptive spatial kernels and bandwidths
optimized through AICc minimization. As described in Table 1, while these SVC
models capture spatial nonstationarity (Fotheringham et al., 2017), their reliance on
predefined kernel functions limits their ability to estimate complex nonlinearities
and high-dimensional interactions among variables. To address this, we
implemented GNNWR by embedding an ANN within the GWR framework (Du et
al., 2020), using a SWNN to compute nonstationary weights, thereby enabling the
estimation of local regression coefficients while simultaneously capturing nonlinear
dependencies among predictors (Yin et al., 2024). We trained the GNNWR by
iteratively optimizing neural network hyperparameters including four hidden layers,
the PReLU activation function, the SGD algorithm, a dropout rate of 0.2, and a
learning rate of 0.01. The GNNWR achieved higher explanatory power (R? = 0.66
on training data) compared to GWR and MGWR, and uncovered localized,
nonlinear relationships between child health, maternal care, and household
conditions, revealing both broad spatial trends and fine-scale heterogeneity in
stunting risk determinants. In this paper, the integration of neural networks with
SVC demonstrated the potential of novel subsymbolic GeoAl methodologies to
reveal complex, spatially varying determinants to provide actionable insights for
localized interventions against childhood stunting.
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Paper IV

The aim of this study was to examine how agroecological, environmental, and
socioeconomic conditions influence small-area childhood stunting risk in Rwanda’s
Northern Province, and how these relationships vary across spatial scales. We
utilized cross-sectional household survey data in Paper I and III, combined with
satellite-derived and agroecological indicators, to implement a multilevel SAE
framework using SEL and XAI. The study targeted children aged between one
month and three years, with childhood stunting assessed using HAZ. Response data
were spatialized to multiple resolutions, including 1 km? and 5 km? grid cells,
village, and sector levels. Preprocessing accounted for spatial dependence and scale
effects using Moran’s 1 and Getis-Ord Gi statistics (Tiwari et al., 2023), while
incremental spatial autocorrelation was applied to detect the distance at which
spatial clustering peaked, which occurred at 8 km (ESRI, 2024). Stunting prevalence
values were dichotomized into stunted and non-stunted categories, yielding an
imbalanced dataset (Koldasbayeva et al., 2024). Explanatory variables included
elevation, slope, soil fertility, rainfall, NDVI, livestock density, urbanicity, toilet
type, and water access. These were derived from RS datasets aggregated using zonal
statistics. These RS covariates were selected based on their hypothesized
importance for estimating socioeconomic conditions and their availability as shown
to correlate with childhood stunting in previous work (Paper I, II &III). We
introduced a so called, SEL, a novel two-stage modeling framework that integrates
stack ensemble and geostatistical methods for spatial prediction of childhood
stunting risk. In the first stage, an EL. model was trained to estimate stunting
prevalence at sampled locations by capturing convoluted, non-linear relationships
with environmental, agroecological, and health-related covariates using SHAP. By
considering the predicted 5 km? grid at sampled points as realizations of an
underlying continuous spatial process literature (Burgert-Brucker et al., 2018;
Janocha et al., 2021), these predictions are then incorporated as external drift in a
UK model (Wiedemann et al., 2023), which accounts for spatial autocorrelation to
produce probabilistic maps of stunting risk. To address potential scale effects, maps
were generated at multiple spatial resolutions, enabling a more robust and flexible
assessment of spatial variation in stunting prevalence across the study region.
Through a rigorous evaluation of different stages of the population modeling
pipeline data input, model selection, and outcome assessment our findings
underscore the efficacy of the model, providing robust estimates and quantifying
uncertainty. RF consistently outperformed individual learners, with SEL providing
enhanced discriminability between stunting and non-stunting probabilities. SHAP
values were used for model interpretation (Lundberg & Lee, 2017). The multilevel
SEL framework in this paper demonstrated the value of capturing scale effects and
spatial non-stationarity in stunting risk estimation.

50



Results and discussion

Spatial patterns of stunting among children: statistical
and visual interpretability

All four papers consistently revealed that child stunting in Rwanda is characterized
by fine-scale spatial clustering. Across all four studies, spatial analysis consistently
revealed that stunting is not uniformly distributed, but follows distinct spatial
patterns (i.e., strong clustering and local heterogeneity) across provinces, districts,
and even sectors. At the national level, exploratory spatial statistics (e.g., GWSS,
Moran’s I, Getis-Ord Gi*) identified significant hotspots in Rwanda’s Northern and
Western provinces. Paper II identified strong geographic heterogeneity, with
RDHS cluster data showing stunting hotspots concentrated in the Northern and
Western provinces, consistent with the broader pattern in Paper I, but further
revealing small, localized clusters that the RDHS data alone obscures, underscoring
the persistence of childhood stunting across ages. For that, Using Moran’s I and
Getis-Ord Gi analyses, Paper I identified marked clustering of stunting prevalence,
with persistent hotspots and coldspots concentrated in Musanze, Gakenke, and
Gicumbi districts, highlighting the need for spatially targeted, scale-sensitive
interventions. Similarly, in Paper IV using incremental spatial autocorrelation,
across all spatial supports, statistically significant positive spatial autocorrelation
was detected, with the strength of clustering peaking at finer scales (household and
1 km? grid) and attenuating at coarser aggregations (5 km? grid). Notably, the
detection of clusters persisted across multiple spatial scales, emphasizing the
robustness of local patterns despite varying administrative resolutions (Figure 9).
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Figure 9: Global Moran's | Z-scores at household, 1km? grid, 5km? grid, and sector jurisdictional levels.
Each line segment is colored based on the Z-score intensity. Square markers represent distance
intervals. The corresponding p-value at which the peak occurs is also displayed in bold red. The dashed
red line indicates the statistical significance threshold (Z = 1.96).

Paper I also computed a local Moran’s I to examine the residuals of SVC models;
even after accounting for predictors, Moran’s I values indicated that spatial

dependence persisted within OLS model, reflecting unobserved localized processes
(Figure 10).
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Figure 10: Spatial distribution of the standardized models’ residuals; OLS, GWR, and MGWR. A smaller
standardized error indicates higher model performance.

The visualization of predictive surfaces in Paper IV, added another dimension.
Predicted prevalence surfaces derived from SEL provided fine-resolution maps at
1-5 km?, capturing stunting gradients across Northern Province (Figure 15).
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Together, these results suggest that statistical tests and visual mapping mutually
reinforce each other: clustering can be formally confirmed, while spatial
visualization makes the results more interpretable for policy makers and
stakeholders (Stofer, 2024), offering a powerful entry point for geographically
targeted interventions (Stofer, 2016), while also providing a benchmark for
evaluating model robustness.

Localized determinants of child stunting and their policy
implications

The importance of localized non-linear and complex determinants of child stunting
was most evident in Papers I, 11, and III. Papers I, II, and III converge on the
conclusion that child age, maternal, and household factors dominate as determinants
of stunting, though their strength and direction vary geographically, consistent with
existing literature. Paper I confirmed that stunting risk increased with elevation,
rainfall, but their impact was magnified in districts with poor child care practices
(number of days the child was left alone) (Yoneshiro et al., 2025). NDVI and slope
showed U-shaped effects (Figure 11), meaning that both very low and very high
values were detrimental, indicating nonlinear ecological influences (Nduwayezu et
al., 2024). This further reflects the dual burden of low agricultural productivity in
degraded landscapes and difficult farming conditions in steep, high-rainfall areas
(Nduwayezu et al., 2025b).
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Figure 11: GAM plots of the nonlinear effects of continuous predictors on height-for-age Z score, with the
center red lines representing the mean estimated effects, and the bands between upper and lower
dashed lines indicating the 95% confidence intervals. A declining curve signifies increasing stunting
prevalence, and a rising curve signifies lowering stunting prevalence.
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MGWR reveals pronounced spatial heterogeneity in the drivers of child HAZ across
Northern Province of Rwanda, complementing GAM’s global nonlinear trends.
Both models consistently identified overall trends, such as negative impacts of
elevation and soil fertility Figure 12. While GAM consistently captured overall
predictor HAZ relationships e.g., positive LST, nonlinear NDVI, and negative
elevation effects MGWR revealed local variability hidden in these global trends,
such as regions where rainfall decreased HAZ or urbanicity had negative local
effects, complementing GAMs by adding spatial context essential for targeted
interventions (Nduwayezu et al., 2024). Importantly, MGWR reveals local-scale
variations, enabling spatial epidemiology to target interventions with geographic
precision and context specificity. Although MGWR alone can robustly explain
localized stunting risk, combining it with GAM ensures broad applicability (Stofer,
2024), where health professionals may find GAM’s global trends easier to interpret
than spatially complex MGWR maps, highlighting the importance of using intuitive
color schemes to facilitate map interpretation (Stofer, 2016).
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Figure 12: Spatial distribution of coefficients of the MGWR model. A positive sign denotes that the
explanatory variable increases the probability of the outcome, whereas a negative sign indicates that the
variable lowers the likelihood of the outcome.

Paper II provided further additional nuance by uncovering nonlinear and
geographically specific effects. This paper II demonstrated that maternal literacy,
antenatal care, sanitation, and facility-based deliveries were strongly linked to lower
stunting prevalence, with partial dependency analyses (Molnar, 2022), showing
threshold effects for example, child growth faltering marked reductions in risk once
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antenatal visits exceeded 50% or access to clean water surpassed 70%. Paper 11
also found that maternal literacy, antenatal care visits, and sanitation practices
exerted strong but spatially varying effects, with partial dependency analysis
showing threshold improvements in stunting risk once clean water access and
facility-based deliveries surpassed certain levels (Figure 13).
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Figure 13: Partial dependence plots and smoothed response curves for the explanatory variables,
selected using global RF. Partial plots show the dependence of the probability of stunting prevalence
occurrence on one predictor variable after averaging out the effects of all other predictor variables in the
model. The horizontal axis represents the values of the predictor, and the vertical axis represents the
marginal effects of a predictor on the predicted target (the risk of child stunting).

The GWREF local variable importance maps in Paper II, also reveal marked spatial
variation in the determinants of child stunting in Rwanda, underscoring that the
influence of these factors varies considerably across regions. For example, in some
northern and western sectors, stunting risk is most shaped by WASH-related
barriers, while the east and south are more affected by maternal health service
utilization and education, and some regions show high importance for reproductive
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health and malaria prevention (Figure 14). These fine-scale insights suggest
targeted, context-specific interventions such as prioritizing improved sanitation
where WASH factors predominate or boosting health education and antenatal care
where literacy and maternal health are key can yield greater reductions in stunting
than uniform, nation-level programs (Nduwayezu et al., 2025a). Prior studies
confirm that stunting’s determinants (poverty, water, education, health access)
exhibit strong spatial variability, supporting the use of these maps for
epidemiological decision making (Tamir et al., 2024).
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Figure 14: The spatial variation of the local feature importance from a GWRF model for child stunting in
Rwanda, showing how the contribution of various health, demographic, and resource factors varies
across regions. Spatial variation in %; local feature importance according to the mean decrease
accuracy.

Paper III revealed additional complexity using GNNWR, which highlighted that
child-level factors (age, male gender, birthweight) and household-level variables
(sanitation, electricity, farmland size) explained much of the local heterogeneity of
childhood stunting (Mertens et al., 2023). Local coefficient maps showed, for
instance, that sanitation deficits had disproportionately large effects in rural areas,
while electricity access was most relevant in peri-urban contexts. These findings
underscore the value of geographically explicit models: the same variable does not
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carry the same influence everywhere. The influence of remotely sensed indicators
warrants further discussion (Nduwayezu et al., 2024). Papers I and IV both
included climatic and agroecological indicators such as NDVI, rainfall, and soil
fertility. Although these variables were less predictive than maternal and household
factors, they captured ecological vulnerability zones (Nduwayezu et al., 2025b). For
example, Paper I highlighted that steep, high-rainfall areas with fragile soils
coincided with higher stunting prevalence, suggesting that environmental stress
interacts with poverty and childcare practices to exacerbate risk (Jones et al., 2016).
Thus, RS is most useful when viewed not as a primary determinant (Yeboah et al.,
2022), but as a contextual lens that situates household vulnerabilities within broader
ecological systems (Grace et al., 2022). For policy, this has profound implications.
A "one-size-fits-all" approach to nutrition interventions risks being inefficient or
ineffective (Tamir et al., 2024). Instead, interventions should be tailored to the
dominant local determinants (Nduwayezu et al., 2025a). In sectors where sanitation
deficits are most pressing, investments in WASH (water, sanitation, hygiene) are
likely to yield the greatest reductions in stunting (Uwiringiyimana et al., 2019).
Where maternal health services lag, expanding antenatal care and facility-based
deliveries should take priority (Kalinda et al., 2024). Electricity access, highlighted
in Paper 111, also emerged as a powerful determinant, pointing to the intersection
of infrastructure development and nutrition outcomes (Davenport et al., 2017). The
evidence from Papers I, II, and III thus supports a geo-targeted intervention
strategy, aligning local risk profiles with tailored solutions, consistent with
recommendations by Tamir et al. (2024) for context-specific approaches.

Predictive modeling and generalization to unsampled
areas

The question of whether models can generalize to unsampled locations is addressed
most directly by Paper IV. The SEL framework successfully combined LR, RF,
several GBM variants, SVM, and ANNSs to produce stunting prevalence maps at
high spatial resolution (Figure 15). These maps filled critical data gaps by predicting
stunting prevalence in unsampled locations, leveraging remotely sensed
agroecological covariates alongside survey data.
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Figure 15: Maps of the predictive probability that HAZ lies below a threshold of -2 provided by the RF at
1 km?2, 5 km? spatial resolutions, at village and sector jurisdictional levels. The donut in the lower left
corner illustrates the percentages of predicted stunting risk values with a probability exceeding 0.5.

The accuracy metrics summarized in Figure 16, confirmed that the ensemble
approach improved predictive performance compared to single learners, with RF
emerging as the strongest base model. The ability to generate fine-scale prevalence
maps is particularly valuable in contexts like Rwanda, where national surveys are
limited in coverage, and small-area prevalence is often unknown, has important
public health policy relevance. By extending predictions to every grid cell, SEL
outputs provide decision-ready surfaces that health planners can use to prioritize
interventions (Reich & Haran, 2018). For instance, local governments can identify
not only which districts have the highest stunting prevalence, but which specific
sectors or villages require immediate action. Although Papers I, II, and I1I focused
more on analyzing and interpreting local determinants, their methodological
contributions complement predictive approaches. Paper I showed that MGWR
achieved high explanatory power, while GNNWR in Paper III captured complex,
non-linear effects with greater flexibility than traditional regression models, albeit
with some limitations in generalization. However, both approaches face limitations
in generalization: their strength lies in explaining local processes rather than
predicting outcomes in entirely unsampled areas. Paper IV’s SEL, in contrast,
prioritizes predictive accuracy and generalization, though it sacrifices some
interpretability. Taken together, the four studies suggest a dual strategy: use
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interpretable local models to understand spatially varying determinants and use
predictive SEL to fill data gaps and guide resource targeting.
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Figure 16: Performance metrics of the ML classifiers in predicting child stunting risk using four
statistical metrics.
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Synthesis

The integration of results across the four papers underscores three key insights. First,
spatial clustering of stunting is robust, confirmed by both statistical measures and
visual mapping across all methods and scales, with hotspots consistently observed
in the Northern part of Rwanda. Second, localized nonlinear determinants matter,
with maternal health, sanitation, and household infrastructure consistently emerging
as key factors, while remotely sensed environmental variables provide essential
ecological context, reflecting vegetation, climate, and topographic influences.
Third, predictive models can generalize effectively to unsampled locations
(Koldasbayeva et al., 2024), producing actionable risk maps that support geo-
targeted interventions, except for its limited explainability, which remains an open
challenge for future research. These findings demonstrate the power of hybrid
spatial GeoAl approaches to move beyond descriptive national averages, offering
fine-scale, evidence-based insights for reducing childhood stunting in Rwanda. The
findings of this thesis reveal where stunting risks are concentrated, what drives them
locally, and how predictions can be extended to unsampled areas, thereby providing
a blueprint for spatially explicit public health policy that may extend beyond the
Rwandan context.
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Conclusion

This thesis presents an in-depth analysis of methodologies for detecting,
quantifying, and predicting the spatially explicit patterns of childhood stunting in
Rwanda and its underlying determinants. It provides insights that improve our
understanding of how localized socioeconomic, climatic, and agroecological
determinants interact to shape child nutrition outcomes across space. Trade-offs
among modeling approaches, data sources, and spatial scales were central to all four
studies on childhood stunting in Rwanda. Each paper applied different combinations
of survey data, remotely sensed variables, and GeoAl methods, illustrating how
methodological choices influence both explanatory power and predictive
generalizability. While SEL approaches (Paper IV) excelled at producing
continuous predictive surfaces across unsampled locations, spatially adaptive
GeoAl methods (Papers I, II, and III) provided critical insight into how
determinants of stunting vary across space. Together, these studies demonstrate that
there is no single best approach; instead, models must be chosen and calibrated
according to whether the priority is interpretability, generalization, or fine-scale
sensitivity to local drivers. A key finding across the papers was that localized
socioeconomic and maternal health variables consistently outperformed remotely
sensed environmental features in explaining stunting prevalence. Nonetheless,
climatic factors like rainfall, topographic features, and agroecological indicators
such as NDVI provided valuable ecological context, refining spatial understanding
of stunting risk (Nduwayezu et al., 2024).

This confirms that maternal literacy, antenatal care, sanitation, electricity access,
and dietary diversity are the strongest immediate determinants of child nutrition
outcomes (Nduwayezu et al., 2025a). However, environmental gradients such as
rainfall, elevation, and ND VI still help explain why stunting clusters geographically,
particularly in fragile, highland farming systems (Nduwayezu et al., 2025b). The
integration of household-level and environmental predictors therefore provides a
richer understanding of the nexus of population health and ecological
vulnerabilities. Another important insight is that spatial heterogeneity is not only
statistically detectable but also policy relevant (Kalinda et al., 2023). The clustering
of stunting prevalence in Northern and Western Rwanda, identified in all four
studies, demonstrates the limitations of relying on national averages. GNNWR
revealed that the influence of individual predictors can shift dramatically across
districts or villages, suggesting that uniform policy measures are unlikely to achieve

62



maximum impact. Instead, these methods provide the evidence base for geo-
targeted interventions such as prioritizing sanitation in rural clusters with poor
WASH coverage or improving antenatal care in districts where maternal health
services are weakest.

Finally, the studies collectively show that predictive modeling can extend beyond
descriptive analysis to serve as a practical tool for intervention planning. SEL
demonstrated that prevalence can be reliably mapped at fine spatial resolutions, even
in areas without survey data. This capability is crucial for public health policy, as it
enables governments to allocate resources more efficiently and equitably. At the
same time, interpretable models such as MGWR and GWRF highlight not just
where interventions should occur, but why certain locations are more vulnerable
than others. This dual emphasis on both prediction and explanation marks a
significant advancement in the application of GeoAl to public health challenges
(Huang et al., 2025). In sum, the four papers underscore the potential of combining
multi-source geospatial data with hybrid spatial ML to advance our understanding
on child growth faltering. By statistically confirming clustering, revealing localized
determinants, and enabling prediction in unsampled locations, these studies provide
the foundations for evidence-based, geographically tailored nutrition interventions
in Rwanda. More broadly, they illustrate the role of spatially explicit modeling in
addressing nutritional deficits in childhood, where the interplay of environmental
vulnerability and social determinants requires finely tuned, context-sensitive policy
responses. Overall, these papers highlight that trade-offs between interpretability,
generalizability, and spatial scale in the developed analytical and predictive models
remain challenging to navigate and must be evaluated case by case according to
research priorities, consistent with insights from Song et al. (2023). Consistently,
studies show that no single SVC GeoAl model is universally optimal (Jemeljanova
et al., 2024); rather, selecting the most suitable model requires balancing accuracy,
precision, computational cost (Janowicz et al., 2020), and ease of use in line with
the goals of the decision-making context (Kmoch et al., 2025).
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Limitations and outlook

Despite the merits of this study, several methodological limitations and challenges
need to be addressed to ensure the effectiveness of localized-informed child stunting
modeling. While this thesis leveraged recent spatially varying GeoAl methods to
model the localized drivers of childhood stunting, it was fundamentally based on
cross-sectional data, limiting its capacity to analyze temporal dynamics, trends, or
the progression of stunting over time (Mertens et al., 2023). As a result, the
predictive insights generated from the current models primarily reflect a static
snapshot of existing conditions, without accounting for how the determinants of
stunting may shift in response to seasonality, policy interventions, environmental
changes, or socio-economic transitions (Bitew et al., 2023). Moreover, the proposed
methods effectively analyze spatial associations between different geographical
variables, overlooking spatial causality (Slater et al., 2025), which may restrict the
depth of causal inference that can be drawn from the analyses (Molnar et al., 2022),
a potential avenue for future research. This study integrates remotely sensed
environmental data with census-based socioeconomic indicators to model climatic,
and agroecological of child stunting. To address spatial misalignment, we applied
harmonization techniques such as resampling and areal interpolation (Gribov &
Krivoruchko, 2020), and assessed spatial consistency using global spatial
autocorrelation metrics across different spatial scales. Similarly, the privacy and
ethical challenges of cross-sectionally surveyed household childhood stunting data
are linked to sensitive information on maternal violence, household decision-
making, stigmatized illnesses such as HIV, child stature, and poverty (Polzin &
Kounadi, 2021). These challenges necessitated varied geomasking methods (Wang
et al., 2022), which may have introduced minor uncertainties not addressed by the
rigorous model parameterization approach. Uncertainties associated with the
models were also acknowledged to ensure transparency and support scalability,
reproducibility (Delmelle et al., 2022), and replicability of the study (Li et al., 2024).
This study balances the need for detailed insight with strict protections to ensure
both scientific rigor and ethical concerns.

From a modelling perspective, some potential challenges of hybrid models include
computational complexities, parameter tuning difficulties, and scalability
constraints, which can be overlooked to some extent as these spatially informed Al
models provide significant improvements in spatial epidemiology compared to
traditional non-hybrid approaches (Koldasbayeva et al., 2024). The future research
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directions may finally extend the developed framework to incorporate longitudinal
analyses and temporal causal modeling (Zhu et al., 2022a), to allow the development
of spatiotemporal models capable of capturing evolving patterns of risk and
providing dynamic predictions, designed to forecast emerging risk zones, monitor
the effectiveness of interventions over time, and enable proactive public health
planning. Finally, this study did not formally engage health professionals,
caregivers, and community stakeholders regarding the interpretability of
exploratory, analytical and prediction outputs, their utility for decision-making, and
preferred delivery formats, which could form future directions to ensure results are
actionable for addressing child stunting.
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