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Abstract   

Data-driven modeling frameworks have become essential tools for guiding 

surveillance strategies and informing public health policies across diverse 

population health challenges. Accurate, fine-scale disease estimates often lacking 

from direct surveys are critical for policy planning, given that spatial heterogeneity 

and nonlinear dynamics among determinants of health challenge classical models, 

limiting their utility for targeted public health interventions. Advances in geospatial 

artificial intelligence (GeoAI), and increased computational power, have enabled 

deeper insights into spatial non-stationarity, the shifting strength and direction of 

relationships across space. These advances enhance both the accuracy and 

contextual relevance of spatial modeling, supporting localized decision-making in 

population health outcomes. Drawing on diverse spatial frameworks, this thesis 

developed, tested, and applied localized spatially varying GeoAI methodologies, 

offering integrated modeling approaches to address stunting among children in the 

complexities of such public health concern. Paper I develops localized spatially 

varying approaches to reveal significant intra-area variation in stunting prevalence 

and nonlinear relationships using cross-sectional socioeconomic and fine-scale 

remotely sensed climatic and agroecological data to better characterise household 

microenvironments. The approach provided a more detailed understanding of how 

local environments shape nutrition outcomes and demonstrating the importance of 

considering both scale and nonlinearity in stunting research. Building on this, Paper 

II implements a hybrid spatial machine learning (ML) framework to detect fine-

scale heterogeneity in stunting prevalence, while also quantify localized disparities 

that national-level surveys overlook. The framework captures spatially 

heterogeneous outcomes across most areas, with predictors exhibiting regions-

specific effects that vary according to different thresholds of influence. Paper III 

advances the analysis by implementing a hybrid spatially varying deep learning 

(DL) approach, which captured convoluted nonlinear influence of fine socio-

economic determinants on child stunting outcomes. The algorithm fairly captured 

variability in stunting outcomes, highlighting key child, maternal, and household 

determinants whose contributions varied across space, though limitations in training 

data size constrained broader generalizability. Paper IV further refines this 

perspective by introducing a predictive multilevel spatial ensemble learning (SEL) 

framework to produce small area estimates (SAEs) of stunting risk by combining 

geomasked household data with agroecological and remote sensing (RS) indicators. 

This approach demonstrated the capacity of predictive models to generalize beyond 

sampled survey clusters and produce continuous prevalence surfaces at scales as 

fine as 1 km². Overall, these papers highlight that trade-offs between interpretability, 

generalizability, and spatial scale in these analytical and predictive models remain 

challenging to navigate and must be evaluated case by case according to research 

priorities. The methodologies presented in this thesis aim to generate fine-scale, 
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interpretable risk estimates that can support targeted nutrition interventions in data-

scarce settings. 
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Popular summary   

Population health outcomes emerge from complex spatial interactions among 

biological, environmental, and socioeconomic determinants, among others. 

Accurate understanding of these processes is critical for guiding targeted 

interventions, particularly in resource-limited settings where optimal allocation can 

substantially affect population well-being. Yet, many existing studies rely on 

coarse-scale analyses, producing global metrics that obscure local heterogeneity and 

limit both interpretability at fine scales and generalizability across contexts. This 

limitation is especially greater in low- and middle-income countries (LMICs), where 

health disparities are pronounced at local levels and interventions require precise 

targeting. In these data-scarce regions, remote sensing (RS) leverages satellite data 

combined with artificial intelligence (AI) to overcome limitations in data 

availability, providing a valuable alternative for assessing socioeconomic and 

agroecological factors critical to population health outcomes at a fine scale. Yet, 

classical analytical methods often fail to capture the complex, nonlinear 

relationships among health determinants, producing oversimplified models that 

inadequately reflect real-world complexity. Addressing these challenges requires 

methodologies that integrate localized interpretability, predictive generalizability, 

and spatial scale while preserving the natural pattern of spatial data. Geospatial 

artificial intelligence (GeoAI) has emerged as a powerful tool for population health 

analytics, particularly for capturing localized stunting risk patterns and generating 

high-resolution predictive models.    

This study proposes an integrated approach allowing detailed local analysis across 

varied scenarios, bridging gaps of prior approaches and providing a consistent 

methodology applicable across varied epidemiological studies. Our framework 

integrates spatially varying coefficient (SVC) models with advanced artificial 

intelligence (AI) to capture nonlinear relationships, spatial dependencies, and local 

feature importance in childhood stunting and its complex determinants. To validate 

the proposed approach, we conducted analyses using two cross-sectional datasets 

on childhood stunting in Rwanda across three and five-year age groups, 

complemented by high-resolution climatic and agroecological data from multiple 

RS sources, to refine analysis of the microenvironment around the household and 

better capture the complex determinants of stunting among children.   

The study found that sanitation deficits, topography, inadequate caregiving, poor 

education, limited antenatal care, low degree of urbanization, and climatic factors 

including rainfall and NDVI, proxies for several environmental processes may play 

important roles in driving stunting risk at fine spatial scales. Consistently across 

analyses, these influences were found to be convoluted and nonlinear, suggesting 

that stunting risk does not increase uniformly, instead varies by local context. This 

underscores the need for localized, easily adoptable methodologies to inform 
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decision-making. In addition, we produced continuous surface maps covering 

unsampled areas, leveraging RS data to explain spatial variation in risk across 

vulnerable ecological areas. This twofold ability supporting both generalization and 

local decision-making addresses a major gap in current childhood stunting analytics, 

where models often struggle to balance interpretability and predictive accuracy 

performance. In practice, the approach can guide precise, location-specific 

interventions, optimize scarce health resources, and reduce spatial variation in 

outcomes.  

This study integrates descriptive, exploration, and predictive analysis within a 

spatial framework, offering a blueprint for childhood stunting risk modeling, 

indicating how hybrid GeoAI approaches can process spatial epidemiological data 

into actionable insights for both research and policy. While spatial ensemble 

learning (SEL) generalized well to new dataset, its low explainability and the need 

to enhance causal analysis remain open challenges that future studies should 

address. Overall, the papers of this thesis highlight that trade-offs between 

interpretability, generalizability, and spatial scale in these analytical and developed 

predictive models remain challenging to navigate and must be evaluated case by 

case according to research priorities. The methodologies presented in this thesis aim 

to generate fine-scale, interpretable stunting risk estimates that can support targeted 

nutrition interventions under data-scarce conditions.   
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Populärvetenskaplig sammanfattning   

Befolkningshälsa är resultatet av komplexa interaktioner mellan bland annat 

biologiska, miljömässiga och socioekonomiska faktorer. En korrekt förståelse av 

dessa processer är avgörande för att kunna styra riktade insatser, särskilt i 

resursbegränsade miljöer där en optimal fördelning av insatser kan ha stor inverkan 

på befolkningens välbefinnande. Många befintliga studier bygger dock på grova 

analyser, vilket döljer lokala variationer och begränsar både tolkningsbarheten på 

detaljerad nivå och möjligheten att generalisera mellan olika sammanhang. Denna 

begränsning är särskilt stor i låg- och medelinkomstländer (LMIC), där det finns 

stora skillnader i hälsa mellan olika områden och insatserna kräver precision. I dessa 

regioner med brist på data kan fjärranalys (RS) hjälpa till att mitigera 

begränsningarna i datatillgängligheten och är därmed ett användbart alternativ som 

använder satellitdata och artificiell intelligens (AI) för att bedöma socioekonomiska 

och agroekologiska faktorer som är avgörande för befolkningshälsa på detaljerad 

nivå. Klassiska analysmetoder misslyckas dock ofta med att fånga de komplexa, 

icke-linjära relationerna mellan hälsofaktorer, vilket resulterar i förenklade modeller 

som inte återspeglar verklighetens komplexitet. För att hantera dessa utmaningar 

krävs metoder som integrerar lokal tolkningsbarhet, prediktiv generaliserbarhet och 

rumslig skala samtidigt som det naturliga mönstret i rumsliga data bevaras. 

Geospatial artificiell intelligens (GeoAI) har visat sig vara ett kraftfullt verktyg för 

analys av befolkningshälsa, särskilt för att fånga upp lokala mönster av risk för 

tillväxthämning och för att skapa högupplösta prediktiva modeller.    

Denna studie föreslår en integrerad metod som möjliggör detaljerad lokal analys i 

olika scenarier, överbrygger luckor i tidigare metoder och tillhandahåller en 

konsekvent metodik som kan tillämpas i olika epidemiologiska studier. Vårt 

ramverk integrerar modeller med rumsligt varierande koefficienter med avancerad 

artificiell intelligens (AI) för att fånga icke-linjära relationer, rumsliga beroenden 

och lokala särdrag som är viktiga för tillväxthämning hos barn och dess komplexa 

determinanter. För att validera den föreslagna metoden genomförde vi analyser med 

hjälp av två tvärsnittsdatauppsättningar om tillväxthämning hos barn i Rwanda i 

åldersgrupperna tre och fem år, kompletterade med högupplösta klimat- och 

agroekologiska data från flera RS-källor, för att förfina analysen av mikroklimatet 

kring hushållen och bättre fånga de komplexa determinanterna för tillväxthämning 

hos barn.   

Studien visade att bristande sanitet, topografi, otillräcklig vård, dålig utbildning, 

begränsad mödravård, låg urbaniseringsgrad och klimatfaktorer som nederbörd och 

vegetation, som är indikatorer för flera miljöprocesser, kan spela en viktig roll för 

risken för tillväxthämning på fin rumslig skala. I alla analyser visade sig dessa 

influenser vara komplexa och icke-linjära, vilket tyder på att risken för 

tillväxthämning inte ökar enhetligt, utan varierar beroende på lokala förhållanden. 

Detta understryker behovet av lokaliserade, lättanvända metoder för att underlätta 
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beslutsfattandet. Dessutom har vi tagit fram jämna prediktiva kartor som täcker 

områden som inte ingår i urvalet, med hjälp av fjärranalysdata för att förklara den 

rumsliga variationen i risk mellan olika utsatta ekologiska områden. Denna dubbla 

förmåga att stödja både generalisering och lokalt beslutsfattande fyller en viktig 

lucka i den aktuella analysen av tillväxthämning hos barn, där modellerna ofta har 

svårt att balansera tolkningsbarhet och prediktiv noggrannhet. I praktiken kan denna 

metod vägleda precisa, platsspecifika insatser, optimera knappa hälsoresurser och 

minska den rumsliga variationen i resultaten.    

Denna studie integrerar beskrivande, utforskande och prediktiv analys inom ett 

rumsligt ramverk och erbjuder en mall för modellering av risker för tillväxthämning 

hos barn, vilket visar hur hybrid-GeoAI-metoder kan bearbeta rumsliga 

epidemiologiska data till användbara insikter för både forskning och politik. Medan 

rumsligt ensemble-lärande generaliserades väl till nya data, förblir dess låga 

förklarbarhet och behovet av att förbättra kausalanalysen öppna utmaningar som 

framtida studier bör ta itu med. Sammantaget framhåller artiklarna i denna 

avhandling att avvägningarna mellan tolkbarhet, generaliserbarhet och rumslig 

skala i dessa analytiska och utvecklade prediktiva modeller fortfarande är svåra att 

hantera och måste utvärderas från fall till fall utifrån forskningsprioriteringar. De 

metoder som presenteras i denna avhandling syftar till att generera finfördelade, 

tolkbara uppskattningar av risken för tillväxthämning som kan stödja riktade 

näringsinterventioner under förhållanden med brist på data.   
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Rationale and thesis structure 

Population health outcomes arise from the interplay of diverse biological, 

environmental, and socioeconomic factors, among others, all varying across space. 

In low-resource settings, where more precision and targeted intervention are most 

needed, classical analytical approaches are often inadequate, due to their reliance on 

coarse spatial resolution data and linear assumptions that obscure critical local 

variation, thereby limiting both actionable insight and transferability across regions. 

Specifically, in the Northern of Rwanda, child stunting, a core component of the 

undernutrition burden, has been observed for more than two decades, despite 

sustained clinical and nutritional interventions (Habtu et al., 2022; McLean et al., 

2018). With most households dependent on rain-fed agriculture, food security and 

income remain highly sensitive to climatic and ecological factors often overlooked 

in child stunting analyses. Local, timely, and spatially explicit insights that 

incorporate these dimensions are essential for more effective, targeted responses. 

Despite the growing use of GeoAI in geospatial research, previous studies remain 

largely confined to traditional ML and statistical methods, often overlooking 

spatially varying relationships and failing to integrate interpretability with 

prediction, both of which are critical for understanding complex population health 

determinants. 

This thesis addresses these limitations by proposing an integrative GeoAI 

framework that integrates these dimensions, enabling scalable, locally informed 

health analysis adaptable to varied contexts, aiming to describe, explain, and predict 

the spatial heterogeneity of child stunting in Rwanda. This dissertation is organized 

as a compilation of research papers, framed around the goal of using GeoAI to 

deepen spatial epidemiological understanding of child stunting. Paper I developed 

spatially varying models to explore nonlinear, location-specific relationships 

between childhood stunting and socioeconomic, climate, and agroecological factors 

among children under three. Paper II applied a hybrid ML framework to identify 

global and local determinants of stunting risk among children below the age of five. 

Paper III introduced a hybrid spatially varying DL model to capture complex 

spatial dependencies and key factors of stunting in children under three. Paper IV 

implemented a multilevel SEL approach to generate predictive SAEs maps of 

stunting risk using household, agroecological, and RS data. Through these efforts, 

the dissertation seeks to bridge the research and knowledge gaps by providing a 
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more accurate and nuanced description of population health data, thereby 

facilitating more effective spatial analysis and decision-making processes.  

The thesis synthesizes cross-paper findings, discusses implications for public health 

policy, and highlights future research directions. This thesis begins by outlining the 

persistent challenge of childhood stunting and urgent need for locally targeted 

interventions informed by a nuanced understanding of population health 

determinants. It then presents the aims and methods focused on characterizing 

spatial epidemiology of childhood stunting through localized analytical and 

predictive approaches. The results and discussion sections evaluate the application 

of GeoAI techniques, exploring both their analytical and predictive capabilities in 

capturing complex population health outcomes’ patterns. Finally, future work is 

proposed to enhance the developed models by advancing causal inference, 

forecasting, and interpretability in spatial-temporal health data. 
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Background, related studies and 

motivation 

In this section, we first review the epidemiology of childhood stunting, its 

multifaceted determinants, emphasizing the need for localized decision-making 

interventions. Second, we characterize geospatial population health data using 

spatially explicit methods, highlighting the importance of localized analysis. Third, 

we explore SVC and GeoAI approaches to enhance analytical and predictions of 

stunting risk. Finally, we discuss the interpretability and the limitations of current 

methods for geospatial health. 

Childhood stunting: epidemiology, multifaceted 

determinants, and public health implications     

Stunting in children (low height-for-age) is a major global public health concern, 

reflecting chronic undernutrition during the first 1000 days of a child growth 

(UNICEF et al., 2025; WHO, 2006). Undernutrition, defined as insufficient intake 

of energy and nutrients, manifests as wasting, underweight, or stunting (UNICEF et 

al., 2025). Stunting, assessed using the HAZ, is a key indicator of long-term 

nutritional deprivation, with children scoring below -2 SD classified as stunted, and 

-3 SD severely stunted (WHO, 2006), reflecting both biological and environmental 

growth constraints (Osgood-Zimmerman et al., 2018). Globally, around 151 million 

children under five are affected, with the highest burden in Sub-Saharan Africa and 

South Asia as depicted in Figure 1 (UNICEF et al., 2025). Within countries, stunting 

disproportionately affects children from disadvantaged households and 

marginalized communities (Mertens et al., 2023). 
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Figure 1: Global geographical distribution of stunting among children under five, presented as percentage 
prevalence by countries, with the highest levels in Sub-Saharan Africa, and Southern Asia. Colours 
indicate severity: very low (<10%) to very high (≥50%). Data reflect the most recent modeled estimates 
as of 2019 (IHME, 2020). 

Stunting, a core component of the undernutrition burden, is shaped by diverse 

determinants: socio-economic inequality, poor education, limited access to 

healthcare, inadequate sanitation, unsafe water, recurrent infections, and food 

insecurity, among others (Baffour et al., 2023). In low- and middle-income countries 

(LMICs), inadequate nutrition is the primary driver of child stunting, yet evidence 

shows that climate change, agroecological conditions, and socio-economic factors 

further exacerbate it through multiple pathways (Aheto & Dagne, 2021; Baffour et 

al., 2023; Khaki et al., 2024; Nduwayezu et al., 2024). For example, extreme rainfall 

and droughts disrupt crop production, while sparse vegetation and poor soil fertility 

may reduce food availability, directly impacting dietary security (Christian & Dake, 

2022; Khaki et al., 2024). Additionally, poor sanitation and waterborne diseases 

further impair nutrition and growth (Aheto & Dagne, 2021). Livestock ownership 

and access to Animal-sourced Foods (ASFs) are crucial for mitigating stunting, as 

these foods provide essential nutrients for development (Christian & Dake, 2022; 

Haileselassie et al., 2020). Studies show that children from livestock-owning 

households or those receiving protein-rich supplements exhibit better growth, 

emphasizing the need for integrated, multi-faceted solutions to tackle stunting 

(Dusingizimana et al., 2024). These determinants interact to perpetuate malnutrition 

across generations (UNICEF et al., 2025). The consequences extend beyond growth 
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deficits to impaired cognitive and motor development, reduced school performance, 

higher disease susceptibility, and lower adult economic productivity (Osgood-

Zimmerman et al., 2018), reinforcing cycles of poverty and health disparities 

(Baffour et al., 2023). To address childhood stunting, this study aligns with the 

SDGs, particularly SDG 2 (zero hunger), SDG 3 (good health and well-being), and 

SDG 10 (reduced inequality) (UN-HABITAT, 2018), to design effective 

interventions of such public health issue (Annan, 2018), which build on integrated 

approaches across the wider range of determinants, supported by different 

descriptive, analytical and geospatial predictive methodologies (Blanford, 2025).  

Classical GIS approaches for spatial modeling of 

population health 

Population health is fundamentally shaped by geography (Moore & Carpenter, 

1999). Geospatial data, as a unique form of data, recording the spatial health 

attributes and their  interactions of different locations (Moraga, 2019), allows 

accurate comprehensive descriptive, analytical and predictive, pivotal tasks for the 

success of spatial analysis in population health (Kirby et al., 2017). As such, the 

success in representing and analyzing geospatial information is key to ensuring the 

methodological rigor in public health (Wilson & Wakefield, 2020), calling for a 

careful and detailed approach to describing geospatial data (Lin & Wen, 2022). 

Understanding geospatial data and providing accurate descriptions are crucial for 

designing effective spatial models  across diverse analysis tasks (Clark et al., 2024). 

In that context, spatial predictive models heavily relying on accurate descriptive and 

analytical tasks (Blanford, 2025), involve constructing appropriate models based on 

identified spatial patterns and interpreted relationships (Egaña et al., 2025).    

These population health data, heterogeneous across space, are modeled in either 

continuous or discrete perspective (Anselin, 2010). The former assumes that spatial 

relationships vary continuously across space, while the latter, by contrast, assumes 

that coefficients vary across discrete subregions of the data (Guo et al., 2025), and 

are often captured by various spatially stratified modeling frameworks (Wang et al., 

2024b; Wang et al., 2010). From a modeling perspective, population health 

outcomes such as child growth failure are rarely uniform across regions; instead, 

their prevalence shifts with socioeconomic, agroecological, and environmental 

contexts (Moraga, 2019). The discrete approach, however, captures broad contrasts 

between areas but risk oversimplifying health disparities by imposing hard 

boundaries. Continuous models, by contrast, acknowledge that population health 

determinants from nutritional to environmental change continuously with 

geographic locations, revealing spatial risk gradients hidden by stratified models 

(Konstantinoudis et al., 2020). The population health data are often collected at the 
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household level, providing detailed spatial information on individual outcomes 

(Tuson et al., 2020). Yet, it is rarely feasible to design policies tailored to every 

individual location (Wang et al., 2010), meaning that even continuous models of 

health heterogeneity are typically applied to aggregated areal data that align with 

how public health interventions are implemented. To upscale sampled point data to 

discrete areal data, aggregation- based geomasking is applied with the dual goals of 

protecting privacy and providing a degree of utility for spatial analysis (Seidl, 2025). 

This process prevents identification of specific locations, households, or individuals 

represented in the dataset (Wang, 2024a). As shown in Figure 2, this dissertation 

focused on exploratory, analytical, and predictive modeling within a continuous 

spatial framework, applied to both point-referenced and aggregated areal data 

(Wang, 2024a), which better reflect the gradual transitions in health risks shaped by 

environment, behavior, and socioeconomics (Lin & Wen, 2022), and thus provide a 

more precise basis for explanatory and predictive intervention. 

  

Figure 2: Workflow for exploring and modeling continuous spatial structure from random samples. 
Random spatial samples (A) were used to reveal underlying spatial variation, followed by the generation 
of a continuous surface estimates using geostatistical methods (B). Sample values were then 
interpolated onto a continuous spatial grid to estimate localized means (C), which were further smoothed 
and analyzed to reveal spatially varying trends centered around the mean (D). 
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The main sources of these geospatial health data include GPS-tagged household 

mostly from cross-sectional surveys (e.g., DHS and MICS) (Blanford, 2025), census 

data, and climatic and agroecological indicators such as rainfall and vegetation 

indices derived from RS imagery (Eberth et al., 2021; Kirby et al., 2017). Due to 

data unavailability or temporal gaps in cross-sectional surveys, these remotely 

sensed indicators continuously and consistently available, complement household-

level data, enabling more robust and dynamic analyses (Clark et al., 2024). 

Therefore, spatial epidemiological studies integrate multi-scale datasets, to fuse 

individual or household information with broader community and environmental 

contexts, capturing the complex drivers of population health outcomes (Pradhan et 

al., 2025). However, challenges remain, including inconsistent spatial resolution of 

data, missing or incomplete data, and privacy concerns when linking sensitive 

individual-level information to geographic locations (Seidler et al., 2025).  In the 

same vein, that privacy of surveyed household health data presents a significant 

challenge, especially when working with multisource, misaligned datasets that 

require aggregative geomasking (Alahmadi & Moraga, 2025; Hampton et al., 2010). 

This process can introduce spatial issues, particularly the spatial change of support 

(Lee et al., 2009), in the forms of the modifiable areal unit problem (MAUP), and 

ecological fallacy (Openshaw & Taylor, 1979), where conclusions drawn from 

aggregated spatial scales may fail to reflect individual-level variation. MAUP is a 

fundamental issue in spatial analysis, where results are inherently dependent on the 

choice of spatial units, while ecological fallacy refers to the incorrect application of 

group-level inferences to individuals (Comber & Harris, 2022).  

To address these issues, methods such as Moran's I or variogram modeling can be 

utilized to assess spatial autocorrelation and variability, offering a more accurate 

understanding of scale effects (Comber et al., 2022). This thesis adopted spatial 

datasets with multiple geomasked resolutions, to support the ethical and 

methodological requirements of childhood stunting researches to ensure respondent 

confidentiality (Burgert-Brucker et al., 2018; Janocha et al., 2021), preserving 

spatial structure (Bharti et al., 2019), and aligning with the scale of relevant socio-

demographic, environmental and agroecological covariates (Alahmadi & Moraga, 

2025). The spatially balanced sampling design of these surveyed household data 

also emerges as a key consideration to ensure representative spatial coverage 

(Diggle et al., 2010), critical in population health studies such as childhood stunting. 

This approach as opposed to classical sampling theories, ensure that sampling 

locations are well spread out across the survey area (Koldasbayeva et al., 2024), 

avoiding clusters of nearby samples and better capturing the spatial variation in 

disease risk (Olatunji et al., 2021), to ensuring spatial dependency, and 

heterogeneity in disease prevalence (Kamgno et al., 2025), critical for validity and 

reliability of spatial varying model outcomes (Fratesi et al., 2025).   
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Consequently, population health outcomes, such as childhood stunting, which are 

rarely distributed uniformly, exhibit two main spatial effects, namely, spatial 

heterogeneity and spatial dependency (Anselin, 2010), reflecting variations in socio-

economic status, access to healthcare, nutrition, sanitation, and education. Spatial 

heterogeneity, often addressed with spatially varying models, captures non-

stationarity across space, while dependence reflects spatial autocorrelation among 

nearby observations (Anselin, 1988a; Brunsdon et al., 1996). Recognizing these 

patterns enables the identification of vulnerable populations and the targeting of 

interventions where they are most needed (Moraga, 2019). National or regional 

averages often mask localized "hotspots" where children are most vulnerable, 

highlighting the need for fine-grained spatial analyses (Osgood-Zimmerman et al., 

2018). Epidemiologists can assess spatial dependency in health outcomes using 

global spatial autocorrelation measures such as Global Moran’s I (Getis & Ord, 

1992), which provide a single test statistic that summarize the spatial patterns for 

the entire study area (Getis, 2010), and Lagrange Multiplier diagnostics (Anselin, 

1988b), which provide targeted test statistics to identify spatial dependence in 

regression models. While useful as an initial test, such global tests do not detect 

localized clusters of high or low disease burden (Eberth et al., 2021). Methods to 

identify localized patterns with consistently high or low disease burden statistics 

include Anselin’s Local Moran’s I (LISA) (Anselin, 1995), or Getis-Ord Gi* (Hot 

Spot Analysis) (Ord & Getis, 1995), pivotal in guiding targeted interventions and 

resource allocation (Eberth et al., 2021). In the same vein, spatial econometric 

models account for spatial autocorrelation by explicitly modeling outcomes at a 

given location as dependent on those of neighboring locations (Anselin, 2010). This 

is achieved by including spatially lagged terms in the regression model applied to 

the dependent variable (SLM), explanatory variables (SLX), the error term (SEM), 

or combinations thereof (Anselin, 1989). However, these models can account for 

global autocorrelation in the spatial data, and neither method allows the 

relationships to vary over space (Eberth et al., 2021). Hence, to further describe local 

variability of these spatial data, a GWR in the form of  Geographically Weighted 

Summary Statistics (GWSS) model, a non-stationary spatial statistics (Brunsdon et 

al., 2002), provides the spatial local mean, local Pearsons’s correlation, under the 

premise of spatial autocorrelation to bridge gaps of these global descriptive 

statistical techniques (Gollini et al., 2015). Most importantly, these spatial models 

provide a descriptive picture of spatial data, significantly enhance the performance 

of analytical and spatial prediction tasks in population health outcomes (Zhang et 

al., 2024a). Overall, the inherent spatial structure and dependencies in such health 

data violate assumptions of randomness (Eberth et al., 2021), necessitating 

specialized spatially varying modeling approaches to ensure the validity of 

conclusions and avoid misleading policy implications (Lin & Wen, 2022).  
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GeoAI in population health: exploring analytical and 

predictive boundaries 

“Essentially, all models are wrong, but some are useful” - George E. P. Box  

As noted in the section above, geospatial health data pose significant challenges 

owing to inherent spatial dependence and heterogeneity, which are central to GeoAI 

and demand specialized modeling techniques (Goodchild & Li, 2021). 

Fundamentally, spatial heterogeneity arises in two distinct forms, namely form-

based, which reflects differences in observed values across locations, and process-

based,  refers to the spatial variation in the relationships between variables across 

different locations (Goodchild, 2004). This latter, process-based heterogeneity, is 

often manifested as spatial non-stationarity and is captured by various SVC GeoAI 

frameworks (Anselin & Amaral, 2024). In extreme cases of population health, local 

spatial regression models are vital for uncovering such spatial heterogeneity that 

global models can obscure, thereby limiting the effectiveness of spatial analysis (Lin 

& Wen, 2022). While a global analysis may indicate a consistent positive 

association between socio-economic deprivation and population health across a 

region (Kanevski, 2025), local models can identify areas where this relationship 

reverses due to differing environmental or agroecological conditions, such as 

variations in food availability or water quality (Deng et al., 2025). Such spatial 

variation underscores the need for local modeling approaches to accurately capture 

the complex and heterogeneous drivers of population health outcomes (Maitra et al., 

2025). The integration of spatial statistical modeling and GeoAI methods have 

proven effective (Li, 2020), in addressing spatial epidemiological issues exhibiting 

spatial heterogeneity due to the complementary strengths each approach offers 

(Oulaid et al., 2025).    

SVC one of modeling backbone in subsymbolic GeoAI methodologies (Finley, 

2011; Sahana et al., 2023; Wang et al., 2025), are an extension of traditional 

regression models that capture how relationships between variables vary across 

different locations (Comber et al., 2024), producing locally varying regression 

coefficient estimates, suggesting that the importance of an explanatory variable may 

vary over space (Brunsdon et al., 1996). The most common SVC formulated under 

frequentist framework includes GWR (Brunsdon et al., 1996; Fotheringham, 2009), 

extended in MGWR (Fotheringham & Sachdeva, 2022; Oshan et al., 2019), and 

other variants to incorporate temporally explicit data (Fotheringham et al., 2015). 

Under GWR modeling framework, the relationship between predictors and the 

response varies continuously across geographic space using a local weighting 

matrix (Comber et al., 2023). This local regression method captures spatial variation 

by assigning greater weight to nearby observations using a kernel function, such as 

Gaussian, exponential, or bi-square (Fotheringham et al., 2022), each differing 
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slightly in how weights decline with distance (Fotheringham et al., 2023). This 

kernel function needs a specified bandwidth that defines the neighborhood of 

influence around each point (Lu et al., 2017). Depicted in Figures 3 and 4, the 

bandwidth can be either fixed in terms of a geographic distance, or adaptive by 

adjusting to a set number of neighboring observations (Fotheringham et al., 2023). 

Larger bandwidths suggest broader regional trends by incorporating more distant 

observations, while smaller bandwidths focus on nearby data to emphasize local 

details (Brunsdon et al., 2002). The selection of the bandwidth is typically estimated 

by cross-validation (Binbin et al., 2020), by minimizing a corrected AICc, balancing 

a bias-variance trade-off to capture spatial trends and avoid overfitting 

(Fotheringham et al., 2023). The general formulation of a GWR model and other 

SCV and ML hybrids are summarized in Table 1. Typically, GWR explicitly 

account for spatial nonstationarity resulting in a surface of local goodness-of-fit 

metrics, and associated measures of uncertainty, enabling detailed understanding of 

how predictors influence disease risk (Fotheringham et al., 2023). However, the 

application of GWR may yield biased estimates due to repeated use of observations 

to estimate local regression parameters, too few observations for each regression 

that leads to overfitting (Binbin et al., 2020), and multicollinearity among local 

coefficients (e.g. for instances of local collinearity overlooked by global estimates) 

(Comber et al., 2024). MGWR addresses these issues by extending the flexibility of 

the spatial scale, allowing relationships between exposures and outcomes to vary 

across different spatial scales (Oshan et al., 2019). Within this framework, applied 

to spatial epidemiology (Eberth et al., 2021), broad-scale predictors (e.g. climate) 

operate over larger bandwidths, while localised factors (e.g. socio-economic) vary 

over smaller bandwidths, reflecting spatial scale differences in influence (Wolf et 

al., 2018). As displayed in Figure 5, MGWR adaptively selecting bandwidths for 

each variable (Fotheringham et al., 2017), enhances both flexibility and 

interpretability, making it particularly effective for modeling multiscale population 

health phenomena (Eberth et al., 2021). 



34 

  

Figure 3: Gaussian kernel functions with varying bandwidth parameters (θ) (Modified from Fang et al., 
(2021)). Each curve represents the kernel weight as a function of distance, showing how increasing θ 
broadens the kernel’s spread.  
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Figure 4: Adaptive Gaussian kernel surfaces illustrating spatial weighting in MGWR (Modified from Fang 
et al., (2021)). Regression centers vary in bandwidth (θ) and influence (w), defining localized kernel 
contributions. The surface depicts cumulative influence, with point opacity reflecting proximity-weighted 
intensity. 

Yet, both GWR and MGWR, due to their rudimentary kernel-based 

parameterisation fail to handle very large, complex, and high-dimensional spatial 

datasets with complex interactions and non-linearities (Fotheringham et al., 2017). 

Therefore, MGWR is often viewed as better suited for exploratory rather than 

inferential analysis (Comber et al., 2024). Conversely, ML methods like decision 

trees (Breiman, 2001), SVM (Vapnik, 1995), and ANN (Hornik et al., 1989), excel 

at detecting complex non-linear patterns (Kmoch et al., 2025). These approaches 

also provide scalability and automation, enabling large-scale, high-resolution 

mapping that can support timely, data-driven decision-making in public health 

interventions (Ahmed et al., 2021). Although these ML capture such convoluted 

non-linear relationships, they often ignore local spatial dependencies to provide 

interpretable, location-specific coefficients like GWR does (Jiao & Tao, 2025). A 

hybrid GeoAI approach synergizes GWR with ML techniques to accounts for spatial 

heterogeneity by producing location-specific coefficients, and captures non-linear 

relationships and interactions within health data (Credit, 2022). As shown in Figure 

6, GWRF blends GWR's spatially varying coefficients with the non-linear predictive 

power of RF to capture spatial context through localized training on neighborhood 

data (Georganos et al., 2021; Santos et al., 2019). In doing so, GWRF introduces 

two new hyperparameters bandwidth and local.w (Georganos & Kalogirou, 2022), 

in addition to the standard RF hyperparameters number of trees (ntree or 
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n_estimators) and features per split (mtry or max_features) (Breiman, 2001), 

thereby enhancing model accuracy in spatially heterogeneous contexts. Similarly, 

GNNWR employs neural attention mechanisms to  estimate nonstationary weights 

(Du et al., 2020), accommodating complex spatial dependencies and interactions of 

spatial epidemiology data (Kianfar et al., 2025). Typically, GNNWR extends 

standard GWR by employing a SWNN (Du et al., 2020),  where globally estimated 

OLS coefficients are modulated by neural-network-derived (Wu et al., 2021), non-

stationary spatial weights to yield spatially varying regression coefficients and 

capture both local spatial heterogeneity and non-linear associations (Yin et al., 

2024). Another GeoAI approach, SRGCNNs (Zhu et al., 2022b), utilizes graph 

convolutional networks to model spatial relationships in a way similar to GWR, 

offering a DL paradigm for spatial regression health data analysis. Motivated by the 

need for model transparency, these approaches generate localized performance 

metrics, such as spatially explicit R² and residuals (Lin & Wen, 2022), crucial for 

identifying geographic disparities and context-specific drivers of population health. 

  

Figure 5: Comparison of global and local regression models for spatially varying relationships. (a) OLS 
provides a single global fit across all samples. (b) GWR applies fixed-bandwidth local linear models within 
local neighborhoods. (c) MGWR uses adaptive bandwidths to account for spatial heterogeneity. (d) 
GWRF and GNNWR fit local nonlinear models using RF and DL. Local bandwidths and regression points 
illustrate how model structure adapts to spatial variation.
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L
o
c
a
l 

M
o

ra
n
’s

 
I 

(L
IS

A
) 

𝐼 𝑖
=

( 𝑥
𝑖

−
𝑥̅

)
∑

𝑤
𝑖𝑗

(𝑥
𝑗

−
𝑥̅

)
𝑗 𝑆

2
 

L
o
c
a
l 

M
o

ra
n
’s

 𝐼
𝑖 
m

e
a
s
u
re

s
 

th
e
 

d
e
g
re

e
 
o
f 

s
p
a
ti
a

l 
c
lu

s
te

ri
n

g
 
a
ro

u
n
d
 

lo
c
a
ti
o

n
 

𝑖,
 

w
h
e
re

 
𝑥

𝑖
−

𝑥̅
 

s
 

th
e
 

d
e
v
ia

ti
o

n
 f

ro
m

 t
h
e
 m

e
a
n
, 

𝑤
𝑖𝑗

 i
s
 t

h
e
 

s
p
a
ti
a

l 
w

e
ig

h
t 

b
e
tw

e
e
n
 𝑖

 a
n
d
 𝑗

, 
a
n
d
 

𝑆
2
 

is
 

th
e
 

g
lo

b
a
l 

v
a
ri
a

n
c
e
 

o
f 

th
e
 

v
a
ri
a

b
le

. 
  
  
 

M
a

p
s
 

lo
c
a
l 

s
tu

n
ti
n

g
 

c
lu

s
te

rs
; 

d
e
te

c
ts

 
lo

c
a
l 

"h
o
ts

p
o
ts

" 
a
n
d
 

"c
o
ld

s
p
o
ts

".
 

P
in

p
o
in

ts
 

ta
rg

e
t 

a
re

a
s
 

fo
r 

fo
c
u
s
e
d
 

in
te

rv
e
n
ti
o

n
 (

K
o
ld

a
s
b
a
y
e
v
a
 e

t 
a
l.
, 
2
0
2
4
).

 

G
W

S
S

 
1
. 

G
W

 m
e

a
n
: 

 

𝑚
( 𝑧

𝑖)
=

𝛴 𝑗
=

1
𝑤

𝑖𝑗
𝑧 𝑗

𝛴 𝑗
=

1
𝑤

𝑖𝑗

 

 2
. 

G
W

 P
e
a
rs

o
n
’s

 c
o
rr

e
la

ti
o

n
: 

 𝜌
( 𝑧

𝑖,
𝑦

𝑖)
=

𝑐(
𝑧 𝑖

,𝑦
𝑖)

𝑠(
𝑧 𝑖

) 𝑠
( 𝑦

𝑖)
 

 w
it
h
 G

W
 c

o
v
a
ri
a

n
c
e
: 

 

1
. 

w
h
e
re

 𝑚
( 𝑧

𝑖)
 is

 t
h
e
 l

o
c
a
l 

m
e

a
n
 o

f 
v
a
ri
a

b
le

 𝑧
 a

t 
lo

c
a
ti
o

n
 𝑖

, 
𝑧 𝑗

 a
re

 n
e
a
rb

y
 

v
a
lu

e
s
, 

a
n
d
 

𝑤
𝑖𝑗

 a
re

 
s
p
a
ti
a

l 
w

e
ig

h
ts

 

b
a
s
e
d
 o

n
 p

ro
x
im

it
y.

 

  
 

2
. 

G
W

 P
e
a
rs

o
n
’s

 c
o
rr

e
la

ti
o

n
 𝑧

𝑖,
𝑦

𝑖 
a
t 

lo
c
a
ti
o

n
 

𝑖 
is

 
th

e
 

ra
ti
o

 
o
f 

th
e
 

G
W

 
c
o
v
a
ri
a

n
c
e
 𝑐

(𝑧
𝑖,

𝑦
𝑖)

, 
c
a
lc

u
la

te
d
 u

s
in

g
 

s
p
a
ti
a

l 
w

e
ig

h
ts

 𝑤
𝑖𝑗

 a
n
d
 l

o
c
a
l 

m
e

a
n
s
 

𝑚
(𝑧

𝑖)
, 

𝑚
(𝑦

𝑖)
, 

to
 
th

e
 
p
ro

d
u
c
t 

o
f 

th
e
 

G
W

 
s
ta

n
d
a
rd

 
d
e
v
ia

ti
o

n
s
 

𝑠(
𝑧 𝑖

) 
a
n
d
 

𝑠(
𝑦

𝑖)
. 

  
  
  

L
o
c
a
lly

 w
e
ig

h
te

d
 m

e
a
n
, 
P

e
a
rs

o
n
’s

 u
s
in

g
 

s
p
a
ti
a

l 
w

e
ig

h
ts

 (
B

ru
n
s
d
o
n
 e

t 
a
l.
, 

2
0
0
2
).

 
V

is
u
a
liz

e
s
 

s
p
a
ti
a

lly
 

v
a
ry

in
g
 

d
a
ta

 
re

la
ti
o

n
s
h
ip

s
; 

e
x
p
lo

re
s
 

s
p
a
ti
a

l 
n
o
n

-
s
ta

ti
o

n
a
ri
ty

 (
G

o
lli

n
i 
e
t 
a
l.
, 
2
0
1
5
).

 



3
8

 

𝑐(
𝑧 𝑖

,𝑦
𝑖)

=
𝛴 𝑗

=
1

𝑛
𝑤

𝑖𝑗
[ (

𝑧 𝑗
−

𝑚
(𝑧

𝑖)
) (

𝑦 𝑗
−

𝑚
(𝑦

𝑖)
)]

𝛴 𝑗=
1

𝑛
𝑤

𝑖𝑗

 

G
W

R
 

 𝑦
𝑖

 =
 𝛽

0
(𝑠

𝑖)
 +

 ∑
 

𝑝 𝑘
=

1
𝛽

𝑘
(𝑠

𝑖)
 𝑋

𝑖𝑘
+

𝜖 𝑖
,  

   
  𝑖

 =
1

,.
..

,𝑛
   

  
  
 

w
h
e
re

 𝑦
𝑖 

is
 t

h
e
 r

e
s
p
o
n
s
e
 v

a
ri
a

b
le

 a
t 

lo
c
a
ti
o

n
 𝑠

𝑖,
 m

o
d
e
le

d
 a

s
 a

 f
u
n
c
ti
o

n
 o

f 

𝑝
 

p
re

d
ic

to
r 

v
a
ri
a

b
le

s
 

𝑋
𝑖𝑘

 
a
n
d
 

th
e
ir
 

s
p
a
ti
a

lly
 
v
a
ry

in
g
 

c
o
e
ff
ic

ie
n
ts

 
𝛽

𝑘
(𝑠

𝑖)
. 

𝛽
0
(𝑠

𝑖)
 i

s
 t

h
e
 i

n
te

rc
e
p
t,

 a
n
d
 𝜖

𝑖 
is

 t
h
e
 

e
rr

o
r 

te
rm

, 
ty

p
ic

a
lly

 
a
s
s
u
m

e
d
 

to
 

fo
llo

w
 a

 n
o
rm

a
l 
d
is

tr
ib

u
ti
o

n
 𝑁

(0
,𝜎

2
).

  

R
e
g
re

s
s
io

n
 
c
o
e
ff
ic

ie
n
ts

 
v
a
ry

 
lo

c
a
lly

 
to

 
re

fl
e

c
t 
g
e
o
g
ra

p
h
ic

 v
a
ri
a

ti
o

n
 (
B

ru
n
s
d
o
n
 e

t 
a
l.
, 

1
9
9
6
).

 
M

o
d
e
ls

 
s
p
a
ti
a

lly
 

v
a
ry

in
g
 

a
s
s
o
c
ia

ti
o

n
s
; 

m
a

p
s
 l
o

c
a
l 
d
ri
v
e
rs

 o
f 

c
h
ild

 
s
tu

n
ti
n

g
. 

M
G

W
R

 
 𝑦

𝑖
 =

 𝛽
0
(𝑠

𝑖)
 +

 ∑
 

𝑝 𝑘
=

1
𝛽

𝑘
(𝑠

𝑖,
ℎ

𝑘
) 

𝑋
𝑖𝑘

+
𝜖 𝑖

,  
   

  𝑖
 =

1
,.

..
,𝑛

   
  

  
 

w
h
e
re

 
ℎ

𝑘
 

is
 

th
e
 

v
a
ri
a

b
le

-s
p
e
c
if
ic

 
b
a
n
d
w

id
th

 f
o
r 

th
e
 𝑘

-t
h
 p

re
d
ic

to
r.
  

V
a
ri
a

b
le

-s
p
e
c
if
ic

 
b
a
n
d
w

id
th

s
 

fo
r 

e
a
c
h
 

c
o
e
ff
ic

ie
n
t,
 

h
a
n
d
lin

g
 

m
u

lt
i-
s
c
a
le

 
p
ro

c
e
s
s
e
s
 (

F
o

th
e
ri
n

g
h
a
m

 e
t 

a
l.
, 

2
0
1
7
).

 
D

is
e
n
ta

n
g
le

s
 s

p
a
ti
a

l 
e
ff
e
c
ts

 a
t 

d
iff

e
re

n
t 

s
c
a
le

s
 f
o
r 

e
a
c
h
 p

re
d
ic

to
r.
 

G
A

M
 

𝑦  
=

𝛼
 +

∑
 

𝑝 𝑘
=

1
𝑓 𝑘

(𝑥
𝑖𝑘

)
 +

𝜖 𝑖
   

   
   

  
  

w
h
e
re

 𝑦
 i

s
 t

h
e
 r

e
s
p
o
n
s
e
 v

a
ri
a

b
le

, 
𝛼

 

re
p
re

s
e
n
ts

 t
h
e
 i

n
te

rc
e
p
t,
 𝜖

𝑖 
d
e
n
o
te

s
 

th
e
 r

e
s
id

u
a
l 

e
rr

o
r,
 a

n
d
 𝑓

𝑘
(𝑥

𝑖𝑘
) 

re
fe

rs
 

to
 

th
e
 

s
m

o
o
th

 
fu

n
c
ti
o

n
s
, 

s
u
c
h
 

a
s
 

s
p
lin

e
s
. 
  

G
A

M
 

c
a
p
tu

re
s
 

c
o
m

p
le

x
 

n
o
n
lin

e
a
r 

re
la

ti
o

n
s
h
ip

s
 

b
e
tw

e
e
n
 

p
re

d
ic

to
rs

 
(𝑥

𝑖𝑘
) 

a
n
d
 
re

s
p
o
n
s
e
 
(H

a
s
ti
e
, 

2
0
1
7
; 

H
a
s
ti
e

 
&

 
T

ib
s
h
ir
a
n
i,
 1

9
9
5
).

  

G
W

R
F

 
𝑦

𝑖
=

𝑎
( 𝑢

𝑖,
𝑣

𝑖)
𝑥

𝑖
+

𝜀 

 

w
h
e
re

 
( 𝑢

𝑖,
𝑣

𝑖)
𝑥

𝑖 
is

 
th

e
 
p
re

d
ic

ti
o

n
 
o
f 

th
e
 

R
F

 
m

o
d
e
l 

w
it
h
 

th
e
 

s
p
a
ti
a
lly

 
w

e
ig

h
te

d
 

ra
n
d
o
m

 
fo

re
s
t 

(S
W

R
F

) 
c
a
lib

ra
te

d
 o

n
 lo

c
a
ti
o

n
 𝑖

, 
a
n
d
 𝑢

𝑖,
𝑣

𝑖 
 a

re
 

th
e
 c

o
o
rd

in
a
te

s
 o

f 
th

e
 c

e
n
tr

o
id

 o
f 

th
e
 

s
p
a
ti
a

l 
u
n
it
 𝑖

. 
 

R
F

 p
re

d
ic

ti
o

n
s
 m

a
d
e
 l

o
c
a
lly

, 
le

v
e
ra

g
in

g
 

s
p
a
ti
a

lly
 w

e
ig

h
te

d
 s

a
m

p
le

s
 (

G
e
o
rg

a
n
o
s
 

e
t 

a
l.
, 

2
0
2
1
; 

G
e
o
rg

a
n
o
s
 

&
 

K
a
lo

g
ir
o
u
, 

2
0
2
2
).

 
C

a
p
tu

re
s
 

n
o
n
lin

e
a
r,
 

s
p
a
ti
a

lly
 

v
a
ry

in
g
 

ri
s
k
 

a
s
s
o
c
ia

ti
o

n
s
 

in
 

c
h
ild

h
o
o
d
 

s
tu

n
ti
n

g
. 

G
N

N
W

R
 

𝑦
𝑖

=
𝑤

0
( 𝑢

𝑖𝑣
𝑖)

.𝛽
0𝑂

𝐿
𝑆

+
∑

𝑤
𝑗
( 𝑢

𝑖𝑣
𝑖)

.𝛽
𝑗𝑂

𝐿
𝑆
.𝑋

𝑖𝑗
 +

𝜀 𝑖
𝑘 𝑗=

1
 

 

𝑖
=

1
,2

,⋯
,𝑛

 

 w
it
h
 a

 s
p
a
ti
a

lly
 w

e
ig

h
te

d
 n

e
u
ra

l 
n
e
tw

o
rk

 (
S

W
N

N
) 

g
iv

e
n
 

b
y
: 

 

w
h
e
re

 𝑤
𝑗
( 𝑢

𝑖𝑣
𝑖)

  
re

p
re

s
e
n
ts

 t
h
e
 n

o
n

-

s
ta

ti
o

n
a
ry

 
w

e
ig

h
t 

fo
r 

th
e
 

m
o
d
e
l 

p
a
ra

m
e

te
r 

𝛽
𝑗𝑂

𝐿
𝑆
. 
 

 w
h
e
re

 
[ 𝑑

𝑆
𝑖1

,𝑑
𝑆

𝑖1
,⋯

,𝑑
𝑆

𝑖𝑛
]𝑇

 

re
p
re

s
e
n
ts

 t
h
e
 d

is
ta

n
c
e
s
 f

ro
m

 p
o
in

t 
𝑖 

to
 o

th
e
r 

s
a
m

p
le

s
. 
  

A
N

N
 r

e
g
re

s
s
io

n
 w

it
h
 s

p
a
ti
a

lly
 a

d
a
p
ti
v
e
 

w
e
ig

h
ts

 
fo

r 
e
a
c
h
 

lo
c
a
ti
o

n
 

(D
u
 

e
t 

a
l.
, 

2
0
2
0
).

 A
d
a
p
ts

 t
o
 c

o
m

p
le

x
 n

o
n
lin

e
a
r 

a
n
d
 

s
p
a
ti
a

l 
p
a
tt

e
rn

s
 i

n
 d

e
te

rm
in

a
n
ts

 (
W

u
 e

t 
a
l.
, 
2
0
2
1
).
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𝑤
( 𝑢

𝑖𝑣
𝑖)

=
𝑆

𝑊
𝑁

𝑁
 (

[ 𝑑
𝑆

𝑖1
,  

 𝑑
𝑆

𝑖1
 ,

⋯
,𝑑

𝑆
𝑖𝑛

]𝑇
) 

S
E

L
 

E
n
s
e
m

b
le

 l
e

a
rn

in
g
 (

E
L
):

 

𝜇̂
𝐸

𝐿
=

 ∑
𝜔

𝑘

𝐾 𝑘
=

1
 𝜇̂

𝑘
 

w
it
h
 t

h
e
, 
  
  

 

U
n
iv

e
rs

a
l 
k
ri
g

in
g
 w

it
h
 e

x
te

rn
a
l 
d
ri
ft
 (

U
K

):
  
  
  
  
  
  
  
  
  
  
  
  
  

𝑍
𝐾

𝐸
𝐷

( 𝑠
0

)
=

∑
𝜔

𝑖𝐾
𝐸

𝐷
𝑛 𝑖=

1
𝑍

( 𝑠
𝑖)

 

w
h
e
re

 
𝜇̂

𝐸
𝐿
 

is
 

th
e
 

E
L
, 

 
𝜇̂

1
,.

..
..
..
, 

𝜇̂
𝐾
 

d
e
fi
n

e
 p

o
te

n
ti
a

l c
a
n
d
id

a
te

 e
s
ti
m

a
to

rs
, 

𝜔
𝑘

 a
re

 
w

e
ig

h
ts

 
a
s
s
ig

n
e
d
 

to
 

e
a
c
h
 

e
s
ti
m

a
to

r.
 

 w
h
e
re

 
𝑍

(𝑠
𝑖)

 
a
re

 
th

e
 

p
re

d
ic

te
d
 

ri
s
k
 

v
a
lu

e
s
 

a
t 

s
a
m

p
le

d
 

lo
c
a
ti
o
n
s
, 

𝜔
𝑖𝐾

𝐸
𝐷

 a
re

 t
h
e
 k

ri
g
in

g
 w

e
ig

h
ts

 a
n
d
 𝑛

 i
s
 

th
e
 n

u
m

b
e
r 

o
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s
a
m

p
le

d
 l
o

c
a
ti
o

n
s
. 

T
h

is
 

h
y
b
ri
d
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m

e
w

o
rk
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o
m
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in

e
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e
n
s
e
m

b
le

 
M

L
 
m

o
d
e
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.g
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R

F
, 

X
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B
) 

w
it
h
 U

K
 t
o
 a
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s
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 s

p
a
ti
a

l h
e
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ro
g
e
n
e
it
y,

 
w

h
e
re

b
y
 

p
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id

in
g
 

s
p
a
ti
a

lly
 

e
x
p
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it
 

p
re

d
ic

ti
o

n
s
 

a
n
d
 

ri
s
k
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a

p
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in
te

rv
e
n
ti
o

n
 p

la
n
n
in

g
 (

H
u
 &

 T
a
n
g
, 
2
0
2
3
).
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While both GWRF and GNNWR models capture the nonlinear and complex 

interactions between population health and socio-ecological conditions, their 

applicability remains limited when extrapolating beyond observed data to 

unsampled contexts. To this end, EL with geostatistics models have attracted many 

attentions in spatial disease modeling due to their ability to capture complex 

interaction among features (Ahmed et al., 2021), and for their limited expert 

knowledge requirements (Davies & Van Der Laan, 2016), allowing for spatial 

nonlinearity across the regions (Jemeļjanova et al., 2024), for improving disease risk 

predictions (Moraga, 2019). Built on that framework, recent advancements explored 

the capabilities of both supervised learning (Zhang et al., 2024b), and geostatistics 

(Wang et al., 2024c), within the hybrid geostatistical regression frameworks 

(Fouedjio & Arya, 2024), to respectively predict, downscale, and to explicitly 

capture local variation in surface earth properties. Similarly, (Hengl et al. (2018) 

implemented a spatial RF and applied buffer distances on observations in the form 

of a distance matrix, a method also used by Milà et al. (2024) to deal with model 

bias and prediction suboptimality, as those from the aspatial RF. On the same basis, 

Ahn et al. (2020) inspired by Hengl et al. (2018), applied the PCA to the distance 

vector using only the geographic coordinates for spatial estimation without other 

covariates. Inspired by Lundberg & Lee (2017), Li (2024) introduced GeoShapley 

combined spatial data with coordinates to measure spatial effects in ML models for 

advancing the model interpretability. Although these models offer predictive power, 

coordinate-based frameworks, alone or with covariates, provide limited 

interpretability for disease-risk decision-making (Jemeļjanova et al., 2024), since 

the influence of location cannot be directly assessed (Liu, 2024). Being said, they 

are still issues related to the interpretability and transferability of these methods 

which are conditioned by their rigorous parameterization and experiments made on 

well generalized real cases with enough large structured datasets (Zhao et al., 2024). 

This study advances the population health risk prediction by envisioning a hybrid 

ML and geostastical classification approach as an alternative to the existing similar 

studies to refine the explainability critical for localized public health decision 

making. Overall, this robustness rooted in these models to capture complex, non-

linear interactions and handle high-dimensional data through learned relationships 

instead of predefined kernels, makes these hybrid GeoAI methodologies ideal for 

our study (Luo et al., 2021), providing a powerful tool for targeted interventions and 

evidence-based public health planning. With this study, we provide critical insights 

into selecting appropriate spatially varying GeoAI methodologies for spatial 

modelling tasks, ultimately improving the reliability of localized descriptive, 

analytical and predictive models of childhood stunting.  
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Explainability and interpretability in population health 

outcomes 

Understanding why a model produces specific predictions is essential for designing 

effective public health interventions (Loh et al., 2022). For instance, a variety of 

classical ML tools, such as GLM (Nelder & Wedderburn, 1972), GAM (Hastie & 

Tibshirani, 1995), and decision tree variable importance and partial dependence 

plots (Ahmed et al., 2021), considered as early incarnation of IML, has been widely 

used in scientific studies (Ahmed et al., 2025). Traditional approaches output single 

regression coefficients, and global variable importance metrics, which provide 

insight into predictor effects but have notable limitations (Molnar & Freiesleben, 

2024). Coefficients assume linearity and global stationarity, while standard variable 

importance measures indicate which predictors matter most without clarifying 

directionality, interactions, or context-specific effects, often obscuring nuanced 

relationships in complex, non-linear datasets (Jiang et al., 2024). To this end, 

analytical spatially varying GeoAI models such GWRF offer local variable 

importance, and GNNWR produces location-specific regression coefficients, 

providing nuanced insights into how predictors vary across space (Santos et al., 

2019). These models visualize these local coefficients surfaces, and adhering to a 

single-color bar ensures consistency across the maps, allowing for direct 

comparisons of patterns and magnitude between variables (Stofer, 2016). This 

broader visualization strategy enables users and analysts to assess both trends and 

reliability across multiple variables. Complimenting these, XAI techniques, such as 

SHAP, overcome these gaps by quantifying both global and local contributions of 

predictors, capturing non-linear interactions and spatially varying effects (Lundberg 

et al., 2020; Lundberg & Lee, 2017). In population health, SHAP can reveal how 

socio-economic, environmental, and spatial factors drive outcomes like childhood 

stunting, and, when combined with spatial visualization, highlights high-impact 

drivers across regions (Nduwayezu et al., 2025b). Inspired by Lundberg & Lee 

(2017), Li (2024) introduced GeoShapley to measure spatial effects in ML models 

for advancing the interpretability of these spatial models. These recent advances in 

spatial SHAP further allow visualization of geographic gradients in feature effects, 

highlighting spatially varying drivers of outcomes such as childhood stunting. This 

approach bridges the gap from traditional linear or tree-based models to advanced, 

interpretable predictive frameworks capable of guiding targeted public health 

interventions. Overall, this thesis generates fine-scale, interpretable risk surfaces 

that can support targeted nutrition interventions in data-constrained settings, and 

enable a more demystified modeling, providing interpretable insights into the 

drivers of child undernutrition, enabling actionable intelligence for decision-

makers.    
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Aim and objectives 

The overall aim of this thesis is to develop, test, and apply methodologies for the 

detection, explanation, and prediction of the spatial heterogeneity in population 

health datasets. The thesis provides information on the potentials and challenges 

associated with integrating multi-source geospatial, household survey, and remotely 

sensed data to understand local determinants of stunting among children, map small-

area prevalence in Rwanda, and support geographically targeted public health policy 

interventions to the areas of the most needs. The following three specific objectives 

were pursued to accomplish this aim:  

1. To quantify and statistically analyze the spatial patterns of child stunting 

prevalence using spatially varying and clustering approaches across 

multiple scales (Paper I). 

2. Identify and interpret localized nonlinear determinants of childhood 

stunting by applying hybrid GeoAI approaches that integrate multisource 

determinants (Papers II & III). 

3. Develop and evaluate predictive GeoAI models that generalize to 

unsampled locations using spatial ensemble methods to generate SAEs of 

childhood stunting risk (Paper IV). 

To achieve these objectives, this study addresses the following questions: 

• How can spatial patterns in childhood stunting be statistically and visually 

quantified? 

• How can nonlinear relationships between localized stunting determinants 

and spatial contexts inform targeted health policy models; and particularly, 

how effective are climatic and agroecological indicators in analyzing 

childhood stunting?  

• How predictive inference models generalize to produce probabilistic risk 

estimates of childhood stunting, enabling localized interventions?   

Figure 6 illustrates the overall structure of the thesis and how the contributing papers 

are integrated into the final synthesis. 
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Figure 6: Dissertation structure showing linkages among four papers on spatial modelling (Paper I), local 
determinants (Papers II & III), and predictive estimation of population health outcomes (Paper IV). 
Arrows denote conceptual and methodological contributions across papers. 
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Materials and methods 

Overview and study area  

Rwanda’s Northern Province historically exhibiting higher rates of child stunting 

relative to other regions (NISR et al., 2021), served as the primary study area for 

this research (Paper I, III, and IV). This region is typified by rugged terrain, high 

population density, and predominantly smallholder agricultural systems, which are 

acutely susceptible to both agroecological and socioeconomic stressors. These 

characteristics make it a critical landscape for investigating how local 

environmental and social determinants interact to shape child nutritional outcomes. 

To complement this regional focus, national-scale patterns were assessed using data 

from the 2019-2020 RDHS (Paper II). The RDHS provided standardized 

anthropometric data for children under five, alongside detailed maternal, household, 

and demographic variables. To safeguard respondent confidentiality during data 

curation, survey cluster coordinates were randomly displaced by up to 2 km in urban 

areas and 5 km in rural areas (Burgert-Brucker et al., 2018; Janocha et al., 2021). 

To address the resulting spatial uncertainty, data were aggregated at sector 

jurisdictional and gridded resolutions (1 km² and 5 km²), minimizing positional error 

while maintaining spatial reliability for subsequent analyses.  
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Figure 7: Geographical location of Rwanda (the left upper figure), and stunting prevalence at household 
cluster level in Rwanda (the main figure). These geo-located data formed the basis for the modeled 
interpolated surface, and average stunting prevalence rate at the sector level, a jurisdictional zone in 
Rwanda used in Paper II. 
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Figure 8: The location map of the Northern Province in Rwanda (the right upper figure), and the spatial 
distribution of the sampled households in the study area (the main figure). These childhood HAZ 
prevalence was initially collected at the household level (Paper III), then aggregation-based geomasking 
to generate continuous areal HAZ prevalence at the sector level (Paper I), further gridded at 2.2 × 2.2 
km resolution, and finally dichotomized into stunted and non-stunted categories for use in Paper IV.   

Paper I  

The aim of this study was to explore the spatial heterogeneity of stunting (low HAZ) 

among children aged between one month and three years in Rwanda’s Northern 

Province, and to analyze how socioeconomic, agroecological, and climatic factors 

contribute to its variability. We utilized cross-sectional data from 601 households, 

geomasked through aggregation at the local administrative level, and applied SVC 

models and interpretable ML techniques. Built on balanced spatial sampling (Diggle 

et al., 2010; Olatunji et al., 2021), and WHO anthropometric guidelines (WHO, 

2006), we captured different child growth failure metrics and related socioeconomic 

attributes in the northern province. To do this, two-stage cluster sampling was 

employed (Katz, 1995), randomly selecting 137 from 2,744 villages using a spatial 

grid to ensure geographic representativeness, followed by systematic household 

sampling proportional to village population density. The sample size was calculated 

using the standard formula for prevalence studies (Carlin & Hocking, 1999), 

assuming a 40.5% stunting prevalence (NISR et al., 2021), 95% confidence, 5% 
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margin of error, and a design effect of 1.5 (Katz, 1995), yielding 553 households. 

Adjusting for 10% non-response (Jensen et al., 2022; Prince, 2012), the final sample 

size was 615 households. Anthropometric measurements of children and mothers 

were collected following standard protocols. After excluding 14 children with 

missing anthropometric data, 601 samples were included in the analysis. Stunting 

was the primary outcome, with predictors spanning seven categories: socio-

demographic factors, health, nutrition, childcare, violence, livestock, and healthcare 

access. Motivated by existing health literature, the household survey data were 

integrated with additional agroecological (soil fertility, slope, elevation), and 

climate factors (rainfall, LST, NDVI), given their significant epidemiological 

pathways that influence multiple dimensions of food security and contribute to 

chronic undernutrition (Aheto & Dagne, 2021; Baffour et al., 2023; Khaki et al., 

2024; Nduwayezu et al., 2024). Grid-based aggregation was used to convert 

household-level point data into spatially continuous aggregate data Gribov & 

Krivoruchko (2020), while protecting respondent confidentiality. Spatial 

incremental autocorrelation was assessed using Moran’s I and Getis-Ord Gi* to 

identify clusters of stunting hotspots and coldspots (ESRI, 2024). We fitted multiple 

SVC models, complemented by GAM as IML (Hastie & Tibshirani, 1995). First, 

we fitted OLS regression, which served as a global benchmark but was limited by 

its assumption of spatial stationarity. To overcome this, we further fitted a GWR 

model (Brunsdon et al., 1996), which estimates local coefficients by weighting 

observations according to geographic proximity. To reflect local variations in 

stunting risk factors, we used an adaptive spatial kernel, and the optimal bandwidth 

was selected through minimization of the corrected AICc, to ensure the model 

robustness as described in Table 1.  Building on this, we calibrated a MGWR model 

(Fotheringham et al., 2023), by first selecting an adaptive spatial kernel to capture 

local variations in the relationships between predictors and childhood stunting 

prevalence. This process ensures that the model captures localized effects without 

overfitting. We assessed the model performance with localized R² to measure 

spatially explicit explanatory power and Local Moran’s I to detect spatial 

autocorrelation in residuals, ensuring robust and interpretable spatial predictions. 

Moreover, the interpretation focused on model coefficients the nonlinear effects of 

predictors. Finally, to capture nonlinearities in predictor outcome relationships, 

critical for localized public heath decision making, the analysis integrated GAM 

(Hastie, 2017). These models were trained with thin plate regression splines, and 

were used to reveal nonlinear effects such as U-shaped or bell-shaped responses to 

slope, NDVI, and soil fertility. This paper integrated these SVC models to provide 

a robust framework capable of uncovering both the spatial heterogeneity and the 

nonlinear dynamics of stunting determinants in the Northern Province of Rwanda. 
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Paper II  

The aim of this study was to investigate how different socioeconomic, maternal 

health, and environmental factors affect the risk of childhood stunting in Rwanda, 

and to examine how these relationships vary across space. We utilized Bayesian-

modeled surface prevalence data from the 2019-2020 RDHS (NISR et al., 2021),  in 

combination with geospatial covariates and hybrid RF models to quantify the 

importance of localized determinants associated with childhood stunting. Stunting 

prevalence was derived from modeled surface rasters (5×5 km resolution), which 

interpolated RDHS cluster-level measurements using Bayesian geostatistical 

methods (Burgert-Brucker et al., 2018). These surfaces provided a continuous 

outcome variable, expressed as the percentage of children under five who were 

stunted. Exposure variables were selected through a literature review and included 

socioeconomic/demographic, maternal health, and environmental indicators known 

to influence childhood nutrition, such as parental literacy, women’s anemia status, 

use of improved water sources, open defecation, insecticide-treated net use, 

antenatal care visits, and delivery care quality (Boah et al., 2022; Kismul et al., 

2017; Pattnaik et al., 2021; Tangena et al., 2023; Uwiringiyimana et al., 2019; 

Vollmer et al., 2017). All predictors were scaled to 0-1 and aggregated to the sector 

jurisdictional level to account for DHS cluster displacement. The core modeling 

framework in this study contrasted the global RF with a GWRF to assess fine-scale 

heterogeneity in stunting prevalence. We first trained the global RF as a benchmark 

model (Breiman, 2001). However, because the global RF does not account for 

spatial dependence as described in methods section, the study advanced to GWRF 

(Georganos & Kalogirou, 2022), which integrates spatial kernels into the RF 

algorithm by assigning higher weights to geographically proximate observations. 

This hybrid GeoAI builds separate sub-models for each spatial unit, incorporating 

only its neighboring units, which were defined either by a distance threshold (fixed 

kernel) or by the number of nearest neighbors (adaptive kernel). Rooted in the 

randomization inherent to training a RF (Breiman, 2001), this hybrid approach 

allowed the model to simultaneously capture nonlinear predictor effects and local 

spatial variation while mitigating overfitting risks. To prevent overfitting prior to 

fitting the RF and GWRF models, we tested multiple hyperparameter combinations 

using 10-fold cross-validation (Santos et al., 2019), selecting the optimal set based 

on performance with the adaptive kernel. For comparison, we applied the same 

parameters consistently to both the RF and GWRF models. Specifically, we used 

GWRF for further inferences due to its local implications and interpretations, such 

as spatially varying relationships, local feature importance, and targeted health 

decision-making. Finally, to ensure interpretability, the study moved from GAM in 

Paper I, to employ advanced IML tools such as global and interaction partial 

dependence plots (Molnar, 2022), to identify thresholds in predictors and revealing 

local interaction effects between childhood stunting with its factors. The 

methodological frameworks in Paper II, demonstrated how hybrid GeoAI 
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approaches improve predictive performance while preserving policy-relevant 

interpretability.  

Paper III  

This study introduced a spatially varying DL model to assess the spatial 

heterogeneity of childhood stunting determinants among children under three in 

Northern Rwanda. We cross-sectionally analyzed point household survey data from 

601 households in Northern Rwanda to capture the fine-scale determinants of 

stunting risk. The dependent variable was the HAZ, and predictor features were 

child health and care (age, sex, birthweight, breastfeeding practices, childcare), 

maternal factors (BMI, social support), and household conditions (sanitation, 

electricity, kitchen gardens, farmland, milk consumption). Missing data were 

addressed using ML-based imputation (Azur et al., 2011), and feature selection 

combined RF importance, ridge regression, and forward selection. The 

methodological framework of this paper extended GWR and MGWR to incorporate 

neural network architectures through the GNNWR model. We first fitted GWR and 

MGWR as baselines, each calibrated with adaptive spatial kernels and bandwidths 

optimized through AICc minimization. As described in Table 1, while these SVC 

models capture spatial nonstationarity (Fotheringham et al., 2017), their reliance on 

predefined kernel functions limits their ability to estimate complex nonlinearities 

and high-dimensional interactions among variables. To address this, we 

implemented GNNWR by embedding an ANN within the GWR framework (Du et 

al., 2020), using a SWNN to compute nonstationary weights, thereby enabling the 

estimation of local regression coefficients while simultaneously capturing nonlinear 

dependencies among predictors (Yin et al., 2024). We trained the GNNWR by 

iteratively optimizing neural network hyperparameters including four hidden layers, 

the PReLU activation function, the SGD algorithm, a dropout rate of 0.2, and a 

learning rate of 0.01. The GNNWR achieved higher explanatory power (R² ≈ 0.66 

on training data) compared to GWR and MGWR, and uncovered localized, 

nonlinear relationships between child health, maternal care, and household 

conditions, revealing both broad spatial trends and fine-scale heterogeneity in 

stunting risk determinants. In this paper, the integration of neural networks with 

SVC demonstrated the potential of novel subsymbolic GeoAI methodologies to 

reveal complex, spatially varying determinants to provide actionable insights for 

localized interventions against childhood stunting. 
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Paper IV  

The aim of this study was to examine how agroecological, environmental, and 

socioeconomic conditions influence small-area childhood stunting risk in Rwanda’s 

Northern Province, and how these relationships vary across spatial scales. We 

utilized cross-sectional household survey data in Paper I and III, combined with 

satellite-derived and agroecological indicators, to implement a multilevel SAE 

framework using SEL and XAI. The study targeted children aged between one 

month and three years, with childhood stunting assessed using HAZ. Response data 

were spatialized to multiple resolutions, including 1 km² and 5 km² grid cells, 

village, and sector levels. Preprocessing accounted for spatial dependence and scale 

effects using Moran’s I and Getis-Ord Gi statistics (Tiwari et al., 2023), while 

incremental spatial autocorrelation was applied to detect the distance at which 

spatial clustering peaked, which occurred at 8 km (ESRI, 2024). Stunting prevalence 

values were dichotomized into stunted and non-stunted categories, yielding an 

imbalanced dataset (Koldasbayeva et al., 2024). Explanatory variables included 

elevation, slope, soil fertility, rainfall, NDVI, livestock density, urbanicity, toilet 

type, and water access. These were derived from RS datasets aggregated using zonal 

statistics. These RS covariates were selected based on their hypothesized 

importance for estimating socioeconomic conditions and their availability as shown 

to correlate with childhood stunting in previous work (Paper I, II &III). We 

introduced a so called, SEL, a novel two-stage modeling framework that integrates 

stack ensemble and geostatistical methods for spatial prediction of childhood 

stunting risk. In the first stage, an EL model was trained to estimate stunting 

prevalence at sampled locations by capturing convoluted, non-linear relationships 

with environmental, agroecological, and health-related covariates using SHAP. By 

considering the predicted 5 km2 grid at sampled points as realizations of an 

underlying continuous spatial process literature (Burgert-Brucker et al., 2018; 

Janocha et al., 2021), these predictions are then incorporated as external drift in a 

UK model (Wiedemann et al., 2023), which accounts for spatial autocorrelation to 

produce probabilistic maps of stunting risk. To address potential scale effects, maps 

were generated at multiple spatial resolutions, enabling a more robust and flexible 

assessment of spatial variation in stunting prevalence across the study region. 

Through a rigorous evaluation of different stages of the population modeling 

pipeline data input, model selection, and outcome assessment our findings 

underscore the efficacy of the model, providing robust estimates and quantifying 

uncertainty. RF consistently outperformed individual learners, with SEL providing 

enhanced discriminability between stunting and non-stunting probabilities. SHAP 

values were used for model interpretation (Lundberg & Lee, 2017). The multilevel 

SEL framework in this paper demonstrated the value of capturing scale effects and 

spatial non-stationarity in stunting risk estimation. 
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Results and discussion 

Spatial patterns of stunting among children: statistical 

and visual interpretability   

All four papers consistently revealed that child stunting in Rwanda is characterized 

by fine-scale spatial clustering. Across all four studies, spatial analysis consistently 

revealed that stunting is not uniformly distributed, but follows distinct spatial 

patterns (i.e., strong clustering and local heterogeneity) across provinces, districts, 

and even sectors. At the national level, exploratory spatial statistics (e.g., GWSS, 

Moran’s I, Getis-Ord Gi*) identified significant hotspots in Rwanda’s Northern and 

Western provinces. Paper II identified strong geographic heterogeneity, with 

RDHS cluster data showing stunting hotspots concentrated in the Northern and 

Western provinces, consistent with the broader pattern in Paper I, but further 

revealing small, localized clusters that the RDHS data alone obscures, underscoring 

the persistence of childhood stunting across ages. For that, Using Moran’s I and 

Getis-Ord Gi analyses, Paper I identified marked clustering of stunting prevalence, 

with persistent hotspots and coldspots concentrated in Musanze, Gakenke, and 

Gicumbi districts, highlighting the need for spatially targeted, scale-sensitive 

interventions. Similarly, in Paper IV using incremental spatial autocorrelation, 

across all spatial supports, statistically significant positive spatial autocorrelation 

was detected, with the strength of clustering peaking at finer scales (household and 

1 km² grid) and attenuating at coarser aggregations (5 km² grid). Notably, the 

detection of clusters persisted across multiple spatial scales, emphasizing the 

robustness of local patterns despite varying administrative resolutions (Figure 9). 
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Figure 9: Global Moran's I Z-scores at household, 1km² grid, 5km² grid, and sector jurisdictional levels. 
Each line segment is colored based on the Z-score intensity. Square markers represent distance 
intervals. The corresponding p-value at which the peak occurs is also displayed in bold red. The dashed 
red line indicates the statistical significance threshold (Z = 1.96). 

Paper I also computed a local Moran’s I to examine the residuals of SVC models; 

even after accounting for predictors, Moran’s I values indicated that spatial 

dependence persisted within OLS model, reflecting unobserved localized processes 

(Figure 10). 

 

Figure 10: Spatial distribution of the standardized models’ residuals; OLS, GWR, and MGWR. A smaller 
standardized error indicates higher model performance.  

The visualization of predictive surfaces in Paper IV, added another dimension. 

Predicted prevalence surfaces derived from SEL provided fine-resolution maps at 

1-5 km², capturing stunting gradients across Northern Province (Figure 15). 
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Together, these results suggest that statistical tests and visual mapping mutually 

reinforce each other: clustering can be formally confirmed, while spatial 

visualization makes the results more interpretable for policy makers and 

stakeholders (Stofer, 2024), offering a powerful entry point for geographically 

targeted interventions (Stofer, 2016), while also providing a benchmark for 

evaluating model robustness.   

Localized determinants of child stunting and their policy 

implications 

The importance of localized non-linear and complex determinants of child stunting 

was most evident in Papers I, II, and III.  Papers I, II, and III converge on the 

conclusion that child age, maternal, and household factors dominate as determinants 

of stunting, though their strength and direction vary geographically, consistent with 

existing literature. Paper I confirmed that stunting risk increased with elevation, 

rainfall, but their impact was magnified in districts with poor child care practices 

(number of days the child was left alone) (Yoneshiro et al., 2025). NDVI and slope 

showed U-shaped effects (Figure 11), meaning that both very low and very high 

values were detrimental, indicating nonlinear ecological influences (Nduwayezu et 

al., 2024). This further reflects the dual burden of low agricultural productivity in 

degraded landscapes and difficult farming conditions in steep, high-rainfall areas 

(Nduwayezu et al., 2025b). 
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Figure 11: GAM plots of the nonlinear effects of continuous predictors on height-for-age Z score, with the 
center red lines representing the mean estimated effects, and the bands between upper and lower 
dashed lines indicating the 95% confidence intervals. A declining curve signifies increasing stunting 
prevalence, and a rising curve signifies lowering stunting prevalence.  
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MGWR reveals pronounced spatial heterogeneity in the drivers of child HAZ across 

Northern Province of Rwanda, complementing GAM’s global nonlinear trends. 

Both models consistently identified overall trends, such as negative impacts of 

elevation and soil fertility Figure 12. While GAM consistently captured overall 

predictor HAZ relationships e.g., positive LST, nonlinear NDVI, and negative 

elevation effects MGWR revealed local variability hidden in these global trends, 

such as regions where rainfall decreased HAZ or urbanicity had negative local 

effects, complementing GAMs by adding spatial context essential for targeted 

interventions (Nduwayezu et al., 2024). Importantly, MGWR reveals local-scale 

variations, enabling spatial epidemiology to target interventions with geographic 

precision and context specificity. Although MGWR alone can robustly explain 

localized stunting risk, combining it with GAM ensures broad applicability (Stofer, 

2024), where health professionals may find GAM’s global trends easier to interpret 

than spatially complex MGWR maps, highlighting the importance of using intuitive 

color schemes to facilitate map interpretation (Stofer, 2016). 

  

Figure 12: Spatial distribution of coefficients of the MGWR model. A positive sign denotes that the 
explanatory variable increases the probability of the outcome, whereas a negative sign indicates that the 
variable lowers the likelihood of the outcome. 

Paper II provided further additional nuance by uncovering nonlinear and 

geographically specific effects. This paper II demonstrated that maternal literacy, 

antenatal care, sanitation, and facility-based deliveries were strongly linked to lower 

stunting prevalence, with partial dependency analyses (Molnar, 2022), showing 

threshold effects for example, child growth faltering marked reductions in risk once 
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antenatal visits exceeded 50% or access to clean water surpassed 70%. Paper II 

also found that maternal literacy, antenatal care visits, and sanitation practices 

exerted strong but spatially varying effects, with partial dependency analysis 

showing threshold improvements in stunting risk once clean water access and 

facility-based deliveries surpassed certain levels (Figure 13). 

 

Figure 13: Partial dependence plots and smoothed response curves for the explanatory variables, 
selected using global RF. Partial plots show the dependence of the probability of stunting prevalence 
occurrence on one predictor variable after averaging out the effects of all other predictor variables in the 
model. The horizontal axis represents the values of the predictor, and the vertical axis represents the 
marginal effects of a predictor on the predicted target (the risk of child stunting).  

The GWRF local variable importance maps in Paper II, also reveal marked spatial 

variation in the determinants of child stunting in Rwanda, underscoring that the 

influence of these factors varies considerably across regions. For example, in some 

northern and western sectors, stunting risk is most shaped by WASH-related 

barriers, while the east and south are more affected by maternal health service 

utilization and education, and some regions show high importance for reproductive 
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health and malaria prevention (Figure 14). These fine-scale insights suggest 

targeted, context-specific interventions such as prioritizing improved sanitation 

where WASH factors predominate or boosting health education and antenatal care 

where literacy and maternal health are key can yield greater reductions in stunting 

than uniform, nation-level programs (Nduwayezu et al., 2025a). Prior studies 

confirm that stunting’s determinants (poverty, water, education, health access) 

exhibit strong spatial variability, supporting the use of these maps for 

epidemiological decision making (Tamir et al., 2024). 

 

Figure 14: The spatial variation of the local feature importance from a GWRF model for child stunting in 
Rwanda, showing how the contribution of various health, demographic, and resource factors varies 
across regions. Spatial variation in %; local feature importance according to the mean decrease 
accuracy. 

Paper III revealed additional complexity using GNNWR, which highlighted that 

child-level factors (age, male gender, birthweight) and household-level variables 

(sanitation, electricity, farmland size) explained much of the local heterogeneity of 

childhood stunting (Mertens et al., 2023). Local coefficient maps showed, for 

instance, that sanitation deficits had disproportionately large effects in rural areas, 

while electricity access was most relevant in peri-urban contexts. These findings 

underscore the value of geographically explicit models: the same variable does not 
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carry the same influence everywhere. The influence of remotely sensed indicators 

warrants further discussion (Nduwayezu et al., 2024). Papers I and IV both 

included climatic and agroecological indicators such as NDVI, rainfall, and soil 

fertility. Although these variables were less predictive than maternal and household 

factors, they captured ecological vulnerability zones (Nduwayezu et al., 2025b). For 

example, Paper I highlighted that steep, high-rainfall areas with fragile soils 

coincided with higher stunting prevalence, suggesting that environmental stress 

interacts with poverty and childcare practices to exacerbate risk (Jones et al., 2016). 

Thus, RS is most useful when viewed not as a primary determinant (Yeboah et al., 

2022), but as a contextual lens that situates household vulnerabilities within broader 

ecological systems (Grace et al., 2022). For policy, this has profound implications. 

A "one-size-fits-all" approach to nutrition interventions risks being inefficient or 

ineffective (Tamir et al., 2024). Instead, interventions should be tailored to the 

dominant local determinants (Nduwayezu et al., 2025a). In sectors where sanitation 

deficits are most pressing, investments in WASH (water, sanitation, hygiene) are 

likely to yield the greatest reductions in stunting (Uwiringiyimana et al., 2019). 

Where maternal health services lag, expanding antenatal care and facility-based 

deliveries should take priority (Kalinda et al., 2024). Electricity access, highlighted 

in Paper III, also emerged as a powerful determinant, pointing to the intersection 

of infrastructure development and nutrition outcomes (Davenport et al., 2017). The 

evidence from Papers I, II, and III thus supports a geo-targeted intervention 

strategy, aligning local risk profiles with tailored solutions, consistent with 

recommendations by Tamir et al. (2024) for context-specific approaches.  

Predictive modeling and generalization to unsampled 

areas 

The question of whether models can generalize to unsampled locations is addressed 

most directly by Paper IV. The SEL framework successfully combined LR, RF, 

several GBM variants, SVM, and ANNs to produce stunting prevalence maps at 

high spatial resolution (Figure 15). These maps filled critical data gaps by predicting 

stunting prevalence in unsampled locations, leveraging remotely sensed 

agroecological covariates alongside survey data.  
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Figure 15: Maps of the predictive probability that HAZ lies below a threshold of -2 provided by the RF at 
1 km2, 5 km2 spatial resolutions, at village and sector jurisdictional levels. The donut in the lower left 
corner illustrates the percentages of predicted stunting risk values with a probability exceeding 0.5. 

The accuracy metrics summarized in Figure 16, confirmed that the ensemble 

approach improved predictive performance compared to single learners, with RF 

emerging as the strongest base model. The ability to generate fine-scale prevalence 

maps is particularly valuable in contexts like Rwanda, where national surveys are 

limited in coverage, and small-area prevalence is often unknown, has important 

public health policy relevance. By extending predictions to every grid cell, SEL 

outputs provide decision-ready surfaces that health planners can use to prioritize 

interventions (Reich & Haran, 2018). For instance, local governments can identify 

not only which districts have the highest stunting prevalence, but which specific 

sectors or villages require immediate action. Although Papers I, II, and III focused 

more on analyzing and interpreting local determinants, their methodological 

contributions complement predictive approaches. Paper I showed that MGWR 

achieved high explanatory power, while GNNWR in Paper III captured complex, 

non-linear effects with greater flexibility than traditional regression models, albeit 

with some limitations in generalization. However, both approaches face limitations 

in generalization: their strength lies in explaining local processes rather than 

predicting outcomes in entirely unsampled areas. Paper IV’s SEL, in contrast, 

prioritizes predictive accuracy and generalization, though it sacrifices some 

interpretability. Taken together, the four studies suggest a dual strategy: use 
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interpretable local models to understand spatially varying determinants and use 

predictive SEL to fill data gaps and guide resource targeting.  

 

Figure 16: Performance metrics of the ML classifiers in predicting child stunting risk using four 
statistical metrics.   
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Synthesis 

The integration of results across the four papers underscores three key insights. First, 

spatial clustering of stunting is robust, confirmed by both statistical measures and 

visual mapping across all methods and scales, with hotspots consistently observed 

in the Northern part of Rwanda. Second, localized nonlinear determinants matter, 

with maternal health, sanitation, and household infrastructure consistently emerging 

as key factors, while remotely sensed environmental variables provide essential 

ecological context, reflecting vegetation, climate, and topographic influences. 

Third, predictive models can generalize effectively to unsampled locations 

(Koldasbayeva et al., 2024), producing actionable risk maps that support geo-

targeted interventions, except for its limited explainability, which remains an open 

challenge for future research. These findings demonstrate the power of hybrid 

spatial GeoAI approaches to move beyond descriptive national averages, offering 

fine-scale, evidence-based insights for reducing childhood stunting in Rwanda. The 

findings of this thesis reveal where stunting risks are concentrated, what drives them 

locally, and how predictions can be extended to unsampled areas, thereby providing 

a blueprint for spatially explicit public health policy that may extend beyond the 

Rwandan context. 
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Conclusion 

This thesis presents an in-depth analysis of methodologies for detecting, 

quantifying, and predicting the spatially explicit patterns of childhood stunting in 

Rwanda and its underlying determinants. It provides insights that improve our 

understanding of how localized socioeconomic, climatic, and agroecological 

determinants interact to shape child nutrition outcomes across space. Trade-offs 

among modeling approaches, data sources, and spatial scales were central to all four 

studies on childhood stunting in Rwanda. Each paper applied different combinations 

of survey data, remotely sensed variables, and GeoAI methods, illustrating how 

methodological choices influence both explanatory power and predictive 

generalizability. While SEL approaches (Paper IV) excelled at producing 

continuous predictive surfaces across unsampled locations, spatially adaptive 

GeoAI methods (Papers I, II, and III) provided critical insight into how 

determinants of stunting vary across space. Together, these studies demonstrate that 

there is no single best approach; instead, models must be chosen and calibrated 

according to whether the priority is interpretability, generalization, or fine-scale 

sensitivity to local drivers. A key finding across the papers was that localized 

socioeconomic and maternal health variables consistently outperformed remotely 

sensed environmental features in explaining stunting prevalence. Nonetheless, 

climatic factors like rainfall, topographic features, and agroecological indicators 

such as NDVI provided valuable ecological context, refining spatial understanding 

of stunting risk (Nduwayezu et al., 2024).   

This confirms that maternal literacy, antenatal care, sanitation, electricity access, 

and dietary diversity are the strongest immediate determinants of child nutrition 

outcomes (Nduwayezu et al., 2025a). However, environmental gradients such as 

rainfall, elevation, and NDVI still help explain why stunting clusters geographically, 

particularly in fragile, highland farming systems (Nduwayezu et al., 2025b). The 

integration of household-level and environmental predictors therefore provides a 

richer understanding of the nexus of population health and ecological 

vulnerabilities. Another important insight is that spatial heterogeneity is not only 

statistically detectable but also policy relevant (Kalinda et al., 2023). The clustering 

of stunting prevalence in Northern and Western Rwanda, identified in all four 

studies, demonstrates the limitations of relying on national averages. GNNWR 

revealed that the influence of individual predictors can shift dramatically across 

districts or villages, suggesting that uniform policy measures are unlikely to achieve 
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maximum impact. Instead, these methods provide the evidence base for geo-

targeted interventions such as prioritizing sanitation in rural clusters with poor 

WASH coverage or improving antenatal care in districts where maternal health 

services are weakest. 

Finally, the studies collectively show that predictive modeling can extend beyond 

descriptive analysis to serve as a practical tool for intervention planning. SEL 

demonstrated that prevalence can be reliably mapped at fine spatial resolutions, even 

in areas without survey data. This capability is crucial for public health policy, as it 

enables governments to allocate resources more efficiently and equitably. At the 

same time, interpretable models such as MGWR and GWRF highlight not just 

where interventions should occur, but why certain locations are more vulnerable 

than others. This dual emphasis on both prediction and explanation marks a 

significant advancement in the application of GeoAI to public health challenges 

(Huang et al., 2025). In sum, the four papers underscore the potential of combining 

multi-source geospatial data with hybrid spatial ML to advance our understanding 

on child growth faltering. By statistically confirming clustering, revealing localized 

determinants, and enabling prediction in unsampled locations, these studies provide 

the foundations for evidence-based, geographically tailored nutrition interventions 

in Rwanda. More broadly, they illustrate the role of spatially explicit modeling in 

addressing nutritional deficits in childhood, where the interplay of environmental 

vulnerability and social determinants requires finely tuned, context-sensitive policy 

responses. Overall, these papers highlight that trade-offs between interpretability, 

generalizability, and spatial scale in the developed analytical and predictive models 

remain challenging to navigate and must be evaluated case by case according to 

research priorities, consistent with insights from Song et al. (2023). Consistently, 

studies show that no single SVC GeoAI model is universally optimal (Jemeļjanova 

et al., 2024); rather, selecting the most suitable model requires balancing accuracy, 

precision, computational cost (Janowicz et al., 2020), and ease of use in line with 

the goals of the decision-making context (Kmoch et al., 2025).  
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Limitations and outlook 

Despite the merits of this study, several methodological limitations and challenges 

need to be addressed to ensure the effectiveness of localized-informed child stunting 

modeling. While this thesis leveraged recent spatially varying GeoAI methods to 

model the localized drivers of childhood stunting, it was fundamentally based on 

cross-sectional data, limiting its capacity to analyze temporal dynamics, trends, or 

the progression of stunting over time (Mertens et al., 2023). As a result, the 

predictive insights generated from the current models primarily reflect a static 

snapshot of existing conditions, without accounting for how the determinants of 

stunting may shift in response to seasonality, policy interventions, environmental 

changes, or socio-economic transitions (Bitew et al., 2023). Moreover, the proposed 

methods effectively analyze spatial associations between different geographical 

variables, overlooking spatial causality (Slater et al., 2025), which may restrict the 

depth of causal inference that can be drawn from the analyses (Molnar et al., 2022), 

a potential avenue for future research. This study integrates remotely sensed 

environmental data with census-based socioeconomic indicators to model climatic, 

and agroecological of child stunting. To address spatial misalignment, we applied 

harmonization techniques such as resampling and areal interpolation (Gribov & 

Krivoruchko, 2020), and assessed spatial consistency using global spatial 

autocorrelation metrics across different spatial scales. Similarly, the privacy and 

ethical challenges of cross-sectionally surveyed household childhood stunting data 

are linked to sensitive information on maternal violence, household decision-

making, stigmatized illnesses such as HIV, child stature, and poverty (Polzin & 

Kounadi, 2021). These challenges necessitated varied geomasking methods (Wang 

et al., 2022), which may have introduced minor uncertainties not addressed by the 

rigorous model parameterization approach. Uncertainties associated with the 

models were also acknowledged to ensure transparency and support scalability, 

reproducibility (Delmelle et al., 2022), and replicability of the study (Li et al., 2024). 

This study balances the need for detailed insight with strict protections to ensure 

both scientific rigor and ethical concerns.  

From a modelling perspective, some potential challenges of hybrid models include 

computational complexities, parameter tuning difficulties, and scalability 

constraints, which can be overlooked to some extent as these spatially informed AI 

models provide significant improvements in spatial epidemiology compared to 

traditional non-hybrid approaches (Koldasbayeva et al., 2024). The future research 



65 

directions may finally extend the developed framework to incorporate longitudinal 

analyses and temporal causal modeling (Zhu et al., 2022a), to allow the development 

of spatiotemporal models capable of capturing evolving patterns of risk and 

providing dynamic predictions, designed to forecast emerging risk zones, monitor 

the effectiveness of interventions over time, and enable proactive public health 

planning. Finally, this study did not formally engage health professionals, 

caregivers, and community stakeholders regarding the interpretability of 

exploratory, analytical and prediction outputs, their utility for decision-making, and 

preferred delivery formats, which could form future directions to ensure results are 

actionable for addressing child stunting.     
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