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Abstract

I
n the era of artificial intelligence of things (AIoT), distributed pro-
cessing on local devices is growing in popularity. This stems from the
need to reduce data transfer to and from central servers, with con-

cerns about privacy and latency encouraging the processing of AI applications
on edge devices. However, the computational demands of these applications
require an increase in the processing capabilities of resource-constrained
edge devices with reduced memory and energy deployment. In this thesis,
solutions for improving edge AI implementations are evaluated considering
two approaches: technology integration and hardware architecture design.

Higher performance through increased technology integration has focused
on scaling transistor dimensions. However, the manufacturing process is in-
creasingly expensive and faces technical challenges in the development of new
breakthroughs. Evaluation of the third dimension has emerged as a promising
alternative to scaling, which enables stacking of semiconductor components
with 3D interconnections. Different technologies present different integration
strategies, where 3D sequential integration (3DSI) enables small pitch for 3D
contacts, allowing for high-integration circuits. A library of standard cells
has been designed and characterized according to 3DSI, enhancing the high-
integration capabilities of the technology for digital designs. This library
compiles the required predefined logic cells that can be used in the design
of a digital integrated circuit (IC).

The design of ICs as a foundation for edge AI is focused on enhancing
memory and computing resources to improve the processing capabilities of
such platforms. Computing architectures are traditionally based on the con-
cept of von Neumann architecture, which distinguishes computing and mem-
ory units as two independent entities. However, near-memory computing
(NMC) is presented as a viable alternative to the von Neumann architecture
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that brings computation closer to memory. NMC is non-intrusive to the
conventional low-level structure of SRAM and enhances memory bandwidth
for hardware acceleration. The integration of accelerators into resource-
constrained platforms has been evaluated, expanding the functionality with
custom hardware tailored for computation-intensive AI workloads. Further-
more, flexibility has been achieved by providing modularity to the design
architecture.

The proposed architectures are evaluated by programs that highlight the
performance of integrated AI hardware accelerators into edge devices, empha-
sizing the importance of software and hardware co-design. The contributions
of this thesis focus on 3DSI technology circuit design and NMC architectures
evaluating performance, energy and area efficiency.

vi



Popular Science Summary

T
he development of a society linked to technology transforms com-
munications and social structures. Digital applications, led by the
growing popularity of artificial intelligence (AI), have increased its

presence in the world today and enable new possibilities. We can see that
AI has reached many aspects of society, allowing us to find answers and
inspiration, offering personalized content on social media, or accurate image
processing for diagnosis in healthcare treatments.

Vast amounts of data and mathematical calculations are required to provide
AI applications that support interactions in our daily life with technology. If
we want to avoid sending the data to cloud servers, so that we can keep ev-
erything on our personal devices ensuring privacy, we need battery-powered
devices that can cope with the workload. The technology in our hands is
increasing the possibilities in a digitally connected world, with smartphones
and electronic devices expanding their capabilities in communication, access
to information, or entertainment. However, the extended abilities provided to
such systems does not come for free.

Higher energy consumption is the result of more complex tasks and AI
applications that can handle diverse functions. The energy consumption
of electronic devices is more dominant and has greater relevance in the
world today. At the same time, data privacy is a concern, so keeping the
processing on local devices avoids privacy breaks due to data transfer, but
demands more processing capabilities from battery-powered devices. In order
to maintain battery life and still use complex applications, it is necessary to
design hardware that can cope with the workload of computation-demanding
scenarios. Microchips serve as the foundational pillar for electronic devices
that are required for a technology-connected society.
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New challenges come as a consequence of the development of digital
applications that require more computational power. Concerns about energy
use are directed to increase the battery life of electronic devices. However,
performance and area cost cannot be overstated, which requires hardware
engineers to look into multidisciplinary solutions that cover a wide range of
use cases and possibilities.

Specialized hardware needs to be designed to efficiently process the digital
applications of the future. For that reason, the evaluation of alternative
hardware solutions is necessary. From the technology perspective, microchip
integration has conventionally followed a miniaturization strategy to increase
density. In this thesis, 3D integration is considered as an alternative to
miniaturization to improve efficiency. From a hardware design point of
view, memory and computation are conventionally separated. Near-memory
computation is proposed in this thesis work as a way to bring data storage and
processing closer to each other. I have considered AI examples to evaluate my
research contributions and evaluated new integration technologies, together
with new hardware solutions, that can efficiently process such applications.
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Preface

T
his thesis is the culmination of the research contributions from my
doctoral studies in the Digital ASIC group at the department of
Electrical and Information Technology, Lund University, Sweden. The

work was supervised by Professor Joachim Rodrigues and focuses on 3D
sequential integration technology and near-memory computing architectures
for edge devices.

STRUCTURE OF THE THESIS

This thesis is structured in two parts. The first part is an introductory section
that provides a summary of the research field. The second part is a collection
of the research papers that condense my contribution to the field.

• INTRODUCTION
A broader and more comprehensive view of the areas explored during my
doctoral studies. It presents the main topics and challenges considered in
the papers, connects the work together, and includes a contextualization
of my contributions.

• PAPERS
The papers forming the main body of the thesis are reproduced in the
second part and listed in the following order, including an outline of my
individual contributions.
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INTRODUCTION





1
Motivation

T
he fast-pacing growth of technology is the result of the continuous
development needs of an interconnected society. During my doctoral
studies, the focus of my work has been on the exploration of new

solutions to address today’s technological challenges, with an emphasis on
devices and real-world applications. This chapter intends to give a high-level
overview of the motivation behind which this thesis is elaborated, considering
the socio-technical context and the technical targets of the presented work.

1.1 TECHNOLOGY IN EVERYDAY LIFE

During the past three decades, the influence of technological advances in
the digital world has become an intrinsic element of society [1]. Computers,
smartphones, and digital services are fundamental to everyday life in modern
society [2]. However, social structures and processes affect the progress of
technologies, driving innovation changes that occur as a social process [3].
The growing interdependency between technology and society demands the
development of platforms that fit the needs of daily life to interact with the
world around us.

From telecommunications to healthcare, automotive, and computing sys-
tems, microelectronics serves as an underlying principle of technology that
shapes modern life. In an increasingly interconnected and technology-driven
world, the importance of microelectronics has become a foundational pillar
of innovation [4]. Semiconductor materials support the fabrication of basic
microelectronic components, such as transistors, whose evolution and pro-
gression have led to nanometric dimensions and large volume integrations [5].
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The evolution of physical components leads to needs in the microelectronics
sector and brings new challenges. At the same time, digital applications
are becoming more computationally intensive, increasing the requirements
of performance-enhanced platforms, with energy consumption emerging as
a more topical challenge. Performance improvement through technology
scalability faces physical limitations, and alternative integration strategies are
considered to overcome these constraints.

1.2 COMPUTE-INTENSIVE APPLICATIONS

The growth of digital services with a variety of compositions, and the data
generated as a result, demands solutions that specialize in data-centric pro-
cessing platforms that handle a high intensity of computations [6]. A pivotal
service embracing digital transformation is artificial intelligence (AI), which
is becoming increasingly popular and covers a wide range of use cases. The
deployment of efficient computing as a result of the growth of AI applications
is a challenge to address. Vast volumes of data and mathematical operations
are required to generate AI applications that are used in different aspects
of society. Similarly, the metaverse, which encompasses augmented reality
(AR) and virtual reality (VR) experiences, is leading to highly distributed and
tightly integrated compute-intensive networks with large datasets for next-
generation digital experiences [7]. Such applications have become increasingly
complex, basing their topology on the processing of large datasets to define
their functionality.

Big data is the term used to describe large volumes of data that require
advanced techniques and technologies to store, distribute, control, and ana-
lyze information [8]. Big data extracts knowledge by processing the corre-
lation between data and providing an effective decision-making capacity in
healthcare, finance, or social media applications [9]. The vast amounts of data
generated by different users and platforms require solutions with different
processing properties. In that respect, AI is presented as an application that
offers suitable analysis by processing large datasets. With the use of AI in
a wider range of conditions, polyvalent platforms that compute efficiently
under different circumstances are crucial.

Furthermore, higher computational requirements by digital applications
used in everyday life demand platforms with enhanced computational capa-
bilities. Compute-intensive applications are the result of more complex tasks
that perform more operations and process larger amounts of data, thereby
making the invested processing power more significant. Different types of
processing platforms are available for compute-intensive applications, rang-
ing from local edge devices to central cloud servers.
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1 Motivation

1.3 CLOUD AND EDGE COMPUTING

Digital applications can be processed on different types of platforms. De-
pending on the processing location, devices are grouped as cloud and edge
devices, as shown in Figure 1.1. Cloud processing is performed on remote
servers with high storage and computing capabilities, while edge devices
have limited storage and energy budget. Processing on edge devices keeps
data close to the source, addressing latency and privacy issues derived from
data transfer between the source and the cloud.

Edge Devices

Nodes

Cloud

VIRTUAL
REALITY

Figure 1.1: Processing platforms based on cloud and edge devices, including
connection nodes.

The internet of things (IoT) is a network of connected devices with em-
bedded sensors that collect information. Edge IoT involves processing data
locally, and includes devices with integrated sensors and chips with various
capabilities for different applications that are used to facilitate smart home,
smart healthcare, or smart cities [10].

Processing AI applications on edge devices has emerged as an alterna-
tive to transferring large amounts of data across the network, considering
transmission delay, cost, and privacy leakage concerns [11]. However, edge
devices span resource-limited computing systems. The combination of AI
applications with edge platforms results in Edge AI, linking intelligence
applications to a broad collection of connected systems [12]. Bringing AI to the
edge enables innovative and useful applications in local devices and alleviates
bandwidth demand on central cloud servers [13]. However, building applica-
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tions for edge devices, characterized by resource-constrained hardware archi-
tectures limiting intensive processing, implies higher complexity compared to
building them for the cloud. Performance and energy efficiency are presented
as challenges for hardware designers to improve such platforms, which can
be done at different stages of the semiconductor value chain.

1.4 SEMICONDUCTOR VALUE CHAIN

The semiconductor value chain represents the consecutive stages that go into
the process of creating a microchip, from tools to design, manufacturing
technology, assembly, and software applications [14], as shown in Figure 1.2.
Each step in the value chain includes a large number of actors that play a role
in the process. The semiconductor value chain is at the core of the digital
economy considering its highly interconnected influence and capital intensive
properties [15].

Figure 1.2: Semiconductor value chain.

Microchips can be found everywhere, from smartphones, computers, or
cars to gaming consoles, image sensors, and domestic appliances, which con-
stitutes the main technology driver for the continuous digital transformation.
The intricate process of the semiconductor industry to create an integrated
circuit (IC) covers the following parts in each stage:

1. Tools: Software tools for electronic design automation (EDA), available
for the generation of chips with a large number of transistors.

2. Design: A chip blueprint is sketched according to the specified require-
ments and functionality.

3. Manufacturing technology: Silicon is used as raw material in most chip
designs, with increased research in alternative materials for optimized
solutions. Manufacturing facilities are specialized in the conversion of
the design sketch to physical implementation.

4. Assembly: Semiconductor assembly is required to obtain final hard-
ware products.

6
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5. Applications: Software programming is performed to define the func-
tionality of manufactured products. The synergy between hardware
and software is the key enabler to obtain efficient solutions.

1.5 THESIS FOCUS

The focus of this thesis is mainly on the design and manufacturing technology
stages of the semiconductor value chain, with consideration of applications.
However, the importance of other stages cannot be overseen, and the included
papers have submerged into various parts of the chain for research explo-
ration.

In Paper I, the possibilities of 3D integration technology are evaluated as
an alternative to scaling. Furthermore, the adaptation of tools for EDA has
been considered, since available commercial tools were not automated for the
partition of digital designs in 3D ICs.

Papers II and IV present chip implementations optimized for edge comput-
ing, with simulation and measurement results including relevant comparisons
to the state-of-the-art (SoA).

Paper III provides a framework for the efficient processing of AI applica-
tions on edge devices. Flexibility and scalability are achieved with a versatile
design adapted to the evolving processing requirements of AI.

In Paper V, an optimized architecture for multi-chiplet systems is evalu-
ated. The proposed implementation exposes the benefits of parallel and mod-
ular processing architectures that enhance the performance of edge devices,
avoiding manufacturing limitations.

The design of efficient hardware is ineffective if there is no software that can
explore its benefits. For this reason, improvements in hardware and software
need to go hand in hand with relevant applications used as benchmark
models. The included papers in this thesis have been evaluated with popular
use cases, and a detailed analysis of the proposed solutions is presented.
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2
Background

O
nce the intention of this thesis work is declared, the next step is to
present the capabilities that have been covered and the challenges
and limitations that have been considered in the included work. This

chapter gives an overview of the applications that are considered as target
use cases for the presented work, and the challenges that are pondered over
hardware design.

2.1 ARTIFICIAL INTELLIGENCE

AI describes the capability of computing programs to mimic human intel-
ligence and has found utility in multiple use cases. The combination of
different fields such as computer science, biology, psychology, philosophy,
and many other disciplines produces AI applications that achieve remarkable
results in speech recognition, image processing, or natural language process-
ing [16]. The expansion of IoT, with its growing network of links between
interconnected sensors and devices, is generating massive volumes of data
continuously expanding the global datasphere [17]. The annual size of the
global datasphere presented by the international data corporation is shown in
Figure 2.1, where it was predicted that 175 ZB of digital data would be created
in 2025 and will continue to grow exponentially. Rapid development of AI,
together with the necessary analysis of large amounts of information in the
era of big data, urges the combination of edge computing and AI to bring
applications closer to the data collection source [18].

AI introduced into IoT platforms delivers AIoT, where distributed pro-
cessing on local devices fulfills intelligent applications [19]. AIoT achieves
flexibility with enhanced interactivity between devices for distributed collab-
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Figure 2.1: Annual size of the global datasphere [20].

oration and the combination of data collection with intelligent applications.
AI models learn from the environment and make accurate predictions that are
applied to various types and datasets, increasing the utility of AIoT systems.
Different applications that are processed on edge benefit from the ability
provided by AI models.

2.1.1 APPLICATIONS

The use of AI on edge devices generates a wide range of applications focusing
on five main categories: communication networks, healthcare, security, image
processing, and voice analysis [21]. The performance of telecommunication
systems can be optimized by AI through efficiently distributing resources and
enhancing security capabilities to protect data transmission. In addition, AI
applications have improved different healthcare procedures by personalizing
treatments and increasing the accuracy of the diagnosis, presenting transfor-
mative potential for improvement in the field that requires to be balanced
with ensured ethical practices [22].

Image and speech processing are highly relevant information sources for
human intelligence activities. For that reason, many AI applications focus on
image recognition and classification. Image data is provided to computers
that can perform mathematical operations to identify patterns and provide
analytical results similar to human capabilities.
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2.1.2 CONVOLUTIONAL NEURAL NETWORKS

The relationship between the levels of AI applications is shown in Figure 2.2.
As part of AI, machine learning (ML) is a group subset characterized by
the improvement of applications without explicit programming, mimicking
a learning process [23]. According to the premises of ML, deep learning (DL)
contains machines that are prepared with representation learning methods
based on the identification of data characteristics [24]. At an embedded level
of DL, convolutional neural networks (CNNs) are defined as the type of neural
network (NN) that mimics brain interconnections.

AI
CNNDLML

Figure 2.2: Relationship between the different levels under AI that mimic
human intelligence.

CNN is a popular type of DL network commonly used in image processing,
data analysis, or object detection and classification. The mathematically
modeled neurons in a CNN represent brain interconnections as individual
computational units that process inputs to generate output data. CNNs are
categorized as supervised learning networks in which neurons are trained
with labeled data provided for comparison [25]. Based on the predicted result
and the ground truth labeled result, the neurons of the network are adjusted,
defining the training process to increase prediction accuracy. Training and
inference are the two phases required in the use of CNNs:

• Training: Initial process to prepare neurons for detection and classifi-
cation, which requires large amount of data processing and results in
self-optimized neurons through learning.

• Inference: Subsequent phase where the trained model is prepared for
identification of input features and uses the previously defined neurons
to make predictions.
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The supervision categorization arises from the availability of labeled data
that the network uses for comparison and tuning of the neurons to increase
the classification accuracy. The generation of datasets as part of supervised
learning is a demanding task, since ground truth results need to be provided
as labeled data. ImageNet [26] is an example of a labeled dataset with more
than 15 million images belonging to 22,000 categories that is available and can
be used to prepare NN models for image classification.

Input Convolution
Activation
function

Pooling Fully
connected

Output
w

h

d

Figure 2.3: CNN dataflow including layer types.

CNNs combine convolutional, activation functions, pooling, and fully
connected layers, in addition to the input and output data layers, as shown in
Figure 2.3:

• Input: Parameters organized into three dimensions according to height
(h), width (w), and depth (d).

• Convolutional: Layers that perform the mathematical operation of
convolution, where filters are shaped in the form of matrices that target
the recognition or identification of specific patterns in an input.

• Activation function: Application of non-linearity to the data to allow
the modeling of complex patterns.

• Pooling: Down-sampling mechanism to reduce the size of data between
layers.

• Fully connected: Layers that serve as a classification of the extracted
features, performing matrix multiplication of all input and output
neurons to define their relationship.

• Output: Establishes the classes specified for the model with results that
define the probability of an input to classify in each class.

The parameters, or activations, that define inputs and outputs of each layer
use the nomenclature ifmap and ofmap, respectively, while filters are also
known as kernels. The filters contain the parameters assigned to neurons that
are used in mathematical calculations for data prediction and classification.
CNN models include abundant parameters, which require extensive memory
footprint and processing capabilities to perform a large number of operations.
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A popular fine-tuned CNN model is the 16-layer CNN, which features 13
convolutional layers combined with pooling and activation functions and 3
fully connected layers, developed by the visual geometry group (VGG) named
VGG-16 [27]. This work focused on the demonstration of the importance
of network depth with concatenated convolutional layers to achieve better
recognition and classification [28]. VGG-16, together with MobileNet [29]
and ResNet [30], are popular examples of SoA CNN models used for AI
evaluation.

2.2 MOORE’S LAW

Gordon Moore postulated in 1965 that the number of transistors would double
every two years, coining the term Moore’s law [31], as shown in Figure 2.4.
The increased requirements of new applications need the integration of
more transistors, which demand higher computing capabilities of hardware
platforms. Traditionally, scaling down the size of transistors has been the
trend that persists in Moore’s law. Even when the transistor scaling rate has
slowed, the number of transistors continues to increase [32].

Figure 2.4: Moore’s law pondering the progression of the number of transis-
tors per microprocessor [33].

Although Moore’s law has demonstrated to prevail true for a long time, the
expense of scaling in order to fit larger numbers of transistors has motivated
alternative solutions to scaling, referred to more-than-Moore technologies.
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More-than-Moore represents the diversification of technologies that intend
to represent an alternative to transistor scaling. Alternatives to Moore’s
law are considered by evaluating new devices for memory and logic, new
architectures for computing, new devices that combine memory and logic, or
new integration processes [34].

2.2.1 MORE-THAN-MOORE AND MORE-MOORE

More-than-Moore covers emerging technologies that derive from silicon rather
than just transistor miniaturization with Moore’s law, exploring heteroge-
neous system solutions focusing on smart sensors, smart energy, and hetero-
geneous integration of different components in the same package [35]. The
expansion of technologies that serve as a basis for platforms with intense
requirements for a wide range of applications is a major challenge for more-
than-Moore functional diversification. The IoT network of devices certainly
motivates the development of emerging technologies with a wide range
of cutting-edge applications with uninterrupted energy and computational
power requirements [36].

A major trend is the evaluation of the third dimension in ICs to increase the
integration of transistors. The limitation of transistor scaling pushes for more-
Moore, where 3D integration enables higher transistor density. 3D integration
and packaging have evaluated the addition of more layers, allowing vertical
interconnection and stacking dies [37].

2.3 MEMORY

In a computing platform, the central processing unit (CPU) is considered
the heart of the computer, while memory is the physical space where data
and control commands, known as instructions, are located [38]. Memories
are fundamental in computing platforms to store data and provide access to
enable the execution of computer tasks. In computing platforms, memories
are responsible for enabling the access to information with processors moving
data into memory and retrieving it for computation. The speed at which CPUs
perform calculations is important, as is the memory bandwidth to determine
the speed of the overall system. Therefore, processing speed is associated with
the data access capabilities that memories provide.

Scaling up the properties of processing platforms to fulfill the requirements
of the big data era and high performance computing (HPC) workloads influ-
ence memories [39]. The development of heterogeneous processing platforms
leads to a higher demand for memory capacity and bandwidth according to
the requirements of increasingly popular compute-intensive applications [40].
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2.3.1 COMPUTER MEMORY HIERARCHY

Modern computer systems have a memory hierarchy to organize data in
different levels, whose position is defined according to their proximity to
the processing units [41]. The computer memory hierarchy is established
by creating different memory levels with different data locations, as shown
in Figure 2.5. A memory system with different levels of abstraction creates
a modularized system that allows designers to optimize individual sub-
systems. Each level of the memory hierarchy has different properties that
are defined according to the needs of the computing platforms considering
storage capacity, cost, and speed, where closer to a CPU is closer to computa-
tional units.

CPU
Registers

Cache
SRAM

Main Memory
DRAM

Permanent Storage
Non-Volatile

Large capacity
Cheap price

Slow

Medium capacity
Medium price

Fast

Low capacity
Expensive

Fast

Tiny capacity
Expensive

Fast

Figure 2.5: Memory levels in computing systems.

The CPU is on top, considered as level zero, using registers as storage
elements, which have reduced capacity and allow for fast access. Static
random-access memory (SRAM) is used as cache memories in the first level
of the memory hierarchy with extended capacity compared to registers and
still allowing fast access. Dynamic random-access memory (DRAM) is on the
second level and is used as the main memory, presenting more storage space
with slower communication than higher levels. Finally, non-volatile memory
(NVM) is used as the last level offering high storage capacity at the expense of
slower data bandwidth. NVMs keep the stored data even when the machine
is shut down, as opposed to register and random-access memories (RAMs)
that are used as temporary storage of active data.
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The memory hierarchy helps to optimize data access and reuse in computer
systems, improving system efficiency. However, memory still faces speed
limitations compared to processing units.

2.3.2 MEMORY WALL

The memory wall is a limitation produced by the difference in speed between
the processing and memory devices [42]. Figure 2.6 presents the progression
of processor speed and DRAM bandwidth of different generations, indicating
the performance gap known as the memory wall. The different levels of
memory hierarchy help bridge the performance gap between the processor
and the memory, keeping frequently accessed data at lower levels. However,
deploying larger DNN models has to face a capacity challenge, where the
limited on-device physical memory constrains the efficient processing of large
models [43].
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Figure 2.6: Progression of normalized processing speed and DRAM band-
width, outlining the difference between processing and memory devices [42].

The problem posed by the memory wall presents an opportunity for
hardware designers to explore solutions surrounding the way memory is
utilized. Improving the use of memory access is a synonym of increasing
performance in data-intense applications. The design of computing architec-
tures is essential, as data parallel architectures have achieved high-scalable
and cost-effective solutions for HPC applications [44].
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2.4 VON NEUMANN ARCHITECTURE

Computing architectures are traditionally based on the concept presented
by John von Neumann, referred to as von Neumann architecture [45]. The
computer architecture distinguishes the CPU and the memory unit as two
independent entities communicating through an interconnect bus, as shown
in Figure 2.7. The CPU includes the control unit and the arithmetic logic unit
(ALU), responsible for arithmetic operations such as addition, subtraction,
multiplication, division or combinational logic functions. The CPU executes
instructions to process data that is stored in the memory unit, and interacts
with the input/output interface to receive/send data from peripheral devices.
The von Neumann computer architecture presents data and instructions in
the same memory unit, in comparison to the Harvard computer architecture,
where the key difference is that instructions and data have independent
storage entities.

Processing
Unit

Memory
Unit

Interconnect Bus
OutputInput

Figure 2.7: Traditional concept of computer architecture represented as the
von Neumann architecture.

The memory wall issue is latent in such architectures, where data move-
ment is conditioned to the memory bandwidth. The architecture introduced
by von Neumann includes several challenges regarding resource constraints
and flexibility that limit the processing capabilities of nowadays applications.
The connection link between the CPU and the memory unit limits the capacity
to handle the computational requirements of intelligent systems, defining the
von Neumann bottleneck [46].
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The research of alternatives to von Neumann architecture is comprehended
around the beyond-von Neumann solutions, focusing on the exploration of
hardware solutions to mitigate the memory wall [47]. The conventional
von Neumann architecture has a simple sequential programming model,
while beyond-von Neumann looks into more complex models to combine
processing and storage devices to improve overall computing.
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3
Integration Technologies

W
hen I started my doctoral studies, I participated in the EU Horizon
2020 research project 3D-MUSE, exploring the emerging ultra-dense
3D sequential integration technology. Our interest focused on the

investigation of digital system designs that can benefit from a 3D integration
technology, as an alternative to transistor scaling. This chapter covers tech-
nology considerations for the fabrication of ICs, and looks at the possibilities
offered by 3D technologies to face the challenges presented in this thesis work.

3.1 CMOS

Complementary metal-oxide-semiconductor (CMOS) is the conventional tech-
nology used in the fabrication of ICs, where the fundamental element is the
transistor. CMOS considers two types of metal-oxide-semiconductor field-
effect transistor (MOSFET), n-channel (NMOS) and p-channel (PMOS), used
to create the logic in digital circuit designs. The fabrication of digital circuits
using CMOS technology covers two main phases illustrated in Figure 3.1,
front end of line (FEOL) and back end of line (BEOL). FEOL is the process
by which transistors and other active devices are patterned according to the
design defined for the IC. The next step is BEOL, in which the metals are
deposited, creating the connection wires between active devices of FEOL,
completing the IC fabrication.

Process variations are a critical aspect in the fabrication of CMOS technol-
ogy ICs [48]. Deviations in the semiconductor manufacturing process cause
the properties of the fabricated devices to differ from those expected. The
yield, as the ratio of chips that work correctly according to their specifications
compared to the total number of chips manufactured, fluctuates as the dimen-
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Figure 3.1: FEOL and BEOL processes in IC fabrication including transistors,
metals, vias and contacts.

sions of technology get smaller. However, advancements in semiconductor
manufacturing have improved the management of variations to ensure that
ICs work under the conditions that are expected.

The cost of CMOS fabrication has been kept low by scaling devices accord-
ing to new generations of technology. Reducing the size of MOSFETs allows
for an increase in both the switching speed and the number of transistors per
chip, improving the performance of large scale ICs [49]. However, smaller
technology nodes contribute to a higher leakage current that consumes power
when the circuit is not active, an effect of the physical properties of transistors.
Performance is integrally related to chip power, which encourages optimiza-
tions at the system level to reduce energy avoiding the reduction of system
performance [50].

The higher transistor density of smaller technology nodes comes with
increased congestion, producing longer interconnection wires with inherent
parasitics degrading the performance of a system. Continuous downsizing of
technology nodes improves transistor operation delay at the cost of rapidly
increasing wire delay, affecting power consumption in high performance
chips [51]. The delay of a wire increases quadratically as a function of
the length of the interconnections [52], which motivates design approaches
to reduce the distance between active devices. 3D technologies present
alternatives to conventional CMOS, where both high integration density and
reduced wire interconnection lengths can be achieved.
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3.2 3D STACKING

An IC is built upon a silicon die, or can be partitioned into individual
circuits, each on an independent silicon die, and integrated together to create a
complete system. As an alternative to scaling following Moore’s law, different
technologies evaluate stacking circuits, or functional parts of a circuit, to
generate 3D ICs. In comparison to conventional CMOS, where transistors
and active devices are in the same layer, the third dimension is provided
by stacking multiple active layers with vertical interconnections. Two main
manufacturing approaches are considered in the investigation of 3D ICs
according to their integration strategy: (1) stacking and bonding of multiple
dies and (2) monolithic integration [53].

Instead of using vertical interconnections, a 2.5D integration method is
obtained by partitioning a system into silicon dies and integrating them
together with a silicon interposer [54]. Figure 3.2 shows 2.5D and 3D
integration technologies, where the properties of each strategy and the pitch
size of the interconnections are illustrated. A silicon interposer connects dies
side-by-side, while 3D bonding allows communication between stacked dies,
and monolithic 3D sequential integration (3DSI) uses vertical interconnections
within dies.

MIV

Silicon Die

Package

Silicon Interposer 2.5D

3D Bonding

3D Sequential Integration

TSV

Silicon Die

Silicon Die

Silicon Die

Micro-Bump

Bump

Figure 3.2: 3D integration technologies accommodated in the same package
to illustrate a comparison of their integration strategies.
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3.2.1 SILICON INTERPOSER

A silicon interposer is used as a common medium for connecting units in
an IC package, offering better integration than passive silicon for circuit in-
terconnections. The advanced packaging technique connects multiple circuit
dies in a single package, creating a 2.5D integration. The use of a silicon
interposer offers high interconnect density through silicon fabrication that
provides increased die connectivity to achieve high speed and throughput.

A technique to improve the limitation of the memory wall is based on the
use of a silicon interposer to connect processing units and memory with high
density chip-to-chip interconnection [55]. Bringing more memory capacity
closer to processing units reduces the memory latency and increase the
bandwidth. High-bandwidth memory (HBM) is a popular implementation
using a silicon interposer for improved external memory access with a shorter
connection between processor and memory dies [56].

3.2.2 3D BONDING

Two types of interconnection are considered for bonding stacked dies in
advanced semiconductor packaging. Through-silicon via (TSV), where 3D
contacts are vertical interconnections that pass through a silicon wafer con-
necting individual dies [57], and copper-to-copper (Cu-Cu) bonding, where
interconnections are created by joining copper surfaces in a strong and
conductive path [58]. TSVs are used for connecting dies to each other, but also
provide silicon interposer connectivity. An accurate manufacturing process
for TSV has been a priority to reduce interconnection failures and achieve an
appropriate level of maturity [59].

A comparison between TSV and Cu-Cu bonding used to interconnect
stacked dies, and monolithic inter-tier via (MIV) used in 3DSI, is shown in
Table 3.1. The pitch offered by MIV is up to 50 times smaller than the TSV or
Cu-Cu contacts, allowing for a finer grained integration than die bonding [60].

Table 3.1: Comparison between different 3D integration technologies [60].

3D Contact TSV [57] Cu-Cu [58] MIV [61]

Diameter (µm) 3 1.7 - 3 0.1 - 0.25

Pitch (µm) 10 3.4 - 10 0.2 - 0.5 *

Density (per mm2) 1×104 1×104 ∼ 25 ×106

* Assumed to double the MIV diameter
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3.3 3D SEQUENTIAL INTEGRATION

3DSI, also known as monolithic 3D (M3D), offers a higher density of inter-
connections achieved by the fabrication of 3D ICs in a single wafer, including
vertical contacts [61]. More-Moore was the initial driver for 3DSI to continue
the development of Moore’s law for denser integration in high performance
applications [62]. However, at the same time, the integration of independent
active layers allows the use of different technology nodes. Digital, analog, and
mixed-signal circuits can be integrated in the same 3D IC using technology
nodes that are more suitable for each functionality, appearing as a promising
breakthrough in more-than-Moore technologies.
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Figure 3.3: 3DSI with transistors distributed between top and bottom tiers
using MIV interconnections.

Sequential integration of transistors in active layers, referred to as tiers,
enables 3D integration by stacking tiers that use MIV for interconnections
between active layers, as shown in Figure 3.3. The manufacturing process
starts with the FEOL for the active layer of the bottom tier and then continues
with the BEOL of the bottom tier metal layers. After that, the process is
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repeated with the top tier, completing the 3D design with the metals that
are used for the connections to other parts of the circuit. MIV is the 3D
contact that is used to establish connections between top and bottom tiers,
by interconnecting the highest metal layer of the bottom tier with the lowest
metal layer of the top tier.

The monolithic stacking of active layers in the same die causes the activity
of the bottom tier transistors to influence the active layer of the top tier. A
ground plane (GP) can be introduced between both tiers, as an inter-tier
isolation plane, to reduce the sensitivity of the top tier to the influence of
voltage variations in the bottom tier [63]. The integration of an isolation GP
implies the requirement of additional design space rules to include MIVs for
vertical interconnections, which limits the integration density. However, [63]
has demonstrated that for digital designs, there is a minor coupling effect
between tiers, and the inter-tier GP can be avoided. Furthermore, results
in [64] have shown that the coupling between tiers is high enough to influence
analog applications, but they are within the boundaries of local variability for
digital circuits.

The higher integration properties of 3DSI come at the cost of thermal
budget constraints for the top tier [62]. During the fabrication process,
the temperatures of top tier transistors need to be high enough to ensure
functionality, but not too high that harm bottom tier transistors. The MOSFET
in the top tier are processed at low temperature (≈ 500 °C) to preserve the
integrity of the bottom tier FEOL and BEOL [65]. However, the use of low
temperature transistors reduces the performance of the system and expose
reliability problems that can limit functionality.

The higher interconnection density offered by 3DSI allows to increase the
performance and memory bandwidth with shorter connections to improve
memory wall limitations. Memory and computing logic can be placed on dif-
ferent tiers and use MIV for shorter and denser interconnections, presenting
3D integration as a promising alternative [66]. The design of a two-tier cell
structure SRAM is proposed in [67], with access capability from both active
layers that maintains memory density and enhances computing performance
by multiple data access. An SRAM design technique that combines boolean
functions and memory cells using 3DSI is presented in [68], where multiplica-
tion and summation are performed within memory, narrowing the boundaries
of computation and storage.

The high density properties of 3DSI enable different types of custom circuit
partitioning strategies in tiers, offering promising prospects for 3D integration
technology as an alternative to conventional CMOS scaling.
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3.3.1 INTEGRATION GRANULARITY

The design approaches for digital circuits using 3DSI technology can be
classified on a granularity scale according to their partitioning strategies, as
shown in Figure 3.4. The higher granularity on the scale is related to the use
of vertical interconnections between smaller units, which at the same time
represents a higher density of MIVs.
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Figure 3.4: Granularity scale for different partitioning styles with 3DSI.

The various granularities are defined according to the following spectrum:
• Cores: At the lowest granularity level, units of a computing platform

are placed independently, i.e., core and memory are allocated in differ-
ent tiers, and data communication is fulfilled with MIVs.

• Logic blocks: Modules that define the main units of a computing plat-
form, i.e., ALU, registers, or cache memories, are distributed between
tiers offering higher placement flexibility to reduce interconnection
length with 3D contacts.

• Logic cells: Combinational and sequential logic cells are the funda-
mental building components of a logic block. In [69], a platform is
proposed for the design of high quality 3DSI circuits based on the use
of conventional logic cells distributed in both tiers.

• Transistor-type: At the highest end of the scale with the finest granular-
ity, NMOS and PMOS are separated, generating pull-up and pull-down
networks of a logic cell in the top and bottom tiers, respectively [70].
This partition of tiers enables individual optimization according to
transistor-type for customized logic cells.
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3.3.2 CHALLENGES

Despite advancements over conventional CMOS, the use of 3DSI for the
fabrication of ICs poses challenges for the semiconductor industry to become
a regular 3D integration technology.

The partitioning of digital designs into individual active layers for 3D inte-
gration requires EDA tools with the ability to perform such partitions. Several
commercial EDA tools support the design of IC using 3D methodologies,
including Cadence Integrity 3D-IC, Synopsys 3DIC Compiler and Siemens
Calibre [71]. However, these tools focus mainly on TSV and 3D contacts with a
lower interconnection density. Commercial EDA tools based on conventional
CMOS technology do not consider multiple tiers for 3DSI design, generating
engineering overhead in order to efficiently synthesize and route digital
designs in the third dimension. SoA publications in the literature present
solutions that focus on the proposal of strategies that, using commercial EDA
tools, generate high quality ICs designed with 3DSI technology [69, 72].

Furthermore, an increased density affects the temperature of ICs, especially
in active layers away from cooling systems, which has become more pertinent
in modern microelectronics. The temperature characteristics of 3DSI are first
addressed in [73], identifying the most relevant factors and modeling the
thermal behavior of such circuits. The study introduced in [74] presents a
temperature management analysis that reports thermal performance similar
to TSV-based integrations due to the tight thermal coupling of the stacked
tiers.

The maturity of 3DSI technology needs to achieve a high yield and ensure
that functionality is adequate to become a regular integration technology.
The challenges depicted by high density integration and different technology
solutions need to overcome manufacturing processes obstacles.

3.4 THESIS CONTRIBUTION

As part of this thesis, another level in the granularity scale between logic cells
and transistor-type is evaluated in Paper I, defining an intra-cell partitioning.
The higher integration density offered by 3DSI allows to generate logic cells
that are designed according to 3D structure premises. The proposed intra-
cell integration strategy is evaluated by designing a library of sequential and
combinational logic cells defined in the 3D domain, with input/output ports
on a single tier, offering an interconnection solution that is compatible with
commercial EDA digital design tools. Our adopted partitioning strategy is
based on dividing the structure of logic cells between both tiers using MIVs
efficiently to obtain high density cells that reduce interconnection lengths
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in large designs. The library of logic cells includes the implementation of
commonly used cells in the design of digital circuits, offering a reduced area
solution for designs with high integration density. Implementations using
the proposed library demonstrate to reduce the area of evaluated benchmark
designs and, more relevant, reduce the length of interconnections as the main
contributor to energy consumption, especially in smaller technology nodes.
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4
Hardware Architecture

A
fter exploring the integration possibilities offered by 3D technolo-
gies, my doctoral studies focused on the investigation of hardware
architectures to face the challenges exposed in this thesis work. This

chapter elaborates an overview of current platforms and limitations, and the
line of study that has been selected for hardware architecture development
and integration beyond von Neumann.

4.1 PROCESSING PLATFORMS

Edge AI envisions bringing certain cloud computing utilities to edge devices
for applications that require a fast response time [75]. The combination of
AI applications with edge devices offers intelligent information processed
directly at the data source, addressing latency, security, and bandwidth
limitations for data transmission to the cloud [76]. However, edge devices are
battery powered systems that require low power design solutions to ensure
efficient energy utilization.

The hardware architecture of a processing platform determines the ability
of a system to perform different applications. Edge devices are designed
on the basis of standalone or customized processing platforms with different
technical specifications, which can be classified for performance and flexi-
bility according to their capabilities. Three main categories are considered,
general-purpose processor (GPP), field-programmable gate array (FPGA), and
application-specific integrated circuit (ASIC), as shown in Figure 4.1.
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Figure 4.1: Performance and flexibility trade-off between different processing
platforms.

4.1.1 GENERAL-PURPOSE

GPP is a highly resource-constrained platform that is designed to cover a
wide range of instructions and arithmetic operations that are not tailored to
any particular application. The high flexibility that GPPs can achieve comes
at the cost of reduced performance, which limits the efficient processing of
compute-intensive applications.

RISC-V is an open-source instruction set architecture (ISA) based on
reduced instruction set computer (RISC) principles, supporting computer
architecture designs and hardware implementations [77]. A CPU can be
defined with a RISC-V core that executes instructions performing arithmetic
operations and interacting with memory units.

A microcontroller unit (MCU) is a popular GPP platform, where core, mem-
ory, and peripheral units are connected to create a complete system capable of
performing multiple types of operation based on instructions. Conventional
MCUs are based on the von Neumann architecture design, where CPU and
memory units are separated and communicate via an interconnection bus.

The graphics processing unit (GPU) is a more specialized circuit for digital
image processing. GPUs are used to accelerate computer graphics using
a hardware architecture designed specifically for most common operations
found in image processing applications, improving performance, and reduc-
ing energy consumption. However, GPUs can be used for general-purpose
processing by executing workloads that conventionally run on CPUs.
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4.1.2 FPGA

An FPGA is a configurable integrated circuit that can be reprogrammed after
manufacturing using configurable logic blocks and switch modules, as shown
in Figure 4.2a. FPGAs represent another step in performance improvement
with customized hardware generation on the platform [78]. The flexibility of
FPGAs depends on the specifications of the hardware architecture generated
according to the variety of defined applications to evaluate. Applications
of a different nature require reprogramming on the platform, so flexibility
is limited by the constraints defined by a design. FPGA has proven to
be a suitable solution for compute-intensive workloads by customizing the
hardware architecture of on-chip logic blocks with a dedicated pipeline to
enhance performance [79]. The FPGA solution presented in [80] provides
better results than optimized software running a binarized NN on a GPU.

(a) (b)

Figure 4.2: Low-level hardware architecture of (a) an FPGA, and (b) an ASIC.

4.1.3 ASIC

An ASIC can achieve a higher degree of performance at the expense of higher
specialization with the use of standard logic cells, as shown in Figure 4.2b.
ASICs are hardware architectures designed for specific applications with fixed
functionality after fabrication. However, the higher customization properties
achievable with ASICs offer higher performance and energy efficiency. ASIC
requires a longer development time involving design, fabrication, and testing,
while FPGA can be reprogrammed as needed, avoiding manufacturing time.
To overcome the limited flexibility of ASIC, an application-specific integrated
processor (ASIP) combines a general-purpose processor with dedicated hard-
ware units to accelerate application-specific recurrent operations [81].
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4.2 HARDWARE ACCELERATORS

The design of hardware accelerators on FPGA or ASIC is a common approach
to incorporate AI models on resource-constrained edge devices, outperform-
ing GPUs with specialized circuits for digital processing [82]. The computing
requirements of AI applications have increased the popularity of accelerators
that reroute data-intensive workloads to specialized architectures designed for
improving performance and energy efficiency. While general-purpose units
perform basic arithmetic operations, hardware accelerators execute resource-
intensive workloads in parallel. In [83], an analysis of accelerators for AI
systems is presented, evaluating different ML architectures, their implemen-
tation, and the required performance, area, and energy efficiency trade-offs.
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Figure 4.3: Convolutional process for a hardware accelerator architecture.

CNNs, as common ML applications, are popular applications consid-
ered for hardware acceleration, since convolutional operations and matrix
multiplication are linear operations that can be optimized with specialized
hardware units. The general convolutional process including the mathe-
matical operations to calculate an ofmap parameter is shown in Figure 4.3.
Processing elements (PEs) are used as the arithmetic block for calculations,
using multiply-accumulate (MAC) units and registers that are commonly
used as intermediate storage units for input, filters, and partial accumulation
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Figure 4.4: Data distribution for different hardware accelerators designs, (a)
unicast, (b) systolic array, (c) multicast, and (d) broadcast.

results. The integration of multiple PEs enables extended parallelization of
convolutional operations in accelerator architectures.

Figure 4.4 shows different data organization mechanisms for hardware
accelerators [84]. The distribution of data across PEs is defined by the
bandwidth and the level of parallelization of the network architecture. In
a unicast network, the global buffer used as intermediate storage gathers
unique data for each PE, requiring the highest bandwidth to access multiple
parallel data, while the systolic array network moves data between PEs. Lower
bandwidth alternatives are presented for multicast and broadcast networks
with higher data reuse, where multiple PEs receive the same data. Different
types of data distribution strategies can be employed for ifmap, filters, or
ofmaps in a hardware architecture, combining bandwidth and data reuse
properties to optimize computation.

4.2.1 CO-INTEGRATION

Hardware accelerators can be integrated into processing platforms and con-
figured to carry out the compute-intensive workloads. The approach followed
for the integration of hardware accelerators plays an important role in the effi-
ciency of the proposed solutions. Dedicated memory integrated for hardware
acceleration operations ensures data control and storage availability. However,
private memory units come at the price of reduced integration density.

An architecture that has emerged as a promising approach to improve
yield and enhance edge devices capabilities for hardware acceleration is the
chiplet. It is conceived as an independent unit for parallel, distributed, and
modular processing. Multi-chiplet architectures are implemented to create
larger computing platforms, reducing the yield limitations as an alternative
to single-chip designs with more computing capabilities. Different challenges
come with a multi-chiplet integration design, since partition of workloads into
a modular design requires dedicated strategies to optimize computing.
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4.3 DATA-CENTRIC COMPUTING

An emerging paradigm focused on the importance of systematic data man-
agement is data-centric AI [85]. The efficiency of systems dedicated to AI
applications is achieved by improving the quality and refinement of data,
improving ML models and platforms. Specialized and tailored models for
specific applications are difficult to transfer from one problem to another,
which also affects processing platforms, motivating the development of solu-
tions that work in different paradigms [86].

The importance of efficient data processing is highlighted by the increased
amount of data generated and applications with data-centric requirements.
Conventional computing systems require to move data from different levels
of memory for computation on processing units. Figure 4.5 shows the energy
cost of accessing data from different levels of the memory hierarchy, relative to
the energy dedicated to a MAC operation [87]. Certainly, the energy dedicated
to data movement is a dominant factor in the total energy cost of different
hardware platforms. The high cost associated with off-chip main memory
access encourages data-centric computing and control techniques to ensure
the design of energy efficient processing systems.
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Figure 4.5: Energy cost of data movement relative to a MAC operation for a
SoA accelerator architecture [87].

Efficient data processing on resource-constrained edge devices requires to
optimize data movement and perform computations in or near the location
where the data resides [88]. In contrast to general-purpose processing
platforms, data-aware architectures include mechanisms that improve data
movement with memory management and control optimizations. Addressing
memory wall limitations with data-centric computing approaches requires a
paradigm in which memory systems integrate computing capabilities [89].
There are two main trends centered on the idea of bringing computation
closer to memory: in-memory computing (IMC) and near-memory computing
(NMC), which present different techniques and integration strategies illus-
trated in Figure 4.6.
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Figure 4.6: Processing architectures including (a) hardware accelerator units,
and memory-computation integration strategies: (b) IMC, and (c) NMC.

4.3.1 IN-MEMORY COMPUTING

IMC is a technique based on the physical integration of memory and com-
puting logic, involving structural modifications or additional circuitry to
support computation in storage units [90]. Two integration approaches are
commonly used, classified as analog IMC (AIMC) and digital IMC (DIMC).
AIMC performs computation in the analog domain, offering high energy
efficiency and parallelization, which compromises the accuracy of results due
to the effect of intrinsic circuit noise and mismatches [91]. AIMC implies
modifying part of the memory architecture, peripheral or cell, where analog
voltage levels define a value and require an analog-to-digital converter (ADC)
in the peripheral circuit. In contrast, DIMC are implemented with digital logic
circuitry defining multiplication and addition operations integrated within
memory cells.

IMC techniques are available for implementation on different memory
levels, i.e., off-chip DRAM have integrated computing logic producing IMC
off-chip, and NVM architectures have high storage density and can efficiently
perform parallel matrix multiplications for hardware acceleration. Resistive
Random-Access Memory (RRAM) has high density, low power, and multilevel
operations to perform operations in the AIMC domain with a high parallel
memory array [92]. The IMC on-chip is achieved by modifying the low-level
memory structure of SRAMs, limiting the scalability and integration of highly
optimized memory cells.

Domain-specific hardware accelerators based on the IMC integration ap-
proaches present high performance results and low power consumption.
However, intrinsic modifications of memory architectures limit flexibility and
the ability to process different types of applications.
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4.3.2 NEAR-MEMORY COMPUTING

As an alternative to modifying the low-level structure of memory devices,
NMC techniques place computation logic near storage units, avoiding in-
trusive integration that modifies the optimized hardware architecture of
memory cells. Hardware architectures employing NMC techniques benefit
from increased memory bandwidth with a partitioned memory sub-system to
face the limitations of the memory wall.

Resource-constrained edge devices can expand their potential with ar-
chitectures that enhance the computing capabilities of the platform with
tailored processing units. NMC techniques allow the integration of hardware
accelerators as co-processors with shared memory resources, with optimized
functionality to improve the performance and energy efficiency for compute-
intensive AI applications. Integration of NMC architectures on hardware
platforms requires a custom memory interface to synchronize accesses from
conventional processors and accelerators with independent data controls.
While general-purpose cores use standard load and store memory operations,
hardware accelerators defined with NMC techniques can parallelize access to
memory, optimizing the bandwidth for extended data processing.

Cache memories built with SRAM are a primary component of CPUs that
contribute greatly to the efficient utilization of memory resources. Many
works have recently explored the opportunities offered by NMC techniques,
with active integration of computing units near SRAM in the CPU cache
hierarchy [90]. An NMC work that shares the last level cache between
parallel compute units accessing internal SRAM sub-arrays and an eight-
core RISC-V processor is presented in [93]. The high memory bandwidth
of an array of shared SRAMs that form the cache memory is enhanced
with an NMC architecture that bypasses the bandwidth bottleneck processing
where data is stored. Using RISC-V cores combined with compute units
customized for MAC operations achieves the programmability of general-
purpose processors together with high performance gains. Alternatively, the
placement of hardware accelerators next to on-chip memory is evaluated in
[94], showing performance and energy improvements compared to coupling
them and moving data through an on-chip bus. Furthermore, the versatility
of flexible memory access for an NMC technique is explored in [95] with two
architecture approaches that target energy efficiency on edge devices running
ML algorithms.

Although IMC techniques offer a higher level of parallelization with the
computation located in memory, NMC avoids low-level SRAM alterations,
increasing processing flexibility with customized PEs. The use of NMC
techniques transforms computer paradigms to present beyond-von Neumann
architectures that efficiently process AI applications en edge devices.
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4.4 THESIS CONTRIBUTION

The design and fabrication of hardware architectures integrated on edge
device platforms using NMC techniques is evaluated as part of this thesis.
CNN applications are considered as benchmark for acceleration to evaluate
the performance and energy efficiency improvements of parametrized hard-
ware architectures. The first NMC architecture was presented in Paper II,
testing the integration on an MCU platform with a shared memory sub-
system, where a compatible memory control was considered and evaluated.
Flexibility and scalability have been assessed during the design stages to offer
hardware architectures capable of adapting to varying algorithmic demands
and platform requirements, as demonstrated in Paper III. Furthermore, the
presented solutions offer integration on cache memories with a digital NMC
framework compatible with conventional SRAM architectures. Two chips,
fabricated in 22 nm fully depleted silicon-on-insulator (FDSOI) technology,
are presented in Papers IV and V. The results show an NMC technique that
is efficiently integrated in a resource-constrained platform and an architecture
for multi-chiplet implementations fabricated and tested for parallel computa-
tion of distributed workloads. The modular design enables multiple parti-
tioning approaches with high performance per chip and a chiplet-to-chiplet
communication interface. The designed and evaluated NMC techniques are
compared with relevant SoA works and presented as solutions that deliver
high performance, energy efficiency, and area density.
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5
Conclusion and Future Work

T
he content of this chapter is the result of a reflection considering the
different topics that have been covered during my doctoral studies,
gathering the conclusion of this thesis from a technology and hard-

ware architecture point of view.
The challenges introduced by current and future technological applications

require hardware platforms that can cope with such demands. The properties
offered by edge computing, combined with AI applications, make edge AI
an increasingly relevant concept that links compute-intensive workloads to
resource-constrained connected systems. In order to imbue higher computing
capabilities in processing platforms for edge AI applications, this thesis has
evaluated 3D integration technologies and hardware architectures based on
the beyond-von Neumann computing paradigm.

The exploration of 3DSI, which emerged as a continuation of the de-
velopment of Moore’s law for the digital design of ICs, has demonstrated
the benefits of higher integration density. In this thesis work, an intra-cell
partitioning strategy has been evaluated for the design of logic cells in a
3D domain that can be coupled with conventional EDA tools. However,
several challenges arise from the requirements of reliable 3D technology, from
temperature limitations to manufacturing maturity to achieve high yield and
ensure functionality.

Alternatively, the design of hardware architectures based on an NMC
technique has been evaluated to define beyond-von Neumann solutions for
the requirements of compute-intensive applications. The presented NMC
technique has focused on the integration of tailored PEs near SRAM macros to
obtain hardware accelerators working as co-processors on an MCU platform.
Flexibility and scalability are considered in the design of the proposed systems
to obtain solutions that can cope with different application requirements.
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The results have demonstrated that the proposed architectures offer an NMC
solution that improves the performance, energy efficiency, and area density of
resource-constrained systems compared to SoA designs.

In conclusion, this thesis has evaluated relevant aspects of ICs and proposed
solutions to improve SoA considering challenges and limitations.

FUTURE WORK

The combination of 3D integration technologies with optimized hardware
architectures can offer highly integrated chip architectures that improve the
processing of current and future technological applications. The placement
of computing units closer to memory can be achieved by combining NMC
techniques with 3DSI, where memory and hardware acceleration units are
stacked with shorter interconnections. Bringing NMC techniques with 3DSI
technology for hardware acceleration needs to be tightly coupled to algo-
rithmic models to achieve significant advances, and address system-level
integration challenges.
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High-Density Standard Cell Library for
Sequential 3D Integrated Circuits

Research efforts to push the integration density of circuits with tech-
nologies that transcend Moore’s law have gained significant attention in
recent years. This study investigates the silicon area gains of Sequential
3D technology, utilizing the third dimension of integrated circuits by ac-
commodating nMOS and pMOS transistors in two stacked tiers with high-
density and low-pitch 3D vias. The efficiency of the proposed integration
strategy is exemplified through the design of a library with high-density
3D standard cells, including sequential and combinational logic. The inte-
gration of 3D vias within the standard cells mitigates the effort required for
inter-tier connections during the routing of integrated circuits. Subsequent
analysis indicated an average silicon area reduction of 36 % in comparison
to commercially available libraries with purely planar cells. The proposed
3D cells have been incorporated into a commercial design flow for a 28 nm
process technology and have been benchmarked using examples of large-
scale integration designs, indicating an area and wirelength reduction of
44 % and 23 %, respectively.
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I. INTRODUCTION

Technology scaling for integrated circuits (ICs) has slowed down considerably
in recent years. However, transcending Moore’s law, research on more-than-
Moore technologies has gained increased attention, driven by the demand
for high-performance computing, e.g., artificial intelligence, 6G networks and
virtual reality. Consequently, higher computational demands require higher
transistor density, and the corresponding complexity comes with significantly
increased congestion and longer wire connections with inherent parasitics that
impact the system performance. Moreover, core utilization will be reduced as
signal routing may require a larger space between cells, and thus, the total
silicon cost will increase.

A promising more-than-Moore technology that offers high integration den-
sity is Sequential 3D (S3D). This technology is realized by stacking a layer
of transistors, which is fabricated in a sequential process, on top of another
layer of transistors [1, 2]. In S3D, each active layer is referred to as a tier,
realizing a 3D implementation by having tiers stacked above each other. Tiers
are connected by 3D vias, known as Monolithic Inter-tier Vias (MIVs), which
have the advantage of being the same size as conventional vias in a silicon
process, and having up to 50 times smaller pitch than Through Silicon Vias
(TSVs). These properties result in a significantly higher integration density,
outperforming other 3D integration technologies [3].

The implementation of 3D circuits comes with challenges in tier integration
and associated costs regarding stacking. On the bottom tier, standard nMOS
and pMOS transistors are fabricated, including its Back-End-Of-Line (BEOL).
Thereafter, 3D vias are integrated, followed by the manufacturing of the top
tier. This procedure in the manufacturing process is extremely critical for
achieving a sufficient yield. Therefore, the manufacturing temperature needs
to be kept below 500 °C to avoid degradation of the bottom structures [4].

A performance limiter of today’s circuits is the parasitics of lengthy inter-
connections, caused by the physical properties of ICs. S3D offers different
implementation possibilities, based on various integration approaches, which
reduce overall wirelength and silicon area. A cell library for S3D integrated
circuits, designed with nMOS and pMOS transistors separation on top and
bottom tier, respectively, is presented in [5]. The reduced pitch size offered by
MIV enables the division of tiers for a specific transistor type, i.e., nMOS and
pMOS, creating 3D cells with all transistors of the same type concentrated
in the same tier. Alternatively, a division of logic cells in tiers, rather than
transistor separation, is evaluated in [6]. This analysis exposes the required
research on placement techniques, taking into account routing congestion in
3D integrated circuits for efficient connections between tiers. In [7], arithmetic
logic blocks for multiplications are evaluated, making a circuit integration
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with several layers stacked above each other, and employing vertical pillars
for the connection of multiplier elements. These works show different possi-
bilities with 3D technology to obtain high integration density. However, the
aforementioned 3D ICs are realized by accommodating individual logic cells,
or transistor types, in each tier. An alternative is the evaluation of 3D cell
designs by partitioning the cell circuit across tiers.

This work investigates the integration density and area-wirelength reduc-
tion efficiency of S3D technology by evaluating the design and integration
of 3D cells, where nMOS and pMOS transistors are freely accommodated on
both tiers. A library of 3D standard cells is created for large-scale designs.

The remainder of this manuscript is organized as follows: Section II
presents the proposed integration for the library of high-density 3D cells, and
Section III discusses silicon area gains and the use of the presented cells as
part of benchmarked examples. Finally, Section IV concludes this study.

II. HIGH-DENSITY 3D STANDARD CELL LIBRARY

Sequential 3D technology offers various levels of partitioning. This section
will provide background information on the integration levels and details
on the defined intra-cell partition for the generation of our 3D standard cell
library.

II.A. SEQUENTIAL 3D INTEGRATION

3D circuits can be realized by considering different implementation styles, as
shown in Fig. 1. At the lowest granularity level, an entire core is placed on one
tier, and data communication is realized with vertical connections between
tiers. Conventional 2D cells are used, increasing the engineering overhead for
finding an optimal partition of the design that reduces routing congestion on
both tiers and achieves an efficient area implementation. On the other end of
the scale, reaching the finest granularity, the nMOS and pMOS transistors
are strictly separated, i.e., the pull-down and pull-up networks of a logic
cell are in the top and bottom tier, respectively, and MIVs realize transistor
connections. By making a transistor-type partition, higher integration density
can be achieved using more MIVs, at the cost of increased parasitics arising
from more inter-tier connections. The technique proposed in this study closes
the design gap between separating the tiers by logic cells or transistor type,
seeking high integration density with efficient inter-tier connections. This is
accomplished by freely integrating nMOS and pMOS on either tier, with MIVs
for intra-cell connections.

58



Paper I

Granularity scale

L1

CPU

Cores

MIV
Bottom tier

Top tier

CPU

L1 Cache

Decoder

Mux
Controller

L1FLL

ALU
Registers

JTAG
I/O Interface

CLK

Logic blocks

MIV
Bottom tier

Top tier

Block 2

Block 1

NAND

NAND

NOR

NORINV NAND

INV

MIV
Bottom tier

Top tier

A[7:0]

B[7:0]

Logic cells

IN

MIV
Bottom tier

Top tier

nMOS

pMOS

Transistor-type
Intra-celll

MIV
Bottom tier

Top tier

pMOS nMOS

pMOS nMOS

M1b

M2b

M1

M10

IN

Fig. 1: Granularity scale for different partitioning possibilities with Sequential
3D integration technology, including high-density 3D cells integrated as intra-
cell partition with nMOS and pMOS transistors accommodated freely on two
tiers.

The stack of transistors and metal layers for intra-cell partition with Se-
quential 3D integration technology is shown in Fig. 1. Both top and bottom
tiers include nMOS and pMOS transistors, with two metal layers (M1b and
M2b) dedicated to the bottom for internal cell connections including power
rails, and ten (M1-M10) to the top for routing. The connection between tiers
is realized by MIVs, which have the same physical dimensions as other vias
between metal layers.

With intra-cell partition approach, transistors are efficiently integrated in
3D cells with the same distance between power rails as conventional 2D cells,
providing a large design space for routing tracks with reduced congestion of
inter-tier connections. Consequently, the bottlenecks derived from 1) routing
congestion of MIVs produced by using 2D cells on 3D stacking, and 2) re-
duced cell height with more MIVs that limit routing tracks on transistor-type
partition, are addressed with a solution that offers high-density integration
with MIVs included in cells.

In Sequential 3D integration, the stacking of transistors generates a cou-
pling effect that makes the top tier more sensitive to voltage variations in
the bottom tier. The introduction of an isolation plane between both tiers for
avoiding undesirable interaction has been evaluated in [8], where a polysilicon
Ground Plane (GP) is introduced sequentially in the manufacturing of 3D
integrated circuits. When inserting an isolation plane, extra design space
rules are required for including MIVs, which reduces the integration density.
However, results in [9] demonstrate that there is minor coupling between
top and bottom tiers for digital ICs, therefore the introduction of an inter-
tier GP is not needed for purely digital Sequential 3D circuits. For the
design of high-density 3D cells, the GP is not considered in order to achieve
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high integration density. The trade-off between inter-tier coupling effect and
integration density for 3D cells will require further technology analysis.

An engineering overhead for S3D technology is produced by IC design
tools and their ability to efficiently synthesize and route in the 3rd dimension.
However, the design technique proposed in this study, integrating MIVs in
the cell design, has the advantage of a routing effort that is comparable to 2D
technology. The routing step is fulfilled at the top tier, while at the bottom
tier only power rails are connected. The use of a conventional IC design flow
reduces the design overhead and tool dependency for S3D circuits.

II.B. 3D CELLS LIBRARY DESIGN

An extensive number of transistors are employed in the process of designing
large-scale integrated circuits. In order to create digital designs, pre-designed
and pre-characterized building blocks are commonly used to implement
different logic functions. A selection of combinational and sequential standard
cells, as fundamental building blocks, are compiled in a library. In the
generation of large-scale designs, the building blocks defined in the library
are selected and combined for producing the logic of the design.

The realization of sequential and combinational logic cells is evaluated to
study the efficiency of the proposed 3D integration strategy. The partition
is based on dividing the structure of standard cells in top and bottom tiers.
When using MIVs, intermediate metal layers between tiers are introduced
adding extra metal connections in the cell. For a standard cell with intra-cell
partitioning, the cell structure is divided targeting the efficient use of MIVs
by limiting inter-tier connections and achieving high-density integration.

As an illustrative example, the 3D integration of a flip-flop (DFF) cell, in-
cluding the partition of the transistors in the schematic, is shown in Fig. 2. The
schematic and layout views show MIVs employed for inter-tier connections.
The input-output interface, Data-in (D), Clock Pulse (CP) and Data-out (Q), is
on the top tier, while the bottom tier accommodates transistors for obtaining
high-density cell integration. The routing step for digital designs is performed
by connecting 3D cells interface ports at the top tier. The presented cells are
fully characterized for inclusion in a large-scale design flow.

III. EXPERIMENTAL SETUP AND RESULTS

This section details the advantages of S3D technology for silicon area and
wirelength gains by evaluating design optimizations with high-density 3D
standard cells.
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Fig. 2: Circuit partition of a DFF in two tiers showing MIVs for the 3D cell
and circuit connections. (a) Schematic, and (b) layout.

III.A. METHODOLOGY

Different considerations for Sequential 3D integration technology are taken
into account for this evaluation. Advances in S3D implementation enable the
use of the same technology, i.e., 28 nm, in both stacked tiers [10]. Design rules
for MIVs are considered to be the same as for other vias employed to connect
metal layers, with the same area and space distance. As mentioned in section
II.A, a ground plane is not required between tiers, considering negligible the
coupling effect due to tier-to-tier interference for digital circuits.

The 3D cells compiled to a library are designed on schematic level with
their correspondent physical layout. The standard cells partition for top
and bottom tiers are created in independent views using Cadence Virtuoso,
and verified with commercial 28 nm design rules. MIVs are modeled as
connections between cell sub-circuits accommodated in each tier, introducing
a 20 Ω resistance between M2b and M1, with irrelevant lateral coupling.

Different large-scale digital circuits, with the number of cells employed
in the integration of each design, are presented in the benchmark evalua-
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tions of [5, 6]. Silicon area gains are estimated by evaluating the proposed
implementations with logic cells of our designed 3D standard cell library,
and comparing to a commercial library. These benchmarks will provide
representative results regarding the integration density achievable with our
3D standard cell library. Impact on power and timing exceeds the scope of
this evaluation, and will be considered for future analysis.

The 3D cells are characterized to be included in a commercial design
flow. The top and bottom tier cell partitions are separated for an individual
realization, adapting the use of 3D cells with conventional IC design tools. For
a digital circuit implementation, the cells position is defined by the placement
of the top tier partitions. Then, routing of the signals in the top will finalize
this design step. The power rails included in the bottom tier of standard cells
define the mesh for the power of the bottom transistors.

III.B. RESULTS

In [11], benchmark implementations with different partition granularities
and S3D optimizations are evaluated. For this work, the focus is on large-
scale designs that will benefit from increased area and wirelength efficiency,
performing the evaluation in simulation.
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Fig. 3: Area reduction of designed 3D standard cell library compared to a
commercial library.

62



Paper I

The silicon area gain, presented as area reduction percentage, of the 3D cells
library compared to a commercial library, is shown in Fig. 3. The average area
reduction considering all logic cells in the library is estimated as 36 %. Logic
cells with a larger transistor count achieve higher area gains, since a larger
cell layout benefits more from the higher integration density achieved with
the proposed technology.

Comparison with other works using an academic benchmark circuit,
s38584, and a RISC-V processor, is shown in Table 1. The area reduction
is estimated as the area difference between using our 3D standard cell library
and a commercial 2D library. The wirelength reduction is estimated as the
difference in the total length of wires in a layout generated for each case. The
density of inter-tier connections is measured as MIV/cell, which determines
the number of MIV employed in the circuit integration as a function of the
number of cells of the design. A smaller factor indicates lower congestion of
3D vias, with reduced inherent parasitics of inter-tier connections, benefiting
routing.

Table 1: Area, wirelength and MIV density comparison using benchmark
circuit designs.

Source [5] [6] This work

Granularity Transistor Logic cells Intra-cell

Circuit s38584 RISC-V s38584 RISC-V

Frequency [MHz] 500 555 500

Area red. [%] 29,5 - 38,3 23,6 39,0 44,0

Wirelength red. [%] 12,4 - 17,2 6,5 20,5 23,1

MIV/cell 4 2 - 9 3

In [5], different large-scale integration designs are presented, and each
of them is evaluated with three types of 3D cells based on transistor level
partitioning with transistors accommodated on type-specific tiers (nMOS on
top and pMOS on bottom). The three proposed implementations of 3D cells,
each considering a different number of routing tracks, represent different
percentages of area and wirelength reduction gathered in a range for the case
of the benchmark circuit s38584 included in the comparison. In [6], two cases
of Monolithic 3D (M3D) implementation for a RISC-V circuit are presented.
The partitioning method accommodates SRAM memories in one tier and a
RISC-V processor in the other, using MIVs for inter-tier connections. The
implementation of the logic that is part of the RISC-V processor is considered
for our evaluation.
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Considering the circuit s38584, the use of the proposed 3D standard cell
library achieves an area gain similar as the most efficient area implementation
of [5]. However, the number of MIV per cell is reduced by 25 %, reducing the
congestion of inter-tier connections. Considering the RISC-V design, the area
gain is 20 % higher with up to 67 % less MIV/cell compared to [6]. Employing
the same IC design flow as a planar implementation, our 3D standard cell
library reduces the wirelength 23 % compared to a commercial 2D library. The
proposed 3D integration method achieves higher wirelength reduction than
the aforementioned works, showing an efficient Sequential 3D integration
solution for reducing routing congestion on large-scale circuits.

Wire delay grows quadratically with the routing wirelength [12], which
motivates the use of high-density cells to reduce distances between cells.
They have the advantage of a reduced area and routing cost, which results in
higher efficiency in terms of density, performance and energy. The presented
evaluation is considered as a baseline scenario, where similar gain possibilities
are expected for larger designs.

IV. CONCLUSION

This study presents the design of a 3D standard cell library using MIVs for
intra-cell connections, which facilitates a high-density Sequential 3D integra-
tion in two tiers. The designed library is compatible with commercial IC
design tools with a routing effort comparable to conventional technologies.
The proposed design of 3D cells has an average of 36 % silicon area gain com-
pared to commercial libraries. The implementation method is benchmarked
using examples of large-scale integration circuits, showing up to 44 % silicon
area gain, and 23 % wirelength improvement, with reduced congestion of 3D
vias compared to other works.

V. ACKNOWLEDGMENT

This work has been supported by the EU’s Horizon 2020 funding scheme in
the project 3D-MUSE.

REFERENCES

[1] S. Bobba et al., "CELONCEL: Effective design technique for 3-D mono-
lithic integration targeting high performance integrated circuits," 16th
Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 336-
343, 2011.

64



Paper I

[2] P. Vivet et al., "Monolithic 3D: an alternative to advanced CMOS scaling,
technology perspectives and associated design methodology challenges,"
25th IEEE International Conference on Electronics, Circuits and Systems
(ICECS), pp. 157-160, 2018.

[3] H. Sarhan, S. Thuries, O. Billoint and F. Clermidy, "An Unbalanced Area
Ratio Study for High Performance Monolithic 3D Integrated Circuits,"
IEEE Computer Society Annual Symposium on VLSI, pp. 350-355, 2015.

[4] I. Radu et al., "Ultimate Layer Stacking Technology for High Density
Sequential 3D Integration," International Electron Devices Meeting (IEDM),
pp. 1-4, 2023.

[5] C. Yan and E. Salman, "Mono3D: Open Source Cell Library for Mono-
lithic 3-D Integrated Circuits," IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 65, no. 3, pp. 1075-1085, 2018.

[6] S. Thuries et al., "M3D-ADTCO: Monolithic 3D Architecture, Design and
Technology Co-Optimization for High Energy Efficient 3D IC," Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1740-
1745, 2020.

[7] E. Giacomin, F. Catthoor and P. -E. Gaillardon, "Area-Efficient Multiplier
Designs Using a 3D Nanofabric Process Flow," IEEE International Sympo-
sium on Circuits and Systems (ISCAS), pp. 1-5, 2021.

[8] P. Sideris, A. Peizerat, P. Batude, C. Theodorou and G. Sicard, "Inter-tier
Coupling Analysis in Back-illuminated Monolithic 3DSI Image Sensor
Pixels," International Conference on Modern Circuits and Systems Technologies
(MOCAST), Thessaloniki, pp. 1-4, 2021.

[9] P. Sideris et al., "Inter-tier Dynamic Coupling and RF Crosstalk in 3D Se-
quential Integration," IEEE International Electron Devices Meeting (IEDM),
pp. 3.4.1-3.4.4, 2019.

[10] T. Mota-Frutuoso et al., "3D sequential integration with Si CMOS stacked
on 28nm industrial FDSOI with Cu-ULK iBEOL featuring RO and HDR
pixel," International Electron Devices Meeting (IEDM), pp. 1-4, 2023.

[11] S. Bobba, A. Chakraborty, O. Thomas, P. Batude, V. F. Pavlidis and G.
De Micheli, "Performance analysis of 3-D monolithic integrated circuits,"
IEEE International 3D Systems Integration Conference (3DIC), pp. 1-4, 2010.

[12] R. Ho, K. W. Mai and M. A. Horowitz, "The future of wires," Proceedings
of the IEEE, vol. 89, no. 4, pp. 490-504, 2001.

65





Paper lI





An Energy-Efficient Near-Memory
Computing Architecture for CNN

Inference at Cache Level

A non-von Neumann Near-Memory Computing architecture, optimized
for CNN inference in edge computing, is integrated in the cache memory
sub-system of a microcontroller unit. The NMC co-processor is evaluated
using an 8-bit fixed-point quantized CNN model, and achieves an accuracy
of 98 % on the MNIST dataset. A full inference of the CNN model
executed on the NMC processor, demonstrates an improvement of more
than 34× in performance, and 28× in energy-efficiency, compared to the
baseline scenario of a conventional single-core processor. The design
achieves a performance of 1.39 GOPS (at 200 MHz) and an energy-efficiency
of 49 GOPS/W, with negligible area overhead of less than 1 %.

©2021 IEEE. Reprinted, with permission, from
M. Nouripayam, A. Prieto, V. K. Kishorelal, and J. Rodrigues,
"An Energy-Efficient Near-Memory Computing Architecture for CNN
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I. INTRODUCTION

Edge computing based neural networks (NN), convolutional neural networks
(CNN) in particular, have shown a great potential in processing and trans-
forming complex and large datasets into predictive outputs [1, 2]. Edge
computing devices have the advantage of processing at proximity of data
collection sources, and deliver higher energy-efficiency, shorter latency, and
less hardware cost compared to cloud computing [3]. However, these devices
are mostly resource constrained, e.g., energy, computational power, memory
availability and associated silicon cost [4].

Depending on flexibility and performance, a computing platform employed
for CNN edge devices, can be mainly divided into embedded application spe-
cific hardware accelerators (ASICs), Field Programmable Gate Array (FPGA)
solutions, digital signal processors (DSPs), and MCU-based designs. CNN
ASICs are attractive for their high performance and low-power characteristics,
but they usually suffer from higher cost and lack of reconfigurability and
flexibility for edge computing devices [5]. FPGA-based accelerators also
offer high performance, however, they require a much larger power budget
(usually 1-10 W) [20], which is a power expensive solution in tightly resource-
constrained edge devices.

These limitations pronounce the need for MCU-based CNN designs, mo-
tivated by their low-cost, low-power budget (≤ 1 W) and higher flexibility
resulting from software programmability. However, performance limitations
of MCU’s conventional von Neumann architecture, i.e., the well-known
“memory-wall” issue [6], as well as memory-intensive requirements of NNs,
increasingly demand different optimization strategies [7].

In order to improve the efficiency of MCU-based CNN designs, considering
the NN requirements, one approach is to focus on system level optimizations,
such as specialized programming libraries for CNN computations [8, 9], or
instruction set architecture (ISA) extension for supporting NN operations [10].
Another approach is more hardware-oriented, including design of a new core
capable of handling computation-intensive NN operations [11], dedicated
hardware accelerators and multi-core MCU-based systems [12, 13]. However,
the aforementioned studies are based on the von Neumann architecture, and
come with limited performance improvement, design complexities, and/or
substantial hardware cost.

Near-memory computing (NMC) and computation-in-memory (CIM), as
non-von Neumann architectures, are popular data-centric approaches, tar-
geting the memory-wall issue by bridging the performance gap between
memory and computation. These architectures, optimized for data movement
reduction, are applicable to any level of a memory subsystem and improve
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the system energy-efficiency and latency by moving computations spatially
closer to the data location [14]. CIM realization techniques require in depth
integration of computing logic into memories, and come with the cost of
aggressive modifications of the internal memory architecture [15,16]. Further-
more, CIM poses different challenges, such as unconventional programming
models, lack of efficient data mapping mechanisms, as well as power and
hardware overhead [17,18]. Advantageously, NMC techniques do not require
alterations in the internal structure of the memories, delivering high energy-
efficiency and low latency at a limited hardware overhead.

In this work, an energy-efficient NMC architecture, realized as a co-
processor, is integrated in the cache hierarchy of an MCU, i.e., the PULP
open-source platform. The proposed design keeps flexibility of the system
at a high degree by making use of the main processor for general purpose
applications, and executing CNN operations using the NMC unit. The co-
processor is designed using conventionally available SRAM solutions, which
has the advantage of, 1) retaining area efficiency of foundry supplied SRAM,
and 2) being non-disruptive in a conventional ASIC design flow.

The structure of this paper is organized as follows: Section II presents the
proposed NMC architecture, and Section III demonstrates the experimental
results compared with a baseline scenario and puts this work in perspective
with other edge implementations. Finally, Section IV concludes this study.

II. PROPOSED NMC ARCHITECTURE

This section details different aspects of the proposed architecture, and starts
with a brief introduction of the developed CNN model, followed by a descrip-
tion of the optimized data flow, as well as the constituting sub-units of the
NMC co-processor. This architecture is an example for a tiny ML application
using a CNN model on a benchmarked MNIST dataset.

II.A. NEURAL NETWORK MODEL

For the evaluation of the proposed NMC unit, a simplified CNN model
for image classification is developed. The structure of the CNN model
is shown in Fig. 1a, combining single convolution and pooling, as well as
two fully-connected (dense) layers. An efficient hardware implementation
is realized by converting the 32-bit floating-point network parameters to 8-
bit fixed-point data format. Furthermore, in order to reduce the number
of bits for data movement, computation outputs are truncated to 8-bit for
data storage. The performed simulations have shown that the quantization
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(a)

(b)

Fig. 1: (a) CNN model for MNIST dataset processing, (b) NMC convolution
and max-pooling data-flow.

and precision reduction, have a marginal effect in the final accuracy of the
network, delivering an average inference accuracy of 98%.

II.B. NMC UNIT OPERATIONS

The integration of an NMC architecture as a co-processor in the cache hier-
archy makes recurrent data-accesses (load and store), that are required for
processing by the main core, unnecessary. Advantageously, this integration in
the memory sub-system provides direct data access, reduces the memory foot-
print and improves data management in the computation units. Ultimately,
the reduction in data access cost results in an increased energy-efficiency and
throughput, which in turn facilitates the employment of parallel computation
units. The main operation performed in CNN processing is multiply-and-
accumulate (MAC). Accordingly, a total number of 30 MAC units, split re-
spectively in 18 and 12 dedicated MACs for convolution and fully-connected
layers, are employed for the parallel computation of CNN operations. A data
flow optimization is utilized so that multiple rows of an input image are
accessed simultaneously by convolution filters, which facilitate the efficient
generation of max-pooling results. This technique provides the benefit of
performing convolution and pooling as part of one single operation, with no
need for intermediate storage of convolution outputs.
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Fig. 1b presents the data flow for the convolution and max-pooling steps.
Allocating 18 dedicated MAC units for convolution creates a fully parallelized
process of two matrices from an input image (using 3x3 convolution filters in
two arrays of 9 MAC units), and generates two rows of convolution outputs
at once, which are used for on-the-go computation of max-pooling. Conse-
quently, the throughput and memory read-access are optimized considerably,
due to the fact that only final results of max-pooling (in a succession of
convolution-pooling) are stored in the memory.

II.C. NMC ARCHITECTURE

The NMC architecture is developed bearing in mind the overall energy-
efficiency of the entire system. A scalable and MCU platform-agnostic NMC
architecture is accomplished by employing existing memory resources, meet-
ing the goal of a non-disruptive design flow. The memory-wall issue is tackled
with this technique, which practically provides increased bandwidth and uses
the memory resources more efficiently than the case of running an NN on
MCU using general-purpose instructions. For demonstration purpose, the
PULPissimo single-core microcontroller, as a low-power MCU, is chosen [19].
The dedicated computation logic is tailored for CNN application, providing
efficient memory accesses and reduced data movement through the system.

Fig. 2: NMC architecture integrated in the memory sub-system of PULPis-
simo.

Fig. 2 shows a high-level representation of the MCU architecture with
the integrated NMC co-processor. The memory sub-system is adapted by
including the NMC control, NMC interconnect, re-purposed SRAM macros
and their dedicated MAC units.
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NMC Control: orchestrates all operations in the network and organizes
the data accesses, including buffers targeting an efficient data allocation for
convolution and dense operations performed in the memory banks.

NMC Interconnect: functions as a wrapper around the memory banks and
NMC sub-units, and establishes all the communications between RISCY core,
TCDM interconnect bus and memory banks.

NMC Convolution unit: accelerates convolution by employing 18 dedicated
MAC units near two SRAM macros and a parallel flow over 3x3 convolution
filters. The pixel rows of an image are read from the memory, stored in an
input buffer, and thereafter, the MAC units concurrently perform convolution.
The weights for the convolution layer are stored in the MAC units associated
register file, creating a weight-stationary taxonomy. Therefore, the reuse
of the weights is maximized in each MAC unit, which reduces the cost of
energy expensive data movement by memory accesses. The organization of
MAC units minimizes the computation stall time of pooling operation by the
parallel calculation of two convolutions per cycle, resulting in one pooling
output every two cycles, which is stored back in the output SRAM.

NMC Dense unit: performs the dense layer operations while the NMC
Control organizes the flow by, 1) fetching the distributed dense layer weights
from 12 SRAM macros to their dedicated MAC units, and 2) flattening the
outputs of the pooling layer in a buffer and distributing them among the
MAC units in parallel.

The number of MAC units and size of storage buffers may be adapted
for larger application scenarios, with low-power, memory-efficient and high
throughput considerations for running neural networks at-the-edge.

III. DISCUSSION

In this section, the performance improvements of the proposed non-von Neu-
mann NMC architecture are evaluated. The target platform for integration of
the NMC co-processor is the well-researched PULPissimo, a single-core SoC
from the low-power PULP MCU [19]. The 512 kB Level 2 (L2) cache memory,
consisting of four re-purposed memory banks, is the design space of the
NMC co-processor, and equips the system with accelerated CNN inference
computations. Thus, the overall workload of the MCU is reduced, which
frees resources for simultaneous execution of general-purpose operations.
The proposed design accommodates MAC units in the memory sub-system,
achieving a lower area cost compared to multi-core or dedicated hardware-
accelerator alternatives [7]. Specifically, the re-purposed SRAM banks in
the MCU cache memory, helps to avoid the employment of extra dedicated
memories, which is usually required for hardware accelerators. The results
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from synthesis in a 28 nm FD-SOI process technology show that the NMC
unit of this work is realized with a negligible area overhead (<1%).

This study is framed by the evaluation of a baseline and target scenario,
performing a CNN full inference. The baseline and target scenarios are
characterized by employing a single-core MCU and the NMC unit in cache, re-
spectively. Table 1 represents the results of this study, as well as positions the
proposed design to other MCU-based NNs. Performance is evaluated by post-
synthesis simulations, using back-annotated toggle information, and reveals
that a performance of 1.39 GOPS and an energy-efficiency of 49 GOPS/W at
200 MHz is achieved by integrating the NMC unit in the MCU. These results,
compared to the baseline scenario, demonstrate a considerable performance
and energy-efficiency improvement of 34× and 28×, respectively. The perfor-
mance numbers are based on cycle counts and are obtained by a hardware
timer, which captures the time before and after running the application in
each of the examined scenarios.

Table 1: Comparison of the proposed NMC architecture with the baseline
MCU and other edge implementations.

[20] [21] This Work
Source

GAP-8 STM32H7 STM32H4 GAP-8 STM32F4
[22] [23]

Baseline Target

Platform MCU MCU MCU MCU MCU FPGA APSoC MCU

Core 8 1 8 1 — — 1

Design level
Library

(PULP-NN)

Library

(CMSIS-NN)

ISA

opt.
— Accel. Accel. —

NMC

@Cache

Dataset CIFAR-10 Freesound MNIST MNIST MNIST

Network CNN BNN LeNet-5 LeNet-5 CNN

Data width INT-8 Binary 16-bit — 8-bit

Clock [MHz] 170 480 150 480 — 650 200

Performance

[GOPS]
1.07 0.14 0.03 1.5 0.15 20.3 46.15 0.04 1.39

Energy Eff.

[GOPS/W]
16.1 0.97 1.7 31.3 0.61 30.03 16.19 1.72 49

The proposed NMC, see Table 1, can achieve 1.3× and 3× higher perfor-
mance and energy-efficiency compared to GAP-8 MCU in [20], and similar
performance with 1.5× higher energy-efficiency in comparison to GAP-8
MCU in [21]. Moreover, the proposed NMC delivers a range of 9-46× higher
performance, as well as 28-80× higher energy-efficiency compared to the
presented commercial MCUs. Compared to the proposed MCU-based design,
the realizations in [22, 23] achieve a higher performance with dedicated NN
hardware accelerators, but a notable lower energy-efficiency of 1.6× and
3×, respectively. Additionally, FPGA-based designs offer less flexibility
and require higher power budget, which in turn make these solutions less
attractive for a tightly-constrained edge device.
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In Fig. 3a, the performance improvement for the target scenario, with refer-
ence to the baseline implementation, is presented. The results are represented
as operations per cycle (OP/cycle). For a full inference, the baseline MCU only
completes 0.2 OP/cycle, however, using the NMC co-processor, it is possible
to achieve ≈ 7 OP/cycle. The two scenarios are evaluated individually to
compare how convolution, pooling and dense operations are improved by the
NMC sub-units. The simulation results reveal that the dense operation in the
MCU platform requires around 1.5× more cycles than convolution-pooling
combined. However, by employing the NMC unit, a more balanced compu-
tation time is achieved, as the cycle count for the dense layer computation is
1.1× of convolution-pooling. As shown in Fig. 3a, the NMC unit delivers
a performance improvement of 28× for convolution-pooling and 38× for
dense, respectively. This, in turn, can be translated to an overall performance
improvement of 34×.

(a) (b)

Fig. 3: Comparison between MCU and NMC at cache for (a) performance, (b)
energy-efficiency.

The energy-efficiency improvement for the target scenario is shown in
Fig. 3b. The results show a similar energy-efficiency improvement for the
convolution-pooling combined, and the dense operations. This, in turn
reflects that the NMC sub-units are well-balanced for computation of different
CNN layers. The improvement for convolution-pooling is 27×, and for dense
operations 30×, which is translated to an overall energy-efficiency gain of
28×. The proposed NMC architecture is portable to other processor platforms,
and similar performance improvements are expected.
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IV. CONCLUSION

This study presents a non-von Neumann NMC architecture for CNN image
classification on edge devices. The hardware-friendly NMC architecture is
integrated as a co-processor in the cache level of an MCU, by interleaving the
memory with the computation logic, while deploying conventional SRAM.
The proposed architecture is scalable for CNN applications and is MCU
platform-agnostic, with the benefit of pushing computation logic closer to
data locations as a solution to the well-known memory-wall challenge. This
study is carried out on a 8-bit fixed-point quantized CNN model on the
MNIST dataset. The experimental results show that the NMC design is able
to deliver the performance and energy-efficiency of 34× and 28× over the
baseline study, which is a single-core general purpose MCU. The designed
NMC unit delivers a peak performance of 1.39 GOPS and energy-efficiency of
49 GOPS/W when running at a frequency of 200 MHz.
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A Scalable All-Digital Near-Memory
Computing Architecture for Edge AIoT

Applications

With the growing need to process large volumes of data, edge com-
puting near data collection sources has become increasingly important.
However, the resource constraints of edge devices require more efficient
data processing techniques. Near-memory computing (NMC) presents an
efficient solution, especially for data-intensive applications, by enabling
processing that is both energy-efficient and hardware optimized. This work
introduces a platform-agnostic NMC architecture tailored for convolutional
neural network (CNN) workloads, integrated into the shared cache memory
subsystem of a microcontroller unit (MCU). An open-source RISC-V MCU
is chosen as the target platform due to its flexibility and low-power archi-
tecture. The NMC co-processor, operating alongside the general-purpose
RISC-V core, forms a multi-core system-on-chip that combines low hard-
ware cost with high energy efficiency, while maintaining a high degree of
flexibility. The proposed design offers a configurable architecture capable
of processing a wide range of CNN models with a computational efficiency
of 94 %. For evaluation purposes, widely recognized CNN benchmark
models are utilized, showing a performance of 96 GOPS and an energy
efficiency of 1828 GOPS/W for 8-bit precision at 200 MHz. These results
represent a significant improvement over both highly customized state-of-
the-art hardware accelerators and multi-core MCU solutions.
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M. Nouripayam, A. Prieto, and J. Rodrigues,
"A Scalable All-Digital Near-Memory Computing Architecture for Edge AIoT
Applications," in IEEE Access, vol. 13, pp. 108609-108625, Jun. 2025.
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I. INTRODUCTION

The rapid growth of data-centric applications, particularly Artificial Neural
Networks (ANNs), has driven a paradigm shift in computing architectures,
highlighting the need for efficient and scalable processing solutions. ANNs,
highly effective at executing complex tasks across diverse applications, typ-
ically require data centers and cloud infrastructures to meet their intensive
computational demands. However, growing concerns about latency, energy
consumption, data privacy, and security are accelerating the adoption of
edge computing. By processing data closer to its source, edge computing
improves energy efficiency, reduces latency, and mitigates communication
bandwidth limitations [1]. Despite the advantages of local data processing,
edge computing platforms face inherent challenges, including limited energy
budgets, restricted compute capacity, and constrained memory. Additionally,
the rapid evolution of artificial intelligence (AI) algorithms and emerging
applications poses challenges related to costly system transformations and
complex adaptation across diverse hardware technologies [2].

Addressing edge AI challenges requires hardware architectures that strike
a balance in the efficiency–flexibility design space, particularly to support
dynamic and evolving AI workloads. Flexibility in this context refers to the
ability to deploy low-power, high-performance, and reconfigurable edge AI
hardware that adapts to varying algorithmic demands while maintaining
energy efficiency and scalability [3]. Edge computing hardware spans a
wide spectrum, from energy-efficient application-specific integrated circuits
(ASICs) to more versatile, but less energy-efficient, general-purpose proces-
sors such as microcontroller units (MCUs) [4]. MCUs are valued for their
programmability, cost-effectiveness, and low power consumption (≤ 1W).
However, their performance is constrained by the traditional von Neumann
architecture, including memory bandwidth bottlenecks and the high energy
cost of data transfers [5].

Hardware platform limitations are closely linked to the "memory wall",
a fundamental performance bottleneck caused by the widening gap between
processor speed and memory access latency. In data-centric applications, data
movement is the dominant contributor to power consumption [6]. From an
energy perspective, as illustrated in Fig. 1a, off-chip data transfers consume
up to 200× more energy than a multiply-accumulate (MAC) operation, while
even accessing on-chip memory requires 6× more energy [7]. The energy cost
of data movement highlights the critical role of on-chip memory in improving
performance and energy efficiency, especially in resource-constrained edge
devices. Consequently, effective memory utilization and organization are
essential and require a delicate balance of memory hierarchy, access patterns,
capacity, and hardware cost.
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Fig. 1: (a) A conventional computing architecture with memory subsystems,
and the normalized energy cost of data movement with reference to one
computation at an Arithmetic Logic Unit (ALU) [7], (b) a near-memory
computing cache architecture.
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Techniques such as near-memory computing (NMC), illustrated in Fig. 1b,
have emerged as promising solutions to overcome the limitations of conven-
tional architectures. By performing computations near data, NMC signif-
icantly reduces data movement cost, thereby improving both performance
and energy efficiency [8]. However, general-purpose central processing
units (CPUs) remain essential in AI systems, managing critical operations of
pre/post-processing, data movement, and non-computational control tasks,
often becoming major sources of system latency. Conventional architec-
tures integrating CPUs, ASICs, and direct memory access (DMA) engines
experience processor stalls and underutilization. For instance, deep neural
network (DNN) computations typically account for only 12-50 % of the total
runtime, with the remainder dominated by CPU-bound operations and data
transfers [9]. To overcome processing bottlenecks, a holistic design approach
is required that exploits NMC to reduce unnecessary data movement by
optimizing memory access patterns and data paths for applications with
large memory footprints. Co-optimizing data access and computation is
crucial for achieving high energy efficiency and sustained performance in
edge computing platforms.

This article introduces a computationally efficient architecture that inte-
grates an NMC technique to address memory and energy constraints in edge
devices, while capitalizing on the low-power, flexible, and reprogrammable
nature of MCUs. The key contributions of this work are summarized as
follows:

• An in-cache digital NMC framework for edge AI acceleration, inte-
grated within an MCU’s memory subsystem. The design enables tight
coupling between compute and storage while preserving efficiency of
foundry-provided SRAM structures.

• A platform-agnostic implementation validated through FPGA integra-
tion and ASIC synthesis using a commercial CMOS technology demon-
strating scalability, energy efficiency, and area feasibility.

• Development of a modular and configurable NMC architecture, with
independent control of processing units embedded in memory banks,
supporting concurrent execution of neural networks adapted to work-
load demands.

• CPU-transparent convolutional neural network (CNN) execution, com-
bining compile-time control of tiling, loop scheduling, and memory
partitioning with runtime coordination via interrupt-driven synchro-
nization and shared memory access with a RISC-V.

The remainder of this paper is structured as follows: Section II presents the
relevant methods and studies as the theoretical background and challenges
that lead to the suggested technique in this paper. Section III details the
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modules of the proposed NMC architecture. Post-synthesis analysis of power
and performance of the design is presented in Section IV. Finally, Section V
concludes the paper by summarizing the key challenges and contributions of
this work.

II. RELATED WORK

While various studies attempt to mitigate performance and energy limitations
of von Neumann architecture, several challenges persist, including resource
constraints, hardware reliability, and architectural trade-offs in flexibility,
processing efficiency, technology portability, and design complexity. To
establish the rationale behind our design choices, this section reviews exist-
ing research on memory access optimizations and utilization in constrained
environments. The advancements in NMC are highlighted, considering the
impact on performance and energy efficiency and the remaining limitations
that have motivated our proposed solution.

II.A. DOMAIN-SPECIFIC EDGE ACCELERATORS

Domain-specific accelerators (DSAs) such as systolic arrays [10], vector pro-
cessing units (VPUs) [11], and multi-core clusters [12] are widely used to
enhance inference performance through spatial parallelism and data reuse.
These architectures typically depend on on-chip scratchpad memory (SPM)
to avoid cache overhead and require high bandwidth between buffers and
DRAM to sustain low-latency computation. However, DSAs face scalability
and memory access challenges, including increased energy consumption from
frequent data transfers and the complexity of integrating memory-centric
computation into AI pipelines. Ensuring data consistency across distributed
memory systems and reducing host CPU involvement remain ongoing chal-
lenges [13].

While DSAs are efficient for specific tasks, their rigidity limits adaptability
across workloads. To address versatility, reconfigurable architectures offer
a more adaptable alternative. Solutions such as FPGAs and multi-core
clusters [14] provide hardware flexibility and increased programmability
while preserving parallelism. However, reliance on dedicated local memory
introduces complex data management at the software level. Despite gains
in throughput, energy efficiency remains limited, and static reconfiguration
often leads to suboptimal resource utilization [15]. FPGAs typically are less
energy efficient and unsuitable for edge IoT applications, while low-power
variants lack the computational capacity for demanding AI workloads [16].
Hybrid FPGA-SoCs, with embedded FPGAs (eFPGAs), enable customizable
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acceleration, but are restricted by their dependence on mature technology
nodes such as 180 nm and 130 nm [17], limiting performance and energy
efficiency. A major constraint of FPGA-SoCs is the dependency on external
memory, reinforcing the inefficiencies of conventional architectures. Unlike
traditional FPGAs, eFPGAs lack dedicated block SRAMs, and instead rely on
the host SoC’s memory subsystem, increasing data movement and reducing
energy efficiency. Furthermore, integrating eFPGAs into SoCs introduces
≈ 25 % area overhead and increased power consumption due to programma-
bility. Further challenges include routing congestion, interconnect limitations,
and the complexity of integrating eFPGAs in heterogeneous systems requiring
high-speed, low-latency communication [16, 17].

Although DSA architectures efficiently handle parallel workloads and
spatial data reuse, they continue to rely on local memory and shift the
burden of data movement to the host CPU. To overcome data inefficiencies,
our proposed design integrates CPU-transparent NMC acceleration for CNN
workloads directly within the MCU’s shared memory. This approach pre-
serves the MCU’s flexibility, reduces unnecessary data transfers, and enhances
efficiency by combining programmable accelerators with NMC.

II.B. NEAR-MEMORY VS. IN-MEMORY COMPUTING

Near-memory computing and in-memory computing (IMC) both aim to
overcome the limitations of the von Neumann architecture by reducing data
movement [8]. IMC integrates computation directly into memory, either at the
bitcell level or within peripheral circuits, effectively downscaling data transfer
latency. Hybrid IMC designs split computation between memory arrays and
periphery, using analog-to-digital converters (ADCs) and sensing circuits,
making them suitable for Boolean logic operations [18]. Additionally, by em-
bedding computation into memory arrays, IMC often disrupts conventional
memory structures and introduces circuit complexity, which increases design
and integration challenges. In contrast, NMC places processing elements
(PEs) adjacent to memory, preserving a logical separation between storage
and computation. This architectural modularity preserves memory array
integrity and enables flexible deployment across memory hierarchy levels,
offering greater scalability and adaptability, especially for energy-efficient,
high-throughput systems.

IMC implementations span various memory technologies, each with trade-
offs. Emerging non-volatile memory (eNVM), including FeFET, STT-MRAM,
and PCM, enable high-density in-memory computation while offering ben-
efits such as reduced power consumption and improved access speeds [19],
but face reliability issues. DRAM-based IMC, on the other hand, suffers from
costly off-chip data transfers that hinder scalability [20, 21].
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SRAM-based IMC, including analog (AIMC) and digital (DIMC), are well
researched techniques for energy-efficient, low-latency edge AI [22]. AIMC
enables parallel bit-wise operations via bitline computing and multiple word-
line activation [23], but is inherently intrusive to conventional SRAM architec-
tures, limiting scalability and integration. AIMC also suffers from precision
issues due to process, voltage, and temperature (PVT) variations and incurs
significant area overhead from analog circuitry and ADCs [24]. As a result,
AIMC adoption needs to prioritize overall system-level efficiency over peak
performance for balanced deployment [25].

DIMC, in contrast, provides greater flexibility, programmability, and ro-
bustness by executing digital MAC operations at the SRAM cell level with
full-precision accumulation in registers. However, additional logic comes
with increased area and energy overhead. Moreover, energy and area scale
with word length, requiring trade-offs between efficiency and precision. Chal-
lenges such as energy overhead, data consistency, and the lack of standardized
programming frameworks further hinder programmability and system-level
optimizations [26].

Unlike IMC, NMC places compute units near memory, using dedicated
logic and high-bandwidth interconnects to reduce data movement without
disrupting internal memory structures [27, 28]. NMC is particularly effective
for multi-bit operations and computationally intensive tasks, offering greater
architectural flexibility and energy-efficiency. A behavioral-level NMC de-
sign using high-level synthesis (HLS) proposes generating loosely coupled
accelerators near on-chip memory, offering modest flexibility for rapid hard-
ware development [29]. However, reliance on synthesis tools and high-level
abstraction overlook low-level optimizations and implementation complexity,
ultimately limiting efficiency gains. RISC-V based NMC architectures, such as
NM-Caesar and NM-Carus, provide scalable and configurable solutions with
low integration effort via compatible interfaces with SRAM, offering memory-
compute interoperability and suitability for embedded MCUs, though with
limited peak performance [30].

Our in-cache digital NMC integration introduces a flexible framework
with a non-disruptive design flow, enabling scalable and low-power ar-
chitectures that balance performance and energy efficiency, well-suited for
next-generation edge AI. By combining a programmable RISC-V core with
optimized memory access and enhanced computing capabilities, the proposed
framework supports general-purpose NMC based MPSoCs with configurable
CNN accelerators near SRAM. The framework adaptability enables efficient
execution of diverse edge AI workloads and promotes the practical deploy-
ment of energy-efficient AI hardware in resource-constrained environments.
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III. NMC ARCHITECTURE ORGANIZATION

The proposed design is the result of an extensive design space exploration
(DSE) that evaluates key metrics and trade-offs among essential design param-
eters. The multivariate DSE is illustrated in Fig. 2, providing a comparative
assessment across a representative set of architectures. Performance and
energy efficiency are directly extracted from the respective studies and ranked
comparatively to ensure a fair evaluation across different designs and plat-
forms. For general-purpose programmability, the highest ranking is assigned
to designs featuring at least one programmable core, while architectures with
fixed, predefined operations have limited programmability. Similarly, dy-
namic configurability is ranked based on the number of supported modes and
operations, reflecting the design’s adaptability and reconfigurability. Non-
idealities of IMC include noise susceptibility, reducing robustness compared
to all-digital designs.

Performance

Noise
Robustness

Dynamic
Configurability

General-Purpose
Programmability

Energy
Efficiency

This work (NMC - MCU)

FPGA accel. [50, 51, 52]

Cluster MCU [12, 47, 48]

IMC (SRAM) [61, 62]

ASIC accel. [44, 45, 46, 53, 54]

Fig. 2: Comparison between different designs and platforms in terms of:
performance, energy-efficiency, general-purpose programmability, dynamic
runtime configurability, and noise robustness.
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Given the rapidly evolving landscape of edge AI applications and their
varying demands, our proposed design emphasizes flexibility and cost-
effectiveness to ensure competitiveness and adaptability. Moreover, high
performance and energy efficiency are maintained, achieving a well-balanced
trade-off between scalability, cost, and computational power.

Existing research highlights domain-specific accelerators based on IMC
architectures for their exceptional performance and low power consumption
per processed bit. However, lack of flexibility and reduced overall system
efficiency limit adaptability to diverse application requirements. To overcome
processing limitations, our proposed framework integrates the computational
efficiency of near-memory computing with the versatility of a general-purpose
microcontroller, ensuring seamless integration into existing architectures,
while maintaining lower design costs and enhanced flexibility. The NMC
approach achieves an optimal balance between performance, power efficiency,
and adaptability, effectively leveraging the strengths of both paradigms to
meet the evolving requirements of AI-driven applications.
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Fig. 3: Architecture of NMC units integrated in the memory subsystem of an
MCU platform, including bank partitioning, memory macros, and processing
and control logic for hardware acceleration.

The integration of an NMC design in the L2 shared cache memory structure
of an MCU platform, as illustrated in Fig. 3, effectively transforms the
hardware architecture into a multi-core parallel data processing system. By
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addressing data consistency, synchronization overhead, and memory access
contention, this proposal leverages multi-core parallelism to integrate seam-
lessly within MCU platforms and maximize both throughput and energy
efficiency.

The shared L2 cache is implemented as a high-speed SPM, a well-
established approach in real-time embedded systems due to its high density,
speed, and predictable access patterns [31]. Scratchpads, mapped onto the
processor’s address space within a predefined range, are commonly employed
to simplify caching logic and maintain full functionality without contention
in multi-core environments. In SPMs, commonly known as "software-
controlled caches", data transfer and allocation tasks are managed entirely
by software [32]. By eliminating the need for a complex hardware caching
controller, SPMs enhance energy efficiency, particularly in applications with
predictable data access patterns. Furthermore, the software-driven approach
offers flexibility, allowing the programmer/compiler to explicitly manage the
appropriate memory regions for data transfers [33].

Performance is further optimized by partitioning the shared cache into
multiple memory banks and enabling access through an interleaved address-
ing scheme. A partition configuration enables multi-channel communication,
thereby increasing the I/O bandwidth for the NMC design and improving
memory access efficiency. Additionally, the NMC units reduce unnecessary
data movement by directly accessing data stored in the L2 memory banks.
This internal memory access strategy improves data lifecycle efficiency, reduc-
ing the need for frequent data transfers and intermediate storage overhead.
Consequently, the system achieves enhanced computational and energy effi-
ciency, along with optimized memory bandwidth, ensuring a balanced trade-
off between flexibility, performance, and power.

III.A. MEMORY STRUCTURE AND BANDWIDTH

In SoCs, dedicated local buffers are commonly used to enhance memory
bandwidth and performance. Large-capacity buffers help to reduce data
movement, but come with high area and energy overhead. Conversely,
smaller buffers, although more area-efficient, are less effective in reducing
data transfers. In hardware acceleration systems, SRAM can occupy 40–90% of
the area and dominate the power consumption [34]. Shared caching balances
area, power, and bandwidth by allowing multiple accelerators to access a
common memory pool instead of relying on dedicated local buffers [35, 36].
By merging dedicated accelerator SRAMs and buffers into a shared memory
configuration, data duplication and unnecessary temporary storage are elim-
inated, leading to improved area efficiency, lower power consumption, and
enhanced performance. Beyond efficient memory sharing, a well-optimized
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memory organization that divides large memory blocks into smaller macros
further optimizes effective load capacitance (Ce f f ) and effective frequency
(Fe f f ), reducing power consumption and access latency.

In the proposed architecture, the L2 SPM is implemented as a Tightly
Coupled Memory (TCM), shared between RISC-V and NMC units, to enable
low-latency and high-throughput data access. To mitigate contention and
support concurrent access, the SPM is partitioned into banks, each with a
dedicated data bus. While a large number of banks reduces access con-
flicts, greater interconnect complexity is introduced, degrading latency. For
example, as reported in [37], scaling from 2 to 128 banks within a crossbar
interconnect results in a frequency drop of 12 %. With the RISC-V core
and NMC units working as independent consumers, a banking factor of two
per consumer has empirically shown to minimize conflicts without incurring
high interconnect complexity (#Banks = #Consumers × BankingFactor) [38],
resulting in a four-bank memory subsystem. The address space of each bank
is further partitioned into eight memory macros, for data distribution in a sys-
tem with increased memory bandwidth. From the system-level perspective,
the RISC-V core accesses all banks uniformly, remaining agnostic to internal
organization, while NMC units exploit the macro-level granularity for parallel
data streaming to tailored PEs. Although the number of macros can be scaled
up to support larger memory bandwidth, arbitrarily increasing the macro
counts may degrade memory density and expand data bus complexity. Thus,
our eight-macro-per-bank, two-bank-per-consumer scheme strikes a practical
balance between performance, area efficiency, and interconnect complexity.

To further illustrate the impact of the proposed memory organization,
Fig. 4 presents timing diagrams for memory access under various scenarios
involving the RISC-V core and NMC units. Each memory bank consists of M
memory macros and is coupled with a single NMC unit. In the baseline
scenario (Fig. 4a), the RISC-V’s memory bandwidth is limited to a single
macro access per cycle. In contrast, as shown in Fig. 4b, the active NMC unit
accesses multiple macros concurrently, as long as they are not already used
by the RISC-V. The proposed macro-level parallelism improves the effective
bandwidth available to the NMC unit without requiring additional physical
ports. The proposed access arbitration enables NMC units to utilize all
available macros within a bank, significantly increasing its throughput. The
resulting bandwidth for both the NMC architecture and the RISC-V core is
given by:

BWNMC = (#Banks)× (#Macros) [
access
cycle

] (1)

BWCore = (#Banks) [
access
cycle

] (2)
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Equations (1) and (2) show that each NMC unit has #Macros× higher
memory bandwidth than the RISC-V. With eight macros per bank, each NMC
unit can achieve up to 8× the memory bandwidth of the RISC-V core per
bank, resulting in a total of 32× higher bandwidth across 4 banks considering
the RISC-V core employs single-I/O access. While the RISC-V core operates
with a fixed memory bandwidth of one I/O per clock cycle per bank, the
NMC benefits from scalable bandwidth due to the configurable number of
memory macros per bank.

III.B. SYNCHRONIZATION AND CACHE MANAGEMENT

In multi-core systems including peripheral units, memory contention becomes
essential when accessing a shared TCM. The proposed design incorporates
a multi-level contention management scheme to address multiple memory
access requests. At the global level, a round-robin arbiter fairly schedules
access across different memory banks, allocating requests in a queue, and
granting a turn in successive cycles. This arbitration mechanism inherently
ensures fairness and prevents starvation by avoiding monopolization of the
memory resources. In addition to round-robin arbitration, the NMC architec-
ture includes a configurable control mechanism that alternates access between
the RISC-V core and NMC units. Memory access requests are governed by
programmable intervals, allowing dynamic adaptation to varying workload
patterns. However, under high-throughput workloads, multiple requesters
may target the same memory macro simultaneously. In such cases, relying
solely on the previously mentioned arbitration mechanisms may cause delays
on critical operations. Therefore, the NMC architecture introduces a fine-
grained conflict resolution mechanism by suppressing requests from NMC
units when a RISC-V access is requested simultaneously to the same memory
macro, granting precedence to RISC-V. Higher memory bandwidth of NMC
enables a selective prioritization that maintains arbitration fairness at the
system level, but adds adaptive responsiveness for time-sensitive requests.
Additionally, an interleaved addressing scheme distributes consecutive ad-
dresses across memory banks, reducing contention by up to 75 % [39].

At the software level, memory throughput is improved through cache-
aware resource allocation. Although shared memory is implemented as
a software-managed scratchpad rather than a hardware-controlled cache,
principles of utility-based partitioning still apply. In parallel processing,
memory regions are explicitly assigned to the application that benefits most,
rather than the one with the highest access rate [40]. The partitioning
strategy divides the shared SPM into two distinct sections at compile time,
one allocated to the RISC-V core and the other to the NMC architecture,
effectively managing the memory space and ensuring concurrent execution
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without data collision. Partitions are determined at compile time based on
application-specific memory requirements, ensuring deterministic memory
behavior while preventing access conflicts and avoiding the need for complex
and costly runtime coherence or locking mechanisms. For CNN workloads,
where large datasets are frequently accessed across multiple memory loca-
tions, assigning a larger partition to the NMC unit enhances performance by
reducing memory access latency and data movement overhead. Partitions are
static during execution to preserve determinism, and reconfigurable between
runs, allowing the system to adapt to different workloads using the general-
purpose programmability of the RISC-V core.

Moreover, to coordinate task-level synchronization, the NMC units raise an
interrupt to the RISC-V core upon completion or termination of a compute
task. The dedicated interrupt line informs the RISC-V to resume post-
processing, allowing low-latency coordination between producer and con-
sumer tasks.

III.C. NMC UNIT EXTERNAL COMMUNICATION

The proposed NMC technique optimizes data movement (to and from mem-
ory), while enhancing efficient utilization of the data lifecycle. Nevertheless,
NMC units need to communicate with other system modules to ensure
synchronization and coherence. This external communication is facilitated
through the TCM protocol, which provides single-cycle, low-latency access.
At the system level, NMC units function as the primary unit, issuing memory
access requests as needed.

The NMC units are controlled via memory-mapped registers defined on
the TCM interconnect, allowing each individual unit to be configured inde-
pendently and to send or receive data using a specific set of virtual addresses.
The addresses are designated within the system memory map exclusively for
NMC unit operations. As an alternative to NMC unit direct single-cycle access
to memories, other possibilities consider establishing communication with the
RISC-V through direct memory access (DMA), or advanced high-performance
bus (AHB).

III.D. NMC UNIT OPERATION CONTROLLER

The single-cycle access to NMC units through memory-mapped registers on
the TCM interconnect protocol enables instantaneous control via software.
Control signals are generated using inline functions in C/C++ source code,
allowing independent configuration of each NMC unit. Architectural modu-
larity allows concurrent execution of multiple workloads, with each NMC unit
configured for a distinct task of the same CNN execution, or independent
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Fig. 5: NMC unit state machine including operational states with control
signals.

neural networks. The modular structure supports scalable parallelism and
model-level isolation, enabling adaptation to diverse application demands.
Furthermore, the NMC control mechanism enables software-configurable and
CPU-transparent CNN execution, combining compile-time control of tiling,
loop scheduling, and memory partitioning with runtime coordination via
interrupt-driven synchronization and shared memory access.

Depending on the operation type, control is established using either a one-
hot or multiple-hot encoding scheme. Through the multiple-hot encoding
scheme, one (or multiple) NMC unit enters one of the following states, as
illustrated in the state machine diagram in Fig. 5:

• Configuration: each NMC unit is configured using hot encoding scheme
through the set_con f ig function. Furthermore, for validation purposes,
the configuration register within each NMC unit is individually acces-
sible by a get_con f ig function.

• Start: the NMC unit initiates an operation upon receiving the signal
from the nmc_start function. Each NMC unit starts either simulta-
neously or sequentially, based on the assigned priority and order of
operations.

• Stop: the NMC unit halts an operation upon receiving the nmc_stop
signal from software programming to terminate its computation cycle.

• Clear: the NMC unit is reset using the nmc_clear function during
Con f iguration/Stall states, allowing to reprogram as needed.
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• Stall: the NMC unit is paused or resumed externally using nmc_stall
and nmc_resume functions.

• Working: each NMC unit is in operation mode according to the config-
uration, with nmc_done signal to indicate the end of processing.

Furthermore, the NMC architecture incorporates a control mechanism that
regulates the access to the shared memory, alternating between two distinct
periods: access_allowed and access_not_allowed. During the set_con f ig phase,
an NMC unit is configured with its access rate, along with the parameters for a
designated CNN operation. The configurable memory access allows the NMC
unit’s operational period to be dynamically adjusted, serving as a tuning
parameter to manage priorities, particularly when the RISC-V core is handling
high-priority and memory-intensive tasks. The memory control mechanism
ensures flexibility and fair access distribution, optimizing resource allocation
based on real-time workload demands. In summary, the NMC unit includes
the following memory control states:

• NMC_memory_access_allowed
• NMC_blocked_by_core_access
• NMC_blocked_by_con f iguration

III.E. ACCELERATOR MODULES

Our proposed NMC architecture consists of the following modules for CNN
acceleration:

• Repurposed RAM macros for input feature map (IFMap) and output
feature map (OFMap) data

• NMC-controlled register file
• Address generator
• Access controller
• PEs

The CNN acceleration modules, enhanced memory bandwidth, and flexibility
of the proposed memory structure, result in an energy efficient architecture
that is capable of executing CNNs of diverse characteristics. The modular
nature of the NMC technique allows for a cost-effective integration of addi-
tional modules, thereby expanding the capability to support a wider variety
of workloads. Details of the accelerator are provided below.

1) RAM MACROS FOR IFMAP/OFMAP

As introduced in Section III-A, the proposed memory organization employs
both bank- and macro-level partitioning to optimize bandwidth, area, and
parallelism. Three design factors define the number of memory macros in the
breakdown structure of the NMC architecture: total memory capacity, number
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of banks, and number of PEs. Each bank is divided into two macro groups
dedicated to storing IFMap and OFMap data, and managing the associated
operations of CNN layers executed within the NMC unit. A ping-pong
mapping scheme, also known as double-buffering, synchronizes the loading
of IFMap and the reloading/storing of OFMap data, as shown in Fig. 6a. This
partitioning prevents data hazards and computational stalls in case IFMap
and OFMap data were stored in overlapping memory regions. Combined with
the macro-level memory organization, the ping-pong mapping ensures that
input activations are never overwritten by intermediate outputs, eliminating
the need for additional control logic.

2) NMC-CONTROLLED REGISTER FILE

Two multi-port 1 KB register files, serving as intermediate buffers for
IFMap/OFMap data and kernel weights, are employed. Given 16 PEs in each
NMC unit and the allocation of memory macros for IFMap/OFMap data, the
proposed setup features a 16R/16W buffer with a 1:1 aspect ratio, consisting
of 16 rows, each containing 16 words of 32-bit. The intermediate buffer
temporarily stores smaller chunks of data for spatial processing, reducing
energy costly memory accesses. Additionally, the small-sized intermediate
buffer helps to achieve high utilization of the IFMap data lifecycle. The
NMC-controlled register file adds an additional level to the existing memory
hierarchy, thereby enhancing computational performance. The intermedi-
ate buffer is conventionally considered as a means of addressing memory
bandwidth limitations. To accommodate variations of system requirements,
the relationship between the register file size, memory macros, and PEs is
parameterized.

The proposed register file is equipped with a data replacement policy,
with each data word containing two control bits: Dirty bit (D) and Valid bit
(V). Using control bits, similar to a hardware-controlled cache, the NMC-
controlled register file tracks the lifecycle of data elements. The following
scenarios based on the combination of "DV", according to occurrence order,
are provided:

• "00": No data is loaded into the register file.
• "01": Valid data is loaded into the pointed address in the register file

but has not yet been used.
• "11": The data at the referenced address is utilized, but its lifecycle is

not yet complete, as it will be used in subsequent operations.
• "10": The data in the pointed address is used, its lifecycle is over, and

can be replaced with new data for the upcoming operations.
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Fig. 6: (a) Illustration of output stationary dataflow for CNN processing
and the employed IFMap-OFMap mapping (ping-pong structure) of memory
macros within a single bank including partial sums accumulation (P), and
(b) an example of sliding IFMap pixels and 3×3 kernel elements across PEs,
producing 16 complete outputs in 9 clock cycles.

3) ADDRESS GENERATOR

The address generator module defines memory addresses according to the
dataflow specified for CNN operations. NMC data access in memories is
defined by IFMap/OFMap element column, IFMap/OFMap element row, and in-
put/output channel parameters that dictate the position of an element in a CNN
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layer. The NMC architecture includes hardware control parameters to specify
memory addresses from which data elements are loaded, stored, or processed.
The shared memory between the RISC-V and NMC units is governed by
the address generator, which checks accessibility and generates the proper
addresses for load/store operations in both IFMap/OFMap memory macros
and intermediate buffers.

4) ACCESS CONTROLLER

The access controller manages the synchronization of the memory load/store
operations for the IFMap and OFMap elements, together with the processing
operations of a CNN layer. Access to memory macros and the computation
process are governed by the parameters that define the CNN layer, deter-
mining whether requests for load or store operations are granted or blocked
through the generation of memory access request signals. Layer operation
and memory access requests are generated based on the status of the valid
bit in the buffer of the specified access element and the current availability
of memory, which is synchronized with access requests originating from the
RISC-V.

5) PE ARRAY

The PEs, 16 in each NMC unit, are arranged in a grid structure. Each PE
independently computes intermediate results by performing multiplication
of IFMap data with kernel weights and accumulation of partial sums (psum).
Two control signals govern the PEs operation: one triggers the loading of a
psum from the OFMap memory macros, while the other initiates the next
kernel multiplication.

The architecture flexibly supports configurable PE grid arrangements.
Aligning the number of PEs per row with the number of memory macros
allocated for IFMap and OFMap storage enhances computational efficiency
by enabling seamless parallel data access. This alignment reduces the risk
of stalls caused by overlapping compute, load, and store operations. As
computational efficiency depends on the number of active PEs during various
phases of layer execution, the proposed NMC architecture is optimized for
both compute performance and data access efficiency throughout the data
lifecycle.

III.F. DATAFLOW

The execution of a CNN layer involves a specific sequence of operations and
data organization patterns across memory and compute units. A dataflow
defines how input data is ordered and processed to generate outputs, sig-
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nificantly influencing required memory bandwidth, data reuse, and com-
putational efficiency. The NMC architecture features a parameterized and
flexible dataflow, designed to be configurable for a wide range of CNN
workloads. The dataflow for processing each CNN layer is determined by
five key parameters:

• IFMap size: input feature map dimensions.
• Kernel size: weight matrix dimensions.
• Input channel count: number of IFMap channels.
• Kernel count: number of OFMap channels.
• Stride: convolutional traversal step size over IFMap.

Different dataflows, including unicast, multicast, broadcast, systolic array, and
tree structures, can be tailored to specific application and system require-
ments [41]. The NMC unit, as illustrated in Fig. 6a, adopts a weight-unicast,
output-stationary (OS) CNN dataflow to enhance hardware adaptability by
optimizing local accumulation, reducing write-back memory traffic, and
enabling configurability of the processing scheme. This dataflow exploits
the lifecycle efficiency of IFMap data while leveraging convolutional data
reuse within the array. The processing of single OFMap channels (SOC)
and multiple OFMap-plane data (MOP), referred to as SOC-MOP OS, is
considered. Each cycle, the process controller streams IFMap data of one
channel into the PE array, while broadcasting a single kernel weight across
all PEs to compute partial sums. An example of a 3 × 3 kernel operation
is illustrated in Fig. 6b, showing how input data and kernel weights slide
through the PEs, where 16 output values are generated over 9 cycles. Keeping
intermediate results stationary within the array ensures efficient spatial reuse
and reduced memory accesses, increasing the utilization of computational
units. The choice of an OS dataflow provides high PE utilization via local
psum accumulation and reduced IFMap data transfers.

However, the SOC-MOP OS dataflow is a trade-off for layers where weight
parallelization is more dominant, like fully-connected layers in CNN, which
require higher memory bandwidth to achieve high processing capabilities.
Although the dataflow is fixed after synthesis, the system allows to mitigate
limitations by compile-time configurability:

• layer-specific configurations, along with compile-time tuning of tiling
factors, loop order, and data partitioning, to support varying CNN
architectures;

• flexible memory and address mapping strategies;
• flexible co-processing with the RISC-V core for handling unsup-

ported/irregular layers via hybrid execution.

103



3D Integration Technology and Near-Memory Computing for Edge AI

To maintain continuous PE activity and hide memory latency, the ar-
chitecture executes four concurrent operations, as shown in Fig. 7: layer
execution, IFMap loading, OFMap storing, and OFMap reloading (for psum
accumulation).
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Fig. 7: Timing diagram of an NMC unit acceleration workload, defining the
four simultaneous processes as part of the NMC’s dataflow, and including the
number of operations per clock cycle (CC).

The use of a small-sized register file, as intermediate buffer, guarantees
uninterrupted PE computations and enables parallel processing. Memory
access overhead is reduced by overlapping layer execution with IFMap load-
ing. Furthermore, the CNN dataflow behavior is governed by the same set
of layer parameters used in address generation, defining the spatial and
channel structure of each layer and determining the pattern of concurrent
data processing.

During convolution, each kernel channel accumulates partial results to
generate the corresponding OFMap channels. This process is repeated for
all kernels. The lifecycles of fetched IFMap data and kernel weights are
efficiently utilized by storing the intermediate OFMap values in memory,
and reloading them for accumulation as required by the layer’s execution
sequence. Accumulation is then completed by restoring OFMap data back
into the PEs, ensuring that OFMap data restoration is directly proportional
to the number of IFMap channels. Since the number of output channels
(defined by kernel count) typically exceeds the number of input channels,
the proposed dataflow reduces memory access by reusing IFMap data across
kernel passes, thereby avoiding repeated input memory loads for each OFMap
channel. The IFMap data is initially stored in SRAM macros and subsequently
transferred to register files, in accordance with the dataflow strategy. The
IFMap storage pattern ensures alignment with the processing sequence of
each NMC unit, supporting consistent and predictable memory accesses
throughout execution.
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III.G. DESIGN MODULARITY AND FLEXIBILITY

Each memory bank accommodates one NMC unit, and the number of banks is
configurable, enabling modular scalability for different architecture require-
ments. However, since each NMC unit embedded in a cache bank acts as
a primary component on the TCM interconnect, excessive scaling may lead
to increased overhead from additional data buses. Therefore, it is important
to maintain a balance between scaling the number of banks and NMC units
to increase parallelism, while keeping hardware costs and complexity low.
Utilizing the NMC modular structure and adjusting architecture parameters
such as the number of memory banks, the number of RAM macros per bank,
and the number of PEs, the architecture can be flexibly configured to meet
different performance and application needs.

Beyond hardware-level adjustments, our NMC architecture offers a re-
markable flexibility compared to fixed-function ASICs. A wide range of
CNN models are supported without requiring hardware re-synthesis, with
tiling, loop ordering and memory partitioning execution parameters defined
at compile time. Each NMC unit is independently configurable and operated,
allowing concurrent execution of different network layers or models. In
conjunction with the modular NMC architecture, the general-purpose RISC-
V core provides additional programmability to manage dynamic workloads,
tasks coordination, and system adaptability to application-specific require-
ments. The synergy between RISC-V core and NMC units enables efficient
workload distribution and multi-model support within a single hardware
instance.

IV. RESULTS AND DISCUSSION

This section presents an analysis of computational efficiency, data movement,
performance, energy efficiency, and area. Additionally, the simultaneous
operation of the NMC unit and the RISC-V is evaluated. While the design
has been validated both on FPGA and through ASIC integration, the results
presented in this article are based on the ASIC implementation. The design
is synthesized using a standard ASIC flow using Cadence Genus in Global-
Foundries 22 nm FD-SOI technology at a nominal supply voltage of 0.8 V.
Post-synthesis power consumption is estimated through simulation-based
power analysis, using Value Change Dump (VCD) switching activities, and
further analyzed with Synopsys PrimeTime. The power of the entire system,
including the NMC units integrated within the memory subsystem of the
MCU platform, is considered in the evaluation. A cycle-accurate performance
evaluation is ensured by including dedicated performance counters in the

105



3D Integration Technology and Near-Memory Computing for Edge AI

NMC units. The organization of the NMC unit allows flexibility in excluding
the performance counters from hardware synthesis, or retaining them in the
design for simulation purposes.

IV.A. NMC UNIT CONFIGURATION AND DATAFLOW

The proposed NMC architecture is integrated into the open-source platform
PULPissimo, which is a single-core RISC-V SoC derived from the low-power
PULP MCU [42]. The shared cache, composed of four repurposed memory
banks of 128 KB each, defines the design space of the NMC architecture,
enabling highly efficient CNN inference acceleration.

Fig. 8: VGG-16 architecture having convolutional layers of 3 × 3 kernel with
stride 1, and max-pool layers of 2 × 2 with stride 2.

The proposed design is benchmarked using convolutional layers of three
popular neural networks: MobileNet, ResNet, and in more detail VGG-16.
VGG-16 comprises a total of 16 layers, including 13 convolutional layers and
3 fully-connected layers, as shown in Fig. 8 [43]. The resulting quantized
model achieved a top-5 accuracy of 89.2 %, preserving inference fidelity to a
competitive degree for edge deployment. For evaluation purposes, emphasis
is placed on the workload of convolutional layers, given that fully-connected
operations account for less than 1 % of the total network workload. Moreover,
the scalability and flexibility of the architecture is realized by parameterizing
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Table 1: Configuration of each convolutional layer of VGG-16 processed in the
NMC architecture, including layers tiling.

Convolutional Layer
Configuration

1-1 1-2 2-1 2-2 3-1 3-2 / 3 4-1 4-2 / 3 5-1 / 2 / 3

IFMap size 224 224 112 112 56 56 28 28 14

#Channel 3 64 64 128 128 256 256 512 512

#Kernel 64 64 128 128 256 256 256 512 512

Kernel size 3 3 3 3 3 3 3 3 3

Tiling partition

#IFMap tile 4 4 2 2 1 1 1 1 1

#Chan. tile 1 16 16 32 32 64 16 32 16

#Kern. tile 16 16 32 32 64 64 64 64 32

Tile size

IFMap tile 56 56 56 56 56 56 28 28 14

#Chan. per tile 3 4 4 4 4 4 16 16 32

#Kern. per tile 4 4 4 4 4 4 8 8 16

various aspects of the design. Since the RISC-V system processes data in 32-
bit units and the memory word length aligns with this size, the parameters
are aggregated into a 32-bit word to achieve a single clock cycle configuration
step.

The NMC units are configured for sequential processing of CNN layers.
The configuration parameters, required for processing each convolutional
layer of VGG-16, are presented in Table 1. Due to the large size of each layer,
partial computation via tiling (segmentation) of layer parameters becomes
necessary, as illustrated in Fig. 9. Each layer adopts a specific tiling pattern
based on configurations optimized for NMC acceleration. The relationships
between tiling parameters and resulting tile sizes are exemplified in Equa-
tions 3, 4, and 5 for layer 1-1, with further details provided in Table 1.

IFMaptile =
IFMapsize
#IFMaptile

=
224
4

= 56 (3)

#Channelper tile =
#Channel

#Channeltile
=

3
1
= 3 (4)

#Kernelper tile =
#Kernel

#Kerneltile
=

64
16

= 4 (5)
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Fig. 9: Tiling illustration for the distribution of a convolutional layer into
NMC units. IFMap and kernels are partitioned in tiles, generating processing
batches that can fit in the memory subsystem of the design.

In the VGG-16 analysis, a bank-tiling strategy is applied, where each mem-
ory bank holds the data of a single tile. Based on layer characteristics, either
IFMap or kernel data partition is assigned per bank. This organization enables
efficient parallel processing across banks and complements the efficiency of
NMC data access.

IV.B. COMPUTATIONAL EFFICIENCY

This section evaluates computational efficiency of NMC, with emphasis on
in-core performance depending on on-chip data movement, memory band-
width, and operational intensity. In this context, computational efficiency
is defined as PE activity, representing the extent to which each PE operates
at its peak capacity. Assuming each PE performs at most one MAC per
cycle, computational efficiency is measured as the average number of MAC
operations executed per cycle per PE. In this study, an NMC unit includes
16 PEs arranged in a grid of 4 × 4, capable of executing up to 16 operations
per clock cycle. The first convolutional layer of the three aforementioned
CNN models is used to benchmark computational efficiency, as shown in
Fig. 10. Inputs of size 224 × 224 pixels with three channels are evaluated
across four kernel configurations: 1, 16, 32, and 64. The measured data is
presented alongside a trendline, smoothed using a moving average filter to
mitigate noise. Larger IFMaps demand greater parallelism, thereby increasing
computational efficiency.
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Fig. 10: Computational efficiency for the first convolutional layer of VGG-16,
MobileNet and ResNet processing (a) 1 kernel, (b) 16 kernels, (c) 32 kernels,
and (d) 64 kernels.

To assess performance on deeper layers, we evaluate the configurations
listed in Table 1 for the VGG-16 model. As shown in Fig. 11, the NMC ar-
chitecture achieves a computational efficiency of 96 % when processing layers
CONV1 to CONV4. Efficiency drops to 73 % for CONV5 layers due to the
smaller tiling sizes within the employed dataflow, as larger IFMap tiles yield
higher efficiency compared to smaller ones. Overall, the architecture achieves
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Fig. 11: Computational efficiency for processing VGG-16 convolutional layers,
calculated based on the utilization of PEs for each individual layer.

an average computational efficiency of 94 % across the entire network, which
is comparable to state-of-the-art (SoA) implementations.

IV.C. MEMORY ACCESSES

System efficiency, considering unavoidable energy-expensive memory ac-
cesses, is evaluated as the ratio of memory accesses to the amount of data
processed during runtime. In this study, a memory access refers to on-
chip memory read and write operations during CNN processing. Fig. 12
illustrates the relationship between the number of parameters in each con-
volutional layer, and the required memory accesses for both the NMC units
and the RISC-V running the same workload. The use of the proposed NMC
architecture effectively reduces on-chip memory accesses by a factor of 3.6×,
compared to the baseline scenario, where the CNN workload is managed
solely by the RISC-V core.

IV.D. PARALLEL PROCESSING: NMC VS RISC-V

In multi-core systems with a shared memory, balanced and fair access is
essential for maintaining consistent performance across all cores. To evaluate
parallel processing, shared scratchpad memory access is enforced for both
the RISC-V and NMC units, enabling direct assessment of system’s behavior
under simultaneous access conditions. In this scenario, the CONV1-1 layer of
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Fig. 12: Comparison of memory accesses between NMC architecture and
RISC-V core processing VGG-16 convolutional layers.

VGG-16 is mapped to the NMC units, while the final dense layer is assigned
to the RISC-V core. The system supports two operational modes:

• Sequential processing: the RISC-V performs pre/post processing tasks,
while the NMC units handle the execution of an intensive CNN work-
load.

• Parallel processing: both existing co-processing units execute tasks
concurrently.

In parallel operational mode, non-overlapping memory regions are explic-
itly allocated to avoid data hazards and the need for dynamic coherence
mechanisms. Task-level dependencies are resolved through a producer-
consumer execution model, coordinated via a dedicated interrupt line raised
by the NMC units to the RISC-V core upon task completion or termination.
This mechanism enables efficient resumption of post-processing without the
overhead of polling or unnecessary stalls.

The analysis of both operational modes is illustrated in Fig. 13a, showing
that the RISC-V processor, despite handling only approximately 20 % of the
total workload, remains active for a longer duration in sequential mode.
In contrast, the NMC units are responsible for 80 % of the workload, and
require less of the total active cycles. By enabling simultaneous memory
access without contention, the parallel processing mode achieves a 38 %
reduction in total active cycles compared to sequential execution, improving
the performance of the multi-core system.
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Fig. 13: (a) Comparison of sequential and parallel processing using the RISC-
V core and NMC units, (b) Performance comparison between the RISC-V and
NMC units for different convolutional layer kernel sizes.

The improvement in parallel processing is enabled by the memory parti-
tioning strategy, which forms a modular NMC unit per bank architecture.
The effective memory bandwidth for hardware acceleration is significantly
increased by providing CPU-transparent access to distinct memory regions.
In addition to memory-level optimizations, the proposed dataflow enhances
data reuse and reduces intermediate storage overhead through a computation-
aware execution strategy, resulting in superior computational performance of
the NMC units compared to the RISC-V core. The performance gap between
NMC units and RISC-V, when executing convolutional layers with varying
kernel sizes, is illustrated in Fig. 13b.

IV.E. PERFORMANCE AND ENERGY EFFICIENCY

Processing at the edge can be realized on various platforms, with the choice
of platform being crucial for balancing performance and energy efficiency.
Fig. 14 illustrates the trade-offs in performance and energy efficiency among
SoA CNN edge solutions across different platforms, including operating
frequency ranges. To ensure consistency, all performance metrics are nor-
malized to 8-bit precision by scaling with respect to operand word length.
For example, the performance of a 16-bit design is scaled by a factor of
2, consistent with the reported results in [48], under the assumption that
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Fig. 14: Performance and energy efficiencies comparison of various SoA
works, considering different platforms with results normalized to 8-bit, in-
cluding our NMC architecture.

its datapath can be adapted to execute two parallel 8-bit operations. As
shown in Fig. 14, ASICs and FPGAs achieve a higher performance with a
larger number of PEs offering faster computational capabilities. However,
ASIC-based accelerators are tailored to a specific application, and thus, lack
flexibility. FPGA-based solutions are configurable, but at the lower end of
energy efficiency. Moreover, MCU-based designs, positioned in the lower-left
region, exhibit reduced performance and energy efficiency, driving various
studies into optimization techniques for this platform. SoA co-processors
and clusters typically employ multiple RISC-V cores to handle computation-
intensive workloads. The proposed NMC architecture integrates specialized
PEs and a dedicated control unit directly within the shared memory, enhanc-
ing both efficiency and performance.

The hardware analysis of the NMC architecture, alongside SoA works,
is summarized in Table 2. Performance is expressed in giga operations
per second (GOPS), where each MAC accounts for two operations, i.e., one
multiplication and one addition. Performance and energy efficiency exclude
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Table 2: Comparison of the proposed NMC architecture with other edge
computing implementations.

Source
ZASCAD CARLA IECA Vega Dustin CNC NM-Carus

This work
[44] [45] [46] [47] [48] [49] [30]

Solution Accel. Accel. Accel. Cluster Cluster NMC NMC NMC

Technology 65 nm 65 nm 55 nm 22 nm 65 nm Intel 4 65 nm 22 nm

Area [mm 2] 6 6.2 2.75 12 10 1.92 0.42 1.45

Precision 16-bit 16-bit 16-bit 8 to 32-bit 2 to 32-bit 8-bit 8 to 32-bit 8 to 32-bit

PEs 192 196 168
27 +

16×RV
128 +

4 64 (128)
10×RV 8×RV

Memory [KB] 36.9 85.5 109 1728 208 512 32 512

Clock [MHz] 200 200 250 450 205 1150 330 200

Performance *
145 154.8 168 † 32.2 † 15 † 75.8 2.6 † 96 (192)

[GOPS]

Energy Eff. *
481.8 626.8 1466 † 1300 † 303 † 285 306.7 † 1828

[GOPS/W]

Area Eff. *
6.18 ‡ 14.8 ‡ 30.55 ‡ 4.53 2.16 ‡ 5.53 ‡ 1.37 ‡ 33.1

[GOPS/mm2/MB]

Comp. Eff. [%] 94 98 87 § 66 § 65 § 26 79 § 94

(Network) (VGG-16) (VGG-16) (VGG-16) (repVGG) (ResNet8) (MANN) (Conv2D) (VGG-16)
* Normalized as function of 8-bit precision. † Peak theoretical. ‡ Technology scaling according to [63]. § Projected from
reported results.

expenses of external data accesses to DRAM. The proposed architecture
achieves the highest energy efficiency among all evaluated works, specifically
25 % higher than IECA [46], 28 % higher than Vega [47], and up to 84 %
higher than other designs. PEs and data access mechanisms consume the
largest amount of power during computation, and architectures with larger
PE arrays tend to incur higher energy costs. The high energy efficiency of
this design is primarily attributed to the high computational efficiency of PEs
and reduction of redundant accesses through an optimized dataflow, with
additional contribution from the underlying implementation technology. The
flexibility of the proposed NMC architecture enables configuration tailored
to a specific application. Modularity implies that performance is adjustable
by the number of PEs, precision, and memory capacity, as illustrated in
Fig. 15. Thus, the architecture has the advantage of being as flexible as an
MCU platform, while providing a performance achieved with rigidly custom
designed accelerators. IECA [46], ZASCAD [44], and CARLA [45] report
higher raw throughput in their respective setups. However, performance
projections for a 128-PE configuration of our architecture indicate superior
performance compared to the competitive designs analyzed in the study. This
advantage is primarily enabled by efficient scalability of the architecture and
enhanced parallelism.
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Fig. 15: Architecture scalability relation to performance at 200 MHz, according
to the number of PEs.

In terms of computational efficiency, the proposed NMC architecture out-
performs all evaluated works, with only ZASCAD [44] and CARLA [45],
achieving comparable level of efficiency. Multi-core RISC-V cluster-based
designs, such as Vega [47] and Dustin [48], offer flexibility through low-
power general-purpose cores. However, their lower computational efficiency
for CNN workloads results in reduced performance and energy efficiency
compared to the proposed design. A clock frequency of 200 MHz is selected
to ensure a fair comparison with the evaluated SoA techniques. At this fre-
quency, the proposed MCU-based NMC architecture achieves 1828 GOPS/W
energy efficiency and a high computational efficiency of 94 %, enabling
enhanced processing capabilities for various CNN models. Notably, com-
pared to the evaluated NMC designs, i.e., NM-Carus [30] and CNC [49] in
Table 2, the proposed NMC architecture demonstrates superior performance
and efficiency for its nature of integrating tailored PEs within the memory
subsystem of an MCU platform.

IV.F. AREA

The 512 KB shared cache memory occupies a significant portion of the SoC
area. Fig. 16 presents the synthesis-based area distribution for a single mem-
ory bank within the cache memory subsystem, including the area breakdown
of an NMC unit logic. Each bank consists of eight memory macros and an
NMC unit, with SRAM cells occupying 69 % of the area, while the remaining
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(24%)

NMC Cntrl.
(10%)

(b)

Fig. 16: (a) Area decomposition of a single memory bank consisting of mem-
ory macros and an NMC unit, (b) area decomposition of NMC components.

31 % is allocated to NMC components, as shown in Fig. 16a. Overall, the NMC
unit integrated into the cache memory subsystem accounts for one-third of the
total SoC area. Additionally, Fig. 16b illustrates the internal area distribution
of the NMC unit, including PE array and intermediate register files (RegFile).
Gate-level synthesis results reveal that the MCU platform with the integrated
NMC architecture consists of 7.2 million gate equivalents (GE), measured
in minimum-sized two-input NAND gates, with 5.3 million GE dedicated
to the RISC-V core, private and shared memories, and SoC’s peripherals.
As shown in Table 2, the area efficiency, measured in GOPS/mm2/MB to
account for memory size, is 33.1 for the proposed design. This represents
an 8% improvement over IECA [46], a 2.2× gain over CARLA [45], and
between 5.3× and 24× higher efficiency compared to the remaining designs,
which accounts for an efficient memory utilization in our design. Fig. 17
illustrates a layout view for the physical placement of a single NMC unit
and its associated logic blocks in relation to the SRAM macros, reflecting the
macro-level partitioning strategy. The complete system, comprising 32 macros
and four NMC units across four memory banks, replicates the representation
of the presented single NMC unit. According to floorplan constraints, the
system can be adapted to different physical placement scenarios.

IV.G. RESEARCH CHALLENGES AND FUTURE WORK

While the proposed NMC architecture demonstrates high energy efficiency
and scalability for CNN workloads, some constraints arise from its current
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Fig. 17: NMC unit layout including memory macros and hardware accelera-
tion components.

optimization focus. The design targets dense computation patterns, making
it well-suited for many edge AI tasks. Although sparse CNNs, GCNs, and
irregular models, e.g., RNNs or Transformers, can be executed using dense
representations, the architecture requires hardware level optimizations to ex-
ploit sparsity, including zero-skipping or sparse data decoding mechanisms,
which are promising directions for future work. The use of conventional
SRAM simplifies integration with a standard CMOS design flow and ensures
predictable behavior, but adapting to emerging memory technologies may
require changes to accommodate differing latency, endurance, or control
requirements. While the architecture supports modular scaling, increasing
the number of NMC units introduces interconnect and arbitration complexity,
requiring careful balancing in larger systems. Overall, the modular and
software-configurable design provides a solid foundation for extending sup-
port to broader workloads and memory platforms in future iterations.

V. CONCLUSION

This study presents an efficient near-memory computing hardware acceler-
ation architecture for processing NNs (specifically CNN) on edge devices.
The NMC architecture is integrated as a co-processor in the shared cache
system of an MCU, by interleaving the memory with computation logic in
a non-intrusive manner, while employing conventional SRAM. The proposed
design demonstrates scalability across diverse CNN applications through a
fully parameterized architecture and platform-agnostic integration, enabling
computation to be efficiently pushed closer to the data source. The study
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is benchmarked with popular CNN models and compared to state-of-the-
art solutions. The design evaluation is capable of delivering 96 GOPS and
1828 GOPS/W for 8-bit precision at a clock frequency of 200 MHz. An efficient
hardware solution is demonstrated by achieving a computational efficiency of
94 % during simultaneous operation with a RISC-V core. The modular design
and software-configurable execution further distinguish the architecture from
ASICs tailored to a specific application, enabling broader adaptability across
diverse edge AI workloads. While the current implementation is optimized
for dense CNNs, the architecture can functionally evaluate sparse and irreg-
ular models using dense representations. However, realizing the efficiency
benefits of sparsity would require additional hardware support, which is
considered for future extensions of our work.
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NMCu-CNN: A Scalable Near-Memory
Computing Co-Processor on a RISC-V

MCU in 22 nm FDSOI

This paper presents NMCu-CNN, a near-memory computing (NMC) co-
processor for the hardware acceleration of convolutional neural networks
(CNNs) on a low-power, flexible MCU platform. The scalable architecture
and the selected platform enable adaptability to the rapidly evolving
Edge AIoT landscape, where energy and performance requirements are
constrained. Application-tailored NMC units, equipped with an optimized
CNN dataflow, are integrated into the shared memory address space of a
RISC-V-based MCU. The proposed architecture supports highly flexible
runtime configurability, achieving 94 % computational efficiency. Fabri-
cated in 22 nm FDSOI technology, NMCu-CNN delivers a performance of
203 GOPS and an energy efficiency of 1716 GOPS/W (1.7 TOPS/W) bench-
marked on convolutional layers of a CNN model, outperforming the pro-
cessing capabilities of other state-of-the-art techniques.
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Paper IV

I. INTRODUCTION

In the era of Artificial Intelligence of Things (AIoT), the growing volume of
data from distributed sources, such as sensors, coupled with rising concerns
about latency and privacy, is driving the need for local data processing [1].
Higher processing demands have accelerated the adoption of edge computing,
where data is processed near its source to reduce communication overhead
and improve responsiveness [2]. Among edge workloads, Convolutional
Neural Networks (CNNs) are especially prominent due to their effectiveness
in vision-centric tasks such as image classification, object detection, and
segmentation [3]. However, deploying CNNs at the edge is challenging due to
limited computational and energy resources, necessitating hardware-efficient
processing techniques.

In-memory and near-memory computing (IMC and NMC) have emerged
as key near-data processing paradigms for accelerating CNN inference on
resource-constrained platforms. IMC tightly embeds computation within
memory arrays, achieving high peak performance for fixed-function models.
However, disruption of conventional memory architectures limits scalability,
increasing design complexity, and offering limited system-level performance
compared to peak throughput in niche applications [4]. In contrast, digital
NMC offers a more scalable and flexible alternative that integrates logic in
close proximity of memory with standard design flows. As neural networks
evolve and edge devices are expected to support diverse applications of vary-
ing sizes, efficient NMC integration into general-purpose programmable cores
enables high-performance while preserving modularity and specialization.

This work introduces NMCu-CNN, a near-memory co-processor designed
to efficiently address the challenges of AIoT applications based on the princi-
ples of our NMC framework presented in [5]. The architecture is tailored
for seamless integration into low-cost, RISC-V-based microcontroller units
(MCUs), and embedded in the shared memory subsystem. The proposed
NMC architecture offers the following advantages: (1) runtime configura-
bility, enabling adaptation of the hardware to application-specific require-
ments and support for a wide range of CNN models and sizes; (2) high-
performance, low-power parallel processing, achieved by efficiently offload-
ing computation-intensive edge AI tasks to NMC units while preserving the
flexibility of a software programmable main core; and (3) low integration
effort, ensured by compatibility with foundry-supplied optimized SRAMs and
standard digital design flows, allowing for scalable parallelism through the
modular addition of multiple NMC units.

The remainder of this paper is organized as follows. Section II describes the
hardware implementation of the proposed NMC architecture and the adopted
dataflow. Measurement results are presented in Section III, followed by a
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discussion and comparative analysis with state-of-the-art (SoA) in Section IV.
Finally, Section V summarizes the key challenges and contributions of this
work.

II. NMCU-CNN IMPLEMENTATION

This study presents the hardware integration of an NMC co-processor in a
RISC-V platform. Key design metrics and trade-offs, i.e., performance, energy
efficiency, programmability, and configurability, are explored to meet the
diverse and dynamic computational demands of edge AI. NMC was chosen
as a suitable technique for hardware acceleration considering throughput and
energy. Moreover, from a system perspective, NMC is a leading solution
in terms of scalability, engineering overhead, and technology portability. To
support a wide range of CNN models with varying sizes and characteris-
tics, the architecture incorporates a parameterized hardware architecture and
dataflow, specified at RTL level.
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Fig. 1: High-level view of our proposed NMCu-CNN architecture including
system integration and design modules.
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II.A. HARDWARE ARCHITECTURE

NMCu-CNN is implemented as a fully digital co-processor, integrated into
the memory subsystem of a RISC-V-based MCU using Codasip Studio [6],
a commercial design platform for customizable low-power processors. At
system level, the design features a 512 KB tightly coupled memory (TCM)
divided into four banks. A physical memory partition reduces contention
during concurrent memory access of multiple processors. Prior studies
demonstrated that a ratio of two between the number of memory banks
and processors is appropriate [7, 8], and thus, adopted in this architecture.
The proposed memory partitioning forms the foundation of a multiprocessor
system-on-chip (MPSoC), comprising an NMC co-processor, implemented as
four independently configurable units, alongside a 32-bit general-purpose
RISC-V core (RV32IMCB), all sharing access to the unified address space of a
scratchpad memory (SPM), as shown in Fig. 1.

The design supports architecture scalability through a configurable mem-
ory partitioning scheme at both bank and macro levels. At bank level,
each NMC unit operates in a dedicated memory bank, allowing indepen-
dent process execution per bank. At macro level, fine-grained partitioning
enhances effective memory bandwidth by allocation of memory macros to
the processing elements (PEs), which are tailored for an efficient hardware
acceleration. The proposed architecture consists of eight macros per bank,
increasing memory bandwidth up to 32× compared to the RISC-V core. The
macro fine-grain memory structure is transparent to the RISC-V, avoiding
specific software intervention. However, macro level partitioning is explicitly
structured to apply parallelism and locality to the NMC units, allowing
efficient data streaming and scheduling.

Control and synchronization between NMC units and RISC-V core is
organized via dedicated I/O channels over the advanced high-performance
bus (AHB) interconnect. Memory access requests, from both the RISC-V core
and the NMC units, are arbitrated to the shared RAM macros within each
bank, as shown in Fig. 2. A Round-Robin arbitration mechanism schedules
concurrent accesses across the eight macros in each bank, ensuring consistent
latency and fair access while avoiding starvation. To further mitigate memory
contention and prevent data corruption, a utility-based static partitioning
scheme, adjustable at runtime, is used to isolate memory regions. Task-level
dependencies are resolved through interrupt-based synchronization, using a
dedicated interrupt line from each NMC unit to the RISC-V core, avoiding the
need for polling and reducing processor overhead.
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Fig. 2: NMCu-CNN and RISC-V core memory access waveforms.

II.B. DATAFLOW

Runtime configurability and workload adaptability are central to NMCu-
CNN, which contains a customizable dataflow, tailored to the optimized data
movement requirements of specific applications. The flexible organization of
memory banks and macros promotes design reuse, and also guarantees long-
term adaptability. Combined with the general-purpose programmability of
the RISC-V core, the architecture efficiently handles workloads of different
nature in a combined NMC-RISC-V computing scenario, ensuring sustained
relevance as AI workloads evolve.

1) CONFIGURABILITY

Each NMC unit is configured through software-controlled memory-mapped
registers, accessible via C/C++ software programming on the RISC-V core.
This interface enables individual control and data movement using a dedi-
cated range of virtual addresses. CNN-specific settings are encoded as 32-
bit words and transmitted to NMC units in two consecutive vectors using
predefined function calls, as illustrated in Fig. 3. The first vector specifies
layer parameters such as input feature map (IFMap) size, number of channels,
kernel size, and output feature map (OFMap) size. The second vector
contains auxiliary settings, including quantization mode, padding, pooling,
and activation function. Both vectors are stored in the configuration registers
of each NMC unit. All external control of the NMC units is managed from
software, and upon completion of any operation, a dedicated interrupt line
triggers a task-synchronization signal to the RISC-V core.

2) EXECUTION MODEL

The architecture adopts an output-stationary (OS) weight-unicast dataflow
for convolutional operations considering pooling sampling. This dataflow
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Fig. 3: CNN dataflow and setup configuration for controlling NMCu-CNN.

strategy reduces the need for temporary memory storage of partial out-
puts and applies IFMap data reuse, significantly reducing energy-intensive
data movement and improving overall efficiency. The execution follows a
scheduling model that is aware of data dependencies, reducing idle cycles
and avoiding redundant memory transactions. A double buffering ping-
pong scheme enables concurrent data transfer and computation, ensuring
continuous utilization of processing resources.

The PEs are arranged in a grid and equipped with local registers and
accumulators to perform multiply-accumulate (MAC) operations. The array
size is determined at RTL level based on the available memory macros per
bank and the intermediate buffer allocation for input and output streaming.
In the implemented configuration, each bank includes a 4 × 4 PE array per
NMC unit, totaling 64 PEs across the system. This configuration provides
sufficient internal bandwidth to support double buffering and stalling-free
streaming, allowing high-throughput operation under the OS dataflow model.

III. MEASUREMENT RESULTS

NMCu-CNN is fabricated in GlobalFoundries (GF) 22 nm FDSOI technology.
The chip is organized into multiple power domains, where memories and
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Fig. 4: Custom-designed PCB for measurement (left), and micrograph of the
fabricated chip (right).

NMC units are grouped together. Thereby, a flexible testing and performance
evaluation under various conditions is enabled. A die micrograph of the
fabricated SoC, along with the custom-designed printed circuit board (PCB),
is shown in Fig. 4. For benchmarking, the NMC units are configured with
representative convolutional layers of VGG-16 neural network according to
the configuration setup defined in Fig. 3.

Measurements are performed at room temperature (≈ 25◦C), using an on-
chip tunable ring oscillator, which facilitates frequency and supply voltage
(VDD) scaling. Maximum operating frequency and computational perfor-
mance are characterized by varying VDD of the memory-NMC units. The
minimum operating voltage, which passes the benchmark tests without
accuracy loss, is recorded at 600 mV, supporting a frequency of 100 MHz,
see Fig. 5a. The nonlinearities in frequency response to VDD stem from
variations of the nonlinear control of the ring oscillator and second-order
device effects reducing effective threshold voltage. Accuracy measurements
sweeping VDD and clock frequency are presented in Fig. 5b, where color-
coded boxes represent computation accuracy.

Multiple configuration scenarios are evaluated by activating one, two,
and four NMC units. During a full system utilization, all 64 PEs operate
concurrently. The modular architecture enables an advantageous scalability,
where performance increases proportionally to the number of active NMC
units. A controlled disposition of active banks demonstrates the adaptability
and scalability of the proposed parameterized architecture, as illustrated in
Fig. 6a. The maximum measured performance, for 8-bit precision operations,
is 203 GOPS at 420 MHz, with an overall computational efficiency of 94 %.
A voltage sweep from 600 mV to 950 mV results in a 4.2× improvement in
performance. Furthermore, the energy efficiency of the NMCu-CNN across
different configurations is presented in Fig. 6b. Parallel processing using four
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Fig. 5: (a) Operational frequency across the supply voltage range VDD, and (b)
Shmoo plot of frequency and computation accuracy as function of VDD.
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Fig. 6: Design modularity evaluation as a function of active NMC-memory
banks and their impact on (a) performance and (b) energy efficiency.

NMC units, compared to a single unit, leads to a 1.4× improvement in energy
efficiency in the low-voltage region, i.e., 600 mV. Operating at higher frequen-
cies achieves a higher performance, whereas energy efficiency improves at
lower voltages, which stems from the quadratic dependence on the operating
voltage. Consequently, when utilizing four NMC units in parallel, reducing
the supply voltage from 0.95 V to 0.6 V results in a 2.4× improvement in
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energy efficiency. The peak energy efficiency is observed under low-voltage
operation, reaching 1716 GOPS/W (1.7 TOPS/W) at 100 MHz and 600 mV.

IV. DISCUSSION

To highlight the significant improvements in metrics achieved by the tailored
NMCu-CNN architecture, an identical convolutional workload is executed by
both the RISC-V, working as central core of the MCU platform, and NMC
units. A comparison of active power consumption of the general-purpose
RISC-V core and NMCu-CNN, including the computational efficiency of the
four banks during runtime, is shown in Fig. 7a. Due to the significantly higher
performance and reduced latency, NMCu-CNN completes workloads in a
much shorter time frame, resulting in a transient rise in power profile confined
to a brief execution period. In contrast, the RISC-V core consumes power
continuously throughout the entire execution period, leading to a higher total
energy consumption. Furthermore, Fig. 7b presents a normalized comparison
of performance and energy efficiency for both architectures under the same
workload. The results show that NMCu-CNN delivers a 361× increase in
performance and a 28× improvement in energy efficiency compared to the
RISC-V baseline.
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Table 1: Measurement results and comparison with SoA.

Source CNC [9] Darkside [10] SamurAI [11] Vecim [12] This work

Technology Intel 4 65 nm 28 nm 65 nm 22 nm

Type NMC Cluster Accelerator IMC NMC

Die area [mm2] 1.9 12 4.5 4 2.3

Voltage [V] 0.55 - 0.85 0.75 - 1.2 0.45 - 0.9 1 0.6 - 0.95

Max. Freq. [MHz] 1150 290 350 250 420

Precision [bits] 8 2 to 32 8 8/bf16/fp16 8 to 32

Memory [KB] 512 384 464 16 512

Processing Units 128 8×RISC-V 64 - 64

Performance
75.8 17 36 32 203 a

[GOPS] *

Area Eff.
11.1 10.1 8 56.4 88.3 a

[GOPS/mm2] †

Energy Eff.
285 191 1300 289 1716 b

[GOPS/W]

Comp. Eff. [%] 26 91 87 - 94
* Normalized to 8-bit precision. † Scaled to 22 nm according to [13].
a @420 MHz (0.95 V). b @100 MHz (0.6 V).

The measurement results are summarized and compared with other SoA
works in Table 1. To ensure a fair and accurate comparison, variations in pre-
cision and area of technology nodes are considered, and the reported values
are normalized accordingly. Performance is represented in giga operations
per second (GOPS), normalizing the results to 8-bit precision. Additionally,
area and energy efficiency are calculated according to chip dimensions, con-
sidering technology scaling, and power consumption, respectively. A compute
near last level cache (CNC) design using an NMC technique is implemented
in [9], where performance and energy efficiency are achieved by extending
RISC-V to perform MAC operations on an eight-core processor. Darkside
[10], includes a RISC-V cluster with three specialized digital accelerators,
while SamurAI [11] combines a machine learning accelerator together with
a RISC-V. Alternatively, [12] includes a vector co-processor with IMC, where
performance is evaluated by matrix multiplication. The results demonstrate
that our work achieves 2.7× higher performance and 8× higher area efficiency
than the NMC technique in [9]. Our NMCu-CNN achieves the highest energy
efficiency, i.e., more than 30 % higher than [11]. Compared to other SoA de-
signs, NMCu-CNN achieves more than 6× higher energy efficiency. Although
part of the energy gain is attributed to the use of an advanced technology
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node, the margin remains large enough to still outperform existing solutions.
Furthermore, the higher computational efficiency of NMCu-CNN reflects a
higher ratio of executed operations to the theoretical peak, outperforming the
other works evaluated in this study.

The 2.3 mm2 area of our SoC implementation includes a RISC-V core
as central processing unit, 32 KB of CPU private memory, and four re-
purposed shared memory banks integrating our NMCu-CNN design near
SRAM macros, as shown in Fig. 8. The area breakdown shows that ≈ 69 % of
the design is occupied by SRAMs, while NMC logic represents ≈ 29 % of the
SoC, offering a digital integration of less than half the memory area.

SRAM (68.9%)

NMCu-CNN
(29.5%)

RISC-V
(1.6%)

IFMap Reg. File (12.9%)

PE Array (6.9%)

Kernel Reg. File (6.4%)

Addr. and Req. Gen (2.5%)

Dataflow and FSM (0.5%)

Reg-map Control (0.3%)

Fig. 8: Area breakdown, including NMCu-CNN integrated near SRAM.

V. CONCLUSION

In this article, we present NMCu-CNN, a parametrized NMC architecture
with runtime configurability for CNN workloads. NMCu-CNN is inte-
grated as a co-processor in the memory subsystem of a low-power RISC-
V-based MCU. The non-intrusive architecture, fabricated in 22 nm FDSOI
technology, is fully compatible with foundry-supplied SRAMs, and provides
enhanced memory bandwidth for hardware acceleration. The measurement
results indicate that, with an overall computational efficiency of 94 %, the
design achieves a performance of 203 GOPS, and an energy efficiency of
1716 GOPS/W (1.7 TOPS/W).
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LUCIA: Compute Inter-chip Architecture
for Multi-chiplet Acceleration in 22 nm

FDSOI

Chiplet-based architectures have emerged as a robust system-in-package
(SiP) design paradigm, enabling scalability and parallel processing for dis-
aggregated high-performance computing systems. In this work, we present
LUCIA, an architecture for multi-chiplet systems optimized for convolu-
tional neural network (CNN) acceleration through configurable hardware
engines and distributed workload mapping. The design integrates near-
memory computing (NMC) units in close proximity to memory banks and
is tightly coupled with a low-power RISC-V processor. Dedicated memory
control units facilitate efficient intra-chiplet and inter-chiplet data transfers,
minimizing latency and maximizing bandwidth utilization. Fabricated in
22 nm FDSOI technology, LUCIA achieves a peak operating frequency of
565 MHz and demonstrates an energy-area efficiency of 0.83 TOPS/W/mm2,
outperforming comparable state-of-the-art implementations.
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"LUCIA: Compute Inter-chip Architecture for Multi-chiplet Acceleration in
22 nm FDSOI".
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I. INTRODUCTION

The rapidly expanding ecosystem of artificial intelligence of things (AIoT)
with distributed processing on local devices demands hardware architectures
that provide high performance while adhering to the memory and energy
constraints of edge devices. The implementation of large designs on a single
monolithic die carries a high risk of yield issues, as even a single fabrication
defect can render the entire die unusable [1]. Consequently, disaggregating
a well-optimized large system into interconnected chiplets to form a parallel,
distributed, and modular processing architecture has emerged as a promising
approach to improve yield and enhance edge devices capabilities for hard-
ware acceleration. However, chiplet-based architectures require dedicated
workload partitioning, task scheduling, and inter-chip communication, which
poses significant challenges.

Manticore [2] and Occamy [3] introduce large chiplet-based architectures
with many RISC-V cores for data parallelization, using a passive silicon
interposer as the interconnection medium. As an alternative to a large cluster
of RISC-V cores, the integration of tailored hardware acceleration units with
low-power general-purpose platforms enables to combine resources, offering
efficient solutions to process computation-intensive tasks on edge devices.

This work introduces a customized near-memory computing (NMC) in-
tegration technique [4], purposefully engineered to exploit the parallelism
and data locality of a multi-chiplet architecture. The proposed architecture
processes convolutional neural network (CNN) models through modular
workload distribution and task mapping strategies for high performance,
energy, and area efficiency. The contribution of this work centers on a versatile
and scalable processing platform, accomplished by an efficient integration of
computing and memory units with an intra-chiplet data transfer scheme. Fur-
thermore, the proposed architecture includes a low-cost peripheral memory
access interface for inter-chiplet communication.

II. LUCIA IMPLEMENTATION

The LUCIA architecture integrates near-memory computing (NMC) units
alongside the memory banks of a RISC-V-based processing platform enabling
tightly coupled hardware acceleration, as shown in Fig. 1. This shared integra-
tion of compute and memory forms the architectural backbone of a scalable
implementation for a chiplet, where distributed NMC banks minimize data
movement and enhance parallelism.

In this study, a custom-developed printed circuit board (PCB) that meets the
demands of redistribution layer (RDL) is used for chiplet assembly, emulating
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Fig. 1: High-level view of the LUCIA implementation with memory access
units and embedded NMC units for hardware acceleration.

the use of an organic or silicon interposer. The proposed framework estab-
lishes a foundational scenario for achievable higher-density integration in
multi-chiplet systems through advanced packaging techniques. Data transfer
flexibility is enhanced by equipping LUCIA with two specialized memory
access units: a direct memory access (DMA) engine for intra-chiplet data
movement, and a peripheral memory access (PerMA) unit designed for low-
latency inter-chiplet communication. To mitigate contention between NMC
bank units and peripheral modules, the DMA engine is partitioned into two
independent units: system-DMA and NMC-DMA. While the system-DMA
functions as a conventional controller for general data transfers, the NMC-
DMA is dedicated to orchestrating high-throughput communication across
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memory banks, ensuring conflict-free access and sustained performance.
LUCIA is equipped with three PerMA modules: east and west links for
communication with adjacent chiplets, and a north link interfacing a central
host.

The memory sub-system is partitioned into four memory banks, integrating
one NMC unit each. The hardware acceleration NMC units are configurable to
operate either cooperatively or independently, allowing flexible task schedul-
ing within the multi-bank architecture, and thereby supporting distributed
edge AI applications.

II.A. MEMORY SUB-SYSTEM

The on-chip memory, as part of a tightly integrated sub-system, facilitates
concurrent and low-latency access by both the RISC-V core and the NMC
units. This is achieved through a shared banking strategy that minimizes
load capacitance and maximizes operating frequency, while mitigating access
contention [5]. By provisioning multiple accelerator engines with a unified
memory pool, the design eliminates data duplication and reduces overall
storage requirements, resulting in substantial improvements in area efficiency,
power consumption, and memory bandwidth utilization.

In alignment with these design principles, each bank of the LUCIA memory
sub-system is partitioned into sixteen 16 kB SRAM macros, enabling high-
throughput parallel access and significantly increasing aggregate bandwidth
for hardware acceleration. The nominal memory bandwidth is preserved
for RISC-V core accesses and external interfaces to maintain system-level
consistency. In contrast, the bandwidth available to NMC units is scaled by
a factor of 16—from 32 bit/cycle to 512 bit/cycle—matching internal macro
parallelism and supporting wide concurrent data transfers. This elevated
communication rate imposes stricter demands on data orchestration and
introduces control overhead, which can impact implementation efficiency.
For that reason, intra-chiplet DMA modules retain the baseline 32 bit/cycle
transfer rate for streamlined integration, and PerMA modules utilize a 2-bit
transmitter-receiver interface to balance throughput and complexity. Addi-
tionally, the architecture incorporates a tunable on-chip ring oscillator (RO) for
dynamic voltage and frequency scaling (DVFS), alongside GPIO and debug
ports for external control and real-time monitoring via the RISC-V core.

Each NMC bank is configured to accelerate convolution and matrix mul-
tiplication workloads using 8-bit precision for multiplication and 32-bit reg-
isters for accumulation. Each embedded NMC architecture integrates a ded-
icated data address generator (DAG) module that orchestrates fine-grained
access control to SRAM, coordinated by an orchestration controller imple-
menting an output-stationary scheduling strategy. Within each bank, two

147



3D Integration Technology and Near-Memory Computing for Edge AI

register arrays—holding input and weight data, feed into dual 4×4 processing
element (PE) matrices. Each PE cluster performs four parallel multiply-
accumulate (MAC) operations and locally accumulates partial sums, enabling
independent output computation. A high-throughput data scheduler en-
sures continuous parallel access to input data, leveraging enhanced memory
bandwidth and tightly coupling compute with memory. For convolutional
operations, the input channel data is distributed across memory banks, with
the scheduler optimized for local data reuse, thus maximizing parallelism and
minimizing data movement, as illustrated in Fig. 2.

Inference-time quantization is applied in a pipelined fashion to output com-
putations, followed by activation via a dedicated module that supports ReLU
and other nonlinear functions through configurable lookup tables, whose
parameters are dynamically loaded during system initialization. A register-
mapped control interface orchestrates the operation of the LUCIA architec-
ture, with start, stop, and configuration registers defining the execution state
of each NMC bank. Each NMC–DMA module is programmed with memory
pointers, data dimensions, and access sequencing to ensure conflict-free trans-
fers and prevent data overwrites, while maintaining high-throughput inter-
bank communication. The PerMA modules act as lightweight, autonomous
external communication endpoints, eliminating the need for register-mapped
configuration and reducing control overhead. Synchronization between the
RISC-V core and NMC banks is achieved via an interrupt-driven mechanism,
while inter-bank data streaming is managed by the DMA engine to maintain
balanced workload distribution. The DMA engines support multiple data
partitioning schemes, enabling flexible reuse of input activations and weights
across accelerator engines, thereby optimizing memory bandwidth, reducing
redundancy, and improving overall system efficiency.

II.B. VERSATILE CHIPLET CONFIGURATION

LUCIA is optimized for high-efficiency acceleration of convolutional and
fully-connected layers in CNNs, with a modular chiplet-based design that
enables scalable extension to broader neural network (NN) workloads. Fig. 2
illustrates the NN partitioning strategy across the multi-bank system: Parti-
tion A distributes input activations across banks to exploit parallel data access,
while Partition B assigns kernel weights across banks to enable concurrent
computation. This partitioning scheme maximizes compute density and
memory bandwidth utilization, while minimizing external communication
overhead.
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Dataflow for a single bank conv configuration
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Fig. 2: Data scheduler for convolution operations with parallel memory
accesses, and partition strategy for multi-bank computation.

III. MEASUREMENTS

LUCIA is fabricated in GlobalFoundries (GF) 22 nm FDSOI technology, occu-
pying a compact core area of 2.28 mm × 1.78 mm. A custom-designed PCB
serves as the integration platform, providing high-speed I/O interfaces, clock
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Fig. 3: Measurements test platform including PCB for multi-chiplet assembly,
with a zoom on LUCIA architecture and low-level modules.

distribution, debug access, and power delivery for all parts of the design. The
measurement setup offering up to four chiplets assembly, illustrated in Fig. 3,
includes a micrograph of the LUCIA implementation, highlighting the spatial
organization of the NMC memory banks. The architecture is centered around
a RISC-V core, which acts as a general-purpose central unit, surrounded by
memory blocks (shown in purple) and peripheral modules. Three PerMA
units enable external communication, while DMA engines are strategically
placed to facilitate high-throughput internal data movement. Measurements
are conducted at ambient temperature, with dedicated debug ports enabling
fine-grained chiplet programming and evaluation. Convolutional layers are
used as benchmark workloads to assess performance and energy efficiency
across varying configurations, i.e., from single-bank to multi-bank NMC
processing. The voltage-frequency characterization is performed for the four-
bank configuration, as shown in Fig. 4a, revealing two distinct operating
regimes: a low-power mode optimized for energy-per-cycle, and a high-
performance mode supporting elevated throughput. The execution time
evaluation of four VGG-16 convolutional layers tiles considering a partition
strategy A, with input data distributed across the four NMC banks, is shown
in Fig. 4b. Inter-bank data transfer using the custom NMC-DMA engine
reduces execution time by 34 % compared to transferring data between banks
using the RISC-V core.
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Fig. 4: (a) Measured operational frequency and energy response to the supply
voltage (VDD), and (b) VGG-16 convolutional layers execution time with intra-
chip data transfers comparison between RISC-V and NMC-DMA.

Performance evaluation, shown in Fig. 5a, is conducted across multiple
active-bank configurations, with each MAC operation counted as two arith-
metic operations. Under full parallel activation of four NMC banks, the
LUCIA implementation achieves a peak throughput of 0.58 TOPS. Energy
efficiency, detailed in Fig. 5b, reaches 3.4 TOPS/W in the low-power oper-
ating regime with four active banks. To minimize idle power, the NMC
units employ fine-grained clock gating (CG), achieving a 28 % improvement
in energy efficiency during single-bank operation. Additionally, measured
leakage power informs the impact of power gating (PG) on inactive banks,
with PG contributing an average 15 % energy efficiency gain, particularly
pronounced at elevated voltages due to second-order leakage effects. The area
composition of LUCIA is illustrated in Fig. 5c, where SRAM blocks account
for approximately 50 % of the total silicon footprint. This includes both the
shared memory sub-system used for hardware acceleration and the private
memory regions allocated to the RISC-V core.

IV. DISCUSSION

A summary of relevant state-of-the-art (SoA) implementations is provided
in Table 1, encompassing both single-chip and multi-chiplet architectures.
Two notable single-die solutions are considered: the systolic neural CPU
(SNCPU) presented in [6], which offers a reconfigurable architecture capable
of operating as a multi-core RISC-V processor or a systolic CNN accelerator;
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Fig. 5: Design modularity evaluation as a function of active NMC banks and
their impact on (a) performance, (b) energy, and (c) area.

and the Siracusa platform in [7], which integrates a RISC-V cluster with a
tightly coupled accelerator for efficient AI processing. Multi-chiplet systems
are represented by the NetFlex multi-chiplet package (MCP) in [8], designed
for scalable networked inference, and the SPGEMM chiplet-based accelerator
in [9], targeting sparse matrix multiplication workloads. While these works
address the growing computational demands of modern AI models, LUCIA
advances the architectural paradigm by explicitly mapping compute-intensive
workloads onto a multi-bank topology. It leverages spatial partitioning
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Table 1: Measurement results and comparison with SoA.

Source ISSCC’22 [6] ESSCIRC’23 [7] VLSI’22 [8] CICC’25 [9] This work

Technology 65 nm 16 nm 22 nm 4 nm 22 nm

Design SNCPU Clust. + Acc. MCP NMC NMC

Configuration 1-chip 1-chip 4-chip 16-chip 1-chip

Core Area [mm2] 4.5 16 * 11.1 16 4.1

Voltage [V] 0.5 - 1 0.6 - 0.8 0.6 - 0.9 0.8 - 1.1 0.6 - 0.9

Max. Freq. [MHz] 400 530 492 500 565

Int Precision 8 2 to 8 16 8 8

Memory [MB/chip] 0.15 6.5 2.5 16 1

PEs/chip 100 36 1024 128 512

Performance
0.08 0.38 (int8) 1.07 2 ‡ 0.58

[TOPS]

Energy Eff.
1.82 † 2.9 † (int8) 7.19 † 8.7 ‡ 3.4 †

[TOPS/W]

Energy-Area Eff.
0.4 0.18 (int8) 0.65 0.54 ‡ 0.83

[TOPS/W/mm2]
* Silicon die area † @ Low VDD

‡ Dense computation mode

of compute tiles and memory banks, tightly integrated with near-memory
computing (NMC) units, to achieve scalable acceleration with reduced data
movement and improved memory locality.

LUCIA achieves an energy-area efficiency of 0.83 TOPS/W/mm2, surpass-
ing comparable SoA implementations fabricated in equal or more advanced
technology nodes. This result underscores the effectiveness of LUCIA’s
distributed architecture in delivering high throughput and energy efficiency
per unit area. The system’s modular design enables scalable deployment
across multiple chiplets, each tightly coupled to near-memory compute
banks. Future integration on a silicon interposer or through advanced 3D
packaging technologies could further enhance inter-chiplet communication
density, reduce latency, and unlock additional performance gains through
high-bandwidth, low-power interconnects.

V. CONCLUSION

In this article, we present LUCIA as an architecture for a multi-chiplet
implementation with NMC hardware acceleration units integrated in memory
banks of a RISC-V-based platform. LUCIA is manufactured using 22 nm
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FDSOI technology and allows the configuration of partitioned workloads
in multiple memory banks with enhanced bandwidth. The results of the
measurements show an energy-area efficiency of 0.83 TOPS/W/mm2, with
a performance of 0.58 TOPS in the presented single-chiplet architecture.
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