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Abstract
As 6G networks evolve, offloading extended reality (XR) applica-
tions emerges as a key use case, leveraging reduced latency and
edge processing to migrate computationally intensive tasks, such
as rendering, from user devices to the network. This enables lower
battery consumption and smaller device form factors in cellular
environments.

However, offloading incurs delays from network transmission
and edge server queuing, particularly under multi-user concur-
rency, resulting in elevated motion-to-photon (MTP) latency that
degrades user experience. Motion prediction techniques, includ-
ing deep learning and Kalman filter (KF), have been proposed to
compensate, but deep learning struggles with scalability at resource-
constrained edges amid growing user loads, while traditional KF
exhibits vulnerability in handling complex motions and packet loss
in 6G’s high-frequency interfaces.

To address these challenges, we introduce a context-aware error-
state Kalman filter (ESKF) framework for forecasting user head
motion trajectories in remote XR, integrating a motion classifier
that categorizes movements by predictability to minimize predic-
tion errors across classes. Our results show that this optimized
ESKF outperforms conventional Kalman filters in positional and
orientational accuracy, while demonstrating superior robustness
and resilience to packet loss.

CCS Concepts
•Human-centered computing→Ubiquitous andmobile com-
puting design and evaluation methods; • Applied computing
→ Service-oriented architectures; • Computer systems organi-
zation→ Real-time system architecture.
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1 Introduction
The convergence of 6G networks and cloud-based extended re-
ality (here termed ’Remote XR’ to distinguish from commercial
implementations like CloudXR [6]) heralds a new era of immersive
experiences, enabling high-fidelity rendering and computation of-
floading to overcome local hardware limitations. Local processing
consumes considerable energy, leading to the need for large batter-
ies in standalone XR headsets. Remote XR, by leveraging powerful
edge or cloud servers, alleviates these constraints, enabling broader
accessibility and a more sustainable approach to delivering immer-
sive XR experiences. However, the shift to Remote XR introduces
a new set of challenges, particularly in the realm of latency. The
Motion-to-Photon (MTP) latency, defined as the time taken from a
user’s head movement to the corresponding visual update on the
display, is a critical factor in maintaining immersion and prevent-
ing cybersickness [33]. The MTP latency is influenced by various
factors, including network latency, rendering time, and encoding
time. As the demand for high-quality VR experiences continues to
grow, the need for low-latency solutions becomes increasingly im-
portant. The challenge of MTP latency is particularly pronounced
in applications that require rapid head movements, such as gaming
and interactive simulations. In these scenarios, even a small delay
can lead to significant degradation in user experience, resulting in
discomfort and cybersickness.

Extensive studies of VR have been conducted to eliminate these
problems, but most of the solutions are studied for local VR, such
as time-warping. For remote VR, it has been shown that motion
prediction algorithms can be leveraged to compensate for the delay
[12] [11]. Research has been conducted on 360-degree videos in
adaptive streaming, while the prediction algorithm was designed
for choosing which tiles to include in the field of view [3] [28] [7].
The accuracy of such a type of task can be lower since the predicted
position is used for choosing part of a stored video file. For applica-
tions such as gaming and First Person View (FPV) drone streaming,
the prediction problem becomes more challenging, where the user
experience becomes the key that determines whether Remote VR
can achieve widespread public adoption. The primary challenge
stems from two factors. First, in Remote VR, predicted poses are
used directly by the renderer to generate images for the current
viewport, demanding higher prediction accuracy than traditional
streaming applications. Second, users typically exhibit more rapid
and dynamic head movements during interactive VR experiences,
such as gaming, compared to passive activities such as watching
360-degree videos.
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The existing motion prediction algorithms can be broadly cate-
gorized into two groups: filter-based and learning-based methods.
Filter-based methods, such as Kalman filter (KF) [11], are computa-
tionally efficient and can provide accurate predictions in real-time
applications. However, KF often relies on linear motion models [18],
which may not accurately capture the complex and non-linear head
movements typical in gaming and interactive simulations. Learning-
based methods, particularly those relying on deep learning models
like LSTMs, have shown good accuracy in pose prediction tasks [14].
However, these methods are computationally intensive, making
them less suitable for real-time applications in resource-constrained
environments at the edge.

Despite the existence of extensive research, as mentioned in the
related work section of [11], on pose prediction for compensating
MTP latency, 3 important research gaps remain underexplored.

• The influence of different head motion patterns—especially
abrupt, irregular, or highly dynamic movements typical in
interactive VR applications—on prediction accuracy has not
been systematically analyzed.
• The robustness of prediction algorithms under real-world
network conditions, such as packet loss, is insufficiently ad-
dressed, even though these factors can significantly degrade
system performance.
• Most state-of-the-art deep learning-based methods trade
higher computational resource usage (e.g., GPUs) for higher
accuracy, limiting their scalability and practical deployment
on resource-constrained edge platforms.

To address these challenges, we propose a predictability-aware
prediction framework that incorporates a motion classifier to show
improvements in both prediction accuracy and robustness to packet
loss. Experimental results show that the high-order ESKF outper-
forms existing motion prediction algorithms in terms of both accu-
racy and robustness, providing a more effective solution for address-
ing the challenges of MTP latency in EdgeVR applications. Crucially,
the optimized ESKF operates without the need for specialized hard-
ware such as GPUs, making it deployable on cost-sensitive edge
platforms.

The remainder of this paper is organized as follows: Section 2
reviews related work, Section 3 describes the proposed methodol-
ogy and predictor design, Section 4 presents experimental results
and evaluation, Section 5 discusses our findings and broader impli-
cations, and finally, Section 6 concludes the paper.

2 Related Work
2.1 Warping-Based Compensation
Asynchronous Timewarping (ATW) is a technique designed to mit-
igate the effects of MTP latency in Virtual Reality (VR) systems. It
works by reprojecting the last rendered frame based on the most
recent head pose data, effectively reducing perceived latency [2, 37].
This is achieved by warping the frame to align with updated head
orientation information, ensuring that the displayed image remains
consistent with the user’s current viewpoint. [21] Pose prediction,
which proactively estimates future head poses (6-DOF position and
orientation) based onmotion sensor data and kinematic models (e.g.,
Kalman filters [11] or deep learning [29] [12] [14]), serves as the

foundational pillar for latency reduction in VR systems. By generat-
ing motion state from predicted poses, it enables early rendering of
frames that approximate the user’s future viewpoint, thereby shift-
ing computational burden upstream and significantly compressing
the end-to-end Motion-to-Photon (MTP) latency pipeline. In con-
trast, ATW operates reactively: it reprojects existing frames using
the latest pose data to mitigate latency artifacts after rendering.
While basic ATW implementations correct only rotational discrep-
ancies (OTW), advanced variants like Positional Timewarp (PTW)
further address translational errors by leveraging depth buffers.
[39] [4] Crucially, both ATW and PTW depends on pose prediction
to provide the initial frame for reprojection. Their role is comple-
mentary—they act as safety nets for residual latency but cannot
compensate for errors beyond the scope of the rendered content
or in dynamic scenes. For applications such as collaborative VR
that enable geographically separated users to interact in a shared
virtual space [35, 43], pose prediction enhances realism and reduces
perceptual delay [5, 22], which is critical for maintaining a sense
of presence and immersion [36]. This is particularly important in
applications where rapid head movements and interactions are
common. Therefore, for a comprehensive and reliable MTP latency
compensation strategy, pose prediction must operate in tandem
with ATW to ensure that both rotational and translational errors
are effectively addressed [15].

2.2 Pose prediction for RemoteXR
To address motion extrapolation in latency-constrained RemoteXR
environments, recent studies advocate LSTM-driven pose predic-
tion frameworks, demonstrating efficacy in reducing end-to-end
latency while maintaining prediction accuracy [12] [11]. A key limi-
tation of this method is its reliance on GPU-intensive deep learning
models, making it less efficient for real-time applications compared
to lightweight, filter-based prediction methods that offer faster,
more predictable performance with lower computational overhead.
In contrast, the filter-based method [11] is computationally light-
weight and can operate efficiently on CPUs, making them more
energy-efficient and practical for real-world applications. Therefore,
in this work, we focus on improving filter-based methods, specifi-
cally the Kalman filter (KF)[41][40], to enhance their performance
in latency-sensitive remote XR applications. [11] proposed a KF-
based approach for motion prediction and compared the accuracy
of prediction against different horizons. This information reveals
how much latency can be tolerated by users when applications are
offloaded remotely, which is crucial for researchers to design sys-
tems that balance computational offloading with user experience,
ensuring that the latency introduced by remote processing does
not degrade the quality of user interaction in VR environments.
In addition to direct motion prediction, related techniques such
as asynchronous time warping (ATW) and selective time warping
help mitigate latency by reprojecting rendered frames to align with
the latest head pose, reducing motion-to-photon delays and im-
proving visual stability [8][23]. While prior work has advanced
motion prediction, significant challenges persist in modelling com-
plex motion patterns under network uncertainties. The Kalman
Filter (KF)-based method [11] relies on linear motion models that
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fail to capture the highly dynamic, non-linear head movements typ-
ical in interactive applications, resulting in accuracy degradation
during rapid motions that are hard to predict. Furthermore, [11]
models angular velocity using first-order quaternion derivatives in
state updates. Though computationally efficient, integrating these
derivatives employs additive operations in vector space, violating
the multiplicative nature of the SO(3) rotation group [31]. This
fundamental mismatch causes errors in quaternion composition
to accumulate over time, inducing drift that necessitates frequent
ad hoc normalization. Such drift compromises prediction accuracy
and undermines long-term rotational consistency. To address these
limitations, this work models orientation updates using Lie algebra
in SO(3)’s tangent space. Unlike quaternion-based integration, this
framework encodes incremental rotations as minimal perturbations
in so(3), then maps them to SO(3) via the exponential map [31][17].
This ensures all operations respect SO(3)’s manifold constraints,
eliminating normalization drift.

The proposed prediction algorithm is designed to be lightweight
and computationally efficient, making it suitable for deployment
on edge servers and other resource-constrained environments.
By leveraging the error-state Kalman filter (ESKF) approach, our
method achieves higher motion prediction accuracy without requir-
ing specialized hardware like GPUs, enabling practical real-time
applications in VR environments.

2.3 Context-aware Predictability
Wu et al. [42] point out that LSTM-based approaches face difficul-
ties when dealing with motion trajectories that contain abrupt or
irregular user actions. In such cases, the unpredictability and short
duration of these movements often exceed the temporal modelling
capabilities of LSTM networks, resulting in higher prediction errors
for complex motion patterns. To design a more robust predictor, we
adopt entropy as a means to categorize motion patterns and sys-
tematically assess prediction accuracy for different motion patterns
like [27, 32]. This approach allows our framework to identify and
differentiate between segments with varying levels of predictability,
supporting more effective evaluation of prediction methods in VR
contexts.

Recent work by Rossi et al. [30] has demonstrated a strong corre-
lation between the entropy of user trajectories and the predictability
of their motion in VR environments. Specifically, users exhibiting
highly regular navigation patterns tend to have lower trajectory
entropy, resulting in more predictable movements, while those with
higher entropy display less predictable behavior. By quantifying the
entropy of each motion segment using the Lempel-Ziv compression-
based estimator proposed in [30] and based on [32], our classifier
categorizes motion into distinct predictability classes.

3 Methodology
The ESKF provides key advantages in state estimation by separat-
ing the system into a nominal state that evolves deterministically
under idealized dynamics and an error state that linearly captures
small stochastic perturbations. This decoupling ensures numerical
stability, computational efficiency, and effective management of
uncertainties such as noise and model inaccuracies, making it ideal

for real-time nonlinear applications like pose prediction [31]. Fol-
lowing the standard ESKF formulation [31], we decompose the true
motion state into a nominal state (from OpenXR poses, assuming
error-free modeling and deterministic kinematic evolution) and an
error state (accounting for deviations from noise and uncertainties,
used to update the nominal state iteratively).

3.1 Predictor Design
Our predictor uses pose data (position and orientation) from the

OpenXR runtime, which fuses inertial and visual inputs to produce
render-ready estimates at the streaming pipeline’s uplink. Lever-
aging the strengths of ESKF, our framework employs it to create
a lightweight predictor that delivers high accuracy on resource-
constrained edge devices without GPUs, as detailed in the predictor
design below and formalized in Algorithm 1.

The algorithm incorporates a motion classifier that categorizes
head motions according to their predictability, thereby enabling
the adaptation of the process noise covariance matrix Q to specific
motion classes for improved robustness. Although C𝑘 is not imple-
mented in our current experiments— since we assume a uniform
process noise (modeled as an identity matrix) to ensure fair com-
parisons focused on predictor performance for system dynamics—it
can be readily integrated into the error-state update via Q in practi-
cal applications to dynamically account for noise variations across
motion types.

The system state equations include up to third derivatives (jerk)
for both position and orientation, enabling the state vector to cap-
ture higher-ordermotion dynamics. Specifically, we denote different
model configurations using the notation "pXoY", where "pX" indi-
cates the order of derivatives included for position (e.g., p2 includes
position, velocity, and acceleration; p3 adds jerk) and "oY" similarly
for orientation (e.g., o2 includes orientation, angular velocity, and
angular acceleration; o3 adds angular jerk). By modeling up to the
third derivative for both position and orientation (e.g., p3o3) and
propagating this model for prediction, we essentially assume that
jerk stays constant across the prediction horizon. However, in our
recorded dataset, both positional and angular jerk are highly dy-
namic and unpredictable. Hence, in experiments, we systematically
vary the order of included derivatives (e.g., evaluating p2o2, p2o3,
and p3o3) to assess their impact on prediction accuracy. This allows
us to evaluate how higher-order modeling improves robustness,
especially during motions with hard predictability, as detailed in
the Experimental section.

4 Experiments
4.1 Experimental Setup
All variations of KF-based predictors are implemented in Python
and run on an Apple M1 chip (8-core CPU, 16 GB RAM). Motion
data were sampled at 100 Hz and collected from an Oculus Quest 3
HMD using the open-source remote streaming framework ALVR
[1], which provides head and controller position and orientation
via the OpenXR runtime.

In our experiments, we set the prediction horizon to less than 100
ms, consistent with prior work [14]. This choice reflects the latency
requirements of current open-source and commercial remote VR
systems, where maintaining motion-to-photon latency below 100
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Algorithm 1 Predictability-Aware ESKF Motion Prediction
1: Input: Pose measurements from OpenXR z𝑘 (position p0, ori-

entation 𝒒0), time step Δ𝑡
2: Output: Updated state x̂𝑘 |𝑘 , covariance P𝑘 |𝑘
3: Step 1 - Initialization
4: Set x0, 𝛿x0 = 0, P0 = I, Q = I
5: Step 2 - Motion Classification
6: for each chunk 𝑖 in the pose data do
7: Compute entropy of head motion: 𝐻𝑘 ← Entropy(z𝑘 )
8: Classify motion based on entropy: 𝐶𝑘 ← Classify(𝐻𝑘 )
9: Step 3 - Apply low pass filter to each incoming pose
10: Step 4 - ESKF Prediction and Correction
11: for each filtered pose data at time step 𝑘 in chunk 𝑖 do
12: Step 4a - Prediction
13: Reset error state: 𝛿 x̂𝑘 |𝑘−1 ← 0
14: for 𝑘 + 𝑁 horizon do
15: Predict nominal state:
16: p𝑘 ← p𝑘−1 + 𝑣𝑘−1Δ𝑡 + 1

2 ¤𝑣𝑘−1Δ𝑡
2 + 1

6 ¥𝑣𝑘−1Δ𝑡
3

17: 𝑣𝑘 ← 𝑣𝑘−1 + ¤𝑣𝑘−1Δ𝑡 + 1
2 ¥𝑣𝑘−1Δ𝑡

2

18: ¤𝑣𝑘 ← ¤𝑣𝑘−1 + ¥𝑣𝑘−1Δ𝑡
19: ¥𝑣𝑘 ← ¥𝑣𝑘−1
20: 𝒒𝑘 ← 𝒒𝑘−1 ⊗ exp

(
𝜔𝑘−1

Δ𝑡
2

)
21: 𝜔𝑘 ← 𝜔𝑘−1 + ¤𝜔𝑘−1Δ𝑡 + 1

2 ¥𝜔𝑘−1Δ𝑡
2

22: ¤𝜔𝑘 ← ¤𝜔𝑘−1 + ¥𝜔𝑘−1Δ𝑡
23: ¥𝜔𝑘 ← ¥𝜔𝑘−1
24: Assemble predicted state:
25: x̂𝑘 |𝑘−1 ← [p𝑘 , v𝑘 , v𝑘 , v𝑘 , 𝒒𝑘 ,𝝎𝑘 , ¤𝝎𝑘 , ¥𝝎𝑘 ]𝑇
26: end for
27: Compute error states transition matrix:
28: F𝑘 ← computeErrorStatesTransitionMatrix(Δ𝑡)
29: Update error covariance matrix:
30: P𝑘 |𝑘−1 ← F𝑘P𝑘−1F𝑇𝑘 + Q
31: Generate a random number 𝑟 uniformly in [0, 1]
32: if 𝑟 > target_drop_rate then
33: Step 4b - Correction
34: Compute measurement Jacobian:

35: H𝑘 ←
[
I3×3 0 · · ·
0 · · · −J−1𝑟 (R(𝜽𝑘 )) · · ·

]
36: Compute innovation covariance: S𝑘 ← H𝑘P𝑘 |𝑘−1H𝑇

𝑘
+

R𝑘
37: Compute Kalman gain: K𝑘 ← P𝑘 |𝑘−1H𝑇

𝑘
S−1
𝑘

38: Compute innovation: y𝑘 ← z𝑘 − ℎ(x̂𝑘 |𝑘−1)
39: Update error state: 𝛿 x̂𝑘 ← K𝑘y𝑘
40: Composite both nominal state and error state to get

true state: x̂𝑘 |𝑘 ← x̂𝑘 |𝑘−1 + 𝛿 x̂𝑘
41: Update covariance: P𝑘 |𝑘 ← (I − K𝑘H𝑘 )P𝑘 |𝑘−1
42: end if
43: end for
44: end for

ms is critical for a seamless user experience. Li et al. [19] further
report that, while round-trip latencies up to 90 ms have limited
impact on user experience, factors such as bandwidth constraints
(as low as 35 Mbps) and high packet loss rates (up to 8%) can signif-
icantly degrade performance. Therefore, our evaluation focuses on

prediction horizons that are representative of practical remote VR
deployments.

A butterworth filter with a cutoff frequency of 5 Hz was applied
to the data to remove high-frequency noise in real-time before send-
ing it to the predictor module for prediction. This choice of cutoff
frequency is based on physiological studies, which indicate that
the predominant frequency of head rotation typically ranges up
to 5 Hz during natural movements. Frequencies above this thresh-
old are likely to represent noise rather than intentional motion, as
supported by prior research [10]. By filtering out these higher fre-
quencies, the Butterworth filter ensures that the predictor operates
on clean and meaningful motion data, enhancing the accuracy of
the prediction framework.

After the filtering process, pose data are divided into chunks,
each of which is passed to a motion classifier that classifies the
motion into three classes indicating the predictability of the motion
chunk. The classifier computes the entropy of the motion data and
classifies the motion based on the entropy value. The actual en-
tropy of a user’s trajectory is estimated using the Lempel-Ziv com-
pression algorithm, as described in [30]. Let X = [𝑥1, 𝑥2, . . . , 𝑥𝑇 ]
represent a trajectory of positional points in a discretized space.
For a sub-sequence L𝑡 = [𝑥𝑡 , 𝑥𝑡+1, . . . , 𝑥𝑡+𝜆𝑡−1] starting at time 𝑡
and spanning 𝜆𝑡 time slots, the entropy is computed as

𝐻 (X) = 1
𝑇

𝑇∑︁
𝑡=1

log2

(
𝑇

𝜆𝑡

)
, (1)

where 𝜆𝑡 is the length of the shortest sub-sequence starting at 𝑡
that does not appear earlier in the trajectory. This entropy measure
quantifies the regularity and predictability of the user’s motion.
We use this entropy equation to classify each chunk of motion
into three categories: low entropy (high predictability), medium
entropy, and high entropy (low predictability). Our results confirm
a consistent correlation between the entropy of VR trajectories
and their prediction error. Motions with highly regular navigation
styles exhibit low entropy, indicating greater predictability, while
those with high entropy demonstrate less predictable movements.
This correlation underscores the effectiveness of our entropy-based
classification approach in capturing the inherent predictability of
user motion patterns.

4.2 Evaluation Metric
The performance of the proposed PseudoESKF method and the
baseline methods (KF and ESKF) is evaluated using the following
metrics:
• Position Error: The position error is computed as the Eu-
clidean norm between the predicted and ground-truth posi-
tion vectors at each time step. Formally, for a sequence of 𝑥
predictions, the position error at time step 𝑖 is given by:

𝑒
(pos)
𝑖

=




p(pred)𝑖
− p(true)

𝑖





2

where p(pred)
𝑖

and p(true)
𝑖

denote the predicted and actual po-
sition vectors at time step 𝑖 , respectively. The overall position
error can be reported as the mean or median of {𝑒 (pos)

𝑖
}𝑥
𝑖=1.

• Orientation Error: The orientation error is measured as
the geodesic (angular) distance between the predicted and
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ground-truth orientations, represented as unit quaternions.
This metric operates directly on the rotation group, ensuring
results are independent of the chosen reference frame (bi-
invariant) and free from singularities. This is critical for head
motion prediction in XR, where the orientation of the head
can be measured relative to different reference frames (e.g.,
global coordinates, camera view, or body-centred frames).
The error is computed using the angular metric on the 3-
sphere (𝑆3):

Orientation Error = min
( 


log (𝒒pred𝒒−1true)


 ,
2𝜋 −




log (𝒒pred𝒒−1true)


 )
where 𝒒pred and 𝒒true are the predicted and ground-truth ori-
entation quaternions, and log(·) is the logarithmic map from
𝑆3 to its tangent space. This metric gives the minimal angu-
lar displacement required to align the predicted orientation
with the ground truth, providing stable and reference-frame-
invariant error measurements [13].
• Prediction Horizon: The prediction horizon is the time
interval over which the prediction is made. It is measured in
milliseconds and is defined as the time difference between
the predicted motion and the actual motion. It is computed
as:

Prediction Horizon = 𝑡𝑝𝑟𝑒𝑑 − 𝑡𝑡𝑟𝑢𝑒
where 𝑡𝑝𝑟𝑒𝑑 is the time of the predicted motion and 𝑡𝑡𝑟𝑢𝑒 is
the time of the actual motion.

The position and orientation errors are computed for each time
step in the prediction horizon, and the average errors are reported
for each method. The latency is computed as the time difference
between the predicted and actual motions, and the prediction hori-
zon is defined as the time interval over which the prediction is
made. The entropy is computed as the average uncertainty of the
predicted motion over the prediction horizon. The performance of
the proposed PseudoESKF method is compared with the baseline
methods (KF and ESKF) using these metrics to evaluate the effec-
tiveness of the proposed method. The results are presented in the
following sections, including comparisons of position and orienta-
tion errors, latency, prediction horizon, and entropy for different
motion patterns.

4.3 Filter Comparison
To rigorously assess the effectiveness of the proposed PseudoESKF
framework, we conduct a comparative evaluation against the base-
line KF and ESKF methods. The analysis focuses on key perfor-
mance metrics, including position and orientation prediction errors.
Results are recorded across different motion predictability classes,
enabling a comparison of each method’s accuracy and robustness
under varying motion dynamics.

For all filters, the process noise covariance matrix 𝑄𝑘 and mea-
surement noise covariance matrix 𝑅𝑘 are set to identity matrices
scaled by 1.𝑄𝑘 models system process uncertainty, while 𝑅𝑘 models
sensor measurement noise. Both are assumed Gaussian, zero-mean,
and independent across state variables. This standardization en-
sures a fair comparison of predictor performance, isolating the
effect of model structure from noise parameter tuning. Since noise

characteristics vary by device and environment, we fix these values
to focus solely on model differences.

- Kalman Filter (KF): KF is implemented the same way as in [11],
a linear filter that models the system and measurement processes
as linear and only includes velocity and angular velocity in its state
representation.

- ESKF: The general design of the ESKF-based predictor is in-
cluded in section 3.2. It is a nonlinear filter that uses the error state
to correct the predicted state. The true state is represented as a
linear combination of the predicted state and the error state. In our
experiments, the process model for the ESKF includes only velocity
and angular velocity in the state vector; position and orientation
are updated based on these quantities.

- PseudoESKF: The proposed PseudoESKF method extends the
ESKF by estimating the derivatives of position (e.g., velocity, ac-
celeration) and orientation (e.g. angular velocity and acceleration)
from the pose data alone, rather than relying on direct measure-
ment of these derivatives from the IMU. These estimates, referred
to as pseudo-measurements, enable the filter to operate effectively
when only position and orientation are available. The PseudoESKF
method uses the same process noise covariance matrix 𝑄𝑘 and
measurement noise covariance matrix 𝑅𝑘 as the ESKF,

Three variants of the PseudoESKF method (p2o2,p2o3,p3o3) are
evaluated, distinguished by the order of derivatives incorporated
into the state vector for position and orientation. The notation
"p2o3" and "p3o3" denotes the inclusion of up to the second or third
derivative for position or orientation, respectively. For instance,
the p3o3PseudoESKF includes position, velocity, and acceleration
for position and includes quaternion, angular velocity, and angular
acceleration for orientation. This systematic ablation study enables
assessment of the impact of higher-order motion dynamics on
prediction accuracy.

The choice of derivative order in the state vector fundamentally
influences prediction accuracy because it determines how well the
model can represent the underlying motion dynamics. Including
higher-order derivatives such as acceleration and jerk for position,
or angular acceleration and angular jerk for orientation, enables
the filter to account for rapid changes and non-linearities in user
movement. For example, if only velocity is modeled, the filter as-
sumes constant velocity between updates, which fails to capture
sudden accelerations or decelerations, leading to lag or overshoot in
predictions. By incorporating acceleration and higher derivatives,
the model can anticipate and adapt to these changes, resulting in
more accurate and responsive predictions. This effect is especially
pronounced for orientation, where higher-order derivatives allow
the filter to better track abrupt rotational changes, such as quick
head turns, which are very common in VR gaming.

Moreover, the order of derivatives directly determines the in-
tegration method used for propagating orientation: higher-order
models can use more accurate integration methods, reducing nu-
merical errors and drift over longer prediction horizons. In our
experiments, we compare the performance of the p2o2 and p2o3
PseudoESKF methods to evaluate the impact of these higher-order
derivatives on prediction accuracy. The p2o2 PseudoESKF uses a
second-order integration method denoted as Zed12, while the p2o3
PseudoESKF employs a third-order method denoted as Zed23 for
orientation propagation.
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The Zed12 and Zed23methods are numerical integration schemes
for evaluating rotational quaternions from angular velocities, based
on the ‘zed‘ mapping, a truncated power series designed to preserve
quaternion norm and improve computational efficiency over the
standard exponential map [44]. The notation is as follows: 𝜔0 is the
angular velocity at the start of the interval, 𝜔1 is the angular accel-
eration, 𝜔2 is the angular jerk, ℎ is the integration time step, and
[𝜔0, 𝜔1] denotes the commutator, defined as [𝜔0, 𝜔1] = 𝜔0 × 𝜔1.
Zed12 is a second-order method that uses a first-degree polynomial
approximation of angular velocity, defined as

Zed12 = zed
(
𝜔0ℎ +

𝜔1ℎ2

2

)
. (2)

In contrast, Zed23 is a third-order method employing a second-
degree approximation, defined as

Zed23 = zed
(
𝜔0ℎ +

𝜔1ℎ2

2
+ 𝜔2ℎ3

3
+ [𝜔0, 𝜔1]ℎ3

12

)
. (3)

where the commutator term [𝜔0, 𝜔1] = 𝜔0 × 𝜔1 captures the in-
teraction between angular velocity and angular acceleration when
integrating rotations [44].

The primary distinction is that Zed12 achieves second-order ac-
curacy with a linear approximation, while Zed23 attains third-order
accuracy by incorporating higher-order terms and the commutator.
The ‘zed‘ mapping methods offer a favorable balance between com-
putational efficiency and integration accuracy [44], making them
well-suited for real-time applications on resource-constrained edge
servers. For these reasons, we adopt this approach in our frame-
work to ensure both robust prediction performance and practical
deployability.

4.4 Results
4.4.1 Phase Lag and Overshoot. Figure 1 presents a comparative
analysis of predicted and ground-truth position and orientation
trajectories for a representative easy motion segment. The results
demonstrate that both variants of the proposed PseudoESKFmethod
(p2o2 and p2o3) achieve close alignment with the ground truth,
exhibiting minimal phase lag. In contrast, the baseline methods KF
and ESKF display a noticeable phase shift, with predicted trajec-
tories consistently lagging behind the ground truth, particularly
for the KF. This lag is attributable to the KF’s reliance on a linear
motion model, which is insufficient for capturing the non-linear
and higher-order dynamics inherent in head motion.

The ESKF partially mitigates this lag by modelling nonlineari-
ties in the orientation update, yet still exhibits a phase shift due
to its limited state representation. Both PseudoESKF variants fur-
ther reduce this phase lag by explicitly incorporating higher-order
derivatives (acceleration and jerk) into the state vector, enabling
more accurate modeling of rapid changes in user motion. Notably,
the p2o3 and p2o3 PseudoESKF, which includes up to the third
derivative (jerk) for orientation, demonstrates superior tracking fi-
delity, with predicted trajectories closely matching the ground truth
and exhibiting reduced overshoot compared to the p2o2 variant.

Despite the improvements achieved by the proposed PseudoESKF,
it is important to note a considerable amount of prediction error
due to prediction overshoot, particularly for hard motion patterns.

Figure 1: Predicted vs. ground-truth trajectories for hard
motion: position (x, y, z inmm, top) and Euler angles (degrees,
bottom).

These errors are most pronounced in orientation, where rapid rota-
tional changes challenge even advanced predictive models. How-
ever, in practice, additional compensation techniques—most notably
ATW—can be employed to further mitigate the perceptual impact
of orientation errors. ATW operates by re-projecting the most re-
cently rendered frame according to the latest predicted head pose,
effectively correcting for small to moderate orientation discrepan-
cies that arise due to prediction inaccuracies or system latency. This
synergy between predictive filtering and time warping has been
shown to substantially reduce motion-to-photon latency and im-
prove visual consistency, especially in scenarios with unpredictable
head motion.
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Figure 2: Position and Orientation Errors for hard motion
patterns

4.4.2 Position and Orientation Errors. Figure 2 depicts the position
and orientation errors for hard motion patterns across all methods.
The results indicate that the PseudoESKF variants (p2o2, p2o3, and
p3o3) consistently outperform the baseline methods (KF and ESKF)
in terms of both position and orientation errors, with the p3o3
variant achieving the lowest errors among all. The KF exhibits
the highest position errors, followed by the ESKF, which, while
better than the KF, still lags behind the PseudoESKF methods. The
position errors for the PseudoESKF methods are significantly lower,
indicating that the incorporation of higher-order derivatives in the
state vector leads to more accurate predictions of user motion.

Table 1: Summary statistics for pose predictionwithKF, ESKF,
and PseudoESKF variants for different head motion patterns.
Horizon = 100 ms.

Model Motion Class Position (mm) Orientation (deg)

(Pos, Rot) Median Mean Median Mean

KF (Easy, Easy) 2.061 2.749 0.973 1.177
(Medium, Medium) 7.120 7.710 1.540 1.943
(Hard, Hard) 38.645 54.096 2.283 3.394

ESKF (Easy, Easy) 1.943 2.901 0.495 1.203
(Medium, Medium) 6.768 7.303 1.024 1.555
(Hard, Hard) 35.693 43.803 2.057 2.725

p2o2 PseudoESKF (Easy, Easy) 1.011 1.550 0.441 0.831
(Medium, Medium) 4.162 5.390 1.071 1.669
(Hard, Hard) 16.150 19.286 1.300 1.902

p2o3 PseudoESKF (Easy, Easy) 1.011 1.550 0.427 0.754
(Medium, Medium) 4.162 5.390 0.937 1.415
(Hard, Hard) 16.150 19.286 1.186 1.683

p3o3 PseudoESKF (Easy, Easy) 0.938 1.371 0.424 0.754
(Medium, Medium) 3.787 4.589 0.935 1.412
(Hard, Hard) 15.469 17.781 1.172 1.711

4.4.3 Different Motion Patterns. Table 1 presents an evaluation
of the proposed PseudoESKF method in comparison with baseline
approaches (KF and ESKF) across different motion pattern classes.
Performance is assessed using both median and mean values of
position and orientation prediction errors for each motion class.
The results demonstrate that the PseudoESKF method consistently
outperforms the standard KF and achieves comparable or superior

performance to the ESKF, particularly in scenarios involving rapid
or unpredictable user movements.

Notably, the p3o3 variant of PseudoESKF, which incorporates
higher-order derivatives in the state vector, yields the lowest posi-
tion and orientation errors across all motion classes. This finding
underscores the importance of modeling higher-order motion dy-
namics for accurate prediction, especially under challenging motion
conditions. The systematic reduction in prediction errors observed
when increasing the order of derivatives from p2o2 to p3o3 high-
lights the enhanced capability of the filter to capture complex,
non-linear user motion.

The reductions in prediction error from p2o2 to p3o3 yield per-
centage improvements in mean position errors of approximately
11.5%, 14.9%, and 7.8% for easy, medium, and hard motion classes,
respectively, and 9.3%, 15.4%, and 10.0% for orientation errors. These
enhancements can potentially significantly alleviate cybersickness
in XR by reducing sensory conflicts between visual and vestibu-
lar cues. As [25] suggests, differences in virtual and physical head
poses (DVP), arising from pose prediction errors in our PseudoESKF
variants, drive nausea and disorientation, with time-varying dis-
crepancies exacerbating symptoms; a 10% error reduction can lower
DVP below sickness-onset thresholds, based on linear correlations
where DVP increases sickness severity by +0.34 per 1° and DVP
peaks rise with lag (e.g., 12.4° at lower vs. 19.9° at higher lags), while
DVP explains 54% of symptom variance overall (73-76% in specific
conditions)[26].

4.4.4 Different prediction horizon. Figure 3 presents a detailed com-
parison of the prediction performance of the proposed PseudoESKF
method against the baseline KF and ESKF across varying predic-
tion horizons and motion pattern classes. The evaluation metrics
include both the mean and median of the position and orientation
prediction errors, computed for each prediction horizon.

The results demonstrate that the PseudoESKF method consis-
tently achieves lower prediction errors than both baseline methods,
with the performance gap widening as the prediction horizon in-
creases. This trend is particularly pronounced in the easy motion
class, where PseudoESKF maintains minimal error growth even at
longer horizons, indicating superior temporal stability and predic-
tive accuracy. In contrast, both KF and ESKF exhibit a more rapid
increase in error, reflecting their limited ability to capture higher-
order motion dynamics and adapt to longer-term predictions.

For medium and hard motion classes, which are characterized by
more abrupt and less predictable user movements, the PseudoESKF
method continues to outperform the baselines. While all methods
experience increased errors with longer horizons due to the inher-
ent unpredictability of the motion, p3o3 demonstrates the slowest
rate of error escalation.

The observed minimal error growth rate in the PseudoESKF
method as the prediction horizon extends underscores its robust-
ness as the prediction horizon increases, a critical factor in EdgeXR
where accumulating prediction inaccuracies can amplify perceptual
distortions and degrade immersion. In real-world XR applications,
network delays often necessitate predictions over horizons of 100-
500ms tomaintain synchronization between user motion and visual
feedback [33]. In particular, the PseudoESKF variant achieves VIVE-
comparable performance, maintaining pose prediction errors below
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Figure 3: Prediction error (mean) across different prediction
horizons for (top) easy, (middle) medium, and (bottom) hard
motion classes.

approximately 2 cm for position and 2° for orientation in head
tracking—thresholds that vary by specific use case but are generally
imperceptible, as implied by measurements of tracking accuracy
in research settings [24] and error tolerances in avatar interac-
tions [34]. PseudoESKF’s superior stability—evidenced by slower
error increases across motion classes—keeps deviations below these
thresholds even at extended horizons up to 100 ms, thereby enhanc-
ing user comfort and enabling seamless experiences in bandwidth-
limited scenarios, such as mobile AR navigation or cloud-based
metaverse interactions [38]. This aligns with findings that accu-
rate long-term locomotion predictions reduce navigation errors by
up to 40% in VR environments, directly translating to improved
spatial awareness and reduced motion sickness during prolonged
sessions [9], ultimately fostering greater adoption of edge XR tech-
nologies.

4.4.5 Different data droprate. To ensure rigorous validation, packet
loss is simulated by generating random floating-point numbers
uniformly distributed in the interval (0, 1); a packet is considered
received if the generated number exceeds the specified drop rate,
and dropped otherwise. For each predictor and each drop rate, the
experiment is repeated at least 10 times. The confidence intervals
for both position (Euclidean distance) and orientation (angular
distance) errors are then computed and visualized as error bars at
each data point in the diagram.

Figure 4: Prediction error (mean) with different packet loss
rates for (top) easy, (middle) medium, and (bottom) hard
motion classes.

Figure 4 demonstrates the robustness of PseudoESKF compared
to the baseline KF and ESKF under varying packet loss rates across
different motion classes. As packet loss increases, all methods expe-
rience degradation in prediction accuracy; however, p3o3_PseudoESKF
not only achieves the lowest overall error in both position and ori-
entation, but also exhibits a much smaller increase in error (i.e., a
gentler slope) as packet loss rises compared to the other methods.
This highlights both the superior accuracy and the enhanced robust-
ness of p3o3_PseudoESKF under challenging network conditions,
which are critical for real-time VR applications where network
instability is common.

As for different patterns in Figure 4, the mean orientation error
for the p3o3 variant is reduced by approximately 37% compared to
KF for easy motion patterns and by about 49.6% for hard motion
patterns at a 50% packet loss rate. The mean position error for the
p3o3 variant is reduced by approximately 50.8% compared to KF for
easy motion patterns and by about 66.1% for hard motion patterns
at a 50% packet loss rate. This highlights the effectiveness of the
PseudoESKFmethod inmaintaining prediction accuracy even under
challenging network conditions. As the motion pattern becomes
more unpredictable, methods that incorporate the highest-order
derivative integration (p3o3) demonstrates even better performance
for both positional and orientational prediction against packet loss.

This robustness translates to practical benefits in real-world
XR deployments, such as edge computing for collaborative VR,
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where high packet loss (e.g., >20%) can otherwise cause visual lag
and user disorientation, reducing the quality of experience (QoE)
scores by over 30% in multi-user sessions [36]. By limiting error
accumulation in unreliable networks, the PseudoESKF approach
remains aligned with the VIVE-level precision thresholds (approxi-
mately 2 cm positional and 2° orientational) that ensure impercep-
tible disruptions across diverse applications, as previously implied
by [24, 34], thereby supporting reliable immersion in bandwidth-
constrained environments like remote teleoperation or metaverse
streaming [20].

5 Limitation
While the proposed method demonstrates lower prediction errors
than the baselines, it is worth noting that metrics such as Mean
Squared Error (MSE), Absolute Trajectory Error (ATE), and Relative
Pose Error (RPE) offer valuable but incomplete insights into pre-
dictor performance for XR applications. MSE captures the average
squared differences between predicted and ground-truth values,
whereas ATE and RPE evaluate overall trajectory alignment and
local consistency, respectively; however, artifacts like jitter or short-
term instability,which can notably impact user experience [16].
Similarly, our offline evaluation of pre-recorded motion data, while
suggesting enhanced prediction accuracy based on external study
interpretations, remains to be tested in real-time edge XR environ-
ments or via direct user experience assessments, including integra-
tion with rendering pipelines, edge servers, network infrastructure,
and end-to-end motion-to-photon latency under realistic condi-
tions, alongside runtime comparisons to GPU-intensive approaches.
To bridge these gaps, future efforts will incorporate user-centric
evaluations of perceptual quality, such as pixel-wise accuracy and
latency reductions, to verify that trajectory improvements translate
to meaningful benefits to XR, culminating in deployment on an
operational edge XR system.

6 Discussion
The results show that the proposed method outperforms the base-
line methods in terms of prediction accuracy and robustness to
data loss. The proposed method achieves lower prediction errors
for both position and orientation across different motion patterns,
indicating its effectiveness in handling various user movements.
The results also demonstrate that the proposed method maintains
the lowest prediction error across prediction horizons up to 100 ms.

Building upon the preceding analysis of limitations and chal-
lenges, we now consider potential industrial applications and broader
implications of the proposed predictor. Beyond remote XR, the pro-
posed predictor can be beneficial in teleoperation scenarios, such
as FPV for drones. This framework is especially valuable in scenar-
ios requiring precise navigation and control, including search and
rescue, industrial inspection, and recreational drone use. By pro-
viding more accurate trajectory prediction, the proposed method
improves alignment between user input and drone motion, en-
abling smoother navigation and reducing collision risks. This is
particularly important in environments with limited visibility or
high-speed maneuvers, where reliable and responsive control is
essential for mission success.

7 Conclusion
In this paper, we propose a context-aware motion prediction frame-
work for head-mounted displays in latency-sensitive virtual reality.
Our main contribution is the PseudoESKF, a lightweight ESKF that
incorporates higher-order motion modelling and an entropy-based
motion classifier. We showed that PseudoESKF consistently out-
performs standard KF and ESKF baselines in both accuracy and
robustness, particularly for unpredictable motion and under net-
work packet loss. Importantly, our method requires only pose data
and is efficient for edge deployment. These results demonstrate
that combining higher-order dynamics with context-awareness
provides a practical and effective solution for reducing MTP latency
to enable better user experiences in offloaded XR applications.
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