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Abstract

This study provides a systematic overview of Natural Language Processing (NLP)-based
frameworks for Cyber Threat Intelligence (CTI) and the early prediction of cyberattacks in
Industry 4.0. As digital transformation accelerates through the integration of IoT, SCADA,
and cyber-physical systems, manufacturing environments face an expanding and com-
plex cyber threat landscape. Following the PRISMA 2020 systematic review protocol,
80 peer-reviewed studies published between 2015 and 2025 were analyzed across IEEE
Xplore, Scopus, and Web of Science to identify methods that employ NLP for CTI ex-
traction, reasoning, and predictive modelling. The review finds that transformer-based
architectures, knowledge graph reasoning, and social media mining are increasingly used
to convert unstructured data into actionable intelligence, thereby enabling earlier detection
and forecasting of cyber threats. Large Language Models (LLMs) demonstrate strong po-
tential for anticipating attack sequences, while domain-specific models enhance industrial
relevance. Persistent challenges include data scarcity, domain adaptation, explainability,
and real-time scalability in operational-technology environments. The review concludes
that NLP is reshaping Industry 4.0 cybersecurity from reactive defense toward predictive,
adaptive, and intelligence-driven protection, and it highlights the need for interpretable,
domain-specific, and resource-efficient frameworks to secure Industry 4.0 ecosystems.

Keywords: natural language processing; cyber threat intelligence; manufacturing
cybersecurity; Industry 4.0; social media intelligence; MITRE ATT&CK; proactive security

1. Introduction
1.1. Background and Motivation

Industry 4.0, or the fourth industrial revolution, is, in fact, a radical change in produc-
tion brought about by the infusion of cyber-physical systems, IoT, cloud computing, and
artificial intelligence. The digital transformation in production now enables autonomous
decision-making, real-time analytics, and connected supply chains to work together effec-
tively, blurring the boundary between the physical and digital worlds [1]. Factories are
taking steps toward becoming smart environments by leveraging data, thereby enabling
unprecedented efficiency and productivity; however, this also increases the attack surface
available to threat actors [2].

Increasing usage of IoT devices, Supervisory Control and Data Acquisition (SCADA),
and Industrial Control Systems (ICS) makes it easy for cyber intrusions into the manufac-
turing environment [3]. Scholarly work and real-world scenarios have demonstrated that a
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supposedly isolated manufacturing network can be compromised via indirect vectors and
multi-stage attack chains. Researchers have demonstrated that Programmable Logic Con-
trollers (PLCs), Human–Machine Interfaces (HMIs), and robotic systems within modular
smart factories can be exploited to initiate physical disruption even under an air-gapped
configuration [4]. Vulnerabilities within Cyber-Physical Production Systems (CPPS) create
multiple pathways through which cascading failures between subsystems can propagate,
increasing operational risk [4].

Further, experiments on the SCADA infrastructures of petrochemical plants have
shown that altering sensor or control data can lead to process instability and safety
risks [5]. Research on automated composite manufacturing emphasises that cyber sabotage
of production lines is possible [6]. These scenarios demonstrate that perimeter defence
or signature-based detection cannot be relied upon for manufacturing security; rather,
predictive and adaptive safeguards that anticipate dynamic threats are needed.

Large-scale attacks occurred in the United Kingdom in 2025, when Marks & Spencer
suffered a supply chain breach and production at Jaguar Land Rover had to be shut
down [7–9], thereby highlighting how cyberattacks on Industry 4.0 ecosystems can take
many cascading forms, both economically and operationally. This paper demonstrates an
acute need for pre-emptive cybersecurity interventions using deep learning and natural
language processing to detect threats before they fully materialise.

1.2. Problem Statement

Despite growing awareness of cybersecurity risks in Industry 4.0, most cyber defence
methodologies remain proactive and general. The arsenal of signatures-based Intrusion
Detection Systems (IDS), rule-driven firewalls, or periodic vulnerability assessments falls
short of identifying new, case-specific threats in complex industrial environments. Because
these defence systems rely on pre-established attack signatures to function, they strug-
gle to keep pace with rapidly evolving threats that outpace the deployment of security
updates. Traditional cybersecurity frameworks treated Information Technology (IT) and
Operational Technology (OT) as fundamentally separate problems, seeking separate secu-
rity solutions, thereby overlooking that modern Industry 4.0 systems require integrated
security monitoring that accounts for the convergence and interdependencies between the
two domains [2].

Another gap is in the lack of domain-specific cyber threat intelligence. Most available
CTIs are oriented toward enterprise IT or cloud environments rather than ICS, SCADA,
or IoT-enabled manufacturing networks. This, by extension, yields a very high level of
useful, actionable intelligence for industry stakeholders regarding specific vulnerabilities
by sector, attack vectors, and adversarial behaviours [10]. Predictive capabilities, such
as early-warning systems that forecast attack patterns or exploit propagation, remain
underdeveloped in research on cybersecurity within manufacturing.

There is, therefore, an urgent need to adopt advanced analytical techniques that can
accommodate large volumes of unstructured data, such as vulnerability reports, social
media chats, security advisories, and technical forums. One pathway to automation, among
others proposed in this paper, is the use of NLP. This kind of automation enables earlier
threat detection, thereby enhancing situational awareness and moving from reactive defence
toward predictive and proactive cybersecurity in Industry 4.0 manufacturing systems.

1.3. Objectives of the Review

This literature review aims to explore and synthesise recent research on NLP-based
cybersecurity frameworks to enhance predictive threat intelligence and realise Industry 4.0
environments. It attempts to carry out the following:
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• Identify and classify existing NLP-driven frameworks, algorithms, and methodolo-
gies used for CTI extraction, threat detection, and early attack prediction within
Industry 4.0.

• Assess how these NLP-driven methods fit within manufacturing and industrial control
settings, particularly in Internet of Things (IoT), SCADA, and ICS contexts.

• Evaluate research gaps at the crossroad of NLP, CTI, and Industry 4.0 cybersecurity on
matters related to data quality as well as interpretability and scalability issues.

• Offer future research directions that integrate predictive analytics, AI, and NLP to
develop anticipatory, domain-specific cybersecurity schemes for digital manufacturing
systems.

This review, therefore, aims to achieve these goals and provides a structured un-
derstanding of how NLP technologies can be leveraged for cyber resilience and threat
anticipation in systems within the context of Industry 4.0.

1.4. Scope and Contribution

The scope of this content centres on peer-reviewed academic literature and technical
reports that discuss the application of NLP, Artificial Intelligence AI, and machine learning
to cybersecurity, particularly for CTI extraction and modelling future threats.

The review focuses on studies published between 2015 and 2025, a period of rapid
emergence of Industry 4.0 technologies and advances in NLP. The inclusion criteria cover
studies that:

• Assess NLP-based systems for cyber threat analysis, information extraction, or predic-
tive attack modelling.

• Apply these techniques in contexts relevant to Industry 4.0, including manufacturing,
IoT, ICS, and SCADA systems.

• Offer empirical evaluations, comparative analyses, or frameworks showing measur-
able improvement in detection or prediction capability.

Studies that focus solely on non-industrial or purely theoretical applications of NLP
without practical or experimental validation in cybersecurity contexts shall be excluded.

The contribution of this review is threefold. First, it synthesized disparate research
on NLP-based CTI and predictive defence mechanisms into a single framework. Second,
a critical assessment has been made of the practical implementability and adaptability of
these approaches in manufacturing environments that inherently possess heterogeneous
data sources and real-time operational requirements. Third, existing challenges have been
articulated, ranging from the scarcity of labelled industrial datasets and the semantic
vagueness inherent in unstructured threat intelligence data to IT/OT integration barriers,
and future research avenues to mitigate them have been proposed. In sum, this paper adds
academic and practitioner insights toward reframing industrial cybersecurity from a logic
of reactive threat response to an anticipatory, intelligent, Data-Driven Predictive Defence.

2. Background
Cybersecurity Threat Intelligence (CTI) refers to cyber threat information that has

been systematically aggregated, analysed, and contextualised to support informed secu-
rity decision-making [11]. Its primary objective is to transform raw data into actionable
intelligence concerning threat actors, their capabilities, intentions, and operational meth-
ods, thereby enabling organisations to move from reactive defence mechanisms toward
intelligence-driven security operations.

CTI is typically categorised into four complementary levels: strategic, operational,
tactical, and technical intelligence [12,13]. Strategic CTI focuses on long-term threat trends,
geopolitical drivers, and adversary motivations to support executive decision-making and
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policy formulation. Operational CTI examines adversary campaigns, infrastructure, and
capabilities over medium timeframes to assist analysts and incident responders. Tactical
CTI addresses tactics, techniques, and procedures (TTPs), enabling anticipation of attack
behaviours, while technical CTI provides short-lived Indicators of Compromise (IoCs), such
as IP addresses or file hashes, for direct integration into detection systems. This layered
taxonomy ensures the relevance of intelligence across organisational and operational levels,
although its transient nature necessitates continuous updating and automation.

The CTI life cycle provides a structured framework for converting raw data into
actionable intelligence. Adapted from classical intelligence models, it comprises six itera-
tive phases: direction and planning, collection, processing, analysis, dissemination, and
feedback [12,14,15], as illustrated in Figure 1. Intelligence requirements guide data collec-
tion from diverse sources, after which data are normalised and analysed to extract patterns
and insights. Intelligence products are then disseminated to relevant stakeholders, and
feedback is incorporated to refine subsequent cycles. This continuous process ensures
alignment with organisational objectives and evolving threat landscapes [16].

Figure 1. Six-phase cyber threat intelligence cycle.

The increasing volume and unstructured nature of CTI data have positioned NLP as a
critical enabler within the CTI process. NLP integrates linguistics, computer science, and
artificial intelligence to enable machines to process and interpret human language [17].
Early NLP systems relied on rule-based approaches grounded in linguistic theory [18], but
their inability to address ambiguity and variability prompted a transition to data-driven
statistical methods [19].

The emergence of deep learning marked a paradigm shift in NLP. Architectures such as
Long Short-Term Memory networks, Convolutional Neural Networks, and transformers sig-
nificantly improved the modelling of semantic and contextual relationships in text [20–22].
As shown in Figure 2, this led to the development of pre-trained language models such as
BERT and GPT, which demonstrated that large-scale pre-training followed by task-specific
fine-tuning achieves state-of-the-art performance across a wide range of NLP tasks [21–30].

Transformer-based models, such as BERT and its variants, have demonstrated strong
potential for converting textual CTI into predictive indicators, particularly when combined
with knowledge graphs that encode relationships among vulnerabilities, attack techniques,
and threat actors. These integrated ML–NLP systems enhance situational awareness
and support pre-emptive response strategies, although challenges related to data quality,
domain adaptation, and class imbalance remain significant [31].

These challenges are particularly acute within Industry 4.0 environments. Industry
4.0 represents the convergence of cyber-physical systems, IoT, artificial intelligence, and
data-driven automation within industrial contexts [32]. While these technologies enable
real-time monitoring, predictive maintenance, and adaptive manufacturing, they also
expand the attack surface by increasing connectivity between information technology (IT)
and operational technology (OT) systems [33]. Consequently, cybersecurity has become
a foundational requirement for ensuring the confidentiality, integrity, and availability of
industrial systems.
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Figure 2. Natural Language Processing: Historical Development [21–30].

Industrial environments face a range of cyber threats, including ransomware, indus-
trial espionage, advanced persistent threats, and insider attacks. High-profile incidents
have demonstrated the severe operational and financial consequences of cyberattacks on
manufacturing and critical infrastructure. These risks are exacerbated by legacy systems,
inadequate network segmentation, and skills shortages. To mitigate such threats, standards
such as the NIST Cybersecurity Framework and IEC 62443 [34–38] provide structured
guidance for securing industrial automation and control systems [39,40].

Despite the availability of frameworks, implementing CTI effectively in Industry 4.0 re-
mains challenging. Heterogeneous networks, organisational silos between IT and OT teams,
limited expertise, and constrained resources, particularly among small and medium-sized
enterprises, hinder the adoption of advanced CTI solutions [41,42]. Moreover, predictive
CTI systems depend on the availability of large volumes of high-quality domain-specific
data, which are often scarce. Addressing these barriers requires not only technological
advances but also organisational change, workforce development, and cross-sector collabo-
ration to strengthen cyber resilience.

3. Methodology
3.1. Review Protocol

This paper made use of the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA 2020) structure to ensure replicability and reduce bias (Supple-
mentary Materials). The systematic review protocol was prospectively registered in the
Open Science Framework (OSF) to enhance transparency and methodological rigor (DOI:
10.17605/OSF.IO/5SAJW). This review also applied known Systematic Literature Review
(SLR) methods [43]. Three major academic databases were selected to ensure comprehen-
sive coverage of high-quality peer-reviewed literature in the areas of investigation: artificial
intelligence, cybersecurity, and industrial systems: IEEE Xplore, Scopus, and Web of Science
(WoS). The review protocol consisted of four stages:

• Defining research objectives and questions,
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• Developing the search strategy,
• Establishing inclusion and exclusion criteria, and
• Extracting and synthesising data.

The main objective was to identify and analyse studies on NLP-based frameworks for
CTI and early prediction of cyberattacks in manufacturing and Industry 4.0 environments.

3.2. Search Strategy

A systematic, repeatable search strategy was formulated to identify studies at the
intersection of NLP, CTI, and manufacturing or industrial cybersecurity. In line with
PRISMA and SLR best-practice principles, search terms were formulated through an
iterative process that included reviewing pilot results and refining keyword groupings. The
search was conducted in three major electronic databases, IEEE Xplore, Scopus, and Web of
Science (WoS). As shown in Table 1, Boolean operators (AND, OR) and database-specific
field tags were used to systematically combine key concepts.

Table 1. Summary of the three main conceptual themes and their associated synonyms and related
terms that were used to build all search expressions.

Theme Key Concepts & Synonyms

A. NLP techniques “natural language processing” OR NLP OR “language model” OR “large language model” OR LLM
OR GPT OR BERT OR “topic modeling” OR “sentiment analysis” OR “named entity recognition”

B. Cyber Threat Intelligence “cyber threat intelligence” OR CTI OR “threat intelligence” OR “cyber threat detection” OR ATTACK
OR “TTP extraction”

C. Manufacturing/Industrial Context manufacturing OR “industrial control systems” OR “industry 4.0” OR “critical infrastructure” OR
“cyber-physical system” OR energy OR “industrial internet of things” OR IIoT

The search combined one or more terms from each theme to ensure that retrieved
publications explicitly addressed all three research dimensions:

• The application of NLP methods,
• their use in CTI or cyber-attack prediction, and
• their deployment or relevance within manufacturing or industrial environments.

Search Parameters

• Databases searched: IEEE Xplore, Scopus, Web of Science (WoS)
• Publication years: 2015–2025
• Language: English
• Document types: Peer-reviewed journal articles and conference papers
• Subject areas: Computer Science, Cybersecurity, Engineering, and Industrial Systems

The keyword sets were finalized using the relevant database-specific search syntax.
This ensured that a precise, comparable result set was generated across all sources and that
all relevant literature was obtained for subsequent screening.

3.3. Inclusion and Exclusion Criteria

To ensure rigour and relevance, the following criteria were applied:

3.3.1. Inclusion Criteria

• Peer-reviewed studies published between 2015 and 2025.
• Research written in English.
• Studies directly addressing NLP, CTI, or cyberattack prediction in manufacturing,

Industry 4.0, or ICS contexts.
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• Articles proposing or evaluating NLP-based frameworks or models for cybersecurity
or threat intelligence.

3.3.2. Exclusion Criteria

• Non-English publications.
• Non-peer-reviewed literature (e.g., theses, reports).
• Studies not integrating NLP and CTI concepts.
• Duplicate records retrieved across databases.
• Records representing conference names only (not full papers).

After deduplication and screening, five duplicates were removed, and one study was
excluded because it was a conference entry rather than a full research paper.

3.4. PRISMA Flow of Study Selection

The literature selection process followed the PRISMA 2020 framework, as shown
in Figure 3.

Figure 3. PRISMA 2020 flow diagram for study selection [44].

A total of 385 records were retrieved from the three databases; see Table 2. After
removing 42 duplicates, 343 studies were screened. All were retrieved for full-text as-
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sessment; 20 records were excluded because they were conference names or lacked a full
paper. Subsequently, 243 records were excluded as they were outside the research scope.
Finally, 80 studies were included in the review.

Table 2. Database Results.

Database Total Results

IEEE Xplore 278

Web of Science 71

Scopus 36

Total Identified 385

3.5. Data Extraction and Analysis

A structured data extraction sheet was created using the consolidated dataset of
80 records. Each paper was analysed using predefined attributes to facilitate thematic and
quantitative synthesis.

Data Extraction Fields:

• Bibliographic details: Author(s), year, and source.
• Methodology: Research design, model type, or framework used.
• NLP Technique: e.g., Transformer, BERT, LLM, . . .

The analysis emphasised the identification of trends in NLP methodologies ap-
plied to CTI, their effectiveness in early attack prediction, and gaps in industrial
cybersecurity research.

4. Results
This section presents the results of the systematic literature review through a domain-

based thematic synthesis, analysing how NLP and language-centric machine learning
techniques are applied across different cyber–physical platforms. Rather than grouping
studies solely by algorithms or tasks, the analysis is structured around application do-
mains, including industrial manufacturing systems, power and energy infrastructures, the
Industrial Internet of Things (IIoT), and emerging cyber–physical domains such as electric
vehicles and smart grids.

This domain-oriented organisation reflects the reality that cybersecurity requirements,
data characteristics, operational constraints, and risk profiles differ substantially across
platforms. As a result, the role of NLP, whether in threat intelligence extraction, anomaly
detection, reasoning, or explanation, varies across domains. The themes, therefore, capture
how NLP is adapted and operationalised within each platform, while also revealing com-
mon methodological trends and cross-domain convergence toward transformer-based and
LLM-centric approaches.

To provide an initial, high-level characterization of the reviewed literature within each
domain, Figure 4 presents five word clouds generated from the authors’ keywords, corre-
sponding to industrial systems, power and energy infrastructures, critical infrastructure,
IIoT, and emerging cyber–physical domains such as electric vehicles. These word clouds
visually highlight the dominant concepts, security concerns, and methodological emphases
within each platform. While shared themes such as “cybersecurity”, “intrusion detection”,
“machine learning”, and “language models” appear across domains, domain-specific pri-
orities are also evident—for example, control- and grid-oriented terms in power systems,
infrastructure resilience and incident handling in critical infrastructure, and scalability
and device-centric security in IIoT. The word clouds, therefore, serve as an illustrative
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complement to the subsequent thematic analysis, motivating the domain-based structure
adopted in this section.

Figure 4. Word cloud generated from the authors’ keywords of the reviewed papers for
each subsection.

4.1. Industrial Systems

Industrial cybersecurity research increasingly relies on NLP to convert heterogeneous,
unstructured sources, including CTI reports, vulnerability descriptions, incident tickets,
and system logs, into structured representations that can support detection, attribution, and
response. Across the reviewed studies, three NLP task families dominate: (i) information
extraction (NER, relation extraction, event extraction), (ii) text/sequence classification (at-
tack technique classification, log/alert labeling), and (iii) semantic matching and retrieval
(taxonomy alignment, similarity search, RAG). The literature also shows a clear method-
ological evolution from sparse lexical baselines (TF-IDF) and recurrent neural networks
toward transformer encoders and LLM-centric pipelines.

4.1.1. Threat Intelligence Extraction: NER and Relation Extraction

Named Entity Recognition (NER) is the most common entry point for CTI automation
because it transforms free text into operational indicators (actors, malware, tools, IoCs,
affected assets, vulnerabilities, and ATT&CK techniques). Earlier CTI pipelines often
relied on token-level tagging with classical features or BiLSTM-CRF models, but the re-
viewed studies show that transformer embeddings substantially improve performance by
providing contextual representations of domain-specific terms and abbreviations.
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Chang et al. [45] illustrate the industrial CTI NER problem well: CTI contains out-of-
vocabulary (OOV) tokens. Their multi-feature approach shows the value of combining
character-level cues with contextual representations to reduce OOV brittleness.

Beyond entity tagging, industrial studies increasingly focus on relation and event
extraction, as a list of entities alone is insufficient for actionable defense. Mapping vul-
nerability to the affected component, then the technique, and to the observable indicator
requires linking entities across sentences and documents. Work that integrates threat in-
telligence chains (e.g., DeBERTaIC) demonstrates how adding a structured intermediate
representation improves downstream reasoning and attribution [46]. Similarly, large-scale
knowledge representations show that extraction quality becomes the bottleneck: poor
entity boundaries propagate errors into relation graphs and attack chains.

A second trend is semantic filtering and intelligence fusion. EnhanceCTI employs
lightweight transformer variants (e.g., DistilBERT) for relevance filtering and sentence-level
embeddings (e.g., SentenceBERT) for merging and consistency scoring across sources and
industries, thereby separating “what is relevant” from “how sources agree” [47].

4.1.2. Log and Alert Understanding: Tokenization Choices, Representation, and
Temporal Structure

Industrial environments generate massive volumes of semi-structured logs. NLP
techniques appear here in two forms: textual representation of logs for detection and
schema/field extraction for normalization.

For representation learning, Coote et al. [48] present a classic baseline: TF-IDF applied
to log/event text, combined with an LSTM autoencoder. This family of methods is compu-
tationally inexpensive and can run near-edge, but it is sensitive to vocabulary drift, does not
capture semantics of paraphrased events, and struggles when attackers mimic benign text
patterns. In contrast, transformer-based approaches treat logs as sequences with subword
tokenization, improving robustness to spelling variants and identifier changes.

Several papers advance log analytics by injecting structure and time. Zhang et al. [49]
use an ontology and few-shot prompting for field extraction followed by temporal graph
reasoning, reflecting a broader trend: (i) normalize events into structured “triples” or
schemas, then (ii) apply temporal modeling to detect anomalous sequences. The key
technical distinction is that anomaly detection improves when the model learns event-to-
event transitions (temporal dependencies) rather than isolated log lines.

4.1.3. MITRE ATT&CK Integration: Technique Classification and
Cross-Taxonomy Alignment

Industrial defenders increasingly treat MITRE ATT&CK (including ICS) as a lingua
franca for threat analytics. NLP is used to map unstructured text (CTI, CVEs, alerts) into
ATT&CK techniques, enabling standardized reporting, rule generation, and analytics.

Many studies show that embedding-based similarity outperforms simple frequency
matching for linking different taxonomies (e.g., CWE or CVE to ATT&CK techniques)
because it aligns items by meaning rather than by shared keywords [50]. Kim et al. [51]
similarly demonstrate that semantically grounded mapping can recover attack paths and
implications of techniques beyond surface overlap.

Technique classification also faces strong label imbalance (many rare techniques) and
domain shift across sectors. AC_MAPPER [52] addresses this by combining input augmen-
tation and class rebalancing, thereby improving macro-F1 under imbalance, an important
contribution because operational CTI typically over-represents common techniques and
under-represents emerging ones. At the platform level, OTuHunt [53] demonstrates how
extraction and mapping can be operationalized to generate SIEM-friendly outputs and
threat-hunting queries for OT/ICS environments.
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4.1.4. LLM-Centric Methods: In-Context Learning, RAG, and Agentic Workflows

Recent industrial studies experiment with LLMs as flexible reasoning layers for detec-
tion, triage, and interaction. Preliminary evidence suggests LLMs can improve contextual
interpretation, but they raise compute, latency, and validation concerns.

Ann et al. [54] and Jin et al. [55] explore LLM-assisted intrusion detection and analysis
for ICS traffic and events. Compared with fixed classifiers, LLMs offer (i) rapid adaptation
via in-context learning and (ii) natural-language explanations; however, they require careful
prompt design, robust grounding, and clear operational constraints to avoid hallucination
and unsafe recommendations.

A particularly relevant direction for industrial realism is the use of LLM-enabled
interaction systems, such as honeypots. Chamotra et al. [56] combine finite-state protocol
modeling (for correctness) with retrieval-augmented LLM responses (for flexibility), show-
ing how hybrid designs mitigate the main weakness of pure LLM approaches (unreliable
protocol state) while retaining adaptability.

4.1.5. Supporting Techniques and Complementary Industrial NLP Approaches

In addition to end-to-end CTI extraction and intrusion detection pipelines, several
studies support NLP techniques that strengthen industrial cybersecurity workflows by im-
proving semantic alignment, benchmarking, and model governance. Hybrid transformer–
recurrent architectures have been applied to vulnerability classification, showing that
contextual language representations (BERT) combined with sequential modeling (LSTM)
can improve robustness when vulnerability descriptions are noisy or weakly structured [57].
Other work focuses on bridging heterogeneous security knowledge by connecting attack
patterns to weakness taxonomies, improving traceability and downstream analytics in in-
dustrial reporting and threat modeling pipelines [58]. Complementing model development,
dataset- and benchmark-oriented research proposes evaluation frameworks for IDS/IPS
datasets that explicitly integrate MITRE ATT&CK relevance and industry-oriented metrics,
addressing a key limitation of accuracy-only comparisons in operational environments [59].
NLP-based approaches are also used to support explainable anomaly and traffic detection
in Industrial Control System (ICS) environments by integrating machine learning models
with interpretability techniques to enhance transparency and operator trust [60,61]. Indus-
trial control security surveys further emphasize the growing role of knowledge graphs as a
semantic backbone for scalable reasoning and decision support in OT/ICS contexts [62].
Finally, emerging work suggests that prompting and LLM-driven reasoning can be applied
beyond text analytics (e.g., to specification analysis and verification tasks), indicating a
broader trajectory toward language-centered tooling across industrial assurance work-
flows [63]. Table 3 provides a structured overview of the reviewed industrial-system
literature, illustrating how different NLP tasks and training strategies align with industrial
security objectives and reflect the field’s methodological shift toward transformer- and
LLM-based approaches.

Across Industrial Systems, the literature indicates that the most robust pipelines are
hybrid: transformer-based extraction and classification augmented with domain ontolo-
gies/knowledge, temporal modeling, and increasingly retrieval-augmented generation
(RAG) or LLM components for reasoning and explanation.

The main technical trade-offs are (i) accuracy vs. deployability (edge constraints),
(ii) semantic richness vs. auditability, and (iii) adaptability vs. safety assurance.
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Table 3. Summary of NLP and LLM-based methods for industrial cybersecurity (Section 4.1). The
table maps representative works to industrial security tasks, NLP task types, training strategies
(TS), and language models used. Industrial security tasks include Behavior and Attack Analysis
(BAA), Anomaly Detection (AD), Intrusion Detection (ID), and LLM Safety (LS). NLP task types
include Named Entity Recognition (NER), Relation Extraction (RE), Semantic Similarity (SS), Text
Classification (TC), Data Augmentation (DA), Information Extraction (IE), and Natural-Language
Reasoning (R). Training strategy (TS) indicates whether models are fine-tuned (F), prompt-based
(P), or not applicable (-). Filled circles (•) denote that a work explicitly addresses the corresponding
industrial security task.

Work Year
Industrial Security Method(s)

NLP Method(s) TS LLM Used
BAA AD ID LS

[45] 2023 NER F CySecBERT

[46] 2025 NER; RE; IE F DeBERTa

[47] 2025 SS F DistilBERT

[48] 2023 • SS - N/A

[49] 2024 • • IE P T5

[50] 2023 • NER; SS F SBERT

[51] 2024 • SS; TC F SBERT

[52] 2025 • TC; DA F BERT-CTI

[53] 2025 • NER; TC F BERT, GPT

[54] 2024 • R P GPT, LLaMA

[55] 2025 • R F LLaMA

[56] 2025 • R P Mistral, Llama3

[57] 2024 • TC F BERT

[58] 2023 • TC; IE F SecureBERT, GPT-2

[63] 2024 • R P GPT-3.5

4.2. Critical Infrastructure Protection

Critical infrastructure protection (CIP) differs from general enterprise security because
it is constrained by safety requirements, legacy OT assets, regulatory obligations, and the
need for explainable decision-making under uncertainty. NLP is used in CIP primarily for
compliance and standards reasoning, cross-source correlation and situational awareness,
and knowledge graph construction.

A growing set of studies uses NLP/LLMs to interpret standards and translate them
into actionable controls and recommendations. Mpatziakas et al. [64] propose an LLM-
based advisory assistant that helps operators navigate cybersecurity standards in Industry
4.0 contexts. The novelty here is not merely text summarization; it is the mapping between
normative requirements and operational mitigation actions.

CIP often requires correlating security data across heterogeneous sources (incident
tickets, alerts, CTI reports, asset inventories, and policy documents). Settanni et al. [65]
provide early foundational methods for correlating cyber incident information to support
situational awareness. Although it is not transformer-based, the core challenge it addresses
remains central: correlation is difficult when signals are sparse, noisy, and distributed
across systems.

Chen et al. [31] apply a large-scale CIP knowledge graph built from regulations and
standards using a BiLSTM-CRF model combined with a domain-specific BERT. Methodolog-
ically, this illustrates a pipeline with three stages: ontology design, information extraction,
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and relation prediction. A key advantage is auditability: each edge and node can be traced
to extracted evidence. However, this also exposes a core weakness: extraction errors directly
distort downstream risk reasoning.

Several complementary studies extend CIP-focused NLP beyond core compliance and
knowledge graph pipelines [62,66]. Information-retrieval-based approaches leverage NLP
to safeguard infrastructure by enabling efficient discovery and correlation of threat-relevant
documents across large repositories [67]. Deep-learning-based threat detection methods for
IIoT environments provide additional empirical evidence that infrastructure-scale protec-
tion benefits from combining network telemetry with semantic analysis [59,68]. Broader AI
governance and trustworthiness studies in robotics and autonomous systems further rein-
force the importance of explainability, accountability, and human oversight when deploying
advanced NLP and LLM techniques in safety-critical infrastructure contexts [69].

4.3. Power and Energy Systems

Selim et al. [70] show how LLMs can be applied to interpret control-command text (e.g.,
Volt/VAR commands) for cyberattack detection. The technical significance is that the model
is not merely classifying network packets; it interprets operator-meaningful command
sequences. Compared with numeric anomaly detectors, language-based approaches can
exploit the semantics of command intent (e.g., plausible vs. malicious control objectives).

Digital substations introduce the zero-day problem in IEC 61850 [71]. Manzoor
et al. [72] use in-context learning to adapt to novel attacks with few examples, which
is particularly attractive when labeled attack data is scarce. However, in-context learning
performance is sensitive to prompt composition and demonstration selection. This implies
that operational deployment should include prompt governance, evaluation of drifted
conditions, and defensive prompting strategies.

Complementary work emphasizes domain extraction and rule creation. Yang et al. [73]
use RoBERTa with a Bi-GRU and CRF for entity recognition to enhance situation awareness
in power systems, thereby supporting downstream tasks such as IDS rule generation and
structured reporting.

Grid operations increasingly require synthesizing electrical measurements with con-
textual data (weather, operator notes, social signals). Shen et al. [74] propose a security
situational awareness framework that converts multimodal signals into structured text
prompts for LLM processing. The methodological move here is crucial: rather than building
a monolithic multimodal model, the system serializes diverse signals into a language repre-
sentation. This can accelerate prototyping, but it also raises questions about information
loss and prompt brittleness.

Zaboli et al. [75] extend multimodal reasoning through a framework for anomaly
detection in energy management systems (EMS). Compared with single-modality detectors,
multimodal systems can cross-validate anomalies (e.g., a control action that is numerically
plausible but operationally suspicious). The trade-off is complexity: more modalities
increase integration overhead and may introduce new failure modes if any modality
becomes unreliable.

Explainability is especially important in power systems because operators must justify
interventions. Sharshar et al. [76] integrate lightweight ML detection (e.g., LightGBM)
with LLM-generated natural language explanations. This hybrid design highlights a
recurring pattern across high-stakes settings: use a fast, validated detector for decision-
making, and an LLM for explanation and operator support. The advantage is latency and
reliability; the risk is that explanations may be persuasive but not faithful unless grounded
in model evidence.
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Related efforts apply generative models for forecasting-based anomaly detection in
microgrids and measurement systems [77]. GPT-style modeling has been adapted for
time-series forecasting and False Data Injection Attacks (FDIA) detection by comparing
predicted vs. observed values. Unlike language-only tasks, this approach uses “generative
pretraining” ideas to model nonlinear temporal dynamics.

Renewable infrastructures introduce distributed assets and data governance chal-
lenges. Bandara et al. [78,79] combine Llama-based models with blockchain and federated
learning ideas for wind energy security, illustrating an architectural trend: distribute
learning and governance while using LLMs for high-level reasoning or script generation.

At the edge/cloud boundary, Internet-of-Energy work often adopts two-tier designs.
Reference [80] proposes a lightweight edge model (MiniLM-scale) for local alerting and a
larger cloud LLM for forensic analysis and rule generation (e.g., Snort). Fu et al. [81] simi-
larly use federated RAG to improve log analysis and threat detection. Sunxuan et al. [82]
address resource allocation and fine-tuning delay constraints, reflecting the practical reality
that security ML competes with other operational workloads.

In addition to the representative studies discussed above, several power-system-
specific works examine the use of LLMs in smart grids from both opportunities and risks
perspectives, including ChatGPT 4.0-style analyses and broader discussions of LLM applica-
tions and risks in smart-grid settings [83,84]. Other studies demonstrate hybrid “language
and control/optimization” patterns, for example using LLM-aware or LLM-assisted ap-
proaches in adaptive distribution voltage regulation under operational constraints [85].
Complementary detection research also explores lower-level telemetry pathways, such as
packet-payload anomaly detection designed for cyber-physical power systems, which can
be paired with higher-level semantic reasoning for layered defense [86]. Beyond detection,
semantic and knowledge-driven approaches support grid security operations through
ontology-based reasoning of security contexts and infrastructure-scale semantic search
capabilities that enhance the discovery and correlation of grid models and security-relevant
artifacts [87,88]. Finally, recent work explores federated learning and LLM hybrid security
frameworks, as well as real-time threat prediction/response for the Internet of Energy,
aligning with the broader shift toward distributed and adaptive security intelligence in
power systems [89,90]. Related distributed-energy security studies also highlight the feasi-
bility of edge-deployable agents for tactic/technique attribution in microgrid environments,
a capability that is increasingly relevant as grids decentralize [91].

Power and energy studies demonstrate three distinct NLP/LLM roles: (i) interpreting
commands and protocol text, (ii) converting multimodal grid context into language for
reasoning, and (iii) providing explainable narratives on top of fast detectors. The dominant
open problems are rigorous validation under distribution shift, real-time constraints, and
ensuring explanation faithfulness and operational safety.

4.4. Industrial Internet of Things

SecurityBERT [92] represents a central design pattern: a BERT-style encoder adapted
for resource-constrained deployment through (i) byte-level tokenization to improve robust-
ness to non-standard payloads and identifiers, and (ii) privacy-preserving fixed-length
encodings to limit data leakage. This contrasts with classical IDS pipelines that rely on
manual features or n-gram statistics, which often underperform in the face of protocol
variability and obfuscation.

Ali et al. [93] similarly use BERT for representation learning, combining it with an MLP
classifier and methods for handling imbalance. Compared with end-to-end fine-tuning
of large models, this approach can reduce training complexity and facilitate deployment.
Diwan et al. [94] provide a broader analysis of attack categories and emphasize that practical

https://doi.org/10.3390/app16020619

https://doi.org/10.3390/app16020619


Appl. Sci. 2026, 16, 619 15 of 24

IIoT security requires multilayered strategies that extend beyond model performance.
Breve et al. [95] propose a BERT-based model that checks the semantic consistency of
IoT/automation rules by detecting contradictions and logically incompatible conditions
within natural-language or structured policy specifications.

Healthcare IoT introduces regulatory constraints and safety-critical operations. Ra-
jamäki [96] analyzes Internet of Medical Things (IoMT) risks and tool mapping within the
DYNAMO project context, underscoring gaps in interoperability and real-time monitoring.

IIoT datasets are frequently imbalanced, and rare attacks are operationally important.
Melícias et al. [97] compare GPT-based and interpolation-based augmentation methods with
synthetic minority oversampling technique (SMOTE) variants, highlighting an important
nuance: augmentation benefits depend on the classifier family and the geometry of the
feature space. Deep models may benefit from richer synthetic diversity, whereas tree-based
methods sometimes gain less.

Explainability is essential for actionable IIoT defenses, especially when false posi-
tives can disrupt production. Khandan et al. [98] combine fusion-based detection with
explainable outputs and LLM-assisted mitigation guidance grounded in MITRE D3FEND.
Compared with “black-box IDS” designs, this line of work treats the IDS as a socio-technical
tool in which operator trust and response quality are part of the performance targets. Liu,
Li, and Hulayyil [99] employ pretrained language models to intelligently detect and classify
cyber attack patterns in Industrial Internet of Things environments, demonstrating the
effectiveness of transfer learning-based NLP approaches for pattern recognition and threat
identification across heterogeneous IIoT networks. Cimino and Deufemia [100] present
SIGFRID, an unsupervised and platform-agnostic approach for detecting interference and
anomalies in Industrial Internet of Things automation rules, enabling threat detection
without labeled data or dependency on proprietary IoT platforms.

Distributed IIoT deployments introduce privacy and governance constraints. Deng
et al. [101] propose leakage-resilient, differentially private aggregation mechanisms that re-
duce communication costs while defending against reconstruction attacks, thereby directly
addressing a primary barrier to collaborative learning in critical infrastructure contexts.

Security and data management methods complement model-level privacy. Mao
et al. [102] present a searchable encryption scheme that supports dynamic data management
for IIoT, reflecting that secure analytics often requires secure storage and query mechanisms.
Blockchain-enabled authentication is also explored: Xie et al. [103] introduce cross-domain
anonymous authentication with traceability, enabling secure identity management across
organizational boundaries.

Beyond implementation-focused intrusion detection systems, several studies provide
survey-level and cross-domain perspectives on IIoT security, highlighting systemic vul-
nerabilities, dataset limitations, and evaluation challenges that are not always visible in
model-centric studies [104]. Recent reviews further examine the emerging role of large lan-
guage models in IoT security, synthesizing advances in representation learning, contextual
reasoning, and natural-language interfaces while also identifying open challenges related
to scalability, trustworthiness, and deployment constraints [105,106].

Complementary research extends IIoT security analysis to adjacent communication-
centric domains, demonstrating that language-model-based techniques can generalize
beyond traditional industrial networks. For example, pre-trained LLMs have been applied
to cyber threat detection in satellite networks, while BERT-based intrusion detection meth-
ods have been explored for vehicular and wireless environments, indicating methodological
overlap with IIoT security despite differing threat surfaces [107,108].

Taken together, these studies reinforce the need to evaluate IIoT security solutions not
only in isolation, but also in relation to broader networked and cyber-physical ecosystems,
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where lessons learned from satellite, vehicular, and wireless domains can inform more
robust and transferable NLP-driven defense strategies [104,105].

4.5. Electric Vehicles and Emerging Domains

Electric Vehicle (EV) charging systems combine time-series signals (state-of-charge
trajectories, power draw) with transactional and operational context (session metadata,
pricing, user behavior). As a result, EV studies often adopt multimodal or hybrid designs.

Honnalli et al. [109] integrate sequential forecasting (LSTM) with LLM-based interpre-
tation of generated plots through structured prompts. This approach illustrates a broader
NLP technique: language models as interpreters of derived representations (e.g., sum-
maries or plots) rather than raw sensor streams. The advantage is rapid prototyping
and human-aligned explanations; the risk is that model performance may depend on
visualization conventions and prompt design.

Honnalli et al. [110] extend this by using RAG to ground LLM decisions in domain
knowledge, thereby reducing hallucination and improving consistency in novel situa-
tions. Compared with pure ML detectors trained on fixed feature sets, RAG-enabled LLM
pipelines can adapt to evolving policies, threat reports, and infrastructure conditions by
updating the retrieval corpus rather than retraining the entire model.

Security for autonomous systems and CPS requires integrating discrete logic, con-
tinuous dynamics, and adversarial behavior. Andreoni et al. [111] surveys generative
AI for autonomous security and resilience. For formal CPS analysis, classical modeling
approaches (e.g., timed automata, transition systems) remain relevant for safety verification
and attack-impact reasoning [112–114].

Beyond EV-charging-specific pipelines, several emerging studies investigate LLM-
powered threat intelligence for electric-vehicle cyber-physical systems, emphasizing proac-
tive detection of novel/zero-day behaviors and the role of language-based reasoning in
synthesizing signals, reports, and contextual evidence [115]. Parallel work in vehicular
ecosystems addresses collaborative threat sharing under privacy constraints, showing
that large-scale vehicular defense requires incentive-compatible and privacy-preserving
mechanisms for exchanging threat indicators across stakeholders [116].

A key recent NLP trend is converting non-text structures into text to leverage LLM
embeddings. Fragkos et al. [117] introduce GraphLLM-CPS, converting graph representa-
tions of Cyber-physical systems (CPS) data into textual formats to learn node embeddings
for anomaly detection. This textualization strategy parallels multimodal grid approaches:
it trades modality-specific modeling for leveraging LLM priors, which can be effective but
requires careful evaluation to avoid information loss.

4.6. Summary

Across industrial manufacturing, power and energy systems, IIoT platforms, and
emerging cyber–physical domains, the literature reveals a consistent shift from reactive,
detection-centric cybersecurity toward context-aware, intelligence-driven defence enabled
by NLP. Early approaches focused on basic extraction and classification, whereas recent
transformer-based and LLM-centric methods support semantic fusion, threat reasoning,
explainability, and early warning. Despite this methodological convergence, domain-
specific constraints remain decisive: industrial environments emphasise deployability
across heterogeneous IT/OT systems, power and energy platforms prioritise interpretabil-
ity and human-in-the-loop decision-making in safety-critical contexts, and IIoT deploy-
ments require scalable, privacy-aware solutions for resource-constrained devices. Emerging
domains further explore multimodal and language-centric representations to enable an-
ticipatory security. Overall, the results indicate that while language-based models are
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increasingly central to cybersecurity across platforms, their operational roles, risks, and
maturity remain strongly shaped by domain-specific requirements.

Table 4 presents representative examples of how different NLP paradigms are applied
to specific cybersecurity task roles across industrial domains, rather than serving as an
exhaustive review of the literature. The table highlights both the functional capabilities and
practical trade-offs of each methodological era. Sparse/Lexical methods rely on keyword
matching, frequency statistics, and rule-based representations, offering high interpretabil-
ity, low computational overhead, and ease of deployment, which makes them attractive
in resource-constrained industrial environments; however, they are highly sensitive to
vocabulary drift, limited semantic expressiveness, and poor cross-domain generalization.
RNN-based methods model sequential and temporal dependencies, enabling improved
contextual understanding and event or relation extraction, but they typically require la-
belled data, exhibit limited transferability across domains, and are affected by domain shift
between IT and OT contexts. LLM-centric methods leverage large pre-trained language
models, prompting strategies, and retrieval-augmented reasoning to support semantic
fusion, multilingual processing, explanation, and higher-level threat interpretation; at the
same time, their adoption in industrial CTI is challenged by fine-tuning cost, hallucination
risk, data confidentiality concerns, and deployment constraints in safety-critical systems.
The task tags illustrate how each paradigm expands the functional scope of NLP, reflecting
a shift from operationally lightweight information extraction toward reasoning-driven and
decision-support capabilities that underpin anticipatory cybersecurity.

Table 4. CTI-Focused NLP/ML Methods with Task-Level Tags. Task tags: NER = Named Entity
Recognition · RE = Relation/Event Extraction · CLS = Classification · MAP = ATT&CK/taxonomy
mapping · RET = Retrieval/RAG · REAS = Reasoning/explanation.

Methodological Era Example Works Strengths Challenges Primary Tasks

Sparse/Lexical Methods [45,50,65] Interpretable, low compute, easy
deployment

Vocabulary drift, limited semantics,
poor cross-domain generalization NER, CLS, MAP

RNN-Based Methods [48] Temporal modelling, improved
context

Data hunger, limited transferability,
domain shift NER, RE, CLS

LLM-Centric Methods [46,52,64] Semantic reasoning, multilingually,
cross-domain fusion

Fine-tuning cost, hallucination,
industrial deployment constraints

RET, REAS, CLS, NER, RE,
MAP

5. Challenges and Research Gaps
The literature indicates a growing dependence on NLP techniques for CTI extraction,

threat reasoning, and predictive defence in digital manufacturing systems. However,
several gaps persist. First, data scarcity and representativeness limit scalability, as many
datasets used to train models do not accurately reflect real industrial system behaviour
or multi-stage adversarial campaigns. Second, interpretability and transparency remain
underdeveloped, particularly as Transformer architectures become increasingly complex,
making it difficult for analysts to interpret model outputs in mission-critical environments.
Third, scalability and deployment feasibility pose challenges, as many deep learning
frameworks require computational resources that are not always available on IIoT or
control-system nodes.

In addition to the identified gaps in data availability, interpretability, and scalability, a
further research gap concerns the use of social media and open-source communication plat-
forms as early-warning channels for Industry 4.0 environments. Although several studies
demonstrate that social media can reveal emerging exploit discussions and vulnerability
awareness earlier than formal advisories, these approaches have been applied primarily
in general enterprise IT contexts rather than in ICS, SCADA, IIoT, or cyber–physical pro-
duction systems. Industrial environments exhibit unique operational semantics, device
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behaviours, and threat patterns that are not directly reflected in mainstream security dis-
course on social platforms, resulting in early cyberattack signals relevant to Industry 4.0
remaining largely undetected by current NLP-based monitoring systems. Additionally, the
mapping of open-source intelligence signals to structured threat-behaviour taxonomies,
such as MITRE ATT&CK for ICS or Enterprise, remains limited. Current studies mostly
centre on keyword identification or vulnerability mentions rather than contextualization
within tactics, techniques, pre-attack behaviours, or kill-chain progression. In the absence
of ATT&CK-aligned predictive interpretation, industry practitioners perceive a reduced
operational usefulness of social media intelligence. Therefore, constructing domain-aware
social media analytics pipelines capable of detecting subtle yet meaningful threat cues
and translating them into ATT&CK-based warnings is an important yet underexplored
research direction.

Such gaps highlight the need for domain-adaptable, explainable, and resource-aware
NLP frameworks specifically designed for cyber–physical and industrial infrastructures.

6. Future Research Directions
In future work, it would be beneficial to develop multimodal threat intelligence

ecosystems that integrate text-based CTI with complementary modalities, such as network
telemetry, sensor data, and visual process models. The development of domain-specific
language models adapted for the manufacturing and ICS corpus will be key to improving
contextual understanding of industrial terminology and attack patterns. Transfer learning
and federated or privacy-preserving learning methods can be leveraged to address data
scarcity and concerns about data confidentiality through cross-organizational collabora-
tion, without requiring the sharing of sensitive data. Additionally, the development of
lightweight, edge-deployable NLP architectures will improve the scalability of real-time
inference systems in industrial environments. Research should also address human-AI
collaboration frameworks, in which analysts validate and provide guidance on NLP in-
ferences, enabling a combination of automation and human judgment to improve the
reliability of the decision-making process. In addition to accuracy, future systems need
to address explainability and transparency, using interpretable attention maps or sym-
bolic reasoning layers to ensure accountability in safety-critical industries. Research into
multilingualism and cross-domain adaptation is also necessary to enable CTI systems to
understand the global threat intelligence available in all regional languages and sectors,
given that predictive cyber defense should itself advance in tandem with the increasingly
global, transnational shape of Industry 4.0 systems.

7. Discussion
A synthesis of the available literature shows that NLP-based frameworks have evolved

from simple entity extraction to sophisticated graph-reasoning and LLM-assisted sys-
tems for predictive analysis. Comparative analysis reveals that transformer-based and
knowledge-integrated models achieve high contextual precision at high levels of automa-
tion but are not implementable in industrial environments due to data heterogeneity and
domain transfer issues, including scalability constraints. The use of NLP and DL in predic-
tive CTI represents a paradigm shift toward anticipatory cyber defense; however, practical
implementations remain limited to research prototypes and pilots in a few organizations.
For academia, these results underline the need for more integrated collaboration between
linguistics, cybersecurity engineering, and industrial informatics. For the industry, the im-
plications include restructuring SOC operations and adopting adaptive, machine-assisted
pipelines for threat analysis. Standards for data sharing and model validation, as well as
ethical AI-based cybersecurity automation, should be a concern for policymakers. Indeed,
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while NLP has been redefining the scope of cyber threat analysis and early prediction, in
real-world scenarios, governance, interpretability, and human-in-the-loop integration are
the factors that translate technical novelty into actual impact.

8. Conclusions
This review proves how NLP can contribute to the proactive transformation of cy-

bersecurity in manufacturing by enabling detection, interpretation, and anticipation of
emerging threats. Through a systematic analysis of state-of-the-art frameworks, this study
examines how NLP-driven CTI, augmented with machine learning and large language
models, can address the gap between unstructured threat data and actionable intelligence.
Within Industry 4.0, Cyber–Physical Systems integrate IoT, SCADA, and ICS infrastruc-
tures, enabling the use of Predictive NLP models that can deliver significant advantages,
such as reducing response times and improving situational awareness and support for
resilient operations. However, for this to be realized, data quality, explainability, and
domain-adaptation challenges must be addressed. Multimodal analytics, domain-specific
models, and human–AI teaming are the way forward. The cybersecurity role of NLP would
go beyond being just descriptive to being transformative by enabling a move from reac-
tive defense to intelligent, predictive, adaptive protection of digitally integrated factories
of the future.
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