
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Distributed Approach to the Holistic Resource Management of a Mobile Cloud Network

Tärneberg, William; Papadopoulos Vittorio, Alessandro ; Mehta, Amardeep; Tordsson, Johan
; Kihl, Maria
Published in:
International Conference of Fog and Edge Computing

DOI:
10.1109/ICFEC.2017.10

2017

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Tärneberg, W., Papadopoulos Vittorio, A., Mehta, A., Tordsson, J., & Kihl, M. (2017). Distributed Approach to the
Holistic Resource Management of a Mobile Cloud Network. In International Conference of Fog and Edge
Computing IEEE - Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICFEC.2017.10

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 20. Sep. 2024

https://doi.org/10.1109/ICFEC.2017.10
https://portal.research.lu.se/en/publications/1a996931-7ebd-4cbb-b3d7-cfdc75ba2c14
https://doi.org/10.1109/ICFEC.2017.10

Distributed Approach to the Holistic Resource
Management of a Mobile Cloud Network

William Tärneberg1, Alessandro Vittorio Papadopoulos 2, Amardeep Mehta 3, Johan Tordsson 3, Maria Kihl 1

1Department of Electrical and Information Technology, Lund University, Sweden
2Mälardalen University, Sweden

3Department of Computing Science, Umeå University, Sweden

Abstract—The Mobile Cloud Network is an emerging cost and
capacity heterogeneous distributed cloud topological paradigm
that aims to remedy the application performance constraints
imposed by centralised cloud infrastructures. A centralised cloud
infrastructure and the adjoining Telecom network will struggle
to accommodate the exploding amount of traffic generated
by forthcoming highly interactive applications. Cost effectively
managing a Mobile Cloud Network computing infrastructure
while meeting individual application’s performance goals is non-
trivial and is at the core of our contribution. Due to the scale
of a Mobile Cloud Network, a centralised approach is infeasible.
Therefore, in this paper a distributed algorithm that addresses
these challenges is presented. The presented approach works
towards meeting individual application’s performance objectives,
constricting system-wide operational cost, and mitigating re-
source usage skewness. The presented distributed algorithm does
so by iteratively and independently acting on the objectives of
each component with a common heuristic objective function. Sys-
tematic evaluations reveal that the presented algorithm quickly
converges and performs near optimal in terms of system-wide
operational cost and application performance, and significantly
outperforms similar naı̈ve and random methods.

I. INTRODUCTION

With the advent of resource virtualisation and disaggrega-
tion in 5th-generation mobile networks as well as Edge- and
Fog-computing, forthcoming cloud infrastructures are poised
to be geographically distributed and capability- and cost-
heterogeneous. In the literature, this paradigm goes by many
names, such as; Fog Computing [8], Telco-Cloud [10], Edge-
cloud [16], and Mobile Cloud [13], [14], [18]. Because of the
network focus in this work, it is referred to as the Mobile
Cloud Network (MCN) [17].

The MCN topological paradigm will proposedly enable
and drive new types of services and applications that exploit
the increased proximity to the end users and key infrastruc-
ture components.Contemporary cloud resources are housed in
centralised Data Centres (DCs) that are separated from the
end-users by the intermediate Wide Area Networks (WANs),
core, and access networks. The added latency and weak-
backhaul introduced by those networks has proven to inhibit
the performance of cloud-based applications [2]. Furthermore,
there is a large and growing set of mission critical real-
time applications such as tele-robotic surgery [1], Radio Base
Station (RBS) baseband signalling [11], gaming [15], and
Augmented Reality (AR) [12] that are unable to operate in
such a latency-, jitter-, and throughout-uncertain environment,

provided by a centralised cloud paradigm. The decreased
distance between the cloud infrastructure and the end-users,
provided by an MCN, reduces the Round-Trip Time (RTT)
and jitter, increases availability, and fault-tolerance [29] for
the infrastructure’s resident cloud applications.

To operate a viable MCN infrastructure, its operator needs
to administer the admitted applications and the system’s re-
sources such that; resources are not over-provisioned, total
operational cost is minimised, and that all applications’ per-
formance requirements are met. When managing an MCN,
its operator’s primary degree of freedom is the placement of
the system’s resident applications. Continuously and scalably
evaluating the placement of a vast set of heterogeneous appli-
cations over a set of heterogeneous nodes is non-trivial and is
the fundamental problem addressed in this paper.

Optimally placing the resident applications in an MCN,
given the constraints above, is NP-hard [27]. Furthermore, the
optimal placement of the MCN’s resident applications was ex-
plored in our previous work [30], where it was concluded that
a centralised solution is not scalable because it fundamentally
fails to keep up with the system’s rate of change.

The problem of placing applications in a cloud environment
has been addressed in the literature for content routing [22],
intra- and inter-DC application placement [5], [19], and in
optimal content distribution in Content Delivery Networks
(CDNs) [9]. To the best of our knowledge, none of the
presented approaches simultaneously and holistically consider
a set of criteria that are synonymous with a vast resource
cost- and capacity-heterogeneous infrastructures with a high
geographic granularity.

The broad challenges of Virtual Machine (VM) placement
across DCs are taxamonised in [20] and formalised in [25].
The literature contains work on the placement of applications
and their constituent VMs in DCs, to minimise cost [5], energy
consumption [4], data-locality [24], network usage [6]. These
methods primarily address the internal objectives of a DC and
therefore inherently disregard the geographical discrepancy to
the end users and the heterogeneity in both applications and
infrastructure. Thus, they cannot be applied to this problem.
Additionally, the internal administration of an MCN’s DCs is
beyond the scope of this work.

Furthermore, CDNs share much of the same distributed
topological properties of an MCN but operate with the objec-
tive of maximising the hit-rate of a set of content over a finite

set of resources as a function of the of content’s popularity. In
a CDN, content is static and resource usage is often not propor-
tional to the demand and is confined to storage. Additionally,
no performance guarantees can be given for all applications
and instant scalability needs are not a concern. In contrast,
in an MCN resources are heterogeneous and applications are
highly dynamic with heterogeneous performance requirements
that all must be accommodated.

The contributions of this paper are three-fold. Firstly, the
paper outlines the application placement challenges and dy-
namics in an MCN on which a model is constructed, and
presented in Section II. Secondly, this paper contributes with
an iterative distributed algorithm that solves the application
placement challenge. The algorithm takes a holistic approach
by accommodating the system’s primary objectives over a
neighbourhood of DCs. By doing so the algorithm can ac-
commodate the heterogeneous resources and applications in
the system, without incurring additional cost and application
placement oscillations. The algorithm is defined in section III.
Thirdly, the algorithm is evaluated over a set of infrastruc-
ture topologies and contrasted with an optimal and a naı̈ve
method, detailed in Section IV. The results of the evaluation
presented in Section V show that the algorithm can quickly and
consistently converge while meeting all constituent entities’
objectives. It is also shown that the algorithm approaches
the system’s optimal cost point within 8% and in reasonable
time. Furthermore, the algorithm also outperforms the naı̈ve
method, both in term of convergence and cost. The evaluations
also reveal some of the distinct challenges with the different
topologies. Section VI summarises the results and provides a
discussion on possible continuations of this work.

II. MCN SYSTEM MODEL

In this section a system model of the MCN is detailed. The
model is used for defining the presented algorithm as well as
for constructing a simulated environment for evaluating the
algorithm. The model captures the fundamental challenges
and properties of an MCN infrastructure. The model is an
extension of our previous work [30]. An overview of the
model’s components can be seen in Figure 1.

A. Topology

An MCN infrastructure is modelled as an undirected graph
where the vertices are DCs and the edges are network links,
each with a set of finite resources. Applications admitted to the
MCN are hosted in DCs and are subject to a demand through
the network links, originating at the graph’s leaf, i.e. vertices
with degree one. Thus, let the graph G = (V, E) denote an
MCN topology, where

V = {vi | i = 1, 2, ..., I}, (1)
E = {ej | j = 1, 2, ..., J}, (2)

See Figure 1 for an illustration of the system’s topology.

Compute capacity & cost: ci, ⇣cici, ⇣ci
Bandwidth capacity& cost: bi, ⇣bibi, ⇣bi
Storage capacity & cost: si, ⇣sisi, ⇣si

Data centre: vivi Network link: ejej
Bandwidth: µjµj

Link cost: ⌘j⌘j

Application demand: UnUn

Demand leaf nodes: MnMn

Applications: AiAi

Application: anan

SLA: %n
0

%n
0

Compute intensity: �op

n

, �mig

n

�op

n

, �mig

n

Bandwidth intensity: ↵op

n

,↵mig

n

↵op

n

,↵mig

n

Storage intensity: �op

n

,�mig

n

�op

n

,�mig

n

Fig. 1: Model overview with entities and their properties

B. Data centre model

In an MCN, traditional centralised DCs are supplemented
by a large set of geographically dispersed DCs that are
embedded into a Mobile Network Operator (MNO)’s infras-
tructure. The DCs within an MCN are both capacity- and cost-
heterogeneous.

A vertex vi in the graph has the following capacities,
expressed as real positive numbers: compute capacity ci,
storage capacity si, and bandwidth bi. The resource requests
of a DC are aggregated into resource units. These units can
be seen as VMs or containers. A resource unit is defined
by a compute capacity cVM , a storage capacity sVM , and a
bandwidth bVM , expressed as real numbers, where cVM � ci,
sVM � si, bVM � bi. The momentary utilisations of these
resources are expressed as real numbers; compute utilisation
ci, storage utilisation si, and bandwidth utilisation bi. A DC
is assumed to be able to accommodate any set of applications
that aggregately do not exceed its capacity.

Additionally, a vertex vi is associated with an operational
cost per resource and time unit. These operational costs are
defined by the following real number functions of utilisation:
compute cost ζci , storage cost ζsi , and bandwidth cost ζbi .

C. Network model

In an MCN, the links that join the DCs have different cost
and capacity depending on the depth they are at in the network,
who own them, and their medium type. A link in the network
is modelled as an edge ej , j ∈ {1, 2, ..., J} in G and has a non-
directional capacity expressed as a bandwidth µj . Additionally,
a network resource ej has a link cost ηj , which is a function
of throughput that returns the link’s running cost per time unit.

D. Application model

The set of applications hosted by an MCN, A = {an |
n = 1, . . . , N}, are assumed to be wholly managed by the

MCN. The resident applications’ owners are therefore agnostic
to where and how their applications are being executing.

Each application an, where n ∈ {1, 2, . . . , N} is served by
a DC, vi. Each DC vi hosts a set of applications Ai ⊆ A.
An application an is defined by the following increasing
functions of the demand for the application’s operational
compute intensity γopn , operational storage intensity αop

n , and
operational bandwidth intensity βop

n .
Migrating an application between two DCs incurs additional

resource usage for both the recipient and the host, and is
defined by a migration compute intensity γmig

n , migration
storage intensity αmig

n , and migration bandwidth intensity
βmig
n , all functions of to the application’s aggregate demand.
1) Demand: The applications’ end users subject the appli-

cations to a quantitatively and spatially time-variant demand.
An application an is subject to an aggregate demand from a set
of demand sources Un = {un,m|m ∈Mn} whereMn ⊂ V is
the set of leafs from which the demand originates. Each source
of demand un,m is represented by a function of time that
returns a real number specifying the demand for application
an at time t from leaf m.

2) Performance requirements: Application owners can im-
pose a set of performance requirements per application that
the operator of an MCN is obliged to accommodate, a Service
Level Agreement (SLA). In this work, an application’s SLA
is conventionally expressed as the maximum of the 95th-
percentile of the network delay distribution [28]. Furthermore,
network delay is proportional to the number of links separating
an application’s end user from the current hosting DC. Thus,
an application’s SLA %n

′
is defined as the upper limit of the

95th percentile of the mean network distances between its set
of sources of demand Un and the DC it is hosted vi. The set
of network distances for application an is defined as:

ln = {|σV(vi, vm)| | m ∈Mn} (3)

where | · | denotes the cardinality of a set, σV : V × V →
P(V), with P(·) being the power set operator, is a function
that determines the minimum path between two nodes. See
Figure 1 for an illustration of the relationship between the
applications and their demand.

III. DISTRIBUTED RESOURCE MANAGEMENT ALGORITHM

The presented algorithm scalably solves the challenge of
where to place a set of highly heterogeneous applications in
a cost- and capacity- heterogeneous distributed cloud infras-
tructure while meeting both the DCs’ operational cost and the
infrastucture’s resident applications’ performance objectives.

Central to the algorithm are two types of reactive agents,
a DC-agent and an application-agent. The agents represent
the objectives of the two primary stakeholders in the system,
namely DCs and applications. The agents act independently
based on the performance of their respective objectives,
namely operational cost and application SLA.

To achieve the objectives in a tractable manner, each agent
reacts on an objective violation by re-evaluating the placement

of a set of applications over a subset of DCs in a neighbour-
hood. The neighbourhood of depth at most k for vi is defined
as the set:

N k
i := {|σV(vi, vj)| ≤ k + 1 | j = 1, . . . , I, j 6= i} . (4)

The resulting placement decision is reached using a com-
mon heuristic objective function R that is formalised in Sec-
tion III-A. The two agent types react to objective violations by
re-evaluating the common heuristic objective function R over
a subset of the system’s resources and applications. To meet
their individual objectives the common heuristic objective
function is applied differently for each agent. The fundamental
properties of the algorithm are illustrated in Figure 2.

Strict caps on resource utilization and costs do not accom-
modate variations demand across the system and might either
put the system in an instable state or require a much finer
granularity of evaluation, at a significant cost. Therefore, in
this algorithm, a budget for each DC is adopted to represent
its desired resource utilisation or cost level, over time. The
long-term objective of the algorithm is to maximise the mean
budget surplus across the system. A DC’s budget surplus or
deficit history is distributed amongst its peers and is used to
evaluate its suitability when re-evaluating the neighbourhood’s
application’s placements. More on the budget-mechanism in
Section III-B.

A. Common objective function

In a distributed heterogeneous system, such as in fog com-
puting, an application can incur very different loads and costs
in different DCs in a neighbourhood. Similarly, applications’
SLAs might be accommodated with varying success amongst a
set of neighbouring DCs. Thus, migrating a set of applications
from one DC to mitigate its budget violation may violate
the applications’ SLAs and/or incur budget violations in the
recipient DCs. They in turn might incur additional violations
and application placement oscillations due to subsequent mit-
igation actions.

Due to additional resource usage, application migrations are
preferably avoided. Additionally, because any migration incurs
a cost, the migration should preferably be long-lasting. Thus,
the objective function should take into account both budget
constraints, SLA constraints, and the additive cost of link
usage in a holistic manner.

The common objective function R is formulated for DC
vq ∈ V and the running applications A at time t as,

R(q,A, t) :=
∑
i∈Nk

q

∑
n∈A

Pq
i,n(

+ φb
1− (ϑop

n,i(t) + ϑmig
n,i (t))

ξi(t)

+ φs
1− %95thn,i

%n
′

+ φlL)

(5)

where ϑop
n,i is the momentary operational cost for each

application in DC i,

ϑop
n,i(t) = ψn(t)ζVM

i , (6)

with ψn(t) being the unitary resource allocation cost of
application n in any DC that is defined as:

ψn(t) =

⌈
max

(
γn(t)

cVM
,
αn(t)

sVM
,
βn(t)

bVM

)⌉
, (7)

where ζVM
i is the cost of each resource unit in DC i and

is defined as:

ζVM
i = cVMζci + sVMζsi + bVMζbi . (8)

where L is the aggregate system-wide link and is formally
defined as,

L =
∑
i∈V

∑
n∈Ai

∑
m∈Un

ηmβ
op
n un,m(t) (9)

and Pq
i,n being the elements of a binary matrix Pq of size

|A|×|N k
q |, here called application placement decision matrix.

In particular, Pq
i,n is equal to 1 if and only if application

ai ∈ A is placed in node vn ∈ N k
q , 0 otherwise. Note that,

by construction, each row sums to 1, since an application
cannot be placed in more than one node. Finally, {φb, φs, φl}
are weights in the interval [0, 1]. The ith row of the matrix
represents the placement of the ith application ai ∈ Ā
amongst the DCs in the neighbourhood N k

q , represented by
the columns.

The placement decision is expressed as follows,

Pq,?(t) := arg max
Pq

R(q,A, t) (10)

constrained by each evaluated DC’s budget surplus ξi and
the operational cost εi, formalised as,

∑
n∈Aq

Pq
i,nϑ

op
n,i(t)te ≤ ξi(t) (11)

∑
n∈Aq

Pq
q,nϑ

op
n,q(t)te ≤ εi (12)

Because the algorithm is applied iteratively and is not
evaluated over the entire network, hard constraints cannot be
applied on individual application’s performance. In worst case,
an application might have to traverse a set of DCs where
its SLA will be violated to reach a DC where it can run in
compliance with its SLA.

When maximising the objective function R(q, Ā, t), the
remaining budget across all its neighbours reduces the number
of additional violations in the neighbourhood and the process
also takes into account any pending SLA violations, when the
system is in a stable state. By normalising each component in
the objective function with their individual quantitative targets,
the algorithm can indiscriminately evaluate the placement of Ā
across a highly heterogeneous set of DCs and applications. As

the incurred link cost is not accommodated in a DC’s budget,
the link cost is treated independently. The above detailed
mechanisms of the algorithm and its parameters are illustrated
in Figure 2.

The use of a budget to represent the state of a DC and
the limited evaluation domain imposed by the neighbour-
hood decouples the algorithm allowing in to be implemented
in a distributed manner. Additional information and state
granularity would require significantly more synchronisation
between agents and states and information passing, marking
the implementation intractable.

B. Data Centre agent

Each DC in the network is governed by a DC agent. The
objective of a DC agent is to contain the operational cost of
a DC and is realised by the budget monitor process which is
continuously run in each DC vi ∈ V .

Essential to the algorithm and the DC agent is a budget
that is assigned to each DC. A DC’s budget is the maximum
allowed operational expenditure over a period and is a heuristic
for a DC’s capacity and desired maximum utilisation over
that period. In practice, the budget allows the operator of an
MCN to set coarse-grained holistic objectives for the system’s
resources that do not interfere with the internal management
of each DC. Additionally, the budget also allows the algorithm
to integrate temporary costs, over time, such as migration
overheads and smaller workload variations, within the confines
of the budget over an epoch.

1) Budget monitor process: The budget monitor process in
each DC is assigned a budget εi for its operational cost over
a period of time, referred to as an epoch ∆te. The operational
cost of a DC is defined as,

ζi(t1, t2) =

∫ t2

t1

∑
n∈Ai

ϑop
n (t) dt, (13)

In runtime, the operational cost ζi of each DC is evaluated
over an epoch of length ∆te. If the budget is violated before
the end of the epoch, i.e., ζi(h∆te, t2) ≥ εi, with h ∈ N,
and h∆te ≤ t2, the placement of the resident applications Ai

is evaluated over the neighbourhood N k
i using the objective

defined in Section III-A.
When a budget is violated or when an epoch expires

without a budget violation, the budget is renewed for another
epoch. For each such event, the budget surplus ξi(t) = εi −
ζi(h∆te, (h+1)∆te) of vi is passed to all its neighbours N k

i .
The resulting vector of the last reported neighbours’ budget
surpluses for DC i is denoted as,

Bi(t) = {ξq(t) | q ∈ N k
i } (14)

The budget monitor process is summarised in Algorithm 1.
2) State: The state of a DC agent is defined by its budget

surplus ξi, its resource unit cost ζVM
i , its resident applications

Aq , and the budget surplus of its neighbours.

Data centre: vivi

C
os

t

Time

Budget surplus: ⇠q⇠qData centre: vqvq

Budget: ✏p✏p

Data centre: vpvp

Application: anan

Demand for anan: un,mun,m

SLA violation

Budget violation
Neighbourhood: N k

iN k
i

⌘j⌘j

Budget surplus
Application placement option

⌘j⌘j Link cost

✏r

⇠r⇠r

Data centre: vrvr

C
os

t

Time

✏r✏r
tete

⇠r⇠r

Epoch expiration

%n
0

%n
0

Network distance

Fig. 2: The algorithm’s mechanism; agents, actions, and evaluation domains.

Algorithm 1 Budget monitor process for DC vi,
for each epoch.

1: Input : Budget εi, application set Ai, current placement
Pi, and budgets in neighbourhood Bi,

2: Output : Budget surplus ξi,
3: application placement matrix Pi,?

4: t← 0, ζ
′

i ← 0
5: Pi,? ← Pi

6: while t < ∆te do
7: ζ

′

i ← ζ
′

i + ζi(t, t+ ∆t)
8: if ζ

′

i ≥ εi then
9: ξi ← 0

10: Pi,? ← arg maxPi R(i,Ai, t)
11: break
12: end if
13: ξi ← εi − ζ

′

i

14: t← t+ ∆t
15: end while
16: return {ξi,Pi,?}

C. Application agent

The performance of each resident application in the infras-
tucture is monitored by an application agent. The objective of
an application agent is to ensure that the observed application
meets its SLA. This is realised by an SLA monitoring process
which is continuously run in parallel to each application an
in each vi.

1) SLA monitoring process: An application’s performance
is measured in terms of its SLA, %n

′
. An application’s place-

ment is re-evaluated when its SLA is violated, %i,n ≥ %n
′
.

The SLA monitoring process is summarised in Algorithm 2.
Note that in the case of an SLA violation, only one

application is evaluated, i.e. Ā = an.

2) State: The state of an application is defined by its
demand’s location and quantity Ûn and current latency per-
formance %95thi,n .

Algorithm 2 SLA monitor process for application n.

1: Input : Hosting DC vi, SLA %n
2: Output : Application placement matrix Pi,?

3: while true do
4: if %i,n ≥ %n

′
then

5: Pi,? ← arg maxPi R(i, {an}, t)
6: break
7: end if
8: t← t+ ∆t
9: end while

10: return Pi,?

IV. EXPERIMENTS

The experiments detailed below are designed to examine the
viability of the algorithm as a tractable holistic MCN resource
management approach. Given the distributed nature of the
algorithm, the evaluation is primarily focused on stability and
on how closely it performs to optimal, as defined in [30].
The experiments are designed to do so by determine the
algorithm’s convergence time from a random state as well as
its step response. To add contrast to the experiments, both a
random method and a naı̈ve method. Additionally, to evaluate
how the distributed algorithm performs in both current and
forthcoming network topologies, the experiments employ both
fat-tree and random graph network topologies. The models in
the experiments are designed based on the findings in our
previous work [21].

As there are no MCNs yet in existence, the experiments
are conducted in a simulated environment. The simulator was
design in python1 around a time driven core using MILP
solvers from PuLP [23] to represent and solve the objective
function.

A. Infrastructure

An MCN infrastructure is represented by a set DCs and
links in a network, as defined in Section II. To add cost- and

1Code and experiments available at: gitlab.com:eit-wit/mcn placement
simulator.git

gitlab.com:eit-wit/mcn_placement_simulator.git
gitlab.com:eit-wit/mcn_placement_simulator.git

TABLE I: DC categories, their capacity and costs.

Small Medium Large Huge
Capacity ψn 250 500 1000 2000
Unit cost 2 150% 125% 112.5% 100%

TABLE II: Link categories, their capacity and costs.

Small Medium Large
Capacity µj 3000 5000 80000
Unit cost 3 77% 87% 100%

capacity-heterogeneity to the infrastructure, a set of categories
for each resource component are defined. Each category has
a unique capacity and cost, reflective of their position in the
infrastructure, these are specified below.

B. Data Centres

A DC’s resources are partitioned into and provisioned as
discrete units. DCs are categorised as either Small, Medium,
Large, or Huge. The DC capacity is halved for each succeeding
category, proportional to its depth in the network, while the
operational cost grows linearly with depth. For example, a
Huge DC is 8 times larger than a Small DC and cost 44%
less to operate per resource unit. The properties of each DC
category are summarised in Table I. The DCs are assigned a
budget εi that is proportional to 80% of the total cost of all
resources over an epoch, as advised by [26].

C. Links

The links are categorised by capacity µj as either Small,
Medium, or Large. A summary of the each link category’s
properties can be found in Table II.

D. Topology

The DCs and links specified above are situated in a network.
In this paper, a fat tree and an Erdös-Rényi random graph are
used to evaluate the performance of the distributed algorithm,
representing a current and a forthcoming network topology,
respectively. The topology used in the evaluation consists of
40 nodes (I = 40), which corresponds to the typical size of a
regional MCN. The topology types have an equivalent depth
and total DC capacity.

1) Fat tree: Mobile core and access networks often take the
shape of fat trees, with the middle tiers having the greatest
amount of interconnectivity [3]. The network is assigned a
Huge DC in the root node, Small DCs are assigned in the leaf
nodes and remaining nodes are assigned a DC category per
its depth in the network. Figure 3a illustrates the structure and
resource assignment of the fat-tree topology.

2) Random graph: Access and core networks are becoming
more and more interconnected, through multiple carriers and
with the addition of new disaggregated network technologies
[7]. To imitate this type of topology, an Erdös-Rényi random
graph of I = 40 nodes is used. The graph is generated using
a branching probability of 1.1.

2The costs are relative to the DC category: Huge
3The costs are relative to the Link category: Large

(a) Fat-tree with depth 4 and
branching factor 3.

(b) Erdös-Rényi random graph
with branching probability of 1.1.

Fig. 3: Network topologies used in experiments, each with 40
nodes. DC assignment: Huge, Large, Medium, Small. Link
assignment: Large, Medium, Small.

The nodes in the network are assigned to a DC category
based on their number of connections. The tier of nodes with
the fewest connections are assigned a Small DC. The top
10% of the nodes with the highest number of branches are
assigned a Huge DC. Intermediate nodes are assigned either
Large and Medium DC in proportion to their network distance
to one of the Huge DCs. The topology’s structure and resource
assignment are illustrated in Figure 3b.

A key difference between the two topologies is that a ran-
dom graph is more heterogeneous than a fat-tree in the sense
that a fat-tree is symmetric and that the depth of the network
strongly correlates with the mean distance to the demand, DC
capacity, and degree of connectivity. Furthermore, in a random
graph, a set of neighbours do not have to be of similar capacity
and with very different degrees of connectivity.

E. Workload and applications

To model the spatial-, and quantitative-heterogeneity of the
applications and users in a MCN the system is subjected to a
workload that is composed of a set of applications and their
respective demand, as defined in Section II. In this paper, 400
applications heterogeneous are hosted in the infrastructure.
The applications’ aggregate requested resource needs equate
to a time-average of 50% of the systems resources. A system
load of 50% is reasonable for this type of system, yet high
enough to cause resource contention.

An application is defined by three properties; its demand,
its performance requirements (SLA), and its resource usage
profile. They are as defined below.

1) Demand spread and quantity: The demand of an ap-
plication is spread over a set of leaf nodes. In this paper,
the spread of an applications demand is categorised as either
local, regional, or global. The demand spread of an application
is linked to the branching factor of the network’s DCs. The
spread of demand is at most the number of leafs that can
be reached from a DC at the minimum network distance to
any leaf node in the network from that any DC of that type.
Local demand is associated with small DCs, regional demand

TABLE III: Application SLA range as the maximum of the
95th percentile of the distance distribution

SLA range
Local [1, 2]
Regional [2, 3]
Global [3, 5]

TABLE IV: Application resource utilisation characteristic
types with utilisation intensities.

Compute Storage I/O
CPU Intensive 0.95 0.5 0.05
I/O Intensive 0.05 0.75 0.95
Symmetric 0.5 0.5 0.75

is associated with medium and large DCs, and global demand
is associated with huge DCs. The demand spread types are
uniformly distributed across the 400 applications. Furthermore,
the quantity of demand is proportional to the capacity of the
DC type, which is associated with their demand spread.

2) Performance requirements: The performance require-
ments or SLA for an application is a real number upper limit
of the 95th percentile of the network distance distribution of
the number of hops from all users of an application to where
the location of the DC in which the application is hosted.
An application’s SLA is associated with the type of DC that
the application’s demand spread is associated with. The SLA
is uniformly chosen from a range from the minimum to the
mean network distance between all leafs nodes to all DCs of
the corresponding type. The ranges are specified in Table III.

3) Resource usage: An applications’ resource usage profile
is classified as either compute, storage, or I/O intensive. For
example, a compute intensive application is characterised as
using relatively more compute resources than storage and I/O
resources, in proportion to its total demand. The resource
usage intensity classes used in this paper are detailed in
Table IV. In this paper, the resource usage profile types are
uniformly distributed over the 400 applications, and assigned
independently of the application’s SLA and demand spread.

F. Comparison methods

In the experiments, the performance of the proposed algo-
rithm is compared with an optimal, a random, and a naı̈ve
placement method.

1) Random selection and placement: This method utilises
the fundamental change agents of the presented algorithm,
but the decision is applied in a random manner. To be more
precise, if the budget is violated in DC vi, one random
application out of Ai is selected and migrated to a random DC
in N k

i with a recorded budget surplus greater than 0. Similarly,
if the SLA of an application an ∈ Ai is violated, it is migrated
to a random DC in N k

i with a reported budget surplus greater
than 0. From now on this method is referred to as the random
method.

2) naı̈ve - maximum improvement worst-fit mitigation:
This method utilises the fundamental change agents of the
presented algorithm but the decision is applied in a maximum

improvement worst-fit approach. The reasoning here is to
locally minimise the additional operational cost and load
incurred by an application placement change. If the budget
is violated in DC vi, a set of applications are selected for
expulsion, based on the cost they incur if they are migrated
in relation to how much the application contributes to the
aggregate operational cost of the hosting DC, as given by:

ai = arg max
an∈Nk

i

ϑ̂op
i (t0, t0 + ∆te)

ϑ̂mig
i

(15)

The applications are then placed in the DC in N k
i with the

largest budget surplus. SLA violations are mitigated by placing
the application in the vk ∈ N k

i where the mean distance to
the demand is minimised, per:

minimize
i∈Nk

q

%95thi,n (16)

subject to ϑop
n,i(t)te + ϑmig

n,i ≤ ξ̂i(t) (17)

The method is naı̈ve in the sense that it acts locally without
and independently of the system’s other objectives.

3) Centralized optimal placement: To provide an upper
performance bound for the presented algorithm, a centralised
optimal placement method is also included. The approach
is as described in our previous work [30]. All applications
are placed where they incur the least amount of cost, meet
their individual performance requirements, given that they do
not aggregately exceed any individual DC’s desired allocation
level.

To increase the potential total utilisation level of the system
given a highly heterogeneous workload this method does not
have a global load balancing objective. A soft load balancing
constraint would contradict the soft cost minimisation con-
straint. This is contrary to the presented distributed algorithm
where a uniform load across a neighbourhood is actively
pursued, as it is essential for the algorithm to iteratively
permutate successfully to find a steady state.

G. Evaluation metrics

The algorithm is evaluated on its ability to meet the system’s
management objectives using the following metrics.
Total system cost The total momentary cost of all resources

at time t, defined as:

κ(t) :=
∑
i∈V

∑
n∈Ai

(ϑop
n (t) + ϑmig

n (t)) + L (18)

The system’s management objectives seek to minimise
the total momentary cost, which means that a low value
is desired.

Number of budget violations by any resource, at each point
in time. A low number is desired.

Number of SLA violations by any application, at each point
in time. A low number is desired.

Resource allocation distribution is defined as the standard
deviation of the distribution of DC allocation levels across

the infrastructure. The metric shows how well the load is
balances across the system. A low standard deviation is
desired.

V. RESULTS

In this section the results from the experiments detailed in
Section IV are presented and analysed. This section begins
with observing the algorithm’s convergence time to a steady
state from a random state followed by their step responses and
resource utilisation distributions.

A. Convergence

From the onset, at time t = 0, all applications are placed
randomly in the network and 50% of the system’s DC capacity
is requested. Thus, on average, 65% of the applications violate
their SLAs, and 50% of the DCs violate their budgets. Below,
the convergence time of the algorithm is evaluated for both
its agents’ performance objectives, SLA and budget. The
convergence time from a random state is representative of how
quickly, if at all, an algorithm can reach a steady state.

Note that, when an agent evaluates the objective function
the agent uses the last reported budget surplus values from its
neighbours. Therefore, neither method begin to act until the
first budget surpluses ξi are communicated, namely at the end
of the fist epoch t = 10. Furthermore, as the optimal method
is already in a steady state, its convergence time is naturally
not considered.

1) SLA: Starting with the traditional fat-tree topology, as
illustrated by Figure 4a, the distributed algorithm can meet
all resident applications’ SLAs after 20 time steps. The naı̈ve
method does not do so until t = 70. This is due to the naı̈ve
method’s competing actions, the budget violation and SLA
processes. To this effect, up until this point, the naı̈ve method
has retarded 19% of the applications’ SLA deficits while
working towards meeting all DCs’ budgets. In the random
case, the SLA violation process does not converge within the
time-frame of the experiment.

The random graph scenario leads to a different outcome.
Due to the higher degree of connectivity, the distributed
algorithm’s SLA process is now able to converge after 12 time
steps, see Figure 5a. The naı̈ve and random methods fail to
converge because they can at this point no longer be propelled
by the differential between the heterogeneous layers in the fat
tree topology. Instead, the naı̈ve method permanently deposits
9% of the applications that violate their SLA’s in DCs from
which it cannot find more suitable hosts. Interesting to note
is that the random method is well suited to handle this degree
of heterogeneity. Although it does not converge until t = 140,
the random method can reach a steady state.

2) Budget: The distributed algorithm’s budget violation
process converges after 40 time-steps when deployed in the
fat-tree topology scenario, see Figure 4b. The naı̈ve method
converges at t = 70, at the expense of an additional 100 budget
violations. When considering the SLA deficit/surplus of the
applications, none of the applications with a small SLA surplus
are migrated up until the point the SLA process converges at

50 100 150

Time units

0.5

1

1.5

2

2.5

3

S
L

A
 v

io
la

ti
o

n
s

×10
4

Random

Naïve

Proposed

(a) Cumulated SLA violations.

50 100 150

Time units

400

450

500

550

600

650

700

750

B
u

d
g

e
t

v
io

la
ti
o

n
s

Random

Naïve

Proposed

Capacity change

(b) Cumulated budget violations.

Fig. 4: Objective violations in a fat-tree topology.

50 100 150

Time units

3000

3500

4000

4500

5000

5500

S
L

A
 v

io
la

ti
o

n
s

Random

Naïve

Proposed

(a) Cumulated SLA violations.

50 100 150

Time units

400

450

500

550

600

650

700

750

B
u

d
g

e
t

v
ilo

a
ti
o

n
s

Random

Naïve

Proposed

Capacity change

(b) Cumulated budget violations.

Fig. 5: Objective violations in a random graph topology.

t = 20. Again, the random method does not converge within
the time frame of the experiment.

A similar outcome can be found in the random graph
topology, see Figure 5b. Again, the algorithm is assisted by the
higher degree of connectivity, and now converges at t = 35.

3) Operational cost: Starting with the fat-tree topology;
once converged, the distributed algorithm incurs a total system
cost within 9% of the operational cost achieved by the optimal
method, see Figure 6a. The method’s ability to approach the
optimal cost point reflects the system load and/or the budget.
A smaller budget forces the methods to find a lower cost point
but at the cost of ability to permutate. Despite failing to meet
all DCs’ budgets the naı̈ve method incurred cost converges
to 13% of the optimal. As with the previous scenarios, the
random method fails to converge.

50 100 150

Time units

0

10

20

30

40

50

60

C
o

s
t

re
la

ti
v
e

 t
o

 o
p

ti
m

a
l
(%

)

Random

Naïve

Proposed

Capacity change

(a) Fat-tree topology.

50 100 150

Time units

0

10

20

30

40

50

60

C
o

s
t

re
la

ti
v
e

 t
o

 o
p

ti
m

a
l
(%

)

Random

Naïve

Proposed

Capacity change

(b) Random graph topology.

Fig. 6: Total operational cost relative to the cost incurred by
the optimal approach.

The outcome for the random graph topology is illustrated
in Figure 6b. The total system cost achieved by the distributed
algorithm when employed in the random graph topology
converges to 13% within the cost incurred by the optimal
approach. In this case, both the naı̈ve and random methods
converge to an incurred system cost of 18% and 20% from
the optimal, respectively.

B. Step response

Observing the algorithms’ step responses reveal how well
they can respond to changes from a steady state. To subject the
system to a change, the capacity of a random medium-sized
DC in the network is instantly halved. The budget of that DC
is also adjusted accordingly.

In the fat-tree topology, the capacity change is done at
t = 75. The distributed algorithm can spread the affected
DC’s excess demand to its neighbours, who then propagate
any excess to their neighbours while attempting to balance the
load throughout the system. Because the objective function
considers the SLA deficit/surplus of the applications, only
applications that would reduce the net load in the neighbour-
hood or improve its SLA deficit, are likely to be affected.
The distributed algorithm’s budget process thus reaches a
new steady state after 7 time steps. The naı̈ve method on
the other hand fails to spread the excess load over DC 2’s
neighbours, and instead creates a bottleneck in the middle
of the network. From this point on, the naı̈ve and random
methods’ budget process diverges, and therefore fails to load
balance the system, which will inhibit the system to handle
any forthcoming changes in load or capacity.

In the random topology, the capacity is also changed at t =
75. With a larger number of neighbours per DC, the distributed
algorithm can converge to a new steady state with only 20%
of the violations compared to the fat-tree topology. Due to the

50 100 150

Time units

10

15

20

25

30

35

40

S
T

D
 o

f
th

e
 d

is
t.

 o
f

D
C

 a
llo

c
a

ti
o

n
s

Optimal

Random

Naïve

Proposed

Capacity change

(a) Fat-tree topology.

50 100 150

Time units

10

15

20

25

30

35

40

S
T

D
 o

f
th

e
 d

is
t.

 o
f

D
C

 a
llo

c
a

ti
o

n
s

Optimal

Random

Naïve

Proposed

Capacity change

(b) Random graph topology.

Fig. 7: Standard deviation of the distribution of DC allocation
levels across the system.

increased interconnectivity of the random graph it can handle
a large change in capacity. Furthermore, the naı̈ve and the
random methods have still not converged at t = 150, with a
significant number of both SLA and budget violations.

C. Allocation distribution

Although the allocation of the resources is not one of the
system objectives, as explained earlier, it does provide an idea
of the state to which the algorithms converge to. As a result,
the optimal solution does not have this objective. A wide
allocation distribution across the system’s resources implies
that certain resources are less able to permutate in the event of
a change in capacity and/or demand. In these experiments the
load distribution imposed on the system by the applications’
demands is uniform, thus a narrow distribution is desired.

Figure 7a shows the standard deviation of the distribution
of DC allocation levels across a fat-tree topology. The figure
reveals that all the non-optimal methods achieve a very similar
level of allocation distribution. Note that each algorithm con-
verges to its previous level despite a significant reallocation
of resources.

For the random graph topology, presented Figure 7b, all
the non-optimal solutions achieve a lower allocation variance
than the optimal solution. Additionally, in the random graph
topology, all non-optimal methods converge significantly faster
and are less disrupted by the change in the capacity at t = 75
than the fat-tree topology. This can be attributed to the greater
variety of resources available to any given node in the random
graph topology.

VI. CONCLUSIONS

This paper presents a distributed algorithm to holistically
manage a large set of heterogeneous DCs and applications
with different objectives. The main challenge has been to
reach a steady system state and while accommodating a set of

entities with heterogeneous objectives hosted in a cost- and
capacity-heterogeneous network. The distributed algorithm
was evaluated over two different types of topologies with
varying degrees of heterogeneity and compared to both a
centralised optimal solution, and two naı̈ve methods. The
results reveal that the distributed algorithm presented in this
paper can quickly and consistently converge despite a high
degree of heterogeneity in the system. The evaluations also
reveal some of the properties in a heterogeneous topology that
can be used to extend this work.

A possible investigative extension of this work is a thorough
investigation of the distributed algorithm’s convergence per-
formance under a transient workload and resources with time-
variant capacity and cost. Possible extensions to the algorithm
include elastic horizontal scaling of applications and multi
component applications.

VII. ACKNOWLEDGEMENTS

This work is funded in part by the Swedish Research
Council (VR) under contract number C0590801 for the project
Cloud Control. Maria Kihl and William Tärneberg are mem-
bers of the Lund Center for Control of Complex Engineering
Systems (LCCC) funded by the Swedish Research Council
(VR) and the Excellence Center Linköping - Lund in In-
formation Technology (ELLIIT). William Tärneberg is also
funded by the Mobile and Pervasive Computing Institute Lund
University (MAPCI). While producing this work, William
Tärneberg was hosted by the University of Virginia. Alessan-
dro V. Papadopoulos is funded by the Swedish Foundation for
Strategic Research under the project “Future factories in the
cloud (FiC)” with grant number GMT14-0032.

REFERENCES

[1] G. H. Ballantyne. Robotic surgery, telerobotic surgery, telepresence, and
telementoring. Surgical Endoscopy and Other Interventional Techniques,
16(10):1389–1402, 2002.

[2] S. K. Barker and P. Shenoy. Empirical evaluation of latency-sensitive
application performance in the cloud. In Proceedings of the First Annual
ACM SIGMM Conference on Multimedia Systems, MMSys ’10, pages
35–46, New York, NY, USA, 2010. ACM.

[3] P. Bedell. Cellular Networks: Design and Operation: a Real World
Perspective. 2014.

[4] A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing. Future generation computer systems, 28(5):755–768, 2012.

[5] A. Beloglazov and R. Buyya. Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers. Concurrency
and Computation: Practice and Experience, 24(13):1397–1420, 2012.

[6] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, and
E. Silvera. A stable network-aware vm placement for cloud systems.
In Proceedings of the 2012 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (ccgrid 2012), pages 498–506.
IEEE Computer Society, 2012.

[7] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski.
Five disruptive technology directions for 5g. IEEE Communications
Magazine, 52(2):74–80, 2014.

[8] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its
role in the internet of things. In Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, MCC ’12, pages 13–16,
New York, NY, USA, 2012. ACM.

[9] S. Borst, V. Gupt, and A. Walid. Distributed caching algorithms for
content distribution networks. In INFOCOM, 2010 Proceedings IEEE,
pages 1–9. IEEE, 2010.

[10] P. Bosch, A. Duminuco, F. Pianese, and T. L. Wood. Telco clouds and
virtual telco: Consolidation, convergence, and beyond. In Integrated
Network Management (IM), 2011 IFIP/IEEE International Symposium
on, pages 982–988. IEEE, 2011.

[11] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S.
Berger, and L. Dittmann. Cloud ran for mobile networks—a technology
overview. Communications Surveys & Tutorials, IEEE, 17(1):405–426,
2015.

[12] H.-L. Chi, S.-C. Kang, and X. Wang. Research trends and opportunities
of augmented reality applications in architecture, engineering, and
construction. Automation in construction, 33:116–122, 2013.

[13] H. T. Dinh, C. Lee, D. Niyato, and P. Wang. A survey of mobile
cloud computing: architecture, applications, and approaches. Wireless
communications and mobile computing, 13(18):1587–1611, 2013.

[14] N. Fernando, S. W. Loke, and W. Rahayu. Mobile cloud computing: A
survey. Future Generation Computer Systems, 29(1):84–106, 2013.

[15] S. Höst, W. Tärneberg, P. Ödling, M. Kihl, M. Savi, and M. Torna-
tore. Network requirements for latency-critical services in a full cloud
deployment, 2016.

[16] S. Islam and J.-C. Grégoire. Giving users an edge: A flexible cloud
model and its application for multimedia. Future Generation Computer
Systems, 28(6):823–832, 2012.

[17] G. Karagiannis, A. Jamakovic, A. Edmonds, C. Parada, T. Metsch,
D. Pichon, M. Corici, S. Ruffino, A. Gomes, P. S. Crosta, and T. M.
Bohnert. Mobile cloud networking: Virtualisation of cellular networks.
In 21st International Conference on Telecommunications (ICT), 2014,
pages 410–415, May 2014.

[18] K. Kumar and Y.-H. Lu. Cloud computing for mobile users: Can
offloading computation save energy? Computer, (4):51–56, 2010.

[19] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez. Inter-datacenter
bulk transfers with netstitcher. ACM SIGCOMM Computer Communi-
cation Review, 41(4):74–85, 2011.

[20] Z. A. Mann. Allocation of virtual machines in cloud data cen-
ters—a survey of problem models and optimization algorithms.
ACM Comput. Surv., 48(1):11:1–11:34, Aug. 2015.

[21] A. Mehta, W. Tärneberg, C. Klein, J. Tordsson, M. Kihl, and E. Elmroth.
How beneficial are intermediate layer data centers in mobile edge
networks? In FAS* Foundations and Applications of Self* Systems
University of Augsburg, Augsburg, Germany, 12-16 September 2016,
pages 222–229, 2016.

[22] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of
data center networks with traffic-aware virtual machine placement. In
INFOCOM, 2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[23] S. Mitchell, M. OSullivan, and I. Dunning. Pulp: a linear programming
toolkit for python. The University of Auckland, Auckland, New Zealand,
http://www. optimization-online. org/DB FILE/2011/09/3178. pdf, 2011.

[24] B. Palanisamy, A. Singh, L. Liu, and B. Jain. Purlieus: Locality-aware
resource allocation for mapreduce in a cloud. In Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, pages 58:1–58:11, New York, NY, USA,
2011. ACM.

[25] A. V. Papadopoulos and M. Maggio. Virtual machine migration in cloud
infrastructures: Problem formalization and policies proposal. In 2015
54th IEEE Conference on Decision and Control (CDC), pages 6698–
6705. IEEE, 2015.

[26] T. Püschel, N. Borissov, M. Macı́as, D. Neumann, J. Guitart, and
J. Torres. Economically enhanced resource management for internet
service utilities. In Web Information Systems Engineering–WISE 2007,
pages 335–348. Springer, 2007.

[27] S. Sahni and T. Gonzalez. P-complete approximation problems. Journal
of the ACM (JACM), 23(3):555–565, 1976.

[28] J. Sommers, P. Barford, N. Duffield, and A. Ron. Accurate and
efficient sla compliance monitoring. In ACM SIGCOMM Computer
Communication Review, volume 37, pages 109–120. ACM, 2007.

[29] B. Spinnewyn, B. Braem, and S. Latre. Fault-tolerant application
placement in heterogeneous cloud environments. In Network and Service
Management (CNSM), 2015 11th International Conference on, pages
192–200. IEEE, 2015.

[30] W. Tärneberg, A. Mehta, E. Wadbro, J. Tordsson, J. Eker, M. Kihl,
and E. Elmroth. Dynamic application placement in the mobile cloud
network. Future Generation Computer Systems, 2016.

	Introduction
	MCN System model
	Topology
	Data centre model
	Network model
	Application model
	Demand
	Performance requirements

	Distributed resource management algorithm
	Common objective function
	Data Centre agent
	Budget monitor process
	State

	Application agent
	SLA monitoring process
	State

	Experiments
	Infrastructure
	Data Centres
	Links
	Topology
	Fat tree
	Random graph

	Workload and applications
	Demand spread and quantity
	Performance requirements
	Resource usage

	Comparison methods
	Random selection and placement
	naïve - maximum improvement worst-fit mitigation
	Centralized optimal placement

	Evaluation metrics

	Results
	Convergence
	SLA
	Budget
	Operational cost

	Step response
	Allocation distribution

	Conclusions
	Acknowledgements
	References

