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Abstract—Message passing schedules that reduce the decoding
complexity of terminated LDPC convolutional code ensembles
are analyzed. Considering the AWGN channel, various sched-
ules are compared by means of density evolution. The results
of the analysis together with computer simulations for some
(3,6)-regular codes confirm that sliding window decoding is an
attractive practical solution for low-latency and low-complexity
decoding.

I. INTRODUCTION

It can be observed that terminated LDPC convolutional

code ensembles have better belief propagation (BP) decoding

thresholds than their tailbiting versions or the block codes

they are constructed from [1], [2], [3]. However, if a standard

BP block decoder is applied to these ensembles the decoding

complexity per symbol increases linearly with the number of

consecutively encoded blocks, which we denote as termination

factor L. Small values of L, on the other hand, result in a large

rate loss that is undesirable.

At the same time it is widely known that the special

structure of convolutional codes is well-suited for efficient

pipeline decoding [4], [5], [6], allowing for a continuous

windowed transmission without any termination or, more

practically, a termination after an arbitrarily large number L
of consecutively encoded blocks. A different type of sliding

window decoding was introduced in [7] for proving that the

threshold improvement of LDPC convolutional codes does not

vanish as L → ∞ (see also [2]). This type of window decoding

was also investigated in [8] from a latency perspective.

In this paper, considering the AWGN channel, we analyze

and compare various message passing schedules (MPS) by

means of a density evolution analysis. We demonstrate that the

window decoder considered in [8], [7] and [2] can be inter-

preted as a natural and easily implementable approximation of

a special MPS in which superfluous node updates are omitted.

Simulation results for some (3,6)-regular code examples show

that with the sliding window decoder LDPC convolutional

codes can outperform their block code counterparts without

increasing latency and complexity.

II. APPROACHING CAPACITY WITH ASYMPTOTICALLY

REGULAR LDPC ENSEMBLES

Consider an ensemble of LDPC block codes, defined by a

protograph with nc check nodes and nv variable nodes and its

bi-adjacency matrix B, called base matrix. An individual code

of this ensemble, with an Nnc×Nnv parity-check matrix H,

can be derived from this protograph by a lifting procedure that

replaces each 1 in B by an N × N permutation matrix and

each 0 by an N × N all-zero matrix1. Assume now that we

want to transmit a sequence of codewords vt, t = 1, . . . , L. In

conventional block coding, each of these codewords of length

nt = Nnc is encoded independently by means of a code of the

ensemble. The achievable performance depends on the lifting

factor N and the structure of the protograph. In convolutional

coding, on the other hand, the blocks vt are coupled by the

encoder over various time instants t. The memory mcc of the

convolutional code determines the maximal distance between

a pair of coupled blocks. Starting from the base matrix B of a

block code ensemble, the coupling of consecutive blocks can

be achieved by an edge spreading procedure [9] that divides

the edges from variable nodes at time t among equivalent

check nodes at times t + i, i = 0, . . . ,mcc. This procedure

is illustrated in Fig. 1 for a (3,6)-regular ensemble with

B = [3, 3]. The resulting sequence of coupled code blocks

forms a codeword v = [v1,v2, . . . ,vt . . .vL] of a terminated

LDPC convolutional code. The corresponding ensemble can

be described by means of a convolutional protograph with

base matrix

B[1,L] =

















B0

...
. . .

Bmcc
B0

. . .
...

Bmcc

















(L+mcc)nc×Lnv

. (1)

The block coding ensemble with disconnected protographs

corresponds to the special case mcc = 0 and B0 = B.

In order to maintain the degree distribution and the structure

of the original ensemble, a valid edge spreading should satisfy

the condition
mcc
∑

i=0

Bi = B . (2)

This condition ensures that the entries of B are divided

among the matrices Bi in such a way that the sums over

the columns and rows of B[1,L] are equal to those of B. The

only exception are the first and last mccnc rows of B[1,L],

1Integer entries larger than one, representing multiple edges between a pair
of nodes, are replaced by a sum of permutation matrices.
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Fig. 1. Illustration of edge spreading: the protograph of a (3,6)-regular
block code with base matrix B is repeated L = 6 times and the edges are
spread over time according to the component base matrices B0, B1, and B2,
resulting in a terminated LDPC convolutional code.

whose weights are reduced as a result of the termination at

the ends of the convolutional ensemble. The corresponding

check nodes at the start and end of the protograph have lower

degrees (see also Fig. 1), resulting in a slight irregularity

with stronger protection of the symbols associated with the

connected variable nodes. As L → ∞, the fraction of lower

degree check nodes vanishes and the degree distribution of

the coupled ensemble B[1,L] converges to that of the original

block code ensemble B. As a consequence, the ensemble of

terminated LDPC convolutional codes considered in Fig. 1

(which we subsequently refer to as Ensemble A) forms an

example of asymptotically regular LDPC codes. Despite of

the vanishing fraction of stronger check nodes, it turns out that

the coupled ensembles have a substantially better BP decoding

threshold than the block ensembles they are constructed from.

In particular, as L → ∞ the BP decoding threshold of the

coupled ensembles converges to the optimal MAP decoding

threshold of the underlying block ensemble. For regular LDPC

codes this threshold saturation phenomenon has been proven

analytically for the BEC in [3], and it can be observed em-

pirically for the AWGN channel as well. The slight structured

irregularity of the coupled ensembles leads to BP decoding

thresholds that approach the Shannon limit as the node degrees

increase.

III. COMPLEXITY ANALYIS FOR DIFFERENT MESSAGE

PASSING SCHEDULES

We assume that transmission takes place over the AWGN

channel and consider BP decoding with log-likelihood ratios

(LLRs) acting as messages. Let Lch(i) denote the channel LLR

of code symbol i and Lc(e) and Lv(e) denote the messages

passed from a check node and a variable node along an edge

e, respectively. The edges connected to a variable node i or a

check node m are labeled by evi,j or ecm,k. The j-th edge of

variable node i is connected to the k-th edge of check node

m if evi,j = ecm,k. Before decoding, all messages Lv(e) are

initialized with the incoming channel LLRs and all messages

Lc(e) are set to zero.

A. Conventional Flooding Schedule (MPS-I)

The message passing schedule that is most frequently used

for BP decoding of LDPC codes is the flooding schedule.
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Fig. 2. Ensemble A, L = 100, σ = 0.923: Density evolution bit error
probability Pb(t), corresponding to symbols at time instants t = 1, . . . , L,
after different numbers of iterations I .

In each decoding iteration first all check nodes and then

all variables nodes are updated. Since within each decoding

iteration the check node updates and variable node updates of

all nodes can be performed in parallel it is also called parallel

schedule.

Message Passing Schedule I (MPS-I)

1) Check node update:

For all check nodes m = 1, . . . , LNnc

For all edges ecm,k update the outgoing messages

according to

Lc(e
c
m,k) = 2tanh−1





∏

k′ 6=k

tanh

(

Lv(e
c
m,k′)

2

)





2) Variable node update:

For all variable nodes i = 1, . . . , LNnv

For all edges evi,j update the outgoing messages

according to

Lv(e
v
i,j) = Lch(i) +

∑

j′ 6=j

Lc(e
v
i,j′)

For a code with sufficiently large girth, the probability

distribution of the messages Lc(e) and Lv(e) exchanged

during the iterations can be computed by density evolution

within the protograph. We have used the discretized density

evolution technique by Chung [10] for a convergence analysis

of coupled codes from Ensemble A. For a decoder with MPS-

I the bit error probability Pb(t) corresponding to messages

Lv(e) from variable nodes at time t is shown in Fig. 2 for

different numbers of iterations. As expected, for all iterations

the symbols at the start and end of the protograph are better

protected due to the lower check node degrees from the

termination. Furthermore, the curves show that this improved

performance propagates through toward the center as the

number of iterations increases until, eventually, a low Pb(t)
can be observed for all t.

B. Target Probability Based Schedule (MPS-II)

The results in Fig. 2 show that the number of iterations

required to guarantee a particular target error probability
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Fig. 3. Ensemble A, σ = 0.923: Number of iterations It for symbols at
time instants t = 1, . . . , L, for different message passing schedules.

Pmax
b depends on the position t within the protograph. Due

to the special structure of the coupled ensemble, while a

Pb(t) < 10−5 is achieved already after I = 50 iterations at

position t = 1, more than I = 300 iterations are required

closer to the center at t = 40. The following schedule makes

use of this behavior by deactivating updates of nodes at

positions t where the target probability already has been

achieved.

Message Passing Schedule II (MPS-II)

1) For all t such that Pb(t) < Pmax
b :

Exclude check nodes m and variable nodes i at

position t from the set of updated nodes.

2) Perform check node and variable node updates for the

remaining nodes according to the rules of MPS-I.

Let It denote the number of times the variable and check

nodes at position t are updated during the iteration proce-

dure. The average decoding complexity per symbol is then

proportional to the effective number of iterations Ieff, defined

as Ieff = 1/L
∑L

t=1 It. While for MPS-I It is equal to the total

number of iterations for all t, i.e., Ieff = It = I , for MPS-II

It depends on the position in the protograph, as depicted in

Fig. 3 for Pmax
b = 10−5. For L = 100 the maximal value

of It is equal to the total number of iterations I required in

Fig. 2. It can be observed that It increases linearly with the

distance from the ends of the protograph, with a slope that is

independent of the termination factor L. In the neighborhood

of the center a flattening of the curves to a constant value

can be observed, which can be prescribed to the influence

of messages propagating from the other end of the graph. The

width of the flat region as well as the slope of the curve depend

on Pmax
b and on the standard deviation σ of the channel noise,

but not on L. Note that MPS-II clearly reduces Ieff and, hence,

the average complexity per symbol compared to MPS-I.

C. Improvement Based Schedule (MPS-III)

According to Fig. 3 the nodes in the center of the

protograph require the largest number of updates. On the

other hand, from Fig. 2 we can conclude that little influence

from the stronger check nodes can be expected within the
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Fig. 4. Effective number of iterations Ieff as function of Eb/N0 for different
regular LDPC convolutional ensembles with message passing schedule MPS-
III (considering the limit L → ∞).

first decoding iterations. In order to quantify the actual

relevance of an update, let us introduce the fractional bit error

improvement ∆Pb(t) = (P old
b (t)− P new

b (t))/P old
b (t) resulting

from an update of all nodes at position t. The following

schedule updates only nodes with a minimum improvement

θ, 0 ≤ θ ≤ 1.

Message Passing Schedule III (MPS-III)

1) For all t such that Pb(t) < Pmax
b :

Exclude check nodes m and variable nodes i at

position t from the set of updated nodes.

2) For all t such that ∆Pb(t) < θ:

Exclude variable nodes i at position t from the set

of updated nodes.

3) For all check nodes m at positions t that are not

connected to variable nodes to be updated:

Exclude check nodes m at position t from the set

of updated nodes.

4) Perform check node and variable node updates for the

remaining nodes according to the rules of MPS-I.

The values It for this schedule are also depicted in Fig. 3 for

θ = 0.01. It turns out that the proposed deactivation of nodes

in the center leads to a dramatic reduction in complexity. For

all t = 1, . . . , L the required number of updates is reduced

to a value that previously was only sufficient for the first and

last few positions in the protograph. The maximal It depends

on Pmax
b , on σ, and on θ, but not on L. As a remarkable

consequence, in contrast to the other schedules, for MPS-

III the effective number of iterations per symbol Ieff does

no longer increase with the termination factor L (see Fig. 4

and Fig. 5). Although we limit ourselves to regular LDPC

ensembles of rate R = 1/2 in this paper, the same principle

behavior can be observed for arbitrary regular and irregular

base protographs and edge spreadings [9].

D. Window Decoding Schedule (MPS-IV)

The complexity reduction in the MPS-III schedule was

obtained by omitting irrelevant node updates at the ends and
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Fig. 5. Ensemble A, σ = 0.923: Effective number of iterations Ieff, as
function of the termination factor L, for different message passing schedules.

in the center of the protograph. Due to the structure of the

coupled ensemble, during the decoding process the remaining

active nodes move from both ends of the protograph toward

the center. A natural approximation of this schedule can

be easily implemented by means of a sliding window decoder.

Message Passing Schedule IV (MPS-IV) [8] [7] [2]

For all window positions p = 1, . . . , L:

For a number Iwin
p of iterations:

a) Let all variable nodes i at positions t = p, . . . , p+
W − 1 form the set of updated variable nodes.

b) Let all check nodes m at position t = p, . . . , p +
W − 1 form the set of updated variable nodes.

c) Perform check node and variable node updates for

nodes in these sets according to the rules of MPS-I.

The number of iterations Iwin
p and the window size W

should be chosen in such a way that the target error probability

is achieved at position t = p. For a given W it can be observed

that the probabilities Pb(t), t = p, . . . , p +W − 1 within the

window converge to a fix point as It → ∞. This behavior

is illustrated in Fig. 6 for different window sizes W . The

figure also shows another ensemble (Ensemble B), defined by

another valid edge spreading B0 = [2, 2] and B1 = [1, 1]
of B = [3, 3]. This ensemble, which has been proposed in

[8], achieves the target error probability with a smaller W .

Figure 7 shows the protograph of Ensemble B and illustrates

the ranges of updated nodes covered by the sliding window.

The values It for Ensemble B with windowed schedule

MPS-IV are shown in Fig. 8 for window sizes W = 4, 6,

and 12. Schedule MPS-II is also shown for comparison. The

number of iterations Iwin
p at window position p is chosen adap-

tively, so that the window is shifted after the target probability

Pmax
b = 10−5 has been achieved. The maximal It increases

with the values Iwin
p and W , where Iwin

p is also influenced

by W . The values Iwin
p are smallest for large windows, when

the slope of It at the start of the protograph approaches

that of MPS-II. In terms of average complexity the optimal

window size in the example is W = 6. A comparison with the
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Pb(t) of symbols at positions t = p, . . . , p + W − 1 within the decoding
window after I = 1000 iterations. Symbols to the left of the window are
assumed to be perfectly known.
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Fig. 7. Illustration of the ranges of updated nodes within the decoding
window, moving along the protograph of Ensemble B for L = 4. Iwin

p

iterations are performed while the left end of the window is at position p,
p = 1, . . . , L.

behavior of the low-complexity MPS-III schedule considered

in the previous subsection shows that the window decoder

efficiently reduces the number of irrelevant node updates for a

given target error probability. A further practical advantage of

the window decoder is that the latency is determined by the

window size, so that both decoding complexity and latency

are independent of the termination factor L.
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Fig. 8. L = 100, σ = 0.923: Influence of window size W on the complexity
It of MPS-IV (windowed schedule). MPS-II is shown for comparison.
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Fig. 9. Performance of terminated (3,6)-regular LDPC convolutional codes
with lifting factors N = 500 (red) and N = 1000 (blue). The horizontal
arrows are labeled with the complexity advantage ∆C of the convolutional
codes compared to block codes of equal lifting factor N .

IV. PERFORMANCE EVALUATION OF WINDOW DECODING

In this section we evaluate the performance of terminated

(3,6)-regular LDPC convolutional codes from Ensemble B by

means of computer simulations. Window decoding scheduling

(MPS-IV) for L = 1000 and W = 6 and W = 12 is compared

to MPS-II schedule of convolutional codes with L = 100
(CC) and block codes (BC). The corresponding thresholds

are shown as vertical lines. All simulated codes where picked

randomly from the corresponding ensembles without any cycle

reduction procedure. For the MPS-II schedule (CC) and the

block codes (BC) the maximal iteration number was set to

Imax = 10000. For the window decoder Iwin
1 = 501 iterations

have been performed at window position p = 1. For all other

positions p > 1 the number of iterations Iwin
p was chosen

adaptively, with a maximal number of Iwin
p,max = 501. For

fair complexity comparison, in terms of the average effective

number of required iterations Ieff, a stopping rule was applied

to the block codes, which interrupts the iterations as soon as

a valid codeword is achieved.

Figure 9 shows the results of these simulations for lifting

factors N = 500 and N = 1000. The value ∆C in the

figure denotes the complexity advantage of the convolutional

codes compared to the block codes. Compared to the MPS-II

decoder, the window decoder reduces the decoding complexity

at the cost of a performance degradation. At the same time, the

window decoder outperforms the corresponding block codes

with a lower average decoding complexity.

In Fig. 10 the lifting factors are chosen in such a way that

the latency nWD = 2WN of the window decoder is equal to

the length of the block codes nBC = 6N . Even in this case

the window decoder still outperforms the block codes both in

terms of complexity and bit error rate, although the advantage

is now smaller than in Fig. 9. At 1.5 dB we can see an example

that achieves equal performance as a block code with window

decoding at half the latency and half the complexity.

The authors are grateful for the use of the high performance computing
facilities of the ZIH at TU Dresden.
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