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Alice laughed.
‘There’s no use trying,’ she said.

‘One can’t believe impossible things.’

‘I daresay you haven’t had much practice,’
said the Queen.

– Lewis Carroll (1871)
Through the Looking Glass





Abstract

Abstract

In many machine learning tasks, the premise is designed around predetermined targets
and clear expectations of model behaviour. In such cases, there is a direct definition of
the optimal mappings between inputs and outputs, which can be learned given sufficiently
sized datasets and models. However, in many real-world scenarios, tasks are often not as
well-posed and instead defined around detecting the unexpected, the anomalies.

There are many ways of modelling distributions of data points, but in cases of complex high-
dimensional data, like images, traditional parametric distributions often fall short. The
large non-linear dependencies between pixel values and the cluster-like properties of natural
categories make image distributions difficult to model. Instead, recent years have seen
advances by using neural networks recontextualized as parametric distributions to construct
probabilistic models of natural images.

This thesis investigates how such methods hold up in real-world applications. Modelling
data in the wild results in several challenges compared to the controlled conditions of many
benchmarks. Instead, by applying these methods in real-world settings, they can be evalu-
ated on their impact and usefulness on downstream tasks. By moving research and method
development closer to the intended applications, this thesis aims to highlight some of the
benefits that can be gained from bridging the gap between theory and practice.

This thesis contains three main research contributions. The first is a theoretical method
development paper that delves into the statistics and machine learning techniques used in
the field of anomaly detection. This paper investigates how conditional distributions can
be modelled better in variational autoencoder (VAE) models. Commonly, such methods
use conditional class clusters which are fully learned by the model. This paper finds that
VAE-style models can generalize better with small amounts of rigidity in cluster positions.

The second paper applies these techniques to the field of breast cancer diagnosis. Traditional
mammography is a reliable way of diagnosing breast cancer, but is not available globally due
to economic constraints. Point-of-care Ultrasound (POCUS) is a promising alternative.
However, such images are harder to capture and can contain artifacts that make diagnosis
difficult. By modelling the distribution of properly captured POCUS images, we are able
to filter out images with artifacts that make them unsuitable for diagnosis.

Paper three applies distributional modelling to the agricultural sector to model how crop
yield is distributed over fields using graph neural networks. Using publicly available remote
sensing data from the Sentinel-1 and Sentinel-2 satellites, the model is able to estimate how
harvest levels were distributed in the past and how the yield will vary in future years. The
goal of this study is to provide farmers with more information on how yield is distributed,
thereby decreasing cost and mitigating eutrophication caused by over-fertilization.
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Chapter 1

Introduction

As society increasingly adopts data-driven machine learning systems, reliability, robustness,
and safety become ever more critical. From industrial processes and medical imaging to en-
vironmental monitoring and ecosystem inventorying, machine learning models are often
expected not only to make accurate predictions under normal conditions, but also to recog-
nize when the underlying assumptions no longer hold. In such cases, the ability to detect
unexpected or abnormal inputs becomes as important as the primary task itself.

Anomaly detection addresses this challenge by identifying data points that deviate from
what is considered normal and expected [33]. In traditional supervised machine learn-
ing problems, data used during training is assumed to reflect the conditions faced in the
downstream application. This assumption rarely holds true in the real world, as all pos-
sible failure modes, artifacts, edge cases, unexpected corruptions, and novel conditions are
infeasible to express in advance. The real world is noisy and unpredictable, and as such,
accurately detecting anomalies becomes crucial to prevent systems that are unreliable or
unstable to distributional shifts [27].

A common strategy for anomaly detection is to construct probabilistic models over a data
distribution representing normal behaviour, and to flag observations that are unexpected
under the model as anomalous [24]. While conceptually simple, this approach can be
exceedingly challenging for high-dimensional complex data, such as images. The problem
of anomaly detection is further exacerbated by the fact that the definition of normal is
subjective and ill-posed. As many real-world tasks are deeply context-dependent, there is
often no single true distribution of what is to be ”expected”. This, in conjunction with the
fact that natural images are high-dimensional objects that exhibit non-linear dependencies
and often belong to multi-modal distributions, makes anomaly detection a truly non-trivial
task [18].
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Chapter 1. Introduction

Recent advances in deep learning have provided powerful methods for representing com-
plex, high-dimensional data distributions. In particular, representational learning methods
such as variational autoencoders (VAEs) enable the transformation of high-dimensional ob-
servations into lower-dimensional latent spaces that more clearly express semantically mean-
ingful structures [2, 16, 24]. Still, while much of prior work shows strong performance on
benchmark datasets in controlled settings, the true test lies in how well these models per-
form in the real world. Methods that fail under real-world conditions, while scientifically
interesting, offer limited practical value and risk undermining trust in deployed machine
learning systems.

The purpose of this thesis is to investigate how distributional modelling is best applied
for anomaly detection tasks in real-world settings, and where systems can fail in the wild.
The focus is on unsupervised methods, primarily using VAEs, to explore how latent space
structures influence robustness, stability, and anomaly detection performance. Through a
combination of theoretical and practical work, this thesis aims to bridge the gap between
abstract anomaly detection methods and their deployment in the wild.

The thesis consists of three main research contributions. The first investigates how the latent
space structure in class-conditional VAEs is affected by cluster rigidity, and whether rigidity
can be used to improve anomaly detection and prevent issues such as posterior collapse. The
second paper applies these class-conditional VAEs in the real-world application of breast
cancer diagnosis. This paper investigates how anomaly detection can be applied to point-
of-care ultrasound imaging, where the identification and removal of improperly captured
images with artifacts such as blur or acoustic shadows is crucial for ensuring reliable medical
diagnoses. The third paper explores how graph neural networks can be used to model and
predict the distribution of crop yield using remote sensing data, where accurate knowledge
of yield distribution can help reduce overfertilization and environmental impacts in the
agricultural sector.

Before the presentation of the three main research contributions, important background
information is presented in the following sections. Chapter 2 will highlight core machine
learning concepts and common techniques. This is followed by Chapter 3, giving an over-
view of what anomaly detection is and the challenges faced when modelling real-world
data. Chapter 4 focuses on variational autoencoders, the main model architecture used
in this thesis, deriving the statistical methods used for modelling distributions of complex
high-dimensional data. This is followed by Chapters 5 and 6, each giving an introduction
to the two application-based papers. Chapter 5 presents background on the medical applic-
ation in Paper II and the data used. Finally, Chapter 6 presents the context for the remote
sensing, weather, and soil data used in Paper III, along with background on the project’s
agricultural applications.
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Chapter 2

Machine Learning Techniques

This chapter will outline some of the basic machine learning techniques used in this thesis.
Starting with traditional neural networks in Section 2.1, the core ideas behind machine
learning will be explained. Following this, the most common practices regarding evalu-
ation, dataset usage, and performance metrics will be described. Finally, the more complex
methods, such as Convolutional Neural Networks (CNNs) and Graph Neural Networks
(GNNs), will be described. Exposition of the Variational Autoencoder network (VAE) is
found separately in Chapter 4 as its function is key to this thesis and benefits from addi-
tional focus.

2.1 Neural Networks

Neural networks have seen an upswing in the last few decades and are the bedrock of mod-
ern machine learning. While the focus on neural networks has predominantly increased
in recent years, the techniques used date back to the 1940s, with the work of Warren Mc-
Culloch and Walter Pitts [23]. This was taken into practice with the realization of the
perceptron by Frank Rosenblatt in 1958 [22], albeit in a physical and mechanical form.
The difference between modern-day neural networks and those developed in the late 20th
century is primarily in scale rather than kind, and many of the same methods and tech-
niques remain.

The core idea behind neural networks is built on nodes and weights. Networks consist of
layers of nodes, each containing a value, where the value of a node depends on the values of
nodes in the previous layer. Figure 2.1 shows an example network, consisting of an input
node x, an output node y, and several hidden nodes hli. These are connected using weights
wl
ij that are used as a scaling factor when updating the state of a node. The value of a node

3



Chapter 2. Machine Learning Techniques

is defined using the update function

hl+1
i = σ(bli +

∑
j

wl
jih

l
j), (2.1)

where bli is an additional parameter of the model referred to as the bias. The function σ is
called an activation function, which will be discussed in Section 2.1.1. The goal is to find
parameters w and b such that the final output y matches a desired target when inputting
a corresponding x. There is no limit to how many layers can be used, and of what size.
Furthermore, the input and output layers often also consist of many nodes.

Figure 2.1: An example of a neural network with input x, output y and nodes hl
i connected using weights wl

ij .

In practice, these computations are performed in matrix form. The general formulation is
then expressed as

hl+1 = σ(bl +W lhl), (2.2)

where hl and bl are the vectorized collection of nodes and biases, respectively, and W l is a
matrix consisting of the weights wl

ij .

2.1.1 Activation Functions

Since the interactions between weights and nodes are linear, the final output would have
an affine function of the input if it weren’t for the activation function σ. The original
idea is to mimic the behaviour of biological neurons that fire or activate if they receive a
strong enough signal. In practice, the main benefit is that it introduces non-linearity into
the model, allowing for the mimicking of a wider and more complex family of functions.
There are several choices of activation function, with one of the earliest being the Sigmoid
function

4



2.1. Neural Networks

sigmoid(x) =
1

1 + e−x
. (2.3)

This function always outputs a value between 0 and 1, which fits with the biological inter-
pretation that was prevalent in the early days of machine learning. However, in modern
times, the most common activation function is the Rectified Linear Unit (ReLU),

ReLU(x) =

{
0, if x < 0

x, if x ≥ 0.
(2.4)

This is often used as it is very quick to compute and has non-vanishing gradients for positive
values. A variant of this, referred to as LeakyReLU, is defined as

LeakyReLU(x) =

{
α · x, if x < 0

x, if x ≥ 0,
(2.5)

where α is a positive number smaller than 1.

2.1.2 Datasets in Machine Learning

The other core component when training a neural network is the dataset. This can take
many forms depending on the task. The two types of tasks that will be outlined here are
supervised learning and unsupervised learning.

In supervised learning, datasets consist of input-output pairs. The goal of the model is
to return the target output given the corresponding input. The input-output pairs can
consist of anything, from image-label pairs in classification to sentence-next-word pairs in
text generation. In this thesis, supervised learning is used in Paper III, where inputs are
represented as a graph structure containing satellite, weather, and soil measurements across
a field, and outputs are represented as a similar graph structure containing the crop yield.

In contrast, unsupervised learning does not use target outputs. Instead, the goal is to find
efficient representations and patterns in the input data. This is often used as a preprocessing
or feature extraction step for some other downstream task. Unsupervised learning can be
more difficult to train because the objective of the downstream task is not typically built
into the learning process. However, this task ambiguity can be a benefit as biases introduced
in the supervision process are avoided. This approach is common in anomaly detection as
it is desirable to have a model that is ambiguous to the type of anomaly. In the real world,
outcomes can deviate from expectations in many ways, so training this detection model in

5



Chapter 2. Machine Learning Techniques

a supervised manner often biases it towards finding a specific kind of anomaly. This poses
a risk that anomalies you haven’t considered may go undetected due to their absence in the
training data. Unsupervised learning is therefore used in Papers I and II.

When training a model, it is common practice to split the dataset into three subsets: the
training set, the validation set, and the test set. The training set is the bulk of the data
and is used to train the weights of the neural network. The validation set is then used to
check that the model can still perform well on data it hasn’t seen before. Due to the large
number of parameters in modern neural networks, one has to be sure that the model learns
patterns that are true in general instead of just memorizing the inputs in the training set.
By checking the performance on the validation set during training, one can ensure that the
model’s capability will likely transfer to unseen data.

After training, the test set is used as the final metric for how well the model performs on
completely unseen data. Ideally, the test set is from a slightly different source to ensure
minimal overlap between the training and test sets that could taint the test set integrity.

2.1.3 Learning the Parameters

While neural network training is often referred to as learning, the process is actually fairly
mechanical in nature. Neural networks are developed using a loss function L. This de-
scribes how poorly the model performs some task. Common losses are the Mean Squared
Error (MSE) in regression tasks or Binary Cross-Entropy (BCE) in classification tasks

LMSE =
1

N

∑
i

(yi− ŷi)
2 LBCE = − 1

N

∑
i

yilog(ŷi)+(1−yi)log(1− ŷi), (2.6)

where ŷi are the model outputs and yi are the corresponding target outputs. Since the
loss function is dependent on the model output, it is also a function of the model weights.
During training, the loss function is recontextualized such that the weights are considered
variables, and the input-output values are considered fixed values. Importantly, all com-
posite functions in the network are differentiable. Hence, the partial derivatives of the loss
with respect to each weight in the model can be computed, δL/δwi. The objective is to find
parameters wi such that the loss function is minimized. This is done in practice through
gradient descent. This method computes the gradient of the loss function with respect to
the weights and shifts the weights a small step in the opposite direction, essentially follow-
ing the downward slope of the loss function. Several modifications of this exist, such as
adding momentum terms, introducing amounts of random noise, or adaptively updating
the size of the gradient steps throughout the training [29].

6



2.2. Convolutional Neural Networks

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a subgenre of NNs and are the predominant
layer architecture used for image inputs [6]. Layers then consist of image-like structures
instead of vectors. The next layer is constructed by convolving the previous layer with a
kernel. This means that nodes in the network are only connected with a small subset of the
previous layer, vastly reducing the number of connections in the network. Additionally,
since the same kernel is used for the entire image, only a very small number of weights have
to be used, further reducing the computational cost.

Figure 2.2 shows an example of such a convolution operation in a CNN. The 3x3 kernel
maps the 25 pixels in the input image to 9 output pixels. In a fully connected layer, this
would require (25 + 1) · 9 = 234 weights, whereas the convolution layer only uses the 10
weights in the kernel and bias.

Figure 2.2: Example of convolution operation on a 5x5 input image using a 3x3 kernel and the corresponding 3x3
output image to the next layer.

This type of layer architecture is used in all three papers outlined in this thesis. In Paper
I, it is used as the initial layers of the two autoencoders. In Paper II, convolutional layers
are used both for the breast cancer classifier network and for the feature extraction in the
anomaly detection network. Finally, in Paper III, a CNN is used for yield prediction as a
comparison to the graph neural network outlined in the following section.

2.3 Graph Neural Networks

Graph Neural Networks (GNNs) [17] can be considered a generalisation of CNNs. Whereas
convolutional layers update pixel values according to a kernel in a neighbourhood around
a pixel, GNNs remove the pixel-grid structure and allow for arbitrary definitions of what a
neighbourhood is. Instead, it utilizes a graph structure of nodes and edges, where directly
connected nodes are considered neighbours.

Each node i in the graph contains a state hi. The layers of the GNN update the states of
all nodes in the graph. The new state of a node after update k is defined through some
function f of its current state hk−1

i and the state of all its neighbours j ∈ Ni.
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Chapter 2. Machine Learning Techniques

hki = f
(
hk−1
i , {hk−1

j |j ∈ Ni}
)
, (2.7)

Specifically, in Paper III, a version of GNNs called Graph Attention Networks (GATs) is
used [5]. This network utilizes an attention mechanism that allows the network to em-
phasize the importance of some of its neighbours over others. The new state of a node is
computed through

hk+1
i = σ

∑
j∈Ni

αijWth
k
j

 , (2.8)

where σ is an activation function, Wt is a matrix of learnable weights and αij represents
the attention between nodes i and j. The attention is defined as the softmax-normalized
importance value vij between nodes,

αij = softmax
j′∈Ni

(vij) =
evij∑

j′∈Ni
evij′

vij = a⊺LeakyReLU(Wsh
k
i +Wth

k
j ),

(2.9)

where a and Ws are learnable weights. Importantly, the node i is itself included in its own
neighbourhood Ni. For the implementation in Paper III, edges are also attributed features,
which results in a slightly modified importance

vij = a⊺LeakyReLU(Wsh
k
i +Wth

k
j +Weeij), (2.10)

where We is a new matrix of learnable weights and eij are the features of the edge going
between node i and j.
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Chapter 3

Anomaly Detection

Anomaly detection can be summarized as observing a set of objects, finding some distribu-
tion of how normal objects in this set behave, and then determining if newly observed ob-
jects are likely to belong to this distribution or not. What is meant by anomaly is therefore
ultimately determined by what normal means. In real-world applications, this is typically
a very subjective task, and one in which something resembling consensus might not exist.

In some cases, one might know exactly what type of deviations one is trying to detect. An
example could be looking for green spots on a potato. In these cases, traditional supervised
methods can be used, for example, with one class of images containing green potatoes
and one containing non-green potatoes. However, in many cases, it is desirable to remain
agnostic to the type of anomalies that can occur. Other deviations that can occur in potato
harvesting are that the potato could be rotten or split in half. Maybe you’re not even
looking at a potato, and a carrot has gotten into the system. In the real world, it is often
hard to foresee all the ways something unexpected can happen. Constructing a supervised
dataset that covers all possible ways in which something can go wrong is therefore often
not feasible. Instead, anomaly detection typically relies on unsupervised learning, where
the model is trained only on normal data and is then tasked with determining whether new
observations are also normal or if they represent something new.

Given a probability distribution p(x) describing normal data in some input space X , the
set of anomalies A is simply defined as

A = {x ∈ X | p(x) < τ}, (3.1)

for some threshold τ . The difficulty lies in finding this probability distribution p(x) de-
scribing what normal inputs are expected to look like.
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Chapter 3. Anomaly Detection

3.1 Modelling Image Distributions

There are many ways in which data and information from the real world can be portrayed
in formats understandable to a computer. Lists of numbers, embedded text, spectrograms
of audio signals, and so on, but none are as visceral as images. As sight is often ranked as our
most important sense [8], it comes as no surprise that many machine learning tasks focus
on getting computers to understand and interpret images. Convolutional neural networks
(CNNs), image diffusion models, depth estimation, and image segmentation are just some
of the methods and tasks that have seen incredible advances in recent decades. There are,
however, challenges when trying to model and understand images.

The first issue lies in the fact that images are very high-dimensional objects. Even a small
colored image of size 256x256 resides in an image space of almost 200,000 dimensions,
a fact that reveals the staggering degree of freedom the image space exhibits. This high
dimensionality results in a high expressivity, where anything from satellite images of fields
and ultrasound images of breast cancer to paintings of sunflowers and pictures of you eating
breakfast in 5 years is contained (Figure 3.1). Not to mention the vast amount of images
that appear as just random noise.

(a) Satellite image
of fields

(b) Ultrasound of
breast tissue

(c) Sunflower
painting

(d) Breakfast
photograph

(e) Random noise

Figure 3.1: Samples from the 256x256 image space.

Numerical statistics in high-dimensional spaces is notoriously difficult due to the fact that
probabilities rapidly decay to 0 as the number of dimensions increases. The probability
density function for the standard multivariate Gaussian can be expressed as

p(x) =
1

(2π)n/2
e−

||x||2
2 , (3.2)

meaning that, at any given distance ||x|| from the origin, the probability density function
decreases exponentially with the dimension n. This means that, ideally, one would like to
operate on a distribution in a lower-dimensional space.
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3.2. Neural Networks as Parametric Distributions

Figure 3.2: Visualization of the non-
convex subset of the image
space that are images of
plants.

The second issue is that one is typically only interested
in a very small subset of the full image space. Directly
expressing the distribution of this subset is very difficult
for a number of reasons. Images that appear very sim-
ilar to us can be far apart in the image space. Shift-
ing every pixel one step to the right yields an almost
identical picture, which is nonetheless very far away in
the image space. Furthermore, subsets of the image space
constructed from natural categories are typically non-
convex. Linear interpolations between images often pro-
duce vague, blurry representations that are unlikely to be
observed in reality (Figure 3.2). Finally, such distribu-
tions are often multi-modal, meaning that the distribu-
tion consists of several peaks that are separated by low-probability regions.

The high dimensionality, the non-convex subspace, and the multimodality result in distri-
butions that are hard to model using traditional parametric methods.

3.2 Neural Networks as Parametric Distributions

One thing to remark on is that natural images often contain strong spatial patterns that
result in high correlation and non-trivial dependencies between pixels. If one petal of a
flower is pink, there is a large likelihood that the other petals will be so as well, but if
one petal is yellow, the others are very unlikely to be pink. These high correlations between
pixels imply that some distributions might be well-suited for low-rank approximations [15].

As expressed in Paper I, any Gaussian distribution X ∼ N(µ,Σ) of dimension n and
with covariance matrix of rank rank(Σ) = d can be described as a transformed standard
Gaussian distribution Z ∼ N(0, Id) of dimension d using the transformation

X d
= µ+AZ, (3.3)

with some A ∈ Rn×d and AA⊺ = Σ. In theory, this approach solves the first issue of high
dimensionality. However, with a simple affine transformation, the issue of non-convexity
remains a problem. Tackling this requires more advanced transformations, which can be
constructed using neural networks. By recontextualizing a neural network with d input
nodes and n output nodes as a non-linear transformation between a d-dimensional vector
space and an n-dimensional one, complicated non-convex distributions can be approxim-
ated from a single low-dimensional Gaussian. Note that this does not address the issue of
multi-modality, something which will be revisited in Section 4.2.
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Chapter 4

Variational Autoencoders

Starting with the idea that complex distributions can be approximated as transformations
of a standard Gaussian distribution, we introduce the concept of the latent space Z = Rd.
This is the generating space in which the variance of the input space X = Rn arises. In
other words, with some transformation D : Z 7→ X , the distribution of samples in the
input space is described asD(N(0, Id)), whereN(0, Id) is the standard multivariate Gaus-
sian distribution. Notably, d � n, i.e., the dimension of latent space Z is typically much
smaller than the dimension of input space X . The goal is then to approximate the true
distribution of inputs p∗(x) as a parameterized distribution pθ(x) using the conditional
distribution pθ(x|z) representing the transformation D.

To learn optimal parameters of pθ(x|z) using a machine learning framework, one would
need pairs of inputs x and corresponding latent vectors z to train on in a supervised fashion.
However, as no latent vectors exist and have not yet been defined, they have to be generated
using the posterior distribution pθ(z|x). This probability is, however, intractable to com-
pute since calculating pθ(x) requires marginalizing z from pθ(x, z). Instead, the posterior
is approximated with another parameterized transformation E : X 7→ Z corresponding to
this estimated posterior qϕ(z|x) ≈ pθ(z|x) with parameters ϕ.

In a machine learning setting, the two transformations E and D are referred to as the
encoder and decoder, respectively. They together form the basis of the Variational Au-
toencoder (VAE). The encoder transforms an input x into a distribution qϕ(z|x) in the
latent space, from which a latent vector z is sampled. The decoder pθ(x|z) then generates
a reconstructed x̂ from this sampled z.
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Chapter 4. Variational Autoencoders

4.1 The Objective of the Variational Autoencoder

A good encoder-decoder pair should generate reconstructions x̂ that are similar to the ori-
ginal input x. This objective is embedded in the VAE via a loss function that maximizes
the log-likelihood of the dataset inputs.

Consider the log-probability of observing an input x under the parameterized distribu-
tion, and then multiplying by 1, through the multiplication and division of pθ(x, z) and
qϕ(z|x).

log[pθ(x)] = log
pθ(x)pθ(x, z)qϕ(z|x)

pθ(x, z)qϕ(z|x)
= log

pθ(x)qϕ(z|x)
pθ(x, z)

+ log
pθ(x, z)

qϕ(z|x)

= log
qϕ(z|x)
pθ(z|x)

+ log
pθ(x|z)pθ(z)

qϕ(z|x)
(4.1)

= log
qϕ(z|x)
pθ(z|x)

+ log[pθ(x|z)]− log
qϕ(z|x)
pθ(z)

Note that this equation holds for any latent z. By multiplying both sides by qϕ(z|x) and
integrating with respect to z, the expected value of the right-hand side over z ∼ qϕ(z|x)
can be computed, yielding

log[pθ(x)] =

∫
qϕ(z|x)log[pθ(x)]dz = Ez∼qϕ(z|x)

[
log[pθ(x)]

]
= Eqϕ

[
log

qϕ(z|x)
pθ(z|x)

]
+ Eqϕ

[
log[pθ(x|z)]

]
− Eqϕ

[
log

qϕ(z|x)
pθ(z)

]
(4.2)

= DKL

[
qϕ(z|x)||pθ(z|x)

]
+ Eqϕ

[
log[pθ(x|z)]

]
−DKL

[
qϕ(z|x)||pθ(z)

]
,

where DKL(p1||p2) = Ep1 [log
p1
p2
] is the Kullback–Leibler (KL) divergence, a pseudo-

distance between distributions. The KL-divergence is not a proper metric as it is not sym-
metric (DKL(p1||p2) 6= DKL(p2||p1)) and does not satisfy the triangle inequality [31].
It is, however, non-negative and is 0 only if the two distributions are identical.

As stated before, the conditional probability pθ(z|x) in the first KL-divergence is intractable
to compute as D is non-invertible. It is therefore common to subtract this non-negative
divergence term from both sides of Equation (4.2). The remaining terms are referred to as
the Evidence Lower Bound (ELBO) of log(pθ(x)).
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4.1. The Objective of the Variational Autoencoder

log[pθ(x)] ≥ log[pθ(x)]−DKL

[
qϕ(z|x)||pθ(z|x)

]
= Eqϕ

[
log[pθ(x|z)]

]
−DKL

[
qϕ(z|x)||pθ(z)

]
︸ ︷︷ ︸

ELBO

(4.3)

The intuition behind this is that maximizing the ELBO will simultaneously maximize
log(pθ(x)) and minimize DKL[qϕ(z|x)||pθ(z|x)]. This should, ideally, result in a dis-
tribution pθ(x) that yields a high likelihood of observing the inputs, and an approximated
posterior qϕ(z|x) that is close to the actual posterior pθ(z|x). The loss function is then
defined as the negative ELBO, consisting of two parts, the reconstruction loss Lrec and the
KL-divergence loss LKL,

L(x, θ, ϕ) = −Eqϕ

[
log[pθ(x|z)]

]
︸ ︷︷ ︸

Lrec

+DKL

[
qϕ(z|x)||pθ(z)

]
︸ ︷︷ ︸

LKL

. (4.4)

This loss contains three probabilities, pθ(x|z) corresponding to the decoder network D,
qϕ(z|x) corresponding to the encoder network E , and the prior pθ(z), which the latent
distribution is assumed to belong to. In the traditional VAE, pθ(z) is assumed to be a
standard multivariate Gaussian.

The expected values in the loss are not feasible to compute using integrals over the latent
space, and are instead calculated by sampling inputs in the training dataset. In practice,
the reconstruction loss is often computed as the Mean Squared Error (MSE) of the recon-
struction x̂ compared to the input x

Lrec(x, θ, ϕ) = ||x− x̂||2, (4.5)

although some models choose to substitute the MSE with other metrics, such as binary
cross-entropy. When computing the KL-divergence loss, both distributions are typically
assumed to be Gaussian. pθ(z) is assumed to be N(0, I), while qϕ(z|x) is assumed to be
N(µ(x),Σ(x)), where the mean and covariance is dependent on the input x. This is done
by having the encoder output two d-dimensional vectors, one representing the mean and
one representing the log-variance of each latent dimension. These two vectors are used to
construct the distribution qϕ(z|x). The KL-divergence then becomes

LKL(x, θ, ϕ) = −1

2

[
d− ||σ(x)||2 − ||µ(x)||2 +

d∑
i=1

log(σ2
i (x))

]
. (4.6)
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Chapter 4. Variational Autoencoders

4.2 Conditioning the Encoder

One limitation of the VAE with respect to distributional modeling is multi-modality. That
is, transformed Gaussians are still bad at modelling distributions with multiple peaks or
modes. This is because it is ultimately based on a single Gaussian distribution. Since the
decoder is a continuous transformation, the unimodal properties of the latent Gaussian
tend to transfer to the output distribution [19].

Papers I and II utilize conditioning of the VAE loss based on class labels. This method
modifies the assumption that the prior pθ(z) is a standard Gaussian, and instead conditions
it based on class information such that pθ(z|c) = N(µc,Σc). This replaces the single
global mode with one mode per class, thus allowing for a richer set of distributions to be
modelled efficiently. This results in a conditional KL-divergence loss of the form

LKL(x, θ, ϕ) = −1

2

[
d−

∣∣∣∣∣∣∣∣σ(x)σc

∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣µ(x)− µc

σc

∣∣∣∣∣∣∣∣2 + d∑
i=1

log

(
σ2
i (x)

σ2
c,i

)]
. (4.7)

4.3 Autoencoders in anomaly detection

The reason for modelling the underlying distributions of data is to aid in detecting novel
and anomalous situations in an automatic way using a mathematical description of what
normality means. To do this, the VAE model is trained on data assumed to represent
the expected and non-anomalous distribution. The learned latent space is then used as a
basis for where normative samples should behave. By passing all training data through the
model and finding where it tends to cluster in the latent space, one can find anomalies
through their presence in low-probability regions of the latent space. Such probability
computations are more feasible in the latent space, as it is of lower dimension than the
inputs, and because assumptions that the distributions are Gaussian are more plausible
compared to distributions in the input space.

Since distributions are modelled in an unsupervised and abstract manner, the idea is that
unexpected and unforeseen types of anomalies can be detected with more precision. This
reduces the bias toward preconceived notions of what constitutes an anomaly is and bases
it more heavily on the dataset itself. With this in mind, it is therefore crucial to have a
dataset that is truly representative of all normative cases. Absence of representation in the
training set can lead to non-anomalies being incorrectly identified as anomalous. This is
especially the case in sensitive and high-risk applications, such as in healthcare and public
safety. Awareness of biases caused by dataset distribution and transparency about which
domains a model has been verified and tested is crucial to ensure safe and fair deployment.
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4.3. Autoencoders in anomaly detection

Figure 4.1 shows a visualization of the conditional VAE. An input image x is encoded into
the approximated posterior distribution qϕ(z|x), which is compared against the condi-
tional prior pθ(z|c) using the KL-divergence in the loss LKL. A point z in the latent space
is sampled from the posterior qϕ(z|x), from which the image is reconstructed using the de-
coder pθ(x|z). The input image is compared with the decoded image in the reconstruction
loss Lrec.

Figure 4.1: Example of a conditional VAE applied to an image of a Golden Pothos plant. The diagram shows the usage
of the encoding posterior qϕ(z|x), conditional prior pθ(z|c) and decoder pθ(x|z), as well as the two loss
terms Lrec and LKL.
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Chapter 5

Application:
Stability in Breast Cancer Diagnosis

Breast cancer is the most common form of cancer among women, according to a 2022
study by the Global Cancer Observatory (GLOBOCAN) [12]. The relative survival rate
of frequently screened populations can be over 100% if the cancer is diagnosed at early,
localized stages [20]. The relative survival rate is a measure of how likely a member of a
population with the disease is to die compared to members of a population without the
disease. A relative survival rate of over 100% can be caused by the ”healthy patient” effect,
where members of the screened population are less likely to die from other causes due to
increased healthcare visits, supervision, and otherwise higher focus on a healthy lifestyle.
If the absolute survival rate is close to 100%, this effect can then push the relative survival
rate over 100% [20].

However, while breast cancer has a high survival rate if diagnosed early, more than 660,000
deaths occurred as a result of breast cancer in 2022, out of the close to 2,300,000 repor-
ted diagnoses [12]. This represents an almost 30% mortality rate for a disease in which
almost all deaths are preventable. This discrepancy is partly caused by the limited avail-
ability of screening programs, especially in regions with a lack of healthcare infrastructure
[21]. While mammography machines are a reliable way to diagnose cancer, they are ex-
pensive and require large-scale healthcare infrastructure to support. This means that there
are many regions where mammography is not feasible. An alternative method that has
seen some increase in later years is Point-of-care Ultrasound (POCUS) [7]. This method
uses small hand-held ultrasound devices to capture images of breast tissue. The portability
and low cost of this method allow for screening at the place of the patient, making it well-
suited for regions where regular travel to the nearest hospital isn’t an option for parts of the
population.
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Chapter 5. Application:
Stability in Breast Cancer Diagnosis

5.1 Point-of-Care Ultrasound Imaging

One major issue with captured POCUS images is that they are often harder to interpret
and typically contain higher amounts of noise and image artifacts. Ensuring that images
are correctly captured is therefore crucial to ensure accurate diagnoses. In Paper II, dis-
tributional modelling for anomaly detection is used to determine whether an ultrasound
image was properly acquired. Such deviations can be caused by scanning the wrong body
part, image blur due to improper pressure during acquisition, motion blur from movement
during image capture, or acoustic shadows caused by obstructing objects or insufficient ap-
plication of ultrasound gel. Examples of these artifacts taken from Paper II can be seen
in Figure 5.1. By modelling a distribution of images without artifacts, Paper II aims to
identify and filter out images with deviations that make them unsuitable for diagnosis.

(a) Blurry Image (b) Acoustic Shadow (c) Wrong Body Part

Figure 5.1: Examples of anomalies when capturing POCUS imaging (a) a POCUS image with applied blur; (b) a POCUS
image with a contact artifact in the form of an acoustic shadow; (c) an ultrasound image of non-breast
tissue (common carotid artery).
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Chapter 6

Application:
Variational Patterns in Crop Yield

In agriculture, numerous resources are used to grow food. Water, fertilizer, fuel, machinery,
buildings, maintenance cost, human labour, animal labour, land-use, and so on [28]. All of
these contribute to the environmental and economic cost of food production. In 2017, ag-
riculture accounted for approximately 20% of total global CO₂-equivalent emissions [11].
As food is a necessary commodity for the function of society, reducing the harmful impacts
of food production is an important step toward ensuring long-term societal sustainability.

One contributor to the environmental impact of agriculture is the overuse of fertilizers
[13]. This causes increased greenhouse gas emissions through the release of N2O [32]. It
further impacts local ecosystems and water quality through increased eutrophication from
fertilizer runoff [1]. Finally, fertilizer itself has a substantial environmental impact through
the use of fossil methane in ammonia production, and through the pollution and habitat
destruction caused by the mining of mineral fertilizers like phosphorous [26]. Reducing
unnecessary use of fertilizers is therefore a key part of lowering the environmental impact
of the agricultural sector. In addition, reducing superfluous fertilizer use lowers economic
costs for farmers, who typically face very small profit margins [30].

Fertilizer requirements can vary greatly over a field, depending on growth conditions influ-
enced by factors such as slope, soil type, and weather. Treating the growth potential as a
uniform distribution over the field leads to fertilizer surplus in low-capacity regions, increas-
ing costs and environmental impact. It also leads to fertilizer deficiency in high-capacity
regions, reducing yield. To aid farmers, accurate models of within-field yield variation are
needed. Paper III focuses on predicting how yield has been and will be distributed across
fields based on historical remote sensing, weather, soil, and harvest data.
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Chapter 6. Application:
Variational Patterns in Crop Yield

6.1 Sentinel 1 and 2

This application predominantly uses remote sensing data from the Sentinel 1 and Sentinel 2
missions by the European Space Agency (ESA). With relatively short revisit times in Sweden
of approximately 2 and 5 days for Sentinel 1 and 2, respectively [9, 10], these satellites are
useful for real-time applications such as plant monitoring. Additionally, their resolution of
10-60 meters results in high-fidelity maps that can be used to detect spatial variations.

The Sentinel 2 satellite measures the intensity of 13 wavelengths of reflected sunlight from
the surface. These wavelength bands span from 443 to 2190 nm, encompassing both visible
and short-wave infrared wavelengths [10]. This is a very information-rich data source as
it contains the traditional RGB wavelength, allowing for conventional large-scale image
methods, but also several wavelengths that are well-suited for detecting specific factors like
vegetation, soil moisture, and clouds. These bands can be combined into indices like the
Normalized Difference Vegetation Index (NDVI), NDVI = (B8 − B4)/(B8 + B4),
where B4 is the red band and B8 is a near infrared band [14]. This is widely used to detect
vegetation and moisture. Figure 6.1 shows examples of the NDVI index along with the
RGB bands.

The Sentinel 1 satellite uses a C-band Synthetic Aperture Radar (C-SAR) to collect meas-
urements. The C-SAR instrument sends out radar signals toward the planet and measures
the reflected signal [9]. The strength of the returned signal is affected by a number of factors,
such as surface roughness and moisture. Over land, the C-SAR sends out vertically polar-
ized electromagnetic waves and measures the energy in both the reflected horizontal and
vertical components. These two components can be used to construct the SAR Vegetation
Index (SARVI) SARVI = (4σV H)/(σV V +σV H), where σV V and σV H , respectively, are
the vertical and horizontal components of the reflected vertically polarized light. This index
is commonly used in crop growth monitoring. In addition, the SAR signal can penetrate
cloud cover but is generally more sensitive to speckle noise, as can be seen in Figure 6.1.

Figure 6.1: Example observations from Sentinel 1 and Sentinel 2 visualized through (left) RGB composite image; (cen-
ter) NDVI index; and (right) SARVI index.
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Appendix: Conference posters

Poster 1: Improved Anomaly Detection through Conditional Lat-
ent Space VAE Ensembles

Presented at the Northern Lights Deep Learning Conference (NLDL 2025) in Tromsø, Nor-
way, January 2025.

Poster 2: Out-of-Distribution Detection in Point-of-Care Ultra-
sound Breast Imaging using Variational Autoencoders

Presented at the Scandinavian Conference on Image Analysis (SCIA 2025) in Reykjavík, Ice-
land, June 2025.
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Improved Anomaly Detection through Conditional Latent 
Space VAE Ensembles

Goal: Improve semantic anomaly detection on data with 
multiple inlier classes. 

CL-VAE: Conditional Latent space Variational Autoencoder
• Multiple Latent Gaussian Distributions
• Enforced Radial Separation
• Latent Space Ensembling

OSKAR ÅSTRÖM AND ALEXANDROS SOPASAKIS 
LUND UNIVERSITY

Allowing separate gaussians for each inlier class 
induces diversity in the latent space.
Forced separation in the latent space between 
inlier clusters, space is freed up for semantic 
anomalies. 
Random cluster order creates unique solution 
spaces that benefit ensembles.
This method of anomaly detection seems to 
possess improved out-of-distribution detection on 
inlier data.

Misclassification Diversity

Oskar Åström, Lund University, oskar.astrom@math.lth.se

Implementation at
https://github.com/oskarastrom/CL-VAE

Contact

Introduction

Multiple Latent Gaussian Distributions

Latent Space Ensembling

Variational Autoencoder

Traditional VAE Loss:

By introducing separate gaussians for each inlier class, the diversity in the 
latent space can be expanded. Each class k is assigned a target mean μk.

Enforced Radial Separation

Conclusions

By randomizing cluster center order, variance is 
induced between ensemble member, thereby 
increasing ensembling benefits.

Placing each cluster target μk on the surface of a hypersphere forces 
separation and leaves room in the latent space for anomalies.

• Flexible cluster locations
• Learned covariance
• Applications in the wild

Future Work



Summary

Conditional Latent Space Variational Autoencoder

Out-of-Distribution Data

Recent studies have shown the potential of combining point-of-care ultrasound (POCUS) with a CNN as a support tool in breast cancer 
diagnostics. However, to ensure trustworthy predictions, it is crucial to detect out-of-distribution (OOD) data. We propose the use of a 
conditional latent space variational autoencoder (CLVAE) for OOD detection.

Shadow

The CLVAE pipelines were evaluated on four OOD datasets.
MNIST: Images of hand-written digits, i.e. non-ultrasound images.
CCA: Ultrasound images of the common carotid artery, i.e. non-breast tissue.
Blur: Breast ultrasound images with applied blur. 
Shadow: Breast ultrasound images with simulated acoustic shadow.

Out-of-Distribution Detection in Point-of-Care Ultrasound 
Breast Imaging using Variational Autoencoders
JENNIE KARLSSON & OSKAR ÅSTRÖM
DIVISION OF COMPUTER VISION AND MACHINE LEARNING , CENTRE FOR MATHEMATICAL SCIENCES, LUND UNIVERSITY
{JENNIE.KARLSSON, OSKAR.ASTROM}@MATH.LTH.SE

Blur CCAMNIST 

CLVAE is trained solely on in-distribution (ID) data, 
i.e. breast ultrasound images labeled into the 
classes normal, benign, or malignant. Each input 
image is encoded into a latent distribution. The 
loss conditions the encoded distributions based on 
the class. After training, the encoded means of the 
ID data are used to form three class clusters to 
which three Gaussians are fitted. The likelihood of 
a sample belonging to one of these clusters is used 
as OOD score.

Three different input pipelines to the CLVAE were 
implemented.
1. CLVAE Image directly passed to the CLVAE.
2. CNN + CLVAE Image pre-processed by extracting 

features with the CNN prior to the CLVAE.
3. USFM + CLVAE Image preprocessed by extracting 

features with the ultrasound foundation model
(USFM) prior to the CLVAE.

Conclusion

OOD Score Distributions AUC Results

• Using the USFM feature extractor improves the OOD detection 
capabilities of the CLVAE model.

• The Shadow dataset is considerably more difficult to detect as OOD 
compared to the other datasets.

• This work shows promising results on simulated distortions. Future 
work should test feasibility on real-world datasets.

Distribution of OOD scores for each dataset. The USFM preprocessing shows high 
separability between the ID dataset (breast POCUS) and OOD datasets.
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