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“The map had been the first form of misdirection, for what is a 

map but a way of emphasizing some things and making other 

things invisible?” 

- Jeff VanderMeer, Annihilation
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Abstract 

Cellulose is the most abundant biopolymer on Earth and a major reservoir of organic 

carbon in terrestrial ecosystems. In forests, much of this cellulose originates from 

wood and is decomposed by saprotrophic basidiomycetes. These fungi are 

traditionally classified as white rot or brown rot species based on their decay 

mechanisms in lignocellulosic substrates. Whether these functional categories 

remain distinct when lignin is absent remains unresolved. In this thesis, 

transcriptomic and Raman spectroscopic data from fungi cultivated on crystalline 

cellulose are integrated to evaluate decay type differentiation under cellulose only 

conditions, with emphasis on nitrogen availability and temporal dynamics. 

Comparative transcriptomic analyses show that cellulose decay strategies form a 

continuum rather than discrete white rot and brown rot groups. A conserved set of 

genes is consistently expressed across fungi under cellulose conditions, indicating a 

shared transcriptional program for cellulose utilization. This conserved response is 

dominated by oxidative mechanisms, with widespread upregulation of lytic 

polysaccharide monooxygenases across all taxa. In contrast, brown rot fungi display 

a distinct and reproducible transcriptional signature characterized by upregulation 

of specific oxidoreductases, transporters, and monooxygenases lacking cellulose 

binding domains. This pattern indicates that, despite multiple evolutionary origins, 

brown rot fungi have convergently acquired similar gene networks specialized for 

oxidation driven disruption of crystalline cellulose. 

White rot fungi exhibited greater transcriptional plasticity, with cellulolytic 

responses strongly influenced by nitrogen availability. A comparable nitrogen effect 

was also observed in Coniophora puteana, suggesting that this species does not 

conform to a canonical brown rot strategy and retains functional features typically 

associated with white rot fungi, including the expression of cellobiohydrolases. 

Litter decomposers, soft rot fungi, and fungi with unresolved decay strategies 

showed mixed transcriptional profiles that combine conserved cellulose response 

genes with lineage specific regulation, further challenging strict decay type 

classifications. Raman spectroscopy provided a substrate centered view of cellulose 

modification and captured biochemical changes not reflected in gene expression 

alone. Raman features associated with cellulose oxidation and crystallinity were 

informative, with the high frequency spectral region contributing strongly to 

differentiation among decay trajectories. Raman signatures consistently reflected 

nitrogen availability and time. 

Machine learning applied to integrated transcriptomic and Raman datasets improved 

discrimination of decay strategies and identified key molecular and spectral features 

underlying functional divergence. Together, these results show that white rot and 

brown rot strategies remain partially distinguishable on crystalline cellulose, but that 

their boundaries are dynamic and context dependent.  
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Popular science summary 

Cellulose is the most abundant organic material on Earth and a major component of 

plant biomass. It forms the structural framework of plant cell walls and is therefore 

present in wood, leaves, grasses, and many plant-derived materials used in everyday 

life, such as paper, cardboard, and cotton. Large amounts of cellulose are 

continuously produced as plants grow across terrestrial ecosystems. Cellulose is 

difficult to break down because of its strong and tightly packed structure. Most 

organisms lack the ability to sufficiently utilize cellulose. In natural environments, 

this task is carried out primarily by fungi, but also by other microbes. Fungi secrete 

specialized enzymes and other agents that break cellulose into smaller molecules, 

which allows them the uptake of these molecules through absorption. 

Through this process, fungi prevent the long-term accumulation of dead plant 

material. Without fungal decomposition, wood and plant litter would persist for 

extended periods, limiting soil formation and reducing the availability of nutrients 

for new plant growth. Over very long timescales, undecomposed plant material 

could become buried, altering how carbon is stored and released in the environment. 

Fungal decomposition of cellulose is therefore essential for maintaining healthy 

ecosystems. It supports the recycling of nutrients, contributes to soil development, 

and plays an important role in the natural carbon cycle by returning carbon from 

plant biomass to the soil and atmosphere. 

In addition to its ecological importance, fungal cellulose degradation has practical 

applications. Fungi and their enzymes including cellulolytic enzymes are widely 

used to break down organic waste, support composting processes, and convert plant 

biomass into useful products. Research in this area also informs the development of 

sustainable technologies, including biofuel production and environmentally friendly 

methods for processing plant-based materials. Understanding how fungi decompose 

cellulose is thus important both for explaining how ecosystems function and for 

developing biological solutions to environmental and industrial challenges. 
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Populärvetenskaplig sammanfattning 

Cellulosa är det vanligaste organiska materialet på jorden och en viktig komponent 

i växtbiomassa. Det utgör den strukturella ramen för växtcellväggar och finns därför 

i trä, löv, gräs och många växtbaserade material som används i vardagen, såsom 

papper, kartong och bomull. Stora mängder cellulosa produceras kontinuerligt när 

växter växer i terrestra ekosystem. Cellulosa är svår att bryta ner på grund av dess 

starka och tätt packade struktur. De flesta organismer saknar förmågan att utnyttja 

cellulosa tillräckligt. I naturliga miljöer utförs denna uppgift främst av svampar, 

men även av andra mikrober. Svampar utsöndrar specialiserade enzymer och andra 

ämnen som bryter ner cellulosa i mindre molekyler, vilket gör att de kan ta upp 

dessa molekyler genom absorption. 

Genom denna process förhindrar svampar långsiktig ansamling av dött 

växtmaterial. Utan svampnedbrytning skulle trä och växtskräp finnas kvar under 

längre perioder, vilket begränsar jordbildningen och minskar tillgången på 

näringsämnen för ny växttillväxt. Under mycket långa tidsperioder skulle 

onedbrutet växtmaterial kunna begravas och förändra hur kol lagras och frigörs i 

miljön. Svampnedbrytning av cellulosa är därför avgörande för att upprätthålla 

friska ekosystem. Det stöder återvinning av näringsämnen, bidrar till 

markutveckling och spelar en viktig roll i den naturliga kolcykeln genom att återföra 

kol från växtbiomassa till marken och atmosfären. 

Förutom sin ekologiska betydelse har svampnedbrytning av cellulosa praktiska 

tillämpningar. Svampar och deras enzymer, inklusive cellulolytiska enzymer, 

används ofta för att bryta ner organiskt avfall, stödja komposteringsprocesser och 

omvandla växtbiomassa till användbara produkter. Forskning inom detta område 

bidrar också till utvecklingen av hållbara tekniker, inklusive produktion av 

biobränslen och miljövänliga metoder för bearbetning av växtbaserade material. Att 

förstå hur svampar bryter ner cellulosa är därför viktigt både för att förklara hur 

ekosystem fungerar och för att utveckla biologiska lösningar på miljömässiga och 

industriella utmaningar. 
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Introduction 

Wood is the structural tissue found in the stems and roots of trees and other woody 

plants. It is a natural composite made of strong, tension-resistant cellulosic fibers 

held together by lignin and hemicelluloses, which helps the tissue resist 

compression (Kurei et al., 2024). For thousands of years people have used wood as 

fuel, for building, making tools, weapons, furniture and paper. More recently it has 

also become a source of purified cellulose and products such as cellophane and 

cellulose acetate.  

 

 
Figure 1. Visualization of wood anatomy from the tissue level to the molecular level 

The cross section shows the secondary cell wall, followed by its internal architecture and the three 
main biopolymers: cellulose, hemicellulose and lignin, along with their characteristic structures and 
typical percentages in wood. Created in https://BioRender.com 
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Trees produce wood by adding new layers between the inner bark and the older 

wood. This process, known as secondary growth, gradually thickens the stem, 

branches and roots. The new cells form sturdy secondary walls made mainly of 

cellulose, hemicellulose and lignin. Although different species vary, wood is 

roughly 50% carbon, 42% oxygen, 6% hydrogen, 1% nitrogen and 1% other 

elements by weight (Onumejor et al., 2018). Wood itself is composed of three key 

components (Fig. 1). Cellulose makes up about 41-43% of the dry weight of wood. 

Hemicellulose comes next, representing about 20% of deciduous wood and nearly 

30% of coniferous wood. Lignin accounts for about 27% of dry biomass in conifers 

and 23% in deciduous species, and its aromatic structure gives wood its water-

resistant character (Rowell, 2012). These components are tightly interwoven, with 

chemical links between lignin and hemicellulose (Cui et al., 2022).  

In 2020, forests held about 557 billion cubic meters of growing stock with wood 

being a major resource (FAO, 2020), and by 2023 nearly 4 billion cubic meters of 

wood were harvested worldwide (Branthomme et al., 2023). These large volumes 

feed many industries, especially construction and furniture. As a result, interest in 

wood as a carbon-neutral renewable resource continues to grow (Mariani and 

Malucelli, 2024).  

Cellulose: Structure 

As cellulose forms the largest share of wood and represents an energy source for 

organisms and the raw material in various applications, understanding cellulose 

itself is essential for exploring how wood is processed, transformed and used in 

modern materials and how it is utilized by organisms. Cellulose, the most abundant 

organic compound on Earth, exhibits remarkable resistance to natural decay and 

imparts structural strength to wood. It is a polysaccharide, existing in an ordered 

structure in cell wall of all green plants (Viridiplantae), other algae, tunicates, and 

bacteria. With approximately 1.5 trillion tons produced annually, cellulose stands as 

the most abundant polymer on the planet (Field et al., 1998). Its applications span 

across diverse industries, including paper, textiles, pharmaceuticals, among others. 

Cellulose is a linear hydrophilic polymer, comprised of glucose subunits linked 

together through β (1→4) glycosidic linkages (Brown Jr., 2004). These chains 

organize into microfibrils, which, in turn, assemble into fibrils through non-covalent 

interactions, primarily hydrogen bonding (Nishiyama et al., 2002). Notably, the -

OH group on the sixth carbon atom engages in intermolecular hydrogen bonding 

with other -OH groups, resulting in various types of hydrogen bonding that can lead 

to different cellulose structures. Consequently, cellulose is categorized into four 

distinct allomorphs: I, II, III, and IV (Wada et al., 2004). Cellulose in its natural 
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state, as a type I allomorph, is termed crystalline cellulose due to presence of 

crystallites with high crystallite length (40-48nm) and width (equals to number 

chains, 3-5 nm in plant cellulose) (Liesiene et al., 2025). The other allomorphs are 

generated through treatments involving harsh chemicals (Wada et al., 2004). These 

treatments alter the orientation of cellulose chains or disrupt hydrogen bonding, 

without changing the chemical structure. 

Disruption of the hydrogen bonds in cellulose results in a disordered structure with 

its crystallinity lost and is referred to as amorphous cellulose (Ciolacu et al., 2011). 

This loss of crystallinity has been used to make cellulose more flexible in the paper 

and pulp industry. Several techniques have been used to quantify changes in 

crystallinity, including X-ray diffraction (XRD) (Cao and Tan, 2005; Bansal et al., 

2010), nuclear magnetic resonance (NMR) (Evans et al., 1995), Fourier transform 

(FTIR) infrared spectroscopy (Kljun et al., 2011) and Raman spectroscopy 

(Agarwal et al., 2013). Some studies have also shown there is a gradient between 

crystalline and amorphous cellulose which affects dissolution of cellulose 

(Ioelovich et al., 2010). Crystalline cellulose is more abundant than amorphous 

cellulose in plants because of its higher tensile strength (Sixta et al., 2015) with its 

crystallinity around 52-60% in wood and 55-73% in cotton. Crystalline cellulose, 

along with lignin, plays a vital role in providing mechanical support and protection 

within primary and secondary cell walls of plants (Stewart and Rothwell, 1993). 

Decomposition of cellulose by saprotrophic fungi 

Primitive plants initially incorporated cellulose into their cell walls as a response to 

selection pressures such as wind and desiccation (Duchesne and Larson, 1989), 

providing mechanical support crucial for the development of stems and leaves 

(Percival and McDowell, 1981). Around 400 million years ago, the introduction of 

lignin, serving as a defense mechanism against predation and protecting vascular 

tissues, coincided with plants evolving mechanisms to create secondary cell walls 

(Stewart and Rothwell, 1993) with decreased nitrogen content. Evolutionary shifts 

that favour reallocating nitrogen away from costly cell-wall defenses and toward 

photosynthesis explain why plants were able to reduce nitrogen in their cell walls 

(Feng et al., 2009). While these organic polymers are resistant to microbial 

decomposition, some microbes have co-evolved with plants to extract nutrients and 

carbon from wood (Ayuso-Fernández et al., 2019). Many of these microbial 

decomposers, have developed various mechanisms to at least partially degrade 

polymers present in wood tissues (Álvarez et al., 2016; Singh et al., 2016). The 

evolution of microbial strategies to decompose cellulose reflects a long-standing 

biochemical arms race that has shaped terrestrial ecosystems since the rise of 

vascular plants (Wilson, 2008; Cornelissen et al., 2023). 
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Figure 2. Two major types of wood decay 

Fruit bodies of white-rot and brown-rot fungi growing on wood, and the resulting appearance of the 

wood after decay. Photos by D. Floudas. Created in https://BioRender.com. 

Fungi can degrade crystalline cellulose and lignin in wood tissues, reducing the 

tensile strength and overall economic value of wood (Mori et al., 2011; Witomski 

et al., 2016). Cellulose-degrading fungi are broadly distributed across Dikarya, 

encompassing both Ascomycota and Basidiomycota (Berlemont, 2022). Within 

dikarya, a saprotrophic lifestyle as litter decomposers is likewise represented in both 

phyla (Woodward and Boddy, 2008). Most litter-decomposing fungi possess a 

broad enzymatic repertoire that includes cellulolytic enzymes for degrading 

crystalline cellulose as well as ligninolytic enzymes for modifying or breaking down 

lignin (Baldrian and Valášková, 2008). Despite this metabolic versatility, the nature 

of the substrate plays a key role in determining which fungal groups dominate 

decomposition (Leifheit et al., 2024; Meng et al., 2024). In the case of lignified 

wood, effective degradation requires specialized decay strategies that are primarily 

associated with wood-decaying fungi, a functional group that is largely dominated 

by basidiomycetes (Taylor et al., 2015). The wood-degrading activity of mushroom-

forming saprotrophic fungi plays a crucial role in organic matter recycling in 

terrestrial ecosystems, influencing nutrient cycling and plant material 

decomposition (Watkinson et al., 2006; Li et al., 2022). 

Saprotrophic wood-decaying fungi are broadly categorized into white-rot, and 

brown-rot fungi (Fig. 2) (Eaton and Hale, 1993). White-rot fungi have a unique 

ability to break down all the major constituents in wood including cellulose and 

lignin, making them highly proficient wood decomposers (Blanchette, 1995). 

White-rot fungi often leave significant amounts of cellulose intact resulting in 

distinct white cellulose remnants (Dashtban et al., 2010). The reason behind white-

rot fungi leaving cellulose intact behind still lacks full understanding. Conversely, 

https://biorender.com/
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brown-rot fungi lack the enzymes necessary for crystalline cellulose and lignin 

decomposition but can still utilize cellulose as a carbon source while partially 

modifying lignin, leaving behind a brittle, brownish lignin residue (Monrroy et al., 

2011). This puzzling wood decomposition process has attracted considerable 

attention from researchers seeking to elucidate the underlying mechanisms. 

Enzymatic pathways for cellulose decomposition by 

wood-decaying fungi 

Fugal cellulose decomposition involves enzymes that dismantle cellulose via 

hydrolysis or oxidative mechanisms (Lundell et al., 2014; Andlar et al., 2018) (Fig. 

3). These enzymes are classified in the CAZY database (Cantarel et al., 2009), 

dedicated to the analysis of genomic, structural, and biochemical data on 

Carbohydrate-Active Enzymes (CAZYmes). Among CAZYmes, cellobiohydrolase 

(CBH) is the main glycoside hydrolase (GH) targeting crystalline cellulose, 

spanning two GH families: GH6 (acting on the non-reducing end) and GH7 (acting 

on the reducing end) (Barr et al., 1996). Typically, GH6 and GH7 enzymes have 

CBM1 modules (carbohydrate-binding module family 1) attached to them 

(Christensen et al., 2019). CBM1 facilitates the attachment of enzymes to cellulose 

substrates, thereby enhancing the efficiency of enzymatic hydrolysis (Várnai et al., 

2013). CBH of the GH6 and GH7 families degrade cellulose into cellobiose 

disaccharide units (Brady et al., 2015), which are then hydrolyzed into glucose by 

β-glucosidase (GH1, GH3, GH5, GH9, and GH30,) (Cairns and Esen, 2010). 

Additionally, fungi produce endoglucanase (from families like GH5, GH12, GH45 

etc.), complementing CBH but primarily targeting amorphous cellulose due to its 

inability to bind crystalline cellulose (Nagl et al., 2022). 
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Figure 3. The fungal enzymatic decomposition of cellulose 

GH5: endoglucanase, GH6: cellobiohydrolase, GH7: cellobiohydrolase, CBM1: carbohydrate-binding 
module family 1, AA9: LPMOs with C1-oxidation and C4-oxidation capacity, GH1:  β-glucosidase. 
Created in https://BioRender.com. 

In addition to hydrolysis, cellulose decomposition can occur through oxidative 

reactions. Lytic polysaccharide monooxygenases (LPMOs) represent a unique class 

of enzymes characterized by their mono-copper structure, specifically tailored to 

oxidise glycosidic bonds within cellulose (Vaaje-Kolstad et al., 2010; Bissaro et al., 

2018; Munzone et al., 2024). LPMOs are categorized as Auxiliary Activities (AA) 

within CAZYmes, aiding in the decomposition of carbohydrates by enhancing their 

breakdown. Ranging from AA9 to AA17, these versatile enzymes exhibit broad 

substrate specificity, including cellulose, chitin, and polygalacturonic acid (Li et al., 

2021; Vandhana et al., 2022). Not all LPMOs can oxidise crystalline cellulose, some 

LPMOs can only target amorphous cellulose (Kojima et al., 2016; Støpamo et al., 

2024). Cellobiose dehydrogenase acts as the essential electron donor for LPMO, 

providing electrons from oxidised cellobiose (or oxygen), which activates the 

LPMO to perform oxidative cleavage of cellulose (Tan et al., 2015). 

The enzyme repertoire differs between white-rot and brown-rot fungi (see Table 1). 

White-rot fungi possess CBH to degrade crystalline cellulose, whereas brown-rot 

fungi typically lack this enzyme. While some brown-rot fungi feature processive 

endoglucanase capable of targeting crystalline cellulose (Cohen et al., 2005), the 

exact mechanism involved in the decomposition of crystalline cellulose remains 

poorly understood. Nevertheless, brown-rot fungi code for most endoglucanases and 

β-glucosidases and they have the capacity to decompose amorphous cellulose. 
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Table 1. Enzymes for cellulose decomposition in wood decayers 

Important enzyme classes involved in decomposition of cellulose and lignin in wood tissues and their 
presence across whiter-rot and brown-rot fungi (Abbreviations- WR: White rot fungi, BR: Brown rot fungi, 
LiP: Lignin peroxidase, MnP: Manganese peroxidase, VP: Versatile peroxidase, GH: Glycoside 
Hydrolase, LPMO: Lytic polysaccharide monooxygenases). 

ENZYME SUBSTRATE PRODUCT PRESENT 
IN WR 

PRESENT IN 
BR 

Cellobiohydrolase 
(GH6)  

Crystalline cellulose 
(non-reducing end)  

Cellobiose Yes No 

Cellobiohydrolase 
(GH7)  

Crystalline cellulose 
(reducing end)  

Cellobiose Yes No 

β-glucosidase  Cellobiose Glucose Yes Yes 

Endoglucanase  Amorphous cellulose  Glucose Yes Yes 

LPMO Crystalline and 
amorphous cellulose  

Lactone/4-
ketoaldose  

Yes Yes, (fewer 
gene copies) 

Cellobiohydrolase 
(GH6)  

Crystalline cellulose 
(non-reducing end)  

Cellobiose Yes No 

Non-enzymatic/oxidative pathways for cellulose 

decomposition by wood-decaying fungi 

The fact that brown-rot fungi lack many of the enzymes needed for degrading lignin 

(Floudas et al., 2012, 2020) poses a challenge for these fungi since they must 

overcome the lignin barrier to reach the cellulose in the wood tissue. The limited 

ability of brown-rot fungi to degrade lignin has led to the development of a theory 

proposing an alternative mechanism that doesn't solely rely on enzymes, enabling 

them to bypass lignin without breaking it down. Due to the restricted pore size of 

wood (Tibebu and Avramidis, 2022), which restricts the passage of large proteins 

through the lignin matrix, it is hypothesized that small secondary metabolites may 

facilitate cellulose decomposition. This proposed mechanism for brown-rot fungi 

involves two steps (Zhang et al., 2016): first, oxidative pretreatment facilitated by 

metabolites and iron, and second, hydrolysis utilizing endoglucanase enzymes. 

The primary theory suggests oxidation by hydroxyl radical generated through 

Fenton chemistry (1). 

 

𝐹𝑒2++ 𝐻2𝑂2 → 𝐹𝑒3++ 𝐻𝑂 • + 𝑂𝐻- (1) 

 
In the Fenton reaction, highly reactive hydroxyl radicals (HO•) are produced by a 

redox reaction between soluble Fe2+ and H2O2 (Xu and Goodell, 2001; Liu et al., 

2020). The HO• radicals formed through the Fenton reaction are highly oxidative, 

extremely short-lived and possess the ability to oxidize organic compound in their 
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proximity (Yu and Kuzyakov, 2021). Brown-rot fungi have been linked to the 

Fenton reaction, as evidenced by similar results observed when treating wood with 

hydroxyl radicals produced from the Fenton reaction (Kirk et al., 1991; Joseleau et 

al., 1994). In the literature, several pathways for producing H2O2 have been 

described, both enzymatically and non-enzymatically (using metabolites). First, 

oxidoreductases, such as glucose oxidase (AA3_2), aryl alcohol oxidase (AA3_2), 

alcohol oxidase (AA3_3) and copper radical oxidase (AA5), are known to generate 

H2O2, and these enzymes are upregulated in brown-rot fungi during wood 

decomposition (Zhang et al., 2016). Second, H2O2 can be generated by the action of 

redox-active metabolites that are known to be produced by brown-rot fungi (Jensen 

et al., 2001). Third, H2O2 can be produced abiotically through the oxidation of Fe2+ 

associated with ferric oxide surfaces (Jones et al., 2014).  

In wood tissues, iron is mainly found in insoluble complexes with oxidation state 3 

(Zelinka et al., 2021) and to participate in the Fenton reaction, the iron must be 

solubilized and reduced to Fe2+. Numerous studies suggest that low-molecular 

weight (LMW) metabolites secreted by the fungi have a key role in this reduction 

(Table 2). According to the chelator-mediated Fenton (CMF) model (Xu and 

Goodell, 2001; Arantes et al., 2012; Arantes and Goodell, 2014), the hyphae of 

brown-rot fungi growing in the wood lumen region secretes oxalic acid that can 

dissolve iron oxides. At the very acidic condition in the lumen (pH ca 2.0), oxalic 

acid binds to Fe3+, and the complexes diffuse from the lumen into the cell wall. The 

wood cell wall has a pH of ca 5.5. Under these conditions, oxalate has a decreased 

affinity for Fe3+ and the iron can be reduced by other LMW metabolites. The role of 

oxalic acid has been discussed in literature. Apart from mediating the transport of 

iron from the lumen to the cell wall, it has also been proposed that fungal secretion 

of oxalic acid is important for generating the spatial pH gradient (Arantes and 

Goodell, 2014). Moreover, oxalic acid has been observed to decrease the Degree of 

Polymerization (DOP) and viscosity of cellulose by itself (Henschen et al., 2019).  

Several LMW reductants have been identified in brown-rot fungi that are thought to 

reduce Fe3+ in wood (see Table 2). Among the best characterized compounds are 

the quinone metabolites 2,5-DMHQ (2,5-dimethoxyhydroquinone), DMBQ (2,5-

dimethoxybenzoquinone), and the related semiquinone radical. Thus, quinones are 

redox-active compounds that can exist in three different redox states, acting both as 

electron acceptor (quinone, Q), electron donor (hydroquinone (H2Q) or as an 

intermediate semiquinone radical (Lyngsie et al., 2018). Notably, the 

DMHQ/DMBQ system can produce both reactants needed for the Fenton reaction 

(i.e. Fe2+ and H2O2) by driving one electron reductions of Fe3+ and O2 in wood 

(Kerem et al., 1999; Jensen et al., 2001). The role of the quinone redox cycle for the 

Fenton chemistry of brown-rot fungi has mainly been studied in Gloeophyllum 

trabeum. Evidence has also been obtained that 2,5-DMHQ acts as reductant in the 

brown rot fungi Serpula lacrymans (Korripally et al., 2013) and Postia placenta 
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(Cohen et al., 2002). The fact that G. trabeum and S. lacrymans belong to two 

divergent lineages of basidiomycetes suggests that the 2,5-DMHQ may be prevalent 

in many species of brown-rot fungi. However, it should be noted that brown-rot 

fungi can produce several LMW metabolites that can presumably act as iron 

chelators and/or reductants (Goodell et al., 2006; Eastwood et al., 2011). Apart from 

secondary metabolites, Laccases are also found in brown-rot fungi. They are 

oxidoreductases and belong to the multicopper oxidase superfamily (AA1_1). 

Beyond their role in plant cell wall degradation, laccases participate in diverse 

biological processes such pigment formation, and detoxification of xenobiotics 

(Youn et al., 1995). The functional roles of laccases for brown-rot fungi remain to 

be fully understood, but they have been proposed to oxidize DMHQ (2,5-

dimethoxyhydroquinone) to DMBQ (DMBQ: 2,5-dimethoxy-1,4-benzoquinone), 

which can subsequently reduce iron and thereby support the Fenton reaction (Wei 

et al., 2010). 

Table 2. Extracellular enzymes or metabolites proposed to be involved in Fenton chemistry by 
brown rot fungi. 

(DMBQ: 2,5-dimethoxy-1,4-benzoquinone, DMHQ: 2,5-dimethoxyhydroquinone; Chelator: Binds to Fe3+, 
Reductant: Reduces Fe3+ to Fe2+) 

EXTRACELLULAR 
SECONDARY 
METABOLITES 

ROLE IN FENTON 
CHEMISTRY 

REFERENCES 

Oxalic acid Chelator (Xu and Goodell, 2001; Arantes et al., 
2009)  

Variegatic acid  Reductant (Eastwood et al., 2011; Zhu et al., 2017)  

Citric acid Chelator (Sheng et al., 2017)  

2,5-DMHQ  Reductant (Kerem et al., 1999; Jensen et al., 2001)  

Glycopeptides Reductants (Enoki et al., 2003)  

 

Although oxygen radicals produced by the Fenton reaction offer explanations for 

several phenomena, they might not fully explain the crystallinity loss seen in brown 

rot fungi. Due to their extremely short half-life, the effective impact of HO• radicals 

call for their generation near the cellulose chains, emphasizing the importance of 

iron localization. Instead of relying on the Fenton reaction, brown rot fungi might 

utilize oxidative enzymes such as LPMOs to pre-treat cellulose prior to hydrolysis. 

From an evolutionary perspective, brown-rot fungi are characterized by extensive 

losses of genes associated with lignin decomposition. Over approximately the last 

200 million years, fungi have independently evolved multiple strategies that enable 

efficient utilization of cellulose and hemicellulose without extensive lignin 

degradation, representing a clear case of convergent evolution. Genomic evidence 

indicates that cellulose-degrading enzymes, particularly AA9 lytic polysaccharide 

monooxygenases (LPMOs), were already present in ancestral fungi, whereas lignin-

degrading oxidoreductases such as AA2 peroxidases evolved later (Nagy et al., 
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2016). In brown-rot lineages, the loss of ligninolytic genes is thought to be 

associated with the emergence of alternative nutritional strategies and is considered 

evolutionarily irreversible. This pattern of gene loss has been documented across 

multiple species (Martinez et al., 2009; Eastwood et al., 2011; Floudas et al., 2012; 

Floudas, 2021) and underlies the evolution of the brown-rot decay strategy. 

Consistent with this view, brown-rot fungi are inferred to have arisen through gene 

loss from white-rot ancestors, and no evidence exists for a reversal from brown-rot 

to white-rot decay (Eastwood, 2014) 

Role of nitrogen for cellulose decomposition by wood-

decaying fungi 

Beyond the complexity of wood structure, another challenge that fungi face during 

wood decay is nutrient limitation. Wood has a very high carbon-to-nitrogen (C: N) 

ratio sometimes reaching up to 800:1 (Rynk et al., 1992). Wood-decaying fungi, 

particularly white-rot fungi, rely on a diverse array of enzymes to break down 

polymers in wood (Baldrian, 2008). Nitrogen is needed for the synthesis of these 

enzymes, but also for the synthesis of fungal cell wall material including chitin. 

Thus, the low nitrogen content of wood likely presents a major challenge for wood-

decaying fungi. Furthermore, studies have shown that fungi sense and respond to 

nitrogen availability. For example, it has been shown that the addition of ammonium 

suppresses lignin degradation in the white-rot fungus Phanerochaete chrysosporium 

(Fenn et al., 1981; Fenn and Kirk, 1981). Similar studies have not been done in 

brown-rot fungi. However, (Varela et al., 2003) showed that the production of 

enzymes and metabolites involved in the degradation of wood components by 

Gloeophyllum trabeum was reduced at lower nitrogen levels.  

Nitrogen appears to be a nutrient that plays important role in altering the 

decomposition of fungi in general. In soil, nitrogen enrichment alters enzyme 

expression with enzymes linked to brown-rot decomposition (Fenton reaction) 

being upregulated, while those associated with white-rot decomposition (Class II 

peroxidases) are suppressed (Bonner et al., 2019) with some transcriptomic studies 

observing no effect to lignolytic enzymes and increase in abundance of cellulose-

degrading genes (Xing et al., 2025). Different nitrogen sources also impact cellulose 

decomposition differently (Niu et al., 2025). To overcome nitrogen limitation, wood 

decay fungi might translocate nitrogen from soil (Clinton et al., 2009), or recycle 

their own chitin cell wall (Lindahl and Finlay, 2006). Despite the evidence on the 

role of nitrogen in fungal decomposition of the cell wall, we still have little 

knowledge on the differences and similarities that nitrogen may have on the 

decomposition processes by white-rot and brown-rot fungi. 
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Ecological and applied implications of fungal cellulose 

decomposition 

Given the abundance of cellulose, microbial decomposition of cellulose is central to 

understanding the global carbon cycle (George et al., 2023). Fungi and bacteria 

drive cellulose breakdown, returning carbon to soils as organic matter and to the 

atmosphere as carbon dioxide, while a fraction of partially degraded material 

becomes incorporated into soil organic matter (SOM) (Datta, 2024). Over 

geological timescales, the process has contributed to soil carbon burial and coal 

formation, shaped in part by the evolution of plant cell wall degrading microbes 

(Hibbett et al., 2016). Patterns of cellulose decomposition also influence 

biodiversity through their effects on ecological interactions and the distribution of 

wood-decaying microbes in terrestrial ecosystems (Furusawa, 2019; Fukasawa, 

2021). Although cellulose is rapidly decomposed and generally forms a labile pool 

of soil carbon, cellulose-derived carbon can persist for decades to centuries when 

incorporated into soil aggregates and organo-mineral associations (Miao et al., 

2021). Carbon dioxide released during decomposition further provides a measurable 

link between cellulose turnover, greenhouse gas emissions, and climate change 

through ecosystem and Earth system modelling (Pendall et al., 2004). 

Beyond its ecological role, cellulose represents a major renewable resource for 

bioenergy and biobased applications. A detailed understanding of the enzymatic 

processes underlying cellulose decomposition is essential for improving the 

efficiency of biofuel production from plant biomass (Carere et al., 2008; Antoniêto 

et al., 2022). Knowledge of cellulose-degrading mechanisms also supports advances 

in waste management and the development of more sustainable industrial processes 

(Chakraborty et al., 2019; Daly et al., 2021). 

At the ecosystem scale, fungal cellulose decomposition governs the fate of plant-

derived carbon in terrestrial environments (Deacon et al., 2006). By transforming 

cellulose, fungi regulate carbon redistribution among plant biomass, soil organic 

matter, and atmospheric carbon dioxide, thereby influencing soil formation, nutrient 

cycling, and long-term carbon storage (Deacon et al., 2006; Hannula and Morriën, 

2022). Rather than being driven by individual enzymes alone, cellulose 

decomposition reflects the interaction between polymer structure, fungal metabolic 

capacity, and resource availability (Fukasawa and Matsukura, 2021). The degree 

and mode of structural modification determine both the rate of carbon turnover and 

the persistence of organic carbon in soils over extended timescales (Bueno et al., 

2023; Rumi et al., 2024). Variation among fungal decay strategies further 

demonstrates that cellulose degradation proceeds through multiple biochemical 

pathways shaped by evolutionary history and ecological niche (Fukasawa, 2021; 

Hess et al., 2021). 
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Placing cellulose decomposition within a broader ecological and biogeochemical 

context highlights its relevance beyond wood decay alone. Variation in fungal decay 

strategies provides insight into adaptation to structurally complex, carbon-rich, and 

nutrient-poor substrates (Xu et al., 2025). Understanding how fungi modify 

cellulose structure also informs applied fields such as biomass conversion and 

bioenergy production, where processing efficiency depends on cellulose 

accessibility and organization (Michalska et al., 2012). In addition, these insights 

are critical for the development of sustainable cellulose-based materials, including 

nanocellulose, whose mechanical and functional properties are strongly influenced 

by biological modification of cellulose (Vigneshwaran and Satyamurthy, 2016; 

Nayl et al., 2025). 
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Aims 

This thesis investigates how fungi modify crystalline cellulose and how these 

modifications can be detected, interpreted, and biologically contextualized by 

integrating chemical and molecular approaches. Rather than focusing on individual 

decay mechanisms in isolation, the work aims to link chemical outcomes on the 

substrate with underlying regulatory strategies, environmental modulation, and 

species-specific execution across diverse fungal lifestyles. 

 

To address this overarching objective, the thesis was structured around the 

following four aims: 

 

1. To develop and validate a chemically anchored Raman spectroscopic 

framework for detecting biologically meaningful modification of crystalline 

cellulose (Manuscript 1). 

This aim focuses on establishing a robust methodological approach that 

distinguishes cellulose structural changes induced by fungi from background 

biological variability. Chemically defined reference states are used to guide spectral 

feature selection and interpretation, enabling mechanistic insight into substrate 

modification, particularly connected to oxidation and amorphogenesis. 

2. To determine whether oxidation represents a shared but differentially 

executed axis of cellulose modification across fungal decay strategies 

(Manuscript 1-3). 

This aim investigates the contribution of oxidative mechanisms to cellulose 

modification in white-rot and brown-rot fungi, testing whether differences between 

decay strategies reflect the presence of oxidation. Transcriptomic analyses are used 

to compare the deployment and regulation of oxidative mechanisms across decay 

types. 

3. To assess how nitrogen availability modulates the chemical mode of fungal 

cellulose degradation (Manuscript 2-3). 
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This aim examines nitrogen as an environmental factor shaping regulatory 

responses and the timing of cellulose decomposition, without redefining decay 

strategies. 

4. To evaluate whether fungal decay strategies are discrete categories or a 

continuum shaped by regulation (Manuscript 1-3). 

This aim integrates spectroscopic and transcriptomic evidence from canonical, and 

atypical, species to test the validity of binary decay classifications and to 

characterize the diversity of fungal cellulose modification strategies. 
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Concept and study design 

This thesis comprises two methodological approaches applied to saprotrophic 

basidiomycetes. The first approach investigates how fungi modify crystalline 

cellulose during decomposition using Raman spectroscopy The second approach 

examines the molecular basis of cellulose degradation through transcriptomic 

analyses. Together, these approaches provide complementary insights into both the 

nature of the modifications produced and the mechanisms underlying them. 

Species included in the studies 

In the different chapters, 23 species with different ecologies were included in the 

experiments (Fig.4). My dataset included 10 white-rot species (blue), 7 brown-rot 

species (brown), 3 litter decomposers (green), 2 species with uncertain decay types 

(Almási et al., 2019) (grey), and one soft-rot species (pink). Brown-rot species 

represented four independently evolved brown-rot lineages (Hibbett and Donoghue, 

2001). Identification of the isolates AAJ, POS, and PHP was based on their fruiting 

bodies, while Trichoderma (TRE) identification at the genus level was based on 

culture characteristics. For all remaining species, ITS sequencing was used to 

determine their phylogenetic placement. For the 1st Manuscript, 4 of these species 

were used (BAD, TVE, GLO, FPI), for the 2nd Manuscript, 8 of the species were 

used (BAD, TVE, PCR, CPU, GTR, FPI, CAN, GLO) while for the last manuscript, 

all species were used except for GLO (FD-574SV/Stereaceae). 
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Figure 4. Phylogenetic relationships of species used in the thesis 

Phylogenetic tree of the species included in the experiments based on the phylogenetic tree in 
Mycocosm (Grigoriev et al., 2014) with order classification and ecology of each species. 

Experimental setup 

Cotton (crystalline) cellulose was used as the main carbon substrate. To facilitate 

spectroscopic measurements, cotton pellets were prepared by using a manual 

hydraulic press (Fig. 5A). The set up for the spectroscopy experiments (Manuscript 

1 and 3) included a single cellulose pellet on Highley media agar plates (Highley, 

1973; Floudas et al., 2020) containing a low amount of glucose (0.1g/L) (Fig. 5B) 

with a single fungal inoculum placed next to the pellet. For the transcriptomics 

experiment (Manuscript 2), there were 4 pellets placed on the agar plate, with 4 

fungal inocula (Fig. 5B). Glucose was added to the Highley medium to promote 

early growth of the strains especially for the brown-rot fungi, which tend to grow 

very slow when crystalline cellulose is the sole carbon source (Highley, 1973). 
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Figure 5. Preparation of the cellulose pellets and the experimental setup 

A) A cotton pellet with weight of 150 mg was produced using a hydraulic press, resulting in a consistent 
diameter of 15 mm. B) The experimental design used either a single autoclaved pellet for spectroscopy 
or four autoclaved pellets for transcriptomic experiments. 

Nitrogen was used as a variable with different concentrations in the media with 

carbon to nitrogen ratio for each condition mentioned in Table 3. These nitrogen 

levels were selected to investigate the fungal response to differing nitrogen 

concentration, with variations in the C:N ratio ranging from as high as 1200:1 to as 

low as 15:1. The C:N ratio of wood ranges from 200:1 to 600:1 (Onumejor et al., 

2018).  

Table 3. Nitrogen concentrations used in the experiment. 

C:N ratio is molar ratio of carbon and nitrogen in the media plate with cellulose pellet. The calculation for 
the amount of carbon included both the glucose and cellulose. (M2- Manuscript 2, M3- Manuscript 3) 

Condition Nitrogen concentration (NH4NO3) 
in Highley media 

C:N ratio Remarks 

HN 1 g/L 14.9:1 Used in M3 

MN 0.5 g/L 29.8:1 Used in M2 & M3 (labelled as 
HN in M2) 

LN 0.1 g/L 149:1 Used in M3 

ELN 0.01 g/L 1490:1 Used in M2 & M3 (labelled as 
LN in M2) 

Techniques 

This thesis incorporates two principal techniques: Raman spectroscopy and 

transcriptomics. Raman spectroscopy was employed to characterise the chemical 

structure of both unmodified and modified cellulose, while transcriptomic analysis 

was used to identify the genes and gene pathways involved in fungal modification 

and degradation of cellulose. 
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Raman spectroscopy 

Overview and rationale 

The ordered arrangement of cellulose fibrils was discovered in 1858 (Wilkie, 1961), 

observations later confirmed by early X-ray diffraction studies (French and Langan, 

2014). Early structural models required correction (chain packing, C6-OH 

orientation) and some features remained unresolved (Salem et al., 2023). Cellulose 

molecules assemble into crystalline fibrils whose crystal form, intermolecular 

interactions and higher-order organisation determine the material’s physical, 

chemical and mechanical properties and its surface behaviour (Nishiyama et al., 

2002). The crystallinity index (CI) is commonly used to quantify the relative 

crystalline fraction and to track changes after physicochemical or biological 

treatments (Agarwal et al., 2013). Although CI is usually interpreted using a two-

phase model (crystalline versus amorphous), this binary view is likely 

oversimplified. Crystallite size, the large proportion of surface molecules in small 

crystallites, and continuous variation in molecular order can all influence reactivity 

and structure (French and Langan, 2014; Salem et al., 2023). Native cellulose 

typically contains less-ordered material at fibre surfaces and between crystalline 

regions, and this heterogeneity together with intrinsic disorder in lignocellulosic 

biomass complicates CI estimation by methods such as XRD, solid-state NMR, 

Raman and FTIR (Agarwal et al., 2013; Agarwal, 2014). 

Raman spectroscopy is based on the principle of Raman scattering, where a 

molecule scatters light from a high-energy laser or source. Most of the scattered 

light remains at the same wavelength, but a small fraction (approximately 1 in 10-7 

photon) scatters at a distinct wavelength from the source (Fig. 6). This scattered 

light generates a spectrum that provides insights into the chemical structure, phase 

and polymorphy, crystallinity, and molecular interactions of the sample (Jones et 

al., 2019). Each peak within the spectrum corresponds to specific chemical bond 

vibrations, providing insights into the sample's chemical structure without the need 

for extensive sample preparation. Compared to XRD, Raman spectroscopy is 

predominantly a surface-sensitive technique with XRD probing the full cross-

section of cellulose fibrils, while Raman sampling only the near-surface region, with 

an effective penetration depth of approximately 2-6 µm (Everall et al., 2007). As a 

result, XRD provides more detailed information on structural spacing and lattice-

level changes within cellulose, whereas Raman spectroscopy is better suited for 

detecting chemical modifications at or near the surface (Stacey et al., 2021). 
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Figure 6. Conceptual overview of Raman scattering and its application to cellulose. 

Raman scattering occurs when the wavelength of a laser changes after interacting with a chemical 
bond The cellulose examined here is a carbon-based substrate made of glucose chains linked by 
glycosidic bonds, which assemble into microfibrils and then into cellulose fibers. The spectrum shown 
represents a Raman signal collected from a single carbon fiber. 

Methodological applications of spectroscopy in fungal decomposition research 

Raman spectroscopy is an established method for assessing the structural 

organisation of cellulose in both its native and modified states (Agarwal, 2022). 

These studies have offered valuable insights in vibrations that are informative about 

the higher structure and chemistry of cellulose (Wiley and Atalla, 1987). Existing 

work has predominantly addressed physical and chemical alterations, with a 

particular focus on crystallinity. However, analysis of cellulose oxidation using 

Raman spectroscopy is largely unexplored (Agarwal et al., 2010; Agarwal, 2019; 

Floudas et al., 2020). Fungal modification of crystalline cellulose has been 

investigated only once, and that study examined a restricted spectral window, 

leaving most Raman-active structural changes unassessed (Floudas et al., 2020). 

Raman analysis of modified cellulose is complicated by multiple vibrational modes 

responding at once to changes in bonding, conformation, and supramolecular 

structure. In addition, the intensity of several cellulose bands is strongly influenced 

by fibril orientation relative to the laser, making it difficult to separate orientation 

effects from chemical or structural modifications (Wiley and Atalla, 1987). 



36 

Analyses involving fungal material introduce further complications with organic 

compounds contributing substantial autofluorescence (Cordero et al., 2018). Fungal 

pigments and extracellular enzymes can produce Raman bands that overlap those of 

cellulose (Lu et al., 2018), thereby reducing spectral differentiation and making 

analysis complicated. Along with this, higher acquisition time make measurements 

time consuming. 

Data acquisition and analysis 

Raman spectrometer with green laser with a wavelength of 532nm was used with 

measurements done in six spectral regions (60-250 cm-1, 250-600 cm-1, 820-945 cm-

1, 945-1225 cm-1, 1225-1495 cm-1, and 2800-3600 cm-1). The acquisition time (time 

of exposure) was 7 seconds with accumulation (total spectra) also 7. All spectra, 

after measurements, were baseline corrected and normalised (vector) using Quasar 

(Orange spectroscopy) (Toplak et al., 2021). The iPeak script in MATLAB 

(O’haver, 1991) was used for peak identification, and OCTAVVS (Troein et al., 

2020) was employed to integrate spectral files from multiple experimental 

conditions into a unified dataset for downstream analysis. R Statistical Software in 

R studio was used for creating reference libraries (Manuscript 1) and visualisation. 

Peak fitting, PCA and machine learning algorithms (Random Forest, PLS) were also 

widgets used from Quasar (Manuscript 3).  

Transcriptomics 

Overview and rationale 

Transcriptomics measures gene expression in a sample at a defined time point. 

Because transcriptional changes frequently represent the earliest molecular 

responses to environmental or physiological cues, transcriptome profiling provides 

a direct view of how organisms control metabolic pathways, stress responses, and 

developmental processes (Kittleson et al., 2009). In microbial research, 

transcriptomics is particularly suited to identify genes involved in substrate 

degradation, nutrient acquisition, and ecological specialisation (Plunk et al., 2022). 

Comparing expression profiles across conditions allows detection of coordinated 

gene responses, inference of functional pathways, and formulation of hypotheses 

about underlying regulatory mechanisms (Kittleson et al., 2009). Together, these 

attributes make transcriptomics a powerful method for characterising the molecular 

basis of behaviour and responses to external stimuli. Transcriptomics has also 

become a key tool for dissecting the molecular mechanisms of fungal wood decay, 

facilitating identification of genes, and regulatory networks involved in breakdown 

of wood (Zhang et al., 2019; Min et al., 2023). 



37 

Methodological applications of spectroscopy in fungal decomposition research 

Transcriptomic studies show that wood-decaying fungi use fundamentally different 

strategies for cellulose degradation, with major differences between white-rot and 

brown-rot species (Presley et al., 2018; Zhang et al., 2019). White-rot fungi, for 

example Phanerochaete chrysosporium, Dichomitus squalens, Phlebia radiata and 

Schizophyllum commune, employ a broad hydrolytic strategy using diverse 

glycoside hydrolases including cellobiohydrolases (GH6, GH7), β-glucosidases 

(GH1, GH3, GH9, GH30), endoglucanases (GH5, GH12, GH45 etc.) and AA9 lytic 

polysaccharide monooxygenases (LPMOs) (Martinez et al., 2009; Wymelenberg et 

al., 2010; Gaskell et al., 2016; Kuuskeri et al., 2016). These enzymes act 

synergistically to target both cellulose and lignin. By contrast, brown-rot fungi such 

as Postia placenta, Fomitopsis pinicola and Wolfiporia cocos rely mainly on 

oxidative mechanisms, notably Fenton chemistry, and show upregulation of genes 

for iron acquisition, redox cycling, and peroxide generation while expressing 

endoglucanases (Martinez et al., 2009; Wymelenberg et al., 2010; Gaskell et al., 

2016; Shah et al., 2018). The enzymatic toolkit for cellulose degradation spans 

multiple CAZyme families together with auxiliary enzymes such as AA9 LPMOs, 

cellobiose dehydrogenases (CDH), and other oxidoreductases Transcriptomic data 

indicate that AA9 LPMO expression differs markedly among brown-rot fungi, with 

species showing variable levels and patterns of induction (Umezawa et al., 2020). 

These enzymes are often co-expressed with uncharacterised secreted proteins, 

implying complex interactions that enhance degradation efficiency. Gene 

expression is coordinated by regulatory networks involving multiple, 

interdependent genes and transcription factors. These factors integrate 

environmental signals to control expression of several CAZYmes including LPMOs 

(Marian et al., 2022). The substantial investment in CAZymes production 

underscores their importance in nitrogen-limited wood substrates, however, 

transcriptomic approaches have not been applied yet to examine how wood-

decaying fungi respond to nitrogen availability. 

Methodologically, high-throughput RNA-seq enable genome-wide profiling of 

fungal expression during wood decomposition. Integrating transcriptomic and 

secretomic data has been especially informative for revealing enzyme and 

regulatory coordination (Martinez et al., 2009; Presley et al., 2018), although purity 

of extracted RNA is decreased with recalcitrant wood substrates. Despite progress, 

many upregulated genes, particularly low-abundance CAZymes and unknown 

secreted proteins, lack functional characterisation despite evidence for specialised 

roles in substrate specificity and enzyme interactions. The regulatory networks 

controlling genes for crystalline cellulose degradation remain incomplete, and 

current studies using either wood or Avicel (chemically created crystalline 

cellulose) in liquid cultures may not fully capture fungal strategies for attacking 
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native crystalline cellulose or the complexity of natural wood decay with nitrogen 

affecting the fungal responses (Fenn et al., 1981).  

Data acquisition and analysis 

 

 

Figure 7. Workflow for the transcriptomics experiment. 

Raw counts were obtained from BGI Genomics, and kallisto was used to generate transcript 
abundances through pseudoalignment to the reference genome. For FD-574SV (Stereaceae), no 
reference genome was available, so the genome of Stereum hirsutum was used instead. Voom + 
limma was applied to evaluate the independent effects of nitrogen and time, while DESeq2 was used to 
generate contrasts against the control (glucose) samples. Orthologs identified by OrthoFinder were 
used to determine conserved orthologs across all fungi as well as conserved pathways associated with 
each ecological group. 

 

Transcriptomics was performed to check the response of fungi with different 

ecologies on how they approach crystalline cellulose. Eight species of 

basidiomycetes were used (Manuscript 2), and RNA was extracted using RNeasy 

Plant Mini Kit from Qiagen and extracted RNA was sequenced at BGI genomics. 

Kallisto was used to quantify transcript abundances from cDNA libraries obtained 

from JGI (FD-574SV, cDNA library of Stereum hirsutum was used, which is one of 

most closely related sequenced species to the strain we used in the study) (Fig. 7). 

The resulting abundance/count matrices were carried forward into two 

complementary analysis paths. Voom+limma modelled the effects of nitrogen and 
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time across all samples to estimate the proportion of genes significantly regulated 

by these factors, providing a multi-factor view of treatment effects. DESeq2 was 

run separately for each species; PCA was used to visualise overall species responses, 

and gene-level log-fold changes (LFC) and their standard errors (LFCse) were 

extracted for pathway-level aggregation. Gene LFCs were aggregated into pathway 

scores as weighted mean LFCs, and Stouffer’s method was applied to combine 

directional evidence so that both magnitude and regulation were preserved at the 

pathway level. An ortholog-centric comparative analysis restricted to genes present 

in decay groups was used to identify conserved pathway responses and compare 

how the same genes and pathways respond across white-rot and brown-rot fungi. 

Orthologous CAZymes and other cellulose-decomposition related genes were 

examined for their regulation and group patterns. Finally, for each fungus a non-

orthologous top 25 upregulated gene list was compiled to capture species-specific 

strong responders. 
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Main findings 

In this section, I present results from the three chapters, integrating data from 

spectroscopy and transcriptomics. This thesis aimed to determine whether fungal 

modification of cellulose can be detected, classified, and biologically interpreted 

using Raman spectroscopy, and whether transcriptomic data can explain the 

observed spectroscopic patterns. This section first summaries insights from a 

controlled subset of species, then evaluates their generalisation across a broader 

phylogenetic range, and finally integrates transcriptomic evidence to interpret 

spectroscopic signals. 

Cellulose modification by chemical treatments  

To determine whether Raman spectroscopy can capture biologically meaningful 

modifications of crystalline cellulose, I first established a chemically defined 

reference framework against which fungal-induced changes could be interpreted. 

Raman spectroscopy detects molecular vibrations within its fingerprint region (250-

1500 cm-1), which contains numerous signals associated with cellulose-specific 

chemical bonds. Structural modifications of cellulose have previously been 

examined in this region to identify characteristic peaks that distinguish cellulose 

from other polysaccharides (Agarwal, 2019). However, such modifications are 

typically induced by harsh chemical treatments, such as strong alkali or acid 

exposure, and are most often applied during cellulose isolation from wood rather 

than used as analytical references. In this study, these chemical perturbations were 

instead applied to generate controlled modification states of cellulose. 

Crystalline cellulose was treated with sodium hydroxide to induce a reduction in 

crystallinity and with TEMPO to selectively oxidise the C6-hydroxyl group of 

glucose units. TEMPO oxidation has been widely used to produce oxidised cellulose 

nanofibers, and its reported inability to substantially alter cellulose crystallinity 

made it particularly suitable for disentangling oxidation effects from 

amorphogenesis. Together, these treatments provided two chemical modification 

states. Raman measurements of biologically colonised cellulose are strongly 

influenced by autofluorescence originating from fungal pigments and other 

biological compounds, as well as by orientation effects that alter peak intensities 

depending on fiber alignment relative to the laser. 
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Figure 8. Raman spectra of unmodified cellulose with peak associated with amorphogenesis and 
oxidation highlighted. 

The plot shows Raman spectra separated into six different regions. The average spectrum of 
crystalline cellulose (control, n=12) is shown in blue. Wavenumbers were separated into three 
datasets: A*, Amorphogenesis-specific wavenumbers (unique for the A3 library, indicated in green); O*, 
Oxidation-specific (unique for the O3 library, indicated in blue); and C*, Common wavenumbers that 
are present in both A3 and O3 (orange). 
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To minimise these sources of variability, spectra were not recorded across a single 

continuous range. Instead, measurements were collected from six discrete spectral 

regions selected specifically for their association with cellulose structure. This 

approach reduced background interference while retaining chemically informative 

signals. 

Comparisons between chemically modified cellulose (oxidised and amorphous) and 

unmodified crystalline cellulose enabled the identification of wavenumbers 

associated with these specific structural changes (Fig. 8). Amorphogenesis and 

oxidation-related spectral variation could each be captured by a small subset of 23 

wavenumbers, with 11 shared between the two, indicating partial overlap in their 

spectral signatures. Out of these 35 peaks, 32 have previously been attributed to 

cellulose structure (Table 4) with oxidation of cellulose not studied with Raman 

spectroscopy before. While many of these peaks have been individually reported, 

their coordinated response to controlled oxidation and amorphogenesis, and their 

combined use as a reduced and functionally interpretable spectral feature set, had 

not been systematically evaluated. This analysis therefore established a chemically 

grounded spectroscopic phenotype of cellulose modification that could be used to 

investigate fungal decay. 

Table 4. Peaks in the Raman spectra of cellulose identified to be associated with amorphogenesis 
and oxidation. 

The wavenumbers were grouped into three groups: A*, Amorphogenesis-specific (unique for the A3 
library); O*, Oxidation-specific (unique for the O3 library); and C*, Common to both A3 and O3.  Shown 
are proposed vibrations and information on peaks that have previously been identified to be affected by 
chemical treatments of crystalline cellulose or been assigned in Raman spectra of cellulose. Peaks 
without references suggest novel peaks assignment to oxidised cellulose. 

Peaks (wavenumbers) Vibrations Chemical 
correlation 

References 

A* (Amorphogenesis)    

74 cm-1 Crystal lattice mode Correlated to 
Amorphogenesis 

Agarwal et al., 2018 

216 cm-1  Correlated to 
Amorphogenesis 

Agarwal et al., 2014 

399 cm-1   Agarwal et al., 2014 

418 cm-1  Correlated to 
Amorphogenesis 

Agarwal et al., 2014 

457 cm-1 (CH), ξ; (CH2), ρ  Atalla et al., 1987 

489 cm-1   Agarwal et al., 1997 

575 cm-1  Correlated to 
Amorphogenesis 

Agarwal et al., 2014 

1095 cm-1 C-C and C-O, ν; (COC) 
glycosidic asymmetric, ν 

Correlated to 
Amorphogenesis 

Atalla et al., 1987 

1265 cm-1  Correlated to 
Amorphogenesis 

Agarwal et al., 2021 

1279 cm-1   Atalla et al., 1987 

3294 cm-1 (OH), ν  Atalla et al., 1987 
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3342 cm-1 (OH), ν  Atalla et al., 1987 

 

O* (Oxidation)    

137 cm-1    

147 cm-1   Agarwal et al., 2018 

195 cm-1  Correlated to 
Amorphogenesis 

Agarwal et al., 2010 

347 cm-1 Heavy atom, ν  Manciu et al., 2014 

536 cm-1    

557 cm-1    

565 cm-1 (COC) ring deformation  Agarwal et al., 2014 

898 cm-1 (CH2), ρ  Agarwal et al., 2021 

909 cm-1 HCC and HCO, β; (COC) 
in-plane symmetric, ν 

 Agarwal et al., 2014 

990 cm-1   Agarwal et al., 2014 

1153 cm-1 CC and CO ring 
asymmetric, ν 

 Atalla et al., 1987 

1381 cm-1 HCC, HCO and HOC, β; 
(CH2), δ 

 Atalla et al., 1987 

 

C* (Common)    

90 cm-1 Crystal lattice mode Correlated to 
Amorphogenesis 

Agarwal et al., 2018 

168 cm-1  Correlated to 
Amorphogenesis 

Agarwal et al., 2022 

328 cm-1 Heavy atom, β  Atalla et al., 1987 

378 cm-1 (CCC) ring, δ  Manciu et al., 2014 

436 cm-1 (COC), ξ; (OH), γ  Manciu et al., 2014 

998 cm-1   Atalla et al., 1987 

1237 cm-1   Agarwal et al., 2014 

1294 cm-1 HCC and HCO, ν; CH and 
ξ OHO, ξ 

 Atalla et al., 1987 

1339 cm-1   Atalla et al., 1987 

1460 cm-1 HCH and HOC, β; (CH2), δ Correlated to 
Amorphogenesis 

Schenzel et al., 
2005 

1481 cm-1 HCH and HOC, β; (CH2), δ Correlated to 
Amorphogenesis 

Schenzel et al., 
2005 

Spectroscopic phenotype of decay type 

Having established a spectroscopic phenotype of cellulose modification, the next 

step was to determine which types of structural change this phenotype captures most 

strongly and how this sensitivity relates to fungal decay strategies. Analysis of the 

reduced Raman feature set showed that oxidation-associated wavenumbers 

contributed most strongly to the separation between fungal decay types (Fig. 9A). 

When spectra were examined using subsets of features linked to specific 
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modification modes, oxidation-related signals consistently provided statistically 

significant difference between white-rot and brown-rot fungi (Fig. 9B). In contrast, 

wavenumbers associated primarily with amorphogenesis, or loss of crystallinity 

displayed a more limited ability to discriminate between decay types, despite their 

clear response in chemically treated reference samples. This difference in 

discriminatory power indicates that the fungal decomposition of cellulose is not 

dominated by generalised disruption of cellulose structure. Instead, it reflects 

chemical modifications associated with oxidative processes. Although both white-

rot and brown-rot fungi alter cellulose, the oxidation-related changes they produce 

differ sufficiently to generate distinct spectral signatures, whereas crystallinity-

related changes alone were more variable and less decay-type specific under the 

conditions examined. 

 

 

Figure 9. Raman spectroscopy of fungal-decomposed cellulose from manuscript 1. 

(A) PCA plot of reduced spectral data from Raman spectra colonized by four different fungal species 
and untreated cellulose. In total, 35 wavenumbers in the A*, O*, and C* libraries were analyzed. Each 
point represents data from one sample, with each treatment carried out with 12 replicates. The cross 
indicates the standard deviation across PC1 and PC2 scores. (B) Contribution of wavenumbers from 
the A*, O*, and C* libraries for separating spectra from the four fungal species. Euclidean distances 
between fungal-treated and non-treated cellulose samples were calculated using the scores from PC1 
and PC2, and the contribution of a given wavelength to the separation of the samples was estimated by 
recording the change in distance before and after removing the wavelength from the distance analysis. 
Values are normalized to the value representing the largest decrease in distance. Error bars represent 
standard deviation across replicates (n=12). (C) Pairwise comparison of spectral data from fungi-
decomposed cellulose. In the heatmap, red indicates no significant differences (p-value ≥ 0.05), while 
blue indicates significant differences (p-value < 0.05). WR, White-rot fungi; BR, Brown-rot fungi; 

The behaviour of the strain with an uncertain decay type further reinforced this 

pattern. Across analyses, cellulose modified by this Stereaceae isolate clustered 

more closely with brown-rot fungi than with white-rot fungi, particularly when 

oxidation-associated features were emphasised. This clustering was consistent 

despite the taxonomic placement of the strain and the presence of genes typically 

associated with white-rot fungi, which we detected in Manuscript 2, indicating that 
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the spectroscopic phenotype reflects the chemical outcome of cellulose modification 

rather than decay strategy inferred from taxonomy or enzymatic potential alone. 

Taken together, these results demonstrate that the Raman-based phenotype of decay 

type is especially sensitive to oxidation-driven modification of cellulose and 

captures a chemical axis of decay that is partly independent of traditional 

classifications based on genomic data. This sensitivity explains the strong separation 

observed in controlled comparisons, while also suggesting that intermediate or 

ambiguous phenotypes may emerge when a broader range of fungal strategies is 

considered. 

Scaling the spectroscopic subset 

Scaling the spectroscopic analysis to a broader set of fungal species revealed clear 

limitations of peak-based multivariate models for separating decay strategies. While 

chemically informed Raman features and PLS-based models performed well in a 

reduced species subset, their classification accuracy declined as additional taxa were 

included. 

 

 
Figure 10. Principal component analysis (PCA) of CAZY enzyme profiles associated with cellulose 
degradation for selected fungal species used in Manuscript 3. 

All CAZy data were obtained from MycoCosm (Grigoriev et al., 2014). The control represents 
unmodified cellulose. An asterisk (*) indicates that the data correspond to a different strain or a closely 
related species, rather than the exact strain used in this study. 
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Notably, oxidation-associated peaks that contributed to separation in smaller 

datasets no longer discriminated between white-rot and brown-rot fungi when the 

analysis was extended across greater phylogenetic diversity. The effect of expanded 

taxonomic coverage is reflected in the CAZyme profiles (Fig. 10), which show 

substantial heterogeneity in carbohydrate-active enzyme repertoires both within and 

across decay categories. Species assigned to the same decay type often differed 

markedly in their complements of glycoside hydrolases, auxiliary activity enzymes, 

and oxidative systems, reflecting divergent evolutionary histories and ecological 

specializations. This enzymatic diversity coincides with the reduced performance of 

peak-based Raman models, suggesting that oxidation-related spectral features 

informative in limited species sets are not consistently associated with decay type 

at larger biological scales. 

 

 

Figure. 11. Direction versus magnitude of cellulose modification across decay strategies. 

Scatter plot showing mean P_WR_like (position along the WR–BR axis) versus mean latent-space 
distance to control (overall magnitude of modification) for each decay type under different nitrogen and 
time conditions. This figure demonstrates that similarity to WR-like spectral patterns can occur 
independently of the overall extent of divergence from unmodified cellulose 

Consistent with this observation, PLS-based classification models showed reduced 

accuracy when applied to the expanded dataset, indicating that a limited number of 

predefined Raman features was insufficient to capture decay-related variation across 

diverse taxa (Fig. 11). This study emphasizes that comprehensive sampling of 

species within decay categories is essential for understanding decay diversity, in 

contrast to approaches based on few or model organisms. In contrast, autoencoder-
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based analysis of the full Raman spectra retained strong discriminative performance 

despite increased taxonomic and functional complexity. By incorporating 

distributed spectral information rather than relying on selected peaks, the 

autoencoder separated decay strategies across species drawn from multiple clades 

(Fig. 11). Soft rot (SR) or uncertain wood decayer (UWD) occupied intermediate 

positions in latent space rather than clustering tightly with either white-rot or brown-

rot fungi. Because soft-rot and unknown wood decay fungi were each represented 

by one species, conclusions for these groups should be interpreted cautiously. These 

placements occurred despite the presence of oxidation-associated Raman features, 

indicating that such features alone were insufficient for decay-type separation when 

broader biological diversity was considered. 

Atypical and intermediate species reveal decay strategies 

as a continuum 

To examine how non-canonical decay strategies relate to canonical white-rot (WR) 

and brown-rot (BR) fungi, we projected Raman spectra from litter decomposers 

(LD), a soft-rot (SR) fungus, and an unknown wood decay (UWD) fungus onto a 

WR-BR reference space learned using a semi-supervised autoencoder and a 

regression model applied to the latent representation. Both approaches yielded 

broadly consistent organization of spectra along a continuous chemical axis but 

differed in how strongly non-canonical fungi aligned with WR-like organization. 

The SSAE-derived probabilities captured similarity to learned spectral structure and 

tended to place some non-canonical fungi closer to WR-like regions (Fig. 12), 

whereas the regression-derived WR-likeness provided a more conservative and 

stable ordering along the dominant WR-BR dimension (Fig. 7 from manuscript 3). 

Importantly, both models were trained using spectra from all nitrogen and time 

conditions, meaning that nitrogen and time effects are incorporated into the learned 

representation; as a result, variation associated with nitrogen and time is attenuated 

in the projections and should be interpreted as relative modulation rather than as an 

absence of nitrogen and time influence. 

When WR-likeness is interpreted together with latent distance to control, distinct 

patterns emerge for LD, SR, and UWD (Figure 8, Manuscript 3). Litter decomposers 

consistently occupied WR-like positions along the chemical axis, but showed 

substantial divergence from the unmodified control, indicating extensive cellulose 

modification that aligns with WR-like organization. Soft-rot fungus (Trichoderma) 

occupied an intermediate WR-likeness range and showed moderate divergence from 

control, consistent with partial but constrained cellulose modification. In contrast, 

the UWD fungus (S. commune) exhibited among the highest WR-likeness values 

while also showing the largest distances to control, indicating strong cellulose 
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restructuring that nevertheless does not fully overlap with canonical WR behaviour. 

Species-level analyses further revealed that non-canonical fungi differ markedly in 

their sensitivity to nitrogen and time: some LD species showed strong condition-

dependent shifts in WR-likeness and modification magnitude, while SR remained 

relatively stable. UWD showed substantial nitrogen and time dependent variation in 

both WR-likeness and divergence from control. Together, these results demonstrate 

that WR-likeness and extent of modification capture complementary aspects of 

decay behaviour and that non-canonical strategies cannot be reduced to a single 

intermediate state. 

 

 

Figure 12. Decay-type distributions of autoencoder-derived (SSAE) WR-likeness scores for both 
time points. 

Violin plots show the distribution of per-spectrum probabilistic white-rot–likeness scores (P_WR_like) 
generated by the semi-supervised autoencoder for each decay type. Distributions are shown 
separately for nitrogen conditions (color-coded) and faceted by incubation time. Embedded boxplots 
indicate the median and interquartile range, with whiskers representing the data spread. Each violin 
summarizes all individual spectra within a decay type, highlighting both within- and between-group 
variability. P_WR_like values range from 0 (brown-rot–like) to 1 (white-rot–like), allowing comparison of 
decay-related chemical phenotypes across nutrient and temporal conditions. 

Overall, these findings support a view of fungal cellulose modification as a 

structured continuum rather than a set of discrete decay classes. WR-likeness 

reflects similarity in chemical organization, while distance to control captures the 

magnitude of structural change, and both are required to interpret decay outcomes 

meaningfully. Differences between SSAE-derived and regression-derived 

projections highlight that WR-likeness is not a uniquely defined quantity but 
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depends on whether similarity is assessed relative to learned spectral structure or 

constrained along a dominant axis. At the same time, the results should not be 

interpreted as direct evidence for specific biochemical mechanisms or enzymatic 

pathways, nor as proof that nitrogen and time are unimportant; rather, they indicate 

that nitrogen and time shape cellulose modification within decay-specific chemical 

landscapes that remain detectable even after integrating spectra across conditions. 

Time and nitrogen may alter the outcome of 

decomposition of cellulose 

The interaction between nitrogen availability and temporal cellulose modification 

reveals pronounced decay-type dependent patterns in both the extent and mode of 

chemical change. Comparisons between 2-week and 4-week incubations showed 

strong nitrogen and decay-type specific differences in how cellulose chemistry 

evolved over time. White-rot fungi exhibited the largest number of significantly 

altered Raman wavenumbers across nitrogen conditions, indicating sustained and 

chemically diverse interaction with cellulose throughout the experimental period 

(Manuscript 3, Tables S1-S3). These temporal changes persisted even under 

nitrogen limitation, demonstrating continued metabolic engagement with the 

substrate (Wang et al., 2014; Agarwal et al., 2018). Transcriptomic analyses further 

indicate that carbon-driven responses to cellulose are broadly conserved across 

fungi, whereas nitrogen-dependent regulation is more pronounced in white-rot fungi 

than in brown-rot fungi. However, nitrogen availability strongly influenced which 

chemical modification modes became detectable over time, rather than uniformly 

affecting the overall magnitude of cellulose modification. Together, these results 

suggest that nitrogen availability in white-rot fungi primarily modulates how 

cellulose modification is executed over time, rather than whether modification 

occurs.  

Autoencoder-based classification identified the low-frequency Raman region below 

120 cm⁻¹ as particularly informative for distinguishing white-rot and brown-rot 

fungi (see Manuscript 3). This spectral region is commonly associated with 

collective lattice vibrations and long-range structural organization in crystalline 

cellulose, indicating that decay-related differences are expressed at the level of 

cellulose packing and supramolecular dynamics rather than localized chemical 

bonds. In brown-rot fungi, the band at 74 cm-1 showed a pronounced increase in 

intensity between two and four weeks, yielding strong positive contributions to the 

temporal difference spectra (Fig. 13). Increase in intensity of this peak has been 

correlated to crystallinity loss in cellulose (Agarwal et al., 2018; Agarwal, 2022), 

thus BR reduces cellulose crystallinity independent of nitrogen. In contrast, white-

rot fungi showed no strong positive temporal association with the 74 cm⁻¹ feature 



50 

under high, moderate, or low nitrogen, instead exhibiting small but consistent 

decreases over time, potentially reflecting preferential removal of less ordered 

cellulose regions. Under extremely low nitrogen, however, temporal changes at 74 

cm⁻¹ in white-rot fungi became positive and approached the magnitude observed in 

brown-rot fungi. This shift toward crystallinity loss under severe nitrogen limitation 

may reflect altered enzymatic regulation in white-rot fungi, whose decay strategy 

relies heavily on extracellular enzymatic systems that are energetically and 

nutritionally demanding. In this context, increased lattice disruption under extreme 

nitrogen stress may signal a shift toward a different mode of cellulose modification. 

The attenuated and condition-dependent response observed in white-rot fungi 

contrasts with the consistently strong temporal signal in brown-rot fungi and 

supports a model in which nitrogen availability selectively constrains how white-rot 

fungi deploy their enzymatic repertoire during cellulose decomposition. 

 

 

Figure 13. Species-specific time effects on Raman spectra under different nitrogen conditions. 

For each nitrogen condition (HN, MN, LN, ELN), only wavenumbers showing a significant difference 
between 2-week and 4-week spectra (FDR-corrected within species) are plotted. The y-axis represents 
the change in intensity over time (Δ4WKS-2WKS), with positive values indicating increases and 
negative values indicating decreases. Points are colored by decay type. Vertical dashed lines mark 
literature-reported wavenumbers, classified into A, C, and O groups and colored accordingly. The solid 
horizontal line denotes zero change. Together, the panels illustrate how the extent and direction of 
time-dependent spectral changes vary with nitrogen availability and decay strategy. 

Guided by the strong contribution of low-frequency Raman modes, we examined 

nitrogen and temporal effects at the 74 cm⁻¹ feature for each species.  Species-level 

analysis revealed substantial variability within each decay type (Fig. 14). Among 

brown-rot fungi, temporal changes differed in both magnitude and direction across 
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species, suggesting that lattice disruption is a shared outcome but is achieved 

through species-specific trajectories. White-rot fungi likewise exhibited 

heterogeneous responses, with the strongest temporal effects confined to nitrogen-

limited conditions. Together, these results indicate that changes in cellulose lattice 

dynamics reflect species-level regulation superimposed on broader decay-type 

patterns. 

 

 

Figure 14. Direction, strength, and smoothness of intensity change between 2 and 4 weeks for 
peak at 74cm-1 across fungal species, decay types, and nitrogen conditions. 

Metrics were calculated as the difference in integrated Raman signal between 4 weeks and 2 weeks (Δ 
= 4WKS - 2WKS) using 45 replicate measurements per species. Direction indicates whether the net 
change over time was negative or positive, strength represents the absolute magnitude of this change, 
and smoothness reflects the variability of replicate responses within each species and nitrogen 
combination. 

Changes at 74 cm⁻¹ are therefore best interpreted as reflecting differences in the 

progression and regulation of cellulose lattice reorganization rather than simple 

increases or decreases in chemical modification. The prominence of this feature 

across decay types, combined with its sensitivity to nitrogen availability and time, 

supports the view that modification of cellulose supramolecular structure is a 

common target of fungal decay, implemented through distinct regulatory and kinetic 

trajectories. 
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Carbon effect is universal, nitrogen effect is decay-

specific in saprotrophic fungal transcriptome 

 

 

Figure 15.Principal component analysis (PCA) of variance-stabilized counts after performing 
DESeq2 for four species: Bjerkandera adusta (WR), Trametes versicolor (WR), Fomitopsis 
pinicola (BR) and Gloeophyllum trabeum. 

Each point represents a sample. Colors indicate nitrogen treatment (Low and High). Labels indicate the 
glucose control (CT) and sampling time (2WK, 4WK, and 6WK). Axes represent the first two principal 
components that harbor the largest source of variance in the dataset 

Cotton pellets containing highly crystalline cellulose were colonised by three white-

rot fungi (B. adusta/BAD, T. versicolor/TVE and P. crispa/PCR), three brown-rot 

fungi (C. puteana/CPU, G. trabeum/GTR and F. pinicola/FPI), a litter decomposer 

(C. angulatus/CAN) and a Stereaceae isolate (FD-574SV) with an uncertain type of 

wood decay (GLO) Transcriptomic comparisons revealed a clear asymmetry 

between carbon- and nitrogen-driven regulation across fungal taxa. Transitioning 

from glucose to crystalline cellulose elicited a strong and broadly conserved 

transcriptional response in all fungi examined, independent of decay strategy (Fig. 

15). This carbon-driven response involved widespread regulation of genes, 

underscoring the shared regulatory demands imposed by cellulose recognition and 

utilization across fungal lifestyles. In contrast, transcriptional responses to nitrogen 

availability were markedly more variable. While some nitrogen-dependent 

modulation was observed across species, pronounced regulation was largely 

restricted to white-rot fungi and CPU (BR), whereas the two brown-rot (GTR, FPI) 

and wood decayer with uncertain decay type (GLO) showed comparatively 
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constrained nitrogen responses at the transcriptome level. This divergence indicates 

that carbon source functions as a primary and conserved driver of fungal gene 

regulation, whereas nitrogen availability acts as a secondary modulator whose 

influence depends on decay strategy and ecology. The universality of the carbon 

response likely reflects the fundamental metabolic reprogramming required to 

engage crystalline cellulose, regardless of downstream decay mechanisms. In 

contrast, the variable nitrogen response suggests that nitrogen availability shapes 

how fungi deploy their decay machinery rather than determining whether it is 

activated. Stronger nitrogen sensitivity in white-rot and atypical brown-rot fungi 

may reflect closer dependence between nitrogen limitation and enzymatic modes of 

substrate modification, while the two brown-rot (GTR, FPI) and wood decayer with 

uncertain decay type (GLO) may buffer nitrogen effects through non-conventional 

decay pathways. Together, these patterns support a model in which carbon 

availability establishes a common transcriptional baseline for cellulose interaction, 

while nitrogen availability fine-tunes strategy-specific regulatory programs that 

influence the timing, intensity, and mode of cellulose modification. 

 

 

Figure 16.Principal component analysis (PCA) of variance-stabilized counts after performing 
DESeq2 for two species: Coprinellus angulatus (LD), and Coniophora puteana (BR). 

Each point represents a sample. Colors indicate nitrogen treatment (Low and High). Labels indicate the 
glucose control (CT) and sampling time (2WK, 4WK, and 6WK). Axes represent the first two principal 
components that harbor the largest source of variance in the dataset 

The brown-rot fungi CPU corresponds with transcriptomic observations of strong 

nitrogen-responsive regulation (Fig. 16) in contrast to the other two brown-rots 

(Fig.15). Genomic data puts CPU as atypical along with other brown-rot Boletales 
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due to its retention of white-rot associated cellulolytic enzymes (e.g., GH6, GH7, 

increased copy number of AA9) (Eastwood et al., 2011; Floudas et al., 2012; Kohler 

et al., 2015). Litter decomposers, like WR are also affected by nitrogen availability 

signalling significant transcriptional regulation. CAN also keeps a high repertoire 

of enzymes for degrading lignocellulose with AA9 gene copies. (Floudas 2020). 

Orthologous genes upregulated during cellulose 

decomposition by fungi 

Although carbon source dominated global transcriptomic organization, decay 

strategies were associated with distinct expression patterns at the level of functional 

pathways and orthologous gene groups. These decay-related signatures were not 

evident as broad transcriptomic separation but became apparent when expression 

was examined within biologically relevant subsets of genes (Manuscript 2). 

Pathway-level analyses revealed consistent differences between white-rot and 

brown-rot fungi in the regulation of carbohydrate-active enzymes, oxidative 

metabolism, and associated transport functions. White-rot fungi showed 

coordinated expression of pathways linked to enzymatic cellulose degradation, 

whereas brown-rot fungi displayed a stronger emphasis on oxidative and redox-

associated pathways with more limited induction of hydrolytic systems (Manuscript 

2). These patterns were maintained across nitrogen contrasts, indicating that they 

reflect decay-related regulatory programs rather than nutrient-driven effects. 

Regulation of some orthologs was conserved (always upregulated) while other 

orthologs followed a decay type. 

Upregulated conserved core of orthogroup categories shared by white-

rot and brown-rot fungi 

Analysis of orthologs conserved across all six fungi identified a core transcriptional 

response that was consistently induced during growth on crystalline cellulose 

relative to glucose, independent of decay strategy. A shared suite of carbohydrate-

active enzymes, including endoglucanases (GH12, GH5-5, GH5-22) and β-

glucosidases (GH1, GH3), were upregulated at all sampled time points under both 

high and low-nitrogen conditions (Table 5). These genes have been shown in 

previous studies to be upregulated in white-rot (Couturier et al., 2015; Kuuskeri et 

al., 2016; Miyauchi et al., 2020; Hage et al., 2021) and brown-rot fungi (Presley et 

al., 2018; Zhang et al., 2019; Presley et al., 2020; Figueiredo et al., 2021). The 

persistence of this response in both white-rot and brown-rot fungi indicates that 

interaction with crystalline cellulose activates a conserved enzymatic baseline, even 

among decay strategies that differ substantially in their downstream modes of 
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substrate modification. This conserved cellulose-induced program was detected 

separately within each nitrogen condition, demonstrating its robustness to nitrogen 

availability. Although the core enzymatic composition remained stable, other 

orthologous groups were upregulated when cellulose utilization occurred under low-

nitrogen conditions. These included oxidoreductases, AA3 family enzymes, and 

expansin-like proteins, suggesting that nutrient context shapes how auxiliary 

processes are coordinated to facilitate substrate access or offset reduced enzymatic 

investment, rather than redefining the fundamental response to cellulose. Expansin-

related proteins have been shown to be “loosening” agents which increase the 

accessibility of cellulolytic enzymes (Cosgrove, 2000; Saloheimo et al., 2002; 

Arantes and Saddler, 2010). 

Collectively, these results support a model in which carbon source establishes a 

shared transcriptional framework for cellulose utilization across decay strategies, 

while nitrogen contrast modulates the coordination and relative emphasis of this 

framework. Despite their independent evolutionary histories and distinct decay 

phenotypes, white-rot and brown-rot fungi therefore converge on a common 

functional core for cellulose engagement, differing primarily in how this core is 

integrated with oxidative, structural, and transport-associated processes over time. 

Table 5. Conserved upregulated orthogroups categories across three white-rot and three brown-
rot fungi grown on cellulose when compared to glucose under high and low nitrogen contrasts. 

Orthogroup selection was based on their presence across both decay types, their differential expression 
patterns, and the annotation of the genes within orthogroups. Categories are orthogroups present and 
consistently upregulated in all six species for all three time points. Background colors: Yellow – 
CAZYmes, Red – Oxidoreductase activity, Blue – Transporter, Grey – Other. Annotation in bold indicates 
genes potentially involved in cellulose degradation 

High nitrogen contrast Low nitrogen contrast 

CE16 CE16 

GH1 β-glucosidase GH12 endoglucanase 

GH10 GH5-5 endoglucanase 

GH12 endoglucanase GH5-22 β-xylosidase / endoglucanase 

GH2 GH1 β-glucosidase 

GH3 β-glucosidase GH3 β-glucosidase 

GH3 β-glucosidase GH5-7 mannanase 

GH5-22 β-xylosidase / endoglucanase GH3 β-glucosidase 

GH5-5 endoglucanase Expansin GH45, endoglucanase-like 

GH5-7 GH2 

GH95 D-isomer specific 2-hydroxyacid 
dehydrogenase, catalytic region 

2OG-Fe(II) oxygenase AA3-3 methanol oxidase 

Aldo/keto reductase Oxidoreductase, N-terminal 

Cytochrome P450 Sugar transporter MFS-1 

Aldo/keto reductase MFS-1 

Sugar transporter MFS1 Sugar transporter 

MFS1  
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Decay type dependent upregulation of conserved orthogroup genes 

Orthogroup genes that were conserved in all taxa but upregulated in one of the decay 

types included GH16, and GH18 while for brown-rots, it was β-glucosidase. 

Expansin-related proteins were upregulated at both nitrogen conditions for BR fungi 

but only at low nitrogen for WR fungi. WR fungi showed consistent induction of 

orthogroups linked to polysaccharide remodeling, and cellular or cell-wall-

associated processes, including GH16 and GH18 families, and oxidoreductases, 

together with sustained expression of MFS transporters (Manuscript 2, Table 2 and 

3). This pattern suggests that white rot relies on coordinated regulation of enzymatic 

cellulose processing. In contrast, brown-rot fungi consistently upregulated a broader 

set of hemicellulose- and matrix-associated glycoside hydrolases, polysaccharide 

deacetylases, expansin-like proteins, and a wide range of oxidative and transport-

related genes (Manuscript 2, Table 2 and 3). This indicates that brown rot 

emphasizes matrix modification, oxidative chemistry, and transport during cellulose 

degradation. At low nitrogen contrast, WR fungi produced catalase, usually 

associated with antioxidant activity (Hansberg et al., 2012). BR fungi, on the other 

hand, produced a large set of oxidoreductases many of which have been poorly 

characterized in fungi, and which could be involved in processes related to oxidation 

of carbohydrates. This indicates that white-rot and brown-rot fungi are distinguished 

by distinct regulatory programs that control how conserved functions are deployed 

during cellulose degradation, providing a clear transcriptional basis for the 

differentiation of decay strategies. 

Upregulated decay type specific orthogroup categories 

Table 6. Conserved upregulated orthogroups categories across three white-rot but absent in 
three brown-rot fungi. Comparison was on cellulose when compared to glucose under high and 
low nitrogen contrasts. 

Orthogroup selection was based on their presence in WR but absent in BR, their differential expression 
patterns, and the annotation of the genes within orthogroups. Categories are orthogroups present and 
consistently upregulated in all three white-rot fungi for all three time points. Background colors: Yellow – 
CAZYmes, Red – Oxidoreductase activity, Blue – Transporter, Grey – Other. Annotation in bold indicates 
genes potentially involved in cellulose degradation 

High nitrogen contrast Low nitrogen contrast 

GH6-CBM1 GH6-CBM1 

AA9 AA9 

CBM1-GH27 CBM1-GH27 

AA9 AA9 

GH131 GH131 

CDH CDH 

 Cupredoxin 

 Sugar transporter, quinate transporter, 
supressed by sugar 
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Orthogroups that were both consistently upregulated during cellulose growth and 

present exclusively in one decay type provide another molecular distinction between 

white-rot and brown-rot fungi. White-rot fungi uniquely induced a set of cellulose-

directed oxidative and hydrolytic functions absent from brown-rot genomes, 

including AA9 LPMOs, CBM1-linked enzymes (GH6-CBM1 and CBM1-GH27), 

GH131, and cellobiose dehydrogenase (Table 6). The co-occurrence of AA9, 

CBM1-containing cellulases, and CDH supports a decay strategy centered on direct 

binding to crystalline cellulose and coordinated oxidative enhancement of 

enzymatic hydrolysis, with additional transport functions emerging under the low-

nitrogen cellulose versus glucose contrast. The genes detected here have been shown 

to be present in WR fungi (Floudas et al., 2012; Kohler et al., 2015) but absent in 

BR fungi (Floudas et al., 2012; Binder et al., 2013; Kohler et al., 2015). In contrast, 

brown-rot fungi uniquely upregulated orthogroups absent from white-rot genomes 

that are associated with matrix polysaccharide processing and redox metabolism, 

including GH43 and GH76, and, under low nitrogen, additional oxidative 

components such as cytochrome b-245 and aromatic-ring hydroxylase (Table 7). 

Because these orthogroups are absent from the alternative decay type, these patterns 

reflect true differences in metabolic capacity rather than regulatory variation, 

highlighting cellulose surface targeting and LPMO-centered oxidative hydrolysis as 

defining features of white rot, and matrix-focused modification and redox chemistry 

possibly representing features of brown rot. 

Table 7. Conserved upregulated orthogroups categories across three brown-rot but absent in 
three white-rot fungi. Comparison was on cellulose when compared to glucose under high and 
low nitrogen contrasts. 

Orthogroup selection was based on their presence in BR but absent in WR, their differential expression 
patterns, and the annotation of the genes within orthogroups. Categories are orthogroups present and 
consistently upregulated in all three brown-rot fungi for all three time points. Background colors: Yellow 
– CAZYmes, Red – Oxidoreductase activity. Annotation in bold indicates genes potentially involved in 
cellulose degradation 

High nitrogen contrast Low nitrogen contrast 

GH43 GH43 

GH76 GH76 

 Cytochrome b-245, heavy chain 

 Aromatic-ring hydroxylase 

Special cases of AA9 and GH45 genes involved in decomposition of 

cellulose by BR and WR fungi 

Across decay types, AA9 lytic polysaccharide monooxygenases were consistently 

upregulated, but their domain architecture clearly differentiated white-rot (WR) and 

brown-rot (BR) strategies. WR fungi showed the strongest enrichment of AA9 

genes and a pronounced association with CBM1 domains, consistent with direct 

binding to crystalline cellulose and localized oxidative cleavage. In contrast, BR 
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fungi predominantly upregulated AA9 variants lacking CBM1, suggesting a mode 

of action less dependent on direct cellulose binding and more closely integrated with 

broader oxidative processes. Litter-decomposer and unknown wood-decay fungus 

displayed intermediate patterns, with AA9 induction present in both groups but 

CBM1-linked forms largely confined to WR and litter decomposer. This distribution 

suggests that AA9 activity in UWD (GLO) may combine features of both decay 

strategies, while LD (CAN) shows WR-like characteristics when focusing on AA9 

genes. Together, these patterns indicate that CBM1 presence on AA9 enzymes 

serves as a functional marker distinguishing decay modes. Although AA9 

expression in BR fungi has been reported previously (Umezawa et al., 2020; 

Figueiredo et al., 2021), our data show that this pattern is consistent across lineages, 

while the functional role of CBM1-lacking AA9s remains unresolved. 

Another orthogroup showing contrasting WR and BR expression patterns in relation 

to nitrogen availability comprises expansin-related proteins (GH45). Expansins 

have been shown to alter cellulose structure and increase accessibility (Saloheimo 

et al., 2002; Jäger et al., 2011; Duan et al., 2018), but their role in wood-decaying 

fungi remains understudied. When integrating transcriptomic and spectroscopic 

data, it is inherently difficult to directly assign changes in spectral features to 

specific regulatory shifts in gene expression. Nevertheless, spectroscopic analyses 

revealed that loss of cellulose crystallinity is a consistent feature of BR decay, 

whereas in WR fungi it becomes evident only under extremely low nitrogen (ELN) 

conditions (Fig. 13). Expansins were constitutively upregulated in BR fungi but 

induced in WR fungi only under ELN conditions, which coincided with 

spectroscopic signatures of increased loss of crystallinity resembling those observed 

in BR fungi. This suggests a potential link between expansin expression and 

amorphogenesis in cellulose in WR under nitrogen limitation, although this 

relationship requires further experimental validation. From an evolutionary 

perspective, expansins may represent genes retained from WR ancestors but with 

altered regulation in BR fungi (Manuscript 2; Tables 2 and 3), contrasting with other 

cellulolytic genes such as GH6, which appear to have been lost during the transition 

to the BR decay mode. 
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Conclusions 

Taken together, this thesis demonstrates that fungal cellulose degradation is best 

understood by integrating chemically informed Raman spectroscopy with 

transcriptomic analyses. This combined approach reveals how chemical and 

structural modification of crystalline cellulose is affected by the interaction between 

enzymatic capacity, regulatory control, nitrogen availability, and time. The main 

conclusions are summarized below, distinguishing methodological advances from 

biological insights. 

1. Chemically anchored Raman spectroscopy enables detection of biologically 

meaningful cellulose modification (Manuscript 1) 

A key methodological outcome of this thesis is the demonstration that Raman 

spectroscopy can detect biologically relevant modification of crystalline cellulose 

when spectral analysis is anchored to chemically defined reference states. By 

applying controlled oxidation and amorphogenesis treatments, a reduced set of 

Raman wavenumbers was identified that reflect structural modification of cellulose 

rather than non-chemical biological variability. 

This approach moves beyond reliance on single crystallinity indices or broad 

spectral regions, showing that chemically informed feature selection improves both 

interpretation and robustness. Oxidation-associated features were consistently 

informative, whereas amorphogenesis- and crystallinity-associated features alone 

showed limited discriminatory power under biological conditions. Importantly, 

scaling this framework to a larger and more diverse species set revealed that 

oxidation-based separation weakens as biological heterogeneity increases. Rather 

than representing a methodological limitation, these results demonstrate that Raman 

spectroscopy captures chemical gradients rather than enforcing categorical 

classification, thereby establishing realistic expectations for its application in 

complex biological systems. 

2. Oxidation is a shared but differentially executed axis of cellulose modification 

(Manuscript 1 – Manuscript 3) 

This thesis demonstrates that oxidation is a common component of fungal cellulose 

modification rather than a defining feature of a single decay strategy. White-rot and 

brown-rot fungi are therefore not distinguished by the presence or absence of 
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oxidative mechanisms, but by how oxidative capacity is regulated (AA9), integrated 

with other enzymatic processes, and expressed at the chemical level. 

Oxidative processes give rise to partially overlapping chemical outcomes across 

taxa, indicating that decay strategies do not converge on discrete oxidation-defined 

states. Instead, oxidation functions as a unifying and at the same time differentiating 

axis along which decay strategies diverge through differences in regulatory control 

and functional integration. This perspective reinforces the idea that oxidation is a 

shared mechanism that structures variation in cellulose modification. 

3. Nitrogen availability modulates decay expression rather than decay identity 

(Manuscript 2, Manuscript 3) 

Nitrogen availability does not define fungal decay strategies but modulates how 

these strategies are expressed. Across brown-rot, cellulose modifications remained 

the same under different nitrogen conditions, while transcriptional regulation on 

cellulose didn’t vary with nitrogen limitation. For white-rots, nitrogen regulated 

their transcriptome while also the modifications on cellulose. The modifications 

became similar to brown-rot modifications as the nitrogen gets limited. 

Nitrogen therefore acts as a contextual regulator that influences the mode of 

cellulose degradation and redefining decay strategy. This finding underscores the 

flexibility of white-rot decay systems and highlights the importance of nitrogen in 

shaping decay expression and identity. 

4. Atypical species reveal decay strategies as a continuum shaped by regulation, 

capacity, and ecology (Manuscript 1 - Manuscript 3) 

Evidence from atypical and non-canonical species demonstrates that fungal decay 

strategies at least regarding cellulose decomposition are better described as 

positions along a continuum than as discrete functional categories.  

Species that deviate from canonical classifications illustrate that neither regulatory 

responses nor enzymatic repertoires alone are sufficient to define decay strategy. 

Instead, different decay types occupy stable but overlapping positions along a 

gradient of decay-related chemical phenotypes. This continuum-based framework 

takes into consideration differences between transcriptomic and chemical signatures 

and supports a shift away from binary decay classifications toward a more 

integrative understanding of fungal cellulose degradation.  
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Fungal cellulose decomposition

Cellulose is the most common 
organic material on Earth and a 
key part of plant structure. It gives 
strength to plant cell walls and is 
found in wood, leaves, grasses, 
and everyday materials like paper, 
cardboard, and cotton. As plants 
grow, they continuously produce 
large amounts of cellulose across 
land ecosystems. However, cellulose 
is very difficult to break down 
because its structure is strong and 
tightly packed, and most organisms 
cannot use it easily. In nature, fungi 
play a major role by releasing special 
enzymes that break cellulose into 
smaller molecules, which they then absorb as food. By breaking down cellulose, 
fungi prevent dead plant material from building up in the environment. 
Without them, fallen leaves and wood would persist for long periods, slowing 
soil formation and reducing nutrients available for new plant growth. Over 
time, this could also affect how carbon is stored in the environment. Fungal 
decomposition is therefore essential for healthy ecosystems, as it helps recycle 
nutrients, supports soil development, and returns carbon from plants back 
into the soil and atmosphere. Fungal cellulose breakdown also has practical 
uses, including composting, waste treatment, and biofuel production. Studying 
how fungi break down cellulose helps us understand nature and develop more 
sustainable technologies.
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