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Abstract

The elastic properties of amorphous TiNiSn, a promising half-Heusler system for flexible and
wearable devices, were investigated using experimental and theoretical methods. Nanoindentation
measurements performed on amorphous TiNiSn thin film grown by magnetron sputtering yiel-
ded an elastic (Young’s) modulus value of 132 GPa. To corroborate this result, density functional
theory (DFT) calculations and two machine learning models were employed, where the latter
were trained on available literature data. The DFT-derived elastic modulus of amorphous TiNiSn
is 113 GPa (stress-free conditions), which is 15% lower than the experimental value. However,
when hydrostatic stress is considered, arising from possible thermal loads and ion bombardment
during thin film synthesis, the difference is reduced to 5%. Electronic structure analysis reveals
that amorphous TiNiSn exhibits predominantly covalent bonding with a minor metallic contri-
bution, which is consistent with the measured elastic modulus. Although both machine learning
models underestimate the experimental modulus more than DFT, the theoretical results enhance
understanding of the elastic behaviour of amorphous TiNiSn and highlight its potential for future
applications in flexible microelectronic systems.

1. Introduction

Heusler alloys constitute a class of intermetallic compounds composed of transition metals (X, Y) and a
main-group element (Z) [1-4]. These alloys encompass an extensive range of interesting physical proper-
ties including magnetism, semiconducting behaviour, half-metallicity and good thermoelectric response
[1, 2, 5-7]. These solids can be classified into full-Heusler alloys with the formula X,YZ (50.0 at.% X,
25.0 at.% Y, 25.0 at.% Z, space group Fm-3 m) [1] and half-Heusler alloys with the formula XYZ (33.3
at.% X, 33.3 at.% Y, 33.3 at.% Z, space group F-43 m) [8]. For instance, Co,MnGa is a full-Heulser
alloy and TiNiSn is a half-Heusler compound [1-4]. Full-Heusler alloys often exhibit metallic or half-
metallic electronic structures and ferromagnetism [9, 10]. Due to one metallic spin channel and one
semiconducting, full-Heusler alloys are promising for spintronic applications, magnetic tunnel junctions
and sensors, to name a few [9, 10]. Half-Heusler alloys possess intrinsic vacancies, which leads to semi-
conducting or narrow-gap electronic behaviour [2, 11]. They have attracted extensive attention for ther-
moelectric applications, as their electrical conductivity and Seebeck coefficient can be adjusted through
doping [12, 13]. Their lower lattice thermal conductivity, compared to full-Heusler alloys, arises from
phonon scattering due to local structural disorder [12]. Nonetheless, their mechanical brittleness still
poses a challenge [1, 14].

Amorphous solids lack long-range ordering, which leads to unique physical properties [15, 16].
Among them, amorphous Heusler alloys have attracted considerable attention due to their unusual elec-
tronic, thermal and magnetic properties. In amorphous systems, additional scattering mechanisms for

© 2026 The Author(s). Published by IOP Publishing Ltd


https://doi.org/10.1088/1361-648X/ae3c75
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-648X/ae3c75&domain=pdf&date_stamp=2026-2-4
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2303-3676
https://orcid.org/0000-0001-7576-0387
https://orcid.org/0000-0002-2857-5135
https://orcid.org/0000-0003-3454-2660
https://orcid.org/0000-0002-7606-1673
mailto:denis.music@mau.se
http://doi.org/10.1088/1361-648X/ae3c75

10P Publishing

J. Phys.: Condens. Matter 38 (2026) 055701 D Music et al

charge carriers and phonons become active, enabling the tuning of thermal conductivity, a strategy that
has already been demonstrated for half-Heusler alloys [17]. Notably, amorphous Ni-Mn-In Heusler alloy
exhibits higher magnetisation at elevated temperatures than the corresponding crystalline counterpart
[18]. Similarly, Co,MnGa retains ferromagnetic behaviour in its amorphous state [19]. Amorphous half-
Heusler TiNiSn is superconductive [20] and seems to be flexible [21]. The latter property is particularly
relevant for wearable microelectronic devices (e.g. self-powered biomedical sensors, stretchable supercon-
ducting interconnects, integrated devices for soft robotics, smart clothing), where mechanical character-
istics play a crucial role. However, such data remain scarce and warrant further investigation.

In this work, we explore elastic properties of amorphous TiNiSn, a promising thermoelectric system
for flexible electronic applications. Amorphous TiNiSn thin films are grown by magnetron sputtering,
and an elastic (Young’s) modulus is obtained by nanoindentation (NI). To rationalise the experimental
data, density functional theory (DFT) and two machine learning models are employed. These machine
learning models are based on available literature data, as described below, and features (descriptors) need
to be generic to enable an estimation of the elastic modulus of amorphous TiNiSn.

2. Methods

2.1. Synthesis and characterisation

TiNiSn thin films were grown by direct current magnetron sputtering to facilitate experimental valida-
tion. A Si substrate was used without intentional heating and rotated at 20 rpm to achieve uniformity.
Elemental targets of Ti (99.95% purity, power density 6.9 W cm™?), Ni (99.9% purity, power density
2.0 W cm™2) and Sn (99.9% purity, power density 1.2 W cm™2) were placed 12.5 cm from the substrate
and at a 40° inclination angle to the substrate normal. The base pressure was approximately 3 x 107°
Pa, and the working pressure was 0.5 Pa (Ar atmosphere). The composition of the TiNiSn thin film was
determined by energy dispersive x-ray analysis (EDX). Energy calibration of the EDX detector was per-
formed using a Co reference sample and 3 measurements were carried out at an accelerating voltage of
15 kV. The following composition was obtained: 30 =+ 1 at.% Ti, 35 £ 1 at.% Ni and 35 £ 1 at.% Sn
(19 £ 1 wt.% Ti, 27 &+ 1 wt.% Ni and 54 & 1 wt.% Sn), henceforth referred to as TiNiSn. The struc-
ture was analysed by employing grazing incidence wide angle x-ray scattering indicating that the TiNiSn
sample was amorphous. These data can be found elsewhere (equivalent sputtering conditions were
applied previously) [21]. Finally, mechanical properties were determined using NI (continuous stiffness
measurements) based on the method introduced by Oliver and Pharr [22]. A Berkovich diamond tip,
with the tip area function calibrated on fused silica, was used in these experiments. Approx. 50 indents
were made with a maximum penetration depth less than 10% of the sample thickness (forces ranged
from 10 to 200 mN). Poisson’s ratio of 0.314 was used, as determined via theoretical modelling in this
work.

2.2. Theoretical modelling

Two theorical approaches were employed: DFT and machine learning. Since TiNiSn and ZrNiSn exhibit
the same crystal structure, an amorphous TiNiSn configuration was obtained by replacing Zr with Ti in
an amorphous ZrNiSn cell (324 atoms) from the previous work [23]. The original amorphous ZrNiSn
cell was derived by employing a liquid-quench method [24]. After replacing Zr with Ti, the cell was
thermalised and fully relaxed at 0 K, achieving consistency with the previous work (experimental neut-
ron data) [20]. Since the crystalline counterpart is cubic, the amorphous configuration was constrained
to the same symmetry. TiNiSn is paramagnetic even at low temperatures [25] and hence the DFT mod-
elling was carried out without spin polarisation. The Vienna ab initio simulation package (VASP) was
used in all DFT calculations. The projector-augmented plane-wave potentials [26—28] were employed

in the VASP code at the Perdew, Burke and Ernzerhof [29] level of (generalised gradient) approxima-
tion. Full structural optimisation was carried out by minimising the interatomic forces in amorphous
TiNiSn. The convergence criterion for the total energy was set to 0.01 meV per atom and a 500 eV cut-
off was employed. The integration in the Brillouin zone was done on a Monkhorst-Pack 4 x 4 x 4 k-
point mesh [30]. All cubic elastic constants were calculated, as described elsewhere [31], which allowed
for the estimation of the elastic modulus and Poisson’s ratio [32]. The electronic structure was analysed
using VESTA [33].

In an attempt to create a predictive data-driven model, a dataset containing 625 amorphous systems
(see the supplementary material) was used as input for machine learning: bulk metallic glasses (BMGs)
[34-39], SiO,-based glasses [40, 41], diamond-like carbon (DLC) [42] and other amorphous materials
(e.g. boron-rich solids) [23, 43—47]. No data on amorphous TiNiSn were included and predictability of
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machine learning models relied on generic features. Two models were considered: artificial neural net-
work (ANN) and gradient boosting regression (GBR). The Python code used for ANN can be found
elsewhere [48], while the one for GBR is available in the supplementary material. The dataset was nor-
malised (rescaled) to ensure consistency (coherent scale for all input data). Features were then selected:
x; (mass density) and x, (average molar mass), as motivated below. These features are expected to be
accessible to both theoreticians and experimentalists, proving simplicity to the model and possibly usab-
ility. The performance (accuracy) was assessed using the coefficient of determination [49].

The architecture of the ANN was created, containing the number of hidden layers and neurons per
layer to maximise the accuracy [49]. Between one and three hidden layers were probed and the model
with the highest accuracy was used further. The activation function [49] was the hyperbolic tangent
and a regularisation strength of 10~* (the Ridge estimator) was chosen to avoid overfitting. The learn-
ing rate was kept constant. The dataset was split into training and testing sets, and the ANN was first
run with the training set (80% of the data) and the predictability was evaluated on the remainder. The
LBFGS solver (the improved Broyden-Fletcher-Goldfarb-Shanno algorithm) was selected for optimisation
[49]. The scikit-learn implementation of GBR was used within a pipeline that included polynomial fea-
ture expansion to account for feature interactions [50]. Model hyperparameters, including the number
of estimators, learning rate, maximum tree depth, minimum sample splits and subsampling ratio, were
optimised using a grid search with 5-fold cross-validation to minimise errors. Model performance was
evaluated on a withheld 20% test subset, as in the case of ANN. Feature importance values were com-
puted to assess the relative influence of each input variable on the model predictions.

3. Results and discussion

Since TiNiSn samples are amorphous, they appear flat and featureless on a Si substrate, as shown
previously [21], so that morphology is not expected to have any influence on the characterisation of the
mechanical properties. The experimental (NI) value of elastic modulus for amorphous TiNiSn is 132 + 1
GPa. To rationalise this outcome, DFT and two machine learning models were employed. While DFT
can straightforwardly provide a theoretical value, machine learning is more challenging since deriving a
model for prediction of physical properties relies on a selection of features (descriptors). The space of
possible features in machine learning is usually vast, and many relevant features may not be known a
priori so that hypotheses are required. It is often attempted to identify which features logically or sci-
entifically affect the desired outcome. Structural features often involve parameters such as coordination
number and bond length [51]. Conversely, chemical features typically include elemental properties such
as effective charge, atomic radius, molar mass and electronegativity [51]. A model for BMGs employing
ANN has recently been proposed [52]. By incorporating molar mass, number of constituent elements,
yield strength and glass transition temperature as features, the ANN model can predict the elastic modu-
lus of BMGs [52]. However, some of these features, such as the glass transition temperature, are process-
dependent, which complicates or even inhibits generalisation. For instance, there are no reports on the
glass transition temperature of DLC or Heusler alloys. Furthermore, a recent machine learning model
for the bulk and shear moduli of SiO,-based glasses relied on physics-informed features, which were
based on classical interatomic potentials [40]. Notably, these types of amorphous solids were character-
ised using entirely different sets of features, highlighting the challenge of developing a unified modelling
approach. After careful assessment of possible features and critical data availability, mass density (x;) and
average molar mass (x,) were selected in the current work.

The dataset used in the machine learning models is provided in figure 1. It appears that the elastic
modulus values scale with mass density (figure 1(a)) and average molar mass (figure 1(b)), but drawing
any general conclusions seems unfeasible. There are reports claiming that the elastic modulus is a linear
or exponential function of mass density, as exemplified by DLC [42] and AL, O3 [53], but starkly dif-
ferent slopes appear when various systems are simultaneously considered, as seen in figure 1(a). Mass
density can be perceived as a cumulative feature encapsulating a lot of physical, chemical and struc-
tural information. For instance, the atomic radius is explicitly included as larger atoms may reduce how
tightly packed a solid can be. Another contribution comes from packing efficiency, as a higher packing
density should lead to a higher mass density, which is also related to the type of chemical bonds (ionic,
covalent, metallic) found in these solids. It can also be argued that heavier atoms increase the mass dens-
ity, which is why the second machine learning feature considered here is the average molar mass (see
figure 1(b)). The molar mass is related to the mass density, but the use of the mass density only is ques-
tionable, as argued above (diverse slopes for DLC [42] and Al,O5 [53]). All these aspects may affect the
elastic properties implicitly and provide challenges for machine learning modelling in general.
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Figure 1. The machine learning dataset used in the current work. The parameter y is the elastic modulus in GPa, x; specifies the
mass density in g cm—> (a) and x, is the average molar mass in g mol ~! (b).
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Figure 2. Artificial neural network (ANN) model with two hidden layers. The parameter y is the elastic modulus in GPa. The
accuracy (score) of 89% was obtained, as evaluated by the coefficient of determination. The mean squared error was 238 (GPa)?.
The input was randomly split into training and testing datasets (random state 42 in Python to enable reproducibility).

Using an ANN model with two hidden layers, one with 200 neurons and the other with 100 neur-
ons, 89% accuracy can be reached, as depicted in figure 2. Hence, the elastic modulus data can be
described in the full range from approximately 30-500 GPa, and the selected feature space suffices to
account for the whole diversity, ranging from different bonding types (predominantly ionic bonding in
SiO;-based glasses, metallic bonding in BMGs and covalent in DLC) to highly different mass densities.
It is also important to state that regularisation and only two hidden layers were used, which may inhibit
overfitting. It is expected that the selected features (x; and x;) can easily be utilised by experimentalists
(density from direct measurements, x-ray reflectivity, pair correlation functions and the like; molar mass
directly from composition and the periodic table of elements) and theoreticians (density from the com-
position and equilibrium volume) giving rise to a broad applicability (screening for novel systems). No
growth-related parameters are needed for this data-driven model.

Another machine learning model employed in this work was GBR and the outcome is provided in
figure 3. Comparing the ANN and GBR models, the overall performance of the ANN model is better
(89% vs. 76% accuracy, respectively), but it should be stated that the worse performance of the GBR
model is likely due to two outliers (see figure 3), while most of the data are well aligned. Both models
(figures 2 and 3) perform better above 250 GPa. In general, an ANN model may perform slightly bet-
ter due to highly nonlinear mappings between input and output through its hidden layers and nonlinear
activation functions. Since there are fewer features in the current work, each layer’s parameters can be
tuned effectively to capture relevant interactions. GBR models such interactions implicitly through tree
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Figure 3. Gradient boosting regression (GBR) model with the same data as in the ANN model. The parameter y is the elastic
modulus in GPa. The accuracy (score) of 76% was obtained, as assessed by the coefficient of determination. The mean squared
error was 506 (GPa)?.

splits but only in a hierarchical, discrete way, while ANNs can model them jointly and smoothly. An
important issue in machine learning is the selection of features. Two features were identified in the cur-
rent work, namely mass density and average molar mass, but it is conceivable that additional features
may improve these two models. One such feature is the average bond length, but less than 5% of the
used data would allow for such modelling, which is insufficient for both ANN and GBR. Thus, more
data collection is required in future efforts. It remains to be seen how both machine learning models
perform for amorphous TiNiSn.

The measured and calculated elastic modulus data for amorphous TiNiSn are presented in figure 4.
For comparison, the elastic modulus of bulk (crystalline) TiNiSn of 172 GPa is also provided [14],
together with the corresponding DFT value at 0 K reaching 220 GPa [54]. As amorphous solids are
expected to exhibit lower elastic moduli than the crystalline counterparts [53], the crystalline data [14]
are taken as the upper bound. Using the Debye-Griineisen approximation [55], the DFT-derived elastic
modulus for amorphous TiNiSn was obtained as a function of temperature and stress. The machine
learning predictions correspond to room temperature (due to the use of such input), but there is no
temperature dependence included in the models. This was, however, considered by DFT in the current
study (see also table 1). At room temperature (300 K), the DFT value is 113 GPa (stress-free condi-
tions), which deviates —15% from the NI value. As the generalised gradient approximation was used
in the DFT calculations, underestimation of the experimental data as well as the magnitude of the
obtained deviation are acceptable [56]. It is also conceivable that the grown thin film exhibits some
stress due to a difference in the thermal expansion coefficient between the sample and the substrate as
well as ion bombardment during synthesis. Namely, residual stresses in the range of several GPa are
commonly observed in thin films, e.g. —1.5 GPa in CrN and —2.2 GPa in Ta [57]. Accordingly, in the
DFT model, hydrostatic stress was also considered. At 300 K and assuming compressive hydrostatic stress
(—2 GPa), the DFT value reaches 126 GPa, which deviates only by —5% from the NI result (132 £ 1
GPa). The machine learning models, ANN and GBR, predicted the values of 87 and 78 GPa, respectively,
(see figure 4) using x; = 6.53 g cm > (the DFT value obtained in this work) and x, = 75.090 g mol
~! (from the periodic table of elements). Although their performance is inferior to that of DFT, these
models account for a wide range of possible amorphous solids and thus capture general trends. In cases
where experimental data are unavailable, such models can provide rapid estimates, whereas DFT calcula-
tions are computationally intensive for amorphous systems.

It is expected that the elastic modulus is decreased as a function of temperature due to thermal
expansion and hence effectively longer bonds [58], which can also be shown analytically [59-61].
However, the weak influence of temperature on the elastic properties of amorphous TiNiSn obtained
in this work by DFT (see table 1) should further be discussed. If there are no short-range bond changes
as a function of temperature, being equivalent to a lack of phase transitions in a crystalline system, the
elastic modulus does not vary substantially, which was demonstrated for amorphous SiO, [62]. In the
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Figure 4. Elastic modulus of amorphous TiNiSn obtained by nanoindentation (NI), DFT and machine learning (ANN and GBR).
DEFT refers to the elasticity data without stress, unless stated otherwise. A comparison is made with crystalline (bulk) data from
the literature: Rogl et al (experiment, NI on bulk samples) [14] and Hichour et al (DFT at 0 K) [54]. The error bars for the exper-
imental data (NI) are not included since they would be covered by the symbols.

Table 1. Elastic modulus (in GPa) of amorphous TiNiSn obtained by DFT as a function of temperature and hydrostatic stress
(compressive or tensile, 2 GPa).

Temperature (K) Compressive stress Stress-free Tensile stress
50 129 117 104
100 128 116 103
150 127 115 103
200 126 114 102
250 126 113 101
300 125 113 100
350 124 112 99
400 123 111 98
450 122 110 97
500 121 109 96
550 121 108 95
600 120 107 94
650 119 106 93
700 118 105 92

current work, the upper temperature range was thus limited to 700 K. Furthermore, the machine learn-
ing models derived in this work do not capture temperature effects limiting their applicability to room

temperature. There are many applications where this is sufficient, such as amorphous thin film transist-
ors, various sensors, amorphous oxides for non-volatile memory, actuators operating at ambient condi-
tions, amorphous solar cells, amorphous glass for integrated photonic circuits, packaging and amorph-

ous electrodes in Li-ion batteries, to name a few.

It remains to rationalise the obtained elasticity data based on the electronic structure analysis, as
shown in figure 5. Several observations can be made based on the electron density distribution. It is
evident that the system is disordered. Ti, Ni and Sn share charge, which can be interpreted as a cova-
lent contribution to the overall bonding. The electron density does not reach the minimum value, which
points towards a metallic contribution to the bonding in amorphous TiNiSn. Smaller differences in
electronegativity are present, but the ionic contribution is likely small. Hence, the covalent interaction
between disordered Ti, Ni and Sn with some metallic contributions leads to strong bonds, which is con-
sistent with the elastic modulus data in figure 4. It should also be noted that the bonding in amorphous
TiNiSn is consistent with crystalline TiNiSn [63], but due to disorder (lower coordination) the elastic
modulus is lower. This system is of relevance for applications in flexible and wearable devices. Having
a correlation between its elasticity and electronic structure, future modulations in mechanical flexibility
may be achieved. Amorphous TiNiSn exhibits promising transport properties, including a Seebeck coeffi-
cient of —2 uV K~! [20] (which could be enhanced through doping), good electrical conductivity [20],
and potentially very low thermal conductivity inferred from amorphous ZrNiSn data [23]. Combined
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Figure 5. Electron density distribution in TiNiSn. A (110) cut through the amorphous configuration is shown.

with its mechanical robustness demonstrated in bending tests [21] and strong adhesion to organic sub-
strates such as polymers, paper and textiles [21], this system shows significant potential for applications
in flexible and wearable devices.

4, Conclusions

This study combines experimental measurements and theoretical modelling to elucidate the elastic beha-
viour of amorphous TiNiSn. NI of sputtered thin films revealed a high elastic modulus of 132 GPa,
demonstrating that mechanical rigidity can be retained even in the absence of long-range order.
Complementary DFT calculations yielded an elastic modulus of 113 GPa, and accounting for hydro-
static stress effects during film growth further reconciled theory with experiment. Analysis of the elec-
tronic structure shows that a network of predominantly covalent bonds, with minor metallic contribu-
tions, rationalises the system’s stiffness. Machine learning models (ANN and GBR), while underestim-
ating the elastic modulus value, capture relevant trends and provide a framework for broader screen-
ing of amorphous systems. These findings establish a coherent understanding of the elastic response of
amorphous TiNiSn and highlight its promise as a mechanically robust component for flexible and wear-
able technologies. Non-equilibrium growth techniques, such as magnetron sputtering, employed at room
temperature broaden the spectrum of possible substrates, such as polymers and textiles, opening avenues
for further applications.
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