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Abstract

With more advanced manufacturing technologies, small and medium sized enterprises can
compete with low-wage labor by providing customized and high quality products. For
small production series, robotic systems can provide a cost-effective solution. However, for
robots to be able to perform on par with human workers in manufacturing industries, they
must become flexible and autonomous in their task execution and swift and easy to in-
struct. This will enable small businesses with short production series or highly customized
products to use robot coworkers without consulting expert robot programmers. The ob-
jective of this thesis is to explore programming solutions that can reduce the programming
effort of sensor-controlled robot tasks. The robot motions are expressed using constraints,
and multiple of simple constrained motions can be combined into a robot skill. The skill
can be stored in a knowledge base together with a semantic description, which enables
reuse and reasoning. The main contributions of the thesis are 1) development of ontolo-
gies for knowledge about robot devices and skills, 2) a user interface that provides simple
programming of dual-arm skills for non-experts and experts, 3) a programming interface
for task descriptions in unstructured natural language in a user-specified vocabulary and
4) an implementation where low-level code is generated from the high-level descriptions.
The resulting system greatly reduces the number of parameters exposed to the user, is sim-
ple to use for non-experts and reduces the programming time for experts by 80. The
representation is described on a semantic level, which means that the same skill can be
used on different robot platforms. The research is presented in seven papers, the first de-
scribing the knowledge representation and the second the knowledge-based architecture
that enables skill sharing between robots. The third paper presents the translation from
high-level instructions to low-level code for force-controlled motions. The two following
papers evaluate the simplified programming prototype for non-expert and expert users. The
last two present how program statements are extracted from unstructured natural language
descriptions.
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Popular summary in English

The work presented in this thesis focuses on methods for simplified programming of indus-
trial robots. It is expensive to automate manufacturing processes and consumer products are
often manufactured in low-cost countries with poor working conditions. One bottleneck
is that it requires an expert roboticist to work with robots. To mitigate this, we developed
technologies that make it possible for non-experts to interact with robots using an iconic
graphical interface combined with kinesthetic teaching and natural (human) language. The
graphical interface has a set of common instructions which makes the programming sim-
ple for non-experts while also increasing the efficiency for experienced robot programmers.
The robot programs, the so-called skills, can be made more general by specifying that the
motions should be relative to objects in the work space. For example, if the robot should
pick nuts placed in a box, it can locate nuts with its camera system and then always center
its gripping position above the piece. The user can add additional abstractions by creating
multiple objects of different types, for example, in an emergency stop button box assembly,
there are red buttons and grey switches.

The user can name their programs and objects in natural language, in this case English, and
create their own small vocabulary that the robot understands. Using statistical language
analysis, the meaning of the sentences is interpreted as existing robot programs applied
to objects. When instructing the robot to assemble the emergency stop button box, for
example, the user can demonstrate for the robot where the objects are while telling ”here
is a red button” and, if the program for picking objects is saved as a ”pick” skill, say to the
robot to ”pick red buttons”.

The programs are general and reusable and can be shared with other robots through a
database, for example the dual-arm robot ABB YuMi in our lab can transfer a program
from the right arm to the left. The two arms of the YuMi robot can work independently,
but our methods allow the user to rapidly instruct synchronized dual-arm tasks. When a
program is transferred from one robot, e.g., the YuMi robot, to another, e.g., a classical
ABB robot, the positions must be recalculated to work with the different embodiment of
the robot but also adapted to the specific sensors, e.g., a different type of force sensor.

The methods and experimental setups were evaluated using non-experts and experts and
different robots in the RobotLab at the Departments of Computer Science and Automatic
Control at Lund University.
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Populärvetenskaplig sammanfattning på svenska

I avhandlingen presenteras metoder som förenklar programmeringen av industrirobotar.
Att automatisera är ofta kostsamt och mycket av produktionen av konsumentprodukter
utförs i låglöneländer under dåliga arbetsförhållanden. Ett av problemen är att det ofta
krävs expertis inom robotik för att arbeta med robotar. Vi har därför utvecklat teknik som
gör det möjligt för oerfarna användare att interagera med maskinerna.

Genom att visualisera varje instruktion som ikoner och låta användaren fysiskt leda robo-
tarmen till rätt positioner går det snabbare för både robotexperter och ovana testpersoner
att skapa välfungerande program. Programmen kan göras mer generella genom att specifi-
cera att rörelserna ska vara relativt objekt i världen. Till exempel, om roboten ska plocka
upp muttrar som ligger lite utspritt i en låda kan den med hjälp av sitt kamerasystem hitta
positionen av en bit, men sen måste plockrörelsen alltid centrera robotens gripdon i mitten
på biten. Användaren kan abstrahera sitt program ännu mer genom att skapa fler typer av
objekt som ska plockas, till exempel har en nödstoppsknapp i plast röda knappar, brytare
och en gul låda. Programmen är generiska och kan föras över till andra robotar, t ex kan
vår tvåarmade robot YuMi återanvända program både på vänster och höger sida. Armarna
kan arbeta helt separat men vi har också utvecklat tillvägagångssätt för att enkelt instruera
synkroniserade tvåarmade rörelser.

Genom att ge programmet namn och beskrivningar i mänskligt språk, t ex ”plocka”, kan
användaren skapa ett eget ordförråd med objekt i robotens värld och handlingar eller opera-
tioner som roboten kan utföra. Med hjälp av språkanalys baserad på statistisk databehand-
ling kan meningar tolkas som just handlingar (verb) på objekt i världen. Vi har kopplat
ihop språkanalys och robotprogrammering så att användaren kan prata med sin robot för
att skapa nya begrepp, t ex ”här finns en röd knapp” och ”plocka upp den röda knappen”
(fast på engelska). Robotprogrammen sparas i en databas tillsammans med den språkliga
beskrivningen som kan förstås av människor och data som kan förstås av maskinen. För att
återanvända ett program som är skapat för en viss typ av robot, t ex vår YuMi, på en annan,
t ex en klassisk ABB robot, måste inte bara rörelserna översättas till en robotarm med annat
utseende, utan också mätvärden från olika givare, t ex för kraft, behöver anpassas till den
andra robotens sensorer.

Teknikerna vi utvecklat har evaluerats med oerfarna användare och experter på olika robotar
i LTH:s robotlabb.
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Background
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Introduction

It’s just a matter of semantics.

The robot revolution is yet to come. Robot programming requires expertise in machinery
and sensor technologies and application development is time consuming even for profes-
sionals. Therefore, manufacturing is outsourced to low-cost countries, with poor working
conditions. Also, small enterprises cannot afford to employ an expert to program various
repetitive tasks. To reduce the cost of automation and for example make it feasible for small
companies to robotize parts of their production, it is necessary to reduce the workload for
experts to program robots and to make it possible for non-experts to instruct robots about
non-trivial tasks.

Instead of aiming for fully automatic assembly lines, human-machine cooperation can re-
sult in flexible manufacturing, where the robots can carry out simple repetitive tasks while
the human operators can complement with their superior dexterity and perception capabil-
ities. The cooperation reduces the cost of automation because the programming of a fully
automated assembly can be very costly and tedious. This is a sharp contrast to traditional
industrial robot systems that execute the same tasks for years without any user interaction
during regular operation; in fact, they are locked in cages for safety reasons. In the latter
case, the programming phase is short compared to the operational phase and the program
is seldom updated. In a traditional factory setting, the robot is continuously in production,
so the larger part of the program is implemented and optimized offline in a simulation en-
vironment to reduce the downtime of the robot during deployment and real-world testing.

Recently, a new generation of collaborative robot systems have entered the market. These
so-called cobots are designed to work safely side-by-side with human co-workers. The
intended applications are small-parts assembly in close cooperation with humans. The
robots are often equipped with internal force estimation and sensors, and are small enough
to be guided manually using lead-through, that is, the robot arms can be moved physically by
the operator. This method is used in online programming and is considered more intuitive
than a joystick which otherwise is used to guide large robots.
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Figure 1: A robotized gift-wrapping application.

To illustrate the difficulties faced by the robot programmers, we present three example use
case applications that were developed during the research projects ROSETTA, PRACE and
SARAFun. The first was a dual-arm gift-wrapping application¹ shown in Fig. 1, developed
by the author and Andreas Stolt. The functionality was programmed using only standard
industrial tools. Gift-wrapping is something most people can learn and rudimentarily carry
out after a few minutes, but the robot on the other hand, was not even physically able to
pick up a corner of a sheet of paper from a table without special fixtures or grippers. The
paper is an organic material and folded differently every time and, depending on the weight
of the gift in the box, the friction varied resulting in slippage. This made it impossible to
simulate the program offline. Instead, we programmed and tested the application directly
online. We needed to prototype and test many different strategies and create mockup
fixtures before we found a working solution. In a traditional assembly application, it is
the finger positions that are of interest, but in this application, we often used other contact
points along the arms, e.g., the package was fixated with the elbow so that both hands could
cooperate to fold the side, as shown in Fig. 1. This required multiple programming and

¹A video of the application is available at: https://www.youtube.com/watch?v=ASEtz2M1RiY.
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Figure 2: A robotized emergency stop button box assembly task.

debugging sessions, and the standard programming methods were very time-consuming.
For example, the arms were programmed as two separate robots and the synchronization
needed for dual-arm operations added significant overhead.

The second example that illustrates the challenges faced by the roboticist, is the force-
controlled dual-arm assembly task of the emergency stop button box² shown in Fig. 2. The
application was developed by Andreas Stolt and Magnus Linderoth during the European
FP7 project ROSETTA. The task consisted of several fine-tuned subassemblies that needed
precise force-controlled motions. This required an extension of the standard robotics soft-
ware to enable real-time control. The resulting implementation included switching con-
trollers and setting the parameters to the sensor-controlled motions. Creating the sensor-
based control algorithms and programming the application required an expert in automatic
control. In make it possible for non-experts to program similar tasks, it was necessary to
develop an abstraction that significantly reduced the level of technical details exposed to
the user. Also, after developing the various advanced skills used in the assembly, we wanted
to be able to reuse them on other robots to reduce the reimplementation effort.

²A video is available at https://www.youtube.com/watch?v=7JgdbFW5mEg
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Figure 3: A shield can (left) and a printed circuit board
(PCB) to the right.

Figure 4: The intended position of
the shield can on the PCB.

The last example application that we will discuss was part of a cell phone assembly, where a
metal plate, a so-called shieldcan, was attached to a printed circuit board (PCB) by aligning
the two sides of the shieldcan in parallel with the slot on the board, as shown in Figs. 3
and 4. The application is interesting because it had low error tolerances which made the
assembly fail when the parts did not attach properly. Also, due to position uncertainties,
the execution of the insertion could either align the horizontal or vertical side of the parts
first and then rotate the remaining side into position. That is, the program logic had to
include both branching and error handling.

In the following sections, we will summarize the identified problems and the approaches
that were investigated to address them. The following chapters will introduce the termi-
nology, robot software and systems, and a survey of related work both from low-level and
high-level perspectives. Besides, each included paper has a separate related work section.
This part is followed by a description of the methodological approach, implementations and
summary of the included papers. The final chapter wrap together the work in a discussion.
The bibliography is shared for the entire document.
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1 Research Questions

The previously described examples illustrate several problems that have to be studied in
order for industrial robots to be truly collaborative and easy-to-use. The overall research
question that we investigated in this thesis is

How can the gap be bridged between human-comprehensible task representations and
executable robot programs?

This entails the following more detailed ones:

How can robot programming interfaces be designed to increase usability and efficiency?

How can the technical details be hidden from the instructor?

How can we decrease the effort of programming sensor-controlled tasks with low error
tolerances that require specification of multiple low-level parameters and sensor signals?

How can the interaction become more intuitive and user-centric to enable non-experts to
instruct robots?

Because of the difficulty to program a task, can reuse reduce the reimplementation effort?

How can the tools support creation of reusable robot programs from scratch?

How can reuse be supported by useful abstractions?

What does this representation have to contain to be understandable both by the user and
the robot system?

What information must be included in the representation, e.g., what device requirements
or parameter specifications do we need, to be able to create an executable procedure?

To address these questions, we created a representation for robot programs, skills. We also
developed programming methods and interfaces that reduced the programming workload
for experts and enabled non-experts to instruct robots. They will be described in more
detail in the following section.
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2 Contribution Statement

The four main contributions of the work presented in this thesis are the following:

1. Knowledge representation for robot devices and skills. The symbolic knowledge
of the system is expressed as modular ontologies. The core ontology includes robot
devices, such as robots, sensors, tool changers and fixtures. Tasks and skills are rep-
resented by graphs, hence we developed a graph ontology which includes different
state machine descriptions. Each step in the state machine has parameters, these
parameters are semantically described in separate ontologies for relative coordinate
frames and quantities. Skills are represented by a small sub-ontology that describes
the device requirements, parameters for each action and pre-and post-conditions (Pa-
per i). The knowledge is shared between robots and tools in a cloud-based software
architecture (Paper ii).

2. Generation of executable code for sensor-controlled skills. It is necessary to be able
to execute the complete task on a physical system. The contribution of Paper iii
is an implementation of a code generation service that takes high-level semantically
annotated tasks and creates executable task-level state machines by combining force-
controlled and position-controlled motions and reusable skills by automatically han-
dling the handover between controllers and setting up the kinematic chains.

3. Simplified programming methods. We developed and evaluated a prototype for
end-to-end robot programming that simplified task instruction and debugging for
non-experts, and for experts it decreased the workload significantly for both single
and synchronized dual-arm tasks (Papers iv and v). The methods allow the users
to incrementally add abstractions, create reusable parameterized skills and reduce
the overhead for bi-manual task programming by handling synchronized motions in
pairs.

4. A service for natural language programming of robots. The users can build their
own vocabulary of objects and skills and instruct the robots using unstructured natu-
ral language. The language analysis is carried out by using the semantic output from
a statistical parser combined with the knowledge in the system about the object re-
lations and skills to generate executable code. This was evaluated for e.g., loops,
sensor-based motions and multiple conditions (Papers vi and vii).
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Terminology

Robotics is an interdisciplinary field connecting computer science areas such as artificial
intelligence (AI), machine learning and distributed computing with hardware and sensor
technologies from automatic control, electronics and computer vision, and cognitive sci-
ence, linguistics, design, psychology and philosophy. Within this broad community, there
is not even a consensus what a robot is, therefore let us begin by establishing a common
vocabulary.

The following definitions are made by the International Organization for Standardization,
edited for readability:

ISO 8373:2012: Robots and robotic devices – Vocabulary

Robot: actuated mechanism programmable in two or more axes with a degree of autonomy,
moving within its environment, to perform intended tasks.
Note 1 to entry: A robot includes the control system and interface of the control system.
Note 2 to entry: The classification of robot into industrial robot or service robot is done according to its intended
application.

Manipulator: machine in which the mechanism usually consists of a series of segments, jointed
or sliding relative to one another, for the purpose of grasping and/or moving objects (pieces or
tools) usually in several degrees of freedom.

Autonomy: ability to perform intended tasks based on current state and sensing, without hu-
man intervention.

Physical alteration: alteration of the mechanical system.

Reprogrammable: designed so that the programmed motions or auxiliary functions can be
changed without physical alteration.

Multipurpose: capable of being adapted to a different application with physical alteration.
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Control system: set of logic control and power functions which allows monitoring and control
of the mechanical structure of the robot and communication with the environment (equipment
and users).

Industrial robot: automatically controlled, reprogrammable, multipurpose, manipula-
tor, programmable in three or more axes, which can be either fixed in place or mobile for use in
industrial automation applications.
Note 1 to entry: The industrial robot includes:
— the manipulator, including actuators.
— the controller, including teach pendant and any communication interface (hardware and software).

Industrial robot system: system comprising industrial robot, end effectors and any machin-
ery, equipment, devices, external auxiliary axes or sensors supporting the robot performing its
task.

Service Robotics: robot that performs useful tasks for humans or equipment excluding indus-
trial automation applications. Personal service robot: used for a non-commercial task, usually
by lay persons, for example: domestic servant robot, automated wheelchair, personal mobility
assist robot, and pet exercising robot.

Intelligent robot: robot capable of performing tasks by sensing its environment and/or inter-
acting with external sources and adapting its behaviour.

Note that a robot has a physical representation, and manipulates objects in the real world.
The program execution of the robot can be simulated in a virtual environment with more
or less advanced simulations of perception and physics, but in general, virtual agents are
bots and not robots. The embodiment of industrial robots can vary significantly, the links
and the joints can be connected e.g., serially as the classic orange single arm manipulator
with six links joined by revolute (rotating) joints (see Fig. 1), or in parallel with spherical
and prismatic (translational) joints (see Fig. 2). The links and joints of the robot create a
a kinematic chain. The degrees of freedom (DOFs) of a robot is the number of parameters
required to specify the configuration of the mechanical system, e.g., the classic industrial
arm has 6 DOFs. To specify a target position in the workspace, that is, the physical space
that the robot can reach, either the respective position (in degrees or radians) of each joint
should be specified as a joint target, or the position of the end-effector can be specified in
Cartesian coordinates. Throughout this work, position will refer to the pose, that is, both
translation (x, y, z) and orientation (values given in quaternions or Euler angles). When the
joint values are specified, the forward kinematics of the robot is used to calculate the position
(and velocity and acceleration) of the end-effector. It is often desired to specify the position
in Cartesian coordinates of the end-effector, in so-called task space, and then the inverse
kinematics is used to compute the actuator torques for each joint so that the position is
reached. The Cartesian coordinates can either be specified in absolute coordinates, usually
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Figure 1: A serial manipulator.

relative to the base of the robot, or relative to reference coordinate systems, or points, placed
in the workspace or on the robot.

Controller refers to the control system of the robot which can either be native, that is,
provided by the robot manufacturer and motions are specified in vendor specific code and
executed using the motion controller on the robot, or, external, meaning that e.g., the motor
torques for the robot joints are calculated in an external control loop and sent to the robot
over a real-time network. In colloquial terms, arm means the manipulator and gripper or
tool refer to the end effector, the wrist of the robot is the last link on the arm, the flange,
where the gripper is attached. For the YuMi robot, each arm has 7 DOFs similarly to the
human arm, and thus we call the middle link elbow.

In an industrial setup, the robot workspace, the so-called work cell, contains for example
fixtures where the workpieces (parts) are secured during the assembly as well as sensors, part
feeders, trays and tool changers. The robot can be mounted on top of railings, as shown
in Fig. 2 or on a mobile platform, as the robot in Fig. 3, to extend the workspace of the
robot. The latter is a dual-arm collaborative robot, meaning that it can safely inhabit the
same workspace as a human during operation. The user interaction is carried out through
an interface, a teach pendant (shown in the lower right corner of Fig. 3).
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Figure 2: A parallel manipulator.

Each time the robot is commanded to move to a specific joint position, it should move
to the same configuration with low error, that is, with a high repeatability. The YuMi for
example has 0.02 mm repeatability. Each robot is unique due to small manufacturing
differences and tear and wear, so when two robots of the same model are given positions
with the same joint values they will move to slightly different Cartesian positions. The
measurement of how close a robot reaches a specific Cartesian position in the workspace
with low error is accuracy, this typically requires calibration of the robot.

Even with external sensors for part localization, e.g., a camera system, and even if the parts
in the assembly are placed in fixtures and the robot has high repeatability, the measure-
ments will have small inaccuracies and the parts have small deviations in the shape, slip
and slide in the grippers or jam together, hence there is an uncertainty when manipulat-
ing objects in the physical world. Therefore, tasks with low error tolerances need reactive
execution with sensor feedback and control. Sensors and devices and communication sig-
nals can be integrated into the system by a system integrator. This often puts hard real-time
requirements on the system, that is, the computation and communication tasks must be
scheduled in a timely manner and must guarantee a response within their deadlines (Shin
and Ramanathan, 1994), which often are measured in milliseconds. These deadlines must
always be met, no matter, e.g., the load on the communication link. A system without this
guarantee can still have fast average, actual or expected response times.
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Figure 3: A dual-arm robot mounted on a mobile platform.

In the ISO definition, the bar is set very low for a robot to be considered intelligent. In the
scientific community, this is not always the case, rather, some high-level reasoning or un-
derstanding is frequently required. The following terms are often used to describe research
problems in the AI and robotics literature:

Manipulation primitive: A semantically described atomic action that functions as an in-
terface to the low-level robot control, see e.g., Kröger et al. (2010).

Embodiment: in robotics, it refers to the physical form of an agent, e.g., the robot or the
human body. The embodiment of the robot can be anything from a standard industrial
manipulator mounted on a table and equipped with a two-finger gripper and a force sen-
sor, to a full-sized humanoid with vision system and five finger end-effectors. In artificial
intelligence and especially cognitive science or philosophy, embodiment can refer to virtual
bodies or interaction with the world.

Correspondence Problem: the difficulty to transfer a task description between entities
with different embodiment and perception capabilities (Nehaniv, 2007).
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Non-expert: A person who would not be hired to program robots but might need to in-
teract with it in work or home environments.

End-to-end robot programming interfaces: User interfaces that let the intended operators
(end-users) create the complete robot program.

Wizard-of-Oz experiment: An experimental setup in user studies where the subjects be-
lieve that they interact with a machine but it is controlled by a human experimenter. This
enables evaluation of user interfaces without implementation e.g., when evaluating modal-
ity preferences.

Semantics: the meaning of a word, sign or symbol.

Knowledge base: in the field of artificial intelligence, knowledge representation refers to
the symbolic modeling of information about the world and logical rules (using e.g., De-
scription Logic) that describe relations between symbols. That is, there are assertions, or
facts, about entities, and logical rules so that the a system can automatically infer more
information about the entities (see the example below).

Ontology: a way to describe a taxonomy, that is, the symbolic model describing types,
properties and relationships between the entities. A knowledge base can contain multiple
ontologies. In our work, we use the Web Ontology Language (OWL) to model the assembly
domain. There are object types, or classes, modeled in a class hierarchy (comparable to
object-oriented programming but allowing, among other things, multiple inheritance), for
example, the class DualArmRobot is a subclass of Robot, and instances of classes, e.g.,
theLundYuMiRobot, which is an instance of the class DualArmRobot (and by inference,
Robot). Additional rules specify that a dual-arm robot has exactly two manipulators.

The Open World Assumption: given the knowledge in a system, if a statement cannot be
proven true, we cannot draw the conclusion that it is false, rather, it is unknown.

The Symbol Grounding Problem: a symbol in an ontology must be connected to some
real-world entity, otherwise the knowledge is simply a meaningless abstract exercise (Har-
nad, 1990). Using the (biologically dubious) example given by Harnad (1990), if an ontol-
ogy has the concept of Horse and Stripes, their combination can represent Zebra. If
the symbols for Horse and Stripes are grounded in real world data, in, e.g., a description
of the physical characteristics of a horse and a pattern describing stripes, the system should
be able to recognize a zebra as well. Creating and maintaining this connection between
symbols and real world sensor data that refer to the same object, so-called anchoring, is a
special case of the symbol grounding problem only referring to physical objects.

Affordance: A possible action offered by objects or environments (Gibson, 1986).
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Cognitive Robotics: is the field of robotics that tries to enable robots to learn, reason and
react in complex real-world situations, that is connect perception and action to a symbolic
representation that allows them to reason and replan its behavior.

Natural Language: human languages and biologically evolved languages, such as whale
song. In contrast to formal languages such as programming languages or description logic,
natural language sentences can be ambiguous and mean different things depending on con-
text and the receiver, using implicit assumptions about the receiver’s belief and knowledge.
Also, there are many ways to express semantically equivalent statements grammatically and
by using synonyms and sarcasm, making implicit assumptions about common sense rea-
soning and culture, etc. There are lexical ambiguities, e.g., when a homonym has multiple
meanings (e.g., study, execute) and practical ambiguities when information must be in-
ferred, e.g., put the food on the table does not specify exactly what edible items to bring,
how to carry the food, e.g., in a pot and without turning it upside down during the trans-
port.
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Robot Software and Systems

This chapter provides an an introductory overview to standard industrial robot systems
and programming, research robot software and finally, the software architecture used in
our experiments. Robot systems consist of a heterogeneous mix of hardware and software
components. The hardware can consist of robot manipulators, sensors, fixtures, grippers,
tools and tool changers, and input devices such as teach pendants or tablets. The software
can for example be image processing algorithms, control software, databases, and graphical
programming user interfaces. The architecture is distributed and setting up the communi-
cation and data management of the full system while ensuring real-time requirements can
be quite a challenge.

1 Standard Industrial Workflow and Tools

A standard industrial manipulator is programmed using a teach pendant or in a program-
ming and virtual simulation environment. The YuMi comes with a programming app for
a tablet as well as with lead-through. Each robot arm has a gripper that is controlled using
signals, the YuMi grippers are also equipped with a camera and a suction tool. Programs
are created by recording a sequence of points and replaying them interluded gripper and
sensor commands. Typically, an industrial robot is programmed point-to-point, the path
can be a series of close points specifying, e.g., a welding trajectory. Program logic and user
interfaces for the operator can also be programmed into the system using, for example, the
native robot language.

Many industrial robot vendors have created their own programming languages. These lan-
guages are designed with motion specification in mind, allowing debugging by stepping
through instructions one by one, either forward or backwards. An example program writ-
ten in ABB native code, RAPID (ABB Robotics, 2010), is displayed in Fig. 1. It is a small
program where the robot arm moves to target positions (target_3, target_5), opens
and closes the gripper (by setting the digital signal DOutput). Each instruction specifies
motion types (MoveL is a linear move) and parameters (e.g., v100 is speed 100 mm/s).
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Figure 1: An example program written in RAPID. Figure 2: An example of an SFC.

Native robot languages are widespread but non-standard. There are five standard languages
for industrial automation applications, defined in the IEC-61131-3 standard (IEC, 2003).
Three of them are graphical: Sequential Function Charts (SFC), Ladder Diagram (LD)
and Function Block Diagram (FBD) while Instruction List (IL) and Structured Text (ST)
are textual. SFCs are used to program programmable logic controllers (PLCs). Each state
(step) has an action that is executed periodically until a transition condition is true and
the next states are activated. An example of a SFC with four states is shown in Fig. 2. In
the example, the uppermost state is the initial state (with double-lined border), followed
by parallel execution of two states (the running states are marked with a dot). The lower-
most step is a nested state machine which can be expanded into a hierarchical structure of
additional state machines.

A robot program can be debugged and optimized using graphical simulation environments.
Typically, such simulation environments have a graphical representation of the robot and
the workspace, and a virtual robot controller that can execute the instructions in a realistic
manner, e.g., ABB robots can be simulated in RobotStudio (ABB RobotStudio, 2017), see
Fig. 3. In a typical workflow, the program is created and tested in the simulation and
programming environment. During deployment on the physical system only a few points
are updated using the teach pendant.

2 Research Software Architectures

To abstract away the details of the low-level system components, and make the software
development easier, the communication and data management can be handled by middle-
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Figure 3: A screen capture of ABB RobotStudio.

ware. Middleware is an abstraction layer between software applications and the operating
system and provides an interface for execution and communication between components.
Hence, middleware can decrease development time and simplify code reuse. Surveys of cur-
rent robotic middleware are presented by Elkady and Sobh (2012); Mohamed et al. (2008),
a few are mentioned below.

The Robot Operating System, (ROS, 2014), is a robotic middleware that is tremendously
popular in the research community. Code modules called nodes can be written in Python
or C++. The nodes communicate using an asynchronous publisher-subscriber model or by
calling blocking services on other nodes. In the publisher-subscriber model there are a set
of topics that publisher nodes can write to and other nodes can subscribe to. A publisher
node can be a sensor that publishes data messages, for example, a camera node with an
image message. A Master node helps the nodes to set up the communication. The pub-
lisher node will advertise its topics to the Master, and a subscriber node, for example an
image processing algorithm, connects with a subscribe call to the Master which sets up di-
rect communication between the nodes. The topics are one-directional and asynchronous,
but there are also synchronous services where one node sends a request and a response is re-
turned. Because of the popularity of ROS, there is a large collection of open source packages
for sensors, robots, navigation with varying levels of quality.

However, in the industry, the enthusiasm has been mild, since the flat architecture gives
scaling issues and the system lacks real-time guarantees. One attempt to cater to the needs
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Figure 4: An overview of the system architecture.

of the industry is ROS industrial (ROS-I-Consortium), however the initiative has not yet
taken off.

Another example of robotics middleware is the Open Robot Control Software, ORO-
COS. The Orocos Project, is a framework for real-time robot control, thus complementary
to ROS. Like ROS, the software is organized in modules, here called components. How-
ever, the OROCOS Real-Time Toolkit is designed with hard real-time control in mind,
letting the user to determine scheduling and periodicity of components and the compo-
nent designers must enforce real-time behavior. Hence, making two independently written
components work together can be difficult, a hardship that ROS users can ignore. Other
frameworks, such as Rock (Rock Robotics, 2015), built on the OROCOS toolchain, provide
additional features such as monitoring tools.
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3 Overview of the Lund Software Architecture

An overview of the robot software architecture used in our experiments is shown in Fig. 4.
The ontologies are stored in a Knowledge Integration Framework (KIF), represented by
the cloud in the figure. On KIF, the services for code generation and the natural language
program extractors are deployed. The user interacts with the robot either through the En-
gineering System implemented as a plugin in ABB RobotStudio, or via a Windows app that
we developed for simplified user interaction. Sensor-based tasks are executed as SFCs in
JGrafchart (Theorin, 2014), which sends reference values to the controllers using a data
protocol called LabComm. The user interfaces communicate with the robot controller di-
rectly through ABB libraries, e.g., generated RAPID code is deployed directly to the native
controller (even when the procedures are called from JGrafchart). The sensors and control
algorithms are deployed on the external controller, ExtCtrl (Blomdell et al., 2010).

The external controller uses the iTasC framework (De Schutter et al., 2007). The framework
separates the task specification given by constraints and the solver that fulfills the constraints
during the execution. In the workspace, interesting points on objects or the robots are
marked with local coordinate frames. The task is specified by a closed kinematic chain, a
closed loop of connecting frames, as illustrated in Fig. 5. Each arrow is a transformation
to a frame (marked with coordinate axes). The blue frame is a constant frame, the yellow

Figure 5: An example of a kinematic chain.
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is the robot frame which will be determined by the kinematics of the robot, the red arrow
is a tool frame and the black is a feature frame. When setting up a kinematic chain, the
direction of the frames must be consistent, hence some frames will be inverted, e.g., the
tool frame and the robot frame. The frames can either go through the robot (yellow arrow
in the figure), the tool (red) or be constant (blue). The last frame in the loop (black in the
figure) is called feature frame, and is used to constrain the execution. For example, it can be
set to be constant relative to a moving frame, or the robot motion can be expressed in that
frame. Each frame in the kinematic chain can be accompanied with an uncertainty frame,
expressing the certainty of the coordinate values. The kinematic chain can go through more
than one robot, thus expressing synchronized motions between arms. During execution,
the solver implementation carries out the low-level control of the robot, hence the task
specification can be expressed with high-level platform-independent constraints.

The robot architecture in Fig. 4 resembled other architectures by having abstraction lay-
ers separating the low-level hard real-time sensor-based control and the task execution that
parameterize the skills and switches between the states, and high-level task sequencing pro-
vided by the knowledge-based services. This is related to the classic three-tier (3T) architec-
ture presented by Gat (1998), where the robot software architecture is divided into a skill
layer, where the low-level real-time control is executed, a sequencer layer that keeps a system
state and selects which skill to execute at a particular time and sets the parameters to that
skill, and on top are a deliberation layer where predictions and computationally heavy plans
computed. However, in our system, the robot does not automatically replan its task during
operation.

Different users interact with a robot system on different levels. For example, the experts in
automatic control develop control algorithms, that are general enough to be reused task-
independently. An application developer creates the state machine of the assembly, which
can then be reused by robot operators that update the task parameters to new scenarios.
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Related Work

Both in industry and in the research community, the problem of simplification of robot
programming for non-experts has been addressed from several angles. Because of our in-
dustrial context, we will start with existing programming interfaces or prototypes for end-
to-end programming. In the rest of the chapter, the disposition will roughly follow the
three-tier architecture by Gat (1998), i.e, we will start with the low-level data-driven ap-
proaches, followed by the intermediate action representations and how these connect to
the executable robot programs. The intermediate representations are in turn used in high-
level knowledge engineering and reasoning architectures. Finally, we will look at how the
representation can be extracted from natural language instructions, which is the highest
level of abstraction considered in this work.

1 End-to-end Robot Programming

A survey of current programming methods for industrial robots are presented by Pan et al.
(2010). For example, application specific tools (so-called Power Packs) are widely used, e.g.,
CAD models of parts are used to generate welding trajectories. Since then, several collabo-
rative robots have entered the market with lead-through support and online programming
interfaces, e.g., not only the YuMi, but Baxter and Sawyer from Rethink Robotics, Emika
from Franka, Universal Robots’ UR-series and Fanuc CR-35iA. These come with end-to-
end programming interfaces and apps that allow quick and simple deployment, for example
Baxter has easily configurable pick-and-place skills, Universal Robots comes with an iconic
programming interface on the teach pendant and Emika has an expert made app library.
Macros and apps let non-expert operators instruct the robot on a more user-centric and less
detailed level, reducing the time to set up the tasks.

There are several examples of simplified end-user programming environments from multi-
disciplinary fields, such as service robots in health care, where applications are developed in
collaborative teams with both programmers and subject matter experts. RoboStudio (Datta
et al., 2012) is a tool for the development of interaction behaviors in health care applications.
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Interaction Composer (Glas et al., 2011, 2016) is an environment for creating user interac-
tion as a state flow using high-level icons for C++ macros. Others are RoboFlow (Alexan-
drova et al., 2015), a flow-based visual programming tool for creating behaviors for a PR2,
and ROSCo (Nguyen et al., 2013), a tool for creating behaviors for home robots as hierar-
chical finite state machines using a set of motion, gripper and perception primitives. The
latter runs in ROS, hence programs are reusable on a platform with equivalent ROS-nodes,
however, an expert was still needed to create the program. Also, Lourens (2004) wrap e.g.,
C++ macros and parameters in visual representations, thus creating an iconic programming
interface that was used to recombine existing code blocks and was tested on a NAO robot
(Lourens and Barakova, 2011).

Huang et al. (2016b); Huang and Cakmak (2017) evaluated a Scratch¹-like programming
language where non-expert users programmed a PR2 to grasp objects. Notably, they inte-
grated a perception module and let the users define gripping points on objects (landmarks)
through a GUI. They also noticed that the users deviated from the intended workflow
where landmarks were created first and then used in the programming, which corroborate
our observations that users, even experts, forget or want to change object references during
the programming process.

As pointed out by Pan, one important drawback with online programming is that the robot
cannot be in production. Therefore, although it can be intuitive for an operator, it is not
always the preferred workflow, especially not in highly automated industries. We on the
other hand, focus on enabling robot technologies for small and medium sized enterprises
where a human worker otherwise would carry out the task manually. The setting of a small
company resembles the scenarios tackled in service robotics in the sense that the operator
can be less experienced in robotics and that instead of optimizing the execution time of the
robot to minimize cost, the workload of the human operator should be reduced. In general,
industrial tasks require high precision and low error rates, which are harder constraints than
some house hold tasks such as setting the table.

To summarize, most existing solutions are still platform specific and it is challenging for
non-experts to create a new robot skill from scratch.

2 Data-driven Approaches

In service robotics, the robots operate autonomously in unstructured environments such as
homes, hospitals and shopping malls, with frequent interaction with non-experts and t he
intended user is the home owner, hospital staff or shop worker. The users are not assumed
to be proficient in programming and robotics and therefore high-level user-centric methods

¹Based on a user interface called Blockly.
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are needed where the user does not have to explicitly give the robot detailed instructions on
how to carry out tasks. There are several approaches to learn skills from human demonstra-
tions, so called Imitation Learning or Learning from Demonstration (LfD). An introduction
to the field is given by Argall et al. (2010); Billard et al. (2008); Billard and Grollman (2013)
and more recently, Billard et al. (2016). Learning implies generalizations from demonstra-
tions, not only replaying the task (as in Programming by Demonstration). Demonstrations
can take several forms, for example, by observing the human carrying out a task and trans-
fer the actions to a robot. However, tasks often consist of multiple steps and during a
demonstration, some motions, such as scratching one’s head, are superfluous. Therefore,
one of the problems that LfD addresses is what to imitate. That is, extracting the goal or
evaluation metric of the tasks. Another problem is how to imitate the human when the
robot has a different embodiment and perception capabilities, e.g., both with respect to
mobility and dexterity and sensing. Therefore, the actions taken by the robot to achieve
a goal can be different from the actions that the human demonstrated. This is referred to
as the correspondence problem in the literature and solutions involve creating interfaces that
reduce the mismatch, e.g., remote controls for teleoperation or by guiding the robot kines-
thetically. This also makes it possible for the operator to correct the robot movements when
it executes the learnt skill and refine the skill incrementally. However, when moving the
robot kinesthetically, the user often needs to use both hands, which makes it challenging
to demonstrate e.g., synchronized dual-arm motions. Also, when the user interacts with
the robot, it is difficult to separate what sensor input comes from the user interaction and
what forces to use to manipulate objects.

A task consisting of multiple steps is often more easily demonstrated fully and segmented
into subskills or subgoals. For example, in the gift-wrapping application, the paper had
to be wrapped around the box before the folding of the sides, which in turn depended
on how tightly the paper was wrapped. Some of the related work focus on learning the
sequence of partial ordering of subgoals or skills, some focus on learning the control policy
for individual motions and some focus on extracting goals, e.g., spatial constraints between
manipulated objects.

After collecting multiple demonstrations of a skill trajectory, the recorded (multidimen-
sional) data (joint angles, Cartesian positions, forces, etc) can be used to train mixture
models, e.g., Gaussian Mixture Models (GMMs) (see, e.g., Lee et al., 2012, 2013) where
the motion is reproduced using Gaussian Mixture Regression, or Hidden Markov Models
(HMMs) (see, e.g., Saveriano et al., 2015; Calinon et al., 2009, 2010). Ureche et al. (2015)
demonstrated household tasks on a KUKA lightweight arm and automatically segmented
the tasks into skills and extracted the relevant control parameters for the skills by studying
the variance of the task variables. The variables that changed significantly over multiple
demonstrations and during the demonstrations were considered relevant and were used for
the segmentation and the controller parameters for each motion. Also, collaborative tasks
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between a robot and a human can be encoded with GMMs and HMMs: see, e.g., Calinon
et al. (2009); Rozo et al. (2014, 2016) where not only the position, but also the compliance
and force interaction with the user were learned. Niekum et al. (2015) and Ekvall and Kragic
(2008) used multiple demonstrations to learn partial ordering between subtasks. Ekvall and
Kragic (2008) used the skill dependencies and combined high-level action planning with
path planning to avoid object collisions.

Another widely used trajectory representation are Dynamic Movement Primitives (DMPs),
developed by Ijspeert et al. (2002) (see ,e.g., Ude et al., 2010; Pastor et al., 2011; Kormushev
et al., 2011). DMPs are stable nonlinear point attractor systems, where forcing terms² can
be added to modify the trajectory. The forcing term consists of a set of weighted Gaus-
sian basis functions that are activated over time. The weights can be learnt from a single
demonstration, the target position is just a parameter to the function so the learnt trajec-
tory can be used for different goals. Additional terms can be added to not only encode
position-based trajectories but also forces, e.g., Kormushev et al. (2011) added a force term
to the DMP through a haptic interface and Pastor et al. (2009) adapted the formulation
to generalize robustly to new object positions and attached semantics to the trajectory to
facilitate reuse. Later, Pastor et al. (2011) improved the policy using reinforcement learning
where the success of the task was predicted from the sensor data.

In data-driven approaches, the user must provide multiple high-quality demonstrations that
vary in the relevant parameters e.g., move objects in the scene between demonstrations to
detect relative reference systems. In our context, even providing one demonstration is time
consuming and challenging, hence one-shot programming methods with subsequent re-
finement are preferred or an unsupervised approach can be used. For example, Levine et al.
(2016b) presented an approach where 14 robots were trained in two months to grasp objects
producing 800 000 grasps that were used to train a Convolutional Neural Network (CNN)
mapping vision input to motor commands. The perception and action can be coupled on
a low-level, see, e.g., Lee et al. (2015) and several other methods from the research group
from Berkeley: Levine et al. (2015) learned manipulation tasks with guided policy search
where the cost function is specified as the desired goal position of the task. Levine et al.
(2016a) used reinforcement learning and CNNs to map vision input to torque commands.
In reinforcement learning, the challenge is to express a good cost function for the goal of
the task that can be used for evaluation, this can either be hand-coded or learned, e.g., Yin
et al. (2014) learned a cost function for letter trajectories and exploited it to encode the
robot motions in a writing task.

These approaches learn the parameters to the low-level control and, depending on the vari-
ability in the training data, the skills can be generalized and reused in a slightly different
setting. One major challenge is to annotate and semantically describe these learnt skills

²Forcing the trajectory to follow the demonstrated path, not meaning using force measurements.
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with, e.g., partial ordering (which can be extracted from demonstrations, see, e.g., Niekum
et al., 2015) and resource constraints so that an automatic planner or scheduler can reorder
tasks, and with human understandable descriptions that help the operator to adapt and
update the task when it fails. And the task will fail, both during deployment and regular
execution. During deployment, the operator must be able to further adapt the task, e.g.,
by letting the user correct the robot trajectory (Ewerton et al., 2016), by incrementally up-
dating the model with new demonstrations as described by Saveriano et al. (2015), where a
forgetting factor is added to the previous learnt model.

3 Dual-arm Manipulation

In the gift-wrapping use case, dual-arm motions were needed to position the large package
that was too heavy and bulky for a single arm. One arm was also used to fixate the package
while the other folded the sides. In the emergency stop button box use case, some tasks
were carried out using independent single arm skills and the arms were synchronized via
rendezvous points because, e.g., the force sensor was a shared resource. In the dual-arm
screwing skill, instead of using a fixture, one arm was used to hold the button while the
other arm screwed the nut into place.

In a traditional industrial setup, the programming of dual-arm or multi-robot operations is
more than twice as difficult as the programming of a single manipulation task because there
is an overhead from synchronization and coordination. However, in a pure master-slave
configuration, where one arm follows the other with a fixed offset, the programming time
is only dependent on the master arm’s program and the initialization of the synchroniza-
tion. If the robots move synchronized but independently, the programming process can be
decoupled and the synchronization added later, but this approach requires programming
experience.

Smith et al. (2012) present a survey of dual-arm systems, applications and technical chal-
lenges from a control and planning perspective. Many approaches use remote control,
either via joysticks or via human motion tracking. For example Kruse et al. (2015) present
an application where the robot autonomously located and grasped a heavy object and then
human operator took over and tele-operated the robot through skeleton tracking using Mi-
crosoft Kinect. Ramirez-Amaro et al. (2015) used video recordings of humans carrying out
household tasks and transferred them to the iCub and the REEM-C humanoids. Ge (2013)
used optical tracking to program a YuMi robot and although the YuMi arms have 7 DOFs
so that the human arm movements could be mimicked and Tunstel et al. (2013) remote
controlled terrain driving mobile dual-arm robots using a two-hand multi-DOF joystick.
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An example of application specific user support is given by Makris et al. (2014), who let
the user guide bi-manual pick-and-place tasks through a gesture interface. Zöllner et al.
(2004) presented work in 2004 where human demonstrations were recorded with stereo
cameras and sensor gloves and segmented and classified as manipulation primitives. The
primitives were either symmetric or asymmetric coordinated actions depending on whether
or not the arms manipulated the same or different objects. Similarly, Krüger et al. (2011)
simplified the dual-arm programming by providing macros for bi-manual actions on an
object, e.g., bi-approach or bi-hinge. Also, Reinhart and Zaidan (2009) used the motion
of workpieces as the references for cooperating robots, so the user only had to specify the
desired trajectory of the object using a 3D model. However, their work focused mostly on
implementing a compliance control algorithm for the joint control of the robots. Muhlig
et al. (2009) tracked the workpiece trajectories using a stereo vision system and learned the
motions (using GMMs) for a bi-manual pouring task on an ASIMO robot. However, most
related work is concerned with multi-robot planning (see, e.g., Vahrenkamp et al., 2011) or
control (e.g., Sariyildiz and Temeltas, 2011; Sieber et al., 2013; Lee et al., 2014), for example,
Park and Lee (2015, 2016) presents a control framework for a humanoid for different types
of coordinated motions expressed in task space variables.

In a framework using LfD, kinesthetic teaching of bi-manual operations is challenging be-
cause the human operator must demonstrate two tasks simultaneously, but possible if the
robot is for example small. Gribovskaya and Billard (2008) used kinesthetic demonstra-
tions on a small humanoid to record trajectories and learn spatial constraints and synchro-
nization points. For a larger robot, this approach is impractical. Instead, the trajectories
can be extracted from observations of human dual-arm manipulations, e.g., Zhou et al.
(2016) extract trajectories and create coordinated DMPs using tracking data from the KIT
database (Mandery et al., 2015). They experiment with a wiping task, where movement of
the arm and the hand are controlled by two different DMPs coupled in a leader-follower
(or serial) manner so that the local movement of the hand is encoded in the coordinate
system of the leader. The leader on the other hand can move relative to a plane, so that the
entire wiping task can be translated.

4 Multiple Modalities

Kinesthetic teaching combined with graphical user interfaces are now standard interfaces
for small collaborative robots. Additional modalities such as speech, pointing gestures and
haptics are common in laboratory settings. Profanter et al. (2015) evaluated the user pref-
erences for four different modalities in a Wizard-of-Oz user study where the experimenters
interpreted the users’ pointing gestures, speech input, 3D pen input as well as touch input
on a screen. They found that gestures were preferred for selecting objects and specifying
points on the object, while touch was the preferred for specifying a location. Speech was
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considered the most difficult, e.g., because the users struggled to name the objects. These
results correspond well to our assumptions that speech is suitable only when the user can
name or display the object names and only for high-level tasks, e.g., not for specifying
parameters. In subsequent work, Perzylo et al. (2015b) describe a natural language inter-
face for high-level instructions, which parallel our work by connecting the utterances to
an ontology of objects and tasks. Multiple modalities can be used to reduce the number
of necessary demonstrations and can be used to communicate the knowledge and states of
the robot system. Alexandrova et al. (2015) use action visualizations of a single demonstra-
tion to let users change reference frames (landmarks) of motions and e.g., reorder actions.
This can allow more intuitive and natural means of communication, and, e.g., Mead (2017)
provides a cloud-based software platform for robot and application developers called Semio,
with drivers for multimodal interaction, e.g., speech recognition (including pitch, rate and
volume) and body language (e.g., gaze).

5 Manipulation Primitives and Skills

To bridge the gap from low-level control to more abstract reasoning, the motor skills need
a semantic representation. A review of research approaches up to 2007 were presented
by Krüger et al. (2007). The problem can be approached either bottom-up from a machine
perspective as the data-driven methods discussed in the previous section, or top-down,
starting with human concepts of symbolic actions. The symbolic representation of robot
skills, e.g., as action primitives, can be used in automated reasoning process or to generate
action plans using standard AI planning and scheduling tools (see, e.g., Mosemann and
Wahl, 2001).

Action primitives are predefined parameterized templates for executable robot instructions
that can be combined into more complex skills (Kröger et al., 2010; Felip et al., 2013). These
primitives can either be procedural or declarative, but correspond to an executable low-level
instruction. In a declarative approach, Bruyninckx and Schutter (1996) and De Schutter
et al. (2007) expressed the desired motion and sensor-values as constraints on a kinematic
chain using coordinate reference frames of objects in the world or on the robot. This Task
Frame Formalism (iTasC) was extended by Kröger et al. (2010) and implemented by, e.g.,
Finkemeyer et al. (2005) and Pedersen et al. (2014), to describe a hybrid motion expressed
in a frame, a synchronously executed tool command and a terminating stop command. The
motion primitives abstract low-level sensor-based constraints and motions and must be
combined into more complex state machines to produce a robot skill. The implementation
presented in Paper iii is based on the same formalism and a comparable control architecture,
however, the technical implementation details differ.
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A procedural approach with parameterized action templates (so-called Robotic Assembly
Skills) were presented by Wahrburg et al. (2015) where the actions were encoded as tra-
jectories and the complete skill was represented as a finite state machine. Their application
was similar to ours, with an expert-made parameterized snapfit that was implemented on a
YuMi robot. An approach related to ours, where the task description had a platform inde-
pendent reusable description, was presented by Perzylo et al. (2016). In their work, assembly
tasks were described by defining spatial constraints between parts in a graphical view. Using
an ontology, their system could then generate executable programs fulfilling the semantic
spatial constraints (Somani et al., 2016), and demonstrated that a robot system with do-
main knowledge and domain specific user-centric tools reduced the programming times
with around 70 - 80. The bottleneck in such system is to model the knowledge about
objects and robot skills which, in our experience, does not scale well to new domains.

Skills can also be based on code-reuse, e.g., the robot manipulation skills presented by Ped-
ersen et al. (2014) encapsulate blocks of parameterized executable code with pre-condition,
post-condition and continuous checks. The skills were initialized with a set of parameters
and terminated with an evaluation of the post-conditions. Andersen et al. (2014) created
an abstraction layer between an execution environment (called the Robot Virtual Machine)
and parameterized skills for, e.g., pick-and-place and palletizing with a user interface with
wizards for helping the operator specify the skill parameters. They, as well as Krüger et al.
(2010), explored the concept that primitives should be encoded as actions on objects, anal-
ogous to human language.

6 The Grounding Problem

The concept of affordances stemming from cognitive science (Gibson, 1986), is used by As-
four et al. (2008); Wörgötter et al. (2009); Wächter et al. (2013), who introduced the Action-
Object-Complexes. The objects in the Action-Object-Complexes have attributes, e.g., a cup
can be empty or full and the actions that are offered by the object transform the attributes.
Each action has pre-and postconditions to describe the transition and the implementation
should evaluate whether or not it succeeded. The representation was grounded to actions
learned from human demonstrations, e.g., Asfour et al. (2008) learned trajectories (encoded
as HMMs) from observing humans, Kalkan et al. (2014) labeled actions on an iCub with
effects and trained support vector machine classifiers to predict the outcome of a behav-
ior, and Wächter et al. (2013) used a library of predefined complexes to classify segmented
demonstrations of human tasks (see also Aksoy et al., 2016; Kaiser et al., 2016). The work
developed further into semantic event chains presented by Aksoy et al. (2011). In their work,
a sequence of (human) actions on objects were observed and used to compare manipulation
scenarios. Aksoy et al. (2011) and (Asfour et al., 2008) made the analogy between primitive
actions (such as objects touching and not touching) to an alphabet, hence, sequence com-

30



parisons are equivalent to substring matching and complex actions are compared to words,
which they (Aksoy et al., 2015) later used to classify new actions.

Grounding the high-level symbols in low-level perception and action is a classic AI problem.
Coradeschi et al. (2013) present a short survey of work in cognitive robotics up to 2012.
The presentation is divided into two subtopics, physical symbol grounding where symbols are
grounded to real world objects and perception, grounding words in action, and social symbol
grounding, where the symbols are shared between multiple agents and therefore constrained,
e.g., by communication. Especially in dynamical environment, the connection between the
symbols describing entities and the sensor data must be maintained, anchored, which can
be done through probabilistic approaches, see, e.g., Elfring et al. (2013).

7 Ontologies

In the context of robotics, ontologies are used to represent knowledge about robots, sen-
sors, and tasks. The working group Ontologies for Robotics and Automation has developed a
Core Ontology for Robotics and Automation, CORA, defining positions (Carbonera et al.,
2013) and later extending it with environments (Fiorini et al., 2015). The group has also cre-
ated an ontology for kit building (Balakirsky et al., 2012) which has been evaluated using
human- and multi-robot interaction (Jorge et al., 2015). Lim et al. (2014) presented the
RACE ontology for robot experiences and human-robot interaction, e.g., dialogue, and
the W3C Semantic Sensor Network Incubator group developed an ontology for sensors
and observations (Compton et al., 2009, 2012). Schlenoff and Messina (2005) presented an
ontology for modeling robot requirements in urban search and rescue.

Ontologies for common household tasks and objects were developed in the RoboHow
project (Tenorth and Beetz, 2013). The KnowRob knowledge processing system encoded
the knowledge in OWL was adapted from the OpenCyc (Lenat, 1995) ontology for com-
mon sense reasoning. Early work included the OpenRobots Ontology for household tasks
and their reasoning framework was implemented using an RDF triple store and OWL
Description Logic, closely related to our approach. Tenorth and Beetz (2013) created a
Semantic Robot Description Language to combine kinematic descriptions of a robot in the
Unified Robot Description Format with actions and capabilities (Kunze et al., 2011). Their
action representations include high-level concepts such as PrepearingFoodOrDrink and sub-
classes such as Stirring and include physical requirements of the system (e.g., sensors, or a
mobile base). The system grounded the entities with a SLAM mapping system to create
semantically described shared environments (Riazuelo et al., 2015) The knowledge is used
to produce reactive action plans for household tasks (Beetz et al., 2012). These plans can
be executed in CRAM (Cognitive Robot Abstract Machine), a toolkit for programming and
executing high-level robot plans that will replan and recover from failures online (Beetz
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et al., 2010; Winkler et al., 2012). The KnowRob knowledge-base is queried using Pro-
log and is open and extensible. For example, Muhayyuddin et al. (2015) used KnowRob
to integrate ontological reasoning with motion planning by modeling objects as fixed and
movable, thus, the generated motion plans could involve moving obstacles. In the after-
math of the RoboHow project, they developed Open-EASE, a web-based service for storing
and analyzing robot experiments (Beetz et al., 2015, 2016).

8 Connecting Natural Language and Robot Actions

Kalkan et al. (2014); Andersen et al. (2014) and Krüger et al. (2010) compared robot actions
with natural language instructions, but the idea of using natural language to instruct a
machine is older than Unix time itself. A famous early attempt is SHRDLU (Winograd,
1971) developed by Terry Winogard. SHRDLU was a computer program that understood
English and let a user describe how to move objects in a block world. This was in 1968 and
the program could understand 50 words, such as ”block”, ”cone”, ”blue”, ”place on” and
tried to guess the user’s intention from the word combination.

Modern day examples from the robotics community are used to, e.g., give mobile robots
route instructions (Tellex et al., 2011; MacMahon et al., 2006; Shimizu and Haas, 2009).
The representation for connecting language instructions (usually verbs) to actions differ.
Perzylo et al. (2015a) generated grammars by explicitly annotating classes in the RoboEarth
ontology with Wordnet synset. Spangenberg and Henrich (2015) presented a representa-
tion of verbalized physical effects (affordances) to manipulation primitives (Kröger et al.,
2010). Each verbalized physical effect is described with a verb, an effect, input and output
quantities and constraints for the execution of the movement primitive. Another related
approach is the semantic frames used by Brian Thomas and distributed as a ROS package
roboframenet³, or the semantic word representation presented by Twiefel et al. (2016),
and Fischer et al. whose system uses structured responses consisting of utterances (com-
mands) and slots (arguments) that map to robot programs.

Natural language utterances can be grounded by narrating a demonstration (see, e.g., Stra-
mandinoli et al., 2016), e.g., Misra et al. (2016) use the Stanford Lexical parser (Klein and
Manning, 2003) to create in intermediate representation, verb clauses, consisting of verbs,
objects and prepositional relationships that are mapped to sequences of instructions of (pre-
defined) actions. Related methods, that used statistics to map semantic frames to a subset
of actions carried out in a 2D virtual environment, were presented by Panzner et al. (2015),
while Salvi et al. (2012) used a bag-of-words model to map speech utterances to a set of
simple manipulation actions.

³http://wiki.ros.org/roboframenet

32

http://wiki.ros.org/roboframenet


One of the drawbacks of approaches where the classification of language instructions to
robot actions are trained from labeled examples is that the user cannot easily extend the
vocabulary on their own. In our applications, we use the general purpose statistical parser
and semantic role labeler described below.

Background note on the Lund statistical parser

An introduction to natural language processing (NLP) applications is given by Nugues
(2016a). The first approaches were ruled-based, where hand-made grammatical rules where
used to process text (Nugues, 2016b). However, for unrestricted natural language many
rules are needed, especially for handling homophones, ambiguous interpretations and spo-
ken language, and since 2000, when the performance and availability of processing power
increased, most computational linguistics use statistical methods.

The general purpose statistical model running on a virtual machine at Lund University can
process (parse) unstructured English sentences in about 10 − 50 ms and is accessed from
for example mobile devices.

When the meaning of a sentence is extracted the following questions are at least partially
answered:

• What is going on? (Predicate)

• Who/what is doing it? (Actor)

• What objects are involved? (Arguments to the predicate)

• Where is this going on? (Location argument)

• When and how long is this going on? (Temporal argument)

• How is the action carried out? (Manner)

• Who is the beneficiary of the event? (Beneficiary)

Language is ambiguous, homophones, such as press in news press and press down belong
to different part-of-speech and have different meaning. In a sentence, the words that an-
swer the above questions are labeled with the semantic role listed in parentheses after the
question. This is done using special purpose dictionaries such as WordNet (Princeton Uni-
versity, 2010), FrameNet (Ruppenhofer et al., 2010), or PropBank (Palmer et al., 2005), that
list predicates and roles that can belong to the predicate. In the robotics context, the sen-
tence execute the program, where execute means enact (the predicate execute.02), is perfectly
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acceptable, but the command execute the human, where the homophone refers to killing
(execute.01), certainly is not.

The model for the parser is trained using a corpus, which is a large text mass where the
sentences are annotated with syntactic and semantic information. There are several corpora,
for example the Penn Treebank (Marcus et al., 1994) which is created from Wall Street
Journal articles, and the PropBank (Palmer et al., 2005) that added predicate-argument
structures to the Penn TreeBank. The latter is used by the Lund parser. The parser uses three
main steps to classify the sentence, further details are described in Björkelund et al. (2010).
First the sentence is split into words (tokenized), and each word is assigned a part-of-speech
tag and the canonical form (lemmatization). Next, it produces a dependency graph, which is
a graph structure with the grammatical relations between the words. The dependency graph
is finally used in a semantic role labeler to produce the predicate argument structures. The
semantic role labeler uses binary or multiple logistic regression in a cascade of classifying
steps.

• Predicate Identification: Each word is either classified as a predicate or not using
binary logistic regression.

• Predicate Disambiguation: Determines the sense of the predicate if there are mul-
tiple senses. Lemmas that can be both verb and nouns have one classifier per part-
of-speech.

• Argument Identification: First each word is either classified as an argument or not.
Then a multi-class identifier determines the role of the word.

If the sentence is somewhat grammatically correct, the parser will produce a well-formed
machine-readable table structure.

For example, the input sentence Take all the pins and put them in the pallet produces the
output tables shown in Fig. 1. Two predicates were identified, take.01 and put.01, these are
visually presented in the first table. Because the sentence is formulated as a direct com-
mand, there is no actor (A0) and the first argument (A1) are the things being taken or
put respectively. For the second predicate, put.01, a second argument, in the pallet, was
identified answering the question where the A1 should be put. In the middle figure, the
dependency graph is visually displayed, it is a tree rooted in take. The same information
is also presented in the CoNNL-format in the last table. In the part-of-speech (POS) col-
umn, e.g., the token pins was identified as a plural noun (NNS), the as a determiner (DT ),
and and as a conjunction⁴.

⁴The word or is also a grammatical conjunction, not to be confused with the logical conjunction AND and
disjunction OR.
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Figure 1: The semantic parser outputs predicate-argument structures in the CoNNL-format.

From this table, the output can be matched to robot instructions from the skill database
and arguments can be mapped to objects in the world, as described in Papers vi and vii.
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Approach

Robotics is an engineering research, where we build and evaluate artifacts. The method-
ological approach resembles design science, where an artifact is designed in an iterative
process of problem identification, ideas, implementation and evaluation. The robotic sys-
tem is thus designed in small incremental steps, where isolated features are implemented
and tested separately. Fig. 1 presents an overview of the research work presented in this
thesis. The work started with vague ideas about what abstractions we needed to reduce the
programming workload for human operators but still be able to generate executable robot
code. Because humans express their tasks using actions on objects, we wanted to apply these
high-level concepts to instruct robots as well. Humans also use multiple modalities during
communication, e.g., language to convey high-level goals of a task, and physical interaction
to show positions or contact forces. The hypothesis was that a platform-independent repre-
sentation of reusable robot programs would simplify task programming by bootstrapping
the programming process and abstract away from the low-level details of the system. A
reusable robot program is called skill which is the capability of performing an action resulting
in a meaningful outcome. The work presented in this thesis describes and evaluates a skill
representation where a robot program consists of a semantically annotated state machine,
where each step is an action primitive that has a direct mapping to executable commands.

The work was thus carried out incrementally, first we created a skill representation and then
we evaluated it from machine and user perspective and refined it further. The knowledge
about objects, devices and tasks were modeled in OWL ontologies (Paper i). The ontologies
were stored together with instances of work cell descriptions and skills in an online database
repository that could be accessed by multiple robots. The ontology was a development from
previous research projects (Paper ii) into knowledge-based robot architectures.

The evaluations were prioritized from a pragmatical point of view, a representation that
cannot be executed on a physical robot system has very little value in practice, hence the
machine perspective was evaluated first (Paper iii).

The skill acquisition bottleneck can also be addressed by simplified programming tools
for non-experts and experts (Paper iv and Paper v). Based on experiences from the gift-
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Figure 1: An overview of the methodological approach.

wrapping and emergency stop button case studies we developed a prototype for skill-based
programming from scratch. To test the usability of our representation, we developed a
simple user interface that allowed non-experts to program reusable robot skills, and verified
in a user study that, not only could non-experts program new skills, they could also reuse
and edit expert-made skills (Paper iv). When comparing programming methods we used
time as a metric, because it corresponds to cost, but also because other metrics, such as
for example number of steps, are not equivalent between different modalities (e.g., writing
code and selecting buttons in an interface). There are two phases worth measuring, first,
the time it takes for the operator to find a robust solution (task prototyping), and the time
it takes to program a robot when a strategy is known (programming time). In the expert
evaluations, we first let the users test different strategies using their preferred programming
environment and debug their program on the robot, and then program it from scratch
using both the prototype and traditional tools (Paper v).

One challenge when programming dual-arm robots using kinesthetic teaching in contact
situations, is that the user is limited to a few modalities at once, that is, the user cannot
simultaneously insert instructions on a touch screen and demonstrate the task on the robot.
To overcome this issue, we have support for speech commands in unstructured natural
language. Each object and skill has a parameter with a set of natural language names that are
used to match programs and objects to predicates and arguments (Paper vi and Paper vii).
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Implementation and Evaluation

This section describes the most relevant implementation details and metrics of our proof-
of-concept system architecture.

1 Knowledge Integration and Services

We had identified the need for modeling knowledge about robots, devices and actions in
an extendable way. An example of device properties is given below. The knowledge was
expressed in modular OWL ontologies created using the ontology editor Protegé. These
were stored together with the instances in an RDF triple store. RDF, short for Resource
Description Framework, is a format where data is described as triples. Our implementation
uses the Sesame Workbench (OpenRDF Sesame, 2015) with multiple data repositories.
Each triple ⟨S, P,O⟩, has a subject node S, a predicate P and an object node O. Resources
and properties in RDF are identified using unique Uniform Resource Identifier (URIs).

Example: Knowledge representation

The type of knowledge that was modeled was e.g., that both a CartesianRobot
and a MobileRobot are different subtypes of a more abstract type Robot. A grip-
per with pincer fingers, PincerGripper, can be opened and closed, that is, this
functionality is represented by the skill properties Grasp and Release. The re-
verse property is also true, that is, if we look up a Grasp skill in our knowledge
base, the grippers that provide the functionality are listed. Each gripper has other
properties, such as a Mass expressed in some unit, e.g., either kg or g, as well as
conversion ratios between the units. Also, to guarantee that the information is cor-
rect, the gripper can only have one mass property. This meta-information about
reverse properties, cardinality of properties and class hierarchies was represented in
ontologies and stored in the knowledge base.
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Figure 1: Snippets from the ontologies for objects and skill types.

The object node can also be a primitive data type such as string or a number, called a literal.
Literals cannot point to any other nodes and unconnected edges are not allowed. Hence,
a triple is equivalent to a directed edge in a graph and a node can have multiple outgoing
and incoming edges. When a triple is added to the repository, a reasoner will infer new
triples for the asserted information, e.g., if an instance of type CartesianRobot is added,
the reasoner will infer that it is a Robot as well, so that when the repository is queried for
objects of type Robot, the inserted instance will be presented as well.

The core ontology, rosetta.owl, consisted of a hierarchy of robots, devices and sensors.
Primitive actions were separated into a smaller ontology, primitives.owl. Instances
of skills were typed and could be expressed as hierarchical state machines or native code.
Each state in the state machines could either be primitive actions or nested skills. Each
primitive had a type (e.g., Move, Guarded motion, or Gripper action) and a set
of typed parameters. The configuration.owl ontology contained base types for skill
requirements, conditions and parameters modeled the parameter types and imported the
unit ontologies, QUDT and OM to express quantities, units and conversions. For motions
and positions, the parameters were relative coordinate frames on objects (e.g., a guarded
motion moves along an axis of a coordinate frame of an object) in the work cell. The
ontology coordination.owl contained the base types for state machines and graphs,
e.g., contact and assembly graphs. The sizes of the ontologies are shown in Table 1.
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Figure 2: Snippets from the ontologies for preconditions and device requirements.

Snippets from the ontologies are displayed in Fig. 1, showing different robot types, different
types of skills for manipulating objects and an example of a precondition for a shield can
insertion skill. Each skill had a small ontology describing parameters, device requirements
(e.g., force sensor or a fixture), pre-and postconditions and default values for each numeric
parameter (e.g., velocities and forces). The devices listed their skills as capabilities, that is
a skill had a isSkillOf property for each device that provided it. The users could create
their own instances of skills with new parameter values and store them in an individual
repository.

Each skill had preconditions for grippers and objects, e.g., the precondition for the shield-
can insertion shown in Fig. 2 is that the shieldcan is located in the robot gripper and the
gripper is located above the fixture. The naming of the conditions, fixed frame and actuat-
ing frame were chosen to distinguish between the reference object and the robot flange, the
frames that were used for setting up the closed kinematic chain in the code generation step.
Device requirements were added in a similar fashion, e.g., the snapfit skill from the emer-
gency stop button box assembly and discussed further below, needed a fixture and force
sensing and this was modeled as a two requirements, SnapfitFictureRequirement
and SnapfitForceSensorRequirement (snippet shown in Fig. 2), describing that that
a force sensor should be placed below the fixture. The requirement is a subclass of a precon-
dition describing the gripper requirement for the snapfit, because the nut and the switch
were picked with different grippers during the assembly.

The initial user interface, the Engineering System (see Fig. 3), was implemented as a plu-
gin to ABB RobotStudio, coded in C and communicating with the KIF database using
SPARQL queries or queries to the Java Servlet services, and with the robot using the stan-
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Ontology Nbr of classes
rosetta.owl 
coordination.owl 
configuration.owl 
primitives.owl 
snapfit.owl 

Table 1: The size of the ontologies.

dard ABB controller APIs. In the Engineering System, the robot programs could be simu-
lated virtually using a virtual robot controller and CAD models of the workpieces. Using
the CAD models, relative coordinate frames (feature frames) were specified as points on the
objects and spatial constraints between the objects such as grip positions or insertion points
were specified geometrically as shown in Fig. 3.

The assembly was described using an assembly graph. Fig. 4 shows the assembly graph of
the emergency stop button box assembly. The leaves represent the workpieces: the yellow
box, stop button, nut, box bottom and switch, while inner nodes were subassemblies. The
full assembly consisted of two partially ordered subassemblies, first the stop button was
inserted into the yellow box top using a peg-in-hole skill, then the two parts were rotated
and the nut was screwed onto the stop button joining the three parts. The switch was
snapped to the bottom part of the box using a snapfit skill. In the user interface, the
assembly graph was visually represented as a tree, partially ordered bottom-up. Although
the tree was binary, three-part assemblies would be described as two ordered assemblies
like the screwing. For each subassembly, the user could select a skill instance or skill type
from the KIF skill database and from the selection, an assembly sequence was proposed
including actions for fulfilling the preconditions such as movements for picking parts and
moving into start positions (e.g., the start position for the shieldcan above the fixture). The
user was also notified of missing device requirements. All positions were initialized using
default values, e.g., above meant 100 mm in the positive z-direction of the object frame
(located e.g., at the center of the top surface of the fixture).

2 Code Generation

To evaluate the reusability and platform independence of the skill representation, we de-
veloped a proof-of-concept architecture with a skill database and a code generation service.
The skill state machine of the snapfit from the emergency box button were transferred be-
tween the dual-arm Frida and an IRB140 robot. The skill was instantiated with work cell
specific object position parameters and robot specific velocities. The Frida robot used con-
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Relation	between	two	objects

Feature	frame	=	
Local	coordinate	frame

Figure 3: The graphical user interface in RobotStudio were used to specify spatial relations between
CAD models of objects, e.g., the shieldcan and the PCB shown to the right.

tact force estimation while the IRB140 had an external force controller mounted on the
wrist. From a high-level perspective, the setups were equivalent, but the sensing and the
kinematics of the robots differed. The parameters for each instance of the skill were edited
using the Engineering System, see Fig 5. The reusable description reduced the number of
parameters that had to be specified by the operator significantly, and the parameters that
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Figure 4: An assembly graph visually describing the partially ordered subassemblies of the emergency
stop button box assembly.

Skill	created	by	expert

Actions	in	
native	code

Guarded	
motions

Reused	skill

Parameters	to	the	guarded	motion

Controller	parameters
Executable	state	machine

Figure 5: Example of task sequence for aligning a box and inserting a switch using a snapfit skill.
The user edits high-level skill parameters such as points on objects, force thresholds and velocities.
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had to be changed had a human readable format. The reference frames needed to set up the
closed kinematic chain was extracted from the graphical interface directly, and the sensor
signals were also generated to match the force sensor or estimation (converting units, adding
offsets and orientations etc.). Further details are found in Paper iii and an overview of the
steps is displayed in Fig. 5 and 6. The example in Fig. 6 was part of the emergency stop
button box, the user specified 67 parameters counting the default values for e.g., velocities,
this corresponded to 393 parameters in the executable state machine.

Nested	SFC	with	guarded	
motions

Nested	SFC	with	reused	
skill

Steps	calling	
native	code	
functions

State	resetting	all	
parameters

Step	turning	off	ExtCtrl

Step	turning	on	ExtCtrl

Figure 6: For each step in the sequence in the Engineering System, steps for the executable state
machine were generated, as well as steps for switching between the controllers and initializing the
kinematic chains. The low-level sensor and controller parameters were set automatically.
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3 Human-robot Interaction

Although the user interface in the Engineering System reduced the programming effort for
experts, it used the traditional offline programming workflow. After analyzing the use cases,
we implemented a prototype for online programming that reduced the number of features
and only generated native code. The prototype was implemented as a Windows app that
ran on a Surface Pro tablet. The prototype was used to evaluate the skill representation
from a usability and user perspective. The resulting iconic programming interface is shown
in Fig. 7.

The implementation has shortcut buttons (to the top left) that generate macros for the
most common instructions. Each instruction was represented as an icon in the program
sequences to the right. For example, the Contact Move was a macro for contact force
detection with reasonable default parameter values for velocity and torque. Synchronized
motions and rendezvous points were added in pairs. The example sequence shown in Fig. 7
contains multiple synchronized motions, master-slave motions, where the right arm follows
the left to move a lid bi-manually and insert it on a box (see Paper v). Testing and debug-
ging was facilitated by for example automatic execution of synchronized actions during
debugging, and through individual play buttons on each instruction for testing skills or
actions and updating positions with a single click. The user could also select a subset of
instructions to execute (Run Selected) or start the execution from an arbitrary point in

Figure 7: The graphical user interface for skill-based end-to-end programming.
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the program (Run from here). The task was represented as a sequence and generated
native code, which the operator could modify further. Any native code procedure could be
called from the graphical interface directly using the native code instruction. The pro-
grams could be saved as skills and were then added in the same panel as the macros. When
initializing an empty workspace, there were only reference systems for absolute coordinates
(called World in the graphical user interface) and the respective flanges, and the user had
to create new reference systems by pointing out objects using the robot arms.

The main difference compared to other tools was the support for iterative refinement and
abstraction. This was facilitated by storing both the joint values, the absolute and, if a
reference object was used, relative Cartesian position for each motion. The user could
therefore switch back and forth between the reference systems, which allowed a workflow
that started with testing in absolute coordinates, followed by the addition of suitable object
coordinate systems (such as the desired grip positions).

As presented in Paper iv, we evaluated the prototype in a user study with 21 non-expert
subjects for task prototyping and debugging of an application that they were familiar with
(Duplo building). After a three-minute introduction to the tool, the subjects had 30 min-
utes to program the robot to pick LEGO pieces and insert them robustly on a tower. In
subsequent steps, the users had to reuse either their own or an expert-made skill, and, as a
control group, some had to reprogram everything. Out of the 21, 19 succeeded in develop-
ing a robust solution for the initial task and 14 managed to complete at least one additional
step. We could also see that reuse simplified the programming significantly.

For expert programmers instructing single and dual-arm tasks, the programming time was
reduced with 70-80. Because synchronized skills were coupled and each action stored
multiple target representations, the flange position of both arms were known when the
synchronized motions started, and the reference frame of one arm could be changed to the
other to reconfigure the coordination to master-slave mode. That is, the user could switch
the master and the follower arms by changing reference frame of the master to the flange
of the other arm. The graphical interface corrected automatically dubious combinations
such as both arms moving relative to each other or one arm relative to itself. When dual-
arm skills were swapped between the arms, the position of the slave arm was inverted. The
synchronized motions could also be relative to objects, either the same or separate, and
by changing the reference system the dual-arm motions could be rotated or mirrored as
described in Paper v.

The design of the code behind the prototype is modular so that both the graphical view
(e.g., with two robot arms) and the code generation and robot communication can be
easily exchanged. The last version of the prototype also supported the natural language
programming features for English.
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Natural	Language	
Parser

Program	
Extractor

Text
Program	
statements	
(XML)

Text
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dependency	graph

Pick	the	
shieldcan…

Speech-to-text	dictation

Figure 8: The user writes or dictates the instructions to the robot, the text is sent to the program
extractor that in turn calls the semantic parser. The parse result is matched to program statements
and the resulting sequence is returned to the user interface.

4 Natural Language Programming

The natural language programming interface that we developed consisted of a chain of
speech-to-text dictation, semantic analysis of the text using the general-purpose Lund parser
for semantic role labeling, a program statement extractor algorithm that matched the sen-
tences to robot programs, and finally, an instantiation to robot programs using the knowl-
edge in the system, as shown in Fig. 8. The user gave the instructions either by typing
or using off-the-shelf dictation tools (Android speech-to-text API, Windows dictation or
Google cloud services). The text was sent to the program extractor together with a de-
scription of the robot workspace including predefined commands, user created object and
skills with names and types. The program extractor was implemented as a Java servlet and
was deployed on the KIF server. The servlet separated the instructions into sentences and
forwarded them one-by-one to the Lund parser. The output from the parser was then then
matched to the existing robot programs by using the (nested) predicate-argument structures
starting with the root predicate (Paper vi and vii).

Because of the general-purpose parser, the user could extend their own vocabulary on the
fly (Paper ix), by naming objects and skills with arbitrary names without retraining the
system. For the speech-to-text interface, we tested both the Android speech recognizer on
a tablet and the Microsoft .Net API, with best results for the Android API, however, the
free form dictation is the weakest point in the chain because it often failed in the noisy lab
environment.
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Predicates
Mapped	to	action

Arguments
Mapped	to	parameters	in	actions
Mapped	to	objects	in	world

Figure 9: The semantic output is matched to skills and objects in the robot workspace.

An example is shown in Fig. 9, where the instruction Pick the PCB from the input tray
and place it on the fixture was parsed into two predicates (pick.01 and place.01) and each
predicate had two arguments. If no other actor (A0) was mentioned, the robot was used
as default. The predicates could either be mapped to robot skills or commands from the
workspace description, or if the predicate was a wildcard (do, use, assemble and some types
of move), the arguments determined the action type, that is, if the arguments included
a skill name or a nested predicate argument structure (e.g., a condition) this would be
used. The arguments could either refer to objects in the world, measurements or skills.
The program statement extractor returned a sequence of program statements, Statement,
with actions IDs from the robot workspace and object arguments (ignoring determiners
etc.) with type and cardinality. Conditions were subtypes to Statement, either parallel
(AndStatement), branching (IfStatement) or guard conditions (UntilStatement),
which linked to the nested condition Statements, created from the nested predicate-
argument structures in the sentence as described further in Paper vii.
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In this example, the PCB is a named object in the workspace. When the argument is
in plural form, e.g., pick all PCBs or pick three PCBs, the resulting match will identify
the objects by type (PCB) and select all or three depending on cardinality. Coreferences
(it) would naively be solved by using the last object(s). When the program sequence was
returned to the user interface, it still had to be instantiated with correct parameters. E.g.,
by using the positions of the objects and spatial relations between the objects. Ambiguities
were solved to match the object types as close as possible to the parameter types in the
skills (e.g., assemble the PCB and the shieldcan using shieldcan insertion can be interpreted
as inserting the PCB on the shieldcan or vice versa, but because the shieldcan insertion skill
was created using an object of type shieldcan as a manipulated object (and PCB as a fixed
frame), the best match would use the same types. Similarly, when instantiating loops over
multiple objects, for example in the palletizing example in Fig. 1, where several pins were
moved to a pallet, the pallet or tray properties were used to generate a grid of insertion
positions.
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Summary of the Included Papers
Paper i

A Knowledge-based robotic system architecture

The paper presents our knowledge-based software architecture with an
online knowledge integration framework (KIF) containing ontologies for
robots, devices, sensors and tasks. The knowledge is modeled in mod-
ular ontologies. The base ontology is the rosetta.owl which contains
robots and devices. frames.owl describes relative coordinate frames that
can be attached to objects and are used to specify a kinematic chain. Robot
programs are described as sequential function charts in sfc.owl, and the
action parameters are described in params.owl. KIF contains a database
with semantically annotated expert-made skills that can be downloaded
by the user interface (the Engineering System) and deployed on different
types of robot systems. It also presents the reasoning services on KIF which
provides program sequence verification, a natural language interface, and
code generation that the user invokes from Engineering System.

Paper ii

Cloud-based robot architectures

The paper presents experiences from four European projects (SIARAS,
ROSETTA, PRACE and SMErobotics) and their software architecture.
The SIARAS software system supported reconfiguration of the robot
cell provided utility functions and interfaces to simulation tools in the
cloud. The siaras.owl ontology was the embryo to what later would
be ROSETTA ontology. The ROSETTA architecture was focused on
knowledge-sharing for automatic robot program generation by skill reuse.
In the PRACE project, the focus was to simplify the human-robot inter-
action by extracting task parameters from demonstrations. SMErobotics
evaluated an architecture suitable for small and medium sized enterprises
(SMEs) and formulated the requirements of a useful skill representation.
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Paper iii

Code generation for force-controlled skills

The paper presents the code generation process where high-level sequences
of parameterized actions created in the Engineering System are trans-
formed into executable force-controlled robot code for the external force
controller. The steps in the sequence can either be position-based robot
motions relative to object positions, reusable skill implementations down-
loaded from KIF, or created as guarded search motions using the coordi-
nate frames specified on objects using CAD models in the virtual simula-
tion environment. The guarded motions have a search direction along one
of the axes on a coordinate frame, a stop condition (a force value) and pos-
sible force-constraints in other directions than the search. The executable
code is a state machine in the Grafchart language where additional steps
for switches between the position and the force controller are added, the
kinematic chain is setup automatically using the robot type and the frame
parameters. Each guarded search sets new reference values for force and
velocities in different directions, as well as the transition conditions. The
code generation works for four ABB robots.

Paper iv

Prototype evaluation for simplified programming of reusable robot skills

After two case studies, a programming prototype was developed to sim-
plify the robot programming and debugging using a graphical user inter-
face together with lead-through programming. The prototype was evalu-
ated in a user study with 21 non-experts as well as an expert programming
test. The users had to program a Duplo building task using a single-arm
and macros for motions, gripper actions and primitives for vision and
contact force estimation. The result showed that 19 out of 21 non-experts
could program the task after a 3-minute introduction. The average time
to finish the task was 20 minutes. Additional tasks were carried out to test
skill reusability by dividing the test subjects into 3 groups: the first group
reused their own skill, the second group received an expert-made skill and
the third group had to program everything from scratch. The sample set
was small, however, we could conclude that the expert-made skill was the
easiest to reuse. Another interesting observation was that the correlation
between success rate was very weakly correlated to the users’ self-reported
experience with programming and machinery. The programming time for
the expert was reduced by 80.
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Paper v

Reusing and transforming synchronized dual-arm skills

The prototype from paper iv was further developed to support dual-arm
synchronized motions, either in master-slave configuration or relative to
object coordinate frames. Traditional dual-arm robot programming treats
the robot arms as two separate tasks and synchronization adds a large over-
head. In our prototype, the synchronized motions are treated as linked en-
tities and automatically executed, deleted or moved in pairs. The linking
lets the user swap the programs for each arm in master-slave configurations
and the master arm will be switched and all relative positions updated to
the inverse transformation for the (new) slave arm. The prototype was also
evaluated for task transformations in a gift-wrapping application. When
switching the arms the relative positions for the arms can either be rotated
if a single point of reference is used. Using two reference pairs of opposite
points, the task was mirrored after the switch.

Paper vi

Natural language programming of industrial robot tasks

A method for natural language programming was presented where the out-
put from a general purpose statistical parser with semantic labeling was
matched to high-level robot skills and objects in the robot’s workspace.
The semantic output from the parser, created by Björkelund et al. (2010)
consists of a table of predicate-argument structures, where the predicates
corresponds to the action or verb in the sentence and the arguments are
the objects acted upon. The architecture had a small library of robot skills,
each with natural language labels and position parameters relative to ob-
jects. Mapping the predicates to robot skills and the arguments to the
object parameters, a skeleton of a task could rapidly be generated from
written unstructured natural language descriptions. The functionality was
demonstrated with pick-and-place tasks. The objects were matched to the
arguments by name or type and coreferences (it) were solved naively by
using the previously identified object. The knowledge from the system was
used to set parameters for the generated action sequence, e.g., the skills for
opening and closing the gripper were extracted from the device descrip-
tion and spatial constraints between objects were used as parameters for
relative positions.
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Paper vii

Extracting constraints from natural language instructions

The natural language programming interface from Paper vi was further
developed to support the generation of force-controlled search motions,
control structures such as loops, parallel constraints and skills as argu-
ments. The output from the semantic parser can be ordered as a tree where
the main activity is the root (or higher up in the tree). The tree and the
semantic labels are matched to program structures using an algorithm that
extracts conditionals for each predicate. That is, predicate-argument struc-
tures that are nested by while, until, if and when. The nested predicate-
argument structures were labeled by the parser as temporal or locational
arguments. The until-conditions were mapped to transition conditions
in the guarded motions and the while-conditions were mapped to parallel
constraints, for example a constant force during a search. The conditions
could be nested using and or or and express sensor readings or by using
keywords for default parameters (contact and timeout). When multiple
objects are mentioned, e.g., take three needles and put them in the pallet,
the cardinality is used to generate a loop over three objects with the type
needle and, one-by-one, pick them and place them in a pallet. The ambi-
guity from the example sentence (whether to pick all three needles at once
and then placing them one-by-one) was solved by using the knowledge
about the gripper (if it could hold more than one object) and the pallet,
which has a grid of potential positions. The conclusion of the paper was
that the low number of robot skills available in the library was a limiting
factor in the application.
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Discussion

Before we reach the robotized society of tomorrow, with mechanical co-workers and deliv-
ery drones, where human labor is precious and pleasant, we have to find solutions to several
challenges. To reiterate a few: present day robots are difficult to instruct and interact with,
and the hard work results in tailored applications that are neither general, reusable nor ro-
bust. The robots have poor perception and situational awareness, and unforeseen situations
end in failures. Even if failure is detected, they can hardly reason about why, or what to
adjust or redo to complete the task. For the human operator, it can be cumbersome to
resolve the issues and correct the program accordingly.

Researchers have addressed these issues for years. There are high-level planning approaches,
low-level sensor control, and user experiments evaluating how people prefer to instruct
robots. We have reviewed several intermediate action representations that support contrast-
ing efforts, focusing on various aspects, from verbalizing actions, to solving collaborative
dual-arm motions. However, we cannot find a useful representation by just looking at the
question from one perspective, because the problem is the gap between how humans and
machines describe actions and perceive objects, and the robot systems have both symbolic
AI reasoning processes and robotic devices acting and sensing in the real world. Humans
describe tasks in high-level unstructured language, while the reasoners work with high-level
formal languages and the physical systems interpret and execute tasks in low-level platform-
specific (structured) code. We needed to use a holistic approach, because the problem of
simplification of robot programming is not about optimizing one single algorithm, it is
about creating a system that functions efficiently as a whole.

In the skill representation that we developed, we attempted to take all these perspectives into
account. We used a high-level ontological approach where we modeled symbolic knowl-
edge, as well as code generation for the low-level platform-specific code. We evaluated
it from a user perspective, to verify that the representation was useful and simplified the
robot programming. We also presented a method for extracting program statements from
unstructured natural language instructions. To be able to carry out our experiments, we
developed a robotics software architecture with a knowledge base, reasoning services, pro-
gramming interfaces and task execution.
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The work was carried out iteratively. First a knowledge framework was developed where we
modeled complex skills and evaluated the code generation and skill transfer. However, this
required expert-made skills as well as detailed annotation, which was time consuming to
create. To bootstrap the skill acquisition, we developed a (simplified) user interface where
both non-experts and experts could program skills from scratch. The semantic annotations
were extracted using natural language, which the user could then use to interact with the
robot. In the following sections, we will discuss the implementation in more detail and
compare with related work.

1 Knowledge Representation

First, we developed a knowledge-based architecture and the core ontological concepts. Pre-
vious work in the robotics domain used ontologies to model mostly positions and simple
kitting applications. Only recently Perzylo et al. (2016) provided a model of geometrical
knowledge and spatial constraints in a suitable ontology. Our work extended the state-
of-the-art to include assembly skills, parameters, specification of kinematic chains and the
description of devices and robots. The focus was industrial assembly operations. The on-
tologies are modular to avoid conflicts and let the user select only the dependencies they
want.

We chose to implement the database as an RDF triple store to provide reasoning services
because it was more flexible than a relational database with fixed tables and there existed
multiple inference engines. One drawback with the approach is that queries to the reposi-
tory can become very slow if not expressed in an effective manner, for example, by explicitly
binding subgraphs to variables. Another option that we briefly investigated was to use a
graph database, Neo4J, where the literal properties can be directly attached to the nodes so
that the information is stored in a compact format, however, there was no inference engine
that we could use.

The skills are shared in a cloud-based architecture where multiple robots can access the
same skill database and knowledge-based AI services. Other architectures have explored
functionality in other directions, e.g., were used to generate PDDL from action descriptions
to automatically plan and replan tasks on a high level. While, e.g., RoboEarth (Waibel et al.,
2011) populated their skill database from natural language text of, e.g., cooking instructions,
such approach assumes that there exist executable skills for each instruction, an assumption
we could not make because our domain focuses on assemblies of novel products.

Our approach is philosophically different from the Action-Object-Complexes, in that it is
not the object that affords skills, the objects are mere parameters to the skills, rather, it is
the devices that have skills as capabilities. In this way, we do not have to model the human
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as an object during user interaction, and, e.g., dancing and waving are simply non-object
relative actions. Otherwise, the concept of pre- and postconditions are similar, however,
they ground the actions using trajectories extracted from human demonstrations encoded
as HMMs, while we focused on providing programming tools that let the user manipulate
the representation directly.

2 Code Generation

During the initial evaluation presented in Paper iii, we focused on the low-level code gener-
ation functionality, therefore ignoring the complexity of the system setup from a usability
perspective. It had required experts from automatic control to create the force-controlled
skill and experts in knowledge representation to create the ontology descriptions. The as-
sumption that a robot system would have access to a library of robust expert-made skills did
not scale, because the acquisition of expert-made general-purpose skills was a bottleneck
in the system. Worse yet, just because the generated programs were syntactically correct
and executable, did not mean that the program worked well on the new robot, e.g., the
velocity and force parameters had to be adapted depending on the robot and sensor type.
The latter is a focus of the related field of parameter learning, where automatic adaption and
exploration of parameters can be used to optimize assemblies. Learning can also be used to
detect errors, e.g., by learning a nominal force profile and then detecting deviations from
it. The work to automatically adapt parameters during deployment was out of scope of this
thesis. However, the reason the skills and the parameters were typed was to simplify the
use and integration of existing algorithms for low-level parameters optimization.

3 Human-robot Interaction

High-level approaches are limited by the small number of executable robot skills in the
library, where the knowledge must be modeled and added into the system by an expert
in knowledge engineering or in robotics. Hence, we had to bootstrap the knowledge ac-
quisition by developing a simple programming prototype that non-expert operators could
use, which was evaluated in Paper iv and v. It limited the usage to object specification and
sequential skill programming of dual-arm robot programs. For practical reasons, specifi-
cally the high implementation effort to integrate functionality in an experimental lab setup,
we limited what type of features we evaluated in the user study, e.g., we left out speech,
trajectories and the teaching of force-controlled policies and vision calibration. Also, the
functionality described in the chronologically earlier papers was not evaluated, that is, the
users did not try more complex guarded motions or reuse skills between different types
of robots, which were discussed in for example Paper iii. This is a very relevant direction
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of future work and the user interaction for instructing and refining trajectories and force-
controlled tasks is an active research area in the robotics community.

In the gift-wrapping application, the collaborative aspects of the task had to be reduced
to preparation work (putting the paper and the box in front of the robot), starting the
process through a graphical user interface and manually resume the program after the user
gave a ribbon to the robot. This interaction had to be programmed in native code and
the current user interface does not aid the non-expert user in creating collaborative tasks.
In related work, multi-disciplinary teams with both robot programmers and interaction
experts developed interfaces for programming of interactive tasks using high-level modules.
Non-expert programming of collaborative human-robot tasks from scratch is an exciting
area of future work.

4 Skill Creation

For a skill library to be useful, the intended users must be able to understand, adapt and
modify the downloaded skills. Also, it must be easy to create and add new skills to the
library for both experts and non-experts. While other approaches use multiple demon-
strations to train skill models, in our context this approach is intractable for two main
reasons: even a single demonstration is time consuming to carry out sufficiently well, and
a black-box model with implicit (hyper-)parameters that the operator cannot interpret is
undesirable. When using demonstrations, it must be clear what and how the user should
demonstrate, e.g., the operator can use a haptic device to input a specific parameter value
for a force-controlled task. We developed a prototype interface for one-shot instructions
where non-experts could program reusable skills from scratch.

5 Dual-arm Manipulation

The programming of dual-arm motions poses a challenge from both a programming and
a control point of view. The position- and force-based control of coupled arms can be
handled by, e.g., coordinated DMPs (Zhou et al., 2016) or by setting up a closed kinematic
chain using the iTasC formulation (Stolt et al., 2011). Instructing multiple robot arms to
carry out coordinated tasks adds a potentially large overhead for the operator, hence related
work has investigated specifying the movements of multi-robot systems as trajectories on
the workpiece or by extracting trajectories from human demonstrations. Synchronized
tasks are difficult to extract from for example kinesthetic demonstrations using the robot,
because the user has to physically move both arms simultaneously which is only feasible
on small robots. Other approaches track human demonstrations using vision, which then
must be mapped to the robot.
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However, in our gift-wrapping use case, we used the full arms to move and hold the pack-
age and these full arm motions are not easily extracted from observations of humans or
expressed as end-effector trajectories relative to the object. Instead, we focused on reducing
the workload during the programming process for expert users. By simple means such as
debugging actions in pairs and setting up the master-slave configuration with default val-
ues, we could significantly decrease the programming time for the dual-arm tasks in our
experiment. While programming dual-arm motions, especially in contact, the need for
robust speech commands became evident.

6 Natural Language Interfaces

The system used general purpose components to analyze the language commands, and
especially the speech-to-text dictation was a weak link in the chain because of noisy lab-
oratory environments, non-native English speakers and application-specific user specified
vocabulary (e.g., PCB, snapfitskill). In further experiments, components of the system were
replaced, e.g., the different dictation APIs were evaluated, the semantic parser was switched
to Swedish and mapped to English program descriptions using dictionaries and synonyms.
The arguments to the actions can be sensor values, however, the examples using force pa-
rameters were somewhat artificial, because it is more suitable to input the forces using
other means, e.g., haptic devices or external force measurements. Other applications that
use natural language programming in robotics extract, e.g., spatial information from the
sentences for direction following for mobile robots. They learn their models from examples
and the resulting application can effectively run locally on a battery-driven mobile system,
instead of using a cloud-based solution. One drawback with such an approach is that if
the user wants to extend the vocabulary, it requires multiple examples and retraining. This
can be mitigated with generated grammars as presented by Perzylo et al. (2015a) resulting in
a structured language interface. The related work that used intermediate representations,
such as the verbalized effects, was verb-centric, mapping the verbs to robot actions. While
the predicate-argument structures that we use are verb-centric as well, the skills can be the
argument if the predicate is a wildcard in sentences such as Do a snapfit and Assemble the
shieldcan and the PCB using the shieldcan insertion skill. The use of conditions and parallel
action extractions is to our knowledge not well investigated in the robotics community.

The modular architecture allowed the components to be switched, e.g., both the Engineer-
ing System and the Windows app called the same program extractor that was deployed as
a Java servlet on the KIF server. We created an English version as well as Swedish version
of the servlet, the first was presented in Paper vi and vii, the bilingual program extractor
was presented in Paper xiii. The Swedish statement extractor implemented the same algo-
rithm as presented in Paper vii, but a few language adaptions had to be made because the
Swedish semantic parser was less robust and it used automatic translation to find skills with
originally English natural language names.
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7 Future Work

Future work can be extended in several directions, here I will only mention the ones that I
personally am interested in investigating. One of the programming features that has been
discussed in the literature but that was out of scope of this work, was the programming of
fully collaborative tasks, where non-experts create a task involving dialogues and physical
interaction with humans. Also, psychological aspects in human-robot interaction, such as
trust (see, e.g., Sadrfaridpour et al., 2016) are out of scope.

While the presented user interface supports some simple debugging and automatic trans-
formations of the program and high-level features such as natural language support, many
interesting areas of research have been left out. For example, the dialog system for user
interaction is very rudimentary, so potential future work includes a robot system that asks
questions to resolve ambiguities and collect user data to provide helpful suggestions, e.g.,
by presenting suitable skills from the database depending on what types of objects the user
adds. Also, the semantic extraction is limited to skill and object types (and parameter types),
and pre- and postconditions still need more advanced users.

Last words

There are people who look towards a robotized future with dread, regarding automation
as a threat to jobs and society. Others look forward to a life in leisure in a post-scarcity
economy. Some think robots will take over the world, either out of malice or ignorance.
If the present is a book, it is open-ended. I am aware that I cannot make any assumptions
about the unknown, but I believe, that to make robots helpful, they need to be able to
comprehend what we want and not just obediently follow their programming. They need
to be able to understand the meaning of their actions and goals, and the reason behind
them. They need to know when to follow a human command and when to refuse. They
need knowledge.
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ABSTRACT

When robots are working in dynamic environments, close to humans lacking extensive knowledge
of robotics, there is a strong need to simplify the user interaction and make the system execute as
autonomously as possible, as long as it is feasible. For industrial robots working side-by-side with
humans in manufacturing industry, AI systems are necessary to lower the demand on programming
time and system integration expertise. Only by building a system with appropriate knowledge and
reasoning services can one simplify the robot programming sufficiently to meet those demands while
still getting a robust and efficient task execution.

In this paper, we present a system we have realized that aims at fulfilling the above demands. The
paper focuses on the knowledge put into ontologies created for robotic devices and manufacturing
tasks, and presents examples of AI-related services that use the semantic descriptions of skills to help
users instruct the robot adequately.

Robotics and Computer-Integrated Manufacturing, 33 (2015), pages 56–67,
DOI: 10.1016/j.rcim.2014.07.004.
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1 Introduction

The availability of efficient and cheap computing and storage hardware, together with intensive
research on big data and appropriate processing algorithms on one hand, and on semantic web and
reasoning algorithms on the other hand, makes the existing results of artificial intelligence studies
attractive in many application areas.

The pace of adoption of the knowledge-based paradigm depends not only on the complexity of the
domain, but also on the economic models used and the perspective taken by the leading actors.
It may be quite well illustrated by opposing the service robotics area (mostly research-oriented,
mostly publicly funded, using open source solutions, acting in non-standardized and not-yet-legally
codified domain) with industrial robotics (application-oriented, privately funded, using normally
closed software, enforcing repeatability and reliability of the solutions in legally hard-controlled
setting).

When robots are working in dynamic environments, close to humans lacking extensive knowledge
of robot programming, there is a strong need to simplify the user interaction and make the system
execute as autonomously as possible (but only as long as it is reasonable). This also motivates the
integration of AI techniques into robotics systems. For industrial robots working side-by-side with
humans in manufacturing industry, AI-based systems are necessary to lower the programming cost
with respect to the required time and expertise. We believe that only by building a system with
appropriate knowledge and reasoning services, we can simplify the robot programming sufficiently
to meet those demands and still get a robust and efficient task execution.

In this paper, we present a knowledge-based system aimed at fulfilling the above demands. The
paper is focusing on the knowledge and ontologies we have created for the robotized manufacturing
domain and is presenting examples of AI-related services that are using the semantic descriptions of
skills to help the user instruct the robot adequately. In particular, the adopted semantic approach
allows us to treat skills as compositional pieces of declarative, portable and directly applicable knowl-
edge on robotized manufacturing.

The paper is organized as follows: first we introduce the robot skill, then we describe the system
architecture. Next section introduces our robot skill ontology and other relevant ontologies available
in the knowledge base, as well as some services provided by the system. Next we introduce the
interface towards the user, i.e. the Engineering System, and briefly describe the program execution
environment exploiting the knowledge in a non-trivial way, then we describe the related research.
We conclude by suggesting future work.

2 Robot Skills

Our approach is anchored on the concept of a robot skill. As it may be understood in many different
ways, both by humans and machines, it needs to be properly defined and made usable in the context
of our domain of applications. The presentation in this section adopts a historical perspective,
showing how our understanding of skills pushed forward the capacities of systems we have created.
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Our earliest deployed system has been developed in the context of the EU project SIARAS: Skill-
Based Inspection and Assembly for Reconfigurable Automation Systems. Its main goal was to build
fundamentals of an intelligent system, named the skill server, capable of supporting automatic and
semi-automatic reconfiguration of the existing manufacturing processes. Even though the concept
of skill was central, we have assumed devices as the origin of our ontology. Our idea then has
been that skills are just capabilities of devices: without them no (manufacturing) skill can exist. A
device can offer one or more skills and a skill may be offered by one or more devices. We have
not introduced any granularity of such distinction; all the skills were, in a sense, primitive, and
corresponded to operators as understood by AI planning systems (models of operations on the world,
described using preconditions, postconditions, sometimes together with maintenance conditions).
This understanding laid ground to the development of a robotic skill ontology, siaras.owl, that
has been used to verify the configurability of particular tasks given current robotic cell program
expressed as a (linear) sequential function chart (SFC). This approach has been proven to be valid,
but the ontology grew quite fast and became problematic to maintain, given dozens of robots with a
number of variants each, thus multiplying the number of devices. The details of SIARAS approach
have been described in Haage et al. (2011). Fig. 1 and Fig. 2 illustrate the basic hierarchy of skills
available in the siaras.owl ontology.

The dual hierarchy, that of devices, has been illustrated in Fig. 3 and Fig. 4, while Fig. 5 shows some
of the properties that can be attributed to devices.

The deficiencies of the SIARAS ontology, that is, atomicity of skills and devices, fixed parameter-
izations and scalability issues, have led us to reconsider the idea. These time devices did not play
a central role any longer, but rather skills have been put in the center. In the ROSETTA project¹
the definition of skills has been based on the so-called production (PPR) triangle: product, process,
resources (Cutting-Decelle et al., 2007) (see Fig. 6). The workpieces being manufactured are main-
tained in the product-centered view. The manufacturing itself (i.e., the process) is described using
concepts corresponding to different levels of abstraction, namely tasks, steps, and actions. Finally,
the resources are materialized in devices (capable of sensing or manufacturing). The central notion
of skill links all three views and is one of the founding elements of the representation.

In case of a robot-based production system, skills may be defined as coordination of parameterized
motions. This coordination may happen on several levels, both sequencing (expressed, e.g., via a fi-
nite state machine or a similar formalism), configuring (via appropriate parameterization of motion)
and adapting (by sensor estimation). On top of this approach, based in our case on feature frame
concept (De Schutter et al., 2007), we have built a set of reasoning methods related to task-level
description, like, e.g., task planning. The details are presented in the following sections

3 Architecture

The generic setup describing the intended usage of our approach is illustrated in Fig. 7. The system
architecture is very roughly depicted in Fig. 8. The Knowledge Integration Framework (KIF) is a

¹RObot control for Skilled ExecuTion of Tasks in natural interaction with humans;
based on Autonomy, cumulative knowledge and learning, EU FP7 project No. 230902,
http://www.fp7rosetta.org/.
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Figure 1: Manipulation and handling skills, as defined by SIARAS ontology.

server that contains data repositories and ontologies. It provides computing and reasoning services.
There are two main types of clients of the KIF server, the Engineering System, which is a robot
programming environment, and the robot task execution system.

The task execution system is a layer built on top of the native robot controller. Given the task, the
execution system generates the run-time code files utilizing online code generation (see Section 5),
then compiles and executes the code.

The Engineering System uses the ontologies provided by KIF to model the workspace objects and
downloads skills and tasks from the skill libraries. Similarly, new objects and skills can be added to
the knowledge base by the Engineering System. Skills that are created using classical programming

75



Figure 2: Top skill classification, as defined by SIARAS ontology.

tools such as various state machine editors (like, e.g., JGrafchart²), can be parsed, automatically
annotated with semantic data and stored in the skill libraries.

The services, described later in the paper, are mainly used by the Engineering System to program,
plan and schedule the tasks.

²http://www.control.lth.se/grafchart/
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Figure 3: Manipulation and handling devices, as defined by SIARAS ontology.

4 Knowledge Integration Framework

The Knowledge Integration Framework, KIF³ is a module containing a set of robotics ontologies, a
set of dynamic data repositories and hosting a number of services provided for the stored knowledge
and data. Its main storage structure is a Sesame⁴ triple store and a set of services stored in Apache
Tomcat⁵ servlet container.⁶

The ontologies we use in our system come from several sources and are used for different purposes.

³We realize the name coincidence with Knowledge Interchange Format (Genesereth and Fikes, 1992), but
as this name has been used for more than six years by now, we have decided to keep it.

⁴http://www.openrdf.org
⁵http://tomcat.apache.org
⁶Technically speaking, the triple store is also a servlet.
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Figure 4: Sensor devices, as defined by SIARAS ontology.

The main, core ontology, rosetta.owl, is a continuous development aimed at creating a generic
ontology for industrial robotics. Its origins is the FP6 EU project SIARAS described earlier in
Section 2. It has been further modified within the FP6 EU project RoSta, (Robot Standards and
reference architectures, http://www.robot-standards.eu/, see Nilsson et al., 2009). Within the FP7
EU Rosetta project this ontology has been extended, refactored and made available online on the
public KIF ontology server http://kif.cs.lth.se/ontologies/rosetta.owl. However,
this is just the first of a set of ontologies available on KIF and useful for reasoning about robotic
tasks.

The ontology hierarchy is depicted in Fig. 9, where arrows denote the ontology import operations.
We used extensively the QUDT ontologies and vocabularies (Quantities, Units, Dimensions and
Types, initiated by NASA and available at http://www.qudt.org) in order to express physical
units and dimensions. This ontology has been slightly modified to suit the needs of our reasoner.
However, as QUDT ontologies led to inconsistencies, we have introduced the possibility to base
the quantities, units and dimensions on the alternative OM ontology⁷ (Rijgersberg et al., 2013).

The core Rosetta ontology (as its predecessors) is focusing mostly on robotic devices and skills.
According to it, every device can offer one or more skills, and every skill is offered by one or more
devices. Production processes are divided into tasks (which may be considered specifications), each

⁷http://www.wurvoc.org/vocabularies/om-1.6/
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Figure 5: Device properties, as defined by SIARAS ontology.

realized by some skill (implementation). Skills are compositional items: there are primitive skills
(non-divisible) and compound ones. Skills may be executed in parallel, if the hardware resources
and constraints allow it.

On top of the core ontology we have created a number of ”pluggable” ontologies, serving several
purposes:

Frames The frames.owl ontology deals with feature frames and object frames of physical ob-
jects, normally workpieces involved in a task. In particular, the feature frames are related to ge-
ometrical locations and therefore the representation of location is of major importance here. The
constraints among feature frames are expressed using kinematic chains (De Schutter et al., 2007),
also introduced by this ontology.

Injury The injury.owl ontology deals with the levels of injury risks when humans and robots
cooperate, or at least share common space. The ontology specifies the possible injury kinds, while
the associated data, either extracted from earlier work (Deutsche Gezetzliche Unfallversicherung,
2011), or gathered during the Rosetta project (Matthias et al., 2012), are provided as the upper limit
values that may be used in computations of injury risks or of evasive trajectories for a robot.
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Figure 6: The PPR model, with skills as common coordinating points for the three views.

Params Each skill may be parameterized in a number of ways, depending on the granularity level
of control, available information or the demands posed on the skill. In order to provide knowl-
edge about skill parameterization for knowledge services (like, e.g., task consistency checking), the
params.owl ontology describes skills and their mandatory and optional parameters, their units
and constraints.

SFC The sfc.owl ontology characterizes various behavior representations using variants of exe-
cutable state machines (Sequential Function Charts are one of them; the others included are Open-
PLC, Statecharts, rFSMs and IML). It also contains the semantic description of several graph-based
representations of assembly, like assembly graphs, constraint graphs or task graphs (Malec et al.,
2013), that may also be considered to be behavior specification, although at a rather high level of
abstraction.

This solution illustrates two important principles of compositionality and incrementality: every
non-trivial knowledge base needs to be composable out of simpler elements, possible to be created
by a single designer or team without the need to align it with all the other elements. The alignment,
or conflict resolution (e.g., inconsistency), should be performed (semi-)automatically, after plugging
the element into the system. So, every ”top” ontology should only be forced to adhere to QUDT
(or OM) and ROSETTA ontologies, possibly neglecting other elements existing in parallel.

The incrementality principle ensures that every ”top” ontology should be amenable to incremental
change without the risk of breaking the whole system. Thus, changes to, e.g., Params ontology
should not affect the consistency and utility of, e.g., SFC ontology. On the other hand, one can
imagine situations where changes in one module (e.g., introduction of a new constraint type between
feature frames, described in frames.owl) might facilitate improvements in another (e.g., easier
specification of parameters for a given skill, described in params.owl).

Besides storing the ontologies, the triple store of KIF provides also a dynamic semantic storage used
by Engineering System to update, modify and reload scene graphs and task definitions. Depending
on the kind of repository used, some reasoning support may be provided for the storage function-
ality. More advanced reasoning, and a generic storage of arbitrary kind of data, is provided by KIF
services, described below.
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Figure 7: The Knowledge Integration Framework provides services to the Engineering System and
the Task Execution. The latter two communicate during deployment and execution of tasks. The
Task Execution uses sensor input to control the robot and tools.

5 Knowledge-Based Services

The knowledge base provides storage and reasoning services to its clients. The most basic service it
offers is access to libraries with objects and skills, where the user can upload and download object
descriptions and task specifications. Some of them are stored with semantic annotations, as triples,
e.g., workpieces, scene graphs or skill definitions. Others are stored as uniform chunks of data
without semantically visible structure (e.g., RAPID programs or COLLADA files), although other
tools may access and meaningfully manipulate them for various purposes.

The services are mostly user-oriented, providing programming aid, and can be used step-by-step to
create a workspace and then to refine a task sequence from a high-level specification to low level
code. The workspace is created by adding a robot, tools, sensors and workpieces to the scene, giving
the object properties relevant values and defining relations between objects (see Section ??).

The user specifies a task using the workpieces and their relations. On the highest level, the task is
represented by an assembly graph (Malec et al., 2013). An example assembly graph of a cell phone is
shown in Fig. 10. The assembly graph is normally a tree (not necessarily binary). The leaves are the
original workpieces which are joined into subassemblies represented by parent nodes and the full
assembly is represented by the root. Each subassembly can be annotated by more information, such
as geometrical relations between the objects, or what type of joining mechanism to use (e.g., glueing,
snapping, screwing). The tree imposes a partial order on the operations, where child assemblies have
to be carried out first. When going from the task specification given by the assembly graph to an
executable program, the task has to be sequentialized. Depending on the robot, or on the number
of collaborating robots, the sequence can be realized in several ways, hence, an assembly graph
specification can be shared by several robot systems, even though the sequences realizing it will
differ.
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Figure 8: The Knowledge Integration Framework provides services to the Engineering System and
the Task Execution. The latter two communicate during deployment and execution of tasks. The
Task Execution uses sensor input to control the robot and tools.

KIF provides a planning service that transforms an assembly graph to a sequence of operations using
preconditions and postconditions of the skills. Initially the service verifies the device requirements
of a skill. Fig. 11 displays the device requirements of an implementation of the skill that inserts
a shieldcan onto a printed circuit board (PCB). This skill has only three device requirements: a
mounted tool (which is a manipulation requirement), a fixture and a force sensor, which (though it
is not displayed in the figure) must be aligned vertically. When planning the sequence, the planner
adds actions that fulfill the preconditions (see the example in Fig. 12), such as moving objects into
place.

However, the sequence can also be created directly by the user, either manually or by using a natural
language instruction interface. Later, the same planner can be used to verify that the sequence fulfills
the preconditions of each action (Fig. 13).

The natural language interface is described in more detail elsewhere (Stenmark and Nugues, 2013;
Stenmark and Malec, 2014b). The user either dictates or types English instructions in a text field (see
an example in Fig. 14). The input text is sent to a natural language service on KIF where the sentences
are parsed into predicates (verbs) and their corresponding arguments. Each verb has several different
senses depending on the context and meaning, e.g., the predicate take in take off the shoes has sense
take.01, but in the sentence Take on the competition it has sense take.09. The shoes and (on) the
competition are arguments to the predicates. Each sense has a number of predefined arguments for,
e.g., the actor doing the deed, the object being manipulated, the source or the destination. These
arguments are labelled as A0, A1, etc. Both the sense of the verbs and the arguments are determined
using statistical methods described in Björkelund et al. (2010).

The natural language service outputs a preliminary form of program statements derived from the
sentences. However, the matching to actions and objects existing in the world is done in the En-
gineering System. In the simplest form a program statement contains an action (the predicate)
and a few arguments (objects). The action is then mapped to a robot program template while the
arguments are mapped to the physical objects in the workspace, using their names and types. Ac-
tions described this way can be picking, placing, moving and locating objects. More complicated
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Figure 9: The KIF ontologies used by the Rosetta project. In case an ontology is openly available,
the type of license is quoted.

Figure 10: An assembly graph for a partial assembly of a cell phone. A metal plate, a shield can, is
pressed onto a printed circuit board (PCB) and a cell phone camera is inserted into a socket. The
camera socket is then fastened on the PCB.

program structures can be expressed using conditions that have to be maintained during the action
or for stopping it, as in the sentence Search in the x-direction until contact while keeping 5 N in the
z-direction. The example sentence Assemble the shieldcan to the PCB using ShieldCanInsertion given
in Fig. 14 has a skill, ShieldCanInsertion, as argument to use (which in turn is a nested argument to
assemble, see bottom of Fig. 15). Use is not mapped to a robot action, but rather prompts a search for
a corresponding skill in the KIF libraries. The skill is instantiated with the arguments as parameters
or, when no matching parameter can be found, with default values. For example, the ShieldCanIn-
sertion is described in the ontology with an actuated object and a fixated object, which are mapped
to A1 – the shieldcan and A2 – the PCB. These programs can be further edited or directly executed
on a physical robot or in the virtual environment of the Engineering System.

There exists also a scheduling service that helps the user to assign actions to a system with limited
resources. The current implementation of the service is based on the list-scheduling. The manip-
ulation skills require different end effectors, e.g., for gripping and for screwing. By adding a tool
changer to the cell, the robot can change end effectors during the task. The time it takes to change
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Figure 11: The device requirements of the skill ShieldCanInsertion are modelled in an ontology. The
ManipulationRequirement which several skills inherit from, is that a gripper has to be mounted
on the robot. The ShieldcanFixtureRequirement and the ShieldcanForceSensorRequirement list
that there must exist a fixture and a force sensor that have to be vertically aligned (not shown in the
picture).

Figure 12: There are three preconditions to the ShieldCanInsertion skill. The skill has two feature
frames (relative coordinate frames) as input parameters, where one is a reference object frame and the
other is attached to the object in the gripper, i.e., an actuating frame. The first precondition is that
the object with the reference frame has to be on the fixture. Secondly, the object with the actuating
frame should be attached to the gripper, see Fig. 13, and finally, the position of the actuating object
should be above the fixture. Imprecise geometrical relations such as “Above” are given concrete
values by the Engineering System.

Figure 13: The ontology description of the precondition ShieldcanHoldActuatingFrame which is a
subclass of ObjectAttachedToGripper.

tools is added as penalty on the priority of the actions. When there are multiple arms, one arm can
of course change a tool while waiting for the other arm to finish its operation during a two-arm
manipulation skill. A typical input to the service can be to schedule a partially ordered task on a
two-armed robot with three tools and one force sensor. Each action lists its estimated time and the
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Figure 14: The user can describe the task using English sentences.

Figure 15: The result given by the parser of the sentence from Fig. 14. At the top, each line displays
a found predicate with its arguments. Assemble was evaluated to assemble.02 with the arguments
the shieldcan (A1), to the PCB (A2) and a manner using shieldcaninsertion. The bottom of the picture
displays the dependency graph (actually a tree). The arrows point, beginning from the root of the
sentence, from parents to children. Each arrow is labelled with the grammatical function of the
child. Under each word the corresponding part-of-speech tag (determiner - DT; noun - NN, etc)
can be found.

resource requirements, required tool(s) and resources. Given the estimated time to change tools and
the number of cycles, the service will output a suggested schedule that minimizes the total time.

The last service named here is a code generation service used by the task execution system. It is
described below in Section 7.
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6 Engineering System

The Engineering System is a high level programming interface implemented as a plugin to the pro-
gramming and simulation IDE ABB RobotStudio ⁸, shown in Fig. 16. When creating a station,
objects such as the robot, workpieces, sensors, trays and fixtures can be manually generated in the
station or downloaded from KIF together with the corresponding ontologies. A physical object is
characterized by its local coordinate frames, the object frame and a number of relative coordinate
frames called the feature frames, see Fig. 17. Geometrical constraints are expressed as relations be-
tween feature frames, and may be visualized as in Fig. 18. An example program sequence is shown
in Fig. 19. The program has a nested hierarchy, where steps (such as pick or place) may contain
atomic motions and gripper actions.

7 Execution

The sequence from Fig. 19 is sent to the execution system, which in turn calls the code generation
service that returns a complete state machine (serialized in an XML file), which is visualized, com-
piled and executed using JGrafchart tool (Lund University, 2013). It creates a task state machine,
where each state is either a call to primitive functions on the robot, or a nested skill. Fig. 20 shows
a small part of a generated state machine. Each skill is either retrieved from KIF and instantiated
with the new parameters, or generated from scratch by creating a closed kinematic chain for a given
robot and the objects. The vendor-specific code is executed using the native robot controller, while
the more complex sensor-based skills are executed using an external control system (Blomdell et al.,
2010) and the state machine switches between these two controllers when necessary.

To guarantee a safe execution, the injury risk for different velocities is evaluated using the data stored
in KIF and the final robot speed is appropriately adjusted.

8 Related Work

Task representation has been an important area for the domain of robotics, in particular for au-
tonomous robots research. The very first approaches were based on logic as a universal language
for representation. A good overview of the early work can be found in Brachman and Levesque
(1985). The first autonomous robot, Shakey, exploited this approach to the extreme: its planning
system STRIPS, its plan execution and monitoring system PLANEX and its learning component
(Triangle tables) were all based on the first order logic and deduction (Nilsson, 1984). This way
of thought continued, leading to such efforts as ”Naive physics” by Patrick Hayes Brachman and
Levesque (1985), or ”Physics for Robots” (Schmolze, 1986). This development stopped because of
the insufficient computing power available at that time, but has recently received much attention
in the wider context of semantic web. The planning techniques (Ghallab et al., 2004) have also
advanced much and may be used nowadays for cases of substantial complexity, although generic
automation problems are usually still beyond this limit.

⁸http://new.abb.com/products/robotics/robotstudio
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Figure 16: The engineering system is a plug-in the programming environment ABB RobotStudio.

Figure 17: A feature frame. Figure 18: A geometrical relation between two objects.
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Figure 19: An example sequence of the
cell phone assembly. First, the PCB is
moved to the fixture. Then, the shield-
can is picked and inserted on the PCB
using a sensor-based skill called shield-
caninsertion. The cell phone camera is
assembled with the socket, and then the
socket is inserted on the PCB.

Figure 20: Each box is a state in the task state ma-
chine. The state called Skill 1 with marked corners
is a nested state machine containing a (dynami-
cally generated) sensor-based skill. Before and af-
ter the sensor-based skill the external controller is
started and turned off, respectively.

Later, mixed architectures begun to emerge, with a reasoning layer on the top, reactive layer in the
bottom, and some synchronization mechanism, realized in various disguises, in the middle. This
approach to building autonomous robots is prevalent nowadays (Bekey, 2005), where researchers
try to find an appropriate interface between abstract, declarative description needed for any kind of
reasoning, and procedural one needed for control. The problem remains open until today, only its
complexity (or the complexity of solutions) grows with time and available computing power.

Task description in industrial robotics setting comes also in the form of hierarchical representation
and control, but the languages used are much more limited (and thus more amenable to effective
implementation). There exist a number of standardized approaches, based, e.g., on the IEC 61131
standards (IEC, 2003) devised for programmable logic controllers, or proprietary solutions provided
by robot manufacturers, however, to a large extent the solutions are incompatible with each other.
EU projects like RoSta⁹ are attempts to change this situation.

At the theory level all the approaches combining continuous and discrete formalisms may be consid-
ered as variants or extensions of hybrid systems (Goebel et al., 2012), possibly hierarchical. Hybrid
control architectures allow us to some extent separation of concerns, where the continuous and

⁹www.robot-standards.org
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real-time phenomena are handled in their part of the system, while the discrete aspects are treated
by appropriate discrete tools. Our earlier work attempted at declaratively specifying such hybrid
systems, but was limited to knowledge-based configuration (Haage et al., 2011).

Robotics systems are usually build from a number of distributed heterogenous hardware and soft-
ware components that have to seamlessly interact during execution phase. In order to simplify con-
figuration, communication and hide the complexity of the system, as well as to promote portability
and modularity, there exist several frameworks for robotics middleware (see comprehensive surveys
Elkady and Sobh, 2012; Mohamed et al., 2008). Module functionality can be provided as nodes in
the ROS 10 environment, or as standardized components in RT-components (Noriaki et al., 2005),
where the modules can provide blackbox-type computations with well-specified interfaces.

Task descriptions come in different disguises, depending on the context, application domain, level
of abstraction considered, tools available, etc. Usually tasks are composed out of skills, under-
stood as capabilities of available devices (Björkelund et al., 2011), but the way of finding appropriate
composition varies heavily, from manual sequencing in many workflows, via AI-influenced task
planning (Ghallab et al., 2004), hybrid automata development tools (Goebel et al., 2012), State-
charts (Harel, 1987) and Sequential Function Charts (SFCs) (IEC, 2003), iTaSC specifications (De
Schutter et al., 2007), to development of monolithic programs in concrete robot programming
languages, like, e.g., ABB RAPID.

There have been several attempts to codify and standardize the vocabulary of robotics. There exists
an old ISO standard 8373 requiring however a major revision to suit the demands of contemporary
robotics. IEEE Robotics and Automation Society is leading some work towards standardization of
robotic ontologies. In particular, there are first drafts of robotic core ontology (Carbonera et al.,
2013), although not as developed as the ROSETTA ontology described in this paper. Regarding
industrial robotics, the work on kitting ontologies, originated at NIST (Balakirsky et al., 2012),
may be considered as an early attempt to address the problem.

In the area of service robotics there are several systems exploiting the knowledge-based approach,
and relying on an underlying ontology, like KnowRob (Tenorth and Beetz, 2013) (based on the
generic OpenCyC ontology by Matuszek et al., 2006), used in RoboHow project¹⁰ or several
participants in the RoboEarth project¹¹ (Waibel et al., 2011). However, they do not attempt to
standardize the domain, as the variance of tasks and skills in the service robotics is very large. On
the other hand, the KnowRob ontology became a de-facto standard used in several experimental
robot systems.

9 Conclusions

We have shown a generic knowledge-based system architecture and its possible use in industrial
robotic systems. In particular, we have employed the approach for representing and realizing force-
controlled tasks realized by one- and two-armed ABB robots in an industrial setting. The presented
generic ontologies are either novel, or a derivative of our earlier research. The use of semantic tools

¹⁰http://robohow.eu
¹¹http://roboearth.org/
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and explicit knowledge in industrial robotics is in its early stage, with only a few other published
examples (Balakirsky et al., 2012). The ideas have been experimentally verified and work well in the
currently ongoing EU-projects PRACE¹² and SMErobotics¹³. The implemented system is just a
proof of concept, and systems that are derived from this work must undergo usability, security and
performance testing, before they might be considered to be ready for industrial practice. But already
now it can be stressed that the knowledge-based approach allowed us to create composable represen-
tations of non-trivial assembly skills, shown to be reusable among different models of ABB robots,
but also portable to other vendors and control architectures (like the one reported in Klotzbücher
and Bruyninckx, 2012) and running on a Kuka LWR4 robot.

The already ongoing continuation of the work presented above involves integration of a heteroge-
neous system consisting of a mobile robot platform (Rob@Work) running a ROS-based control
system, and a real-time-enabled ABB-manipulator running the ABB-specific control software, so
that the two parts can operate seamlessly together as an integrated, knowledge-based, productive
robotic system. This work includes deploying knowledge-based services in the context of chosen
robotic middleware.

Future work involves contribution to the IEEE standardization efforts, and aligning and sharing
robotic ontologies with other research groups. An online documentation of the core ROSETTA
ontology is also expected. The number of knowledge-based services should be extended with, e.g.,
online reasoning during execution, geometrical reasoning and integrated path planning and op-
timization. We are also verifying this approach in other domains of manufacturing, like wood-
working and machining, expecting to extend the ontologies appropriately.

We have found out during the work described in this paper that skills are much more than just a
potential to execute coordinated motions. This line of thought has been already present in Nilsson
et al. (2013), where business aspects of skills have been pointed to. We plan to explore this topic in
the nearest future.
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ABSTRACT

This paper presents ongoing research involving design and evaluation of different architectures for
providing knowledge-based solutions in industrial robotized automation systems. The conclusions
are that distributed, cloud-based approaches offer many possibilities, in particular for knowledge
exchange and reuse, and facilitate new business models for industrial solutions. However, there are
many unresolved questions yet, e.g., those related to reliability, consistency, or legal responsibility.
There is a definite need for further research and better infrastructure before this approach would
become attractive for industrial actors.

Note to Practitioners:

It is possible to extend the capabilities of a robot system by providing online services. An exam-
ple of such service is an online library of robot applications, an app store, where robot programs
can be downloaded and installed on the system with little effort from the user. Another is text
analysis, that requires heavy computations but can provide a more natural user interaction. In this
paper we discuss technical solutions and challenges that we have experiences during several Euro-
pean projects, that aimed at simplifying the robot programming by providing such libraries with
knowledge and computational services. Since robot programming is time consuming and requires
expertise, and thus is expensive, there is need for good services that simplifies this process. However,
at the moment, there is no working market place for the distribution of existing solutions.
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1 Introduction

Traditionally, the use of industrial robots as in large-scale manufacturing is based on well-structured
data reflecting the semi-structured environment of the robots and the detailed engineering of the
system and application processes. With long product series it is well worth to have expert system in-
tegrators and robot programmers: during production any problem is solved by further engineering
(Rossano et al., 2013). However, the efficiency of the resulting system depends on skilled produc-
tion personnel. From a software point of view, established solutions with product data management,
CAD/CAM, production planning, and so on are suitable, and they can build on relational databases
that are hosted locally. While such system might benefit from a cloud-computing approach, it is
not strictly necessary. In the following we will, however, take a closer look into the future of man-
ufacturing and discover the actual needs for a cloud-based approach, which we after some further
introduction will approach in a step-wise manner.

The paper is divided as follows: after the introduction we present the evolution of our approach from
a local blackboard system, to a local knowledge-base-based one, to a distributed knowledge-based
one, to a system involving human interaction, and finally to a cognitive one. Then related works
are presented, followed by a discussion of the adopted solutions. The paper ends with conclusions
and suggestions for future work.

1.1 Manufacturing

In modern (and future) manufacturing, shorter series of customized products imply an increased
demand on flexibility (EURON, 2006). Flexible and user-oriented systems are also needed by
small and medium sized enterprises (SMEs) that cannot afford to have the technical experts on
robot programming and system integration (Pan et al., 2010). Moreover, equipment (including
robots) will be purchased from a variety of technology providers, which cannot be enforced to
follow pre-defined standards, so significant knowledge is needed for system integration. During
programming, the situation is similar since the environment is less structured and variability of the
involved processes is difficult to cope with as product variants imply frequent change-overs.

Hence, the needs for software support in future flexible manufacturing include:

• Knowledge needs to be represented and structured in a more flexible ways, i.e. in terms of
changeable graphs rather than rigid tables.

• Knowledge needs to be grounded and semantically well defined such that it can be utilized
(and updated) by both the human (via easy to use interfaces) and by the machine (to manage
errors and unforeseen situations).

• Distributed production sites should be enabled to share knowledge.

• Due to maintenance, licensing and security issues, related software functions (e.g., for mo-
tion planning and process optimization) better be provided externally as software services.
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Thus, high productivity for manufacturing of customized products causes a for need knowledge-
based systems, and it creates an interest for cloud computing as a mean for providing the requested
services.

1.2 Cloud computing

Cloud computing is normally understood as an infrastructure offering remote computing as a service
to demanding clients. It may also involve distributed on-line resources, shared among interested
clients. It becomes an opportunity in the robotized automation as it offers possibility of knowledge
expansion and sharing among installations, knowledge transfer between different users and runs,
better customer support from system integrators, simpler system installation and bootstrap, and
new services based on creation and maintenance of specific knowledge-bases.

Whereas some software engineers think about a web service in terms of a remote procedure like in
RPC, it is important to understand that a service, as in software as a service or as in SOA (service-
oriented architectures), is an entity that is based on a business value (Belmans and Lambrette, 2012).
Just like in hardware where it is the business aspect that creates the market for components in
terms of reusable entities, software services provide function of value and thereby they contribute
to reuse. Robots, representing the most flexible machine in manufacturing, are also programmed
(or instructed such that there is a resulting robot program), so what about reuse of (valuable parts
of ) robot programs?

1.3 Robot programming

Robot programs (or task definitions) have meaning in terms of the application context. The need for
short change-over times implies a need for code reuse. That reused code represents the task-related
configuration. Machine learning can be performed on the motion level, in terms of adaptation, or
can take the form of structured learning on a task/error specification level. The reused code should
support machine learning functions as needed for optimizing performance. The data resulting form
learning needs to be grounded in application terms, and it needs to be reusable to avoid learning the
same thing over and over again, which in turn means reuse of how coordination is done as part of
robot capabilities. Putting the configuration and coordination together, grounded in human terms
and packaged considering business value, leads to the notion of skills. That is, skills comprise the
reusable robot capabilities, which we claim is an enabler for the SME-like flexible manufacturing,
which in turn is facilitated by robot cloud services.

2 A first local utility-based approach

The first approach was the SIARAS (Skill-Based Inspection and Assembly for Reconfigurable Au-
tomation Systems) project¹. The main interest from an AI perspective was knowledge-based auto-

¹http://cordis.europa.eu/search/index.cfm?fuseaction=result.document&RS_-
RCN=12197834A
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Figure 1: The SIARAS blackboard architecture

matic reconfiguration of automation systems. The results of this work have been presented in Sten-
mark and Malec (2014a). The outcome was an intelligent support system for reconfiguration and
adaptation of robot-based manufacturing cells. Declarative knowledge was represented first of all
in an ontology expressed in OWL, for a generic taxonomical reasoning, and in a number of special-
purpose reasoning modules, specific for the application domain. The domain-dependent modules
were organized in a blackboard-like architecture.

An overview of the adopted architectural solution is shown in Fig. 1. The main focus has been
put on generic interfaces, allowing independent service, data or knowledge providers to adapt to
the system expectations. In particular, some experiments have been made using several simula-
tion/vizualisation tools, providing independent user interfaces suited for different needs and, last
but not least, exploiting external “utility functions” (knowledge sources in blackboard architecture
terms) provided by robot manufacturers, sensor manufacturers and system integrators.

The SIARAS system demonstrator used several machines communication using Ethernet (simula-
tion software required different operating systems), but only locally within the engineered system.
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Some further experiments were done with distributing device database (shown in the central mod-
ule in the Figure), allowing several device manufacturers to provide their data independently of
each other, using their own computer systems connected to Internet (Lidén, 2009). However, the
ontology used was single and centralized, available locally on the SIARAS system.

3 Knowledge integration

The ROSETTA project² (RObot control for Skilled ExecuTion of Tasks in natural interaction with
humans; based on Autonomy, cumulative knowledge and learning) focused on simplifying interac-
tion between the user and the robotized automation system, and on ensuring human safety in all
circumstances. The former goal in particular demanded knowledge-based solutions, although the
latter one also exploited some explicit knowledge encoded in a specific injury ontology.

The concrete system built around this idea has been designed with assembly tasks as the main do-
main of application. This has limited the set of skills necessary to specify, kinds of sensors used
as well as the end effectors that robots need for fulfilling their objectives and made creation of the
test system possible. The architecture, depicted in Fig. 2, is an instantiation of the previous one,
assuming a concrete simulation and visualization environment, here called Engineering Station,
and concrete brands and models of robots for which the Task Execution system generates code,
executable by the Native Controller. The architecture assumes a number, possibly geographically
separated, engineering stations, and a number of independent robot system installations, connected
to a common knowledge server.

During the ROSETTA project we have built KIF server and made it available for testing by all
project partners. The server provides access to semantic storage with skill descriptions, task speci-
fications and station (robot installation) definitions. It also contains a set of ontologies expressed
in the OWL language. Besides, it provides a set of knowledge-based services like task consistency
checks, rudimentary planning and scheduling, natural-language-based task definition, or process
parameter learning. The engineering system has been realized as a plug-in to the ABB RobotStudio
software, as we used ABB robots in our experiments.

The KIF concept can also be used in a hierarchical way with local servers. By setting up a local server
in a factory or a lab, it is possible to address some of the problems of a distributed system. The server

²http://www.fp7rosetta.org
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Figure 3: A concrete ROSETTA system

can be complementary to the global KIF by storing additional, perhaps non-public, ontologies and
storing shared cell and task information only relevant for the factory or lab. From these local servers,
generic concepts can be uploaded to the global server.

4 Knowledge representation

The main idea behind the ROSETTA solution is illustrated in Fig. 4 (Björkelund et al., 2011). A
central knowledge broker, called Knowledge Integration Framework (KIF³), is organizing access
to knowledge and data sources, provides information about available devices and their capabilities,
and serves a number of tools enabling human users of various kinds (factory floor operators, sys-
tem integrators, device manufacturers, skill designers, system maintainers) to perform their tasks in
the simplest possible way. The solution is generic in the sense that no particular data formats are
mandated, only the tool APIs are specified in order to ensure interoperability.

Based on the assumptions of a shared work-cell information scenario, the local KIF may “automati-
cally propagate” e.g, the status of a local tool or fixture calibration also between task realizations for
individual robots whereas ’generic functionality’ such as descriptions for different standard opera-
tion such as a ’peg-in-the-hole’ or a ’snapfit’ functionality may be retrieved from a higher level in the
hierarchy. The instantiation and realization of a peg-in-the-hole operation is of course strongly de-
pendent on local configuration and access to sensor information. Although this may be considered
as a reference implementation, it is worth to point out that a common high-level task description
was evaluated not only between the different ABB robots, but also in two completely different labo-
ratory setups: at the setup of RobotLab, Lund, shown in Fig. 8 and at the lab of our project partners
at KU Leuven, where not only the robot manipulators were of very different nature (ABB Frida and
the KUKA LWR, respectively), but also the robot system software from the very low-level control up
to the high-level of state machines/SFCs and robot programming languages differed substantially.

³We are aware of the acronym conflict with Knowledge Interchange Formalism, but chose to stay with this
name anyway.
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More details about this system may be found in Malec et al. (2013), and Stenmark and Malec (2014a)
and the constraint-based task specifications and the combination of high-level action specification
and low-level motion execution is described in Stenmark et al. (2014).

One of the core insights of the project was that the robotic ontology used for supporting all con-
nected subsystems cannot be monolithic, as it used to be in our previous work. There are too many
agents with too many overlapping demands: e.g., engineering stations requesting data about physi-
cal objects in the station environment or demanding knowledge about skills available for a particular
brand of robot equipped with a specific force/torque sensor; dialogue managers demanding a trans-
lation of text with constraints imposed by a concrete production environment; error management
systems requesting specifics of a concrete skill; or, a safety controller interested in limit values for
maximum robot speed given a human body part close to the end effector, etc. We have investigated
the possibility of ontology modularization and reached a preliminary and rather ad-hoc solution,
presented in Fig. 5. We import the QUDT⁴ ontology (quantities, units, dimensions and types) into
the core robotic skill ontology centered around devices (rosetta.owl). This ontology in turn
serves as a basis for defining feature frames substantially simplifying task definition (frames.owl),
providing limit values for robot-human contact (injury.owl), specifying several methods for de-
scribing behaviour using graphical representation of transition systems (sfc.owl) or concretizing
parameters of robot skills (params.owl).

Since productive robots in SME manufacturing need to efficiently interact with human operators,
the use of formal knowledge and ontologies is not primarily for making the robot ’intelligent’ or fully
autonomous, but rather enabling it to respond properly to human input. Thus the Human-Robot
Interaction is both a goal and a source of knowledge to be incorporated.

⁴http://www.qudt.org

Figure 4: The KIF idea
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5 Human-robot interaction

The developed above architectures for distributed robotics systems have knowledge bases and on-
tologies for knowledge representation of robot cells and skills, as well as reasoning services. In
the ROSETTA project we have created a system for high-level programming, where the user can
combine preprogrammed skills into a new task and adapt the skill parameters to the new station.
Executable code is then generated for the task. The skill representations and services are further
developed in the ongoing PRACE project. The goal of the Productive Robot ApprentiCE project⁵
is development of highly adaptable two-handed mobile robot systems for automation of small batch
assembly operations.

The focus is on fast and intuitive training of the robot task by using programming-by-demonstration
techniques to synthesize a task solution. The learnt task is to be stored in a central knowledge base.
The knowledge base also contains knowledge about mapping operator demonstrations into assembly
operations.

The architecture is built from knowledge-based web services interacting with a legacy ABB controller
and a ROS system. At the moment, we are working on a demonstrator where a two-armed robot is
mounted on a mobile base and the system is programmed using a tablet. The system uses ROS-based
components for high-level computations, while the low-level sensor control uses realtime protocols.
Both the tablet and the mobile robot have limited local computing power and battery time. Thus,
we use a distributed system for code generation, planning, trajectory generation and control, where
computationally heavy, non-realtime services are located on more powerful machines and accessed
remotely.

The modular approach of promotes reuse the online services for planning and scheduling and natural
language programming, see Fig. 6, thus extending the system capabilities with very little effort.

⁵http://prace-fp7.eu

ROSETTA.OWL

QUDT 1.1

INJURY.OWL SFC.OWLPARAMS.OWLFRAMES.OWL

Figure 5: The ROSETTA ontologies
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KIF

KIF NL service

NL parser

Engineering 
System Android tablet

Speech-to-text

Figure 6: The service architecture for the natural language programming interface. The NL service
on KIF receives text, sends it to a general natural language parser (NL parser) and outputs a sequence
of robot actions. These actions are generated into executable code using the architecture displayed
in Fig. 3. The Android tablet can use its own speech-to-text cloud service and send the text to the
Engineering System, thus extending the user interface to a portable platform.

6 SME-suitable cognition

In the SMErobotics⁶ initiative one of the main foci is on applicable robot solutions for small and
medium sized enterprises (SMEs). In a typical SME-scenario, short production series call for less use
of expensive fixture-based production for economical reasons, but then require easily reconfigurable
setups which need to cope with and compensate for large structural uncertainties. The higher level
of uncertainty can be handled by advanced sensor-based systems, but today even the conventional
industrial robot programming, without the above mentioned extensions, is still a bottleneck with
respect to both time and expertise. Based on high-level task descriptions and intuitive interaction
where the worker’s process knowledge (not the knowledge of robotics) can be fully utilized, the goal
is not to reach a fully automated system, but a system with high productivity due to the interac-
tion of an operator with the robot system, giving flexibility in production changes, and short error
recoveries.

Cognition is needed both on the robot side and on the human side, symbiotically, and must be
integrated with learning. Although newly learnt functionality on the robot side may be immediately
distributed, locally or globally, this does of course not count for the human operators where each
individual will have a different level of experience and expertise and thereby different abilities and
preferences on how to interact and instruct. A personalized interface and dialogue system that
the individual operator can access remotely, may be beneficial in this human-robot-collaboration.
Concepts and symbols used in dialogues need to have a grounding that is shared by the human and
the machine, e.g., to support the user in error situations.

⁶http://www.smerobotics.org
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In this scenario the possibility to extend the available services with online reasoning and policy
generation of error handling procedures opens also for efficient individual operator dialogues. In the
SMErobotics project this topic is investigated in the context of modular knowledge and distributed
reasoning systems.

The modularity of knowledge is also crucial for reuse of robot tasks or subtasks, representing partial
solutions to production problems. Without being able to reuse solutions, the SME user will find the
robot overly dumb and not productive in the common case of frequent changeovers. To accomplish
such reuse it was found that stored knowledge must be in a compositional form, and the definition
of skills need to be enhanced such that it maps to the notions and practices of the SME end user.
More specifically, a useful skill representation should fulfill the following requirements:

• It has a business value, meaning that it carries out a non-trivial computation or motion
sequence.

• It encapsulates the configuration and coordination information of the system.

• It describes parameters that can be adapted and automatically optimized by the robot system.

• The motions and actions are semantically described so that the system can reason about the
skill.

• The semantics and taxonomy of the machine readable representation should relate to the
human notions i natural language.

There is to our knowledge no such skill definition developed yet, but this is the current core topic
in our ongoing research, with the aim of supporting reuse/portability of motions (see Nilsson et al.,
2013) for a motivation of the the business and natural language aspects).

In order to semantically anchor the term skill we use an appropriate ontology including all the
above mentioned aspects. Figure 7 shows a fragment of this ontology that extends our earlier work
presented in Nilsson et al. (2013) and Stenmark and Malec (2014a). The full insight regarding the
implication of 6D motions and uncertainties (in both processes, equipment and specifications), and
why that results in a fundamentally different problem than reuse of computer code, is outside the
scope of this paper.

7 Related work

The rapid growth of network services and the latest development of cloud solutions in a very general
form has definitely had its impact also in automation and robotics (in industrial as well as in service
robotics).

Although the concept of network distributed control and functionality in not new, see e.g., Inaba
et al. (2000), the term “cloud robotics” has spread tremendously since James Kuffner has introduced
it in 2010; it has attained a large interest in the robotics community reflected in a number of publi-
cations, it is appearing in research calls and has led to important development in open-source and
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Figure 7: Central part of ongoing skill definition.

open-access projects⁷ during the last couple of years. An important European project addressing
the topic of knowledge sharing online, is RoboEarth⁸ (Waibel et al., 2011), that aims at creating a
World Wide Web for robots. Their knowledge base contains ontologies, tasks and environmental
data (Beetz and Tenorth, 2012), which are shared by robots. The RoboEarth infrastructure, named
Rapyuta, has recently become available publicly (Hunziker et al., 2013; Mohanarajah et al., 2014a)
in its alpha version. Rapyuta is a system for distributed robot control of multiple agents. Each agent
has an endpoint (or a clone) in the system and a Master task that handles the configuration of the
communication. A use case is presented in (Mohanarajah et al., 2014b), where mobile robots col-
lectively build a 3D map. The robots carry out very little processing, instead each device has a robot
clone deployed in Rapyuta. The clone is a ROS environment that controls the robot remotely and
propagates the image messages to another process that builds the map. The RoboEarth knowledge-
base, which is equivalent to KIF with ontologies and services, can be accessed from Rapyuta. The
communication within Rapyuta is handled similarly to ROS, with the addition of process-IDs to
the (ROS) messages, hence, it is a system that integrates multiple ROS environments. It is a system
suitable for, e.g., service robotics, where the latency of the system does not impact the performance.
This architecture is not suitable for industrial applications where: 1) the system has real-time require-
ments, 2) the software is proprietary, that is, it might not be an option to deploy software within
the system, but instead services and software might run remotely on company servers, hence, the
configuration cannot be done by a Master task.

⁷See e.g., http://code.google.com/p/rosjava/
⁸http://www.roboearth.org
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Departing from network research, and in particular, networked robotics systems, Hu and coworkers
analyze the opportunities offered by cloud robotics infrastructure (Hu et al., 2012). Their applica-
tions focus though on the typical mobile robotics domains, like SLAM, navigation and grasping,
leaving manufacturing outside the scope of interest.

Another popular cloud service, also in and for robotics, is natural language interpretation, such as
speech-to-text techniques which we also see commonly appearing in e.g., smartphones. Thomas
and Jenkins (2012) describe a system for commanding a robot using natural language. Stenmark
and Nugues (2013) describe a more advanced solution to this problem.

An recent survey of work related to cloud robotics and automation was made by Goldberg and
Kehoe (2013). Kehoe et al. (2013) have also presented a concrete application of cloud computing
for robot grasping using Google’s object recognition infrastructure. However, it is not available
publicly, making it less attractive for the cloud robotics community.

8 Implementations

The architecture in Fig 2 is implemented in an experimental setup at Lund University. The main
research platform in the ROSETTA and PRACE projects was the two-armed concept robot (with
Christian name Frida) from ABB Robotics, seen to the left in Fig 8. To the right we have a conven-
tional industrial robot (ABB IRB120) extended with an open robot control interface Blomdell et al.
(2010). Thus, the workcell contains two different manipulators and different hardware configura-
tions with respect to sensor information (e.g., force/torque measurements) are used.

The Engineering System is implemented as an extension to ABB RobotStudio⁹, and displayed
in Fig 9. In the Engineering System the task is realized as a sequence of actions, which in turn
can be generated from a partially ordered assembly graph or by using online services provided by
KIF. The ontologies, architecture and services provided in the system are described in more detail
in Stenmark and Malec (2014a).

9 Discussion

The research done so far allows us to make the following observations. However, we would like
to stress that their scope is limited by the context in which our research has been done: industrial
robotized manufacturing systems, mostly relevant for assembly.

Online knowledge bases Their simplest possible advantage is to make deployment of a knowl-
edge base and its associated services to every single system installation unnecessary. Instead, one
central copy (or several mirrored ones) of the knowledge server needs to be created and maintained.
In particular, the knowledge update and system upgrade can be made instantaneous, making fresh
services immediately available to all users worldwide.

⁹http://new.abb.com/products/robotics/robotstudio/downloads

105



Figure 8: A setup of two different robots, the two-armed concept robot Frida and the ABB IRB120,
for individual or coordinated assembly of emergency buttons within the ROSETTA project.

Depending on the model adopted for the knowledge base (monolithic or distributed, federated or
governed by a single body) the chances of getting more knowledge provided to the system increase
dramatically. However, this introduces also a whole set of issues that need careful attention, like
e.g., reliability of knowledge coming from different, possibly unknown sources, guarantees of access
to the (or a) knowledge base in all circumstances, depending on the business model adopted, con-
sistency of knowledge provided by different actors, completeness of available resources with respect
to a given set of tasks, knowledge overlap and possibility of choosing particular services based on
experience, trust, or other criteria, just to name a few.

In particular, such federated model would allow many stakeholders like robot producers, system
integrators, sensor providers, software deployers, to cooperate and contribute to a rich market of
knowledge-based solutions, in a manner similar to what happens now in the ROS community
regarding lower-level solutions for robotics.

One of the greatest challenges during the implementation of the knowledge-base was to handle
several different formats of knowledge. The ontology is created in OWL, however, knowledge is
provided in several standards, such as Automation ML, Collada, PLCOpen and it has to be possible
to read to and from and convert between different formats.
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Figure 9: The user can program the robot using a visual programming tool developed in ROSETTA,
where the task is represented by a sequence of actions that are refined into executable code using the
online services for e.g., code generation.

Reuse of knowledge As it has been shown in our investigations, such approach allows reuse
of knowledge introduced by one stakeholder by others. This applies to skill definitions as well as
concrete parameter modifications or adaptations, or fault detection routines inserted after a skill has
been deployed in a concrete task. The experience gathered during deployment of a system may be
made available to others without unnecessary delay or update burden.

On the other hand, the question of relevance of such experience is unclear and needs to be raised
here. How can one judge whether parameters adapted at site A are useful for site B? How can one
realize whether a user of a particular robot C possibly wants to deceive other users by uploading
incorrect values? Being able to generalize, evaluate the relevance and reason about the collected data
from several setups is a challenge that service providers have to overcome in order to improve their
solutions for e.g., parameter adaption and error handling.

Web services for robots Web services are an attractive computational model, making it possi-
ble to request specific (possibly knowledge-based) services, without knowing any particular details
about their implementation, residence, ownership, etc. With a thoroughly defined API it makes it
possible to separate concerns between the installed system: specific, task-related, hardware-specific
computations, and the service provider: generic, task-independent, hardware-independent, portable
computations.

As in the cases above, the questions of reliability, responsibility of service providers, portability
and generality need to be raised here. However, the responsibility question is clearer, as it seems
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rather straightforward how to make service providers accountable. In this manner, given sufficiently
large market, robot system capabilities may increase substantially in a very short time. This is an
opportunity for the robot manufacturers that seems to be very attractive.

It has to be made clear here that industrial players are rather conservative with that respect and that
a lot of effort needs to be put into issues of security, reliability and dependability. Both on the side
of manufacturers, be it robot, sensory equipment, or end effectors, as well as system integrators and
end users, everyone is interested in keeping their know-how well protected as this is the main source
of their profit. Sharing it freely, or just making it vulnerable to cyberattacks, is a risk that needs to be
seriously considered and resolved. Without addressing those questions there is a risk that research
activities will have only very modest influence on industrial practices.

On the other hand, there are solutions available, known from computer networking area and used in
business-to-business communication, that address those issues. They are currently being extended
to the context of cloud-based services (see e.g., Yoshinori et al., 2013). What needs to be done is
porting them or adapting to a domain involving both software and heterogenous hardware subsys-
tems, tightly interacting with each other. It is definitely a challenging task, but e.g., the automotive
industry shows¹⁰ that these questions may be answered in a manner satisfying to all market partici-
pants.

10 Conclusions

Cloud robotics is a key enabling factor for automation in SMEs. First, it can provide an ecosystem
for distribution of solutions, similar to an app store. The applications can collect data and store it
online in order to improve the skills and learn parameters, thus improving the capabilities of the
robot over time. Also, user-interaction (such as natural language or image processing) and learning
algorithms can use data and/or computationally heavy procedures during the setup and adaption.
The applications cannot guarantee safety, this certification has to be done independently. Market
forces will affect the quality of the services, solutions with better performance/features can have a
higher price or license fee and, more importantly, solutions that are too difficult to understand or
configure will be outcompeted.

This vision of a robot app store and shared knowledge-bases is ambitious and the efforts described in
this paper are just the very first steps towards the goal. The main challenge for cloud robotics to take
off in industrial robotics is not the lack of possible technical solutions, but it it trapped in its startup
phase: in order to provide services with business value, the knowledge bases, services and solution
distribution system(s) (the market place) have to be in place, but these in turn need knowledge and
solutions to distribute to get started.

¹⁰www.autosar.org
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ABSTRACT

For robots to be productive co-workers in the manufacturing industry, it is necessary that their
human colleagues can interact with them and instruct them in a simple manner. The goal of our
research is to lower the threshold for humans to instruct manipulation tasks, especially sensor-
controlled assembly. In our previous work we have presented tools for high-level task instruction,
while in this paper we present how these symbolic descriptions of object manipulation are translated
into executable code for our hybrid industrial robot controllers.
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1 Introduction

Deployment of a robot-based manufacturing system involves a substantial amount of programming
work, requiring background knowledge and experience about the application domain as well as
advanced programming skills. To set up even a straightforward assembly system often demands
many days of work of skilled system integrators.

Introducing sensor-based skills, like positioning based on visual information or force-feedback-
based movements, adds yet another level of complexity to this problem. Lack of appropriate mod-
els and necessity to adapt to complexity of the real world multiplies the time needed to program a
robotic task involving continuous sensor feedback. The standard robot programming environments
available on the market do not normally provide sufficient sensing simulation facility together with
the code development for specific industrial applications. There are some generic robot simulators
used in research context that allow simulating various complex sensors like lidars, sonars or cameras,
but the leap from such simulation to an executable robot code is still very long and not appropriately
supported by robot programming tools.

The goal of our research is to provide an environment for robot task programming which would be
easy and natural to use, even for plain users. If possible, that would allow simulation and visualiza-
tion of the programmed task before the deployment phase, and that would offer code generation
for a number of predefined robot control system architectures. We aim in particular at ROS-based
systems and ABB industrial manipulators, but also other systems are considered.

In our work we have developed a system for translation from a high-level, task-oriented language
into either the robot native code, or calls at the level of a common API like, e.g., ROS, or both, and
capable to handle complex, sensor-based actions, likewise the usual movement primitives.

This paper focuses on the code generation aspect of this solution, while our earlier publications
described the task-level programming process in much more detail (Björkelund et al., 2011; Malec
et al., 2013; Stenmark and Malec, 2013, 2014b).

Below we begin by describing the system architecture and the involved, already existing components.
Then we proceed to the presentation of the actual contribution, namely the code generation process.
In the next section we describe the experiments that have been performed in order to validate this
approach. Finally we present a number of related works. The paper ends with conclusions and
suggestions for future work.

2 System Overview

The principles of knowledge-based task synthesis developed earlier by our group (Björkelund et al.,
2011; Björkelund et al., 2012) may be considered in light of the Model-Driven Engineering principles
(Kent, 2002). In particular, the system described in the rest of this paper realizes the principles
of separation of concerns, and separation of user roles, as spelled out recently in robotic context
in Vanthienen et al. (2014). It consists of the following components:
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Figure 1: The Knowledge Integration Framework provides services to the Engineering System and
the Task Execution. The latter two communicate during deployment and execution of tasks. See
also Fig. 5.

• An intuitive task-definition tool that allows the user to specify the task using graphical menys
and downloading assembly skills from a knowledge base, or by using a natural-language
interface (Stenmark and Malec, 2014b; Stenmark and Nugues, 2013);

• An advanced graphical simulation and visualization tool for ABB robots, extended with ad-
ditional capabilities taking care of other hardware used in our experiments;

• Software services transforming the task specification into a combination of a transition sys-
tem (a sequential function chart) and low level code executable natively on the robot con-
troller;

• Controllers specific for the hardware used: IRC5 and custom ExtCtrl (Blomdell et al.,
2010) for the ABB industrial robots, and ROS-based¹ for the Rob@Work mobile platform;

• ABB robots: a dual-arm concept robot, IRB120 and IRB140, Rob@Work platform from
Fraunhofer IPA², Force/Torque sensors from ATI Industrial Automation³ used in the exper-
iments mentioned in this paper, as well as vision sensors (Kinect and Raspberry Pi cameras)
used for localization.

The functional dependencies in the system are illustrated in Fig. 1.

The knowledge base, called Knowledge Integration Framework (KIF), is a server containing robotic
ontologies, data repositories and reasoning services, all three supporting the task definition function-
ality (Björkelund et al., 2012; Malec et al., 2013; Stenmark and Malec, 2013). It is realized as an Open-
RDF Sesame (http://www.openrdf.org) triple store running on an Apache Tomcat servlet
container (http://tomcat.apache.org). The Engineering System (ABB RobotStudio (ABB
RobotStudio, 2017)) is a graphical user interface for high-level robot instruction that uses the data
and services provided by KIF for user support. The Engineering System uses the ontologies provided

¹www.ros.org
²http://www.care-o-bot.de/en/rob-work.html
³http://www.ati-ia.com
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by KIF to model the workspace objects and downloads known skills and tasks from the skill libraries.
Similarly, new objects and skills can be added to the knowledge base via the Engineering System.
Skills that are created using classical programming tools, such as various state machine editors (like,
e.g., JGrafchart (Theorin, 2014), used both as a sequential function chart (IEC, 2003)—a variant of
Statecharts (Harel, 1987)—editor, and its execution environment), can be parsed, automatically or
manually annotated with semantic data, and stored in the skill libraries.

The Task Execution module is built on top of the native robot controller and sensor hardware. It
compiles, with the help of KIF, a symbolic task specification (like the one shown in Fig. 2) into
generic executable files and, when needed, hardware-specific code, before executing it. It is imple-
mented on a real-time-enabled Linux machine, linking the external control coming from JGrafchart
(a simple example is shown in Fig. 2b) or possibly other software, with the native controller of the
robot. Depending on the system state (execution or teaching mode) or the action being carried out,
the control is switched between the ExtCtrl system for sensor control and the native controller,
allowing smooth integration of the low-level robot code with the high-level instructions expressed
using the SFC formalism. It also runs adaption and error detection algorithms. The native robot
controller is in our case an ABB IRC5 system running code written in the language Rapid, but
any (accessible) robot controller might be used here. The Engineering System uses among other
tools a sensor-based-motion compiler (Stenmark and Stolt, 2013) translating a symbolic, constraint-
based (De Schutter et al., 2007) motion specification into an appropriately parametrized corre-
sponding SFC and the native controller code.

In addition to the benefit of providing modular exchangeable components, the rationale behind
KIF as a separate entity is that the knowledge-providing services can be treated as black boxes.
Robot and system-integration vendors can offer their customers computationally expensive or data-
heavy cloud-based services (Stenmark et al., 2013) instead of deploying them on every site and each
installation.

3 Code Generation

In order to illustrate the process of code generation, we will use an example task where a switch is
assembled into the bottom of an emergency stop box. Both parts are displayed in Fig. 3a. The task is
described in the Engineering System as a sequence, shown earlier in Fig. 2a. First the box is picked
and aligned to a fixture with a force sensor. Then the switch is picked and assembled with the box
using a snap-fit skill. The sequence is mixing actions (pickbox, movetofixt, pickswitch and
retract) that are written in native robot controller code (ordinary blind moves), guarded search
motions which are actions that are force-controlled (alignment to the fixture), and it also reuses a
sensor-based skill (snapFitSkill. In this section we present how we generate and execute code
for tasks containing these three types of actions. As an example we will use the sequence shown in
Fig. 2a that, when executed, requires switching between the native robot controller and the external,
sensor-based control (ExtCtrl).
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(a) The task is shown as a se-
quence in Engineering System.

(b) A small part of the state chart
generated from the sequence in
Fig. 2a.

(c) A sample XML description corresponding to the guarded
motion skill from Fig. 2a that is sent to the code generation
service by Engineering System. The parameter values are either
set automatically or by the user in the Engineering System. If a
guarded motion is generated, e.g., from text and one of the pa-
rameters is an impedance controller, the controller is selected
among the controller objects in the station. All mandatory pa-
rameters must be specified before the code generation step.

Figure 2: A task can be created using the graphical interface of the Engineering System or by services
for automatic sequence generation. The sequence shown is part of an assembly of an emergency stop
button (see next section), consisting of a synthesized guarded motion, a complex snapFitSkill and
three position-based primitives, see Fig. 2a. In Fig. 2b the step named skill1 is a macro step containing
the synthesized guarded motion skill. Before and after the actual skill the steps for starting and
turning off ExtCtrl are inserted. The idle state resets all reference values of the controller. Finally,
Fig. 2c presents the corresponding input to the code generation service.
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(a) The parts that are used in the process: the
bottom of an emergency stop box (later ”box”)
and a switch that will be inserted into the box.

(b) The two-armed ABB robot and the
workspace setup.

Figure 3: The example setup for the assembly experiments.

The task sequence is translated into executable code in two steps. First, the native code for each
primitive action is deployed on the robot controller. In this case RAPID procedures and data decla-
rations are added to the main module and synchronized to the ABB controller from the Engineering
System. In the second step a KIF service generates the task state machine (encoded as an SFC). Thus,
KIF acts both as a service provider and a database, where the service builds a complete SFC, which
can include steps synthesized from skills that are stored in the KIF databases. The final SFC is ex-
ecuted in JGrafchart, which, when necessary, calls the RAPID procedures on the native controller.
The data flow between the modules is illustrated in Fig. 4.

3.1 Execution System Architecture

The execution system architecture is depicted in Fig. 5. The task is executed in JGrafchart, which
in turn invokes functions on different controllers. The external controller (ExtCtrl) is imple-
mented using Matlab/Simulink Real Time Workshop. It sends position and velocity references
to the robot while measurements from the sensors are used to control the motion. Motions are
specified using a symbolic framework based on iTaSC (De Schutter et al., 2007), by constrain-
ing variables such as positions, velocities or forces in a closed kinematic chain that also contains the
robot. The communication between the modules is done using a two-way protocol called LabComm
(http://wiki.cs.lth.se/moin/LabComm). LabComm packages data in self-describing sam-
ples and the encoders and decoders may be generated for multiple languages (C, Java, RAPID, C).
The ExtCtrl interface divides the samples into four categories: inputs, outputs, parameters and log
signals. Hence, JGrafchart can set output signals and read inputs from the underlying controller.

LabComm is also used to send commands (strings and acknowledgements) to the native controller.
In that sense, the protocol aligns well with ROS messages, and two-way LabComm-ROS bridges
have also been created. This is important since a few of our robot systems are ROS-hybrids, where
an ABB manipulator is mounted on top of a ROS-based mobile platform, each having a separate
LabComm channel to JGrafchart.
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Figure 4: The Engineering System (ES) sends the task description to a small helper program called
Deployer which in turn calls the code generation service on KIF, loads the returned file and starts
JGrafchart.
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Figure 5: A schematic image of the execution architecture. The task state machine is executed in
JGrafchart, which in turn sets and reads reference values to ExtCtrl and sends commands to the
native controller.
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3.2 Sequential function charts in JGrafchart

JGrafchart is a tool for graphical editing and execution of state charts (Theorin, 2014). JGrafchart
is used for programming sensor-based skills and has a hierarchical structure where state machines
can be nested. For each robot, the generated state machine will be a sequence. Each primitive or
sensor-based skill is represented by a state (step), and transitions are triggered when the primitive
action or skill has finished. Each state can either contain a few simple commands or be a nested state
machine, put into a so called macro step (in Fig. 2b shown by a square with marked corners). The
generated and reused skills are put into these macro steps while primitive actions becomes simple
steps with function calls.

When alternating between sensor-based external control and the native controller, the controllers
are turned on and off during the execution, so these steps need to be added as well during the
generation phase. The switching between controllers is handled by the state machine in JGrafchart.
When ExtCtrl is turned on or off, the robot has to stand still to avoid inconsistent position and
velocity values. When a controller is turned on it starts by updating its position, velocity and
acceleration values to the current values on the robot.

The state machine can have parallel activities and multiple communication channels at the same
time. Hence, code can be generated for multiple tasks and executed in parallel. Although the state
machine allows synchronization between the tasks, we do not have a high-level representation of
synchronized motions yet.

Finally, the sequence IDs and graphical elements, such as positions of the blocks, have to be added
in order to provide an editable view. We generate very simple layout, however, much more could
be done with respect to the legibility of the generated SFCs.

3.3 Code generation service

The code generation is implemented as an online service which is called by the Engineering System.
It takes an XML description with the sequence as input and outputs the XML-encoding of the
sequential function chart understood by JGrafchart. An example of the input is shown in Fig. 2c.
Each robot has its own task, which needs to specify what LabComm port it will connect to. A
primitive is specified by its procedure name and parameters to the procedure. Reusable skills are
referenced by their URI, which is the unique identifier that is stored in the KIF repositories.

3.4 Reusing skills

A skill that is created in JGrafchart as a macro step, can be uploaded to KIF and reused. During the
upload, it is translated into RDF triples. The skills are annotated with types, e.g., SnapFit, and skill
parameters that are exposed to the users are also annotated with types and descriptions. The RDF
representation is a simple transformation, where each state in the state machine is an RDF node
annotated as a State, together with parameters belonging to the state, the commands, a description
of the state (e.g. Search x) and is linked to transitions (which similarly are annotated with type and
values). In this way, the parameters can be retrieved and updated externally using the graphical view
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in the engineering system. When a skill is updated in the engineering system, the new instance is
also stored in KIF with the new parameter values. The URI in the input XML file refers to the
updated skill, that is retrieved during the code generation process and translated back from triples
to XML describing a macro step. The macro step is then parameterized and added as a step in the
task sequence XML.

3.5 Guarded motions

One drawback of using the reusable skills is that there are implicit assumptions of the robot kinemat-
ics built into them, and thus the skill can only be used for the same (type of ) robot. This limitation
can be avoided by using a symbolic skill description and regenerating the code for each specific
robot. This is what we do for the guarded motions. In this case, the skill specification is larger, as
shown in Fig. 2c, where three actions are described. First, a search in the negative z-direction of
the force sensor frame (f1) is performed. When the surface is hit, the motion continues in negative
y-direction of the same frame while holding 3 N in the z-direction, pushing the piece to the side of
the sensor. The last motion is in the x-direction while both pressing down and to the side, until the
piece is lodged into the corner. In order to setup the kinematic chain, the coordinate frames that
are used to express the motions have to be set, as well as the tool transform, that is, the transfor-
mation from the point where the tool is attached on the robot flange to the tip of the tool. Each
constraint is specified along an axis of a chosen frame. There can be one motion constraint (using
the <Direction> tag) which specifies the motion direction, speed and the threshold value for stop-
ping. The other rotational and translational axes can also be constrained. The constraint should
also specify what set of impedance controller parameters to use. Knowing what robot the code is
generated for, the control parameters for the kinematic chain are set to the values of the frames and
each motion sets reference values on corresponding parameters. Simply put, it is a mapping, where
several hundred output signals have to get a value, where most are just dependent on the robot type,
while some represent the coordinates of the frames in the kinematic chain and other reference values
during execution. During the code generation the right value has to be set to the corresponding
reference output signal and this is calculated depending on what frame is used.

3.6 RAPID code generation

The actions that have native controller code are called primitives. There are several different prim-
itives and, in fact, they do not have to be simple. The most used are simple linear motions, move
primitives for translation and rotation, and actions for opening and closing the gripper. The gripper
primitives are downloaded together with the tool. The simplest form of a primitive is pure native
code, a RAPID primitive, which does not have any semantically described parameters but where
the user can add arbitrary lines of code which will be called as a function in the program. This is
an exception though, since most primitives are specified by their parameters. E.g., the properties of
a linear move are shown in Fig. 6. The target positions will be calculated from the objects’ CAD-
models and the objects’ relative frames and positions in the virtual environment. The code for each
primitive type and target values are synchronized to the controller as RAPID procedures and data
declarations.
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Figure 6: The properties of a move primitive: zone data for specifying maximal allowed deviation
from the target point, velocity in mm/s, the position(s) of the motion specified by a relative position
of the actuated object to a (frame of a) reference object. A motion can have a list of positions added
to it.

Hence, JGrafchart will invoke a primitive function with a string consisting of the procedure name
followed by comma-separated parameters, e.g, ”MoveL target_1, v1000, z50”. The string value of
the procedure name can be invoked directly with late binding, however, due to the execution model
of the native controller the optional parameters have to be translated into corresponding data types,
the target name must be mapped to a robtarget data object and, e.g., the speed data has to be parsed
using native functions.

4 Experiments

In order to verify that the code generation works as expected, we tested it using the sequence from
the Engineering System depicted in Fig. 2a which resulted in an executable state machine, the same
that is partly shown in Fig. 2b. The state machine is the nominal task execution, without any task-
level error handling procedures. We have generated code for a two-armed ABB concept robot (see
Fig. 3b) and the generation for guarded motions is working for both the left and the right arm, as
well as for ABB IRB120 and IRB140 manipulators.

5 Related Work

The complexity of robot programming is a commonly discussed problem (Pan et al., 2010; Rossano
et al., 2013). By abstracting away the underlying details of the system, high-level programming can
make robot instruction accessible to non-expert users. However, the workload for the experienced
programmer can also be reduced by automatic generation of low-level control. Service robotics and
industrial robotics have taken somewhat different but not completely orthogonal paths regarding
high-level programming interfaces. In service robotics, where the users are inexperienced and the
robot systems are uniform with integrated sensors and software, programming by demonstration
and automatic skill extraction is popular. A survey of programming-by-demonstration models is
presented by Billard et al. (2008).
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Task description in industrial robotics setting comes also in the form of hierarchical representation
and control, but the languages used are much more limited (and thus more amenable to effec-
tive implementation). There exist a number of standardized approaches, based e.g., on IEC (2003)
devised for programmable logic controllers, or proprietary solutions provided by robot manufactur-
ers, however, to a large extent incompatible with each other. EU projects like RoSta (Nilsson et al.,
2009) (www.robot-standards.org) are attempting to change this situation.

In industrial robotics, programming and demonstration techniques are used to record trajectories
and target positions e.g., for painting or grinding robots. However, it is desirable to minimize down-
time for the robot, therefore, much programming and simulation is done offline whereas only the
fine tuning is done online (Mitsi et al., 2005; Bottazzi and Fonseca, 2006; Hägele et al., 2008). This
has resulted in a plethora of tools for robot programming, where several of them attempt to make the
programming simpler, e.g., by using visual programming languages. The graphics can give meaning
and overview, while still allowing a more advanced user to modify details, such as tolerances. In
robotics, standardized graphical programming languages include Ladder Diagrams, Function Block
Diagrams and Sequential Function Charts. Other well known languages are LabView, UML, MAT-
LAB/Simulink and RCX. Using a touch screen as input device, icon-based programming languages
such as in Bischoff et al. (2002) can also lower the threshold to robot programming. There are also
experimental systems using human programmer’s gestures as a tool for pointing the intended robot
locations (Neto et al., 2010). However, all the systems named above offer monolithic compilation
to the native code of the robot controller. Besides, all the attempts are done at the level of robot
motions, focusing on determining locations. Experiences show (Stolt et al., 2011) that even relatively
simple sensor-based tasks, extending beyond the “drag and drop” visual programming using those
tools, require a lot of time and expertise for proper implementation in mixed architecture like ours.

Reusable skill or manipulation primitives are a convenient way of hiding the detailed control struc-
tures (Kröger et al., 2010). The approach closest to ours is presented in the works of M. Beetz and
his group, where high-level actions are translated, using knowledge-based techniques, into robot
programs (Beetz et al., 2010). However, the resulting code is normally at the level of ROS prim-
itives, acceptable in case of service robots, but without providing any real-time guarantees needed
in industrial setting. In this context, they also present an approach to map high-level constraints to
control parameters in order to flip a pancake (Kresse and Beetz, 2012).

6 Conclusions and Future Work

In this paper we have described how we generate executable code for real-time sensor-based control
from symbolic task descriptions. Previous work in code generation is limited to position-based
approaches. The challenge to go from high-level instructions to robust executable low-level code
is an open-ended research problem, and we wanted to share our approach in high technical detail.
Naturally, different levels of abstraction have different power of expression. Thus, generating code
for different robots from the same symbolic description is much easier than reusing code written
for one platform by extracting its semantic meaning and regenerating the skill for another platform.
Hence, it is important to find suitable levels of abstraction, and in our case we have chosen to
express the guarded motions using a set of symbolic constraints. The modular system simplifies the
code generation, where the user interface only exposes a subset of parameters to the user, while the
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JGrafchart state machine contains the calculated reference values to the controllers and coordinates
the high-level execution. The external controller is responsible for the real-time sensor control which
is necessary for achieving the necessary performance for assembly operations.

In future work we plan to experiment using a mobile platform running ROS together with our dual-
arm robot and thus evaluate how easy it is to extend the code generation to simultaneously support
other platforms. The sequence can express control structures, such as loops and if-statements, on-
going work involves adding these control structures to the task state machine as well as describing
and generating the synchronization between robots.

The robustness of the generated skills depends on the user input. One direction of future work is
to couple the graphical user interface with haptic demonstrations and learning algorithms in order
to extract e.g., force thresholds and impedance controller parameters. Another direction is to add
knowledge and reasoning to the system to automatically generate error handling states to the task
state machine.
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ABSTRACT
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1 Introduction

In recent years, we have had a renaissance in industrial robotics: a new segment of robot models
(e.g., UR5, ABB YuMi, Rethink Robotics’ Baxter and KUKA’s LBR iiwa) intended for safe human–
robot collaboration and simpler robot programming have emerged. The application areas for these
robot models are typically assembly of consumer electronics or repackaging of (small) products.
One difference between these robots and previous models is the lead–through programming, or
kinesthetic teaching, mode. In this mode, the user can guide the robot arm into the desired positions
and thus record and replay a robot program.

Kinesthetic teaching using force-guided motions (Massa et al., 2015), gravity compensation and
variable stiffness (Wrede et al., 2013; Tykal et al., 2016) support also non-expert operators to program
and configure tasks (Rodamilans et al., 2016), however, dynamic environments, uncertainty and the
use of noisy sensor feedback are still challenges for the operator (Stenmark et al., 2016), and so far,
experts are still needed to program the robots on the necessary levels of robustness and precision.

Programming by demonstration, PbD, or learning from demonstration, LfD (Billard et al., 2016),
is a well-established concept in service robotics, however, these methods often require multiple
demonstrations which we consider less suitable in an industrial setting where rapid instruction and
evaluation is needed. The desired approach in an industrial context is rather a one–shot demonstra-
tion, from which enough parameters for an executable representation can be extracted.

Orthogonal to the PbD approach is the use of high–level instructions to simplify robot program-
ming for industrial tasks, e.g., using natural language (Stenmark and Nugues, 2013) and semantically
defined parameterized motion primitives (Felip et al., 2013), often called skills (Pedersen et al., 2014,
2016). Such semantic descriptions are desirable because they enable the automatic generation of,
e.g., standard PDDL¹–descriptions for planning and scheduling of tasks or path planning and gen-
eration from virtual models (Perzylo et al., 2016).

We propose to aim for a middle ground by combining programming by demonstration and parametrized
skill representations to simplify robot programming, i.e., it must be possible for non-expert users to
create their own skills from scratch and specify object references that can later be used as basic building
blocks in high–level approaches.

In this paper we present a prototype of a programming tool for industrial robots, which enables
non–expert users to program and edit simple industrial tasks using one–shot demonstrations, i.e.,
kinesthetic teaching, and also reduces the programming and debugging time for an expert program-
mer. We extracted initial requirements regarding functionality and behavior for the design of this
tool from two case studies and evaluated it in two experiments with an expert user and in a study
with 21 non–experts.

The remainder of the paper is organized as follows. In Section 2 we present the background and
related work for our efforts. We present the case studies for extraction of requirements in Section 3
and our resulting prototype implementation in Section 4. In Section 5 we report on the evaluation
of the tool through a user study with 21 subjects and by two expert experiments. We conclude the
paper in Section 6 with a discussion of our findings and suggestions for future work.

¹Planning Domain Definition Language
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2 Related Work

The research into intuitive human-robot interaction and programming is so far more active in the
field of service robotics, since service robots act in dynamic non-structured environments and are
intended to interact with non-expert operators. Some of the following approaches are nonetheless
relevant also for work in intuitive programming of industrial robots.

For instance, robots can learn from humans by observing the human carrying out a task and extract
action parameters and objects involved in this process. Billard et al. (2016) use objects and locations
as task parameters and can extract these in a new workspace from human demonstrations. Feniello
et al. (2014) synthesize the program specification for repositioning tasks from examples, e.g., their
system can learn a program sequence that sorts objects by color. Visuospatial skill learning is also
used by Ahmadzadeh et al. (2015) to extract the geometric constraints of the objects in a task and to
learn the sequence of push and pull skills in a task. Using Gaussian mixture regression, trajectories can
be generated from the learning results (Huang et al., 2016a). From multiple demonstrations, high-
level semantics such as intentions (Fonooni et al., 2016), transition conditions (Kober et al., 2015)
and precedence constraints for sequencing of manipulation primitives (Kramberger et al., 2016;
Manschitz et al., 2014) can be extracted. Niekum et al. (2015) segment demonstrations automatically
using (beta process autoregressive) Hidden Markov Models, learn the reference coordinates for each
trajectory from clustering the demonstrations in different coordinate frames and iteratively refine
the resulting finite state machine based on new demonstrations.

Low-level skills can be encoded as dynamic movement primitives (DMPs) (Ijspeert et al., 2002)
demonstrated using, e.g., Imitation Learning and further optimized using Reinforcement Learning.
Examples of research in imitation learning methods for robot skill learning are given by Kormushev
et al. (2011), who combine kinesthetic learning of positional trajectories with force profiles demon-
strated using a haptic input device to demonstrate ironing skills. Steinmetz et al. (2015) use an
external force/torque sensor mounted on the robot arm to record force and position simultaneously
and learn the force profiles for a PID-controller. Abu-Dakka et al. (2014) redeploy peg-in-hole skills
in new settings by adding exception strategies that randomly search for the hole to improve robust-
ness. Nemec et al. (2013) use a priori knowledge and reinforcement learning to reduce the number
of demonstrations needed to teach a flip task to a robot and Pastor et al. (2011) use reinforcement
learning to optimize a pool strike. All these methods, however, focus on one specific type of move-
ment or task, each of which requiring a specific setup. Additionally, data driven approaches require
multiple demonstrations with enough feature variation to extract task parameters and specifically for
reinforcement learning based approaches it is a challenging problem to design a good cost function
(which needs to be either taught or manually tuned).

Multiple demonstrations are time consuming, hence a one-shot approach is desired. Also, industrial
tasks often require high precision, which can be difficult to achieve from generalizations between
multiple demonstrations and the underlying representation of instructions must support adaption
and debugging. Ko et al. (2015) list and motivate the main qualitative aspects of a programming (by
demonstration) system that have to be evaluated, namely: accuracy and repeatability, adaptability
and generality, learning fatigue, system complexity and production speed .

Tsarouchi et al. (2016) identify various challenges in the human-robot interaction for industrial
robots, and while e.g., multimodal communication and learning by demonstration have received
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significant research attention also in this field, the user interfaces are often too complex for non-
expert users. The learning curve can be leveled by using visual programming environments, e.g.,
Huang et al. (2016b) showed that a Scratch-like programming language reduced the programming
effort and Glas et al. (2016) have developed Composer for designing social robot behavior. An in-
creasing number of industrial robots provide template skills for common applications, e.g., the
UR-series from Universal Robots as well as Baxter and Sawyer from Rethink Robotics come with
template pick-and-place skills, and the Franka robot from Emika lets the user download expert
made apps (i.e., skills) and combine these into more complex task using visual programming. Apps
that can be used out-of-the box with little effort make these types of robots attractive, e.g., for small
companies, however, programming new re-usable skills from scratch is still a challenge, which we
try to handle with the interface proposed in this paper.

In order to bootstrap the instruction process, the interaction can be improved by systems that ask
leading questions (Cakmak and Thomaz, 2012; Mohseni-Kabir et al., 2015), or by using other modal-
ities such as speech, see, e.g., Pardowitz et al. (2007) or a graphical user interface so that the task
constraints generated from a single demonstration can be understood and edited by the operators
(Alexandrova et al., 2014; Kurenkov et al., 2015). We plan to enhance our system with the necessary
reasoning capabilities so that such an approach to supporting the user can be integrated.

3 Case Studies

We analyzed the programming process and required motion types and primitives from two rather
complex applications that we had previously built for the dual-arm ABB robot YuMi. One is an
emergency stop button assembly that uses force-based motions for snapping and screwing together
switches and nuts (Stolt et al., 2011; Stolt and Linderoth, 2013). The second case is a position-based
gift-wrapping application, which was developed as part of a commercial campaign in Sweden during
the fall of 2015 and toured consumer electronic retail stores wrapping gifts all over Sweden (Stolt
and Stenmark, 2015; Stenmark et al., 2016; Stolt et al., 2016).

Both applications rely on synchronized motion between the two arms of the ABB YuMi dual-arm
robot. The robot is designed for safe human-robot collaboration and each arm has seven degrees of
freedom. These features are used in the gift-wrapping application since the wrapping process uses a
collaborative step and multiple contact points on the arm. Videos of both applications are available
through YouTube (Stolt and Linderoth, 2013; Stolt and Stenmark, 2015).

We identified several issues during the programming process, which are mostly related to the tra-
ditional programming interfaces and assumed workflow for the YuMi (Stenmark et al., 2016; Stolt
et al., 2016). From those issues, we derived requirements for the development of a programming
interface that supports (and is supported by) our underlying architecture for skill representation and
robot code generation (Stenmark et al., 2014).
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3.1 Traditional interfaces and interaction

The ABB robot can be programmed in the ABB programming language RAPID either using an
engineering tool called RobotStudio, a Windows Universal App (YuMi Online) or by using the teach
pendant (an integrated joystick and touch display interface for direct robot control, a standard piece
of equipment usually accompanying industrial robots, see Figure 1), directly. RobotStudio and the
app can run on the same Windows device and are connected to the robot through a local network.
Each of the tools has different features. RobotStudio is intended for editing RAPID programs and
for simulation. The app has an online programming interface supporting a few commands (motions
and gripper actions) and has a limited debugging support. It has however a kinesthetic programming
mode, lead-through, which makes it easy to teach positions in free space. Contact situations are
more suitable to teach with the joystick on the teach pendant since contact forces will move the
arms out of position if lead-through is enabled. The teach pendant can also be used for debugging,
for example by moving the program pointer and executing instructions one-by-one.

The traditional workflow starts with offline programming and simulation before deploying a pro-
gram on the physical robot. First, the program can be written and executed in the virtual environ-
ment in RobotStudio. When the user is satisfied, the program is deployed on the physical system
and testing in the real environment can begin. User interaction can be added into the RAPID pro-
gram by inserting dialogue prompts into the program. Then the resulting program can be deployed
in the factory and the robot operator will only interact with the robot using the dialogues. All error
handling procedures need to be added beforehand by the programmer.

It is not trivial to include (contact) forces and deformable material into simulations, hence, our
applications required online programming, i.e., testing and updating using the physical robot system
including the lead-through functionality for kinesthetic teaching of poses, which was non-trivial
with the given interfaces due to their different features. Specifically, in the gift-wrapping application
the programmers were required to sometimes circumvent the safety mechanisms originally designed
for unsafe robots, but still deployed on the inherently safe YuMi.

Figure 1: ABB’s (YuMi’s) teach pendant (left) and YuMi in the LEGO building task (right).
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3.2 Analysis

Our observations from programming the two applications provided an initial list of system require-
ments regarding which basic instructions should be possible to rapidly include and update in a
program and some hypotheses about better user interaction and support, which we explain briefly
in the following.

Actions: The applications required mostly motions specified through gripper target positions in
Cartesian space (both relative specified objects or in world coordinated). Secondly, joint configura-
tions were often used in the gift-wrapping application for specifying the position of other parts of
the arm than the gripper. Also, both applications relied on contact motions (i.e., motions that stop
when a force threshold is reached) for robust task execution. Other actions identified as common
are gripper commands (open and close), movement to synchronization points for both arms, and
synchronized motions of both arms.

Reuse, refinement and update: In order to be able to reuse a task, i.e., a program sequence with
small changes, e.g., in object positions, it must be possible to specify work objects so that motion
primitives can be programmed using relative reference coordinate systems. Also, it must be possible
to easily change and adapt reference coordinate systems for existing work pieces, as it must be
assumed that even expert users occasionally forget to specify the correct reference immediately.

User interaction: In the two applications, user interaction as part of the normal operation was lim-
ited to handling discrete events in the program flow. For stopping or pausing the execution, the
operator touched the robot and simply triggered the safety system break, but that also required
manual restart of the robot and required rather long cycles to update and test specific instructions.
Here, we assume that a rapid cycle of stopping the execution, changing and updating instructions
where necessary and testing (executing again) is desirable.

Compatibility: Since we initially assume only a subset of instructions (actions as described above)
to be available in our graphical user interface, the interface should generate an editable program file
that an expert user can refine further by using the traditional tools and interfaces.

Based on this list of observations and assumed requirements, we designed a prototype interface
supporting users in quickly creating basic programs (skills) through kinesthetic teaching and iconic
programming (Stenmark and Topp, 2016). These skills can then later be refined and form the basis
for more complex programs, which can be generated using even more high-level approaches to robot
programming, as proposed earlier (Stenmark and Nugues, 2013).

4 Implementation

In the following we describe the graphical user interface, which we developed based on the previ-
ously described findings from our case studies. The interface was also meant to be a tool for inves-
tigating, how our underlying ideas, mainly the skill representation and the reuse of skills through
parameterization, would support non-expert users in programming an industrial robot.
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A screen capture of the implemented programming tool is shown in Fig. 2. It is implemented as a
touch-enabled Windows app running on a Surface Pro with 8 GB RAM and a wireless connection
to the robot controller. The implementation is programmed in C and uses ABB robot controller
libraries for network communication and math calculations.

4.1 Features

The graphical interface divides the screen into an instruction panel to the left and a program panel
to the right. In the upper left corner, the built-in basic actions are displayed in yellow, while the
user-created skills (sequences and combinations of such primitives or other skills) are added to the
list in purple. The default actions are the following:

Move: a fine-point slow move. When this instruction is added to the robot program sequence, it
takes the current position of the active arm and saves it as precise goal position (trajectories between
specified points are generated by the robot controller so far). The target is saved with three positions:
the exact joint position for the robot arm, the Cartesian position relative to the world (or robot base)
system and, if an object is selected, the position relative to the object. Thus, the user can switch
coordinate systems between objects or to absolute positions, or between Cartesian and joint space
motions without updating the position.
Via: a fast motion with zone parameter 5 mm as default, i.e., getting close to the specified pose
within this zone is considered sufficient. Analogously to the fine-point move, the position is saved
in absolute and relative coordinates as well as in joint space.
Open and Close for fully opening and closing the gripper. The gripper action will execute when
added to the program.
Contact Move: a movement towards a contact point which will stop when detecting an estimated
contact force. The current position of the robot will be used to set a contact position, but the motion
will continue beyond that point.
Sync: adds synchronization points, i.e., points in the program sequence where both arms should
reach the specified pose at the same time.
Fingers: an action for setting the finger positions exactly and changing the gripping force of the
fingers.
Locate objects: will call a local procedure on the robot controller for detecting objects using the
built-in cameras on the robot’s hands. For the time being, the camera calibration, image settings and
detection algorithms must be provided by an expert and reloaded into the controller. The detected
object’s reference system will, however, be updated each time the procedure is executed hence the
user can use the object references to program the robot without considering the underlying code.

Under the actions, the user can add coordinate frames related to objects by pointing with the robot.
These can be updated when the object is moved.

The current robot programs for respective arms are displayed to the right. Each action has a line
with an individual play arrow, an editable name, a color label for the relative coordinate system, a
button for updating the position, editing and a picture. The order of the sequence can be edited by
dragging and dropping.
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Additional buttons provide functionality for opening and closing the grippers without adding pro-
gram instructions, executing, toggling the lead-through functionality of the robot and saving/load-
ing a complete workspace consisting of skills, objects and current robot program.

4.2 Reuse of skills

Action (sub)sequences can be selected and stored as skills, these will show up in the action list as
purple buttons. In the sequences the skills can be expanded and edited further.

The user can add skills with single instructions but with application-specific parameters such as
speed, zone (precision parameter for movement), and object data, and thus have for example multi-
ple types of parameterized motions. E.g., in the gift-wrapping application, the speed was different
for motions manipulating the paper and pushing the box, hence, each time an instruction was added
the speed parameter had to be set to the correct value.

The actions and skills are robot agnostic and can be switched between the arms. The Sync actions
can of course cause problems if not moved in pairs. If a skill was programmed using one arm, the
joint positions cannot be reused for the other arm, so the default execution will use the Cartesian
positions either relative to the object or in absolute coordinates. By selecting multiple actions, the
relative object can be changed and updated to another by one button click, recalculating the relative
offset to the new object using the absolute coordinates system.

Once the user requests a sequence to be executed (played), the high-level representation of the
program is used to generate low-level instructions (RAPID code) for the robot controller currently
connected to the user interface.

Our current prototype implementation does not (yet) support more advanced (and natural) force-
based motions or logging and executing trajectories, however, a respective extension is subject to
ongoing work.

4.3 User interaction and interference

The programming and debugging modes are merged into one hybrid mode, where the speed can be
reduced during debugging and the safety system stops the robot in case of collisions with objects or
the user, or predicted self-collisions.

The programming interface is designed to be forgiving towards the user. The user can program the
entire sequence in absolute coordinates and then later add objects to the workspace and change the
reference of the motion without reprogramming. The actions can be tested, refined, and updated
individually, and any type of sequence can be saved as a skill.

Debugging is not a separate part of the execution process; however, the current implementation
only supports running of individual actions and skills, or the entire sequence. Future work includes
additional running and debugging options, e.g., running only a selected subset of actions, starting
the execution at arbitrary points in the program and toggling debugging break points. The existing
tools for jogging the robot using a joy stick or editing the generated RAPID program in a text editor
are still available.
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Figure 2: The graphical user interface.

5 Evaluation and User Study

The programming interface was evaluated by comparing programming times for one expert who
programmed two robot tasks using both the new interface and traditional programming methods
and through a user study with 21 non-expert, although technically or mathematically interested and
experienced, users in a LEGO building task.

We see this study as an opportunity to observe potential users interacting with an industrial robot
in a realistic setting, as the LEGO building task, although seemingly a child’s play, has quite some
challenges similar to those of assembling smaller products like, e.g., mobile phones. In the following
paragraphs, we describe the study setup which had the original background of testing the effects of
skill re-use and parameterization for non-expert programming of assembly tasks for industrial robots
(Stenmark and Topp, 2016). We will thus in the following explain the different conditions for testing
our hypotheses on the re-use of skills and break down our results by these conditions, but we had to
realize that the study turned out to be as much an evaluation of the interface’s general applicability
as it was a tool for testing our original hypotheses. Thus, we focus on the rather general results about
the overall benefits of our approach for non-expert programming of industrial robots and on the
results we could achieve in the experiments carried out by the expert.
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5.1 Study setup

We recruited our subjects mainly from an undergraduate (introductory) course on robotics and
through advertising at the departments of Computer Science and Automatic Control at our uni-
versity to ensure a somewhat technical or software oriented background. Here, we assume that this
would be the case also for prospective users (instructors) of this type of robots in industrial contexts.
However, we had the subjects fill in a questionnaire to also collect data about how they ranked their
own experience with programming and technical equipment, to get a more accurate understanding
regarding their background.

Our subjects were asked to program one arm on a dual-arm ABB YuMi with standard grippers
to assemble different types of LEGO Duplo bricks using the robot’s lead-through mechanism for
kinesthetic teaching of poses in combination with our graphical interface for iconic programming.
Figure 1 shows the setup for the study with the robot just finishing one step of the overall task.
Routines for locating two specific types of LEGO bricks with the help of the built-in camera of the
robot gripper were already provided by the experiment leaders as functionalities to be invoked by
inserting a respective instruction in the program sequence. This was done for convenience as the
camera calibration procedure is quite tedious and time consuming and should not be part of the
study. The LEGO piece localization procedures had the arm move to a predefined position, from
where the pieces could be localized robustly, given that they were placed within a coarsely sketched
area. This allowed to specify pick-up poses relative to the work piece. We are aware that this is quite
sophisticated knowledge about robotic systems to be handled for non-experts, however, it gave us the
opportunity to observe how our subjects could be supported by our interface in switching between
reference coordinate frames for the different objects involved in the task.

Conditions and specific tasks

The overall task was carried out in two phases: The first phase was the same for all participants while
the second phase divided the users evenly into three groups corresponding to the three different test
conditions. During the first phase, the instructions were to program the robot arm to pick up a
LEGO Duplo “2x2” piece (referred to as “small LEGO”) and insert it on top of another small piece,
which was already the top of a little “tower” (task step 1). This program should then be used to
create a skill, i.e., a re-usable representation of a sequence of motion primitives. For the second
phase, the participants were asked to program the robot arm to carry out the same task another
three times, but with a “2x4” piece (“large LEGO”), which should be placed first “centered” (step
2), then “hanging over on the left” (step 3), and finally “hanging over on the right” (step 4) with
respect to the “tower top”. For these three steps, the different conditions defined the programming
paradigm, i.e., the first group, Group A, was to re-use and refine their own previously created skills,
Group B was to re-use an expert-made skill and Group C was a control group in which participants
should program each step from scratch without re-use of previously created and saved skills.

The instructions were given in written form, for each phase separately. After reading the instructions
for step 1 the participants were introduced to the robot and the programming interface by one of the
experiment leaders for a couple of minutes and then started to work on their tasks. The experiment
leader observed the process, both to be able to resolve technical problems (the robot stops and needs
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Figure 3: Participants’ background and gender (left), experience and comfort level ratings (middle),
and experience in programming a robot (right).

to be reset when it collides with any obstacle) and to assist the subjects with the handling of the
programming tool in case they needed help (the tool has no built-in “help” functionality so far).
Upon completion of step 1 and if the time frame allowed, the participants received the instructions
for steps 2–4.

From pilot testing with involved researchers we had estimated that roughly 30 minutes for the actual
programming was a suitable time limitation for each participant, however, this had the effect that
in quite some cases the participants would not reach far enough into the second phase to complete
all four programming steps. In this paper, we will thus focus on rather general evaluation criteria
like success rate and time needed for completion in the first phase, and how many further steps the
subjects managed to complete before running out of time. A more thorough analysis regarding the
effect of the different methods and the subjects’ individual ways of handling the task steps of the
second phase is planned as future work.

After either completing all four steps or running out of time, we asked our subjects to fill in a
questionnaire with both demographic questions (gender, occupation) and several five–level scale
questions ranging from “not at all” to ”absolutely” about their previous experiences with robots or
programming, and the level of comfort they felt when handling the robot. Additionally, there was
one yes/no question on whether they had ever programmed a physical robot before. We also gave
them the opportunity to explain in free text what they found most difficult and what they would
suggest to be changed in the programming interface.

Analysis

We had 21 participants (five female, 16 male), seven in each of the condition groups A, B, and
C respectively. Figure 3 shows the distribution of professional background and gender as well as
whether they had any previous experience of robot programming. The two participants with a non-
technical professional background registered as communicator and nurse / kindergarten teacher
respectively.
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Table 1: Success (overall rating average) and time (minutes average)

Success Time
Step


Time
Step


Time
Step


Time
Step


All . . . . .

Group A . . . . -

Group B . . . . .

Group C . . . . .

We evaluated the trials for each participant according to the following criteria:

time step n: the time spent on completing step n after completing the previous step.
success rate: the sum of the success ratings for each step n according to the following criteria full (3)
– the LEGO piece was fully attached on top of the “tower” robustly by the robot in step n; partial
(2) – the LEGO piece was placed correctly but not (entirely) attached; fail (1) – the step was not
carried out fully, i.e., the LEGO piece was not placed correctly; n/a (0) – the step was not carried
out at all.

Table 1 summarizes the (average) results according to these criteria, broken down by the different
groups, while Table 2 shows the number of subjects managing the respective step with at least partial
success.

We can state that almost all participants managed to handle the first step with at least partial success.
The two participants (group C) who failed completing the first step had difficulties in understanding
how the robot would move (directly between specified poses) after their instructions.

One of them stated also to have felt rather uncomfortable (2) when handling the robot, despite
marking rather high levels of programming (5) and technical (4) experience, and mentioned the
two coordinate systems as difficult to understand. This low comfort rating was in fact the only
one below the “neutral” rating of 3 for all 21 participants. Worth noting is also that all three par-
ticipants reaching full success in step 4 belonged to group B, i.e., the condition with the task to
re-use an expert-made skill for the last three steps. As step 2 for this group was mainly to analyze
and understand the provided skill, this obviously saved them a lot of time compared to the other
groups. Overall we can state, that 14 of 21 participants managed to understand the tool, the robot’s
movements, and the LEGO bricks’ properties (including the challenge of robustly attaching them
to each other) sufficiently well to complete two steps of the overall tasks within 30 minutes.

As we noted a somewhat uneven distribution of programming and technical experiences over the
different groups, we checked for correlation effects between experience ratings and success rates or
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Table 2: The number of subjects reaching success rating 3-2-1 respectively in the different steps.

Step  Step  Step  Step 
-- -- -- --

All --


--


-- --

Group A -- -- -- --

Group B -- -- -- --

Group C -- -- -- --

time needed for the different steps respectively, but we could not find any obvious connections;
programming experience, technical experience and robot programming experience had all a very
low negative correlation (-0.18, -0.18, and -0.23) with time for completion of step 1 and a slightly
stronger, but still very low, positive correlation (0.24, 0.22, and 0.33) with the overall success rate.
Thus, we consider the different outcomes for the groups as an indication for an effect of the different
conditions, i.e., being able to reuse previously programmed or even provided skill representations
simplifies the programming process significantly, as the subjects in the control group (C) needed
roughly the same amount of time for each step in the second phase, when programming from
scratch.

In group A, who should re-use their own previously created step1 skill for the following steps, the
subjects needed some time to handle the updating and parametrization of the skill in step 2, but
once they had understood how to do this, the following steps were handled within rather short time
frames, which were even shorter than those for group B, who otherwise had very high success rates,
but had to understand and update a program that they were not familiar with from the beginning.
However, sample sizes are small and became even smaller over the different steps, hence, these results
should be seen with some caution and treated as trend indications rather than definite findings.

Specific challenges and observations

As indicated above, all participants but one felt at least neutral, if not comfortable, when han-
dling and programming the robot. We consider this a confirmation for the overall idea of combin-
ing kinesthetic teaching with iconic programming in an interactive way, i.e., allowing for frequent
switches between execution, testing / debugging and further instruction, is a good starting point for
further development of the tool. However, we also have to see the comments (and observations)
regarding the challenges the subjects experienced, which we summarize in the following, according
to how often they were mentioned (high frequency first).
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Precise positioning and fixating of the LEGO piece Many subjects mentioned the placement of the
piece as a challenge. In fact, attaching two LEGO bricks to each other robustly with slippery robot
grippers is tricky, and the success seems to depend a lot on whether the respective subject could
determine a good strategy from the LEGO properties (the piece clicks best into place when being
“folded” and then pressed, rather than through hovering over the target and moving straight down at
once). The expert–made skill provided for group B followed this strategy, and worked very robustly
(it merely took the expert—one of the researchers involved in the study setup—roughly two minutes
to create this skill). Here, we plan to equip a future high–level interface for programming with the
capability of providing suggestions based on previously known skills for similar work pieces to find
the optimal strategy for a given work piece.

Different reference coordinate frames and switching between them As mentioned before, we are aware
that selecting relevant coordinate frames is quite a challenge for any non–expert user, however, we
can now, based on our observations of how the subjects managed to solve the problem and how
exactly they could be supported, design further support based on reasoning and mixed–initiative in-
teraction into future tools. We also observed, that many subjects simply forgot to assign the correct
coordinate system, even though they understood how relative motions work. This was anticipated
in the design of the tool, allowing the user to switch reference frames for an already existing move-
ment, which made it very easy to correct the program after an issue with the reference frames was
discovered.

Understanding all functionalities of the tool in the limited time frame, handling the interface This sug-
gests that we might even have had better results, had the subjects been given more time to “play”
with the tool. Some stated also informally after finishing, that “now, it would be great to start over,
now I have understood this!”.

Pose recording vs trajectory recording, understanding robot movement Some of the subjects, as also
mentioned above, struggled to understand the concept of specifying positions to move to rather
than trajectories to move along. In particular, the “contact move” posed a challenge as it results
in a movement towards a virtual projection of a desired pose beyond the contact point. Further
development of respective tools to include trajectory and contact force profile teaching is ongoing
work.

Robustness, compensating for the LEGO piece sometimes slipping from the gripper As we did not make
use of specifically designed grippers for LEGO-bricks, this was obviously a problem in some cases.
It could be compensated for only through a good picking and placing strategy that would be robust
to the slipping. Using more appropriate tools on the robot for grasping specific work pieces is
obviously a good strategy, and is subject to investigations within the project work for the ongoing
SARAFun project (SARAFun).

We see quite some of the challenges pointed out by our subjects as concrete confirmation of as-
sumptions we had regarding obvious points to work with in the future.

In addition to not finding a strong correlation between experience and success rates, we observed
that the one person with the least technical background not only felt very comfortable (4) when pro-
gramming the robot, but also managed to complete all four steps of both phases within 21 minutes
with full success. On the other hand, we observed highly experienced PhD students in Automatic
Control struggling with the task for significantly longer periods of time and had one participant
with high experience ratings failing in the first step already.
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Figure 4: Paper folding (left). When rotating the box, only two positions must be updated (right).

In a sideline of the study, we had one nine-year old child test the interface in the study setup. The
child, while certainly an expert in LEGO building, was not a proper study participant due to a lack
of English reading capabilities, but managed with only a little help regarding the switch of refer-
ence coordinate frames and the use of the contact move to program the first step (picking up and
inserting the 2x2-piece on top of the “tower”) within 20 minutes.

Boldly speaking, these observations seem to suggest that understanding of the task and assuming the
robot to follow kinesthetic instructions as precisely as a (fellow, smaller) child, rather than assuming
it being capable of understanding complex instructions, made it easier for the subjects to solve the
task. In the following we will present the evaluation of the programming tool carried out by an
expert user, before drawing conclusions from our findings.

5.2 Expert evaluation

One of the case studies we presented in section 3, the gift-wrapping task, formed the basis for the
evaluation of the programming tool by an expert who is quite familiar both with programming
YuMi in the traditional way using a teach pendant and coding directly in RAPID as well as with the
specifics of the gift-wrapping process. For the evaluation, a folding task was chosen, where the right
arm fixated a gift box with the elbow while the left straightened the corners using nine positions
(fine and via), as illustrated in Figure 4. The operator used the programming tool presented in this
paper to add a packet object to the world and programmed the actions for the left arm relative to
this packet object. Then the box was moved to a different position and the packet and right arm
positions were updated accordingly. After that the left-hand program executed without change.
The entire programming, involving one test execution for each position took slightly below two
minutes. The same process was then programmed using traditional tools which took slightly more
than 11 minutes.

We also evaluated the interface in another context. Here, the overall task was to create two skills,
one for picking a tool from a fixture and one for placing it back into the fixture. Creating a tool object
and storing the positions for the picking and placing and saving these as skills took 70 seconds with
our interface and more than 5 minutes with traditional programming methods, hence, the initial
programming time was reduced by 80 using our interface compared to the traditionally provided
methods. A more realistic scenario would then certainly involve multiple adjustments and parameter
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tuning, if required using the advanced settings in the traditional tools, however, executing and
updating single instructions requires two button presses in our tool, while the traditional approach
requires at least five steps, twice that if more than one coordinate system is used in the task.

We can thus state, that for an initial online programming process of applications that are difficult
to test in a simulator (e.g., paper folding), our interface speeds up the programming process signif-
icantly. As it allows for debugging, executing, as well as updating and even reordering single steps
in the robot program, we would expect our programming interface to be quite suitable (and faster
than the traditional methods) also for more complex procedures.

6 Conclusion

In this paper we discussed our approach to high–level, intuitive programming of industrial robots
for assembly tasks. We presented findings from an analysis of two case studies regarding the de-
sired capabilities and functionalities of a programming interface for online programming in settings
where the traditional work flow is not suitable, due to, e.g., simulation for testing not being an
option. Based on these findings we developed a programming interface that supports a hybrid in-
struction and evaluation (execution) process and thus quick implementation and test cycles through
a graphical interface for iconic programming. The interface supports also the specification of objects
and their positions in the work cell of the robot, as well as updating these at any time. It is also
possible to reorder instructions graphically and sequences of instructions can be saved as a skill for
later re-use and refinement. We evaluated both with experts and 21 non–expert users in a user study
and can state the following regarding the improvements and simplifications we assumed our tool to
yield.

Already the basic support of a rapid instruction, test, and execution cycle with the possibility to
reorder and update single instructions for refinement reduced the programming time for an expert
by 80 compared to using the traditional programming tools and interfaces. This was specifically
supported by the possibility to easily specify and refine object positions and reference frames and
assigning them to certain instructions, so that re-use of program parts (skills) was enabled or even
(as evaluated) a full program for one robot arm could be run without modifications, when the pose
of the object the respective instructions referred to was updated. The possibility to change the frame
of reference for already existing instructions is an additional convenience, as it is easy to forget to
always set the correct one from the beginning, even for experts.

Our evaluation with 21 non–experts showed that the programming tool provides an interface suffi-
ciently easy to handle, so that 19 of 21 participants could construct a satisfying solution to a LEGO–
building task within 30 minutes, and 14 of them even managed to complete one or several follow–up
steps. We can also state, that the reuse of previously created (own) skills and even more so of pro-
vided, expert–made skills, simplifies the programming process significantly. Our subjects struggled
mainly with the precise positioning of the LEGO–bricks so that they would click into place firmly
and (as we previously assumed) with the different object reference frames needed to handle picking
up the pieces from arbitrary poses. For the first issue, we assume that process knowledge (how to
best approach one work piece with the other to attach them correctly) was here of more signifi-
cance than knowledge about the robot system, as we could not find an obvious correlation between
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success rate and experience. For the reference coordinate system issue we can state that although
the users—even if they had understood the problem with the frames—would frequently forget to
assign the correct one to their instructions, they managed to correct their mistakes quickly with the
functionality for changing reference frames.

Other tools for high-level programming often assume an existing library of robot skills, e.g., tools
supporting natural language instructions as for example presented by Stenmark et al. (2014) need
basic knowledge of objects (and their coordinate frames) and that it is possible to update and refine
solutions suggested by a learning and reasoning system to industrially adequate robustness and pre-
cision. Hence, we see our interface as appropriate to support even non–expert users in handling the
construction of such basic knowledge items as well as in updating and refining existing solutions.

Overall, we see our implementation as a successful prototype, which we can now use as a basis for
further development and studies and software distribution within the research community. The
integration of high-level (natural language) instruction capabilities with the interface as well as
functionalities for teaching force profiles and trajectories as basic movement primitives, or skills
are subject to ongoing work. This would presumably support the user even more in teaching con-
tact moves and specific operations like snap–fit assembly. As the reference coordinate problem is
difficult for users to both understand and then also to remember in the programming process, we
plan to integrate mixed–initiative support based on reasoning about possible options regarding the
assignment of reference frames to instructions.
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Abstract

In this paper, we present our successful efforts to improve intuitive programming of synchronized
dual-arm operations in industrial robotic assembly tasks. To this end we extend an earlier proposed
programming interface to integrate options for the specification, adaptation and refinement of syn-
chronization points, synchronized motions and master-slave relations during program parts. Our
approach supports the user by handling motion constraints and geometrical transformations nec-
essary for refinement and transfer of program sequences between arms implicitly, hence, the user
can express desired modifications by updating (high-level) instructions in a graphical interface. We
report on two experiments confirming the applicability and efficiency of our approach.
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1 Introduction

Over the recent years a new type of inherently safe industrial manipulators intended for direct col-
laboration with human shop floor workers has entered the market, examples of which are Universal
Robots’ UR5, ABB’s YuMi, Rethink Robotics’ Baxter and KUKA’s LBR iiwa. These, as well as some
traditional manipulators can be set up in a dual-arm configuration (in the case of ABB’s YuMi or
Rethink Robotics’ Baxter this is the default solution) to handle bi-manual tasks, e.g., in product
assembly.

A common property of these robot models is the lead–through programming, or kinesthetic teach-
ing, mode which enables the user to physically guide the robot manipulator into desired positions
instead of using e.g., a joystick. Still, the robot program has to be created as a sequence of motions
and control logic, e.g., by adding instructions one by one using a teach pendant (shown in fig. 1),
a textual program editor installed on a PC or simplified programming interfaces such as the YuMi
Online Windows app.

Such kinesthetic teaching using force-guided motions (Massa et al., 2015), gravity compensation
and variable stiffness (Wrede et al., 2013; Tykal et al., 2016) supports also non-expert operators to
program and configure tasks (Rodamilans et al., 2016), however, dynamic environments, uncertainty
and the use of noisy sensor feedback are still challenges for the operator (Stolt et al., 2016), and so
far, experts are still needed to program the robots on the necessary levels of robustness and precision.
Specifically, dual-arm operations like synchronized motions or master-slave configurations, where
one arm’s movements are specified in relation to the other one’s, are quite complex to program, as
often (even in originally dual-arm configurations like the ABB YuMi) the two arms are controlled as
two independent robots for which the synchronization for bi-manual manipulation must be handled
explicitly, and the programming of dual-arm programs needs user support, e.g., both by letting the
user fine tune the positions of a single arm separately, and debugging synchronized motions in pairs
(Stenmark et al., 2016). Re-use and adaptation of parts of the robot program that require essentially
the same operations, but from a different arm’s or even switched master-slave perspective, are rather
complex.

Another approach to making the programming of complex robot instructions more available to
non-expert users is the use of high–level instructions to simplify robot programming for indus-
trial tasks, e.g., using natural language (Stenmark and Nugues, 2013) and semantically defined pa-
rameterized motion primitives (Felip et al., 2013), often called skills (Pedersen et al., 2014, 2016).

Figure 1: A teach pendant.
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Figure 2: YuMi packing a parcel.

Such semantic descriptions are desirable because they enable the automatic generation of standard
PDDL¹–descriptions for planning and scheduling of tasks or path planning and generation from
virtual models (Perzylo et al., 2016). However, in most cases these abstractions assume a library of
skills or motion primitives that can be represented in executable robot controller code sequences,
which can be applied in the high-level task description. Unfortunately, this assumption does not
necessarily hold for highly specialized motions and configurations that might be needed in a specific
assembly task.

We have earlier reported on our work that establishes a middle ground of these two approaches by
combining kinesthetic teaching and a multimodal user interface with parametrized skill representa-
tions to simplify robot programming, which allows also non-expert users to specify and semantically
annotate their own skills (motion primitives and also more complex program sequences), which can
then be re-used and adapted on a higher level of abstraction into more complex task descriptions
(Stenmark et al., 2017a,c,b), also allowing for certain operations to be specified relative to (adapt-
able) object reference frames. Although the reported experiments and user study were conducted
on the dual-arm robot YuMi shown in fig. 2, they did not cover extensive handling of synchronized
motions for genuine dual-arm operations.

In this paper, we can report on our successful and to our knowledge novel efforts to integrate also
options for the specification of synchronization points, synchronized motions and master-slave re-

¹Planning Domain Definition Language
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lations during program parts, which can then, based on our parameterizable skill representation, be
re-used and adapted into high-level instructions. This adaptation includes also the transfer of a skill
(motion primitive) from one arm to the other, adaptation of synchronized motions to new object
reference frames, and the switch of the master-slave relationship. Our approach supports the user by
handling the necessary geometrical transformations implicitly based on the high-level instruction
transfers expressed by the programmer through the graphical interface.

The remainder of the paper is organized as follows. We will refer to related work in the area of
dual-arm robot programming in section 2. In section 3 we describe our skill representation and
the conceptual framework for handling the re-use and parameterization of synchronized motions.
We explain our implementation and experiments in sections 4 and 5, respectively, and discuss our
results and conclusions in section 6.

2 Related Work

Dual-arm or bi-manual task handling has been investigated under different paradigms or points
of views. An overview of dual-arm manipulation approaches considering among others the con-
trol and planning perspective is given by Smith et al. (2012). An early approach to programming
by demonstration of bi-manual, tasks was reported by Zöllner et al. (2004), however, they con-
sider mainly household related tasks, while we assume that a pure programming by demonstration
approach is not sufficient for an industrial assembly context. This assumption is shared by Krüger
et al. (2011), who report on an approach quite similar to ours for intuitive programming of industrial
manipulators based on a combination of task representations and human demonstration (Makris
et al., 2014). Their focus, however, is more on the observation of human movement demonstrations
and transfer of these movements into robot control sequences for direct imitation, while we focus
rather on the programming of re-usable synchronized motion sequences based on a representation
that supports the robot operator by abstracting the low-level control primitives for synchronization
of the two arms into intuitively understandable skill descriptions.

3 Objects, Primitives and Skills

The knowledge in the system is centered around objects (workpieces), devices such as manipulators,
grippers and sensors and assembly processes describing the robot program. In this experimental
setup, objects are created as abstract entities with a unique name, a type, and positions describing
points on the object as relative reference coordinate systems. For example, the gift box used in the
experiments described in Section 5 has multiple points defined, one for each side and two corners.
Robot motions can then be specified using the reference coordinate frames and the positions can be
updated e.g., using cameras. The robot manipulators have a reference frame attached to the wrist,
the flange. The gripper is attached to the flange and has in turn one or more reference points, e.g.,
the tips of the fingers. For our experiments, we use a dual-arm robot where motions of one arm
are specified in the other arm’s flange reference system. The low-level implementation in this setup
does not allow arbitrary reference points along the robot arms, thus, contact situations where the
so-called elbow or lower arm are used are specified using joint angles.
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3.1 Primitives

Each primitive has a set of semantically annotated parameter types with (system dependent) default
values. The following primitives are implemented in the interface described in Section 4:

• Motion types: Motion has subtypes Free Motion and Contact Motion. Free Motion has
subtype AbsJointMove (where the target is expressed in joint angles), Linear Move, Circular
Move and Joint Move where the target is expressed in Cartesian space relative to a point on
an object and the path will be linear, circular or by moving all joints simultaneously. The
Contact Motion is a simple Guarded Search, which moves towards a specified point until
the desired (estimated) contact force is reached, or, if no contact occurs, an error is thrown.

• Gripper Actions of the subtypes Open, Close and Finger Position. The first two actions
open and close the fingers fully or until the current value of the gripping force is reached. The
Finger action is used to set the gripping force and finger positions to the specified parameter
values. It also has a Wait/NoWait flag indicating whether or not the gripper action is
executed while the robot is moving.

• Synchronization: there are two types of synchronization in the system, either a synchroniza-
tion point or synchronized motions. By default, the two arms execute independently as two
separate robots, but a synchronization point is a rendez-vous between the robot programs
that will force one arm to wait until the other reaches the corresponding point in its program.
Similarly, the synchronized motions have references to each other.

• Synchronized motions: the two arms will start and finish motions at the same time, that is,
the longest motion determines the execution time of all the motions. The motions can be
specified in absolute joint (or Cartesian) coordinates or relative to objects in the workspace.
They can also be specified relative to the position of the other arm, in a so-called Master-
Slave configuration. The master-slave motions are used to lock a specific offset between the
arms, e.g., when moving an object bimanually.

• Native Code: the (advanced) user can add any native robot code in plain text as a snippet
that will be included inline at a given point of a program. Only object references are analyzed
semantically. This action is used by the system integrator or an expert to create skill macros
for sensor communication, e.g., by creating a function that uses cameras to locate an object.
For example, if the user added an object named screw and the expert created a procedure
that locates a screw called screwLocatingFunction, the position of the screw is updated with
the native code line screw := screwLocatingFunction. Since the variable names are
unique and typed both in native code and in the user interface, object references can be
changed using the interface, hence, non-expert users do not have to edit the native code to
update the object positions of other (similar) screws.

3.2 Re-use and transformation of skills

Motions relative to object reference coordinate systems can be transformed by either by changing
the coordinate system or updating it. Using only one reference point (translation and rotation),
whether it is the flange of the robot or a point placed on an object, is enough to rotate the skill. To
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mirror the task in a plane, two pairs of points are needed, one point for each arm that is used during
the programming phase, and then one new point for each arm respectively to allow the skills for
each arm to be rotated and translated arbitrarily in the space.

3.3 Programming synchronized motions

While related work, e.g., the app provided with the YuMi robot, lets the user create a pair of motions
for both arms with one click, the motions are not semantically or syntactically connected. With
our representation, where synchronized points and motions have a reference to the other member
in the pair, they can be created, deleted, executed, moved in the program sequence and copied in
pairs. Hence, when moving a synchronized motion from one arm to the other, the other motion in
the pair has to swap places with it in order to preserve a correct program.

Synchronized skills can also be re-used bi-manually and moved between the arms. When re-using
dual-arm skills containing master-slave motions, when the skills for each arm are swapped, i.e., the
original skill had the left arm as a master and the master moved in the reference coordinate system
of object objX and the right arm, the slave, had an offset to the left offsY, then (when the skills
are swapped) the right arm will become the master, moving to the same positions in the reference
coordinate system of object objX and the position of the left arm, now the slave, will be updated to
the inverse of offsY.

A special case is the refactoring of reference frames for synchronized motions. Since the synchro-
nization is an alignment in time, the reference frame of one arm can be changed to the flange of the
other if the original positions are known, thus synchronized motions can be refactored into master-
slave configurations. All these programming concepts are implemented in the prototype described
in the following section.

4 Implementation

The prototype design was developed after several case studies where the authors developed assem-
bly applications on the ABB dual-arm robot YuMi. The user interaction is intended to simplify
agile online robot programming. Mistakes should be easily corrected, with programming and debug
modes merged into a single screen to facilitate a quick program modification and execution loop.
All available information about the program is retained even though it may not be used immedi-
ately. As an example, a target position is saved with data for the current joint values, the Cartesian
tool position and, if a reference object is selected, the relative position, which makes it easy to switch
between representations. This allows the operator to quickly create a program and later work on
creating and applying abstractions such as object references to make the program easier to re-use
and adapt. The current graphical user interface is shown in fig. 3.
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4.1 Code generation

Writing and debugging native controller code for synchronized motions is time consuming, even
for experts. To simplify the user interaction during programming, the creation, reordering, deletion
and execution of synchronized motions is done in pairs.

Below is an example of the generated RAPID code (edited for clarity) for the right arm in the
example shown in the user interface screen capture in fig. 3. The example is a dual-arm pick and
place of the lid on the toy box described in sec. 5. First, the arms move unsynchronized, open the
grippers and move into gripping positions, after closing the fingers, four master-slave motions are
used to move the lid and place it on top of the toy box. Finally, the lid is released (also synchronized).
First, all variable names are declared and given values, these declarations are generated from the user
specified objects and added automatically for synchronization points.

The main procedure corresponds to the actions of the right arm. After an initial via move in abso-
lute joint space, the two following motions are relative to the grippoint and after closing the gripper
the following four motions are relative to the flange of the left arm. Each slave move has an ID
that must match a corresponding master move on the left arm. The synchronized motions are sur-
rounded by commands for turning on and off the synchronization (SyncMoveOn/SyncMoveOff).
The parameters such as speed (v200), precision (fine), tool offset (GripperR) and reference coordi-
nate system (e.g., grippoint) are generated from the (default) parameter values or reference positions
of the actions.

Figure 3: A screen capture of the GUI.
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PERS tasks taskList {2} := [["T_ROB_L"], ["T_ROB_R"]];
VAR syncident syncMoveStart;
VAR syncident syncMoveStop;

VAR jointtarget ViaMove5 := ...
VAR robtarget Move1 :=...
VAR robtarget Slave1 :=...
[...]
PERS wobjdata grippoint :=...
[...]
TASK PERS wobjdata flangeRobL := ...
TASK PERS wobjdata flangeRobR := ...

PROC main()

Hand_SetHoldForce 15;
Hand_MoveTo 18\NoWait;
MoveAbsJ ViaMove5,v500,z5, GripperR;
MoveL Move1,v200,fine, GripperR\WObj:=grippoint;
MoveL Move2,v200,fine, GripperR\WObj:=grippoint;
WaitSyncTask Sync1, taskList;
CloseHand;
SyncMoveOn syncMoveStart, tasklist;
MoveL Slave1\ID:=1,v200,fine, GripperR\WObj:=flangeRobL;
MoveL Slave2\ID:=2,v200,fine, GripperR\WObj:=flangeRobL;
MoveL Slave3\ID:=3,v200,fine, GripperR\WObj:=flangeRobL;
MoveL Slave4\ID:=4,v200,fine, GripperR\WObj:=flangeRobL;
SyncMoveOff syncMoveStop;
Hand_SetHoldForce 15;
Hand_MoveTo 18\NoWait;
SyncMoveOn syncMoveStart, tasklist;
MoveL Slave41\ID:=41,v200,fine, GripperR\WObj:=flangeRobL;
SyncMoveOff syncMoveStop;

5 Experiments

Two programming experiments were conducted on the YuMi robot. The first was a bi-
manual pick and place of a lid of a toy box, the second was a sub-procedure of a gift-
wrapping application.

5.1 Bi-manual object manipulation

The first setup is depicted in fig. 4 and the robot was programmed to carry out a bimanual
pick and place where a lid of the toy box was picked up and inserted on the box. To solve
the task the grippers had to be placed in the holes of the lid using half-opened fingers,
then a sequence of four master-slave motions were used to lift the lid and place it on top
of the box. The program is shown in fig. 3. A robot programmer who had never used the
tool prototype for synchronized motions and was presented with the task for the first time,
needed 32 minutes to solve and debug the task fully. This involved finding a robust gripping
strategy with half-opened grippers that did not subject the lid for high forces.

When a strategy was known, two experts (two of the authors of this paper) needed 5 and
10 minutes, respectively, to program the task but 21 and 32 minutes, respectively, using
traditional tools (text editor and teach pendant). Prototyping from scratch using traditional
tools was not tested.
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Figure 4: The task was to insert a lid on a toy box.

Further experiments were used to test the representation. The lid was rotated 90 degrees as
depicted in fig. 5a, which caused the robot arms to collide during the pickup. The programs
for the arms were swapped, resulting in a collision free pickup shown in fig. 5b.

However, attempting to attach the lid on the box also caused a self-collision. The insertion
position was rotated 180 degrees by adding and changing references of the original program
that used absolute coordinates for the insertion. Two new object references were added by
pointing at the center of the insertion point using the gripper as shown in fig. 7, one rotated
180 degrees around the z-axis. Using the two options for recalculating the reference system and
changing the object of the task, the reference system was changed from absolute coordinates
to relative positions of the first position. After changing of the object reference, the resulting
program carried out the same task but rotated and with interchanged master-slave motions,
as shown in fig. 6.
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(a) Colliding arms. (b) Collision free gripping.

Figure 5: Swapping of the programs.

Figure 6: Collision free insertion. Figure 7: Pointing out a new reference coordinate.

5.2 Mirroring tasks

In the second experiment, part of a gift-wrapping application (previously described in Sten-
mark et al., 2016)) were re-implemented, see fig. 2. The folding of the sides of the gift paper
around the box are symmetric tasks: first the left robot arm holds the box while the right
arm folds the paper around the corners to make a straight fold. The complete process in-
volves flattening of the paper and taping, but to test the skills we will only look at the
straightening of the corners.
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Figure 8: The rotated position. Figure 9: The mirrored position.

First, one reference point was added on the right (for the robot) side of the robot. The
task was first programmed using the side point as reference point. A second reference point
was added, this time on the left side pointing outward. The robot programs for the arms
were swapped and a new reference object for the right arm changed to the new side point,
resulting in a rotation of the task as shown in fig. 8.

The original task was mirrored from one side to the other by adding a point on the corner
where the right arm is pointing in fig. 2 as well as a point in the mirrored corner (fig. 9)
using the left arm. The programs for the arms were swapped but this time the folding hand
used the (robot) left corner point as reference while the holding hand used the side point,
which resulted in a mirrored task execution.

6 Conclusions

In this paper, we discussed our efforts to improve intuitive dual-arm programming of col-
laborative industrial robots. Our programming model allows for primitive dual-arm mo-
tion constructs with associated motion constraints to capture specification of synchroniza-
tion points, synchronized motions and master-slave relations during program parts. We
also present a taxonomy of our programming constructs as a starting point for a dual-arm
ontology of programming constructs. This is combined with a programming interface that
supports a hybrid instruction and evaluation (execution) process and thus quick implemen-
tation and test cycles through a graphical interface for iconic programming. The interface
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supports also the specification of objects and their positions in the work cell of the robot,
as well as updating these at any time. It is also possible to reorder instructions graphically
and sequences of instructions can be saved as a skill for later re-use and refinement.

We have identified several program transformations, including rotations and mirror op-
erations, that are useful for dual-arm programming relating to the inherent relationship
between the arms. These transformations are exemplified in this paper through two trans-
formation constructs, the mirroring transformation which allows a program written for a
left-right arm configuration to be transformed into a program to be executed on a right-left
arm configuration, and the master-slave switching transformation which allows a change
of arm leadership role during ”follow me” operations.

Experiments confirming the applicability and efficiency of our approach were conducted
on two small part assembly scenarios, collaborative placing of a lid on a box, testing dual-
arm programming with motion constraints, and gift wrapping, testing dual-arm program
transformations. We could observe a significant reduction (by two thirds) of programming
time compared to applying traditional approaches and tools to the programming, particu-
larly when the solution to the task at hand was known, i.e., the programmer knew how the
robot arms should move and ”only” had to program them to do that.

However, our experience from the experiments indicates that further work on modes for
dual-arm lead-through taking into account motion constraints might be a fruitful direction
of investigation, perhaps in combination with work in the force-domain to allow expression
of dual-arm constraints including torque and/or force conditions, i.e., applying a certain
press on the sides of a box while picking it up. Standard functionality packaged with the
industrial controller today includes only independent single-arm lead-through in the posi-
tion domain. We also believe that investigation of guidance of non-experts / process experts
in efficient robot programming techniques during the programming process would further
improve programming efficiency, perhaps with robot-induced operator teaching as part of
a robotic skill set.
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ABSTRACT

In this paper, we introduce a method to use written natural language instructions to program assem-
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systems. Our focus lays on the applicability of these methods in an industrial setting with real-time
constraints.
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1 Introduction

Robot programming is time consuming, complex, error-prone, and requires expertise both of the
task and the platform. Within industrial robotics, there are numerous vendor-specific programming
languages and tools, which require certain proficiency. However, to increase the level of automation
in industry, as well as to extend the use of robots in other domains, such as service robotics and
disaster management, it has to be possible for non-experts to instruct the robots.

Since humans communicate with natural language (NL), it is appealing to use speech or text as
instruction means for robots as well. This is complicated for two main reasons: First, NL can be
ambiguous and its expressivity is richer than that of a typical programming language. Secondly, tasks
can be expressed as goals as well as imperative statements, hence, even if the instructions are correctly
parsed, the description itself is often not enough to create a successful execution. There has to be a
substantial amount of knowledge in the system to translate the high-level language instructions to
executable robot programs.

In this paper, we introduce a method for using natural language to program robotized assembly tasks
and we describe a prototype of it. The core idea of the method is to use a generic semantic parser to
produce a set of predicate-argument structures from the input sentences. Such predicate-argument
structures reflect common semantic situations described through language and at the same time
use a logical representation. Using the predicate-argument structures, we can extract the orders
embedded in a user’s sentences and map them more easily onto robot instructions.

2 Related Work

Natural language programming for robots has been investigated for both service and navigational
robots from the early 1970’s. SHRLDU (Winograd, 1971) is an oft-cited example of the first at-
tempts to give robots conversational competences. To interpret and convert a user’s sentences into
instructions, robotic system often make use of an intermediate representation. Examples include
Tellex et al. (2011); MacMahon et al. (2006); Shimizu and Haas (2009), where the authors have
developed their own domain specific semantic representation for navigational robots.

Tenorth et al. (2010) parse pancake recipes in English from the World Wide Web and generate
programs for their household robots. They use the WordNet lexical graph (Princeton University,
2010) with a constituent parser and they map WordNet’s synsets to concepts in the Cyc (Matuszek
et al., 2006) ontology. Finally, they add mappings to common household objects.

In order to bridge the sentence to the robot actions, all the examples mentioned above seem to
use ad-hoc intermediate formalisms that are difficult to adapt to other domains, languages, or en-
vironments. Frame semantics (Fillmore, 1976) is an attempt to provide generic models of logical
representations of sentences. Frame semantics starts from prototypical situations shared by a lan-
guage community, English for instance, and abstracts them into frames. While frame semantics
is only a theory, FrameNet (FrameNet, 2013; Ruppenhofer et al., 2010) is a comprehensive dictio-
nary that provides a list of lexical models of the conceptual structures. Commercial situations like
selling are represented with the Commerce_sell predicate-argument structure, where the arguments
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include a buyer, a seller, and goods. Given a sentence and a verb belonging to this frame, like vend,
sell, or retail, a semantic parser will identify the predicate and its arguments.

As of today, FrameNet has not a complete coverage of English verbs and nouns. Propbank (Palmer
et al., 2005) and Nombank (Meyers et al., 2004) are subsequent projects related to FrameNet that
both developed comprehensive databases of predicate-argument structures for respectively verbs and
nouns and annotated large volumes of text with it. As training data is essential to the development
of statistical semantic parsers, most of the current parsers use the Propbank nomenclature, as they
are easier to train.

To the best of our knowledge, few robotics systems use existing predicate-argument nomenclatures.
An exception is RoboFrameNet (Thomas and Jenkins, 2012), a language-enabled robotic system that
adopts frame semantics. However, the authors wrote their own frames inspired from FrameNet.
Their model includes a decomposition of the frames into a sequence of primitives. They built a
semantic parser that consists of a dependency parser and rules to map the grammatical functions to
the arguments. Such techniques have been used from the early Absity system (Hirst, 1987) and are
known to have a limited coverage.

In the project, we describe below, we used a multilingual high-performance statistical semantic
parser (Björkelund et al., 2009, 2010) trained on the Penn Treebank and using the Propbank and
Nombank lexicons. In contrast to RoboFrameNet, the parser we adopted can accept any kind of
sentence.

3 System Overview

Architecture

The central part of the system architecture (Björkelund et al., 2011) is the knowledge integration
framework (KIF). KIF consists of a client-server architecture where the server hosts ontologies, pro-
vides services, and object and skill libraries. The ontologies represent the world objects, such as
robots, sensors, work-pieces and their properties, as well as robot skills. The skills are semantically
annotated, platform-independent state machines, which are parameterized for reuse and executed
using Lund University (2013).

KIF interacts with the engineering system (ES), which is the high-level programming interface, and
the robot controller. The ES is implemented as an extension to the programming and simulation
environment ABB RobotStudio (2017). When creating the robot cell, the objects, such as sensors,
work-pieces, and trays, can be generated or downloaded from KIF together with the ontology. Every
physical object has an object frame, and a number of feature frames related to its object frame. These
frames are used to express geometrical constraints; see Fig. 1.

A program consists of a sequence of steps, which in turn consists of actions, motions, skills, or
nested steps. The sequence is created using the graphical interface of the ES. The steps for picking a
printed circuit board (PCB) and placing it on a fixture are shown in Fig. 2. To execute the sequence,
platform specific code (robot code or the XML file used by the state machine executor) is generated
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Figure 1: In the object browser, the robots
are listed under robots; all physical objects
are listed under world and each object lists
its own frames and relations.

Figure 2: The visual rendering of a program
for picking and placing a PCB.

for the motions, actions and skills, and deployed on the target platform. To help the user quickly
setup a skeleton sequence of a task, we provide a natural-language parsing service on KIF; see Fig. 3.
The service reads the text input, parses the text in search of predicate-arguments structures, and
returns those containing predicates that match the task vocabulary.

On the client side, the predicates are mapped to programs; the arguments representing station
objects and the other parameters are filled with default values or geometrical relations taken from
the station. The programmer can then check the sequence, possibly alter it, and finally execute it.

ES KIF NL parser

ES KIF NL parser

User writes 
the NL text in 
a text box. The text is sent 

as a request
Forwards the text The parser 

finds the 
predicates and 
arguments in 
the sentences

Returns the parsed result

The KIF service filters 
the result and returns 
only those predicates 
that are relevant for 
the assembly task 

Returns the filtered 
predicates and their 
arguments

Matches the 
arguments to 
the objects in 
the station and 
generates the 
sequence

Figure 3: The data flow between the user, the KIF service and the semantic parser.
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Figure 4: Parsing result from the first sentence. The parser identified two predicates, pick and place,
and two arguments for each predicate.

Predicate-Argument Structures

An assembly task can be defined as e.g.: Pick the PCB from the input tray and place it on the fixture.
Then take a shield can and insert it on the PCB. These sentences are parsed to extract the predicates-
argument structures pick(PCB, input tray) and place(it, fixture), while the agent parameter, robot, is
implicit.

The parser is trained on the Penn Treebank that uses the Propbank lexicon (Johansson and Nugues,
2008). Propbank labels each English verb with a sense and defines a set of arguments that is specific
to each verb. In the sentence: Pick the PCB from the input tray and place it on the fixture, both pick
and place have sense 1 (pick.01 and place.01):

• Pick.01 has three possible arguments; arg0: agent, entity acquiring something, arg1: thing
acquired and arg2: seller.

• Place.01 has arg0: putter, arg1: thing put, and arg2: where put.

The parsing output is shown in Fig. 4. As shown in this figure, the arg1 and arg2 arguments to
pick.01 are matched to the PCB and the input tray respectively, while the robot (arg0) is implicit.
Before mapping the identified arguments to the station objects, the arguments corresponding to the
same entity have to be gathered into coreference chains; see Fig. 5. The last step links the coreference
chains to the entities in the station using the object name or type.

Task Vocabulary

The vocabulary is currently rather limited. We only considered predicates matching programs that
the robot could generate. Each program has arbitrary language tags such as take, insert, put, cali-
brate, either predefined or edited by the user. Possible arguments to the programs are the objects in
the station, which is a well-defined, finite world.

4 High-level Programming Prototype

On the highest level, the task is represented by an assembly graph (Malec et al., 2013), which is a
partially ordered tree of assembly operations; see Fig. 6. The graph describes the assembly of an
emergency stop button box.
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Figure 5: Coreference solving of entities in the first sentence. Mentions corresponding to the same
entity are gathered into coreference chains.

Each operation specifies the desired geometrical relations of the involved objects and the skill type
for the assembly. Examples of skill types in the ontology are screw, glue and peg-in-hole, where each
type can have several different implementations. The assembly operations are subgoals, and the
root node represents the final goal of the task. The motivation for the assembly graph is to have
a platform independent task description, so that different implementations can be compared and
reasoned about.

The assembly graph is realized by sequences of actions and motions for each robot. The sequence can
be: 1) created manually by adding actions and motions one by one and editing their properties, 2)
generated from the assembly graph or 3) created by using a natural language interface. An example
of the latter is shown in Fig. 7: two assembly steps of a stop button box assembly are described by
natural language. Fig. 8 shows the parsed result from Fig. 7.

Each predicate is mapped to a type of skill. For example, a pick or take consist of a sequence
of primitive actions: approaching the object to be picked, opening the gripper, moving slowly to a
grasp position, closing the gripper, and then retracting. The mapping of the objects are rudimentary:
by name (ignoring space and case) or, if this is unsuccessful, by the ontology type (e.g. fixture, tray
or pin). When generating the motions for picking and placing the objects, the application uses the
existing grasp positions and relations between the work-pieces as default values. If no relations exist,
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Figure 6: The assembly graph is created by dragging and dropping icons of the objects. Here, the
first assembly operation involves the base of the emergency button (left) and the switch (right). In
the second operation the lid is added to the subassembly.

Figure 7: The commands are written into a sim-
ple text field, the narrative is then sent to the KIF
service that facilitates semantic parsing.

Figure 8: The result the parsed predicates
along with their arguments.

a new one is created with zero offset. The actions for opening and closing the gripper are taken from
the selected tool, since each tool describes its own procedures. The resulting sequence is shown in
Fig. 9. Using reasoning services available from KIF, the generated sequence can then be checked for
inconsistencies and additional skills are suggested to solve missing constraints (e.g. an object has
to be placed in a fixture before an assembly or a tool needs to be exchanged between drilling and
picking). The code generated from the sequence is executable on both virtual and physical robots;
see Fig. 10. To expand the vocabulary, the user can add natural language tags to existing steps and
upload them to KIF.
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Figure 9: The generated sequence for insert-
ing a switch on the base of a stop bottom and
putting the top of the box on the base.

Figure 10: The sequence from Fig. 8 exe-
cuted on a physical robot.

5 Conclusions

In this paper, we have presented a system to describe robot assembly tasks in the RobotStudio
environment using natural language. From an input sentence, the processing pipeline applies a
sequence of operations that parses the sentence and produces a set of predicate-argument structures.
The semantic module uses statistical techniques to extract automatically these structures from the
grammatical functions.

The NLP pipeline is designed so that it reaches high accuracies and has short response times re-
quired for user interaction. Parsing a sentence takes from 10 to 100 milliseconds. Drawing from the
frame semantics theory, the semantic parser uses a standardized inventory of structures and can be
applied to unrestricted text. This makes the pipeline more easily adaptable to new tasks and new
environments.

As second step, the system maps the predicate and the arguments extracted from the sentence to
robot actions and objects of the simulated world. These objects and actions are stored in a unified
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architecture, the knowledge integration framework that represents and manages the entities, services,
and skill libraries accessible to the robot.

Making the application part of a tool already used by industry is a conscious choice: high-level nat-
ural language programming is convenient to get an application up and running quickly. However,
when tuning the parameters of a task, the programmer can still use the traditional tools, e.g. to edit
the generated code directly. Also, because of the industrial focus, we have real-time performance
on the underlying sensor and control systems, which is necessary for many manipulation tasks in
assembly operations.

Unlike previously reported results, our approach supports both a command-like interface and pars-
ing of longer texts, yielding multistep programs.

6 Future Work

The obvious drawback of this implementation is the lack of speech as an input modality. How-
ever, since many smartphones have sufficient speech recognition for our purposes, this was not our
main scientific concern. Rather, we wanted to extend the skill library with relevant and generic
assembly skills. We plan to extend our application with tools that make it simple to extract the nat-
ural language predicate-argument structures given a skill, its parameters (objects, velocities, forces),
and a textual description of the skill. Another extension is to automatically search after suitable
implementations that are tagged with synonyms to the used words.
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ABSTRACT

Task-level industrial robot programming is a mundane, error-prone activity requiring expertise and
skill. Since humans easily communicate with natural language (NL), it may be attractive to use
speech or text as instruction means for robots. However, there has to be a substantial amount
of knowledge in the system to translate the high-level language instructions to executable robot
programs.

In this paper, the method of (Stenmark and Nugues, 2013) for natural language programming of
robotized assembly tasks is extended. The core idea of the method is to use a generic semantic parser
to produce a set of predicate-argument structures from the input sentences. The algorithm presented
here facilitates extraction of more complicated, advanced task instructions involving cardinalities,
conditionals, parallelism and constraint-bounded programs, besides plain sequences of commands.

The bottleneck of this approach is the availability of easily parametrizable robotic skills and func-
tionalities in the system, rather than the natural language understanding by itself.
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1 Introduction

Programming of a traditional robot cell requires considerable expertise and effort. The new genera-
tion of robots, that work in an unstructured environment, that might have more degrees of freedom
and two arms, introduces an increased level of complexity in user interaction and instruction. There-
fore, methods of robot instruction that are accessible to non-experts would lead to greater usability
of industrial robotics. Yet another aspect of the problem lies in vendor-specific solutions, avail-
able for each brand of robots. Different tools of varying complexity, different robot programming
languages and different abstraction levels of task descriptions make them inaccessible for a plain
user.

Since humans communicate with natural language (NL), it may be attractive to use speech or text as
instruction means for robots. This is non-trivial for two main reasons: First, NL is often ambiguous
and its expressivity is richer than that of a typical programming language. Secondly, tasks can be
expressed as goals as well as imperative statements, hence, even if the instructions are correctly
interpreted, the description itself is often not enough to create a successful execution. There has to
be a substantial amount of knowledge in the system to translate the high-level language instructions
to executable robot programs.

In this paper, the simple method from (Stenmark and Nugues, 2013) for natural language pro-
gramming of assembly tasks is extended. The core idea of the method is to use a generic semantic
parser to produce a set of predicate-argument structures from the input sentences. The original
algorithm allows extraction of only plain sequences of commands. Here we show that using the
predicate-argument structures together with the dependency graphs facilitates also extraction of
more complicated task instructions, which involve cardinalities (e.g., pick two bolts and two nuts),
conditionals (e.g., if...then...else) and constraint-characterized programs (e.g., do...until...)

2 Related Work

By abstracting away the underlying details of the system, e.g., by demonstration, high-level pro-
gramming can make robot instruction accessible to non-expert users and reduce the workload for
an experienced programmer. A survey of programming-by-demonstration models in robotics is
presented by Billard et al. (2008).

In industrial robotics, programming and demonstration techniques are normally used to record tra-
jectories and positions. As it is desirable to minimize downtime for the robot, much programming
and simulation is done offline whereas only the fine tuning is done online (Hägele et al., 2008).
There is a plethora of tools, often visual, for robot programming. In robotics, standardized graph-
ical programming languages include Ladder Diagrams, Function Block Diagrams and Sequential
Function Charts (IEC, 2003). Using a touch screen as an input device, icon-based programming
languages such as in Bischoff et al. (2002) can also lower the threshold to robot programming.

Natural language programming for robots has been investigated since the early 1970’s. SHRLDU
(Winograd, 1971) is an example of the first attempts to give robots conversational competences.
To interpret and convert a user’s sentences into instructions, robotic system often make use of an
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intermediate representation. Examples include MacMahon et al. (2006) and Tellex et al. (2011),
where the authors have developed their own domain-specific semantic representations for robot
navigation.

Tenorth et al. (2010) parse pancake recipes in English from the World Wide Web and generate
programs for their household robots. They use the WordNet lexical database (Princeton University,
2010) with a constituent parser and they map entries in the WordNet dictionary to concepts in the
Cyc ontology (Matuszek et al., 2006). Finally, they add mappings to common household objects.

In order to bridge the sentence to robot actions, all the examples above use ad-hoc formalisms.
FrameNet (Ruppenhofer et al., 2010), based on frame semantics, is a comprehensive dictionary that
provides a list of lexical models of the conceptual structures. Propbank (Palmer et al., 2005) has
developed a extensive database of predicate-argument structures for verbs and nouns, and anno-
tated large volumes of text. The Propbank nomenclature is used by most current statistical parsers,
including ours.

Only few robotics systems use existing predicate-argument nomenclatures. An exception is
RoboFrameNet (Thomas and Jenkins, 2012). However, the authors wrote their own frames inspired
by FrameNet. They built a semantic parser that consists of a dependency parser and rules to map
the grammatical functions to the arguments. Such techniques are known to have a limited coverage.

In the project described below we have used a multilingual high-performance statistical semantic
parser (Björkelund et al., 2009, 2010) using the Propbank and Nombank lexicons. In contrast to
RoboFrameNet, the parser we adopted can accept any kind of sentence. The NL processing module
is a knowledge-based service in a larger programming environment (Stenmark and Malec, 2013). In
particular, it allows one to create constraint-based task descriptions based on the iTaSC formalism,
a property exploited here.

3 Background

The system has been described in detail in our previous work (Stenmark and Nugues, 2013; Stenmark
and Malec, 2013); a simplified view of its components is shown in Fig. 1. It is a cloud-based sys-
tem for knowledge sharing and distributed AI reasoning. The knowledge and reasoning services are
stored on a server called Knowledge Integration Framework (KIF), which contains data repositories
and ontologies modeling objects and actions. KIF also provides servlets for planning, scheduling
and code generation, as well as the NL-programming servlet described in this paper. These ser-
vices are used for offline programming by the Engineering System (ES), which is a user-interface
implemented as a plug-in to ABB RobotStudio (2017) visual IDE.

Objects in the World The core ontology, rosetta.owl (Stenmark and Malec, 2013), contains devices
such as sensors and robots. The ES also uses a separate ontology to describe parts, such as trays and
workpieces. The ontologies describe object types and properties, while the data repositories contain
instances of the types. E.g., a ForceSensor is a subtype of Sensor and of PhysicalObject, has property
measures with value Force, and it also inherits properties such as weight from PhysicalObject. The
object types and their property types are later used by the natural language programming system to
link arguments to real world objects. Objects are displayed by ES using their CAD models. Each
object has a number of relative coordinate frames called feature frames, attached to its main object
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Figure 1: A view of the system architecture.

Figure 2: A sequence of skills.

frame. The feature frames are used to express relations between objects. A typical case is a gripping
pose described as a relation between a gripper frame and an object feature frame.

TaskVocabulary The task vocabulary is limited to existing robot capabilities. In the KIF repositories,
robot actions are stored as program templates, called skills. There are primitive actions, such as search,
locate and move which can be combined into more complex skills such as pick and place. Each skill
has parameters, e.g., velocities, other objects, their feature frames, or relations. Each skill has also a
set of device requirements, pre - and post-conditions as well as optional properties such as natural
language labels. The skills are downloaded from the KIF libraries into the ES and added to a task
sequence, see Fig. 2. This sequence can be edited by drag-and-dropping objects and by editing
parameters of each action or skill. As an additional modality, we have extended the system with
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natural language support for sequence generation. Using language to express a task is faster than
downloading or selecting each skill separately; besides, speech allows hands-free instruction of the
robot.

Natural Language Programming The task is expressed in unstructured English, either by typing it
in a text box directly in the user interface, or by connecting an Android app to the ES and using its
speech-to-text conversion. The text is sent to a servlet on KIF, which in turn calls a general purpose
statistical parser¹ (Björkelund et al., 2010) that outputs predicate-argument structures in standard
format (cf. Fig. 3).

Predicate-Argument (PA) Structures As an example we use an assembly where a printed circuit
board, a PCB, is covered with a metal plate, a shieldcan. First the PCB should be fixated, which
can be expressed in English as Take the PCB from the input tray and place it on the fixture. The PA
structures are take(PCB, input tray) and place(it, fixture). The parser labels verbs with different senses
depending on the context in which they are used. For example, take off (like a plane) is take.19 and
take down is take.22.

The parsing pipeline uses logistic regression to produce the PA structures, see Fig. 4. First, the
dependency graph is extracted. The dependency graph connects the words in the sentence using
their grammatical functions. It is technically a tree, where the root is the dominant word in the
sentence, most often a verb describing an action, and the arrows (see for example bottom part of
Fig. 6) point from the parent or head to its children. Then the predicates are identified, labelled with
a sense and finally the arguments are identified and labelled. Take in our example has sense 1. The
predicate take.01 has three arguments named A0-A2, the actor (A0), the thing being taken (A1) and
the source (A2). In this case, the robot is not explicitly mentioned, hence there is no A0. Pronouns,
such as it or them are linked to their antecedents in the sentence.

¹The parser is available as open source software, freely accessible at http://barbar.cs.lth.se:8081/.

ES KIF NL parser

ES KIF NL parser

User writes 
the NL text in 
a text box. The text is sent 

as a request
Forwards the text The parser 

finds the 
predicates and 
arguments in 
the sentences

Returns the parsed result

The KIF service filters 
the result and returns 
only those predicates 
that are relevant for 
the assembly task 

Returns the filtered 
predicates and their 
arguments

Matches the 
arguments to 
the objects in 
the station and 
generates the 
sequence

Figure 3: The NL parsing sequence.
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Figure 4: The parsing pipeline.

Previous work (Stenmark and Nugues, 2013) defined an algorithm describing how predicates can
be mapped to robot skills, and arguments linked to specific world objects in order to create an exe-
cutable sequence of the task, as displayed in Fig. 2. However, the supported programming features
were limited, excluding e.g., such control structures as conditionals, temporal constraints, control
parameters, parallel execution and references to program features. The contributions of this work
are that predicate-argument pairs can be mapped to complex skills and the novel methods we are
using to extract constraints and control structures from NL instructions.

Code Generation and Execution The executable code for primitive actions is generated in native
controller language (RAPID). E.g., each gripper can have a predefined native code to open and close
it. On the other hand, the sensor-controlled skills use a framework based on iTaSC (De Schutter
et al., 2007), together with external force/torque sensors. These skills are specified by state machines
using Lund University (2013) language, where states are simple motions and transition conditions
are, e.g., timeouts or force and torque thresholds. A motion is specified by constraining outputs
(e.g., positions or force values) from a kinematic chain. The kinematic chain is a specification of the
relation between task variables and the robot, which are represented by a list of transformations.
The state machine is generated by ES for all skills and all constrained motions (Stenmark and Stolt,
2013).
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4 Pattern-Matching Algorithm

In this section, we present our method of extracting motion constraints and control structures from
unstructured English in more detail. At the moment, the system supports cardinality, parallel ex-
ecution, conditionals and program references. The algorithm that runs on KIF server is presented
in Algorithm 1. It matches the output from the semantic parser to program statements, using the
semantic labels, the part of speech (POS) tags and dependency relations between the words. The
following examples illustrate how the matching of the different statements is carried out.

Cardinality refers to the number of elements. In the sentence Take all needles and put them in the
pallet, the cardinality of the needles is all. Take three of the needles ... has cardinality three. The
cardinality is easily extracted from the arguments. In these examples, the arguments A1 to take.01
are all needles, and three of the needles, respectively. In the first case, the verb is labelled as plural
(NNS) and the determiner all is used. In the second case, where there is an explicit numbering
(CD) in the argument, it is used as cardinality. Personal pronouns, such as them or it, are assumed
to refer to all the objects in the previous argument (this is done in the ES). There is a subtle difference
between Take the needle and Take a needle, which is expressed in the use of determiner. In the first
case, a specific needle is referenced, while in the second, it is only the object type that is mentioned
and any needle can be chosen. When linking entities to specific objects in the world, the system will
look for a specific object where the name matches the argument value in the first case, but in the
second case, the argument value is an object type and the system will return objects of the given type
instead. When the cardinality of an argument is larger than one, the resulting program structure is
a loop, the sentence number is used to determine its scope, where actions in the same sentence are
in the same loop. “Take all needles. Put them in the pallet.” will thus be two loops, and in a single
robot system the planning service will complain about such instructions.

Until is a keyword for extracting the exit condition. Until is used to express guarded motions such
as Search in the z-direction until contact. The conditions can be nested PA structures as well, for
example: Move in the z-direction until you measure 5 N. The results from the parsing of the two
example sentences are displayed in Figs 5 and 6. In order to extract the program statements, the
analysis starts with the root in case the root is a predicate. If the predicate belongs to the set of
understood predicates, it is added as a program statement, together with its arguments. In the first
example, the direction was identified as argument A1 to search.01, however, in the second sentence,
the direction is considered a location argument to move.01. In the case of missing object arguments,
the location arguments are used instead, since these are valid parameters to motions. The default
frame of the direction is the tool frame.

If the predicate has any temporal constraints, expressed by for example until and while, these are
labelled TMP in the dependency graphs. The temporal constraints can be either a noun describing
an event, or nested PA structures such as measure (pred) 5 N (A1). The temporal constraints are
added as a condition to the main program statement (Move - z-direction) and will later be used to
create transition conditions and thresholds for the guarded motion. Conditions will be discussed
in more detail later.
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Algorithm 1: Pattern-matching algorithm. Non-trivial functions are described sepa-
rately.

Data: Input text text, set of predicates that have an action-mapping, understoodPredicates
Result: list of program statements, list of unknown statements
Let sentences be a list of sentences in text split by ”.”, ”!” and ”?”
Let actions be an empty list
Let unknownStatements be an empty list
sentenceNbr← 0
foreach sentence s in sentences do

Increase sentenceNbr
semOutput← semParse(s)
q← sortPredicates(semOutput)
while q is not empty do

p← poll first element in q
if not(p is negated or an auxiliary verb) then

if understoodPredicates does not contain p then
stm← createArgs(p,q)
Add stm to unknownStatements
wildcard← getWildcard(p)
if wildcard found then

Add wildcard to unknownStatements
end

end
else

stm← createArgs(p, p)
Add stm to actions with sentenceNbr
wildcard← getWildcard(p)
if wildcard found then

Add wildcard to actions with sentenceNbr
end

end
Remove nested predicates in stm from q

end
end

end
return actions and unknownStatements
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Function sortPredicates(semOutput)
if semOutput has a root element then

Let q be an empty queue
root← get root predicate from semOutput
if root is a predicate then

Add root to q
Parse the tree breath first adding all predicates to q

end
end
else

predicates← all predicates from semOutput in input order
Add all predicates to q

end
return q

Function createArgs(p)
args← findArgs(p)
stm← (p, args)
if hasIfCondition(p) then

word← the child of p of form ”if” or ”when”
condition← recursiveSearch(word)
stm← if-statement with condtion and stm

end
if hasBreakCondition(p) then

word← the child of p of form ”until”
condition← recursiveSearch(word)
stm← break-statement with condtion and stm

end
if hasParallellActivity(p) then

word← the child of p of form ”while”
condition← recursiveSearch(word)
stm← while-statement with a and stm

end
return stm
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Function findArgs(p)
a1 ← argument ”A1” of p
if a1does not exist then

a1 ← search for an argument labelled ”TMP”, ”IN”, ”AM-LOC”
if a1is not found then

a1 ← search among children to p labelled ”LOC”
end

end
a2 ← argument ”A2” in p
if a2is not found then

a2 ← search for an argument labelled ”TMP”, ”IN”, ”AM-LOC”
end
if a1is not found and a2 is found then

a1 ← a2
a2 ← void

end
return (a1, a2)

Function recursiveSearch(w)
foreach child c of word do

if c is predicate then
cond← createArgs(c)
if any child cc to c has POS-tag ”CC” then

nestedStm← recursiveSearch(cc) (cc is ”and” or ”or”)
Add nestedStm to cond

end
end

end
return cond

Function getWildcard(p)
manner← get argument from p with tag ”AM-MNR”
if manner found then

word← recursively search all descendants of manner for a word labelled ”NN”, ”NNS”
or ”NNP”

if word found then
stm← new statement(”use”, word)
return stm

end
end
return empty statement
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Figure 5: The parse result of “Search in the z-direction until contact”, together with the dependency
graph.

Figure 6: The parse result of “Move in the z-direction until you measure 5 N”.

Figure 7: Result for an if-sentence.

Figure 8: Result for a when-sentence.
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While. In most programming languages while statements are equivalent to until, however, in nat-
ural language they also express parallelism. For example “While holding 5 N in z-direction, search in
x-direction until contact” is a guarded motion along one axis, while adding a constraint in another
direction. The result is translated into program statements similarly to until-statements. This sen-
tence results in a while-statement describing the parallell actions of searching and holding, while
the search is a nested until-statement with the transition condition.

Conditions. Conditions can be events or PA structures. In our system, the events that can be
used are contact, collision and timeout. The predicates that are allowed are limited to measure, reach,
sense, thus limiting the expressions to sensor values. The system also supports nested conditions
using AND and OR, such as contact or timeout, because and and or are tagged as coordination
conjunctions (CC) by the dependency parser.

If and when. In our system, these are considered equivalent, however, in the if-sentence the con-
dition is considered an adverbial while in the when-sentence it is a temporal, see Fig. 7 and Fig. 8.
This difference is ignored and the PA structure is used as a condition in both cases.

Keywords. All robot skills are not suited to be mapped to predicates, e.g., in a Snapfit skill two
plastic pieces are snapped into position. Hence, the predicate use is dedicated as a keyword, where
the argument is either another program or a device that is not part of the assembled parts, such as
sensors or tools. That allows sentences such as “Assemble the shieldcan and the PCB using myskill”, see
Fig. ??. Here myskill can be snapfit or peg-in-hole, or be replaced with tool such as gripper2. When
a use-predicate is evaluated by the system, it first searches among the sensors and tools for devices
that the skill can use, and then online for a skill which can be used to replace the generic assemble
action.

Another way to express similar commands is by using the word with. This will naturally not be
parsed into a predicate, but rather be an argument to assemble.2 called manner which is labelled
AM-MNR in the result shown in Fig. ??. Adverbs typically describe the manner of a predicate, such
as Carefully assemble.... In case the manner contains with and a noun it is simply interpreted as a use
with the noun as its argument.

Program references. A small set of predicates and PA structures are used to describe the program
itself. For example Repeat the task. The predicates are pause, stop, start, repeat, and restart, while the
arguments can be skills or general references such as the task and the program.

Negation. Predicates with negation are ignored. Although it is possible to imagine commands such
as Don’t go close to the human, we have chosen to require usage of an active command such as Avoid
the human. For a negation to be meaningful, both an action and its negation have to be mapped to
different skills, since the complement of an action is not a well defined concept.

When the program statements have been extracted from English sentences, the predicates are mapped
into programs and functions, and the arguments are linked to objects in the world or to skills that
are downloaded to the station. Thresholds for sensor values and parallell constraints are added to
the guarded motions. Executable robot code for the task is generated from the guarded motions and
skills. The resulting code has been verified by virtual robot execution in the Engineering System.
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5 Discussion

Using the standard predicate argument-structures together with the dependency graphs, it is possi-
ble to extract the semantic meaning of complicated assembly task descriptions from unstructured
English. The bottleneck is rather the availability of robotic skills and functionalities in the system,
not the natural language understanding by itself.

In a virtual world, control parameters and sensor thresholds can be set to default values. In order to
carry out robust task execution on a physical platform though, the damping and stiffness factors of
the impedance controller and force signatures should be learnt for the task. The parameters to the
impedance control can be learnt by experimentation, as shown by Stolt et al. (2012).

The approach and algorithms presented in this paper are not limited to just assembly tasks, or just
to industrial robot task descriptions. After having completed experiments involving skill parameter
learning, we plan to extend this approach to other manufacturing domains.
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Figure 4: Adapted learning cycle. The Reflective Observation and Active Experimentation are performed by the 
robot while the Concrete Demonstration is done by the human. The Abstract Conceptualisation is supported and 
finalised by the human. 

With this concept of learning, intuitive and fast programming will be possible for a non-expert user (a 
master)  within  half  a  day.  Therefore,  the  master’s  motions  during  assembly  are  tracked  with  the  help  of  
optical sensors like video capturing and a sensor glove. Object recognition algorithms in the 
combination with 3D scene interpretation are applied to the captured data streams. As the complete 
assignment  of   the  tracked  motions  to  skills   is  hardly  possible  without  the  human’s  cognitive  support,  
appropriate human machine interfaces are provided in order to enable the master to fill missing gaps. 
Learning algorithms are invoked to benefit from manual assignments. The captured motions are 
abstracted and synthesised into executable code which is parameterised with the help of specific 
dynamic simulation. After the master having confirmed the correct capturing, the real devices are 
invoked. 

Consequently, this approach is flexible towards changing applications as the previously gathered 
knowledge can be employed in order to generate or derive new knowledge applicable to the new 
situation. 

The process of motion capturing is depicted in figure 5. The human motions are tracked via gloves or 
other appropriate sensor devices. This information is merged with the recorded video stream which 
leads to much more precise tracking results. 
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AO: 2 

AO: 3 

AO: 5 

AO: 4 

AO: 6 

AO: 1 

AO: 7 The screws are fixed in the top of 
the enclosure, even when 
loosened.  

AO = Assembly Operation 

The enclosure is 
delivered screwed 
together top and 
bottom. It has to be 
unscrewed and 
disassembled before 
assembly. 
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Skill reuse

The user can create program abstrac-
tions from scratch, so-called skills e.g. 

Pick and Place
Parameterization, e.g., positions relative to 

objects can be modified easily

Yes, robot programming is for (almost) everyone!
Yes, parameterization bootstraps the programming process!

Preliminary results
• 19 out of 21 could program the first step.
• 14 out of 21 managed to steps.
• Reusing expert-made skill had best results, but the group was 

more experienced with machines.
• Difficult: finding a good insertion strategy for robust attachment.
• Understanding and using different reference systems.
• Very limited time to learn the tool and how the robot moved.
• Pose vs. trajectory recording. 
• Robot should suggest actions based on previous skills!

In a user study with 21 subjects divided into 3 groups we tested different weather a parameterized skill representation 
was 1) understandable by a non-expert and 2) helpful when programming a similar task. One group reused their own 

skill, one group used an expert-made skill and one group reprogrammed every step from scratch.

Can we link behavioural patterns to communicative intentions?
Would they help us to resolve ambiguities and improve mutual understanding?Can non-experts create reusable robot programs from scratch? 

Can parameterized skills simplify and speed up robot programming?

Prototype programming tool

The initial design specification was made 
from analysis of two case studies

The tool has object and skill abstractions 
and simple debugging and execution

The tool is intended to work together 
with lead-through to provide rapid online 

programming and testing

Action representation

Motion

Free Motion 

AbsJoint, Linear
Circular, Joint

Points

Trajectories

Contact Motion Guarded search
Force-controlled motion

Gripper 
Action

Open
Close

Finger commands
Suction ON/OFF

Locating 
Action Vision

DMP

Study
21 Participants

30 minutes each with the robot

ABB YuMi — an inherently safe robot

Program a LEGO building task using lead-
through and GUI

Step 1: insert small LEGO on tower

Step 2: reuse skill to insert large piece

Video for later analysis

Programming task: pick LEGO pieces 
and insert them on a tower

Understand robot motion, use gripper cam-
eras to locate LEGO (predefined robot ac-
tion) and contact force estimation to insert 

the pieces

Switch from the LEGO’s reference coordi-
nate system and tower coordinates

Reuse own or expert made skill to repeat the 
task with a large LEGO in three positions



The GiftWrapper: Programming a 
Dual-Arm Robot with Lead-Through1  

Maj Stenmark, Andreas Stolt, Elin A. Topp, Mathias Haage, 
Anders Robertsson, Klas Nilsson, and Rolf Johansson 

Example

1. Finalist for the 2016 euRobotics TechTransfer Award http://www.erf2016.eu  

Robustness to uncertainty. No sensors 
were available and using only position-
based execution is error-prone. Hence, the 
robot had to adjust the position of the box 
repeatedly during the wrapping to address 
uncertainty. 

Multiple contact points 
and synchronized 
motions require the 
programmer to teach 
positions while using 
other means to interact 
with the application.

While lead-through can be 
useful for teaching 
positions, even simple 
robot programs need a 
graphical interface to add 
logic and control grippers, 
e.g., by setting the 
gripping force to avoid 
tearing.  

Conclusions: It works!  

We handled complex contact 
situations for soft objects with 
significant uncertainties by using 
clever combinations of position-
based motions. These were 
achieved and tested using lead-
through programming. See the full process online

Inherently safe user interaction 
both during programming and 
during the gift wrapping. 

The application: customers 
at electronic retail stores in 
Sweden got their Christmas 
presents wrapped by a 
robot.
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