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Abstract

Biogenic volatile organic compounds (BVOC:s) are trace gases other than CO; and
CHs produced and emitted by the vegetation. The group consists of thousands of
compounds in various shapes and sizes and with short atmospheric lifetimes. Some of
the most common BVOC groups are called isoprene, monoterpenes and
sesquiterpenes. For the plant, the emission of BVOCs is used for plant
communication, attracting pollinators, to deter herbivores and to enhance abiotic
stress defense against for example high temperatures, irradiation or oxidative stresses.
Burt once released into the atmosphere, they might affect the atmospheric chemistry
which in effect alters our climate. Depending on the atmospheric composition,
BVOC emissions can either enhance tropospheric ozone and indirectly prolong the
lifetimes of greenhouse gases such as methane by reducing the concentration of
hydroxyl radicals, or increase the formation of aerosols and cloud condensation nuclei
which may mitigate the effect of greenhouse gases on global warming.

It is fairly well known that BVOCs have an impact on the climate. However, whether
the BVOC emissions have a warming or cooling effect on the overall climate is
difficult to determine due to existing emission pattern variations both between
individuals of the same species and between species. Some of the reasons which are
often discussed to be influential and where there is relatively little data available are
within-species genetic variation, stress response, adaptation to different weather and
climatic conditions and seasonality. In this thesis, focus has been given to the
importance of genetic diversity and adaptation to different growing conditions.
Studies have been conducted on three European tree species with genetically identical
individuals across a latitudinal gradient, stretching from Slovenia to southern Finland.
The main results were that even though the emission amounts varied between sites
due to differences in weather events, the progression of the growing season and insect
outbreaks, the compound composition between individuals were similar both across
latitudes and between measurement years. By showing compound composition
stability for genetically identical trees, the results highlights the importance of taking
genetic diversity into account in terms of observed emission pattern variations. The
response to changing light conditions on the emission amount of different
compounds was also investigated. The results uncovered that different compounds
had different emission responses to changing light conditions, but that the response
of the compounds were fairly similar across different species.






Sammanfattning

Biologiske flyktiga organiska dmnen (BVOC:s) ir sparimnen forutom CO, och CHy
som produceras och slipps ut av vixter. Termen innehéller tusentals olika dmnen i
varierande former och storlekar och dir dmnena har korta atmosfiriska livstider.
Nigra av de vanligaste BVOC grupperna kallas isopren, monoterpener och
sesquiterpener. Vixterna anvinder sig av BVOCs for att kommunicera med varandra,
attrahera pollinerare, avskricka vixtitare eller for att oka sitt interna férsvar mot
abiotiska stressfaktorer sd som hoga temperaturer, hog solstralning och oxidativ stress.
Men nir de vil sldpps ut i atmosfiren si paverkar de atmosfirens kemi och pa si sitt
forindrar de vart klimat. Beroende pa atmosfirens partikelsammansittning sa kan
utslippen av BVOCs o6ka mingden troposfiriskt ozon och indirekt forlinga
livslingden pa olika vixthusgaser, si som metan, genom att minska koncentrationen
av  hydroxylradikaler. Men de kan ocksi oka antalet aerosoler och
kondensationskirnor som bildar moln, vilket mildrar den effekt vixthusgaserna har
pa den globala uppvirmningen.

Det ir relativt vilkint att BVOCs paverkar vart klimat, men pa grund av existerande
utslippsvariationer, bide mellan olika individer av samma art och mellan olika arter,
sd dr det svart att avgora hur stor paverkan BVOCs har pa vart klimat. Orsaker som
diskuterats och som det finns relativt lite information om 4r genetisk diversitet mellan
individer inom samma art, stressrespons, anpassning till olika vider- och
klimatforhéllanden och variationer mellan olika sdsonger. I den har avhandlingen har
fokus legat pa vikten av genetisk diversitet och potentiell anpassning till olika
vixtforhillanden. Genom att bedriva studier pd tre europeiska tridarter med
genetiskt identiska individer, men som vixer lings en latitudinell gradient som
stracker sig fran Slovenien och upp till sédra Finland. Resultaten visade att trots att
det fanns skillnader mellan de valda undersékningsomridena nir det gillde mangden
utslipp, frimst pa grund av olika vdderforhdllanden, hur lingt vixtsisongen hade
fortlopit och insektsutbrott, si var sammansittningen av imnen jimforbara mellan de
studerande individerna och &ver bade latitud och de 4r som undersdkningarna
genomfordes. Genom att visa stabilitet i amneskomposition for genetiske identiska
trad, understryker resultaten vikten av att ta med genetisk variation i berdkningen nir
det giller observerade variationer i imnesutslapp. Ndgot som ocksa har undersokes ar
hur mingden utslipp av individuella dmnen reagerar vid forindringar i
ljusforhallanden. Resultaten visade att olika dmnen reagerade pa olika sitt vid



forandringar i mingen tillgingligt ljus, men att responsen av dessa amnen var
forhallandevis lik mellan de studerade tridarterna.
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Introduction

In the 1960’s, a plant physiologist named F. Went investigated the blue haze which
often can be seen over various mountain ranges across the world. He concluded that
this blue haze must originate from plants releasing submicroscopic particles or, as
they are also called, terpenes (Went, 1960). Since that time, more studies have been
performed uncovering some of the complex interactions that these particles have, not
only in biological communication and stress tolerance enhancement in plants but also
in regards to the different chemical dynamics in the atmosphere (Atkinson and Arey,
2003; Pefiuelas and Staudt, 2010). The compounds released may vary both in
amounts and complexity due to genetic variation, variation in growing conditions or
stress (Pefuelas and Staudt, 2010; Fineschi et al., 2012). These submicroscopic
particles have later been termed as biogenic volatile organic compounds (BVOCs)
and have also been recognized to play a role in atmospheric chemistry, secondary
organic aerosol (SOA) formation and global warming (Laothawornkitkul et al.,
2009). But due to their short atmospheric lifetimes and their large emission
fluctuations between and within species (Kesselmeier and Staudt, 1999), it is difficult
to quantify their importance on our climate seen on a global scale. In order to better
understand how BVOC emissions affect our environment, it is important to
investigate the effect of climate and genetic variation separately.



BVOC:s - its production and influence

All organisms have the potential to emit BVOCs, where the main terrestrial
proportion of the emissions originates from the vegetation (Fuentes et al., 2000;
Possell and Loreto, 2013). The term BVOC consists of thousands of organic
molecules that are released, both above- and below-ground, from different plant
organs (Laothawornkitkul et al., 2009). It includes compounds such as terpenoids
(isoprene, monoterpenes and sesquiterpenes), alcohols, alkanes, alkenes, aldehydes,
esters, ethers and carboxylic acids. Within the terpenoid group, isoprene consists of
one Cs unit, monoterpenes of two Cs units and sesquiterpenes of three Cs units
(Kesselmeier and Staudt, 1999; Possell and Loreto, 2013) and collectively they
comprise the largest groups of BVOCs. Terpenoids are produced from the building
blocks isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate
(DMAPP). These building blocks can be synthesized from two alternative pathways;
the methyl-erythritol-phosphate (MEP) pathway in the plastids or the mevalonic acid
(MVA) pathway in the cytosols (Dudareva et al., 2006; Li and Sharkey, 2013).
Isoprene and most of the monoterpenes are produced via the MEP pathway whilst
sesquiterpenes are produced via the MVA pathway (Li and Sharkey, 2013). BVOCs
are cither released directly after they have been produced or in some cases they can

accumulate in non-specific or specialized storage organs, such as trichomes or resin
ducts (Pefiuelas and Llusid, 2003; Maffei, 2010; Niinemets et al., 2010).

From the perspective of the plant, BVOCs play an important role in regards to plant
growth, survival and reproduction (Pierik et al., 2014). In order to insure the survival
of the plant, it needs to find a balance between the investment in reproduction (e.g.
flowers, nectar and fruit), growth and defense against herbivores (Trowbridge and
Stoy, 2013). The specific emission rates from different plant species are therefore
never stable, but the emission intensity changes depending on the local growing
conditions, the developmental stage of the plant as well as genotype and age (Hewitt
and Street, 1992; Laothawornkitkul et al., 2009; Trowbridge and Stoy, 2013).
Furthermore, the plant also need to cope with various stresses, which are often
divided into either abiotic or biotic stress (Vickers et al., 2009; Loreto and Schnitzler,
2010; Pefuelas and Staudt, 2010). Abiotic stress includes extremes of high or low
temperatures, high light intensity, drought, air pollutants or tearing of the plant’s
tissues (Vickers et al., 2009; Loreto and Schnitzler, 2010). Biotic stress includes
mechanical wounding caused by herbivore attack (Vickers et al., 2009). By releasing
BVOC:s, the plant can cither directly deter herbivores from feeding (called direct
biotic stress defense) or attract parasitoids or predators which attack the herbivores for
them (called indirect biotic defense) (Vickers et al., 2009; Figure 1).
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Figure 1: Some of the main reasons for plants to release BVOCs. BVOC emissions can be
used for reproduction by attracting pollinators and to enhance the tolerance of the plant
against abiotic stress factors, such as high temperatures, radiation or oxidative stress. They
are also used to protect against herbivore and pathogen attacks, either by repelling the
herbivores directly or indirectly by attracting natural enemies and carnivores. Redrawn
from Fineschi and Loreto (2012).

Of the different plant tissues, leaves generally emit the highest mass rate of BVOCs,
whilst flowers and fruits release the widest varieties {(Laothawornkitkul et al., 2009
and references therein). Isoprene is the most commonly emitted BVOC compound,
with a global estimated emission of 400-600 x 10" g C (Arneth et al., 2008;
Laothawornkitkul et al., 2009; Guenther et al., 2012). Isoprene is emitted directly
from de novo synthesis and contributes to the largest non-methane hydrocarbon flux
into the atmosphere (Li and Sharkey, 2013). The distribution of species capable of
emitting isoprene is broad and the trait to produce isoprene has in some cases been
developed and lost repeatedly within plant lineages (Sharkey et al., 2008; Monson et
al., 2013). High isoprene emitters are often found within woody plant species, such as
poplars (Populus spp.), willows (Salix spp.) and some subspecies of oak (Quercus spp.)
(Kesselmeier and Staudt, 1999; Loreto, 2002; Monson et al., 2013). Some of the
advantages for the plant to release isoprene is that it has been experimentally
confirmed to enhance thermotolerance (Sharkey and Singsaas, 1995; Singsaas et al.,
1997; Hanson and Sharkey, 2001), protect against oxidative stress (Loreto and
Velikova, 2001; Velikova et al., 2005) and has also been suggested to strengthen
cellular membranes (Peqiuelas and Llusia, 2003; Loreto and Schnitzler, 2010).



Monoterpenes are one of the most abundant groups of BVOCs and exists in a variety
of different isomers. The emission of monoterpenes contributes to many of the
characteristic smells of different vegetation species (Dudareva et al., 2006; Li and
Sharkey, 2013). They have similar roles as isoprene and are both known to increase
membrane stabilization and to enhance protection against abiotic stresses such as
heat, drought or salt stress (Possell and Loreto, 2013 and references therein). Many
vegetation species have also developed specialized organs where monoterpenes can
accumulate and then be released in large amounts after wounding. Important reasons
for this accumulation of monoterpenes are that they directly act as powerful
deterrents for herbivores and pathogens (Dicke and Baldwin, 2010) or as an indirect
defense by attracting parasitoids or predators of herbivores (Pefiuelas and Llusia,
2003; Dicke and Baldwin, 2010; Trowbridge and Stoy, 2013). Monoterpene
emitting species are often dominating in temperate and boreal areas, including species
such as beech (Fagus spp.), birch (Betula spp.), spruce (Picea spp.) and pine (Pinus
spp.) (Kesselmeier and Staudt, 1999; Rinne et al., 2009).

Sesquiterpenes are among the least studied of the terpenoid groups due to their high
reactivity and low vapor pressures. But it is known that these compounds are
important contributors for floral scents, pollinator attraction, enhanced seed
production, deterring herbivore attacks and acting as stress markers (Caissard et al.,
2004; Duhl et al., 2008; Unsicker et al., 2009; Schiestl, 2010). The emission of
sesquiterpenes varies between species and due to factors such as temperature, light
intensity, drought, plant developmental stage and seasonality (Duhl et al., 2008).
Furthermore, disturbances such as foliar damage or infestation might provide
additional short-term bursts of sesquiterpene emissions, which makes it even more
difficult to categorize specific emission pattern for different vegetation species (Duhl
et al., 2008 and references therein).

BVOC production and emission can be divided into constitutive and induced
emissions (Possell and Loreto, 2013). Constitutive emissions can be observed
throughout the plant’s developmental stages and is biosynthetically controlled by
factors such as light and/or temperature, atmospheric CO; or nutrition (Loreto and
Schnitzler, 2010). The rate of constitutive BVOC production and release can be
altered due to their sensitivity to high light or temperature regimes (Niinemets et al.,
2004; Trowbridge and Stoy, 2013). Induced emissions are a response to mechanical
wounding from e.g. wind or herbivore attack (Loreto and Schnitzler, 2010; Possell
and Loreto, 2013). Typical BVOCs induced are specific monoterpenes, such as
linalool, cis- and trans-B-ocimene, sesquiterpenes and oxygenated short-chained

alcohols and aldehydes (Niinemets, 2010).



BVOC:s and their impact on air chemistry

Terpenoids are some of the most reactive classes of BVOCs when released into the
atmosphere, with chemical lifetimes ranging from seconds to days (Kesselmeier and
Staudt, 1999; Monson and Baldocchi, 2014). Once the compounds are released, they
are subject to a series of oxidative reactions which ultimately break them down into
CO; and H,O (Laothawornkitkul et al., 2009; Monson and Baldocchi, 2014). The
gas-phase oxidation of BVOC:s is mostly initiated by a reaction with hydroxyl radicals
(OH), but they can also be oxidized with nitrogen oxides (NO,) or ozone (O3)
(Laothawornkitkul et al., 2009).

Depending on the atmospheric composition, BVOC emissions might have a positive
or negative effect on global warming (see Figure 2). As BVOCs react with OH
radicals they indirectly prolong the lifetime of other greenhouse gases, such as
methane (CHj), in the atmosphere (Laothawornkitkul et al., 2009; Arneth et al.,
2010; Monson and Baldocchi, 2014). When there are high NO levels due to e.g. fuel
combustion, road transport and agricultural fertilization, BVOC oxidation products
might also lead to increased tropospheric O formation (Chameides et al., 1988;
Curdi et al., 2009; Laothawornkitkul et al., 2009; Arneth et al., 2010; Monson and
Baldocchi, 2014). Not only is O3 a potent greenhouse gas, but also a respiratory
irritant, it is phytotoxic and a main component of smog formation (Karl et al., 2009;
Arneth et al., 2010). Some compounds, like isoprene, have a higher quantitative
capacity to form reactive compounds in comparison to other BVOCs, which
potentially can raise the O3 levels further. In many urban areas, where the amount of
anthropogenic pollutants often is high, the choice of vegetative species can therefore
have a significant effect on the surrounding air quality (Calfapietra et al., 2013).
However, when there are low NO; concentrations, BVOC oxidation may lead to a
net consumption of Oj instead (Laothawornkitkul et al., 2009). O3 reacts by addition
to C=C bonds and which lead to the formation of organic peroxy (HO, and RO,)
radicals (Atkinson, 2000; Atkinson and Arey, 2003). These radicals are an
intermediate between OH and O; production or destruction. When NOy levels are
low, the radicals react with O3 and produce OH and oxygen (Fleming et al., 2006).
Some compounds which have been shown to react rapidly with O; are sesquiterpenes
such as B-caryophyllene and o-humulene (Lee et al., 2006).
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Figure 2: The effect of BVOC emission on some of the most important atmospheric
processes. BVOC emissions can increase smog production, reduce the amount of available
hydroxyl radicals (OH) or increase the production of Secondary Organic Aerosols (SOA)
and Cloud Condensation Nuclei (CCN), which are important for cloud formation. When
OH decrease and smog production increase there is generally an increase in air
temperature, whilst an increase in cloud formation generally decreases air temperature. The
change in air temperature will further influence the release of BVOC emission, with higher
emissions with increasing temperatures. Redrawn from Paasonen et al., 2013.

BVOC emissions and their oxidation products are also important primary precursors
for secondary organic aerosols (SOA) and cloud condensation nuclei (CCN) (Karl et
al., 2009; Arneth et al., 2010; Paasonen et al., 2013). SOA and CCN impact Earth’s
radiative balance by scattering or absorbing incoming solar radiation or by modifying
the properties of clouds (VanReken et al., 2006). Many sesquiterpenes have high
SOA vyields caused by a reactive external double bond. But even terpenes with internal

double bonds, like limonene, 3-carene, o-pinene and terpinolene have the capacity to

produce high SOA yields (Lee et al., 2006).



The CCN particle activity depends on the size of the particle and the hygroscopicity
(Farmer et al., 2015), where higher hygroscopicity indicates a higher CCN activity of
a given size (Zhao et al., 2017). As shown by Zhao et al (2017), as the emission of
BVOC:s can be altered due to biotic or abiotic stresses, changes in emission patterns
would also influence cloud formation. It was found that biotic stresses, such as insect
infestation, lead to induced VOC emissions which modified the hygroscopicity,
whilst abiotic stresses, such as heat and drought, affected the particle size distribution.
As the global temperature is increasing, changes in environmental factors could cause

stresses to plants, which would influence their emission patterns and modify particle
size and formation (Zhao et al., 2017).

Important environmental factors and their use in emission
modeling

Some of the environmental factors which play a part in observed BVOC emission
rates are temperature and light. Whilst temperature controls terpenoid synthesis and
the diffusion rate of specific compounds, light determines the amount of terpenoid
precursors produced by photosynthesis (Niinemets et al., 2004 and references therein;
Lichtenthaler, 2007). However, it is difficult to study the effect of light and
temperature separately i sizu, as they are often dependent on each other. In emission
models, standardized emission rates are often used to determine emission intensities,
where many models either focus on plants grouped into functional types (Schurgers et
al., 2011) or used to characterize geographic variations (Guenther, 2013).

Some of the algorithms used in models are implemented depending on if the
emissions from plants are considered to be light dependent or light independent. The
calculated emission from de novo emitters often use light dependent algorithms as the
emitters are assumed to lack storage structures. Therefore, the emissions from these
species are considered to be released directly into the air after its production. For the
emission calculations of species possessing storage structures, temperature dependent
algorithms have been used instead as the emission from storage structures are often
assumed to originate from evaporation processes. But there are studies which have
shown that the emissions can be both light dependent and independent
simultaneously, making modeling of emission rates harder to perform (Guenther et
al., 1993; Guenther et al., 1995; Niinemets and Reichstein, 2003; Niinemets et al.,
2004; Ghirardo et al., 2010; Taipale et al., 2011). As most studies have focused on
the emission from different types of plants and if they should be classified into light
dependent or independent emitters, there has been less focus on if separate
compounds are light or temperature dependent and if this is a consistent pattern
across different species.



Genetic diversity versus environmental impact — what is
more important?

Both abiotic and biotic factors have been shown to have an important influence on
the observed BVOC emission amounts and mixtures among different plant species
(Holopainen and Gershenzon 2010 and references therein; Loreto and Schnitzler,
2010). But studies have also revealed that the genetic diversity that exists within the
majority of all living species might cause large variations in emission concentrations,
both within populations and between species. The combination of abiotic and biotic
influences together with genetic variability makes it difficult to separate how the
emission patterns have been influenced by different factors (Isebrands et al., 1999;
Staudt et al., 2001; Thoss et al., 2007; Bick et al., 2012; Genard-Zielinski et al.,
2015; Hakola et al., 2017).

Several studies have tried to understand the variability in observed emission patterns
and what might be the underlying causes (Kesselmeier and Staudt, 1999; Staudt et
al., 2001; Funk et al., 2005; Genard-Zielinski et al., 2015). In a screening study on
Quercus ilex, three main types could be distinguished in regards to the highest emitted
compound. This pattern remained fairly stable in relation to season, leaf age and
emission amounts (Staudt et al., 2001).

Bick et al. (2012) collected needle branches from 40 Scots pine trees, where 25
branches were collected from the same pine stand and 15 branches from surrounding
stands. They found that the tree samples could be divided into chemotypes
depending on their main emitted compound and that the chemotypes remained fairly
stable with the progression of time. This would suggest that even though there are
influences due to different stresses, such as mechanical damage, changes in weather
and phenological stages, the preferred chemotype is genetically determined and not as
influenced by the local environment.

However, even genetically identical individuals may experience significant emission
variations. Studies on poplar clones have found significant emission variation between
identical individuals, suggesting that microclimate or plant history also have an effect
on the emission patterns and that the BVOC emissions cannot be fully explained by
only considering static factors (Isebrands et al., 1999; Funk et al., 2005).



Aims and objectives

BVOC emissions from plants can vary in both complexity and intensity, which makes
it difficult to quantify their role and impact on atmospheric chemistry. The variation
has been explained to be caused by different growing conditions, climate adaptations
and genetic variation, but few studies have been able to separate the different
processes. This thesis aims to analyze various sources of BVOC emission variability
from some of the most common European tree species, namely English oak (Quercus
robur), European beech (Fagus sylvatica) and Norway spruce (Picea abies) (see Figure
3). The main objectives of this PhD thesis were to:

e Analyze various impacts on BVOC emissions for selected and genetically
identical trees (paper I-1V)

e Investigate the emission variation between genetically identical trees growing

at different locations (paper 11, I11)

e Investigate the impact of changing light conditions on the BVOC
composition (paper IV)

Paper | Paperll Paperlll Paper v

L LR EHY

Figure 3: Schematic outline of the 1ncluded papers, where paper I focus on the sources of the
variation in BVOC emissions from genetically identical trees, paper II and III on the

emission variation between identical trees grown at different locations and paper IV on the
effect of changing light conditions.



Material and methods

Study sites

In situ foliar BVOC measurements from some of the most common European tree
species were performed at four sites, stretching from 46° N to 60° N along a
latitudinal transect across Europe. The chosen sites were Ljubljana in Slovenia,
Grafrath in Germany, Taastrup in Denmark and Piikki6 in Finland (Figure 4; a more
detailed description of the mentioned sites is given below). The study sites are part of
a network called International Phenological Gardens (IPG) of Europe (Chmielewski
et al., 2013). In 2017, the network consisted of 69 active sites in 36 European
countries (F.-M. Chmielewski, personal communication). The observation program
focuses on 21 coniferous and deciduous plant species with the inclusion of different
provenances. Newly established IPG sites are provided with two to three saplings per
available plant species. If the site is climatically restricted and therefore have
unsuitable growing habitats for many of the plant species within their propagation
program, the site may be provided with more plants of the species that can grow in
that particular environment (Chmielewski et al., 2013). The aim of the IPG network
is to study the long-term change of the phenological phases of European plants and
how these phases might have changed due to global warming. The advantage of the
IPG network is that the stations are provided with genetically identical plants,
propagated from the same propagation site. This limits genetic diversity between sites
and makes it possible to study the tree’s phenological development and adaptation to
different environments (Chmielewski et al., 2013).
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Figure 4: Map of the IPG sites active in 2017 and their position in Europe. The visited sites

are marked with circles (with permission from Humboldt-University in Berlin).
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Ljubljana

The IPG site in Ljubljana, Slovenia (46°04" N, 14°30” E, IPG 055) was established
in 1962 and is run by the Slovenian Environment Agency. The site is situated in the
eastern corner of a public park called Tivoli Park, located on the northern outskirts of
the central town district. There are 26 different trees available at the site in a variety
of ages and provenances. Between the years 1981-2010, the annual precipitation was
1362 mm and the mean annual air temperature was 10.9 °C, with a monthly mean
temperature of 1.9 °C in February and 21.3 °C in July (Slovenian Environment
Agency, 2014). For this project, five trees were measured, where one was an English
oak tree, one was a European beech tree and three were Norway spruces.

Grafrath

Forstlicher Versuchsgarten in Grafrath, Germany (48°18" N, 11°17” E, IPG 036) was
established in 1963 and is run by the Bavarian State Institute of Forestry. This site is
the parental garden of the IPG network and is in charge of both propagating species
from the IPG program and to provide with new seedlings to established and newly
created sites. The site also serves as a botanical garden and was first established in
1881 as a test garden to study which types of exotic lumber they were capable of
growing and breeding in southern Germany. The size of the garden is presently 34 ha
with over 200 different species of trees and shrubs and has shifted more of its
attention towards public relations and forest education (www.lfw.bayern.de). The
annual precipitation was 875 mm and the mean annual air temperature for the site
was 8.7 °C, with a monthly mean temperature of 0.5 °C in February and 17.8 °C in
July between years 1995-2014 (Agrarmeteorologie Bayern). Measurements were
performed on 10 trees, where two were English oaks, two were European beeches and
six were Norway spruces.
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Taastrup

Hojbakkegird Experimental Station in Taastrup, Denmark (55°40” N, 12°18" E,
IPG 010) became an established IPG site in 1971 and is run by the Faculty of Science
at the University of Copenhagen (A. K. Ngrgaard, personal communication). The
region has an annual long-term (30 y) average precipitation of 583 mm and a mean
air temperature of 7.5 °C, with monthly mean temperatures of -0.9 °C in February
and 15.8 °C in July (Jensen et al., 1997). The garden in Taastrup contains 21 trees
from 13 different species and provenances. For this dissertation, measurements were
made on seven of the trees, where two were English oaks, one was European beech
and four were Norway spruce trees.

Piikkio

The site Piikkio in Finland (60°23" N, 22°30" E, IPG 008) became an established
IPG site in 1965 and is since 2015 part of the Natural Resources Institute Finland.
The site has an area of 25 ha and focuses on horticultural research and preservation of
horticultural genetic resources (S. Juhanoja, personal communication). The annual
precipitation for the site is 698 mm and the mean annual air temperature is 5.9 °C,
with a monthly mean temperature of -5.9 °C in February and 18 °C in July between
years 2005-2013 (Finnish Meteorological Institute). Measurements were performed
on five Norway spruce trees which were available on site. Due to the restriction in
climatic conditions, the site in Piikki6 is only able to grow Norway spruce out of the
chosen European tree species. But due to their climatic restrictions, the Piikki6 site
was instead provided with up to three clones of the same species.
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Piikkis (IPG 008).
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Methods

Plant material

From the information provided by the IPG network, three common European tree
species were chosen as they have the capacity to grow and thrive over a large area of
Europe, have high emission capacities for BVOCs (>1pg gdw' h') and are of
importance for the overall European BVOC emission budget (Kesselmeier and
Staudt, 1999; Skjoth et al., 2008). The tree species chosen where English oak
(Quercus robur), European beech (Fagus sylvatica) and Norway spruce (Picea abies).
The Norway spruces were divided into two types of provenances according to the
IPG framework. This division was implemented according to different budburst
patterns, where one provenance experienced budburst approximately one week earlier
than the other. Henceforth, these provenances are going to be called early spruce (SE)
and late spruce (SL).

Both English oak and European beech are known to be de novo emitters (Holzke et
al., 2006; Kleist et al., 2012; Steinbrecher et al., 2013). English oak mainly emits
isoprene (Isidorov et al., 1985; Pérez-Rial et al., 2009; Pokorska et al., 2012;
Steinbrecher et al., 2013), with an establishment range from Scandinavia and the
Baltic countries to the north and through the rest of Europe to the south (Skjoth et
al., 2008). European beech is mainly a monoterpene emitter, where sabinene is the
main emitted compound (Moukhtar et al., 2005; Dindorf et al., 2006; Holzke et al.,
2006; Demarcke et al., 2010; Kleist et al., 2012). European beech has a northern
limit from southern Sweden and a southern limit in Spain and Portugal (Skjoth et al.,
2008). Norway spruce is a monoterpene emitter and a major coniferous source of
isoprene (Janson et al., 1999; Kesselmeier and Staudt; Grabmer et al., 2006). It has
storing capacity in its resin ducts and is known to be both a de novo emitter and to
simultaneously have emissions originating from storage structures (Ghirardo et al.,
2010; Kleist et al., 2012). Norway spruce is one of the more dominant tree species in
the northern Europe and has a southern limit in France, Italy and Turkey (Skjoth et
al., 2008).
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Leaf chamber measurements

Measurements of the plant’s net assimilation rates (A.) and stomatal conductance
(Gs) were conducted on a leaf scale by using a portable photosynthesis system (LI-
6400 and LI-6400XT, LICOR, NE, USA). This is an open system, meaning that
photosynthesis and transpiration rates are calculated by measuring the differences in
CO; and H,O in the incoming and outgoing airstream that passes through the
chamber cuvette. The calculations used to get photosynthetic measurements are
according to the equations by von Caemmerer and Farquhar (1981). The gas
analyzers are placed in the sensor head, which means measurements are quick and
potential responses to changing leaf responses can be captured instantly. Another
advantage with this type of system is that it enables the user to control the
environmental conditions inside the chamber cuvette, minimizing the differences in
setup conditions between samples.

The system is equipped with chemical tubes used to remove both CO, and water
vapor from the ingoing air stream. Chemicals used for removing CO, are soda lime
(consisting of calcium oxide and sodium hydroxide) and for removing water vapor
Drierite (consisting of 97 % calcium sulfate and 3 % cobalt chloride). After CO; has
been removed, a disposable 12 grams CO, cartridge can be used together with a
6400-01 CO, mixer in order to control the ingoing CO; level into the chamber

cuvette.
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The system was equipped with a LED source leaf chamber (6400-02B) for
measurements conducted on oak and beech and a lighted conifer chamber (6400-
22L) for measurements on spruce. For each measurement, the subjected plant
material got an acclimation time of one hour before measurements were taken in
order to adjust to set chamber conditions. According to laboratory experiments
performed on spruce saplings before the first campaign, this was seen as sufficient to
reach fairly stable emission levels. All samples were conducted on the south or south-
west side of the trees. The plant material was subjected to 1000 pmol m? s
Photosynthetically Active Radiation (PAR, except for the study investigating light
response of different compounds) and 400 pmol CO, mol™ air. Relative humidity
inside the chamber was maintained between 50 and 65 % and an average daily
temperature was set according to the anticipated daily average. The ingoing airstream
into the instrument was filtered through a hydrocarbon trap in order to remove
possible sample contamination. According to some controlled measurements done in
situ, the removal of organic contaminants in the air did not cause stress emissions
from the leaves or needle twigs. Air samples were taken directly from the chamber
outlet by using flow-controlled pocket pumps (Pocket Pump, SKC Ltd., Dorset,
UK). The sampling flow rate was 200 ml min" and for each sample the collected
volume was between 5-6 liters. Samples were collected by using stainless steel
cartridges (Markes International Limited, Llanerisant, UK) packed with adsorbents
Tenax TA (a porous organic polymer) and Cartograph 1TD (graphitized carbon
black). Empty chamber samples were also taken in order to acknowledge possible
background contamination from the sampled tubes. After measurements had been
conducted, the leaf or needle twig inside the chamber was collected, dried and
weighed in order to get the dry weight of the material.
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GC-MS

All samples were analyzed using a gas chromatograph-mass spectrometer (GC-MS), a
method which has been used for detecting volatile compounds for more than 60 years
(James and Martin, 1952). The GC volatilizes the compounds in the cartridge sample
and those are separated by using a carrier gas, for example helium, whilst the MS
ionize the compounds by electron impact. The charged fragments are detected by
providing atomic mass generated spectra. The given spectra can then be compared to
a spectrum library in order to confirm the compounds detected by the instrument
setup and quantification was done by using pure liquid standards in methanol
solution.

Two separate GC-MS systems have been used when analyzing collected BVOC
samples. The data collected in 2013 were analyzed with a Shimadzu QP2010 Plus
(Shimadzu Corporation, Japan) with a gas chromatograph (GC, Clarus 500,
PerkinElmer, Waltham, MA, USA) equipped with a flame ionization meter (FID),
whilst the data from 2014-2016 were analyzed with a 7890A Series GC coupled with
a 5975C inert MSD/DS Performace Turbo EI system (Agilent Santa Clara, CA,
USA) after thermal desorption (UNITY2 couples with an ULTRA autosampler,
Markes, Llantrisant, UK).

Emission calculations

After peak quantification had been performed, the emissions were calculated by using
the emission rate equation for dynamic enclosure techniques presented by Hakola et

al.(2003):

E= (C, —C))Fm™! (1)
where C; and C; are the outlet and inlet compound concentrations (pg 1), F is the
flow rate of the purge air (I min") and m is the dried mass (g) of the leaves or needles

which were inside the chamber. As the inlet air is scrubbed before entering the

chamber, BVOC emissions were considered to be negligible (i.e. C, = 0).
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Field campaigns

One of the main aims with this dissertation was to investigate how the emission
patterns for some of the most common European tree species have been influenced by
different environmental conditions in absence of genetic diversity. Table 1 gives an
overview of what campaigns where performed at which sites and in which paper the
results are presented.

Table 1. Overview of location, when a campaign was performed, the type of study and in
which paper the results are presented.

Location/coordinates Date of campaign Study Paper
Ljubljana, Slovenia 26-31 May 2014 Latitude variation I
46°04 N/ 14°30’ E Spruce 11
Grafrath, Germany 2-16 June 2014 Latitude variation 11
48°18 N/ 11°17° E Spruce 11
Taastrup, Denmark 3-4,10-19 and 24-27 Canopy height I
55°40° N / 12°18’ E June, 1-31 July and
1-14 August 2013
14-25 July 2014 Latitude variation II
Spruce 11
10-31 July 2015 Light v
Piikkis, Finland 29-31 July and Spruce I

60°23'N / 22°30’E Q11-2 August 2014
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Emission variations with canopy height and time of season

At the Taastrup site in 2013, three levels within the canopy were measured on all of
the investigated trees in order to study the potential differences in emission capacity
(paper I). The levels chosen within the canopy were approximately at 1-2 meters, 5.5
meters and 12.5 meters above the ground. All heights were measured at the same side
of the tree and the different levels were reached with the help of a portable scaffold or
an electric lift. For the oak and early spruce trees, measurements were also performed
twice within the measurement campaign to investigate possible emission changes with
a change in time.

Latitudinal BVOC emission variations

A,, Gs and BVOC measurements were conducted during May to August in 2014 at
four IPG sites in Europe (paper II and paper III). The genetic diversity between sites
and individuals were assumed to be absent, which made comparisons of different
environmental conditions possible. The measurement campaigns started in Ljubljana
and ended in Piikkié in order to minimize the differences in leaf development and
environmental conditions between sites. The aim of the performed studies was to
investigate if genetically identical tree species had different emission patterns due to
adaptation to site-specific conditions or if the emissions remained similar across
different latitudes.

Light experiment

The effect of different light levels on the BVOC emission from the selected tree
studies were performed in Taastrup in 2015 on both de nove and storing plant species
(paper 1V). Measurements at four light levels were taken on each leaf or needle twig,
namely 0, 500, 1000 and 1500 pmol m™ s™. The light levels and other influencing
variables (such as temperature, humidity and CO; levels) were controlled within the
LI-6400 in order to provide similar basic settings for each leaf or needle twig. All
measurements started with 0 pmol m™? s' and increased in intensity with the
progression of the day. At 0 pmol m™ s, each leaf or needle twig got an acclimation
time of one hour before measurements were taken. For the remaining light levels, the
acclimation time was 30 minutes as preliminary tests had shown this to be sufficient
in order for the emissions to acclimatize to the new light level. The leaf or needle twig
was collected after the last light level had been performed.
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Results and discussion

Emission pattern variability between genetically identical
trees and provenances

By using the IPG network, it was possible to study if genetically identical individuals
of English oak, European beech and two provenances of Norway spruce were similar
in their BVOC emission rates, both within the same site but also between sites. The
genetically identical trees were first studied in Taastrup, Denmark in order to
investigate possible emission pattern variations. The results showed there were no
clear BVOC emission pattern differences between individuals of the same tree species.
English oak was mainly emitting isoprene, European beech was a monoterpene
emitter and Norway spruce emitted mainly monoterpenes with a slight emission of
isoprene and sesquiterpenes (Persson et al., 2016). Similar emission patterns have also
been confirmed by other earlier studies (Isidorov et al., 1985; Dindorf et al., 2006;
Holzke et al., 2006; Demarcke et al., 2010; Kleist et al., 2012; Pokorska et al., 2012).
However, there was a difference in the emission spectra for the two provenances of
spruce. Whilst early spruce had a higher proportion of limonene in their emission
samples, late spruce had a higher emission of a-pinene. Tree-to-tree variability has
also been shown for genetically different trees, growing in the same area (Hakola et
al., 2017). As compounds have variable reactivity rates in the atmosphere due to their
molecular structure (Atkinson and Arey, 2003), it is important to get a better
understanding of within-species emission diversities.

Similar compound compositions between individuals within the same site were also
seen at the study sites Ljubljana, Grafrath and Piikkio (see Figure 7 for English oak
and European beech; Figure 8 for Norway spruce). These results highlight the
importance of taking genetic variation into account in regards species-specific
emission pattern variations for different species. The robustness of emission spectra
from genetically identical trees can therefore serve as a tool to understand other
impacts on BVOC emissions, such as growing conditions or age and could further
improve emission modeling by improving emission parameterizations.
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Figure 7: Relative compound contribution for individual samples from a) English oak (n =
36) and b) European beech (n = 49). The category “Other compounds” contains the
compounds camphene and B-ocimene for oak and a-thujene, camphene, o-phellandrene, o-
terpinene, B-phellandrene and terpinolene for beech. The figure is adapted from paper IL.
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The effect of latitudinal environmental differences

As the individual trees within the IPG network showed little emission pattern
variation within the same site, it was possible to compare how different local growing
conditions would affect the observed emission rates. For the change in latitude it was
shown that the emission amounts differed between visited sites, but the relative
compound contribution remained fairly similar across the entire transect. English oak
mainly emitted isoprene, contributing with between 78-97 % of the total emission.
The oak tree in Ljubljana had the lowest emission and contribution of isoprene in its
samples in comparison to the other sites. The reason is believed to be due to a frost
event prior to the measurement campaign and a third of the tree had to be cut, which
most likely would have affected the tree’s emission capacity (van Meeningen et al.,
2016; Figure 7).

The emission from the European beech trees were generally low in comparison to
other performed studies (Moukhtar et al., 2005; Dindorf et al., 2006; Demarcke et
al., 2010), most likely because all measurements were taken at the lower part of the
canopy. However, all trees had similar compound contributions even though the total
emission differed, with sabinene as the highest emitted compound followed by
limonene (van Meeningen et al., 2016; Figure 7).

The emission rates from the two provenances of Norway spruce were fairly similar in
comparison to each other. Within the IPG network Taastrup was most different in
comparison to the other sites, both in regards to almost twice as high emission rates
measured in 2013 and due to the compound composition of the two provenances.
Whilst early spruce had a higher emission of pinenes and late spruce emitted more
isoprene and limonene at the other sites, the trees in Taastrup had the opposite
emission pattern for monoterpenes. For the remaining sites, there were little
compound composition differences with a change in latitude and the composition
remained fairly stable between measurement years (Figure 8).

The similarity in compound contributions between measured trees suggests a
potential stability in their compound production across the studied transect. Since the
relative compound contribution did not change significantly with a change in
latitude, it highlights the potential impact genetic diversity has on observed emission
pattern variations between conducted studies. The results would suggest it is the
genetics of the tree that determine the compound composition and that acclimation
to local growing conditions do not change their relative compound composition
considerably. But in order to confirm this, more studies need to be performed on a
larger set of genetically identical trees and species.
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Figure 8: The standardized BVOC emission rate of isoprene (ISO), monoterpenes (MT)
and sesquiterpene (SQT) and the relative compound contribution of MTs for the
individuals of early spruce (SE; n = 8-56 samples) and late spruce (SL; n = 6-34 samples).
Early spruce is defined by an early budburst, whilst late spruce begins its budburst
approximately one week later. The error bars are the standard deviation of the data. The
category “Other” contains the compounds tricyclene, a-thujene, sabinene, o-phellandrene,
a-terpinene, B-phellandrene, eucalyptol, ocimene, y-terpinene, terpinene and linalool.
Figure adapted from paper II1.

24



BVOC emission variation in regards to light, height within
the canopy and time of season

Light is an important environmental factor which determines the amount of
terpenoid precursors produced by photosynthesis and the BVOC amount which is
released (Niinemets et al., 2004 and references within). Whilst some compounds are
released upon production, other compounds can be stored in internal storage
structures from which they are evaporated at another time (Kesselmeier and Staudt,

1999; Niinemets et al., 2004).

A light dependent fraction of the total compound emission was calculated to study
the response of various compounds to changing light. The light dependent percentage
was calculated as 100 % x (light emission — dark emissions)/light emissions.
Measurements were performed in Taastrup, where the relative contributions at a light
level of 1000 pmol m™? s were similar between individuals of the same species. Some
compounds were species specific, with high emissions of isoprene from the English
oaks, sabinene from European beech and either a-pinene or limonene from the two
provenances of Norway spruce (Figure 9). Five compounds were emitted by all of the
measured trees, making it possible to study how individual compounds reacted to
changes in light between different species. These were a-pinene, camphene, 3-carene,
limonene and eucalyprol.

Isoprene from English oak and Norway spruce and sabinene from European beech
were shown to be light-dependent for all of the measured tree species. For the
remaining compounds emitted by English oak and European beech, there was no
significant emission response with a change in light. The compound camphene
showed no clear emission response from any of the tree species with an increase in
light. An exception was for two individuals of spruce, but there was only a significant
emission response from darkness to 500 pmol m™ s™.

Many of the individuals of the two provenances of Norway spruce showed high light-
dependent fractions from the compounds o-pinene, 3-carene and eucalyptol, which
remained fairly stable with an increase in light. This potential stability in light
dependency could be used to further improve emission modeling and might
potentially be valid over a larger set of tree species. But for some of the trees, there
was a high internal variation which might have masked some of the emission
responses. There is also a need to do emission studies on light levels below 500 pmol
m? s, as the chosen levels did not fully cover the emission response of the chosen
tree species.
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Figure 9: The average BVOC emission rate from individuals of English oak, European
beech and two provenances of Norway spruce and the relative compound contribution
at four photosynthetically active radiation (PAR) levels. Early spruce is defined by an
early budburst, whilst late spruce begins its budburst approximately one week later.
The open circles show the total monoterpene emission (MT), whilst the open squares
show the isoprene emission (n = 3-6 samples). The error bars are the standard
deviation of the data. “Other” contains the compounds tricyclene, camphene and
eucalyptol for oak, tricyclene and eucalyptol for beech, tricyclene, B-pinene, eucalyptol
and linalool for early spruce and tricyclene, B-pinene, a-terpinene eucalyptol and y-
terpinene for late spruce. Figure adapted from paper IV.
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Some points to take into consideration are that all measurements were performed on
the lowest positioned branches, which have previously been shown to be poorly
acclimated to drastic increases in light (Harley et al., 1997; Simpraga et al., 2013).
The effect of measurement height on the observed emission rates was investigated at
three canopy levels in the study conducted in Taastrup 2013. For English oak and the
two provenances of spruce, there were no distinct differences in emission rates with
the measurement height within the canopy. This lack of height dependence could be
explained by similar light adaptations between different levels in the canopy as there
was sufficient spacing between trees to provide light at lower canopy levels (Persson et
al., 2016). The results from Norway spruce was compared with another spruce tree
growing in a dense forest stand. The emission patterns from the tree growing in a
dense forest stand showed significantly different emission patterns on all measured
height levels, which would indicate that the lack of significant differences in Taastrup
might be due to that more light is able to reach down to the ground.

However, for the European beech there were distinct emission rate differences
between canopy levels. At the top of the canopy, the emissions were seven to nine
times higher in comparison to lower levels in the tree. There was also a difference in
leaf color between the upper and lower canopy levels, with leaves that were more
yellow at lower heights. In comparison to the other studied trees, the European beech
tree was standing in the northeast corner of the IPG site and was partly shaded by the
surrounding trees. It is possible that the beech tree received less light at lower canopy
levels in comparison to the remaining trees and therefore was less adapted to the light
conditions provided by the instrumental setup (Persson et al., 2016).

Studies on emission pattern changes in regards to time of season have been shown to
have a substantial effect on BVOC emission rates (Hakola et al., 2003; Tarvainen et
al., 2005). The effect of seasonal development on the BVOC emission patterns was
also investigated in Taastrup in 2013 and for Norway spruce in Ljubljana. In
Taastrup, measurements were performed twice on English oak and early spruce in
different parts of the season in order to study the possible change in emission spectra
with the progression of summer. For oak, the total emission increased from June to
August and the total proportion of isoprene increased from 62-74 % to
approximately 97 %. It was believed that the increased emission rate was due to leaf
maturation and that a higher monoterpene emission in the beginning of the season
was due to stress from herbivore attack. The trees were visibly subjected to damage
from caterpillars in June, but with no clear occurrence later in the season. For early
spruce, the total emission decreased from July to August without a change in the
number of detected compounds. This decrease is believed to be caused by water stress
due to a 21 days long period without rainfall. The volumetric water content was not
measured at the time, but the lowest branches were visibly affected as the needles
dried and fell off by the end of the campaign (Persson et al., 2016). There was also an
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increased emission of sesquiterpenes, which has been shown to be an indicator for
plant water stress (Duhl et al., 2008).

Ljubljana was revisited in another measurement campaign between 2015 and 2016,
where the provenances of spruce were measured both in October and in April to
May. The standardized emission rates in October were less than a third in
comparison to measurements performed in May and the compound composition
changed for both provenance of spruce. There was not enough data to be able to
compare differences in emission rates and compound composition with other studies,
but the results show clear indications that there is a change in emissions with the
progression of the season and that this change can only be encouraged to be studied
further.

Figure 10: One of the measurement branches from late spruce growing in Taastrup,

Denmark.
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Conclusion and outlook

The main objective of this thesis was to analyze the impact of genetic diversity and
latitudinal adaptation on BVOC emissions for English oak, European beech and
Norway spruce by using the IPG network as its foundation. Emphasis has been on
minimizing the within species variability caused by genetic differences in order to
shed more information on the importance of local growing conditions and if the
observed emission patterns adapt to site-specific climates. Most studies use seedlings
or saplings in order to understand the effect of site specific growing conditions whilst
excluding genetic diversity, with the disadvantage that the emission patterns can differ
depending on the age of the plant. The advantage of using the IPG network is that
studies can be done on genetically identical trees that are fully grown, which gives a
much better representation of emission pattern responses for the chosen tree species as
a whole. As the IPG network focuses on 21 different species in their observation
program, it is possible and encouraged to study the emission pattern variation with a
change in latitude for other common European tree species as well.

The similarity in relative compound composition for genetically identical trees across
latitudes and time suggests that genetics have an important role in regards to the
observed relative compound contribution across performed measurement campaigns.
The largest emission variation between individuals was found for the provenances of
spruce, but the variation was mainly found in the emission amounts of isoprene and
sesquiterpenes. The compound composition for monoterpenes however was quite
stable between provenances and across the laticudinal gradient. There was also an
indication that the compound composition remained fairly stable over time, as similar
compositions have been provided from the site Taastrup measured at approximately
the same time in the growing season four years in a row. What these results would
suggest is that the observed compound composition for these three types of trees is
genetically determined and less prone to change with a change in local growing
conditions. The stability in compound composition makes it possible to investigate
how climatic differences might affect the emission amounts. Another suggestion
would be to use these genetically identical trees and sites to find compounds that are
more associated to various stresses and investigate if these patterns can be modeled
over a larger spatial scale. However, in order to confirm this potential compound
stability, more studies at different IPG sites would be recommended. To conduct
more studies over a larger latitudinal range would give modelers an opportunity to
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further improve their emission rate parameterization. It would also be possible to
adjust the modeled emission patterns according to set regional conditions, which
would hopefully provide with a better understanding how BVOC emissions might
change with a changing climate.

However, even though the compound composition remained stable across different
latitudes, the emission amount varied between sites. This result indicates that even
though it is the genetics that determine the compound composition of a particular
plant, the amount depends more on local growing conditions, including climate, and
possible impacts of stress. Short-term stresses which were observed during some of the
performed studies, such as extreme weather events, water shortage or insect outbreaks,
had a clear impact on the emission patterns. But these impacts where in our cases
only temporary and did not seem to influence the compound composition over a
longer time perspective. Other effects which indicated influences on the emission
amounts were measurements at different canopy heights and time within the growing
season. These effects have not been studied in detail, but there were indications that
they were influencing the emission rates and should be further investigated in order to
fully understand their possible impacts.

By using the portable photosynthesis system LI-6400 and LI-6400XT, where the
environmental conditions inside the chamber could be determined, it was possible to
study the individual responses of the emitted BVOCs from oak, beech and spruce.
Whilst some compounds were light-independent, others had high light-dependent
fractions which remained stable with an increase in light. There were also some
compounds which showed very little emission response with a change in light and
which had similar emission responses across different tree species. However, when the
light response study was performed it was assumed that all levels within the canopy
had a similar light acclimation due to the wide spacing in between the individual
trees. This was one of the results from the study done in 2013 in Denmark, where
BVOC samples were taken at different heights within the canopy without a
significant difference in emission amounts. However, this was not the case for the
European beech tree, where the emission at the top of the canopy was seven to nine
times higher in comparison to lower levels. It would therefore be important to study
if this light response for different compounds is similar at the top of the canopy in
comparison to lower levels.

Uncertainties which have emerged by using the IPG network is if the emission rates
from individual trees are representable for the emissions from a forest. Most of the
IPG sites have planted their trees with wide spacing in between, whilst a forest which
the measured rates would be applied to usually grow in dense stands. Another
uncertainty is that one to two individuals per site really is not enough to prove genetic
similarities within a site. However, as the relative compound composition was shown
to be similar between sites, there would still be indications that we would get similar
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results if more trees were available. Lastly, there is an unknown effect from that some
of these sites have been situated close by various agricultural practices and what the
effect the nutrient availability at these sites might have had on the observed emission
rates. However, despite these mentioned uncertainties, the IPG network has
nevertheless provided with a unique opportunity to study how the emission patterns
were affected by different climatic conditions.

More studies on more types of trees, in particular other important tree species such as
pine, other subspecies of oak and birch, would be beneficial in terms of both model
improvement but also to get a better understanding on how the emissions from these
trees are affecting the atmospheric chemistry on a regional scale. Future studies could
also aim at studying the effect of season at different IPG sites and if genetically
identical individuals remain similar with the progression of time. Even though there
were no clear emission adaprtations in regards to compound composition between
sites, it would be interesting to investigate if it is the same across different generations
of genetically identical trees. Younger tree saplings have been measured in Grafrath,
but their emission rates could either not be compared, due to that there was no
mature trees available, or was not compared due to a lack of data. Another suggestion
could be to study how tree species that are planted outside of their normal
distribution range might have adapted to their conditions and what type of BVOCs
they emit. These types of studies could potentially shed some additional light on how
the emission patterns of our European tree species might change with global
warming.
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