LUND UNIVERSITY

Which Biomarkers Are Effective for Identifying Th2-Driven Inflammation in Asthma?

Diamant, Zuzana; Tufvesson, Ellen; Bjermer, Leif

Published in:
Current Allergy and Asthma Reports

DOI:
10.1007/s11882-013-0376-6

2013

Link to publication

Citation for published version (APA):

Diamant, Z., Tufvesson, E., & Bjermer, L. (2013). Which Biomarkers Are Effective for Identifying Th2-Driven
Inflammation in Asthma? Current Allergy and Asthma Reports, 13(5), 477-486. https://doi.org/10.1007/s11882-
013-0376-6

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY
PO Box 117

221 00 Lund
+46 46-222 00 00

Download date: 22. Sep. 2024


https://doi.org/10.1007/s11882-013-0376-6
https://portal.research.lu.se/en/publications/0cbfd7d5-1a03-46f8-8e3a-fa153e4a93b4
https://doi.org/10.1007/s11882-013-0376-6
https://doi.org/10.1007/s11882-013-0376-6

SPRINGERLINK HEADER:

ASTHMA (W] CALHOUN AND SP PETERS, SECTION EDITORS)

Which Biomarkers Are Effective for Identifying Th2-Driven

Inflammation in Asthma?

Zuzana Diamant, Ellen Tufvesson, Leif Bjermer

Skane University Hospital, Dept of Respiratory Medicine & Allergology, Lund, Sweden

Corresponding author:

Zuzana Diamant, MD PhD Professor

Skane University, Department of Respiratory Medicine & Allergology
Klinikgatan 18, S-221 81, Lund, Sweden &
University Medical Centre Groningen, Dept of General Practice, Groningen,

Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands

Email: z.diamant@gems.demon.nl

Tel: +31-6-24511030



Keywords:

Asthma; Phenotype; Th2 inflammation; Biomarkers; Eosinophils; Periostin; TARC;

Eotaxin; Feno; IL-4; IL-5; IL-13; Sputum; BAL.

Abstract

Recognition of asthma as a heterogeneous disease revealed different potential molecular
targets and urged the development of targeted, customized treatment modalities.
Evidence was provided for different inflammatory subsets of asthma and more recently,
further refined to T helper (Th)2-high and Th2-low subphenotypes with different
responsiveness to standard and targeted pharmacotherapy. Given these differences in
immunology and pathophysiology, proof of concept studies of novel treatment
modalities for asthma should be performed in adequate, well-defined phenotypes. In
this review, we describe both existing and novel biomarkers of Th2-inflammation in
asthma that can be applied to classify asthma subphenotypes in clinical studies and for

treatment monitoring.



Introduction

Current guidelines acknowledge the heterogeneity of asthma and the potential value of
biomarkers to aid diagnosis and adequate treatment [!]. The concept of different asthma
phenotypes has been recognized by clinicians since a long time, exemplified by the
subdivision into intrinsic (non-allergic) and extrinsic (allergic) asthma [23]. In the late
1990s, Rosi and colleagues showed by a factor analysis that clinical parameters,
physiological tests and inflammatory biomarkers provide complimentary information
and that combining these data could help to define an individual’s asthma phenotype
and subsequent customized treatment [*]. Ever since a number of cluster analyses have
been performed [°,°]. Furthermore, several attempts have been made to define asthma
(sub)phenotypes based on clinical or physiological presentations or provoking stimuli,
yielding overlapping characteristics. Although none of the proposed phenotyping
systems has been validated so far, inflammatory phenotyping (ie. eosinophilic,
neutrophilic, mixed, paucigranulocytic) offers the potential of linking a specific
inflammatory phenotype to (targeted) treatment options and disease monitoring [57].
More recently, asthma phenotypes have been defined based on their T-helper 2 (Th2)-
gene expression, yielding at least two major phenotypes: i.e., “Th2- high” and “Th2-low”
subsets [8,°]. Although not fully confirmed, some of these insights have already been
successfully implemented into clinical practice, treatment monitoring and clinical trials
[19]. In this context, periostin is an emerging biomarker of eosinophilic and Th2-driven

inflammation in asthmatic patients [11].

In the current asthma exacerbation model of Th2-driven airway inflammation used to
study targeted therapies [Figure 1], inhaled allergen initiates activation of mast cells

with subsequent release of pro-inflammatory mediators, including leukotrienes (LTs)



and prostaglandins (PGs) during the early asthmatic airway response (EAR). During the
subsequent late asthmatic response (LAR), activated Th2-cells release interleukin (IL)-4,
IL-5, IL-13, eotaxin and TARC [!%], with subsequent IgE isotype switching in B cells,
eosinophil activation including pro-inflammatory mediator release and airway smooth
muscle (ASM) cell proliferation [13]. In addition, airway epithelial cells secrete IL-25 and
IL-33, thus activating dendritic cells and promoting the release of IL-5 and IL-13 from
innate lymphoid cells [14,15,16,17 1819 20 21] [L-13 induces the migration and survival of
eosinophils [2°], activation of macrophages [%2], mucus hypersecretion [23], production of
inducible nitric oxide (NO) synthase (iNOS) by airway epithelial cells [24], and
transformation of airway fibroblasts into myofibroblasts promoting collagen deposition
[23]. Apart from its role in the pathophysiology of airway remodelling, IL-13 also has

been shown to induce non-specific airways hyperresponsiveness (AHR) [23].

In this review we discuss the most important Th2-derived biomarkers currently used in

clinical practice and clinical research of asthma and potential future applications.

Systemic Th2-biomarkers

Blood eosinophils

For decades, peripheral blood eosinophil counts have been used for indirect assessment
of airway inflammation and to aid the diagnosis of asthma. Evidence has been provided
that total peripheral blood eosinophil counts can guide corticosteroid treatment, to

predict asthma exacerbations [2¢] and to be sensitive markers of fatal asthma [27].

In healthy adults, blood eosinophil counts generally range from 0.015 to 0.65 x 10°/L
[28]. There is a substantial diurnal variation (over 40%), with the lowest counts in the
morning and the highest at night [?°]. Blood eosinophil counts and serum IL-5 and IL-13

levels were reduced after 16 weeks of treatment with omalizumab (anti-IgE) [3°,31].
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Similarly, 50 weeks of treatment with mepolizumab (anti-IL-5) significantly decreased
blood eosinophil counts, sputum eosinophils and the number of severe exacerbations in
patients with severe eosinophilic asthma refractory to high dose of inhaled
corticosteroids (ICS) or systemic corticosteroids [32, 33,3%]. Thus, peripheral blood

eosinophil counts are believed to reflect Th2-driven inflammation within the airways.

Soluble Th2-markers from peripheral blood

Immunoglobulin E (IgE)

IgE is a key mediator of allergic conditions including asthma and allergy [35]. Hence, total
serum IgE level is a specific biomarker of atopy and Th2-driven inflammation. In a
multicenter trial, 182 patients with mild-to-severe asthma (approx 30% receiving ICS)
were followed for 2.5 years. While correcting for FEV}, sex, and age, total serum IgE level
was the only independent variable tested predicting corticosteroid-induced
improvement in AHR [3¢]. In another study of 562 patients with mild-to-severe allergic
asthma, total serum IgE levels were related to asthma severity and inversely correlated
with lung function (FEV:1 % predicted) [37]. Additionally, despite a substantial inter-
subject variability, there was only minor overlap in serum IgE levels between the
asthmatic (554 * 447 IU/mL) and the control population (69 + 33 IU/mL). In fact, a cut-
off of 200 IU/mL would indicate sensitivity of 93% and specificity of 91% among these

subjects.

Eosinophil cationic protein (ECP)

Eosinophil cationic protein (ECP) and eosinophilic peroxidase (EPO) are released during

degranulation of eosinophils and, hence, increased serum levels of these products are



indicative of systemic eosinophilic inflammation. Serum ECP levels are often increased
in asthmatic subjects, with a sensitivity of 70% and a specificity of 74% (efficiency 73%)
and have been indicative for the presence of asthma [38]. Seasonal increases in serum
ECP levels have been observed in sensitized, corticosteroid-naive asthmatics [3°]. In this
study, the increase in serum ECP levels significantly correlated with changes in
parameters of asthma activity: i.e, increases in symptom scores and blood eosinophils,
and decreases in PEF values and PD20 methacholine [3°]. In another observational
study, patients with seasonal allergic rhinitis (AR) who developed asthma-like
symptoms over 6 years, initially presented with significantly higher serum ECP levels
(16.7 microg/L vs 8.2 microg/L) and higher serum EPO levels (17.9 microg/L vs 8.8
microg/L) compared with rhinitics who did not develop lower airway symptoms over
time [9]. Hence, in these subjects with seasonal AR, serum ECP and EPO levels measured
outside of season showed a high predictive ability for the development of asthma [4°]. In
addition, both treatment with ICS [#1] and targeted therapies, including omalizumab [%2]

and mepolizumab [34], decreased serum ECP levels in asthmatic patients.

Eotaxin

The chemokine eotaxin (CCL11) is a potent and selective chemoattractant for human
eosinophils [#3]. Serum eotaxin levels were higher in asthmatic patients (175.8+49.3
pg/mL) compared to controls (109.6+56.1 pg/mL), and correlated to the ECP levels in
the asthmatics [#4]. In a study investigating serum samples from 944 individuals of 218
asthma-affected families, eotaxin levels were higher in asthmatic parents than in
asthmatic children, but no difference was found between healthy and asthmatic

individuals [#°]. In addition, serum eotaxin has been useful in predicting the severity of



symptoms that patients develop during steroid-tapering and could therefore be

evaluated in guiding asthma treatment [#].

TARC

Thymus and activation-regulated chemokine (TARC; CCL17) is another biomarker
suggested to be involved in the Th2-inflammatory response. Mean serum concentrations
of TARC has been shown to be primarily increased in atopic dermatitis (325 pg/mL), but
in some studies also in bronchial asthma (271 pg/mL) and allergic rhinitis (147 pg/mL;

versus healthy volunteers (31.9 pg/mL) [#7,48].

In asthmatic subjects, serum TARC concentrations were found to correlate with serum
eotaxin concentrations [#°]. In addition, some authors also report correlations with total
IgE [59], while this was not found by others [4849]. TARC in plasma was also increased in
asthmatic children who were sensitized to cat allergen but not in those sensitized to
other aeroallergens [>°], and increased after allergen challenge [>!]. Plasma TARC
concentration may be responsive to corticosteroid treatment as increased levels (mean
131.0 pg/mL) have been found in asthmatic children not on inhaled corticosteroids

compared with those treated with ICS (97.5 pg/mL) and healthy controls (76.0 pg/mL)

[50]_

Interleukins (IL) 4,5 and 13

Th2 cytokines such as IL-4, IL-5 and IL-13 play important roles in allergic diseases.
However, due to their overall low levels in peripheral blood especially in stable clinical
state, it is often difficult to detect them using traditional assays [*8]. In some studies,

increased serum IL-4 and IL-5 levels were found in asthmatic subjects compared to



healthy controls, but no relationship was found between these cytokine levels and
clinical parameters of asthma [5Z]. In the aforementioned study investigating asthma-
affected families [*°], serum levels of IL-4 and IL-5 were lower in asthmatic adults
compared to asthmatic children, with no difference between healthy and asthmatic
individuals. However, IL-5 was the best predictor for extrinsic asthma and allergic
rhinitis in children, and frequent asthma exacerbations in children were associated with
increased serum IL-5 levels. In a study comparing fluticasone propionate (FP) and
salmeterol (Salm) versus FP only, inhaled allergen challenge increased mean serum IL-5
from 0.7 to 5.9 pg/mL in sensitized asthmatics. Compared to FP only, pretreatment with
the combination (FP/Salm) significantly reduced serum IL-5 and blood eosinophils 1 to
6 h post-allergen challenge [>3]. Similarly, treatment with omalizumab reduced serum

levels of IL-5 and IL-13 in atopic asthmatics [31].

In a recent study, a combined anti-IL4/13 antibody (dupilumab®) was used to treat
patients with moderate-severe asthma with elevated blood eosinophil counts (>300
cells/uL) or increased sputum eosinophils (23%). In addition to a significant clinical
effectiveness: i.e, reducing numbers of exacerbations and improving ACQ-5 scores, Th2-
associated biomarkers as TARC, 3-eotaxin, IgE, and FeNO were all significantly reduced

following dupilumab treatment [4].

Periostin

Periostin is a matrix protein associated with fibrosis; its expression in airway structural
cells is upregulated by recombinant IL-4 and IL-13 [9]. Within the airways of asthmatics,
periostin expression has been found to correlate with several aspects of airway

remodeling [!1]. In patients with severe uncontrolled asthma unresponsive to maximal



ICS treatment, increased serum periostin levels were indicative of persistent
eosinophilic airway inflammation sampled by sputum and bronchial biopsies. In this
study population, serum periostin was the single best predictor of airway eosinophilia
compared to other Th2-markers tested: i.e., IgE levels, blood eosinophil counts and
fractionated exhaled NO (FENO) levels [!1]. In a recent interventional study with
lebrikizumab (anti-IL-13), baseline serum periostin levels were used to subphenotype
patients [>>]. After 12 weeks of treatment, improvements in FEV: and asthma
exacerbations were more evident in the lebrikizumab-treated group compared with the
placebo group, while the increase in FEV; after lebrikizumab-treatment was even more
pronounced in the high-periostin subgroup compared to the low-periostin group (serum
periostin levels above and below the median for the 212 study subjects). Similarly,
lebrikizumab treatment was associated with a significant reduction in FENoO levels
compared with those seen in the placebo group, especially in the high-periostin
subgroup [>°]. These data suggest that serum periostin levels might be a useful tool for
identifying responders to anti-IL-13 therapies. Following a similar subphenotyping of
patients with uncontrolled severe persistent allergic asthma, a decrease in exacerbation
frequency was seen following treatment with omalizumab in the high versus the low
group referring to three Th2-biomarkers: FeNO, blood eosinophils and serum periostin

(< or >50 ng/mL) [5€].

Th2-biomarkers in urine

In asthmatic children, eosinophil protein X (EPX) measurements in urine were applied
for the monitoring of eosinophilic inflammation [>7]. Similar to other eosinophil-derived
markers, excretion of EPX/EDN shows circadian rhythms with the highest levels
occurring at night [58]. Increased urine concentrations of EPX/EDN were detected in
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asthmatics and reductions were shown following anti-inflammatory (ICS) treatment [57].
Increased urine levels of EPX/EDN (2100 microg/mMol creatinine) in wheezing
children during the first year may predict the development of allergic sensitization or
asthma in later life [¢9].

Cysteinyl leukotrienes (CysLTs: LTCs, LTD4 and LTE4) are eicosanoids produced through
the 5-lipoxygenease pathway by a variety of cells associated with allergic inflammation,
including eosinophils, mast cells, and basophils [61]. CysLTs are excreted in urine as LTE4
(normal levels about 50 pg/ug creatinine), which is an indirect marker of CysLTs activity
within the airways. Urinary LTEs levels increase with both spontaneous asthma
exacerbations, aspirin and allergen challenges, and in nocturnal asthma during the night
[62,63,64, 6566], In contrast to corticosteroids [3], drugs inhibiting CysLTs synthesis, such
as leukotriene synthesis inhibitors, significantly reduce urinary LTE4 levels [¢7;¢]. As

anticipated, urinary LTE4 can help predict the clinical response to leukotriene modifiers

[68] .

Th2-biomarkers in airway samplings

Eosinophils in bronchial tissue

Approximately 50% of the asthmatics across different severities consistently show
airway eosinophilia on airway sampling (bronchial biopsies, sputum) [7]. However,
within the eosinophil phenotype, various subphenotypes exist with different
responsiveness to gold standard therapy as was shown by a cluster analysis [5].
Eosinophils within the airway mucosa are also known to be increased in Th2-driven,
allergic asthma, with further increases following relevant allergen challenge [*°] and in

patients with aspirin-sensitive asthma [7°]. In pollen sensitized allergic rhinitics,
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segmental allergen challenge with grass pollen extract increased eosinophils both in the
challenged and unchallenged bronchial mucosa as well as in peripheral blood and nasal
biopsies [71]. Of interest, the presence of eosinophils in bronchial biopsies may help to
predict responsiveness to gold standard therapy with ICS [72]. Alternatively, in allergic
asthmatics, anti-leukotriene treatment (montelukast 10 mg QID) for 8 weeks was shown
to effectively decrease eosinophils in bronchial biopsies to a similar degree as low-dose
fluticasone (2x100 mcg), while fluticasone was significantly superior in reducing serum
ECP [73]. Other targeted therapies, such as omalizumab effectively reduced eosinophils
both in sputum and in bronchial biopsies of allergic asthmatics following allergen

74] .

challenge [

Soluble markers
Bronchoalveolar lavage & bronchial washings

Several Th2-biomarkers can be quantified in bronchoalveolar lavage (BAL) fluid. The
levels of ECP (and EPX) are increased in BAL fluid of asthmatics (increases dependent on
asthma severity/activity /treatment) versus healthy controls [7>,7¢]. Repeated low doses
of cat allergen increased ECP levels in BAL (from mean 0.8 to 3.1 microg/L) and
nonspecific AHR in sensitized mild asthmatics, without inducing clinical symptoms [77].
In addition, increased ECP and specific IgE levels in BAL may be related to the
pathogenesis of the ragweed-induced late airway response (LAR) in ragweed-sensitized
asthmatics [78].

In an observational study of patients with eosinophilic bronchitis, asthmatics and
healthy controls, only a minority of subjects yielded baseline eotaxin values above the

detection limit (0.21 pg/mL in BAL fluid and 6.25 pg/mL in BW, respectively), and
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hence, no difference could be found between the 3 study populations [7°]. In a
longitudinal study, a sustained increase in BAL eotaxin levels was found in asthmatics
versus healthy controls regardless of ICS treatment, while BAL IL-5 levels seemed more
ICS-responsive [89].

IL-4, IL-5 and IL-13 are typically involved in atopic asthma, and they have all been
demonstrated to increase after allergen provocation [81,82, 83 84 85 86 8788] where the
effect on IL-4 persisted for 2 weeks while IL-13 levels were back to baseline after 1 week
[89]. A similar effect was seen in allergic rhinitics [81].

Similar to other Th2-cytokines, TARC is increased in BAL following allergen challenge
[>184], and is correlated to both IL-5 and IL-13. Moreover, TARC levels are higher in
patients with an allergen-induced LAR compared to those without [?°]. More recently, a
BAL study revealed a Th2-high phenotype, with severe poorly controlled asthma despite

corticosteroids, with upregulation of the PGD2 pathway [°1].

Leukotrienes

A limited number of studies have been published on leukotrienes measurements in BAL.
Involvement of LTs (i.e, LTBs and CysLTs) in the inflammation and the physiology of
nocturnal asthma has been demonstrated as increased BAL LTB4 and CysLT levels were
found at 4:00 AM in nocturnal asthmatics compared to healthy controls. In parallel,
urinary LTE4 were also significantly higher in nocturnal asthmatics versus controls. In
contrast, no differences in BAL LT-levels could be demonstrated in both groups at 4 PM
[°2]. Following allergen challenge, no difference was found in BAL CysLT levels between
patients with a LAR compared to those without a LAR (3,2-8,7 pg/mL) [°9], possibly due
to the fact that CysLTs can be released during both the early and the late response to

allergen, by mast cells and eosinophils, respectively. However, a more pronounced
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difference was seen between patients with aspirin-sensitive versus aspirin-tolerant
asthma, possibly due to the marked airway eosinophilia in the aspirin-sensitive group
[?3, 94]. In one study, CysLTs have been shown to respond to ICS, as BAL LTC4levels of
asthmatic subjects were lower after 2.5 years ICS therapy [°°], while leukotriene
modifiers, as exemplified by the 5-lipoxygenase inhibitor, zileuton, in the
aforementioned study by Wenzel et al, effectively blocked all LTs while improving

nocturnal manifestations of asthma [°2].

Sputum

Given the invasive nature of bronchial biopsies, sputum analysis has offered a valid
alternative allowing non-invasive asthma phenotyping and customized treatment [7-°¢].
Induced sputum is feasible in the majority of patients, yields repeatable cell counts
(mainly eosinophils and neutrophils) across all asthma severities [?¢] and allows mRNA
analysis [°7]. Across the literature, eosinophilic airway inflammation is defined by at
least 2% sputum eosinophils. Following allergen-induced LAR, repeatable increases in
sputum eosinophils have been demonstrated in allergic asthmatics with superior
outcomes if expressed as %non-squamous cells versus cells/mL [°8]. So far, sputum
eosinophils have been successfully applied as outcome variables in many proof of
concept and (treatment) monitoring studies. The pre-requisite for successful
implementation of this technique implies harmonization of standard operating
procedures (both during induction and processing) across research centers and

adequate analysis in a qualified, central laboratory [°°].
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Soluble markers

Similarly to BAL, several studies showed increased sputum ECP levels in asthmatics
versus healthy controls [ 100 , 101 - 102 =103 ] correlating with asthma
activity/severity/treatment status [104, 105], Asthmatics in remission and asthma patients
with a slow FEV; decline had similar sputum ECP levels [10¢], while patients with a fast
FEV: decline and exacerbating asthmatics had higher ECP levels [103]. Patients with
seasonal allergic asthma and rhinitis with nonspecific AHR showed increased sputum
ECP levels during season with persistent increases off season [120] and inhaled allergen
increased sputum ECP levels in sensitized asthmatics [197,108], Several treatments have
been shown to decrease sputum ECP levels: e.g. prednisolone [190], beclometasone [107],

montelukast [11°] and roflumilast [111].

Sputum Th2-cytokines including IL-4, IL-5, IL-13, eotaxin and TARC are increased in
asthmatic subjects as compared with healthy controls, with further increases during
both spontaneous and modeled (e.g. allergen challenge) exacerbations [12,101 103 112 113,
121], Sputum TARC levels were increased in asthmatics (1117 pg/mL) as compared with
healthy controls (31,8 pg/mL), and were positively correlated with sputum eotaxin.
However, in contrast to sputum eotaxin, which showed a strong positive correlation
with the sputum ECP, sputum TARC did not correlate with the ECP levels [*°]. Ample
evidence has been provided for a major role of IL-13 in the pathophysiology of airway
remodeling [114], which clinically translates into e.g. rapid FEV1 decline and nonspecific
AHR [113]. Smoking and/or its immunological effects evidently affect [L-13 as sputum IL-
13 levels were higher in smokers than non-smokers regardless of concomitant asthma
[101]. IL-13 production appears to be reciprocally regulated by corticosteroid therapy,

since sputum IL-13 levels were overall lower in corticosteroid-treated asthmatics
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compared with untreated controls [11°]. Similarly, following inhaled allergen challenge,
increases in IL-4, IL-5, IL-13, eotaxin and TARC were found in ultracentrifuged sputum
of dual responders at 7 and 24 h post-challenge, while these levels were significantly
decreased by pretreatment with a short course of high dosed fluticasone, corresponding
with complete blockade of the allergen-induced LAR ['2]. In this study,
ultracentrifugation of sputum (at 35,000 rpm) was applied since Th2-cytokines are

usually undetectable if measured under baseline conditions [*2].

Sputum CysLTs were increased in asthmatics (median, 9.5 ng/mL) versus healthy
controls (6.4 ng/mL), and higher in subjects with persistent asthma requiring ICS
(median, 11.4 ng/mL) or within 48 h of an acute, severe exacerbation (13 ng/mL) versus
subjects with episodic asthma (7.2 ng/mL) [116,117 118 '119120] [n addition, sputum
CysLTs and urinary LTE4 concentrations were higher in asthmatics with eosinophilic
airway inflammation [11¢]. Seasonal (allergic) asthmatics could be differentiated from
those with rhinitis with or without AHR by higher sputum CysLT levels [geometric
mean: 3.3 (lower 95%-upper 95% confidence interval (CI) of geometric mean: 1.9-5.1)
vs. 1.4 (0.9-2.2) and 0.7 (0.3-1.6) pg/microg total protein, respectively] during pollen
season, while levels declined off-season [121]. In addition, susceptible asthmatics to
exercise-induced bronchoconstriction [122] and aspirin-sensitive asthmatics have
increased sputum CysLTs [123]. Fluticasone combined with montelukast produced
greater reductions in sputum CysLTs than fluticasone with salmeterol [124], while

zafirlukast did not affect sputum CysLTs levels [123].
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Exhaled markers

Exhaled nitric oxide

In untreated asthma, FeNO has been shown to correlate with airway eosinophilic
inflammation sampled by induced sputum and bronchial biopsies [12¢]. Based on FeNO
levels, Dweik and colleagues identified two asthma phenotypes: high (=235 ppb) and low
(<35 ppb) subphenotype; the FeNO-high subphenotype characterized by longer disease
duration, nonspecific AHR, atopy and airway eosinophila [127].

The lack of correlation between sputum eosinophils and FeNO in patients treated with
anti-IL-5 (mepolizumab®) indicates that NO production is related to IL-13 and Th2-
response rather than to the eosinophilic inflammation per se [128]. Indeed, a link exists
between serum periostin levels and FeNO, with high FeNO levels being indicative of
Th2-inflammation within the airways. In line with these observations, treatment with
anti-IL-13 therapy (lebrikizumab®) has shown to reduce FeNO levels in high-periostin
and high-FeNO asthmatics [5°]. In addition, 12 weeks of lebrikizumab treatment was
associated with improvements in lung function and exacerbations in patients with Th2-
high phenotype (i.e., high serum periostin and high FeNO at baseline) compared to those
with a low Th2-profile [>°].

FeNO measured according to ERS/ATS recommendations (50mL/s) mainly reflects NO-
production within central airways and is closely associated with the expression of iNOS
within bronchial epithelial cells [129]. Alternatively, the origin of NO from the peripheral
airways (alveolar NO; CANO) is not completely known. In an in vitro study on small
airway epithelial cells, the Th1-cytokines (i.e, IL-1beta, TNF-alpha, and IFN-gamma)
provided a pronounced iNOS expression compared to IL-13 inducing a modest increase
[130]. This is somewhat in contrast to bronchial epithelial cell known to respond very

well to the Th2-cytokine IL-13 [!31]. In asthmatics in vivo, CANO seems to correlate with
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distal lung eosinophilic inflammation [72]. Increased CANO levels were found (7.1 ppb)
in patients refractory to high doses of ICS, but decreased following treatment with
prednisolone (30 mg QID). There was a close correlation between BAL eosinophils and

CANO while single FeNO measurements correlated with eosinophil counts in BW [72].

Exhaled breath condensate (EBC)

In theory, EBC allows sampling from the entire airways, including small airways.
However, in practice, the method is associated with a number of methodological issues
hampering interpretation. Due to their size, proteins, including cytokines, are invariably
present in low levels close to or under detection limit. Increased levels of reactive
oxidative markers and eicosanoid mediators (8-isoprostane and leukotrienes) can be

more readily and reproducibly measured [132.133].

Saliva

Saliva can be easily obtained and biomarkers have been proposed to reflect systemic
inflammation making saliva samplings a promising tool for larger population screenings
and epidemiological surveys [134]. Even though clearly detectable levels of pro-
inflammatory mediators and cytokines can be measured in saliva [135], surprisingly few

studies have been published on the topic.

Conclusions

Apart from more traditional biomarkers, including blood and sputum eosinophils, serum
IgE and FeNO levels, novel emerging Th2-related markers, such as periostin, TARC and

others, have been identified. Combinations of different biomarkers may further help to
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refine the Th2-subphenotypes and hence, may serve as useful tools to aid diagnosis and
to define clinical phenotypes suitable for Th2-targeted therapies. Already today, there
are very promising clinical examples proofing that it is possible to use Th2-related
biomarkers to identify responders, with a high degree of accuracy. However, the optimal
biomarker or combination of biomarkers awaits validation. In addition, there is an
additional need to define the value of adequate biomarkers, not only to identify potential
responders to therapy, but also as true primary outcome measures being closely related
to disease activity and thereby competing with traditional variables as lung function and

disease control.
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