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Robotic Force Estimation Using Motor Torques and

Modeling of Low Velocity Friction Disturbances

Magnus Linderoth, Andreas Stolt, Anders Robertsson, Rolf Johansson

Abstract— For many robot operations force control is needed,
but force sensors may be expensive and add mass to the system.
An alternative is to use the motor torques, though friction
causes large disturbances. The Coulomb friction can be quite
well known when a joint is moving, but has much larger
uncertainties for velocities close to zero.

This paper presents a method for force estimation that
accounts for the velocity-dependent uncertainty of the Coulomb
friction and combines data from several joints to produce
accurate estimates. The estimate is calculated by solving a
convex optimization problem in real time. The proposed method
was experimentally evaluated on a force-controlled dual-arm
assembly operation and validated with data from a force sensor.
The estimates were shown to improve with the number of joints
used, and the method can even exploit data from an arm that
is controlled not to move.

I. INTRODUCTION

The traditional way of programming industrial robots is to

use position control and follow pre-defined trajectories, using

the joint position sensors. Modern robot controllers are very

good at this and perform these tasks both fast and with high

accuracy. In tasks where the robot has to physically interact

with the environment, however, this control strategy is less

advantageous. The accuracy of the robot and the location and

geometry of everything in the workspace have to be known

with high precision, and this is usually hard to achieve. A

remedy to this problem is to introduce additional sensing,

e.g., a force sensor that gives the robot capabilities to handle

position uncertainties by sensing the contact forces. A force

sensor can thus be used to make the robot system more

robust towards uncertainties. The main drawbacks with using

a force sensor are that it may be expensive and add mass to

the system.

An alternative to using a force sensor is to estimate the

external forces applied to the robot based on sensing already

available in the robot. Usually this includes position sensors

in the joints and torques exerted by the motors. The main

problems with estimating forces is how to handle the large

disturbances that are present, e.g., originating from friction.

In a previous work by the authors [17], the joint control

errors were used to estimate the external force.

Magnus Linderoth, magnus.linderoth@control.lth.se,
Andreas Stolt, Anders Robertsson, and Rolf Johansson are with the De-
partment of Automatic Control, LTH, Lund University, Sweden.

The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme FP7/2007-2013 – Chal-
lenge 2 – Cognitive Systems, Interaction, Robotics – under grant agreement
No 230902 - ROSETTA. This document reflects only the author’s views
and the European Community is not liable for any use that may be made
of the information contained herein.

The authors are members of the LCCC Linnaeus Center and the eLLIIT
Excellence Center at Lund University.

Fig. 1. The setup for the assembly task used
in the experiments. The force/torque sensor,
mounted at the wrist of the robot’s right arm,
is only used for verification and evaluation of
the estimated forces.
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Fig. 2. Zoom in and
illustration of the frame in
which the contact forces
are measured.

Force estimation has been considered many times before

in the literature. A common approach is to use model-

based disturbance observers. A dynamical model of the

robot is used and forces are estimated by an observer based

on the deviations from the model. Apart from a model

of the robot, these methods need a model for interaction

with the environment. Examples of previous work using this

technique can, e.g., be found in [2], [6], and [11].

Methods for force estimation are also available in commer-

cial industrial robot systems, e.g., both ABB [1] and Toshiba

[18] provide such products. These systems are, however,

designed to work well for large forces, and would therefore

not be suitable for use in tasks where it is important to react

already for smaller forces, which is considered in this paper.

In previous work, e.g., [9], [10], [14], [15], it was assumed

that the joints were always moving, and no attention was

given to the large uncertainties in the friction torques at

velocities close to zero. It has also been common to only

consider experiments with three or fewer joints.

In [13], [15] the performance of force estimation was

improved by modeling the friction carefully and considering

position-dependent torque variations, and [5], [12] include

modeling of low-velocity friction phenomena. These models,

however, require knowledge of many parameters that are

challenging to identify and prone to change, due to, e.g.,

temperature and wear.

The focus of this paper is not on estimating the friction

torques of the individual joints rigorously, but on modeling

the velocity-dependent uncertainties in the friction torques

and combining measurements from multiple joints to com-
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Fig. 3. Measured motor torque and applied external torque from an
assembly sequence. The diagrams in the left column show data from the left
arm, which was controlled to move, and the diagrams in the right column
show data from the right arm, which was controlled to be still. The upper
diagrams show data from base joints, and the lower diagrams show data
from wrist joints. The joints chosen for display are those where the external
torques were the most visible. It can be seen that the disturbances were as
large or even larger than the signal of interest.

pute an accurate estimate of the contact force. In particular,

we take the noise in the velocity measurement into account,

and model that the Coulomb friction is quite well known

when a joint is moving, but has much larger uncertainty for

velocities close to zero. The force is estimated by solving a

convex optimization problem, and an approximate confidence

interval is also calculated.

The validity of the approach is investigated by comparing

the estimated forces with measurements from a force sensor.

The method is finally tested in a dual-arm screwing assembly

task with the setup shown in Figs. 1 and 2

A. Motivation

The motivation behind this work is to be able to use

force control in cases when no force sensor is available.

Measured motor torques are often available, but they contain

large disturbances. An example of measured motor torque

from a dual-arm assembly execution is displayed in Fig. 3.

The right robot arm was controlled to be still while the left

robot arm was manipulating an object held by the right robot

arm. The actual external torque, as measured by a force

sensor, is also displayed in the figure. It can be seen that

the disturbances are larger than the signal of interest. It can

further be seen that the disturbances are different for the two

arms, with a distinct Coulomb friction pattern for the arm

that is controlled to move, while the arm that is controlled

to be still appears to have less predictable disturbances.

II. METHOD

A. Modeling

The method used for force estimation in this paper is based

on the measured joint motor torques. The model used is

τm = τgrav + τdynamic + τext + τe (1)

where τm denotes the measured motor torques, τgrav de-

notes the torques originating from gravity, τdynamic denotes

dynamic torques originating from accelerations of the robot,

τext denotes external torques, and τe denotes disturbances

due to, e.g., friction, measurement noise, and modeling

errors.

The influence from gravity, τgrav , can be calculated if

the mass and center of mass are known for each link

of the robot. If they are not known, it is fairly easy to

perform identification experiments to find these parameters.

The actual calculation is, e.g., described in [16, p. 271].

The dynamic torques, τdynamic, can also be calculated if the

dynamic parameters of the robot are known, i.e., moment

of inertia for each link of the robot. The dynamic torques

will, however, be small in tasks where it is interesting to

use force estimation, as the robot will be interacting with

the environment and thus needs to move quite slow. It is

therefore assumed that the dynamic torques can be neglected.

The external joint torques originate from external forces

and torques applied to the robot. If it is assumed that all

external forces are applied to the end effector of the robot,

the external joint torques are given by

τext = JTF (2)

where J = J(q) is the Jacobian of the robot, q the joint

coordinates, and F denotes the force/torque applied to the

end effector.

B. Disturbance torques

The disturbance, τe, influencing each joint mostly consists

of Coulomb friction, which can be modeled to give the

following contribution for joint i

τ iCoulomb =

{

τ iC,max , q̇i > 0

τ iC,min , q̇i < 0
(3)

where q̇i denotes the velocity of joint i, and τ iC,max and

τ iC,min denote the constant friction levels for positive and

negative velocities respectively. What happens at zero ve-

locity is not given by the model, and the torque might be

anywhere in the interval [τ iC,min, τ
i
C,max]. Therefore, for low

velocities close to zero, the Coulomb friction contribution

can be modeled by a uniform random variable.

Another type of friction is viscous friction. It can be

modeled to give the following contribution for joint i

τ iviscous = ciq̇i (4)

where ci is a constant specific for each joint.

Another large disturbance is measurement noise, which

can be modeled to have a zero-mean Gaussian distribution.

C. Disturbance model

To find out the disturbance characteristics, an identification

experiment was performed for each joint. The joint was

then moving back and forth with a low piecewise constant

acceleration, without any external forces applied to the robot.

Two versions of this experiment are displayed in Fig. 4;

the upper diagram shows an experiment with low velocities,

and the lower diagram an experiment with higher velocities.

The raw data, sampled at 250 [Hz], were low-pass filtered
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Fig. 4. Experimental data from an experiment where one joint of the robot
was controlled to move back and forth with piecewise constant acceleration.
The upper diagram shows an experiment with only low velocities, and the
lower diagram shows an experiment with higher velocities. The disturbance
characteristics are clearly visible in this experiment. Also shown is one
standard deviation of the measurement noise multiplied with a velocity
dependent factor, and the upper and lower limits for the uniform distribution
describing the Coulomb and the viscous friction.

with the discrete-time filter (5) to remove some of the noise

influence.

H(z) =
0.4

1− 0.6z−1
(5)

The Coulomb friction is easy to see in both experiments.

As was suggested earlier, the amount of friction for zero

velocities varies between τC,min and τC,max, and due to

noise in the velocity measurements this is true also for

measured velocities slightly different from zero. Aside from

Coulomb friction, the experiment with large velocities shows

viscous friction. Further, there is also noise present.

A probabilistic model of the disturbances is therefore that

the Coulomb and the viscous friction are the outcome of

a uniform random variable with a velocity-dependent range.

This range is zero for large velocities and the range grows for

low velocities. One way to describe this range is by using

sigmoid functions for describing the upper and the lower

limits. To incorporate also viscous friction, a linear term

is added. The upper and lower limit for each joint can be

described by the following functions (joint index skipped)

τf,max(q̇) = τC,min +
τC,max − τC,min

1 + e−A(q̇+B)
+ cq̇

τf,min(q̇) = τC,min +
τC,max − τC,min

1 + e−A(q̇−B)
+ cq̇

(6)

The parameter A determines the slope of the sigmoid func-

tion, and the parameter B the width of the area between the

curves. Parameters for such functions were manually tuned

for each joint of the robot, and an example is seen as magenta

curves in Fig. 4.

A Gaussian noise term is used to account for measure-

ment noise, uncertainty in the friction limits and unmodeled

disturbances. It can be seen in Fig. 4 that the variance of

the noise increases when the velocity increases. The model

used is therefore that the variance of the noise is velocity

dependent and the standard deviation for different velocities

is calculated as the standard deviation for low velocities

multiplied with a factor (1 + k|q̇i|). One standard deviation

of the noise is displayed in Fig. 4. Data recorded during

assembly operations indicated that the actual disturbances at

high velocities were higher than the measured data in Fig. 4

indicate. Hence, the one-standard-deviation limit may appear

overly pessimistic in this figure.

To conclude, the total disturbance torque is modeled as

τe = τf + e (7)

where τf,min(q̇) ≤ τf ≤ τf,max(q̇), and e is zero-mean

Gaussian with diagonal covariance matrix E[eeT ] = Re(q̇) =
diag(1+ k|q̇|)2Re(0).

D. Force estimation

Let τ̄ be the motor torques compensated for gravity,

calculated as

τ̄ = τm − τgrav (8)

Using (1), (2), (7), and the assumption that the dynamic

torques are negligible, this gives

τ̄ = τext + τe

= JTF + τf + e
(9)

where τ̄ and J are given, and τf and e are random variables

with uniform and Gaussian distributions respectively. The

ML (Maximum Likelihood) estimate of F is then given by

minimize
over F,τf

(

τ̄ − JTF − τf
)T

R−1
e

(

τ̄ − JTF − τf
)

subject to τf,min ≤ τf ≤ τf,max

(10)

The estimate given by (10) can be improved by adopting

a Bayesian approach and using prior knowledge of F in the

particular task. The type of prior knowledge that can be used

is, for instance, that the contact torques are small compared

to the torque disturbances, and by reflecting this knowledge

in the distribution of F it is possible to improve the quality

of the estimated contact forces.

Assuming that the prior on F is Gaussian with E[F ] = F̄

and E[(F − F̄ )(F − F̄ )T ] = RF , and that F and e are

uncorrelated, the ML estimate of F is given by

minimize
over F,τf

(

τ̄ − JTF − τf
)T

R−1
e

(

τ̄ − JTF − τf
)

+
(

F − F̄
)T

R−1
F

(

F − F̄
)

subject to τf,min ≤ τf ≤ τf,max

(11)

The problem (11) is convex and can be solved numerically

in real time, as described in Sec. II-F.

E. Confidence interval estimation

The uncertainty of the estimate given by (11) varies

significantly with, e.g., the velocity of the different joints

and the robot Jacobian. Hence, it is important to calculate

the uncertainty of every estimate individually.

It is difficult to compute exact quantiles for the solution

of (11), but this section describes a method for extracting



approximate confidence intervals that can be computed in

real time. The method is first described for the case with

a single robot joint without prior, and then generalized to

handle multiple joints and a prior distribution on F .

1) One-dimensional case: The proposed confidence in-

terval for the case of a single robot joint with no prior and

the Jacobian J = 1 is illustrated in Fig. 5. The limits are

calculated as

τconf,min = τf,min − λσ

τconf,max = τf,max + λσ
(12)

where σ is the standard deviation of the Gaussian tails and λ

is a parameter deciding the confidence level of the confidence

interval.

For the special case where τf,min = τf,max (the distri-

bution of τe is Gaussian), the portion of the measurements

outside the confidence interval is 2(1−Φ(λ)), where Φ(·) is

the cumulative distribution function of the zero-mean unit-

variance Gaussian distribution.

An alternative way of finding the limits (12), is to mini-

mize the negative log-likelihood function of τe and adding a

gradient to push the solution toward the upper or lower limit.

The log-likelihood of a zero-mean Gaussian with standard

deviation σ is given by

logL(e) = −
e2

2σ2
+ const. (13)

d

de
(logL(e)) = −

e

σ2
(14)

Hence, at the limits of the confidence interval, the derivative

of the negative log-likelihood function of τe is

−
d

de
(logL(±λσ)) = ±

λ

σ
(15)

Consequently, adding a gradient with one of the slopes (15)

to the negative log-likelihood of τe and finding the minimum,

gives one of the limits (12) as the solution. This way of

calculating the limits is described because it generalizes to

higher dimensions better than (12).

2) Multi-dimensional case: For the multi-joint problem

(11), first assume that τf,min = τf,max, (i.e., Gaussian distri-

bution). The standard deviation σ of the marginal distribution

of F in the direction of the unit vector v is then given by

σ =

√

vT
(

JSR−1
e JT +R−1

f

)

−1

v (16)

where S is the identity matrix for the Gaussian case but

may have other values for the general case, as described

later in this section. The limits of the confidence interval in

the direction v are then given by the F solving

minimize
over F,τf

(

τ̄ − JTF − τf
)T

R−1
e

(

τ̄ − JTF − τf
)

+
(

F − F̄
)T

R−1
F

(

F − F̄
)

∓ λ
σ
vTF

subject to τf,min ≤ τf ≤ τf,max

(17)

where the “−” in the “∓” is for the upper limit, and the “+”

is for the lower limit. This formulation is obtained by adding

the gradient (15) to the problem (11).

P
D

F

τe
τf,min τf,maxτconf,min τconf,max

Fig. 5. Illustration of the proposed confidence interval on the probability
density function (PDF) of τe = τf + e, a flat part and two Gaussian tails.
The blue areas indicate the portion of the measurements expected to be
outside the confidence interval.

Returning to the general case, when τf,min 6= τf,max,

some of the joints may get an estimated τe in the range

τf,min < τe < τf,max. The cost function for that joint is

then locally flat, cf. Fig. 5, and should not be considered

when calculating (16).

To find out for which joints the estimated τe ends up in the

Gaussian part of the distribution, we propose the following

algorithm. It is assumed that n joints are used for force

estimation and that Re is diagonal.

1) Set S = 0n×n

2) Calculate (16)

3) Solve (17)

4) For the joints where τf = τf,min or τf = τf,max, set

the corresponding diagonal elements of S to 1
5) If S was modified in step 4), go to step 2). Else quit.

The intuition behind the above algorithm is the following.

The problem (17) is first solved using a gradient based only

on the prior. If the Coulomb friction for all joints is large, the

resulting τe may all be within the flat part of the distribution

and only the prior is used for determining the confidence

interval. If any of the estimated τe reaches the Gaussian parts

of the distributions, the gradient based only on the prior will

not be able to push the estimate far down the Gaussian tails.

The value of σ in (16) is then modified to include all joints

where the τe estimate is in the Gaussian part, resulting in

a steeper gradient, which may in turn push the estimate of

additional joints to the Gaussian part of the distribution. The

process (steps 2-5) is iterated until convergence.

F. Implementation

The optimization problem (11) is a convex optimization

problem of fairly small size and can be solved in real time in

a reliable manner. To this purpose, CVXGEN [8] was used.

It is a code generator for embedded convex optimization. The

generated code is library-free C code, and this code has been

connected to the robot controller via an Ethernet connection.

The generated solver is run on a Linux PC and the

computation time to arrive to a solution is in the order of

0.3 [ms]. The robot controller is run with a sampling time

of 4 [ms], and the speed of the solver is therefore sufficient

to be run in each sample. The solution with the Ethernet

connection introduces a delay of one sample, as the indata to

the solver is sent one sample before the solution is returned.

III. ASSEMBLY SCENARIO

A part of the assembly of an emergency stop button,

shown in Fig. 2, was considered to illustrate the use of



the force-estimation method. The subtask considered was

the attachment of the button onto the box by screwing a

nut. This assembly operation was performed in a dual-arm

setting, with one arm holding the button with the yellow

box on, and the other arm performing the screwing (2.5–3.5

revolutions). The task was modeled and specified using the

iTaSC framework [4].

The arm holding the button was static. By this we mean

that it was controlled not to move, but forces applied to it

could cause it to move slightly.

The assembly sequence consisted of first putting the nut

on the thread of the button, using the contact forces to find

the hole of the nut, though the exact grip of the button

was uncertain. Before the nut was properly screwed onto the

thread, large side forces could be caused by a bad grip of

the nut. If such a force was detected during the first two

revolutions, the gripper was opened and re-closed, which

usually gave a more centric grip. Due to the way that the

nut was gripped, large side forces were generated when the

nut was tightened, which could be used to detect when the

screwing operation was completed.

The robot used in the assembly scenario was the ABB

FRIDA [7]. It is a dual-arm manipulator with 7 joints in each

arm, developed for automation of assembly operations. The

robot was controlled with the IRC5 control system, extended

with an open control system [3], which made it possible to

modify the references for the low-level joint control loops.

The motor torques used for force estimation were calculated

from the motor currents. An ATI Mini40 6-DOF force/torque

sensor was mounted on the wrist on one of the arms to give

ground truth data, see Fig. 1.

IV. EXPERIMENTAL RESULTS

A. Calibration

An experiment where the robot was programmed to slowly

move around in its workspace was performed to identify

the parameters used for calculating the gravity torque, τgrav .

The resulting parameters resulted in a mean absolute error

ranging from 0.05 [Nm] for the wrist joints to 0.3 [Nm] for

the base joints.

The friction parameters were tuned by performing exper-

iments that were described in Sec. II-C.

B. Force estimation

The force estimation method was tested in an experiment

where forces were applied to a static arm (controlled not

to move). The estimated forces and confidence intervals are

displayed in Fig. 6, together with ground truth data from

the force sensor. All confidence intervals in this paper were

estimated with λ = 1.96 in (17), which would give a 95 %

confidence interval for a Gaussian random variable. The

parameter k was set to 5 [s/rad].

Fig. 6 shows that the estimated force tracked the measured

force well, but the confidence intervals seem to be overly

pessimistic. The Coulomb friction is, however, a very large

disturbance for low velocities. When the robot is moving, the

uncertainty in the Coulomb friction is much smaller, as can
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ground truth, and data from this are shown with black lines. The estimated
force is displayed together with a confidence interval.

Force direction x y z

With prior 0.67 0.69 0.87
Without prior 1.58 1.22 2.12

TABLE I

MEAN ABSOLUTE ERROR [N] FOR THE EXPERIMENT IN FIG.6.

be seen on the magenta-colored curve in the upper diagram

of Fig. 4. Large external forces make the robot move slightly,

and this gives significantly tighter confidence intervals than

when the robot is still, see, e.g., the z-force at t = 15 [s]

and t = 18 [s] in Fig. 6.

The prior used in this experiment was F̄ = 06×1 and Rf =
diag(10[N], 10[N], 10[N], 0.1[Nm], 0.1[Nm], 0.1[Nm])2,

i.e., only small contact torques were expected. The benefit

of using the prior is shown in Table I, where the mean

absolute estimation errors with and without the use of the

prior are listed, showing significantly decreased estimation

errors when the prior was used.

C. Screwing assembly task

Estimated and measured forces from an execution of the

screwing assembly task are displayed in Fig. 7(a). The forces

are given in the coordinate frame illustrated in Fig. 2. It can

be seen that the estimated forces tracked the measured forces,

at least when the measured forces were non-zero, i.e., during

contact operations. When the measured force was zero,

however, the estimated force was sometimes a bit wrong,

e.g., in the y- and the z-directions around t = 1.6 [s]. This

estimation error was most likely due to modeling errors, as

the robot was moving quite fast in this part of the assembly,

but it is known that the motion will be performed in free

space when the robot is moving fast, and therefore it is not

that important to get a perfect force estimate.

For the assembly task, some of the important forces to

detect were the contact forces in the z-direction when the nut

was put on the thread. They were correctly detected at t =
0.2 [s] and t = 3 [s], and the confidence interval was tight at

these moments. The screwing was finished when a large side

force was detected at t = 12.6 [s]; a zoom in on this part
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Fig. 7. Measured and estimated forces from an execution of the screwing assembly task. Forces are given in the coordinate frame illustrated in Fig. 2.
The computed confidence intervals are also shown.

All samples Samples when external force was non-zero

Percentage of ground truth force/torque measurements within confidence interval

Wrench component Static arm Moving arm Both arms Static arm Moving arm Both arms

x force 96.2 % 66.7 % 78.6 % 91.2 % 65.2 % 70.7 %
y force 95.6 % 64.4 % 82.4 % 90.0 % 64.2 % 74.8 %
z force 91.7 % 61.9 % 58.4 % 81.2 % 67.5 % 57.2 %
x torque 97.1 % 87.4 % 86.9 % 93.2 % 64.7 % 80.5 %
y torque 97.9 % 80.5 % 72.2 % 95.3 % 85.8 % 78.4 %
z torque 99.8 % 72.8 % 67.7 % 99.6 % 89.9 % 77.5 %

Mean absolute error

Wrench component Static arm Moving arm Both arms Static arm Moving arm Both arms

x force 0.60 1.08 0.60 1.05 1.23 0.62
y force 0.63 1.40 0.64 1.14 1.42 0.64
z force 0.91 1.38 1.09 1.33 1.29 1.02
x torque 0.066 0.22 0.095 0.16 0.25 0.096
y torque 0.036 0.15 0.11 0.073 0.13 0.099
z torque 0.014 0.050 0.074 0.036 0.057 0.091

TABLE II

STATISTICS FOR THE FORCE ESTIMATION IN THE SCREWING ASSEMBLY TASK. THE UPPER HALF SHOWS THE PERCENTAGE OF THE SAMPLES WHERE

THE MEASURED FORCE WAS WITHIN THE COMPUTED CONFIDENCE INTERVAL. THE LOWER HALF SHOWS THE MEAN ABSOLUTE ESTIMATION ERROR

(FORCES IN [N], TORQUES IN [NM]). THE LEFT PART SHOWS STATISTICS FOR WHEN THE ENTIRE ASSEMBLY SEQUENCE IS CONSIDERED, WHILE THE

RIGHT PART ONLY CONSIDERS THOSE SAMPLES WHEN THE MEASURED FORCE WAS NON-ZERO, I.E., WHEN THE ARMS WERE IN CONTACT.

of the data is displayed in Fig. 7(b). It can be seen that the

force estimate was both quite correct and confident when the

forces occurred. Some oscillations can be seen in the force

estimate, e.g., in the z-force around t = 12.2 [s]. This might

be caused by unmodeled disturbances, like cogging torques

in the motors or mechanical resonances.

The force estimates presented in Fig. 7 were calculated

using data from both arms, and in Table II they are compared

to estimates based on only the right (static) or left (moving)

arm. It can be seen that the estimate using the static arm,

gave the most measurements within the confidence interval.

This data should, however only be used to evaluate the

quality of the confidence intervals, not the force estimates.

When the joints were not moving, the large uncertainty in

the Coulomb friction resulted in wide confidence intervals,

and hence many measurements were inside the confidence

intervals. When the robot was moving, however, the model

seemed to be a bit too confident about the estimate. Only

looking at the samples when external forces were present

did not change much.

The lower part of Table II shows the mean absolute

estimation error. Here it can be seen, that when all samples

were considered, the estimates from the static arm were the

best, but only slightly better than the estimate using both

arms. It may be surprising that using only one arm can give

better results than using both arms, but when only the static

arm was used, the confidence interval was large and usually

enclosed the prior, which was F̄ = 06×1 in our example.

Hence most estimates were pulled to the prior, which was

almost equal to the actual forces for most samples in this

sequence. When there were external forces present, which is

the situation when the force estimation is really useful, the

estimates based on both arms were significantly better than

those based on any single arm, as seen in the lower right

part of Table II.

For most samples, the confidence intervals of the estimated



contact torques included the zero torque, since the friction

torques were very large in comparison to the contact torques.

Consequently, larger contact torques would be required for

the estimator to be able to detect them reliably.

The prior knowledge used in the assembly scenario was

that the contact torques should be quite small, but not zero.

This prior knowledge gave a slight increase in estimation

performance compared to not using a prior, but it was not

dramatic. More is gained in scenarios with only a point

contact, where it is known that the contact torques should

be zero, such as the experiment in Sec. IV-B.

V. DISCUSSION

Experiments showed that, when the arms were in contact,

complementing motor torque data from a moving arm with

data from a static arm, significantly improved the quality

of the estimated forces. The static arm could not have

been exploited with previously published force estimation

methods, which do not account for the uncertainty of the

Coulomb friction at low velocities.

Using a prior distribution on F with small variance on

the contact torques, can be seen as putting a soft constraint

on the contact torques. Instead of estimating a 3-DOF force

and a 3-DOF torque, the problem is then almost reduced to

estimating only a 3-DOF force. The increased redundancy in

the problem gives a better force estimate.

The prior distribution on F was chosen to be Gaussian,

which is a really crude approximation of the true distribution.

Using a Gaussian prior, however, leads to fast calculations,

and it has been shown that it also can give a significant

performance increase, despite its simplicity. The variance of

the prior should be chosen according to process knowledge;

how large forces and torques that are expected.

The magnitudes of the contact torques used in this paper

were small compared to the uncertainties in the torque esti-

mates, both with and without the use of a prior distribution

on F . This was mainly caused by the relatively large distur-

bances. The contact torques considered were in the order of

0.1–0.3 [Nm], which was in the same order of magnitude as

the errors in the gravity torque compensation. Also errors in

the Coulomb friction modeling gave disturbances in the same

order of magnitude as the contact torques. Estimating forces

was more advantageous, as relatively small forces could give

rise to relatively large joint torques through long lever arms.

Some of the parameters used for force estimation in this

paper were manually tuned, including A and B in (6), the

low-pass filter, and the velocity dependence of the Gaussian

noise term. This should be possible to do in an automatic

fashion, i.e., make experiments of the type presented in

Sec. II-C and choose the parameters by optimizing some

criterion. This would further simplify the use of the method

and it is considered some of the future work.

The force estimation method has so far only been applied

to the FRIDA robot. The future work includes to test also

on more common industrial robots, which usually are much

heavier and stiffer than the light-weight structure of FRIDA.

VI. CONCLUSIONS

A method for estimating contact forces from motor torques

was presented. The method explicitly models the uncertainty

of the Coulomb friction for low velocities and combines data

from several joints. The estimate and confidence intervals are

calculated by solving convex optimization problems in real

time. The method was experimentally verified in a dual-arm

assembly operation and validated with data from a wrist-

mounted force sensor.
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