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Abstract—In this paper, we study ensembles of connected
spatially coupled low-density parity-check codes (SC-LDPCCs),
i.e., ensembles described by graphs in which regular SC-LDPCC
chains of various lengths serve as edges. We show that, by
carefully connecting individual SC-LDPCC chains, we obtain
LDPC code ensembles with improved iterative decoding thresh-
olds compared to those of a single coupled chain, in addition to
reducing the decoding complexity required to achieve a specific
bit error probability. Moreover, we show that, like the component
SC-LDPCC chains, the proposed constructions have a typical
minimum distance that grows linearly with block length.

I. INTRODUCTION

Recently, iterative processing on spatially coupled sparse
graphs has received a lot of attention in the literature. The
concept of coupling a sequence of identical small structured
graphs into a chain with improved properties, first demon-
strated in the context of low-density parity-check (LDPC)
convolutional codes [1], has been shown to be applicable to a
diverse list of topics, such as compressed sensing [2], multiuser
communication [3] [4], quantum codes [5], relay channels [6],
[7], wiretap channels [8], and models in statistical physics [9].

Ensembles of spatially coupled LDPC codes (SC-LDPCCs)
can be obtained by terminating regular LDPC convolutional
code ensembles [10]. The slight irregularity resulting from
the termination of the convolutional codes has been shown to
lead to substantially better belief propagation (BP) decoding
thresholds compared to corresponding block, or uncoupled,
code ensembles for a variety of channels [10]–[13]. Further, it
has recently been proven analytically for the binary erasure
channel (BEC) that the BP decoding thresholds of a class
of regular SC-LDPCC ensembles approach the maximum a
posteriori (MAP) decoding thresholds of the corresponding
LDPC block code ensembles [14].

In this work, we extend the results presented in [15],
[16] and show that by carefully connecting individual SC-
LDPCC chains, we can obtain LDPC code ensembles with
improved iterative decoding thresholds for a wide variety of
rates. Communication over the binary erasure channel (BEC)
and the additive white Gaussian noise (AWGN) channel have
been considered. Moreover, we show that this new code
construction also decreases the decoding complexity required
to achieve specific decoding error probabilities in the near
threshold region. Finally, we show that the constructed en-
sembles, like the individual component SC-LDPCC chains,
are asymptotically good, i.e., they have the property that their
minimum distance increases linearly with block length.

This work was partially supported by NSF Grants CCF-0830650 and CCF-
1161754, and the Alberta Innovates Fund.

II. CODE CONSTRUCTION

A protograph [17] is a small Tanner graph described by
an nc × nv incidence matrix B, known as a base matrix,
that consists of non-negative integers Bi,j that correspond to
Bi,j parallel edges in the graph. A protograph-based code
is obtained by taking an M -fold graph cover of a given
protograph and can be described by an Mnc ×Mnv parity-
check matrix obtained by replacing each non-zero entry Bi,j

by a sum of Bi,j non-overlapping permutation matrices of
size M ×M and a zero entry by the M ×M all-zero matrix.
Therefore, a protograph with a lifting factor of M describes
an ensemble of LDPC codes.

A. SC-LDPCC Ensembles

a)

d)

b)

c)

Fig. 1. The protographs of several SC-LDPCC chains of length L = 8: (a)
(3, 6)-regular, (b) (4, 8)-regular, (c) (3, 9)-regular, and (d) their simplified
representation.

A protograph of a (3, 6)-regular SC-LDPCC chain of length
L = 8 is depicted in Fig. 1(a). The green circles in the
figure illustrate check nodes and the black circles illustrate
variable nodes. Note that each variable node is connected to 3
parity check nodes, while the parity check nodes in the middle
are connected to 6 variable nodes. The check nodes located
at the beginning and at the end of the chain, however, are



only connected to either 2 or 4 variable nodes. Figs. 1(b)
and (c) show the coupling concept for (4, 8)- and (3, 9)-
regular graphs, respectively. A simplified illustration of the
protographs of a length L = 8 chain is given in Fig. 1(d). Each
magenta node illustrates a segment of the (J,K)-regular SC-
LDPCC chain. We will denote the ensemble associated with a
(J,K)-regular SC-LDPCC chain of length L by C(J,K,L).

B. Connecting Two Coupled Chains: The Loop

In this paper, we will construct the protograph of an
LDPC code ensemble by interconnecting the protographs of
two (J,K)-regular SC-LDPCC chains.1 The connected proto-
graph, depicted in Fig. 2, is called the loop and is denoted by
L(J,K,L). Here, the last segment of chain one is connected
to an inner segment of chain two, while the first segment of
chain two is connected to an inner segment of chain one. It
was shown in [16] that, when connecting SC-LDPCC chains,
the performance is sensitive to the position of the connecting
points. In this paper, we will connect the chains at positions
max(2, ⌊L/3⌋). The particular connections made between the
chains will vary depending on the component chains, and
we will see in Section IV that the threshold and speed of
convergence can be improved by carefully choosing where to
place the connecting edges.

Fig. 2. Two connected (J,K)-regular SC-LDPCC chains of length L = 15.

III. ANALYSIS OF CONNECTED SC-LDPCCS

A. Iterative Decoding Analysis

The analysis of the iterative decoding performance of codes
described by protographs can be obtained via density evolu-
tion, which, for the case of the BEC, is explained as follows.

We denote the set of variable nodes connected to check
node k in the protograph by V(k) and the set of check nodes
connected to variable node j by C(j). The probability that
the message passed from check node k to variable node j in

iteration i is an erasure is denoted by q
(i)
kj . The probability of

an erasure message from variable node j to check node k is

similarly denoted by p
(i)
jk . The following equations relate the

erasure probabilities of the messages at different iterations:

q
(i)
kj = 1−

∏

j′∈V(k)rj

(1− p
(i−1)
j′k ) , (1)

p
(i)
jk = ǫ

∏

k′∈C(j)rk

q
(i)
k′j . (2)

The variable node messages are initialized as p
(0)
jk = ǫ at

iteration 0. The bit error probability of variable node j at
iteration i can be calculated as

Pb(j) = ǫ
∏

k∈C(j)

q
(i)
kj . (3)

1Constructions consisting of more than two connected chains are also
possible [15], [16].

B. Asymptotic Minimum Distance Analysis

In [18], Divsalar presented a technique to calculate the
average weight enumerator for protograph-based block code
ensembles. This weight enumerator can be used to test if an
ensemble is asymptotically good, i.e., if the minimum distance
typical of most members of the ensemble is at least as large as
δminn, where δmin > 0 is the minimum distance growth rate

of the ensemble and n is the block length. In [19], it was shown
that ensembles of (J,K)-regular SC-LDPCCs (i.e., individual
chains) are asymptotically good. In Section IV, we present the
results of a similar protograph-based analysis for ensembles of
connected SC-LDPCCs to see if they share the good distance
properties of the individual chains.

IV. RESULTS

In this section, we present the iterative decoding threshold
and asymptotic minimum distance results obtained for several
SC-LDPCC loop ensembles. We will first show that the
L(J, 2J, L) loop ensembles have the same rate but better
thresholds than the individual C(J, 2J, L) ensembles. We then
proceed to show that this same improvement is visible as we
increase the rate of the component SC-LDPCC chains.

A. The (3, 6) SC-LDPCC Loop Ensemble L(3, 6, L)

The first component chain we consider is the (3, 6)-regular
SC-LDPCC chain shown in Fig. 1(a). We take two of these
chains and connect them together as shown in Fig. 2. The
connections are made as shown in Fig. 3. Note that, at the
connection points, the two check nodes at the end of the chain
have an additional 2 and 4 edges (shown in red) that connect to
the variable nodes of the adjacent chain. As a result, the loop
construction L(3, 6, L) has reduced check node degrees only at
the open ends of the loop. However, at each connection point,
there are 6 variable nodes that have degree 4. Consequently, for
the loop ensemble L(3, 6, L), the average check node degree
is 6(L + 1)/(L + 2) and the average variable node degree is
3(L+1)/L. We note that, just as in the case of a single (3, 6)-
regular SC-LDPCC chain, the degree distribution approaches
that of a (3, 6)-regular code as L grows. The rates of both
the loop ensemble L(3, 6, L) and the single chain ensemble
C(3, 6, L) are equal and are given by RL = (L− 2)/2L.

(a) (b)

Fig. 3. Graphs depicting (a) two connected spatially coupled (3, 6)-regular
protograph chains, and (b) the simplified representation. The connecting edges
are shown in red.



Fig. 4 shows the calculated BEC thresholds for the
L(3, 6, L) ensembles in comparison to the C(3, 6, L) and
C(4, 8, L) single chain ensembles for a variety of chain lengths
L. Comparing the L(3, 6, L) ensembles to the C(3, 6, L) en-
sembles, we observe that, for L > 5, the thresholds of the loop
ensembles are generally superior with the exception of large L.
In particular, we observe a dramatic threshold improvement for
ensembles with rates in the region 0.3571 ≤ RL ≤ 0.4375. For
large values of L, the improvement diminishes. The thresholds
of the single chain ensembles C(3, 6, L) and C(4, 8, L) can be
observed to converge to values close to the MAP threshold
of the underlying (J,K)-regular LDPC code as L becomes
sufficiently large. (Recall that it has been shown in [14] that
the BP thresholds of a class of SC-LDPCC ensembles on
the BEC are equal to the (optimal) MAP thresholds of their
corresponding LDPC block code ensembles.) As a result, for
large L, we observe the surprising behaviour that the iterative
decoding thresholds of the C(4, 8, L) ensembles are larger
than the C(3, 6, L) thresholds (unlike the corresponding LDPC
block code ensembles). However, even in this region, we
observe that the thresholds of the L(3, 6, L) ensemble remain
above the C(4, 8, L) thresholds for rates between 0.4 and 0.45.
In the next section, we will see that a loop constructed using
(4, 8)-regular SC-LDPCC chains achieves further performance
improvement.

AWGN channel thresholds for the loop ensembles
L(3, 6, L) are given in Table I for L = 12, 15, and 18. The
results for the single chain ensembles C(3, 6, L) are shown
for comparison. We notice that the thresholds of the loop
ensembles are significantly better than these for corresponding
single chains.
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Fig. 4. BEC thresholds calculated for the L(3, 6, L) loop ensembles as well
as some C(J,K,L) ensembles and (J,K)-regular LDPCC ensembles.

In addition to an improvement in threshold, we also find that
connecting two chains may improve the speed of convergence
of the chains at the connecting points. The evolution of
the bit error probability for the variable nodes of the loop
ensemble L(3, 6, 15) is illustrated in Fig. 5. The red curves
correspond to the error probability at each node position at
iterations 1, 6, 11, . . . , 36 (from top to bottom). The green
curves correspond to the error probability as a function of

Rate Ensemble (Eb/N0)
∗ Ensemble (Eb/N0)

∗

0.4167 L(3, 6, 12) 0.6520dB C(3, 6, 12) 1.1167dB

0.4333 L(3, 6, 15) 0.7281dB C(3, 6, 15) 1.0431dB

0.4444 L(3, 6, 18) 0.7850dB C(3, 6, 18) 0.9659dB

TABLE I
AWGN CHANNEL THRESHOLDS (EB/N0)∗ CALCULATED FOR THE

L(3, 6, L) LOOP ENSEMBLES AND THE C(3, 6, L) ENSEMBLES FOR

L = 12, 15, AND 18.

the node position for the single chain ensemble C(3, 6, 15)
and iteration numbers 1, 6, 11, . . . , 36. The BEC erasure prob-
ability is fixed to be 0.488. We note that the red curves
achieve low bit error probabilities much faster than the green
curves. In addition, it takes fewer decoding iterations for the
loop ensemble L(3, 6, 15) to converge to a given bit error
probability.
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Fig. 5. Logarithm of the bit error probability for the variable nodes of
a) chain one of the ensemble L(3, 6, 15) (red curves), and b) ensemble
C(3, 6, 15) (green curves), as a function of the position of the node in the
chain. The curves (either red or green) are computed for decoding iterations
1, 6, 11, . . . , 36 (from top to bottom). The position where chain one is
connected to the end of chain two is shown by the red triangle.

Fig. 6 shows the asymptotic minimum distance growth
rates calculated for the L(3, 6, L) ensembles as well as some
C(J, 2J, L) ensembles and (J,K)-regular LDPCC ensembles.
In addition to their good threshold performance, the L(3, 6, L)
ensembles were found to be asymptotically good for all
tested values of L. As the chain length L increases, the rate
increases and the minimum distance growth rates decrease for
all the SC-LDPCC ensembles. We observe that, for short chain
lengths L = 3, 4, 5, the L(3, 6, L) ensembles display distance
growth rates similar to the C(4, 8, L) ensembles, and much
larger than the C(3, 6, L) ensembles. This can be explained
in part by the increased variable node degrees (the average
variable node degrees are 4, 3.75, and 3.6, respectively, while
the average check node degrees are 4.8, 5, and 5.1429,
respectively). For L > 5, as the thresholds of the L(3, 6, L)
ensembles exceed the thresholds of the C(3, 6, L) ensembles,
we see that the distance growth rates display the opposite
behaviour. Finally, as L → ∞ the minimum distance growth
rates decrease and tend to zero as L → ∞.
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Fig. 6. Asymptotic minimum distance growth rates calculated for the
L(3, 6, L) loop SC-LDPCC ensembles as well as some C(J,K,L) SC-
LDPCC ensembles and (J,K)-regular LDPCC ensembles.

B. The (4, 8) SC-LDPCC Loop Ensemble L(4, 8, L)

We now proceed to form a loop consisting of two (4, 8)-
regular SC-LDPCC chains. The individual chains are shown
in Fig. 1(b). We consider two different ways to connect the
chains, depicted in Fig. 7. The first, shown in Fig. 7(a), has
an additional 12 edges added at the connecting point. Here,
the check nodes at the connection all have degree 8, while
the 6 connecting variable nodes of chain one have degree 6.
The second connection, depicted in Fig. 7(b), introduces 6
additional edges and connects them in a similar fashion to the
(3, 6) chains. As a result, the 3 check nodes at the connecting
end of chain two have degree 6, and the 6 connecting variable
nodes of chain one have degree 5. We denote the ensembles
connected using Fig. 7(a) by LA(4, 8, L) and the ensembles
connected using Fig. 7(b) by LB(4, 8, L).

(a) (b)

Fig. 7. Connected spatially coupled (4, 8)-regular protograph chains. The
connecting edges are shown in red.

BEC thresholds calculated for the ensembles LA(4, 8, L)
and LB(4, 8, L) are given in Table II, as well at the thresholds
calculated for the single chain ensemble C(4, 8, L). We see
that the thresholds of the ensembles with connection B (fewer
connecting edges) are always at least as large as the thresholds
for connection A, with equality occurring for large chain

length L. We see the same behaviour as for the (3, 6) loops:
for short L and low rates, the ensemble C(4, 8, L) has the
largest threshold; for a large rate region in the middle of the
achievable range, the loop ensembles have significantly better
thresholds; and, finally, the improvement observed for the loop
ensembles diminishes as L becomes large and the thresholds
converge at a value slightly below the MAP threshold of
the underlying ensemble. The threshold difference between
ensembles LA(4, 8, L) and LB(4, 8, L) indicates that the
performance is sensitive to the choice of additional edges
connecting the chains.

L R LA(4, 8, L) LB(4, 8, L) C(4, 8, L)
6 0.2500 0.5629 0.5709 0.5748
9 0.3333 0.5342 0.5399 0.5194
12 0.3750 0.5185 0.5247 0.5021
15 0.4000 0.5088 0.5138 0.4983
75 0.4800 0.4975 0.4975 0.4977
150 0.4900 0.4971 0.4971 0.4977

TABLE II
BEC THRESHOLDS FOR SC-LDPCC LOOP ENSEMBLES LA(4, 8, L) AND

LB(4, 8, L) AND THE SINGLE CHAIN SC-LDPCC ENSEMBLE C(4, 8, L).

Fig. 8 shows the evolution of the bit error probability for
the variable nodes of chain one for the ensembles LA(4, 8, 12)
(blue curves) and LB(4, 8, 12) (red curves). The BEC erasure
probability is fixed to be 0.514, and error probabilities are
plotted for iteration numbers 1, 6, 11, . . . , 56. We observe that
the red curves (corresponding to fewer additional edges at the
connecting points) achieve low bit error probabilities much
faster than the blue curves, i.e., in addition to improved thresh-
olds, connection method B also enables faster convergence to
a specific bit error probability.
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Fig. 8. Logarithm of the bit error probability for the variable nodes of
chain one of the ensembles LA(4, 8, 12) (blue curves) and LB(4, 8, 12) (red
curves), as a function of the position of the node in the chain. The curves
(either blue or red) are computed for decoding iterations 1, 6, 11, . . . , 56
(from top to bottom). The position where chain one is connected to the end
of chain two is shown by the red triangle.



C. The (3, 9) SC-LDPCC Loop Ensemble L(3, 9, L)

As a final example, we construct some higher rate loop en-
sembles by connecting two (3, 9)-regular SC-LDPCC chains.
As a result of the boundary effects of spatial coupling, there
is some rate loss for finite chain length L. Consequently, a
code designer may be tempted to choose a large chain length
L, where the design rate of the ensemble is higher and the
threshold is closer to capacity. However, the performance of
the code is also affected by the size of the lifting factor M
and, for a fixed block length, practical limitations may require
a moderate choice of L, where the thresholds are typically
further from capacity. For high rate coupled ensembles, in
the region of moderate values of L, the loop ensembles are
particularly promising, since this is where they provide the
largest threshold improvement. A (3, 9)-regular SC-LDPCC
chain is shown in Fig. 1(c). We connect the chains as shown
in Fig. 9, using the reduced edge type of connection discussed
in Section IV-B.

(a) (b)

Fig. 9. Graphs depicting (a) two connected spatially coupled (3, 9)-regular
protograph chains, and (b) the simplified representation. The connecting edges
are shown in red.

The BEC thresholds calculated for the ensembles L(3, 9, L)
and C(3, 9, L) are given in Table III. We see that ensemble
L(3, 9, L) has significantly larger thresholds than ensemble
C(3, 9, L) for all the moderate values of L tested. Also, we find
that the loop ensembles L(3, 9, L) are asymptotically good.
For example, we calculate δmin as 0.0063, 0.0036, and 0.0023
for L = 6, 8, and 12, respectively.

L R L(3, 9, L) C(3, 9, L)
6 0.5556 0.3746 0.3605
8 0.5883 0.3604 0.3392
12 0.6111 0.3437 0.3235
100 0.6600 0.3191 0.3196

TABLE III
BEC THRESHOLDS FOR THE SC-LDPCC LOOP ENSEMBLE L(3, 9, L) AND

THE SINGLE CHAIN SC-LDPCC ENSEMBLE C(3, 9, L).

V. CONCLUSIONS

In this paper, we showed that by connecting individual
chains of (J,K)-regular SC-LDPCCs we obtain LDPC code
ensembles with improved iterative decoding thresholds com-
pared to those of a single coupled chain for a large portion of

the achievable rate region. Moreover, we saw that connecting
SC-LDPCC chains may also reduce the decoding complexity
required to achieve a specific bit error probability. We also
showed that, like the component SC-LDPCC chains, the
proposed constructions have a typical minimum distance that
grows linearly with block length, and there exists a trade-off
between the minimum distance growth rate and the iterative
decoding threshold for a particular code rate. Finally, we ob-
served that the iterative decoding thresholds and convergence
behaviour can be further improved by carefully designing the
connections between the chains.
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