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A second-order positivity preserving scheme for
semilinear parabolic problemsI

Eskil Hansena, Felix Kramerb, Alexander Ostermannb

aCentre for Mathematical Sciences, Lund University, P.O. Box 118,
SE-22100 Lund, Sweden

bInstitut für Mathematik, Universität Innsbruck, Technikerstraße 13,
A-6020 Innsbruck, Austria

Abstract

In this paper we study the convergence behaviour and geometric properties of
Strang splitting applied to semilinear evolution equations. We work in an ab-
stract Banach space setting that allows us to analyse a certain class of parabolic
equations and their spatial discretizations. For this class of problems, Strang
splitting is shown to be stable and second-order convergent. Moreover, it is
shown that exponential operator splitting methods and in particular the method
of Strang will preserve positivity in certain situations. A numerical illustration
of the convergence behaviour is included.

Key words: Semilinear parabolic problems, Strang splitting, stability,
convergence, positivity, invariant sets.

1. Introduction

Stability, high-order consistency and preservation of geometric properties
form three pillars on which numerical methods for differential equations rest.
Whereas stability and consistency have already received much attention in the
past, the preservation of properties of the exact flow under numerical discretiza-
tion is a more recent field of research. For an impressive study of geometric
integrators, we refer to the monograph [6].

Methods that preserve the positivity of the semiflow of certain parabolic
differential equations and their spatial discretizations have attracted much in-
terest in the past. Positivity is an important feature in computational biology
and in reaction kinetics, for example, where the state variables represent sizes of
populations, densities, temperatures or concentrations. The preservation of pos-
itivity is not at all a trivial task for standard numerical methods. As a matter of
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fact, Bolley and Crouzeix have shown in [1] that the order of an unconditionally
positive Runge–Kutta or multistep method, applied to an inhomogeneous linear
parabolic equation

u̇+Au = f (1)

cannot exceed one, in general. Therefore, the backward Euler method is the
only standard scheme of interest preserving positivity.

The situation is slightly better for exponential integrators. It has been shown
in [12, 13] that second-order exponential Runge–Kutta and exponential multi-
step methods exist that preserve positivity in (1). None of these methods,
however, preserves positivity of semilinear parabolic problems. There is a huge
literature on positivity preservation for particular problems. As an example,
we mention [2], where a particular integration scheme is devised that preserves
positivity in biochemical systems.

In contrast to standard numerical schemes, exponential (operator) splitting
methods make direct use of the splitted semiflows. In many situations this fea-
ture helps to preserve properties of the exact flow by the numerical discretiza-
tion.

In this paper, we are concerned with the time integration of the semilinear
parabolic problem

u̇+Au = f(u), u(0) = u0. (2)

The precise analytic framework is given in Section 2 below. As numerical
scheme, we will employ a particular exponential splitting method, the well-
known Strang splitting. This scheme has been analysed in several papers,
see [4, 10, 11] and references therein. A convergence analysis for exponential
splitting methods applied to linear evolution equations is given in [7]. For a
comprehensive overview on splitting methods for parabolic equations, we refer
to the monograph [9].

In the context of problem (2) the Strang splitting can be described as follows.
Let etf denote the nonlinear semigroup generated by f , i.e., v(t) = etf (v0) is
the solution of the ordinary differential equation v̇ = f(v) at time t with initial
value v(0) = v0. The numerical solution un that approximates the exact solution
of (2) at time tn = nh is given by

un = Sn(u0),

where S denotes the nonlinear operator

S = e−
h
2 Aehfe−

h
2 A. (3)

The properties of this operator are the main topic of this paper.
The remainder of the paper is organised as follows: We commence in Sec-

tion 2 with describing the abstract setting and the employed assumptions. Con-
sistency is treated in Section 3, and convergence is shown in Section 4. The main
results are Theorems 4 and 5, where the Strang splitting is shown to be first- or
second-order convergent depending on the regularity of the initial value. Sec-
tion 5 deals with some geometric properties of the numerical semiflow. Finally,
a numerical example illustrating the proved convergence is given in Section 6.
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Throughout the paper, X will denote an arbitrary Banach space with norm
∥ · ∥. The composition of two operators g1 and g2, say, will be denoted by g2g1
and consequently

g2g1(u) = g2
(
g1(u)

)
.

Moreover, for an operator g : D(g) ⊆ X → X we introduce the Lipschitz
constant L[g], which is the smallest constant satisfying

∥g(u)− g(v)∥ ≤ L∥u− v∥

for all u and v in D(g). Finally, C will be a generic positive constant, indepen-
dent of both n and h, which may assume different values at different occurrences.

2. Problem setting

For our analysis below, we consider (2) as an abstract evolution equation in
an appropriate Banach space. Our main assumption which allows us to analyse
parabolic equations is the following.

Assumption 1. The linear operator A : D(A) ⊆ X → X generates a bounded
C0 semigroup e−tA : X → X.

The theory of C0 semigroups is well covered by many textbooks and mono-
graphs, see [5, 8, 14]. We recall that there exists an equivalent norm on X

∥u∥∗ = sup
t≥0

∥e−tAu∥

for which the semigroup is contractive. Without loss of generality we may thus
assume that

∥e−tA∥ ≤ 1. (4)

We will consider evolution equations (2) with nonlinear operators f fulfilling
the assumptions below.

Assumption 2. The operator f : X → X has the following properties:

(i) f is twice continuously Fréchet differentiable for all u ∈ X with derivatives
denoted by Df [u] : X → X and D2f [u] : X ×X → X.

(ii) The subspaces D(A) and D(A2) ⊆ X are both invariant under f and D(A)
is also invariant under Df [u] for all u ∈ D(A).

Next consider the full vector field

F = −A+ f : D(A) ⊆ X → X.

As the operator f is continuously differentiable, it follows by a standard pertur-
bation result, see [14, Theorem 6.1.5], that there exists a unique (mild) solution
u(t) = etF (u0) to the evolution equation (2) for every u0 ∈ X and for suffi-
ciently short time intervals, say [0, tend]. The function u(t) is also a classical
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solution for u0 ∈ D(A), which implies that the subspace D(A) is invariant under
the solution operator etF . Note that the uniqueness of the solution yields that
etF is a (nonlinear) semigroup. The differentiability of f also implies that the
semigroup etf : X → X is well defined for sufficiently small times t.

To assure the stability of our numerical scheme (3), we assume the following:

Assumption 3. The operator etf satisfies L[etf ] ≤ etω, where ω ∈ R.

Example 1. Consider the one-dimensional Chafee–Infante equation [3], also
known as Allen–Cahn equation,

u̇−∆u = u− u3 (5)

on a bounded interval Ω = (a, b) with homogeneous Neumann boundary condi-
tions. If we choose X = C(Ω) then the operator A = −∆, with domain

D(A) = {u ∈ C2(Ω) : u′(a) = u′(b) = 0},

generates a C0 semigroup of contractions on X, i.e., Assumption 1 is valid and
(4) holds without rescaling the norm of X. The generating properties of A are
derived in [5, Section II.3.30], for example. Furthermore, f(u) = u− u3 is well
defined and twice continuously Fréchet differentiable, with

Df [u]v = (1− 3u2)v and D2f [u](v, w) = −6uvw.

The remaining invariance properties of Assumption 2 follow by inspection. The
nonlinear semigroup generated by f is (pointwise) given by

etf (y) =
y√

y2 + (1− y2)e−2t
, y ∈ R,

and Assumption 3 holds for ω = 1. The latter follows by using the mean value
theorem together with the pointwise bound |∂etf (y)/∂y| ≤ et.

3. Consistency

We start off by deriving consistency of the splitting scheme. For this we
employ a similar technique as used by Jahnke and Lubich [10] in the context of
linear problems, namely, we identify the local errors generated by the splitting
scheme as quadrature errors. For convenience, will use the notation T = ehF

henceforth.

Lemma 2. If Assumptions 1 and 2 are valid and u ∈ D(A), then

∥(T − S)(u)∥ ≤ Ch2.
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Proof. A two-term Taylor expansion of ehf in S gives us the expression

S(u) = e−hAu+ he−
h
2 Afe−

h
2 A(u) + h2RS(u),

where the operator RS : X → X is given by

RS(u) =

∫ 1

0

(1− s)e−
h
2 ADf

[
eshfe−

h
2 A(u)

]
feshfe−

h
2 A(u)ds.

To ease the forthcoming calculations, we introduce the function v defined by

v(t) =

∫ 1

0

e−t(1−s)AfestF (u)ds =
1

t

∫ t

0

e−(t−s)AfesF (u)ds. (6)

Applying the variation-of-constants formula twice and using a one-term Taylor
expansion of f then yields

T (u) = e−hAu+

∫ h

0

e−(h−s)Af
(
e−sAu+ sv(s)

)
ds

= e−hAu+

∫ h

0

e−(h−s)Afe−sA(u)ds+ h2RT (u),

where the remainder RT : X → X is defined as

RT (u) =
1

h2

∫ h

0

s

∫ 1

0

e−(h−s)ADf
[
e−sAu+ τsv(s)

]
v(s)dτds.

With these expansions of S and T , it is easy to identify the difference T − S as
the local error related to the midpoint rule. To this end, introduce

g(t) = e−(h−t)Afe−tA(u)

and we then obtain that

(T−S)(u) =

∫ h

0

(
g(s)−g

(
h/2

))
ds+h2R(u) =

∫ h/2

−h/2

s

∫ 1

0

g′
(
h/2+τs

)
dτds+h2R(u),

where R = RT − RS . The proof is then complete if g′(t) is an element in X
when u ∈ D(A). This follows by simply writing out g′(t) as

g′(t) = e−(h−t)AAfe−tA(u)− e−(h−t)ADf
[
e−tA(u)

]
e−tAAu

and noting that the terms on the right-hand side are well defined for u ∈ D(A).
�

Lemma 3. If Assumptions 1 and 2 are valid and u ∈ D(A2), then

∥(T − S)(u)∥ ≤ Ch3.
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Proof. We proceed as in the proof of Lemma 2, with the only difference that
the expansions are made up to third-order remainder terms. Starting with S
gives

S(u) = e−hAu+ he−
h
2 Afe−

h
2 A(u) +

1

2
h2e−

h
2 ADf

[
e−

h
2 Au

]
fe−

h
2 A(u) + h3RS(u),

where the remainder RS : X → X is given by

RS(u) =
1

2

∫ 1

0

(1− s)2e−
h
2 A

(
D2f

[
eshfe−

h
2 A(u)

](
feshfe−

h
2 A(u), feshfe−

h
2 A(u)

)
+Df

[
eshfe−

h
2 A(u)

]2
feshfe−

h
2 A(u)

)
ds.

With the function v defined as in (6), we can write the expansion of T as

T (u) = e−hAu+

∫ h

0

e−(h−s)Af
(
e−sAu+ sv(s)

)
ds

= e−hAu+

∫ h

0

e−(h−s)Afe−sA(u)ds+

∫ h

0

e−(h−s)ADf
[
e−sAu

]
sv(s)ds

+

∫ h

0

1

2
s2

∫ 1

0

(1− τ)e−(h−s)AD2f
[
e−sAu+ τsv(s)

](
v(s), v(s)

)
dτds.

To proceed we need to expand the term sv(s) in the second term from the right,
which can be done as follows:

sv(s) =

∫ s

0

e−(s−σ)Af
(
e−σAu+ σv(σ)

)
dσ

=

∫ s

0

e−(s−σ)Afe−σA(u)dσ +

∫ s

0

σ

∫ 1

0

e−(s−σ)ADf
[
e−σAu+ τσv(σ)

]
v(σ)dτdσ.

By collecting the terms, we obtain the expansion

T (u) = e−hAu+

∫ h

0

e−(h−s)Afe−sA(u)ds

+

∫ h

0

∫ s

0

e−(h−s)ADf
[
e−sAu

]
e−(s−σ)Afe−σA(u)dσds+ h3RT (u),

where the full remainder RT : X → X is

RT (u) =
1

h3

∫ h

0

1

2
s2

∫ 1

0

(1− τ)e−(h−s)AD2f
[
e−sAu+ τsv(s)

](
v(s), v(s)

)
dτds

+
1

h3

∫ h

0

∫ s

0

σ

∫ 1

0

e−(h−s)ADf
[
e−sAu

]
e−(s−σ)ADf

[
e−σAu+ τσv(σ)

]
v(σ)dτdσds.

We can once more identify the difference T−S as the local error of the midpoint
rule, by introducing

g(t) = e−(h−t)Afe−tA(u) and G(t, τ) = e−(h−t)ADf
[
e−tAu

]
e−(t−τ)Afe−τA(u).
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The local error may then be written as

(T − S)(u) =

∫ h

0

(
g(s)− g

(
h
2

))
ds+

∫ h

0

∫ s

0

(
G(s, σ)−G

(
h
2 ,

h
2

))
dσds+ h3R(u)

=

∫ h/2

−h/2

s2
∫ 1

0

(1− τ)g′′
(
h/2 + τs

)
dτds

+

∫ h/2

−h/2

∫ s

−h/2

∫ 1

0

(
s
∂G

∂s
+ σ

∂G

∂σ

)(
h/2 + τs, h/2 + τσ

)
dτdσds

+ h3R(u),

where R = RT − RS . We can conclude that ∥(T − S)(u)∥ ≤ Ch3, if g′′(t),
∂G/∂t(t, τ) and ∂G/∂τ(t, τ) are all well defined for u ∈ D(A2). This can again
be proved by inspection, for example,

g′′(t) = e−(h−t)AA2fe−tA(u)

− 2e(h−t)AADf
[
e−tAu

]
e−tAAu

+ e−(h−t)AD2f
[
e−tAu

](
e−tAAu, e−tAAu

)
+ e−(h−t)ADf

[
e−tAu

]
e−tAA2u.

The terms involving G are in fact well defined even for u ∈ D(A), as they only
contain first-order derivatives with respect to t and τ . �

4. Convergence

The consistency results of the previous section and the presented Banach
space framework now enable us to investigate the convergence rate of our split-
ting scheme.

Theorem 4. Consider the approximation of the solution u(nh) = enhF (u0)
to (2) by the nonlinear splitting scheme (3) with a single step given as S =

e−
h
2 Aehfe−

h
2 A. If Assumptions 1, 2 and 3 hold and u0 ∈ D(A), then the scheme

is (at least) first-order convergent, i.e., the error is bounded for h sufficiently
small as ∥∥(Sn − enhF )(u0)

∥∥ ≤ Ch, 0 ≤ nh ≤ tend

with a constant C that is uniform in [0, tend].

Proof. By expanding the error as a telescopic sum, we obtain

∥(Sn − enhF )(u0)∥ ≤
n−1∑
j=0

∥(Sn−jejhF − Sn−j−1e(j+1)hF )(u0)∥

≤
n−1∑
j=0

L
[
Sn−j−1

]
∥(S − ehF )ejhF (u0)∥.
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As D(A) is invariant under etF and u0 ∈ D(A), the consistency results from
Lemma 2 yield that

∥(S − ehF )ejhF (u0)∥ ≤ Ch2

for all j = 0, 1, . . . n− 1. Observation (4) together with Assumption 3 gives the
stability bound

L
[
Sn−j−1] ≤

(
L[e−

h
2 A]L[ehf ]L[e−

h
2 A]

)n−j−1 ≤ e(n−j−1)hω.

Taken together, these bounds imply that

∥(Sn − enhF )(u0)∥ ≤ Ch
(
h

n−1∑
j=0

e(n−j−1)hω
)
≤ Ch,

i.e., the scheme is first-order convergent for every u0 ∈ D(A). �

The classical second-order convergence of the numerical scheme S can also
be proven whenever the exact flow etF preserves the structure of D(A2). The
proof of second-order convergence then follows by employing the consistency
result of Lemma 3 together with the very same line of reasoning as in the proof
of Theorem 4.

Theorem 5. If the hypotheses of Theorem 4 hold and, in addition, the subspace
D(A2) ⊆ X is invariant under etF for all t ∈ [0, tend] and u0 ∈ D(A2), then the
scheme is second-order convergent, i.e., for h sufficiently small it holds that∥∥(Sn − enhF )(u0)

∥∥ ≤ Ch2, 0 ≤ nh ≤ tend

with a constant C that is uniform in [0, tend]. �

Example 6. In the setting of Example 1, the nonlinearity f(u) = u − u3 is
differentiable on the Banach space D(A) as well. Applying [14, Theorem 6.1.5]
shows that the mild solution u(t) = etF (u0) on D(A) is a classical solution if
u0 ∈ D(A2). As a consequence, D(A2) is invariant under etF , and Theorem 5
can be applied.

5. Geometric properties

Exponential operator splitting methods like the Strang splitting (3) are con-
structed by composing partial (semi)flows of the problem in an appropriate way.
Due to this principle of construction, properties of the partial (semi)flows are of-
ten preserved by the numerical semiflow. We illustrate this general observation
by two examples, where we discuss positivity and invariant sets.
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5.1. Positivity

In order to formalise the notion of positivity in a Banach space, we need the
concept of a Banach lattice. For the convenience of the reader, we briefly recall
its definition. For details, we refer to the textbook [15, Chap.XII].

A real Banach space (X, ∥ · ∥) with an order relation ≤ is called a Banach
lattice if the following three conditions hold.

(i) (X,≤) is a partially ordered set where the least upper bound sup(u, v) and
the greatest lower bound inf(u, v) exist for any two elements u, v ∈ X.

(ii) The vector space operations are compatible with the order relation, i.e.,
u ≤ v implies u+ w ≤ v + w, λu ≤ λv for 0 ≤ λ ∈ R, and −v ≤ −u.

(iii) The norm in V is compatible with the absolute value |u| = sup(−u, u),
i.e., |u| ≤ |v| implies ∥u∥ ≤ ∥v∥.

Any element v ∈ X satisfying v ≥ 0 is called positive. A bounded operator on
X is called positive if it maps positive elements to positive ones.

Example 7. The d-dimensional space Rd with componentwise order (i.e., u ≤ v
whenever uk ≤ vk for all 1 ≤ k ≤ d) is an example of a Banach lattice. Other
important examples are the Lebesgue spaces Lp(Ω), 1 ≤ p ≤ ∞, as well as their
subspaces. For these spaces, the order relation is defined pointwise, i.e., we have
u ≤ v whenever u(x) ≤ v(x) for almost all x ∈ Ω.

Note that the composition of positive operators is again a positive operator.
Therefore, exponential operator splitting methods are positive, provided that
the defining semiflows have this property. An immediate consequence of this
simple observation is the following result.

Proposition 8. For the numerical solution of (2), consider the Strang split-
ting (3). If the semigroups e−tA and etf are positive, then the Strang splitting
is positive as well. �

In Example 1, where we considered the Chafee–Infante equation, the semiflow
etF as well as the partial semiflows e−tA and etf are positive. Therefore, the
Strang splitting (3) preserves positivity of this equation, as long as the semi-
groups are computed exactly.

5.2. Invariant sets

An obvious generalisation of positivity is the concept of invariant sets. Let
g be a (possibly nonlinear) operator on X and Y ⊆ X. The subset Y is called
invariant under g, if Y ⊆ D(g) and g(Y ) ⊆ Y . Positivity is characterised by the
set Y = {u ∈ X ; u ≥ 0}.

If the set Y is invariant under two maps, it is also invariant under their com-
position. Therefore, exponential operator splitting methods possess an invariant
set Y , provided that the defining semiflows have this property.
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As a simple application, we consider once more the Chafee–Infante equa-
tion (5). For this equation, the set

Y = {u ∈ X ; u(Ω) ⊆ [−1, 1]}

is invariant under the operators f , e−tA, etf , and etF , respectively. In particular,
it is then also invariant under the numerical semiflow (3).

10
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10
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10
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10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

step size

er
ro

r

Figure 1: Numerical order of the Strang splitting applied to the Chafee–Infante equation with
homogeneous Neumann boundary conditions. The errors are measured in the maximum norm.
The dash-dotted reference line has slope two.

6. Numerical experiment

We illustrate our convergence result with the help of Example 1. To this
aim, we consider the parabolic problem (5) on the domain Ω = (0, 0.5) for
0 ≤ t ≤ 0.1 = tend. The interval Ω is discretized with standard finite differences
using N = 100 grid points, and the initial conditions are chosen as

u0(x) =
1

10
+

7

10
sin2(2x+ 1)π.

The errors are measured at the final time tend in the maximum norm. The
numerical results are displayed in Figure 1. The observed second-order conver-
gence of Strang splitting is in line with the convergence analysis in Section 4.
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discrétisation des problèmes d’évolution paraboliques. R.A.I.R.O. Anal.
Numér. 12 (1978) 237–245.

10



[2] J. Bruggeman, H. Burchard, B.W. Kooi, and B. Sommeijer, A second-order,
unconditionally positive, mass-conserving integration scheme for biochem-
ical systems. Appl. Numer. Math. 57 (2007) 36–58.

[3] N. Chafee and E.F. Infante, A bifurcation problem for a nonlinear partial
differential equation of parabolic type. Applicable Anal. 4 (1974/75) 17–37.

[4] S. Descombes and M. Schatzman, Strang’s formula for holomorphic semi-
groups. J. Math. Pures Appl. 81 (2002), 93–114.

[5] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution
Equations. Springer, New York, 2000.

[6] E. Hairer, Ch. Lubich and G. Wanner, Geometric Numerical Integration.
Structure-Preserving Algorithms for Ordinary Differential Equations. Sec-
ond ed., Springer, Berlin, Heidelberg (2006)

[7] E. Hansen and A. Ostermann, Exponential splitting for unbounded opera-
tors. Math. Comp. 78 (2009) 1485–1496.

[8] D. Henry, Geometric Theory of Semilinear Parabolic Equations. Springer,
Berlin, Heidelberg, 1981.

[9] W. Hundsdorfer and J. Verwer, Numerical Solution of Time-Dependent
Advection-Diffusion-Reaction Equations. Springer, Berlin, Heidelberg
2003.

[10] T. Jahnke and Ch. Lubich, Error bounds for exponential operator split-
tings. BIT 40 (2000) 735–744.

[11] Ch. Lubich, On splitting methods for Schrödinger–Poisson and cubic non-
linear Schrödinger equations. Math. Comp. 77 (2008) 2141?-2153.

[12] A. Ostermann and M. Thalhammer, Positivity of exponential multistep
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