
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

First passage times for a tracer particle in single file diffusion and fractional Brownian
motion.

Sanders, Lloyd; Ambjörnsson, Tobias

Published in:
Journal of Chemical Physics

DOI:
10.1063/1.4707349

2012

Link to publication

Citation for published version (APA):
Sanders, L., & Ambjörnsson, T. (2012). First passage times for a tracer particle in single file diffusion and
fractional Brownian motion. Journal of Chemical Physics, 136(17), Article 175103.
https://doi.org/10.1063/1.4707349

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1063/1.4707349
https://portal.research.lu.se/en/publications/d4b05421-180e-4d73-890b-6413624b855e
https://doi.org/10.1063/1.4707349


First passage times for a tracer particle in single file diffusion and fractional
Brownian motion
Lloyd P. Sanders and Tobias Ambjörnsson 
 
Citation: J. Chem. Phys. 136, 175103 (2012); doi: 10.1063/1.4707349 
View online: http://dx.doi.org/10.1063/1.4707349 
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v136/i17 
Published by the American Institute of Physics. 
 
Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/ 
Journal Information: http://jcp.aip.org/about/about_the_journal 
Top downloads: http://jcp.aip.org/features/most_downloaded 
Information for Authors: http://jcp.aip.org/authors 

Downloaded 10 Aug 2012 to 130.235.184.47. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://jcp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/1762014208/x01/AIP/Bruker_AXS_JCPCovAd_1640x440Banner_Aug1_8_2012/AFM-Raman_PT_pdf-banner.jpg/7744715775302b784f4d774142526b39?x
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Lloyd P. Sanders&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Tobias Ambj�rnsson&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4707349?ver=pdfcov
http://jcp.aip.org/resource/1/JCPSA6/v136/i17?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://jcp.aip.org/about/about_the_journal?ver=pdfcov
http://jcp.aip.org/features/most_downloaded?ver=pdfcov
http://jcp.aip.org/authors?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 136, 175103 (2012)

First passage times for a tracer particle in single file diffusion
and fractional Brownian motion

Lloyd P. Sandersa) and Tobias Ambjörnsson
Department of Astronomy and Theoretical Physics, Lund University, SE-223 62 Lund, Sweden

(Received 21 November 2011; accepted 11 April 2012; published online 4 May 2012)

We investigate the full functional form of the first passage time density (FPTD) of a tracer particle in a
single-file diffusion (SFD) system whose population is: (i) homogeneous, i.e., all particles having the
same diffusion constant and (ii) heterogeneous, with diffusion constants drawn from a heavy-tailed
power-law distribution. In parallel, the full FPTD for fractional Brownian motion [fBm—defined by
the Hurst parameter, H ∈ (0, 1)] is studied, of interest here as fBm and SFD systems belong to the
same universality class. Extensive stochastic (non-Markovian) SFD and fBm simulations are per-
formed and compared to two analytical Markovian techniques: the method of images approximation
(MIA) and the Willemski-Fixman approximation (WFA). We find that the MIA cannot approximate
well any temporal scale of the SFD FPTD. Our exact inversion of the Willemski-Fixman integral
equation captures the long-time power-law exponent, when H ≥ 1/3, as predicted by Molchan [Com-
mun. Math. Phys. 205, 97 (1999)] for fBm. When H < 1/3, which includes homogeneous SFD
(H = 1/4), and heterogeneous SFD (H < 1/4), the WFA fails to agree with any temporal scale of
the simulations and Molchan’s long-time result. SFD systems are compared to their fBm counter
parts; and in the homogeneous system both scaled FPTDs agree on all temporal scales including
also, the result by Molchan, thus affirming that SFD and fBm dynamics belong to the same uni-
versality class. In the heterogeneous case SFD and fBm results for heterogeneity-averaged FPTDs
agree in the asymptotic time limit. The non-averaged heterogeneous SFD systems display a lack of
self-averaging. An exponential with a power-law argument, multiplied by a power-law pre-factor is
shown to describe well the FPTD for all times for homogeneous SFD and sub-diffusive fBm systems.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4707349]

I. INTRODUCTION

Within the physical phenomena that exhibit stochastic-
ity, the idea of the first passage time density (FPTD) is of
great importance.1 Recently the literature has seen analysis of
FPTDs in a wide variety of research areas, including stochas-
tic systems: Diffusion with stochastic resetting;2 diffusion in
complex scale-invariant media;3 cosmology (the calculation
of the mass distribution of dark matter halos);4 evolution-
ary ecology (foraging tactics of various animal species);5 and
covered extensively in primarily one-dimensional (1D) single
particle scenarios by Redner.1 Most previous studies focus on
FPTD for Markovian (memory-less) dynamics.

The role of crowding in physical systems is of key rel-
evance in providing non-Markovian effects in many scenar-
ios, especially within the cell (e.g., Refs. 6–8). An important
special case in this area of stochastic processes is single-file
diffusion (SFD), defined as many particles diffusing in a 1D
system, where the order of the particles within the system re-
mains constant, i.e., the particles are subject to hard-core re-
pulsion. Experimentally SFD is shown to exist in many types
of systems, such as the diffusion of colloids in channels,9, 10

and of relevance in the motion of fluorescently tagged pro-
teins on DNA.11

a)Author to whom correspondence should be addressed. Electronic mail:
lloyd.sanders@thep.lu.se.

Initially, because of the problem’s mathematical
tractability, over the past five decades, beginning with the
hallmark theoretical investigations of Harris,12 followed by
Lebowitz and Percus,13 and, for instance, Fisher,14 a large
amount of (theoretical) work has been conducted into SFD
systems, notably in the latter decade,15–20 generalizing the
original results to particles interacting with general potentials
and in external force fields. Of interest for the present study
is the recent increasing amount of research into complex
population types or heterogeneous SFD systems.18, 21–24

One prominent example where SFD and the FPTD are
amalgamated is within the context of protein-DNA interac-
tion. It was shown that the time taken for a protein to find
a specific start location is up to two orders of magnitude
greater than predicted by Smoluchowski three-dimensional
(3D) diffusion rate alone.25 This led to the concept of “fa-
cilitated” target location—the combination of 3D diffusion
through the cytoplasm and 1D diffusion along the DNA; this
coupling is shown to exist experimentally,26–28 and corrobo-
rated theoretically.29

Due to the importance of SFD FPTD in biological (and
other) systems, there is a surprising lack of research into
the explicit nature of the FPTD for a tracer particle of a
SFD system, but a few exceptions exist, for example, Li
et al.29 used the method of images30 to help explain the FPT
of proteins on “road-blocked” DNA strands in conjunction
with 3D diffusion. Taloni et al.,31 performed homogeneous

0021-9606/2012/136(17)/175103/12/$30.00 © 2012 American Institute of Physics136, 175103-1
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SFD simulations, with particular emphasis on the long-time
asymptotics.

In the field of stochastic processes there exists a
phenomenon known as anomalous diffusion32–35 whose
ensemble-averaged mean-squared displacement is repre-
sented by non-linear time dependence: 〈x2(t)〉 ∼ t2H , where
2H �= 1. A prominent example of anomalous diffusion
is the process of fractional Brownian motion (fBm).36, 37

fBm is defined by a single parameter, the Hurst expo-
nent H ∈ (0, 1), and is a generalized, zero mean, sta-
tionary, Gaussian process with increments obtained from
fractional Gaussian noise (fGn), producing a position
auto-correlation function:38 〈BH(t)BH(s)〉 = C(t2H + s2H

− |t − s|2H), where C is a constant. In terms of displacement,
a fBm time series is represented by the cumulative sum of
the fGn, η(t), whose auto-correlation function is 〈η(t)η(0)〉
= H(2H − 1)|t|2H − 2 + 2(1 + 2H)δ(t)2 − 2H, see Ref. 38,
where it is interesting to note that this function for t > 0 is
equivalent to the memory kernel of the fractional Langevin
equation (fLE).16, 39, 40 When H < 1/2, the pre-factor in
the fGn auto-correlation function becomes negative for t >

0, illustrating an anti-correlated process.41 fBm is of rele-
vance in fields such as hydrology42 (the investigation from
which the Hurst exponent derives its name), diffusion of
biomolecules,43 quantitative finance,44 and even considered
in genetic algorithms.45 It should be noted that there are other
processes which can give rise to anomalous-type diffusion,
two of which are covered extensively within the literature:
continuous-time random walks46 and diffusion on fractals.47

For a comprehensive overview of anomalous diffusion see the
reports by Metzler,32 and later, Metzler and Klafter.33

The full functional form for the FPTD of a fBm process
has remained elusive, but recent work into various FPT sce-
narios has become common of late. Such as, escape problems
with fGn,48 and FPT of fBm in 2D wedge domains.49 In 1D,
it was proposed by Ding and Yang,50 shortly after, a simple,
succinct, physical argument was proposed by Krug and co-
authors,51 and later rigorously proven by Molchan,52 that the
long-time form for the FPTD is

f (t) � tH−2. (1)

This result is a corner stone of our investigation.
It is well-known in the mathematics literature that tracer

particle dynamics in a hard-core lattice gas (symmetric exclu-
sion process) is equivalent to fBm, see for instance Ref. 22
(see Refs. 16 and 31 for the case of continuum motion). Thus
these processes/FPTDs are intimately linked via the theoret-
ical long-time benchmark that is Molchan’s result, Eq. (1).
It was demonstrated in Ref. 16 that a homogeneous SFD
system can be modeled with a Hurst parameter equaling H
= 1/4, in the asymptotic time limit. We here go beyond pre-
vious studies, using Eq. (1) as guidance, by examining the
full functional form of the FPTD, for SFD (homogeneous and
heterogeneous) and fBm systems for all times, by extensive
simulations and analytic approximations, so as to attempt to
elucidate the entire FPTD relationship between these systems
and the universality class to which they both belong.

The layout of this article is as follows: In Sec. II, the
SFD tracer particle/fBm probability density function (PDF) is

presented, and using this result, two Markovian techniques—
method of images (MIA) and Willemski-Fixman (WFA)—
are used to approximate the FPTD of the tracer particle
within homogeneous and heterogeneous SFD systems, in-
cluding also the FPTD of a fBm particle. The results are an-
alyzed and compared to our simulations in the penultimate
section. Whereas the MIA was used before, our explicit ana-
lytical inverse of the so-called Willemski-Fixman relation is
new to our knowledge. Within this section, a simple func-
tional form is conjectured to model the FPTD for all times
and for all H. Section III describes how the SFD (homoge-
neous and heterogeneous) and fBm systems are simulated and
what sets of parameters are used. Previous theoretical results
for tracer particle dynamics are briefly reviewed. In Sec. IV
the results concerning all aspects of the investigation are dis-
cussed in detail; this leads to Sec. V that concludes the results
herein, with a brief discussion on proposed further future in-
vestigations based upon this work. The more technical details
regarding the derivations of the FPTD for both approxima-
tions are left for Appendices A and B. Data fitting procedures
are situated in Appendix C.

II. APPROXIMATING THE FPTD

To investigate the FPTD of tracer particle dynamics in
SFD and fBm systems, which are inherently non-Markovian,
we begin by analyzing the applicability of two well known
Markovian methods, both of which require the following re-
sults: The tracer particle PDF for SFD systems and the fBm
particle PDF is Gaussian12 (for infinite systems):

P (x, t |x0) = 1√
2πS(t)

exp

(
− (x − x0)2

2S(t)

)
, (2)

where x0 is the position of the tracer particle at the initial time,
and x is the position. The mean-squared displacement (MSD)
is denoted by S(t) and is, in the long-time for tracer particle
dynamics in SFD systems and of a fBm particle,48

S(t) ≡ 〈[x(t) − x0]2〉 = 2Ct2H . (3)

The angled brackets denote the ensemble average,53 and C is
the effective diffusion constant. The explicit expression for C
for SFD systems is discussed in Sec. III. For fBm, C is the
amplitude of the process (here as position) auto-correlation
function, although often set to C = 1/2 in the literature.38 With
these two expressions we can now develop two approxima-
tions for the FPTD.

A. The Willemski-Fixman approximation

In a Markovian system, one is able to acquire the PDF
and in turn, the FPTD through the well-known Willemski-
Fixman (also known as renewal theory) method.54 Simply put,
a particle must have a first passage through point xc at some
time t′ to reach point x at time t ≥ t′, i.e., functionally as

P (x, t |x0) =
∫ t

0
f (xc, t

′|x0)P (x, t − t ′|xc)dt ′, (4)

which constitutes a convenient integral equation for the
FPTD, f(xc, t|x0), if one sets x = xc in Eq. (4). However, due
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to the power-law argument with respect to time in the expo-
nent in Eq. (4) for the PDF, Eq. (2), we cannot use the usual
Laplace-transform technique for inverting Eq. (4).54 However,
through the use of Mellin transforms,55 we are able to follow
the usual line of attack in this type of problem: transform the
convolution into a product in “frequency” (Mellin) space p,
rearrange to find the Mellin-transformed FPTD f̂ (xc, p|x0),
then transform back to t-space and re-acquire f(xc, t|x0). The
explicit derivations are left to Appendix A, and the final re-
sults are given here:

Using a series expansion approach56 of our exact ex-
pression for f̂ (xc, p|x0), we find an exact expression for the
FPTD within the WFA for the general case (0 < H < 1; with
H �= H ∗

nm, see below) through the inversion of the Mellin
transform. Explicitly,

fWF(xc, t |x0)

= σ−1/(2H )

�(1 − H )

[
[K(t)]2−H 1

2H

∞∑
n=0

[K(t)]n

× (−1)n

n!

�
(

H−1−n
2H

)
�(H − 1 − n)

+ K(t)
∞∑

m=1

[K(t)]2Hm (−1)m

m!

� (1 − H − 2Hm)

� (−2Hm)

]
,

(5)

where σ = (�x)2/4C, with �x = xc − x0, �(z) is the Gamma
function,57 and K(t) is defined as

K(t) = σ 1/2H

t
. (6)

Equation (5) is very computationally efficient for calculat-
ing FPTDs, but is only valid when H is not a rational num-
ber of the form H ∗

nm = (n + 1)/(2m + 1), where n and m
are positive integers (see Appendix A for further details).
Equation (5) generalizes the long-time expression in Ref. 58
to include also shorter time scales. Equation (5) is equiv-
alent to the usual Brownian motion result when H = 1/2,
again see Appendix A. Alternatively, the inversion back from
Mellin-space can also be completed using Weyl fractional
derivatives,32, 55 which yields an equivalent expression

fWF(xc, t |x0) = 2 sin(πH )

π
σ−1/(2H )[K(t)](2−H )I [K(t)],

(7)

I (z) =
∫ ∞

0
yH [2H (z + y)2H + 1 − 2H ](z + y)2H−2

× exp [−(z + y)2H ]dy, (8)

valid except for K(t) → 0 for H ≤ 1/3.
To check the validity of the WFA, we look toward the

long-time limit, t � σ 1/(2H), for comparison to the theoretical
result given by Eq. (1). In this limit where K(t) → 0, the series
expansion result gives:

For H > 1/3

fWF(xc, t |x0) ∼ sin(πH )

π
σ−1/(2H )�

×
(

3H − 1

2H

)
[K(t)](2−H ) ∝ tH−2. (9)

For H < 1/3

fWF(xc, t |x0) ∼ 2H� (1 − 3H )

� (1 − H ) � (1 − 2H )

× σ−1/(2H )[K(t)](1+2H ) ∝ t−1−2H . (10)

When H = 1/3, the long-time limit becomes

fWF(xc, t |x0) ∼
√

3

2π

(
1 + 5

3
γE

)
σ−3/2[K(t)]5/3 ∝ t−5/3,

(11)
as shown in Appendix A. Euler’s constant57 is given as γ E.
Note that our long-time results coincide with those of Bologna
et al.,58 but therein, the authors solve only up to a pre-factor,
whereas our result provides a general explicit solution includ-
ing the pre-factor. Combining Eqs. (9), (10), and (11) gives
the FPTD within the WFA for all H in the asymptotic limit.
Interestingly, when H ≥ 1/3, as in Eqs. (9) and (11) the WFA
approach is in agreement with Molchan’s result. However, for
the case that H < 1/3, Eq. (10) shows a different exponent to
Molchan’s (H − 2). Thus our work shows that H < 1/3 is, in
a sense, “too far” from the Brownian case (H = 1/2) for re-
newal theory to apply. Further analysis of these results are left
to Sec. IV.

B. The method of images approximation

The method of images is a technique used in calculat-
ing properties of electrostatics,30 but has also been applied to
Markovian stochastic systems.1 This technique calculates the
resultant PDF from having a PDF in the absence of a bound-
ary, centered at x0, and an identical PDF centered at 2xc − x0,
which is inverted. The result “creates” the existence of a
boundary at xc; from this, the FPTD can be calculated. For
the case of non-Markovian systems, such as fBm or the SFD
system, this method is only an approximation, due to the fact
that the state of the system is dependent upon all previous tra-
jectories, namely, the system is not memory-less. Neverthe-
less, this technique has been used in the literature to describe
the FPTD in similar situations.29 The resultant FPTD (see
Appendix B for derivation) is

fMI(xc, t |x0) = H�x√
πCtH+1

exp

(
− �x2

4Ct2H

)
. (12)

The FPTD for a Brownian particle is produced when H = 1
2

and C = D, where D is the diffusion constant, as it should.
However, for any system such that H �= 1/2, the long-time
behavior predicted by the MIA, fMI(t) ∼ t−(H+1), where this
result and Eq. (1) are in clear conflict. A more in-depth anal-
ysis of the MIA with respect to simulations is left to Sec. IV.
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C. Conjecture for the FPTD

As we will see in Sec. IV the Markovian approximations
fail to produce the correct full functional form FPTD for the
two physical SFD systems present here, and more explicitly,
analytically, only the WFA appears to capture the theoretical
long-time result for H ≥ 1/3. Therefore, we here provide a
simple conjecture made in light of the results in previous work
and more simplistic systems to account for the full form.

Our proposed function for the FPTD has two main fea-
tures: (i) a function which becomes exact for the Brownian
case and (ii) approaches the correct long-time behavior for
both SFD and fBm systems, Eq. (1), for arbitrary H (which,
obviously, includes those values which represent SFD homo-
geneous and heterogeneous systems). Namely,

fc(xc, t |x0) = 	tH−2 exp

(
−γ

[
�x2

2Ct2H

]β
)

, (13)

with dimensionless fitting parameters γ and β. The normal-
ization constant, 	, is

	 = 2Hβ

�
(

1−H
2Hβ

)
[(

�x2

2C

)β

γ

] 1−H
2Hβ

.

Consideration of this conjecture in conjunction with simula-
tions is left to Sec. IV.

III. SIMULATIONS

A. Simulating SFD

To computationally simulate the FPTD in a single-file
system, the Gillespie-type algorithm for hard-core lattice dy-
namics presented in Ref. 21 is implemented. Stochastic time
series are generated for both homogeneous and heterogeneous
population types through the following steps: (1) Place the
particles in their initial, thermally equilibrated, positions (the
tracer particle is positioned in the middle of the system with
equally many particles randomly distributed to the left and
the right). (2) Move a random particle according to the algo-
rithm in Ref. 21 and update the time t. (3) Repeat step (2)
until either t ≥ tstop (some designated stop time) or the tracer
particle position becomes ≥xc, and record the corresponding
first-passage time, see Fig. 1 for a diagrammatic explanation.

Both homogeneous and heterogeneous particle popu-
lations were simulated using the parameters provided in
Table I. The simulation box size, L, was chosen such that the
results accurately display the dynamics for a semi-infinite sys-
tem given the finite nature of a computer simulation.59 The
lattice simulations conducted have focused on one particle
density (ρ = 0.25), one particle size, a (which is equivalent
to the lattice site length), and four different absorption point
differences, �x (shown in Table II).

For heterogeneous SFD systems the particles’ friction
constants (ξ ∝ D−1 in units of thermal energy, D is the diffu-
sion constant) are drawn from a so-called heavy-tailed (HT)
power-law distribution (the first moment is not finite).18, 60

The HT frictional constant distribution is chosen as (ξ )
= �ξ−1 − α , for large ξ , where 0 < α < 1 and � is a nor-

FIG. 1. Schematic representation of the lattice simulations of a SFD sys-
tem. All particles (including the tracer—here in black) move under Brownian
motion and are hard-core (the particles cannot occupy the same lattice site),
meaning that they cannot pass each other, keeping their order for all times.
Hence the tracer is in the center of all other particles for all times. The top
panel shows the start of the simulation in thermal equilibrium, whereas the
bottom panel shows that after some time, the tracer has achieved a first pas-
sage event.

malization constant. For such heterogeneous SFD systems the
dynamics are found to be inherently slow, and therefore large
systems and simulation stop times are required (compared to
the same system with a homogeneous population), this is ac-
counted for in our study, as shown in Table I.

B. Simulating fBm

We here use the so-called spectral simulation method, as
it uses the spectral density of the fGn increments to calcu-
late the time series. This method was chosen for its speed
(use of fast Fourier transforms) and simplicity of implemen-
tation, which approximates well fBm, for long series.61 For
sub-diffusive systems with slow dynamics, a relatively large
(with respect to SFD systems herein) effective diffusion con-
stant, C = 5, is used to efficiently calculate and display all
relevant time frames in a reasonable computation time. See
Table III for all fBm simulation parameters,62 and results.

C. Collapsing data

When comparing sets of data from the same system
(characterized by H) with different absorption points and/or
generalized diffusion constants, it is convenient to collapse
the data to remove these dependencies on xc and C and
thereby be able to extract a universal functional form for the

TABLE I. SFD simulation parameters. Not applicable is abbreviated to N.A.

Homogeneous Heterogeneous
Parameter systems systems

System size, L (lattice site width a) 104 a 2 × 104 a
Particle number density, ρ 0.25 0.25
Diffusion constant, D 1 a2s N.A.
Average diffusion constant, D̄ N.A. 1 a2s
Stop time, t ≥ tstop 2.5 × 107 a2/D 108 a2/D̄

Friction constant PDF exponent, α N.A. 0.5
Initial tracer particle position, x0 0 0
Simulation ensemble size, N 2.5 × 103 2.5 × 103
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TABLE II. Homogeneous fc(t) fit parameters. χ̂2 is the normalized
chi-squared parameter. Raw data placed into 30 natural log-bins (see
Appendix C).

xc γ β χ̂2

25 0.72 ± 0.03 0.96 ± 0.02 1.49
40 0.67 ± 0.03 0.97 ± 0.02 1.64
50 0.64 ± 0.03 0.98 ± 0.02 1.61
75 0.60 ± 0.02 1.00 ± 0.02 1.33

FPTD. This is done through knowledge of length versus time
scaling in anomalous diffusion, provided by Eq. (3). Through
observation of this equation it is convenient to introduce a
scaling factor � = (�x)−1/HC1/2H with dimension inverse
time, and to scale FPTDs with this factor, as it is done in
Figs. 2–5.

For homogeneous SFD systems it has been shown17 that
the MSD for a tracer particle is described by, see Eq. (3),

C ∼ (1 − ρa)

ρ

√
D

π
, H = 1

4
, (14)

where D is the single particle diffusion constant, and a is the
size of the particle. For heterogeneous SFD systems Lomholt
et al.18 find the approximate long-time MSD-pre-factor and
Hurst exponent to be

C ∼ kBT

2
√

κχ

1

�(1 + δ)
, H = α

2(1 + α)
, (15)

TABLE III. fBm simulation and fit parameters. Each simulation has:
C = 5; tstop = 107; N = 6 × 104. Raw data placed in 50 natural log-bins,
fitted to parameters (γ , β) (see Appendix C) to test the applicability of our
simple conjecture, Eq. (13). χ̂2 is the normalized chi-squared parameter.

H �x γ β χ̂2

1/6 25 0.726 ± 0.004 1.00 ± 0.02 1.12
1/6 75 0.556 ± 0.004 1.004 ± 0.002 1.21
1/4 50 0.639 ± 0.005 0.987 ± 0.003 1.70
1/4 100 0.595 ± 0.005 0.984 ± 0.003 1.65
7/20 50 0.667 ± 0.006 0.958 ± 0.005 3.16
9/20 50 0.595 ± 0.007 0.973 ± 0.006 0.985
3/4 200 0.0862 ± 0.0004 1.70 ± 0.03 55.7

where κ = ρ2kBT(1 − ρa)−2, χ = (4κ)1 − 4H(�π /sin [2Hπ /
(1 − 2H)])2(1 − 2H), and α is the exponent in the HT friction
PDF. Note that the Hurst exponent satisfies H < 1/4 in these
heterogeneous systems, as 0 < α < 1, we use α = 1/2 dur-
ing this investigation (see Table I). From Eq. (15), � may be
calculated for heterogeneous SFD systems, likewise for ho-
mogeneous systems using Eq. (14).

IV. RESULTS

A. SFD simulations

Each different data set (defined by its unique absorp-
tion point, xc) is shown in a collapsed plot in Fig. 2 for ho-
mogeneous particles and Fig. 3 for heterogeneous systems.

10-8

10-6

10-4

10-2

100

102

104

10-4 10-3 10-2 10-1 100 101 102 103

f s
(t

s)

ts

t-7/4

fBm (Δx = 50)
fBm (Δx = 100)

MIA
WFA

WFA Asymp.
fc(t)

Δx = 25
Δx = 40
Δx = 50
Δx = 75

         0

         5

        10

        15

        20

0.00 0.02 0.04 0.06

FIG. 2. Collapsed (log-log) plot of FPTD for a homogeneous SFD system with different absorption points and fBm FPTD (for simulation parameters see
Tables I and III, respectively). Immediately, the collapsed plot shows that homogeneous SFD and fBm have the same FPTD dynamics over all time frames in
the correct scaling, Sec. III. The MIA, Eq. (12), and the WFA, Eq. (5), are shown for comparison, both of which show poor agreement. The averaged proposed
functional form, fc(t), Eq. (13), is constructed by collapsing all simulated data and fitting (see Appendix C), keeping the power-law exponent in the pre-factor
fixed to H − 2; with H = 1/4, and setting C according to Eq. (14). The parameters (Table II) were then averaged and a single mean curve plotted. This conjecture
shows excellent agreement with both anomalous diffusive systems on all time scales.63 The Molchan long-time prediction52 is given to guide the eye. The fBm
FPTD consists of two different absorption points (�x = 50, �x = 100, 6 × 104 simulations)64 and displays good agreement with SFD results. (Inset) The
short-time regime (linear axes) agreement between homogeneous SFD, fBm, and fc(t). Remaining simulation details are presented in Tables I, III, and II. The
subscript s on each axis variable denotes “scaled,” namely ts = � t and fs = �−1f(t), where � = C1/2H(�x)−1/H.
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FIG. 3. Collapsed plot of FPTD for a heterogeneous SFD system (Table I) with different absorption points. Also within, fBm FPTD is plotted for H = 1/6,
see Table III. The long-time dynamics for both systems agree very well with each other and also with Molchan’s equation, Eq. (1). In the very short-time the
systems part, most likely because of the complex nature of heterogeneity-averaged SFD systems (see inset). The MIA, Eq. (12), and the WFA, Eq. (5), are
shown for comparison. Both approximations show ill agreement with the simulated data for both systems and the theory. fc(t), Eq. (13), was fitted to the fBm
data (displaying excellent agreement), Table III, as opposed to the SFD data, due to its poor fit (discussion in inset caption here, and Sec. IV).65 The data are
scaled (signified by subscript s) using Eq. (15), with H = 1/6 (since α = 1/2)—see Fig. 2 caption for further explanation of the scaling. All remaining simulation
details are presented in Tables I and III. (Inset) Collapsed plot of the FPTD for 3 different sets of heterogeneous friction constants, kept constant for each
simulation. For this non-averaged case we use xc = 50 for all simulations, with all other system parameters displayed in Table I. The inset illustrates the fact
that no self-averaging takes place in this heterogeneity-averaged system (see Sec. IV for further discussion).

There are concurrent motifs in both FPTD plots, namely, the
short-time concave characteristic maximum moving into a
long-term power-law type structure. For the heterogeneous
case, Fig. 3, there is more variance in the short-term time

regime compared to the same time regime for the homoge-
neous, Fig. 2. This is because the system is given a new
random set of diffusion constants for every simulation (the
so-called heterogeneity-averaged case18), therefore giving a
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FIG. 4. Collapsed plot of FPTD of sub-diffusive fBm with H = 0.35 (top), H = 0.45 (bottom) (simulation parameters: Table III). Both panels show that the
WFA has the correct heavy-tailed gradient (compare to Molchan’s prediction). The fBm also agrees with Eq. (1), as the fc(t) tail is fixed (H − 2) and the data
are modeled well by our conjecture, Eq. (13). Our conjecture models all time scales well, see Table III for quantitative details.
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FIG. 5. Collapsed plot of FPTD for super-diffusive fBm, H = 3/4, see Table III. Both the WFA and the fBm data only agree with Eq. (1) in the long time,
as expected. Using the conjecture, Eq. (13), keeping H fixed, the 2 remaining degrees of freedom (γ , β, see Table III) cannot account for the discrepancy
seen between the our conjectured FPTD and the fBm data. It is apparent that the MIA fails on all time scales. (Inset) Collapsed plots on linear axes illustrate
short-time dynamics (fBm data as crosses).

super-position of non-averaged FPTDs (see discussion at the
end of this section) as demonstrated in Fig. 3 inset.

B. Long-time SFD asymptotics

An important check of simulating homogeneous SFD
data is that it should agree with Eq. (1), for long times. Upon
evaluation of Fig. 2, where Molchan’s asymptotic result is
placed to guide the eye, one sees that the data agree well with
theory, in accordance with previous literature findings31 for
such a system, further confirming that SFD systems and fBm
belong both to the same universality class in the asymptotic
limit.

A novel result then was to verify if Molchan’s work
agreed with the heterogeneous SFD system proposed and in-
vestigated by Ref. 18, assuming H is given by Eq. (15). In
Fig. 3, in both the main and inset plots, the theoretical asymp-
totic result (which is again placed to guide the eye) agrees
well with the long-time FPTD for heterogeneity-averaged
simulations.

C. SFD versus fBm

In both collapsed plots (Fig. 2 (Ref. 64) and Fig. 3
(Ref. 65)) the fBm simulations agree well with the SFD data,
including the scaled power-law pre-factor.

Comparison of the short-time regimes in Fig. 2, and in
particular the inset, illustrates that the fBm and homogeneous
system have the same FPTD on all temporal scales.

Within the short-time heavy-tailed heterogeneous SFD
regime, although possessing the same structure, the fBm sim-
ulations do not coincide with the heterogeneous data (see dis-
cussion at the end of the section).

D. SFD data versus approximations

In the homogeneous system, as demonstrated in Sec. II,
the long-time MIA FPTD, Eq. (12), does not agree with that
of Eq. (1). With inspection of Fig. 2 we note that although
the concave structure of fMI(t) is present and similar to the
data, these two FPTDs do not coincide, making for an obvi-
ous case that fMI(t) does not agree with the SFD homoge-
neous system on any temporal scale. Similarly for the MIA in
Fig. 3.

Concerning both Figs. 2 and 3, the WFA FPTD also pro-
duces the required short-time concave structure and lies closer
to the simulated data than the MIA (remembering the log-
log scale), but still does not agree with it. In the long-time,
as visible through Eq. (10) and Fig. 2, we see that although
the power-law structure of fWF(t) does have a closer gra-
dient than the fMI(t), we can still conclude that clearly the
fWF(t) does not, again, agree with the simulated data on this
scale.

E. fBm and WFA

When one considers sub-diffusive fBm, under the crite-
rion: 1/3 ≤ H < 1/2, we see, via Fig. 4 (where H = 0.35, top,
H = 0.45, bottom), that the WFA agrees well with the fBm
data: in the early time regime, and in the long time, has the
correct gradient and a power-law pre-factor becomes exact as
H → 1/2 (Brownian motion), as it should (and so to does the
MIA in this limit).

For super-diffusive fBm, H > 1/2, our simulated results,
with H = 0.75, except prediction of the correct long-time
power-law exponent, show poor agreement with the WFA ap-
proximation, on every scale, see Fig. 5. For simulation and
fitting data see Table III.
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F. Conjecture results

The viability of the trial function, Eq. (13), was mea-
sured with comparison to simulated data (both SFD and fBm;
Tables II and III, respectively).

In the homogeneous system, Fig. 2, the power-law ex-
ponent, is fixed to the theoretical result: (H − 2), where H
is taken from the literature in the form of Eq. (14), leaving
only two parameters, γ and β, to be fitted (see Appendix C),
resulting in Table II.66 The low χ̂2 value, shown in Table II,
indicates that our proposed form for the FPTD is indeed an
accurate one. Further, the results in the β column of Table II
lead us to propose that β = 1 (as is for the Brownian
case), i.e., the FPTD is well approximated by the propagator,
Eq. (2), multiplied by a power-law pre-factor chosen to repro-
duce Molchan’s long-time relation.

For the heterogeneous case, the simulation data have
been subjected to the same treatment as applied to the ho-
mogeneous system data, yielding poor results. The full func-
tional form of the heterogeneous system is more complicated
and not amenable to explanation by our simple conjecture.
This complexity, as stated previously, arises predominantly
through creating an entirely new heterogeneous population
for each simulation (heterogeneity-averaged). Each different
population, three of which are illustrated in the inset of
Fig. 3, has a different short-time FPTD structure relative
to other populations as well as a different pre-factor in the
power-law tail. Thus, in short, the FPTD for heterogeneous
SFD shows the same kind of lack of self-averaging as dis-
played in the MSD for this type of system.18 In particular, the
pre-factor in the long-time asymptotics is a random quantity
dependent on the particular realization of the friction constant
population.

Upon inspection of Figs. 2–4, it is easily seen that
the conjecture, Eq. (13), works well at modeling the FPTD
dynamics of fBm for sub-diffusive and diffusive systems.
When considering super-diffusive motion, Fig. 5, it is clear
that the conjecture is not adequate to deal with these dy-
namics. Quantitatively, these statements are displayed in
Table III.

V. SUMMARY AND DISCUSSION

We investigated the first passage time densities of a tracer
particle in a single-file system with two different popula-
tion types: homogeneous (all having the same diffusion con-
stant) and heterogeneous (friction constants drawn from a
heavy-tailed power-law distribution). Along side, the frac-
tional Brownian motion FPTD was investigated.

Theoretically, two methods were used to approximate the
full functional form for FPTD analytically: the method of im-
ages approximation, Eq. (12), and the Willemski-Fixman ap-
proximation, Eq. (5). Moreover, a conjectured form for the
FPTD, Eq. (13), was introduced. Numerically, the SFD and
fBm systems were simulated stochastically with the Gillespie-
type algorithm presented in Ref. 21, and spectral approach,61

respectively.

Our main conclusions are

� The MIA derived here, and previously used in the liter-
ature, does not approximate the FPTD at any temporal
scale.

� With the use of Mellin transforms we have found an
exact result for the full FPTD within the Willemski-
Fixman approximation. To convert the inverse FPTD
from Mellin frequency space two methods were used:
the series expansion approach and the Weyl fractional
derivative approach. The WFA does not agree with
the simulated SFD FPTD (homogeneous and hetero-
geneous) nor the fBm FPTD for H < 1/3. For sub-
diffusive and Brownian motion, i.e., 1/3 ≤ H < 1/2,
the WFA approximates the FPTD well at all times, in-
cluding the theoretical long-time slope, Eq. (1), (but
does not predict the correct pre-factor) becoming ex-
act when H = 1/2. In the super-diffusive regime,
H ∈ (1/2, 1), the WFA manages to capture only the
long-time power-law exponent correctly.

� We show through simulations that the FPTD for the
homogeneous SFD system is equivalent to the fBm
FPTD with H = 1/4, for all times, in the correct scal-
ing.

� We find that the FPTD for a heavy-tailed heteroge-
neous SFD system and the corresponding fBm share
the same power-law exponent for long times (given the
correct scaling, Eq. (15)). The general heterogeneous
SFD FPTDs show a lack of self-averaging.

� A simple conjecture, Eq. (13), is proposed and ade-
quately shown to model the full functional form of
the fBm FPTD for H ≤ 1/2, and also that of the ho-
mogeneous SFD FPTD. Equation (13) only captures
the asymptotic power-law exponent for heterogeneous
SFD systems and super-diffusive systems where
H > 1/2.

Our work presented herein also pertains to research on
FPTs in many-body “swarm” systems, such as the recent work
by Mejía-Monasterio et al.67 They have investigated the FPT
for a search by a swarm of independent searchers. Our results
initialize the generalization of this investigation, and further
pave the way for the understanding of FPTs in general inter-
action, non-independent, many-body swarm systems.

Whereas there is a wealth of knowledge about first pas-
sage problems for Markovian systems,1 our understanding of
the corresponding problem for non-Markovian dynamics is
far from complete. This study shows quantitatively the limita-
tions of two commonly used approximations, provides exten-
sive simulation results for homogeneous and heterogeneous
system, and a conjectured form for the FPTD for the fBm,
thereby providing headway into future studies.
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APPENDIX A: WFA DERIVATION

The canonical method for solving the Willemski-Fixman
problem, Eq. (4), is to use the Laplace transform (oper-
ator L) to take advantage of the convolution property of
this transform. However, this transform for the function:
L[exp (−Vt−r)] with respect to t does not exist in closed form
for arbitrary r. Here, we instead therefore use the Mellin trans-
form technique.

Beginning from the integral equation (4), plugging in the
propagator, Eq. (2), multiplying both sides by tH, we write

exp(−σ t−2H ) =
∫ ∞

0
F (xc, t

′|x0)G(t/t ′)
dt ′

t ′
, (A1)

with F(xc, t′|x0) ≡ t′f(xc, t′|x0), where σ = (�x2)/(4C) as
before, and

G(t/t ′) ≡
(

t

t ′

)H (
t

t ′
− 1

)−H

�

(
t

t ′
− 1

)
,

where �(t) is the Heaviside function. We now can solve
Eq. (A1), using the Mellin transformation (see Ref. 55 for
more details). This transform is defined as

ĝ(p) = M[g(t)] ≡
∫ ∞

0
tp−1g(t)dt. (A2)

Using the following identities:

M

[∫ ∞

0
y(t ′)g

(
t

t ′

)
dt ′

t ′

]
= ŷ(p)ĝ(p),

M[g(t−w)]w>0 = 1

w
ĝ

(−p

w

)
, (A3)

M[e−at ]a>0 = a−p�(p),

the formal solution to Eq. (A1) becomes

1

2H
σp/2H �

(−p

2H

)
= F̂ (xc, p|x0)Ĝ(p), (A4)

where

Ĝ(p) =
∫ ∞

0
tp−1tH (t − 1)−H�(t − 1)dt

=
∫ ∞

1
tp+H−1(t − 1)−H dt = B(−p, 1 − H ).

B(z,w) is the beta function,57 where B(z,w)
= [�(w)�(z)] /�(z + w). Following this route, one finds
that Eq. (A4) becomes

F̂ (xc, p|x0) = σp/2H

2H�(1 − H )

�(1 − H − p)�
(−p

2H

)
�(−p)

, (A5)

for Re(p) < 0.68 Using the fact that M
[
F (t)t−1

] = F̂ (p − 1)
(remembering F(xc, t|x0) = tf(xc, t|x0)) one finally gets

f̂ (xc, p|x0) = σ (p−1)/2H

2H�(1 − H )

�(2 − H − p)�
(

1−p

2H

)
�(1 − p)

(A6)

for Re(p) < 1 , which gives the closed form expression for the
Mellin transform of the first passage time density f(xc, t|x0),
within the WFA.

1. Series expansion approach

From Eq. (A6), and the formal Mellin-inversion formula,
we have:

f (xc, p|x0) = 1

2H� (1 − H )

1

2πi

×
∫ c+i∞

c−i∞
t−pσ

p−1
2H � (2−H−p)

�
(

1−p

2H

)
� (1−p)

dp.

(A7)

We can deform the original contour where c is chosen
such that the integration is over the fundamental strip (here
Re(p) < 1), so that it becomes a square, side length R, which
encompasses the fundamental strip, encloses all poles in
the domain Re(p) > 1 and has a negative orientation (anti-
clockwise)—see Ref. 56, Appendix A therein. We can then
use the residue theorem to compute Eq. (A7):

f (xc, p|x0) = −1

2H� (1 − H )

×
∑

Residues

Res

⎡
⎣t−pσ

p−1
2H � (2−H−p)

�
(

1−p

2H

)
� (1−p)

⎤
⎦ ,

(A8)

where we used the fact that the integral along the upper, lower,
and right parts of the square vanish as R → ∞. Note the mi-
nus sign in the pre-factor due to anti-clockwise contour. �(p)
has simple poles at p = 0, −1, −2, . . . and the function in-
side the square brackets on the r.h.s. of Eq. (A8) therefore has
(potential) poles at

pn = 2 − H + n; n = 0, 1, 2, . . . , (A9)

p̃m = 1 + 2Hm; m = 0, 1, 2, . . . . (A10)

To proceed we need to know the behavior of �[ α−z
β

] close to
zm = α − mβ. We have that for a simple pole the residue is
calculated as

Res

[
�

(
α − z

β

)]
z=zm

= lim
z→zm

(z − zm)�

(
α − z

β

)
,

after some manipulation, by inserting zm = α + mβ and using
�(z) = z−1�(z + 1), we find that

Res

[
�

(
α − z

β

)]
z=zm

= −β

mβ

−β

(m−1)β

−β

(m−2)β
. . . (−β)�(1)

= (−1)m+1

m!
β. (A11)

Noting that 1/�(z) has no poles, and combining Eqs. (A8) and
(A11) we get

f (xc, t |x0)= −1

2H�(1−H )

[ ∞∑
n=0

t−pnσ
pn−1

2H
(−1)n+1

n!

�
( 1−pn

2H

)
�(1−pn)

+
∞∑

m=1

t−p̃mσ
p̃m−1

2H
(−1)m+1

m!
2H

� (2 − H − p̃m)

� (1 − p̃m)

]
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substituting in K(t), see Eq. (6), and the values for pn and p̃m,
one arrives at the exact expression for the first passage time
within the WFA, which can be used to numerically evaluate
the FPTD:

f (xc, t |x0) = σ−1/2H

� (1 − H )

[
1

2H
[K(t)](2−H )

∞∑
n=0

[K(t)]n

× (−1)n

n!

�
(

H−1−n
2H

)
�(H − 1 − n)

+ K(t)
∞∑

m=1

[K(t)]2Hm (−1)m

m!

� (1−H−2Hm)

� (−2Hm)

]
.

(A12)

We point out that we above assumed simple poles, i.e., that
pn �= p̃m. Using Eqs. (A9) and (A10), we see that we there-
fore require H �= (n + 1)/(2m + 1) for Eq. (A12) to be valid.

Now, an immediate check for the calculation of Eq. (A12)
is performed when H = 1/2, i.e., the system’s dynamics is
Brownian motion. Then

f (xc, t |x0) = σ−1

�
(

1
2

)
(

[K(t)]3/2
∞∑

n=0

[K(t)]n
(−1)n

n!

+K(t)
∞∑

m=1

[K(t)]m
(−1)m

m!

�
(

1
2 − m

)
� (−m)

)
,

where we note the sum of n term is the power series of an
exponential function, and that, in the second sum, over m,
1/�(−m) = 0 for an integer m ≥ 0. Substituting in the func-
tional value for K(t), we get

f (xc, t |x0) = σ 1/2

√
π

t−3/2 exp

(−σ

t

)
,

as required.1

2. Asymptotic time limit: K(t) → 0

In the long-time limit n = 0 term and the m = 1 term
in Eq. (A12) give the dominant contribution to the FPTD,
namely,

f (xc, t |x0) ∼ σ−1/2H

� (1 − H )

(
[K(t)]2−H 1

2H

�
(

H−1
2H

)
� (H − 1)

− [K(t)]1+2H � (1 − 3H )

� (−2H )

)
. (A13)

We see that the exponents in Eq. (A13) are equal if H = 1/3.
Thus this obliges us to make three distinct cases for the FPTD:
when H > 1/3 we use the reflection formula for �-functions
and arrive at Eq. (9); in the case that H < 1/3, we find
Eq. (10), using �(1 + z) = z�(z). For the case that H = 1/3
(or more generally of the form H ∗

nm = (n + 1)/(2m + 1)), a
double pole exists and certain care is needed.

a. Double pole

When H ∗
nm = (n + 1)/(2m + 1), e.g., H = 1/3, one or

several double poles exist and should be dealt with accord-

ingly. To see so, if we substitute H = 1/3 into both Eqs. (9)
and (10) we find a diverging pre-factor which is proportional
to 1/(H − 1/3), which is not correct as f(xc, t|x0) is bounded,
namely,

∫ ∞
−∞ f (xc, t |x0)dt = 1. In order to resolve the double

pole issue we need to revisit Eq. (A8).
The residue for a pole of order 2 is computed as

Res[F (z)] = lim
z→zm

d

dz
[(z − zm)2F (z)]. (A14)

Considering Eq. (A8), we note that we need to evaluate—
following the same steps that led to Eq. (A8)—(remembering:
zn = η + n, n = 0, 1, 2, . . . and z̃m = α + mβ),

Res

[
�(η − z)�

(
α − z

β

)]
z=z̃m=zn

= (−β)m+1(−1)n+1 d

dz

[
�

(
α−z̃+(m+1)β

β

)
(z̃−α)(z̃−α−β) · · · (z̃−α−(m−1)β)

× � (η − z + (n + 1))

(z − η)(z − η − 1) · · · (z − η − (n − 1))

]
. (A15)

Equations (A8) and (A15) allow us to compute f(xc, t|x0)
(in principle), also for n and m values satisfying H ∗

nm = (n
+ 1)/(2m + 1). For a given (n, m) from Eq. (A15), we see
that the residue for the double pole involves 2 + n + m terms.
Let us now limit our derivation to the analysis of H = 1/3 and
long times (where n = 0 and m = 1), then Eq. (A15) becomes

Res

[
�(η − z)�

(
α − z

β

)]

= β2
�

(
α−z̃
β

+ 2
)

� (η − z + 1)

z̃ − α

×
⎡
⎣ 1

z̃ − α
+ 1

β

�′
(

α−z̃
β

+ 2
)

�
(

α−z̃
β

+ 2
) + �′ (η − z + 1)

� (η − z + 1)

⎤
⎦ .

For the investigation in this report, we have β = 2H; z̃m = p̃m

= 1 + 2Hm → 1 + 2H and α = 1; therefore, zn = pn = 2
− H, and finally η = 2 − H. Substituting these values in
above, and setting H = 1/3 we find

Res

[
�(2 − H − z)�

(
1 − z

2H

)]
= 1 + 5

3
γE,

where (�′(x))/(�(x))|x = 1 = γ E (Euler’s constant).57

Equation (A8) now becomes (with p = p0 = 2 − H) Eq. (11),
as given in the main text.

3. Weyl fractional derivative approach

Let us now derive Eq. (7) in the main text. To obtain the
FPTD, one has to invert the transform in Eq. (A6). The inverse
Mellin transform is defined as55

f (t) ≡ 1

2πi

∫ c+i∞

c−i∞
f̂ (p)t−pdp,

where a < c < b and 〈a, b〉 is the fundamental strip; in this
case, 〈 − ∞, 1〉. Transforming the inverse integral of Eq. (A6)
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to the variable p̃ = 2 − H − p we obtain:

f (xc, t |x0) = σ−1/2H

�(1 − H )
[K(t)]2−H φ [K(t)] , (A16)

φ(z) = 1

2H
M−1

⎡
⎣�(p)�

(
p−(1−H )

2H

)
�

[
p − (1 − H )

] , z

⎤
⎦ , (A17)

K(t) = σ 1/2H

t
. (A18)

The quantity φ(z) can be written in terms of H-functions or
Fox-functions, but from Ref. 55, Eq. (8.5.23), one has

M−1

[
�(p)

�(p − β)
ĝ(p − β), z

]

= Wβ
[
g(z)

] ≡ (−1)n

�(n − β)

dn

dzn

∫ ∞

z

(z′−z)n−β−1g(z′)dz′,

(A19)

where Wβ is the Weyl fractional derivative and n is the small-
est integer such that n − β > 0.55 In this case, Eq. (A17),
one has β = 1 − H which implies 0 < β < 1, so n = 1
and ĝ(p) = � (p/2H ). Therefore g(z) = M−1[�(p/2H), z]
= 2Hexp (−z2H), and

φ(z) = W 1−H [exp(−z2H )]

= −1

�(H )

d

dz

∫ ∞

z

(z′ − z)−(1−H ) exp[−(z′)2H ]dz′

= 2H

�(H )

∫ ∞

0
y−(1−H )(z + y)2H−1 exp[−(z + y)2H ]dy,

(A20)

where, in the last step, we changed variables y = z′ − z. The
diverging factor y−(1 − H) in the integrand is inconvenient for
numerical evaluation of the integral, so to remedy this, we
integrate by parts to get

φ(z) = 2

�(H )

∫ ∞

0
yH [2H (z + y)2H − (2H − 1)]

× (z + y)2H−2 exp[−(z + y)2H ]dy. (A21)

Using the reflection formula for Gamma functions,57 �(z)�
(1 − z) = π /sin (πz) (note: 0 < z < 1) we finally get, by
inserting Eq. (A21) into Eq. (A16), Eq. (7) given in the main
text. Careful considerations show that the integration by parts
is only valid for K(t) �= 0 when H ≤ 1/3 providing limits for
the validity of Eq. (7).

APPENDIX B: MIA DERIVATION

Given the result of the PDF from Sec. II, Eq. (2), we have
the PDF in the presence of an absorption point located at xc,

PMI(x, t |x0) = P (x, t |x0) − P (x, t |2xc − x0).

This combination of PDFs enforce the absorbing boundary
condition PMI(x = xc, t |x0) = 0. Using this result, the sur-

vival probability is SMI(t) = SA(t) − SB(t), where

SA(t)=
∫ xc

−∞
P (x, t |x0)dx; SB(t)=

∫ xc

−∞
P (x, t |2xc−x0)dx.

(B1)
Making use of the Error function, Erf[z],57 one finds that

SA = 1

2

[
1 + Erf

(
xc − x0√

4Ct2H

)]
;

SB = 1

2

[
1 + Erf

(
x0 − xc√

4Ct2H

)]
. (B2)

The relationship between the FPTD and the survival proba-
bility is fMI(t) = − ∂

∂t
SMI(t),1 this leads to the final result pre-

dicted by the MIA for a non-Markovian system, Eq. (12), in
the main text.

APPENDIX C: DATA REDUCTION AND FITTING

The simulated data presented here was subjected to the
following data reduction pipeline: first passage times are cul-
minated from simulations then the data are log-binned and
plotted as histograms. When fitting of histograms is required,
the boot-strap method69 is used to estimate the error of each
bin. In this method one creates a large number (in our case
103) “synthetic” raw data sets from the original raw data (the
vector/set containing the FPTs). Each synthetic set is accom-
plished by selecting, at random (from a uniform distribution),
an entry from the original set, with replacement, until the syn-
thetic set being created has the same number of entries as the
original. This is repeated until the desired amount of synthetic
data sets is achieved. Each synthetic set is then binned into
bins of the same size as the original data set, and the variance
for each bin (acquired from binning a large number of syn-
thetic data sets) is then used as the error for the original bin.
This error is subsequently used to weight the least-squares
fitting.

After boot-strapping, the Levenberg-Marquardt regres-
sion (LMA) is employed to find the best fit.70, 71 When fitting
the FPTD conjecture,66 the LMA was employed to minimize
the chi-squared value, χ2. To be more explicit, the normal-
ized chi-squared value, χ̂2, was minimized as it is more easily
interpreted (namely, without the use of tables). This is just:
χ2/dof, where dof is the degrees of freedom of a fit. If this
value lies between 0.5 < χ̂2 < 1.5 the model is assumed to
be an accurate explanation for the functional form of the data.
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