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Abstract

Stochastic differential equations (SDEs) are assuming an important role in the defini-

tion of dynamical models allowing for explanation of internal variability (stochastic noise).

SDE models are well-established in many fields, such as investment finance, population

dynamics, polymer dynamics, hydrology and neuronal models. The metabolism of glu-

cose and insulin has not yet received much attention from SDE modellers, except from

a few recent contributions, because of methodological and implementation difficulties in

estimating SDE parameters. Objectives: here we propose a new SDE model for the dy-

namics of glycemia during a euglycemic hyperinsulinemic clamp experiment, introducing

system noise in tissue glucose uptake, and apply for its estimation a closed-form Her-

mite expansion of the transition densities of the solution process. Results: the present

work estimates the new model parameters using a computationally efficient approximate

maximum likelihood approach. By comparison with other currently used methods, the

estimation process is very fast, obviating the need to use clusters or expensive mainframes

to obtain the quick answers needed for everyday iterative modeling. Furthermore, it can

introduce the demonstrably essential concept of system noise in this branch of physio-

logical modeling. Conclusions: SDE modeling for metabolic processes is physiologically

pertinent and computationally feasible using commonly available resources.
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1 Introduction

In this paper we consider a new stochastic differential model for the dynamics of the glycemia

observed during a Euglycemic Hyperinsulinemic Clamp procedure (EHC, DeFronzo et al.

(1979)) performed on human subjects, derived from a more complex model (Picchini et al.

(2006)).

We choose to consider stochastic differential equation (SDE) models because deterministic

models (ODE, DDE, PDE) do not accommodate random variations of metabolism. In fact, a

deterministic model assumes (i) that the mathematical process X generating the observations

(glycemias in our situation) is smooth (continuous and continuously differentiable) in the

considered time-frame; and (ii) that the variability of the actual measurements is due only to

observation errors, which do not influence the course of the underlying process. An alternative

approach would result from the hypothesis that the underlying mathematical process itself is

not smooth, at least when considered at a feasible time resolution. Physiologically this would

be equivalent to postulating e.g. that the rate of glucose uptake by tissues varies randomly

over time around some average level. This assumption leads to an SDE model as a natural

extension of classic deterministic models.

Appropriate parameter values in these SDE models are crucial for the characterization

of the dynamic phenomena being considered. It is often the case that these parameters are

not known accurately. Researchers are naturally interested in obtaining better estimates

of the parameters from experimental data: in practice the available data are discrete time

series, sampled over some time interval, whereas SDEs are driven by almost surely continuous

processes; this may complicate the estimation. Parameter estimation for discretely observed

diffusion processes is non-trivial, because of theoretical and implementation difficulties, and

during the past decades there has been a great deal of research effort in this area (e.g. Aït-

Sahalia (2001, 2002b), Beskos et al. (2006), Bibby et al. (2004), Bibby and Sørensen (1995),

Brandt and Santa-Clara (2002), Dacunha-Castelle and Florens-Zmirnou (1986), Ditlevsen
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and De Gaetano (2005), Durham and Gallant (2002), Elerian et al. (2001), Gallant and Long

(1997), Gouriéroux et al. (1993), Hurn and Lindsay (1999), Kutoyants (2004), Nicolau (2002),

Pedersen (1995), Prakasa Rao (1999), Shoji and Ozaki (1998), Sørensen (2000)).

In Picchini et al. (2006) a two-dimensional SDE model considering simultaneously the

dynamics of glucose and insulin was analyzed. Parameter estimation proved difficult, so that a

two-step procedure was employed, where all parameters in the drift were estimated first on the

corresponding deterministic model, and the diffusion parameter was estimated subsequently by

Monte Carlo approximations of the likelihood (Pedersen (2001)). This approach was very time

consuming, and moreover it would be more appropriate to estimate all parameters in a single

optimization pass. This inspired us to simplify the model to a one dimensional formulation,

restricting attention to glucose dynamics after the steady state of insulin concentration has

been reached. The present work is concerned with computationally efficient estimation of the

parameters of this reduced SDE model of the EHC experiment, paying particular attention

to those parameters most important for the evaluation of the patient’s insulin sensitivity

(specifically the insulin-dependent glucose disposal rate KxgI , see Section 2.3). The parameter

estimation problem is approached as suggested in Egorov et al. (2003), building on ideas

presented in Aït-Sahalia (2002b), which allow to estimate all model parameters in a single

pass, in fast computer time.

Define the one-dimensional time-homogeneous (Itô) SDE

dXt = µ(Xt, θ)dt+ σ(Xt, θ)dWt, Xt0 = X0

where W is a standard Wiener process (Brownian motion), µ(·, ·) : R × Θ → R is the drift

term, σ(·, ·) : R × Θ → R is the diffusion term and for simplicity we assume X0 = x0 fixed

(i.e. non-random). The drift and the diffusion are assumed to be known functions depending

on an unknown p-dimensional parameter vector θ ∈ Θ ⊂ Rp. Since X is a Markov process the

likelihood function of θ is simply the product of transition densities; the transition densities

of X are rarely known but can often be approximated, see the Discussion.

The data consist of observations x0, x1, ..., xn at time-points 0 ≤ t0 < t1 < ... < tn of X,

and are often assumed to be generated without measurement error. This assumption preserves

the Markov property of the observations: otherwise, if the observations are contaminated with
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measurement error they would no longer be Markov. When the measurement error is small

compared to the noise term σ(·, ·), it can in many situations conveniently be ignored. The

diffusion term can be interpreted as the action of many factors, each with a small individual

effect, which are not explicitly represented in the deterministic part of the model (the drift

term), and which instantaneously affect the X values. Therefore, in the stochastic differ-

ential model, the total effect of many small effects (which are not individually modelled) is

represented by the diffusion term, while in the drift term the most relevant and generally

well-recognized factors affecting the mean structure of the process are explicitly included.

The log-likelihood function ln(θ) of θ is given by (disregarding the asymptotically irrelevant

density of the initial observation X0, in case it is not fixed):

ln(θ) =
n∑
i=1

ln p(xi, ti|xi−1, ti−1; θ) (1)

where p(Xt, t|Xs, s; θ), s < t is the transition density of X. Under mild regularity conditions

the corresponding maximum likelihood estimator (MLE) θ̂ is consistent, asymptotically nor-

mally distributed and asymptotically efficient as n tends to infinity (Dacunha-Castelle and

Florens-Zmirnou (1986)).

However, often the transition density function p(·) is unknown. One approach to this prob-

lem is to compute an approximation to p(·). There are several ways to do that (see Sørensen

(2004) and Aït-Sahalia (2007) for a review): a fast and accurate method was suggested by

Aït-Sahalia (2001, 2002b) for time-homogeneous SDEs, and was extended by Egorov et al.

(2003) to one-dimensional time-inhomogeneous SDEs (i.e. the SDE depends directly on time

t, not only through the process values). In this work we consider a new one-dimensional time-

inhomogeneous stochastic model of glycemia dynamics. For this model we have been able to

estimate parameters rapidly using the approach suggested in Egorov et al. (2003).

2 Material and methods

2.1 Subjects

Data from a previous EHC study were analyzed. Sixteen subjects were enrolled at the De-

partment of Internal Medicine at the Catholic University School of Medicine in Rome. For
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one subject the recorded glycemia values were accidentally lost and this subject was therefore

discarded from the analysis. All subjects were clinically euthyroid, had no evidence of dia-

betes mellitus, hyperlipidemia, or renal, cardiac or hepatic dysfunction and were undergoing

no drug treatments that could have affected carbohydrate or insulin metabolism. The subjects

consumed a weight-maintaining diet consisting of at least 250 g of carbohydrate per day for 1

week before the study. Table 1 reports metabolical characteristics of the subjects. The study

protocol followed the guidelines of the Medical Ethics Committee of the Catholic University

of Rome Medical School; written informed consent was obtained from all subjects.

2.2 Experimental protocol

Each subject was studied in the postabsorptive state after a 12-14 h overnight fast. Subjects

were admitted to the Department of Metabolic Diseases at the Catholic University School of

Medicine in Rome the evening before the study. At 07.00 hours on the following morning, the

infusion catheter was inserted into an antecubital vein; the sampling catheter was introduced

in the contralateral dorsal hand vein and this hand was kept in a heated box (60 ◦C) in order

to obtain arterialized blood. A basal blood sample was obtained in which insulin and glucose

levels were measured. At 08.00 hours, after a 12-14 h overnight fast, the EHC was performed

according to DeFronzo et al. (1979). A priming dose of short-acting human insulin was given

during the initial 10 min in a logarithmically decreasing manner so that the plasma insulin

was raised acutely to the desired level. During the five-hour clamp procedure, the glucose

and insulin levels were monitored every 5 min and every 20 min respectively, and the rate of

infusion of a 20% glucose solution was adjusted during the procedure following the published

algorithm DeFronzo et al. (1979). Because serum potassium levels tend to fall during this

procedure, KCl was given at a rate of 15-20 mEq/h to maintain the serum potassium between

3.5 and 4.5 mEq/l. Serum glucose was measured by the glucose oxidase method using a

Beckman Glucose Analyzer II (Beckman Instruments, Fullerton, Calif., USA). Plasma insulin

was measured by microparticle enzyme immunoassay (Abbott Imx, Pasadena, Calif., USA).
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2.3 SDE model

Consider the one-dimensional time-inhomogeneous (Itô) SDE:

dXt = µ(Xt, t)dt+ σ(Xt)dWt, Xt0 = X0, t ≥ t0 (2)

where Xt ≡ X(t) represents the glycemia at time t for a given subject, and

µ(Xt, t) =
Tgx(t− τg) + Tghnet

Vg
−KxgII

∗Xt, (3)

σ(Xt) = σI∗Xt. (4)

Here W is a Wiener process with Wt0 = 0, X0 is the recorded glycemia at time t0 = 40

min for the given subject; Tgx(·) is an (input or forcing) function representing the variable

glucose infusion rate, whose values λ1, ..., λm change at times 0 = ν1 < ν2 < · · · < νm, and

are obtained during the EHC procedure according to the algorithm in DeFronzo et al. (1979).

The Tgx(·) function is defined as:

Tgx(t) =
∑
νj≤t

(λj − λj−1) · (t− νj)5

νj + (t− νj)5
, t > 0, λ0 = 0, j = 1, ...,m, (5)

where Tgx(t) = 0 for every t ∈ [−τg, 0], t = 0 being the instant in which the insulin infusion

start (to be distinguished from the t0 instant, which equals 40 min). The exponent of (t−νj) in

(5) has been chosen to be the minimum integer such that the average of {|Tgx(νj)−λj |}j=1,...,m

is less than 3 × 10−3. Thus Tgx(·) depends explicitly on t and so the SDE (2)-(4) is time-

inhomogeneous. The other variables and the parameters are defined in Table 2 and Table 3,

respectively.

The insulin-dependent glucose disposal rate (KxgI) – which is constrained to be positive,

since insulin’s only action is to accelerate glucose removal from plasma – is assumed to exhibit

substantial irregular oscillations over time. The diffusion coefficient σ(·) is obtained by allow-

ing the parameter KxgI to vary randomly as (KxgI − ξt), where ξ(·) is a Gaussian white-noise

process. The noise term ξtdt can be written as σdWt (see e.g. Øksendal (2000)), where σ > 0

scales the Wiener process. Notice that the system noise may subsume the effects of terms not

explicitly included in the model.

Thus model (2)-(5) expresses the variation of plasma glucose concentration when the tissue
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glucose uptake rate KxgI is perturbed by stochastic noise σdW . At t0 = 40 minutes from

the start of the EHC experiment, insulin concentrations appear nearly constant, and thus

model (2)-(5) considers no insulinemia dynamics but only the average insulinemia I∗ (see

Picchini et al. (2005, 2006) for a two-dimensional deterministic and a stochastic approach,

respectively). The dynamics of the glucose concentration in its distribution space (Vg) is

attributed to the external glucose infusion rate (Tgx), to liver glucose output (Tghnet) and to

insulin-dependent glucose tissue uptake rate (KxgI), in dependence of the glycemia Xt and

the average insulinemia I∗. Infused glucose raises glycemia after a delay τg due to the time

required to equilibrate the intravenously infused quantity throughout the distribution space:

given that recirculation time is of the order of 30 seconds, we explored three reasonable values

for τg, namely τg = 1, 2 and 3 min, in order to perform a sensibility analysis on the other

model parameters. For these different τg values, we observed no appreciable differences in the

parameter estimates: the reported results refer thus to the case τg = 1.

The external forcing function Tgx(·), which in this model formulation only depends on t,

is bounded between 0 and 5 mmol/min/KgBW, approximately corresponding to the pump

infusion of 50% glucose in water at a maximal rate of 100 ml in a subject of small size (50

Kg). Thus µ(·, ·) and σ(·) fulfill the usual Lipschitz condition and linear growth bound, so that

model (2)-(5) has a unique t-continuous solution (see e.g. section 5.2 in Øksendal (2000)).

Since Tgx(·) changes over time as an external forcing function, the distribution of Xt will

depend on t and thus not be stationary.

When Tgx(·) is constant, the stationary distribution of X∞ := limt→∞Xt is an Inverse

Gamma distribution with shape parameter 1 + 2KxgI/σ
2I∗ and scale parameter 2(Tgx +

Tghnet)/Vg(σI∗)2 (Bibby et al. (2005)) (if X is Inverse Gamma, then 1/X is Gamma). The

asymptotic mean glycemia is G∗ = (Tghnet + T ∗gx)/(KxgII
∗Vg), where T ∗gx is the mean glucose

infusion rate over the last hour of the experiment, see Table 1.

The EHC procedure attempts to reach steady-state with a constant blood glucose concen-

tration and infusion rate. Thus, it is reasonable to assume that the process is approaching

stationarity towards the end of the experiment, which can be used to determine one parameter

from the others. Thus, from the G∗ expression above, an estimate of Tghnet is given by

Tghnet = KxgII
∗G∗Vg − T ∗gx. (6)

7



However, this procedure is only valid if stationarity is approximately reached during the

experiment, otherwise all parameters should be left unconstrained. We therefore performed

two different estimations: one considers Tghnet a free parameter, while the other determines

Tghnet from the stationarity conditions given in equation (6).

Measurement error is assumed negligible, i.e. this error is small compared to the magnitude

of the system noise.

2.4 Parameter estimation

Denote the vector of unknown parameters with θ = (KxgI , Tghnet, Vg, σ), which we want to

estimate. We assume τg = 1 as motivated in Section 2.3. For ease of notation we drop the

reference to θ when not necessary, that is, we write f(x) instead of f(x, θ) for a given function

f . Suppose that n + 1 glycemia observations x0, x1, ..., xn generated from model (2)-(5) are

available for a single subject at non-stochastic time-points 40 = t0 < t1 < · · · < tn. To

compute the log-likelihood (1), the transition density pX of X can be approximated in closed-

form by a Hermite expansion up to a order K (Egorov et al. (2003)). We choose K = 2,

which has been shown often to be sufficient (Aït-Sahalia (2002b), Jensen and Poulsen (2002),

Egorov et al. (2003)). The order K = 2 transition density approximation is given by

pX(x, t|xs, s) ≈ p(2)
X (x, t|xs, s) =

1
σ(x)∆1/2

p
(2)
Z

(
γ(x, s+ ∆)− ys

∆1/2
, s+ ∆|ys, s

)
, s < t (7)

where ∆ = t − s (and in our case ∆ is constantly equal to 5 min), ys is the value of the

transformed process Y at time s, and Y is defined by Yt = γ(X, t), where

γ(x, t) =
∫ x du

σ(u, t)

and the lower bound of integration is an arbitrary point in the interior of the state-space of

X (i.e. the constant of integration is irrelevant). By Itô’s lemma, Y is the solution to the

following SDE

dYt = µY (Yt, t)dt+ dWt,

where

µY (y, t) =
µ(γ−1(y, t), t)
σ(γ−1(y, t))

+
∂γ

∂t
(γ−1(y, t), t)− 1

2
∂σ

∂x
(γ−1(y, t)).
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Define now a further transformation Zt = (Yt − ys)/∆1/2 whose transition density pZ can be

approximated in closed form as (Egorov et al. (2003))

p
(2)
Z (z, t|ys, s) = φ(z)

4∑
k=0

β
(2)
k (t, ys, s)Hk(z) (8)

where φ(·) is the standard normal pdf and the Hk’s are the Hermite polynomials given by

H0(z) = 1, H1(z) = −z, H2(z) = z2 − 1, H3(z) = −z3 + 3z, H4(z) = z4 − 6z2 + 3.

The coefficients β(2)
k for model (2)-(5) are given in appendix.

For model (2)-(5) we have

Yt ≡ γ(Xt, t) =
1
σI∗

ln(Xt) ⇒ Xt ≡ γ−1(Yt, t) = eσI
∗Yt

thus

µY (Yt, t) =
Tgx(t− τg) + Tghnet
σVgI∗ exp(σI∗Yt)

−
KxgI

σ
− σI∗

2
.

Once the β(2)
k ’s are obtained, p(2)

Z and p(2)
X can be computed using equations (7)-(8). Thus, we

approximate the log-likelihood ln(θ) with its order K = 2 expansion

l(2)
n (θ) =

n∑
i=1

ln p(2)
X (xi, ti|xi−1, ti−1), (9)

and then l
(2)
n can be maximized w.r.t. θ in order to obtain an (approximated) maximum

likelihood estimate θ̂(2) of θ, which is consistent under mild regularity conditions (Egorov

et al. (2003)).

The maximization of (9) is fast since, unlike most of the other available estimation pro-

cedures, simulation of many sample paths from the X process is not required to approximate

pX (see also the Discussion).

3 Results

The parameter Tghnet was either determined from (6), or it was estimated as a free parameter.

In the latter case the estimates attained physiologically unacceptable values: this may be due

to overparametrization phenomenon, and the corresponding results are therefore not reported.
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The results for Tghnet determined by (6) are reported in Table 4. For each subject and for

each parameter Table 4 reports individual estimates and the corresponding 95% confidence

intervals; see the appendix for details. All parameters were well identified. For one subject

the parameter estimates resulted physiologically unacceptable and were thus marked with an

‘NA’. Notice that the diffusion coefficient estimates (σ̂) are all much larger than zero (a σ̂ ' 0

would indicate that a deterministic model is sufficient to describe the time-course of glycemia

in the given subject). Therefore the dynamical process which best represents the observations

is a stochastic process with non-negligible system noise. Pictorial evidence of the diffusion

magnitude is given in Figure 1, as described below.

Figure 1 reports, for five subjects, the observed glycemias, the empirical mean of 2000

simulated trajectories of the SDE (2) generated with the Milstein scheme with a stepsize

of 0.1 min (Kloeden and Platen (1992)) - which converges to E(Xt|X0) when the number

of trajectories goes to infinity - as well as one simulated trajectory and the empirical 95%

confidence bands of trajectory values, for every simulation time between 40 min and the last

measured glycemia value. Moreover, for each simulated glycemia trajectory, the corresponding

glucose infusion rates curve was simulated according to the algorithm in DeFronzo et al.

(1979) from time t0 = 40 onward: that is, the clamp procedure was virtually performed

for each glycemia trajectory. Figure 2 reports the plot of the estimates of KxgI vs σ: a

positive correlation is assessed (r = 0.89); the slope of the linear regression fit equals 0.112

(p−value < 0.001). This significant correlation between tissue glucose-uptake rate (KxgI) and

system noise coefficient (σ) may indicate the incorporation of the effects of several physiological

mechanisms increasing tissue glucose uptake as glycemia peaks become more frequent in the

KxgI coefficient value (in the context of a model with fixed insulinemia).

In order to assess the appropriateness of an order K = 2 for the loglikelihood approxima-

tion, given a constant ∆ of 5 min and the available number of glycemia points, a Monte Carlo

study was performed. For a given subject 1000 datasets of glycemia observations and glucose

infusion rates were simulated using the parameter estimates given in Table 4, as explained

below: each set of glycemias was created by simulating one trajectory from model (2)-(5)

using the Milstein scheme, and extracting the simulated glycemias by linear interpolation at

the time points {ti} corresponding to the actual measurements. The generated trajectory was

“controlled” by a simulated clamp procedure, in the same way described above to produce
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Figure 1. The parameter estimation procedure was performed for each simulated dataset,

thus obtaining 1000 new estimates for the parameters of the considered subject. The Monte

Carlo procedure was performed on a total of five subjects (those corresponding to the most

physiologically reasonable estimates) and, for each parameter, Table 5 reports the sample

mean of the obtained estimates and the approximate 95% confidence interval (from the 2.5th

to the 97.5th percentile). The original estimates (Table 4) fall well within the 95% confidence

intervals of the corresponding estimates in Table 5, even though the original estimates result

somewhat different from the corresponding Monte Carlo mean values, and the relative 95%

confidence intervals are rather wide. In fact, the empirical distributions of the 1000 estimates

often appears skewed and some outliers bias the results. In order to protect against those

outliers, Table 5 also reports the medians and the 1st-3rd quartiles of the estimates, and it can

be appreciated how the medians appear closer to the original estimates, and how skewed the

distributions of estimates are. In particular the KxgI parameter, which is very important for

our study since it represents an index of “insulin sensitivity”, results to be well identified. Thus,

a K = 2 order of approximation should provide sufficiently accurate results, even though they

may also be improved using a smaller ∆, see Stramer and Yan (2007).

4 Discussion

Stochastic differential models allow for a general representation of the system’s variability

structure, by considering the action of dynamical random terms (stochastic noise) perturbing

the system state at each instant. SDE models are also attractive because they represent a

generalization of their deterministic counterparts (ODE, PDE, DDE), since when setting the

stochastic noise equal to zero (i.e. σ ≡ 0 in our case) the SDE reduces to a deterministic

differential model, for which estimation methods are well-known.

SDE models have been extensively used in the last decades in e.g. investment finance,

turbulent diffusion, population dynamics, polymer dynamics, biological waste treatment, neu-

ronal models and hydrology. The metabolism of glucose and insulin has not yet received atten-

tion from SDE modellers, except from few recent contributions (Tornøe, Jacobsen, Pedersen,

Hansen and Madsen (2004), Tornøe, Jacobsen and Madsen (2004), Andersen and Højbjerre

(2005), Picchini et al. (2006)).

However, in general SDE models are not as often implemented as their deterministic coun-
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terparts, essentially because fast estimation methods are lacking. In fact, there exist estimation

tools for general SDE models, but they are computationally expensive. The difficulty when

using maximum likelihood-based estimation approaches for SDE models is that the transition

density function of the underlying stochastic process is often unknown. One approach is to

compute an approximation to the transition density function, e.g.: (i) solving numerically the

Kolmogorov partial differential equations satisfied by the transition density (Lo (1988)); (ii)

deriving a closed-form Hermite expansion to the transition density (Aït-Sahalia (2001, 2002b),

Egorov et al. (2003)); (iii) simulating many times the process to Monte-Carlo integrate the

transition density (e.g. Pedersen (1995), Hurn and Lindsay (1999), Brandt and Santa-Clara

(2002), Durham and Gallant (2002), Nicolau (2002)): this methodology is known as simulated

maximum likelihood (SML). Recently a novel method using exact simulation was proposed

(Beskos et al. (2006)).

Each of these techniques have been successfully implemented by the aforementioned au-

thors, but each has their limitations. Aït-Sahalia (2002a) notes that methods (i) and (iii)

above are computationally intense and poorly accurate. Conversely Durham and Gallant

(2002) build on their importance sampling ideas in order to improve the performance of Ped-

ersen’s (1995) (or equivalently Brandt and Santa-Clara’s (2002)) method and point out that

method (ii) above, while general, accurate and fast, can be actually applied to a small number

of multidimensional models. In fact, the coefficients to the transition density expansion em-

ployed in method (ii) are difficult to obtain for multidimensional nonlinear irreducible models

(that is for processes having non-commutative noise, see e.g. Kloeden and Platen (1992)).

Therefore, instead of considering an already developed deterministic model for glycemia and

insulinemia observations (Picchini et al. (2005)) to accomodate stochastic-noise, we reverted

to a simpler model, considering only glycemia observations in near steady state conditions

(see Picchini et al. (2006) for a different stochastic approach). Thus we were able to apply

the extension of the Aït-Sahalia’s method for time-inhomogeneous SDEs proposed by Egorov

et al. (2003) in order to estimate all parameters simultaneously: in fact, once the coefficients of

the transition density expansion have been determined to the desired order, the loglikelihood

function can be expressed in closed form as an expression depending on the glycemia observa-

tions, the glucose infusion rates, the unknown parameters and time. In this way the simulation

of a large number of process trajectories is not required. The likelihood function can then
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be optimized rapidly (few seconds are required on a 3.0 GHz Intel Pentium IV with 512 MB

of RAM), and it has been proved that this method leads to consistent estimates of the true

parameter values (Egorov et al. (2003)). In fact, in a previous work (Picchini et al. (2006))

we were unable to estimate simultaneously all the parameters of a two-dimensional SDE, be-

cause we were using a “simulated maximum likelihood” approach, which was computationally

demanding.

In this paper we adopted the procedure described above to estimate the parameters of a

SDE model of the glycemia dynamics observed during a Euglycemic Hyperinsulinemic Clamp

procedure (EHC), performed on human subjects. The EHC is widely considered the tool of

choice for the assessment of insulin sensitivity, in spite of its labor-intensive execution, due to

the simple interpretation which is usually attributed to the obtained results (DeFronzo et al.

(1979), Zierler (1999)). The favor with which the EHC is viewed in this context makes it so

that many databases of clamp results have been built in recent years by several diabetological

research groups. The present work goes in the direction of trying to enhance the value of this

large collection of experimental data, improving, by means of a suitable mathematical model,

on the rather elementary determination of insulin sensitivity from clamp data, typically used

by clinical researchers (DeFronzo et al. (1979)).

In conclusion, the present work considers a method which, while easily applicable only to

models of moderate complexity, is however fast, robust and can introduce the demonstrably

essential concept of system noise in this branch of physiological modeling. By comparison

with other currently used methods (e.g. Bibby and Sørensen (1995), Pedersen (1995), Durham

and Gallant (2002)), using an Aït-Sahalia/Egorov et al. expansion requires previous explicit

calculation of the expansion coefficients: this can be often done without problems using any

one of several symbolic calculus programs. Once this step is completed for a given model, the

parameter estimation process takes few seconds even on a normal, single PC, without making

recourse to clusters or expensive computers.
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ish Medical Research Council and the Lundbeck Foundation to S. Ditlevsen.
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Appendix

Density expansion coefficients

Here we report the expressions for the parameters β(2)
k appearing in equation (8). For model

(2)-(5) we have

β
(2)
0 (t, ys, s) = 1

β
(2)
1 (t, ys, s) = −∆1/2ψ − ∆3/2

4
(2ψ01 + 2ψψ10 + ψ20)

β
(2)
2 (t, ys, s) =

∆
2

(ψ2 + ψ10) +
∆2

12
(6ψψ01 + 6ψ2ψ10 + 4ψ2

10 + 4ψ11 + 7ψψ20 + 2ψ30)

β
(2)
3 (t, ys, s) = −∆3/2

6
(ψ3 + 3ψψ10 + ψ20)

β
(2)
4 (t, ys, s) =

∆2

24
(ψ4 + 6ψ2ψ10 + 3ψ2

10 + 4ψψ20 + ψ30)

where

ψ = µY (ys, s) =
Tgx(s− τg) + Tghnet
σVgI∗ exp(σI∗ys)

− KxgI

σ
− σI∗

2

ψ01 =
∂µY (y, s)

∂s
|y=ys

=
1

VgσI∗ exp(σI∗ys)

∑
j;νj≤(s−τg)

5(λj − λj−1)(s− τg − νj)4νj
(νj + (s− τg − νj)5)2

ψ10 =
∂µY (y, s)

∂y
|y=ys

= −Tgx(s− τg) + Tghnet
Vg exp(σI∗ys)

ψ11 =
∂2µY (y, s)
∂y∂s

|y=ys
= − 1

Vg exp(σI∗ys)

∑
j;νj≤(s−τg)

5(λj − λj−1)(s− τg − νj)4νj
(νj + (s− τg − νj)5)2

ψ20 =
∂2µY (y, s)

∂y2
|y=ys

=
(Tgx(s− τg) + Tghnet)σI∗

Vg exp(σI∗ys)

ψ30 =
∂3µY (y, s)

∂y3
|y=ys = − (Tgx(s− τg) + Tghnet)(σI∗)2

Vg exp(σI∗ys)

and the index j in the summations spans the glucose infusion rates recorded up to time s− τg.

Approximated parameter confidence intervals

Denote with θ the vector of the free unknown parameters. Under mild regularity conditions θ̂(2) is a

consistent estimator of θ (Egorov et al. (2003)), and an approximated confidence region for θ can be

obtained from the following:

i1/2n (θ)(θ̂(2) − θ) ≈ G−1/2
n (θ)×N(0k, Ik) (10)
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where N(·, ·) denotes the normal distribution, k is the dimension of θ, 0k and Ik are the k-dimensional

array of zeros and the k × k identity matrix, respectively, Gn(θ) = i
−1/2
n (θ)Hn(θ)i−1/2

n (θ) is a (k × k)

matrix, Hn(θ) = −
∑n
i=1 l

′′

i (θ) and in(θ) = diag
∑n
i=1 Eθ[l

′

i(θ)l
′

i(θ)
T ] (the expected Fisher informa-

tion). Here li(θ) = ln p(2)
X (xi, ti|xi−1, ti−1), and the superscripts

′
and T denote differentiation with

respect to θ and transposition. We obtained l
′′

i (θ) via a symbolic calculus program (the expressions

for the second partial derivatives of li(·) are not reported since they are considerably lengthy), and

Eθ[l
′

i(θ)l
′

i(θ)
T ] was substituted with −l′′i (θ), so we considered the observed Fisher information in place

of the expected Fisher information, since it often makes little difference numerically (e.g. Barndorff-

Nielsen and Sørensen (1994), p. 133). Therefore, using these settings we have that Gn(θ) equals Ik

and (10) becomes (
−diag

n∑
i=1

l
′′

i (θ)
)1/2

(θ̂(2) − θ) ≈ N(0k, Ik) (11)

and substituting l
′′

i (θ) with l
′′

i (θ̂(2)) we have that, approximately,

(
−

n∑
i=1

l
′′

i (θ̂(2)j )
)1/2

(θ̂(2)j − θj) ≈ Tn−p (12)

where Tg is the Student distribution with g degrees of freedom and θj is the jth element in the

p-dimensional vector of free parameters θ (thus, p = 3 when Tghnet is determined from the other

parameters and p = 4 otherwise). Then we used (12) to derive the approximated 95% confidence

intervals in Table 4.
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Table 1: Metabolic characteristics for the subjects: T ∗
gx and G∗ are the mean glucose infusion rate and the

mean glicemia over the last 60 min of the clamp procedure; I∗ is the mean insulinemia over the time-interval
40-300 min.

Subject G∗ [mM ] I∗ [pM ] T ∗gx [mmol/min/kgBW ]

1 3.68 473.00 0.062
2 4.76 612.00 0.027
3 5.28 688.48 0.054
4 5.09 630.82 0.028
5 20.03 507.35 0.029
6 19.33 467.39 0.033
7 5.33 596.60 0.026
8 18.51 531.08 0.051
9 5.79 526.29 0.032
10 5.37 489.03 0.055
11 5.35 501.33 0.015
12 22.59 472.70 0.059
13 4.81 609.91 0.027
14 4.53 684.88 0.057
15 3.67 482.83 0.038
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Variables
t [min] time from insulin infusion start
Xt [mM ] plasma glucose concentration at time t
Tgx(t) [mmol/min/kgBW ] glucose infusion rate at time t

Table 2: Definitions of the variables.
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(b) Subject 6
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(c) Subject 7
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(d) Subject 9
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Figure 1: Observed glycemias (◦), empirical mean curves of the stochastic process defined by (2)-(5) (bold
solid lines), 95% empirical confidence curves (dashed lines) and one simulated trajectory, when Tghnet is
determined.
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Figure 2: Plot of σ̂ vs K̂xgI and linear regression fit. Correlation coefficient r = 0.89; linear regression slope
β = 0.112 (p− value < 0.001).
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