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1. Introduction 

Cancer is a disease that affects everyone. Either a family member, a close friend, 
or yourself will most likely be diagnosed with cancer during your lifetime. One in 
ten Swedish women in today’s society will get a breast cancer diagnosis during 
their lifetime. However, with increasing age and better universal health care, the 
occurrence of cancer will increase, and is expected to affect half of the population 
by 2030 (Torre, Bray et al. 2015). Hence, there is a need for better treatments, 
but also to better understand and subgroup different cancers. With new sub-
populations, the need of additional treatment strategies of cancers rises, to further 
explore the concept of personalized medicine.  

After the millennial shift, the human genome was fully sequenced and published 
(Lander, Linton et al. 2001, Venter, Adams et al. 2001). By having the complete 
map to all human genes at hand, technologies targeting DNA, mRNA and 
proteins could be further refined.  

The genome contains between 19,000 – 20,500 protein-coding genes, but makes 
up less than 2% of the genome (Clamp, Fry et al. 2007, Ezkurdia, Juan et al. 
2014). There is no accepted number of mRNAs possibly expressed yet defined 
(Sorek, Dror et al. 2006), but up to two thirds of all genes can produce different 
mRNAs (Johnson, Castle et al. 2003). To further add function and diversity, once 
mRNA has been translated, each protein will differ by means of post-translational 
modifications (PTMs) (Khoury, Baliban et al. 2011). By exploring the proteins 
in disease, a more precise picture of what is happening in that disease is achieved. 
By using antibodies as specific binders, we can capture part of the proteome that 
may otherwise be difficult to analyze. 

The knowledge of antibodies has a long history. The first description of the 
antibody came from Emil von Behring and Shibasabura Kitasato in 1890, when 
they showed that the transfer of sera from immunized animals to susceptible 
animals cured diphtheria (Bering and Kitasato 1890). The first model was 
proposed by Paul Erlich in 1900, where he hypothesized that a molecule on cells 
consisted of multiple sites for binding foreign substances, or antigens (Davies and 
Chacko 1993). In 1948, Astrid Fragraeus described the plasma cell as the forming 



 14 

cell of antibodies (Fagraeus 1947), and in 1959, Rodney Porter and Gerald 
Edelman independently published the structure first of the antibody (Porter 1959, 
Edelman, Heremans et al. 1960).  

Antibodies has long been characterized as having high binding specificity and 
selectivity, becoming of great use in research, diagnostics, and therapeutics. The 
use of antibodies as tools became easier after phage display became available, 
allowing the selection of binders through screening (Smith 1985). 

Affinity proteomics is a field of proteomics, where using protein-specific catchers, 
or detection probes, the protein expression levels can be determined. Most often 
antibodies are used, but other choices such, as affimers (Sharma, Deacon et al. 
2016) or aptamers (Brody and Gold 2000) can be used. By designing antibodies 
to target foremost components of the immune system, we have created an 
antibody microarray technology platform with tremendous versatility and 
strength (Borrebaeck and Wingren 2007, Borrebaeck and Wingren 2011). The 
microarray platform combines several hundred antibodies specific against selected 
target proteins, giving a relative quantification read-out. Through stringent data 
analysis, the difference between two states generates a candidate biomarker 
signature generally consisting of typically 5 to 25 antibodies (Ingvarsson, Wingren 
et al. 2008, Carlsson, Wingren et al. 2011, Nordstrom, Wingren et al. 2014, 
Delfani, Sturfelt et al. 2017).  

Combining antibodies and mass spectrometry, an in-house developed method 
named Global Proteome Survey (GPS) (Wingren, James et al. 2009, Olsson, 
Wingren et al. 2011, Olsson, James et al. 2012), allows affinity enrichment of 
multiple peptides, combined with subsequent identification and quantification.  

The aim of this thesis has been the discovery of molecular signatures that reflects 
prognostic or diagnostic patterns in cancer. This work is based on four original 
papers, targeting pancreatic cancer and breast cancer. 

Using the antibody microarray platform, we have in this thesis presented three 
papers, generating biomarker signatures regarding breast cancer diagnostics (paper 
II and paper IV). In paper II we investigate the shaping of a tumor by the immune 
system, and paper IV focused on histological grade. The third microarray study 
investigated pancreatic cancer diagnosis, comparing serum samples of diseased 
compared to both healthy and benign controls (paper I). Finally, using the GPS 
platform, we characterized 50 primary breast cancer tumors, and found a 
signature of proteins reflecting histological grade (paper III).   
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2. Affinity proteomics 

Affinity proteomics is most often carried out using antibodies, or engineered 
fragments thereof, to analyze protein expression, modifications, and distribution 
in health and disease (LaCava, Molloy et al. 2015).  

During the last decades, the antibody microarray technology has evolved into an 
important tool for simultaneously measuring a large number of proteins in a 
specific and sensitive manner while consuming only minute amounts of the 
sample (Haab 2006). Many different types of samples can be analyzed in a high-
throughput manner, allowing for the search of disease-specific markers in complex 
samples due to the high sensitivity, the resolution and reproducibility of antibody-
based microarrays. 

2.1. Proteomics 

The central dogma states that DNA gives rise to RNA, and RNA gives rise to 
proteins (Crick 1970). Debated for long, however it is evident that genes can 
produce several mRNAs due to gene alternative splicing (Johnson, Castle et al. 
2003). The function of a translated protein can then vary due to, among other 
things, post-translational modifications (PTMs) (Khoury, Baliban et al. 2011).  

Proteomics is the study of proteins in a specified compartment, at a given time 
point. Since the proteome will differ in different tissues, vary under stress or 
disease, the measurement of proteins can give more information than genetics. 
The correlation between up- or down-regulated mRNA levels with the 
corresponding protein expression levels is debated (Gygi, Rochon et al. 1999, Lu, 
Vogel et al. 2007, Gry, Rimini et al. 2009). However, the expressed levels of 
mRNA and proteins are dynamic, an mRNA can be highly expressed and have 
high turnover rate so that no protein is expressed at all, and vice versa 
(Hodgkinson, Eagle et al. 2010). While proteins in the end are the doers of the 
cells mechanisms and what makes a process work, mRNAs are the messengers that 
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the cells send to communicate and initiate the process. By measuring the protein 
levels, we try to decipher what has taken place in a given cell, organ, blood sample, 
or tumor, at a given time point.  

2.2. The antibody 

As a part of the adaptive and humoral immune response, the antibody has the 
ability to bind specifically, and with high affinity to a pathogen – the antigen. In 
its full format, an antibody consists two identical heavy chains, and two light 
chains. Together, they build a Y-shaped structure, as described in Figure 1, where 
the two arms bind to the antigen, while the stem has an effector function.  

The antigen binding site of the antibody consist of six complementary 
determining regions (CDRs), three located on the light chain (blue in Figure 1) 
and three on the heavy chain (orange in Figure 1. By molecular cloning, the 
antigen-binding parts can be isolated and expressed as different constructs, 
containing the variable, antigen-binding domains of the full antibody. Using only 
the top of variable antibody arm, and connecting these with a linker, a single-
chain fragment variable (scFv) is constructed, but unlike a complete antibody, 
only one antigen binding site is present (Huston, Levinson et al. 1988). Cloning 
of the whole arm creates a fragment antigen binding (Fab) construct, containing 
both variable, and constant domains.  

The generation of antibodies against a specific protein (or compound) can be 
generated in several ways. Polyclonal antibodies are generated by immunizing an 
animal with the protein, and harvesting blood after a period of time. Polyclonal 
antibodies are heterogeneous, binding several epitopes of the protein, but often 
with lower specificity and potentially more non-specific binding (Stills, Suckow 
et al. 2012). In comparison, monoclonal antibodies all originates from the same 
B-cell, and are identical in their sequence. Production of monoclonal antibodies 
results in only one type of antibody, all binding the same epitope of the targeted 
protein. Hybridoma technology allowed for specific B-cells to be immortalized, 
and used for production of intact immunoglobulins (Milstein 1999).  

Antibody libraries are created by either harvesting naturally occurring variable 
parts of the antibody repertoires from individuals, and cloned into vectors, 
allowing the selection of specific members that display the desired characteristics 
(Jirholt, Ohlin et al. 1998). Alternatively, synthetic libraries are constructed, by 
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mimicking the diversity found in nature with e.g. error-prone PCR, and cloned 
into a vector (Hoogenboom and Winter 1992).  

Using molecular cloning allows us to use phage display for antibody libraries 
(Smith 1985). Through phage display, one can select and screen for antibodies 
with a specific and sensitive binding against most compounds of choice. This 
generates unique clones containing the genes encoding the variable domains, and 
can be transformed into different constructs, such as scFv, Fab, or a full 
immunoglobulin.  

 

Figure 1: A schematic structure of a complete antibody, and the different components described. The heavy 
chain is in orange, the light chains in blue.  

2.3. The microarray platform 

The experiments conducted in papers I-III in this thesis was based on an in-house 
developed and optimized recombinant antibody microarray platform, designed 
for protein expression profiling of complex proteomes (Ingvarsson, Larsson et al. 
2007, Wingren, Ingvarsson et al. 2007, Delfani, Dexlin Mellby et al. 2016). In 
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the works presented in this thesis, close to 300 unique recombinant scFv has been 
used, targeting around 100 serum proteins. The scFv used on the microarray were 
selected against mainly immunoregulatory proteins, selected from three different 
phage display libraries (Soderlind, Strandberg et al. 2000, Sall, Walle et al. 2016). 
The antibody microarray platform allows the profiling of multiple proteins at the 
same time, in a specific and sensitive manner. The robustness of the antibody 
microarray platform further allows the targeting of both low- and high-abundant 
proteins in even crude sample formats, such as serum.  

The microarrays are produced using a non-contact printer that dispenses ~300 pL 
sized droplets of purified scFv onto a solid slide surface. All microarray assay 
experiments in this thesis used ~300 different antibodies, but updated versions of 
the platform contain closer to 400 antibodies with an added variety of targets 
(Delfani, Dexlin Mellby et al. 2016, Gerdtsson, Wingren et al. 2016). These are 
all printed onto a surface no larger than a fingernail. 

Each slide contained up to 14 sub-arrays, and 10 slides were produced per day, 
allowing 140 samples to be analyzed per day and workstation. After production 
of the slides, biotin-labelled samples were added to each sub-array, and proteins 
bound by the antibodies were detected by adding a streptavidin-coupled 
fluorophore. Using a confocal laser scanner, the intensity of the fluorophore was 
measured and quantified. A schematic set-up of the procedure can be seen in 
Figure 2.  
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Figure 2. Overview of the experimenatal procedure for the antibody microarray platform.  
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However, by directly labelling the sample proteins with biotin, the epitope on the 
protein risk being masked, which could result in a reduced or even lost antibody 
reactivity. This problem could, however, be bypassed, or minimized, by using 
several antibody clones directed against the same protein, but targeting different 
epitopes (Borrebaeck and Wingren 2007, Borrebaeck and Wingren 2009). 
Quantified levels were used as a relative measurement of protein bound at each 
spot. Altogether, this allowed us to compare protein profiles of e.g. diseased 
samples to healthy or other controls, ultimately enabling us to decipher unique 
biomarker signatures for the targeted disease.  

There are some limitations with the antibody microarray, e.g. availability of 
binders, and the production of both binders and arrays. Accessibility to new 
binders can be achieved by the availability of a phage display library, often 
containing up to 1010 members or more, thus with a wide range of specificities 
(Soderlind, Strandberg et al. 2000, Sall, Walle et al. 2016). However, production 
of binders remains a bottleneck, as each clone is produced separately. During the 
last years, the capacity of production of clones to the microarray has been 
increased by implementing a high-throughput protocol. But by scaling up the 
capacity from ~30 to ~300 clones per week, the production of the slides becomes 
another issue. But with the use of a non-contact printer, several slides can be 
printed each day. Frontline research aiming for novel array design, bypassing at 
least some of these limitations have been presented, based on engineered 
antibodies carrying e.g. unnatural amino acids (Brofelth, Stade et al. 2017) 
Further, by equipping the antibodies with a specific DNA-tag, self-addressing 
antibodies could be designed that could localize to pre-targeted sites on the slide 
on their own, thus eliminating the need of having to print the antibodies one by 
one.  

2.4. Immunosignaturing 

When a disease occurs in the body, the immune system will react. Depending on 
the disease, a multitude of reactions will occur and the immune system is the tool 
that the body uses, with the aim to clear the disease. By surveying the immune 
response, and its components to detect changes in protein expression levels, we 
aimed to find disease-specific patterns, or signatures, that could be used to 
diagnose and classifies a disease. Our hypothesis was thus that by surveying the 
immune system, the response to a given disease would be reflected by a specific 
and biologically relevant clinical immunosignature (Sreekumar, Laxman et al. 



 21 

2004, Ho, Hassan et al. 2005, Dunn, Koebel et al. 2006, Hughes, Cichacz et al. 
2012).  

The antibody microarray platform target mainly immunoregulatory proteins 
present in blood, giving a rapid snapshot of disease-specific alterations. Targets 
include cytokines, chemokines, adhesion molecules, and complement 
components. Recently added antibodies target among others, enzymes and 
signaling components. Each individual protein may not be indicative of disease, 
but several proteins together could reflect disease-associated changes, like a 
molecular fingerprint.  

The interactions between cancer and the immune system are many, and during 
different phases of tumor development, both the cancer and the immune system 
adapts and evolve (Dunn, Bruce et al. 2002). The hallmarks of cancer (Hanahan 
and Weinberg 2011) clearly shows the importance for cancer cells to suppress and 
evade the immune system, to progress and survive. The concept of ‘cancer 
immunoediting’ describes three consecutive phases where the immune system 
shapes the cancer – elimination, equilibrium, and finally escape (Shankaran, Ikeda 
et al. 2001, Dunn, Koebel et al. 2006)  

Using the antibody microarray technology platform, diagnostic and/or prognostic 
immunosignatures have previously been reported, for among others B cell-
lymphoma (Pauly, Smedby et al. 2014), bladder cancer (Sanchez-Carbayo, Socci 
et al. 2006), breast cancer (Carlsson, Wingren et al. 2008, Carlsson, Wingren et 
al. 2011), colorectal cancer (Madoz-Gúrpide, Cañamero et al. 2007), cystic 
fibrosis (Srivastava, Eidelman et al. 2006), glioblastoma (Carlsson, Persson et al. 
2010), H.pylori-induced gastric adenocarcinoma (Ellmark, Ingvarsson et al. 
2006), prostate cancer (Nordstrom, Wingren et al. 2014), and systemic lupus 
erythematosus (SLE) (Delfani, Sturfelt et al. 2017). Together, these studies 
showed the robustness and applicability of the antibody microarray technology to 
address clinical unmet needs in disease. 

2.5. Microarray data handling 

 

After the experimental work is finished, data handling of the raw data starts. 
Compared to genomic arrays, non-biological variations are more platform 
dependent when using protein microarrays (Shi, Reid et al. 2006, Tarca, Romero 
et al. 2006), such as the antibody microarray. No standardized guidelines 
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regarding handling of data from antibody microarrays yet exists (Hamelinck, 
Zhou et al. 2005, Diez, Dasilva et al. 2012, Chiechi 2016). Normalization is used 
to eliminate any non-biological variations from the dataset, but if not carefully 
performed, possible biological relevant variation could be removed as well 
(Wolkenhauer, Moller-Levet et al. 2002). In 2016, the protein microarray 
database was launched, to archive and analyze protein microarray data (Xu, 
Huang et al. 2016). The effort is of great importance, to bring a standardized 
work frame for data analysis. However, the difference in protein microarrays, and 
the potential sources of variations across different applications, will require many 
generalizations for a one-fit-all solution. As of today, the notion of a consensus in 
data handling seems far away, since a fundamental difference among platforms are 
present. Further, both the number of samples, analytes, but also the scientific 
question will differ between researchers and platforms.  

2.5.1. Pre-processing 
Pre-processing involves quantification from scanned images, adjustment of any 
non-specific background binding, outlier detection, and normalization. The raw-
intensities from spots varies from background levels (low hundreds) to saturated 
(over 65,000). Depending on several factors, such as subarray position, day of 
analysis, or slide, intensities of the same analyte could vary. This calls for a 
stringent pre-processing of raw-data to minimize the effect these non-biological 
factors impose on the dataset.  

The pre-processing compensates for non-biological sample variations, such as day-
to-day or array-to-array variations. The quantified signals from scanned slides are 
adjusted for background noise, outliers are eliminated, and dataset is normalized. 
Based on our experience with the platform, two major normalization strategies 
have been implemented to correct for day-to-day and array-to-array variation. 
Semi-global normalization corrects for day-to-day variations (Carlsson, Wingren 
et al. 2008, Ingvarsson, Wingren et al. 2008), while commonly used subtract by 
group mean strategy handles array-to-array variation. A combination of these was 
used in paper I and paper II, while in paper IV, only semi-global normalization 
was implemented, due to that all samples were analyzed on the same day. In semi-
global normalization, we select 15-20% of the analytes with the lowest overall 
variation across the entire dataset, and use these to create a scaling factor 
(Ingvarsson, Wingren et al. 2008). Recent research regarding the normalization 
of antibody microarray technology raw-data shows that application of Combat 
normalizing strategy was as efficient at eliminating non-biological variation, while 
still maintaining relevant biological variation (Delfani, Dexlin Mellby et al. 2016). 
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2.5.2. Data-analysis 
When analyzing data from the antibody microarrays, we ask two questions, (i) 
which proteins are differentially expressed between our groups (often sick versus 
healthy), and (ii) can a protein expression profile be defined, capable of classifying 
the groups.  

To answer the first part, standard statistical hypothesis testing, both parametric 
(e.g. t-test or ANOVA) and non-parametric (e.g. Wilcoxon) have been 
implemented. Using ANOVA, several groups can be compared (e.g. healthy, 
diseased and benign), and any variation will be statistically assessed. Wilcoxon 
allows comparison between related samples, such as matched controls. 

For the purpose of classifying samples, we implemented a support vector machine 
(SVM) (Furey, Cristianini et al. 2000, Dupuy and Simon 2007). A SVM creates 
a hyperplane between two groups after training the machine, and depending on 
which side of the hyperplane a sample lands, it is predicted as either diseased or 
healthy. We utilized two major ways of running the SVM, depending on the 
number of samples analyzed.  

Optimally, analyses are done by randomly dividing the dataset into two sets – a 
training set with two thirds of the samples, and a test set with one third of the 
samples. The training set is used to calibrate the model and setting up the 
hyperplane. Then the test set samples are tested, and the model can be evaluated. 
Important when running this strategy is to not have any samples in the test set if 
they were involved in the training, as this causes over-fitting. Several rounds of 
dividing the dataset into training and test sets can be done. 

The second way, when the number of samples are not sufficient to adopt the 
training and test set model, uses all but one sample to train a model, and the 
remaining sample is used to test the model (Brody and Gold 2000). Depending 
on where in the 3D-structure, or the distance to the hyperplane, a samples receives 
a decision value. Once all samples have received a decision value, the model can 
be evaluated. Common for both models is the generation of a receiver operating 
characteristic (ROC) curve. One axis shows sensitivity, or true positives, the other 
specificity, or the false positive rate. This plot illustrates the performance of the 
classification, and by calculating the area under the curve (AUC), a measure of 
the classification can be generated. An AUC value of 1.0 is a perfect separation, 
and 0.5 can be seen like tossing a coin.  

In addition to the SVMs, using an algorithm called backwards elimination, we 
condense the signature from ~300 antibodies to only contain those antibodies that 
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together provides the highest classification power (Carlsson, Wingren et al. 2011). 
This algorithm was applied to the data in papers I, II and IV.  

The algorithm excludes one antibody at the time from the dataset, performs a 
leave-one-out cross validation of the samples, generating a ROC-curve for each 
dataset. This process is done for all antibodies in the dataset, until all has been 
excluded once. The antibody that was excluded when the smallest error in the 
classification was achieved will be eliminated from the dataset. The procedure is 
repeated until only one antibody remains. The combination of antibodies that 
gave the smallest error gives an approximate number if antibodies needed for 
optimal classification.   

In paper IV, we also implemented a bootstrap strategy to increase the power of 
the analysis. In this approach, we randomly picked samples to create the training 
set, and each sample was allowed to be picked several times. Those samples that 
were not selected could instead be added to the test set. By reiterating this process 
one hundred times, all samples were left excluded from the trainingset, and could 
be evaluated in the model. 

2.6. Mass spectrometry 

Mass spectrometry (MS) has evolved since the publication of the human genome, 
when the blueprints for all proteins was made available (Lander, Linton et al. 
2001, Venter, Adams et al. 2001). With the seemingly endless number of protein 
isoforms and modifications present, MS has been hailed as the method for protein 
discovery and quantification (Nilsson, Mann et al. 2010). The mass spectrometer 
is an analytical technique that measures not mass, but the mass-to-charge (m/z) 
ratio, of ions. The information collected is used to elucidate the composition of 
the analyzed sample. Early in the development of MS, only smaller compounds 
could be analyzed. Through the discovery of electrospray ionization (ESI) (Fenn, 
Mann et al. 1989), larger molecules such as proteins and peptides could be 
analyzed as well, though limitations still exist. The experimental procedure for 
analyzing a sample on a mass spectrometer consists of preparation of sample, 
separation of the sample, and acquisition of mass spectra.  

Preparation of the sample usually involves an enzymatic cleavage of proteins to 
generate peptides. In this thesis, Trypsin has been the enzyme of choice, due to 
two factors. (i) It generally cleaves after arginine (R) or lysine (K), which are basic 
residues and tend to pick up a charge relatively easy, thus flying well. (ii) Due to 
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the occurrence of these amino acids, peptides generated from Trypsin cleavage are 
generally 10 to 20 amino acids in length, optimal for ionization and fragmentation 
in the mass spectrometer (Olsen, Ong et al. 2004).  

Separation of sample, and in this case peptides, is achieved using chromatography. 
The most commonly used type is that of reversed-phase chromatography when 
analyzing peptides on a mass spectrometer (Aebersold and Mann 2003). Reversed-
phase chromatography separates compounds depending on hydrophobicity, and 
allows the more non-polar compounds to be retained in the column, while more 
polar compounds are eluted at a higher pace.  

The mass spectrometer basically contains three modules; an ion source (e.g. ESI) 
that transfer the sample from a liquid phase to the gas-phase, a mass analyzer to 
measure the mass over charge ratio (m/z) values, and an ion detector to count the 
ion intensities (Aebersold and Mann 2003). Ionization using ESI is based on 
removing all liquid of peptide-containing droplets, nebulized by a capillary at high 
electrical potential compared to the mass spectrometer. Each peptide is usually 
charged multiple times, allowing the peptide to “fly” from the ESI into the mass 
analyzer.  

Mass analyzers measure the mass over charge ratio, and there are several types of 
analyzers. The orbitrap (Hardman and Makarov 2003, Hu, Noll et al. 2005) traps 
ions, and sends them to either an ion detector to measure the m/z, generating a 
MS1 spectra. These peptides can then be sent into a collision chamber for 
fragmentation. The peptide fragments are then transported back to the ion 
detector, generating a MS2 spectra. Depending on the instrument set up, up to 
MS10 can be generated, each additional round, smaller and smaller fragments are 
generated. In this manner, both the intact peptide can be measured, and then the 
fragments of the peptide can be measured, resulting in a mass spectrum. Using 
software and different databases, the different fragments together with the intact 
peptide m/z can be used to elucidate the amino acid sequence of the peptides in 
the sample.  

However, the reproducibility of mass spectrometry has been an issue (Bell, 
Deutsch et al. 2009, Mann 2009). Together with high-profile studies that could 
not be confirmed (Petricoin, Ardekani et al. 2002), a skeptical view has been seen 
towards mass spectrometry based studies. 
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2.7. Global Proteome Survey 

Global proteome survey (GPS) is a cross-disciplinary approach that combines 
affinity proteomics, using antibodies, with MS-based analysis of the sample 
(Wingren, James et al. 2009). The context-independent motif specific (CIMS) 
antibodies bind to 4 to 6 amino acid motifs at the end of the peptide. Design of 
each antibody allowed them to each bind several hundred different peptides 
(Olsson, Wallin et al. 2012). This is made possible since the motif targeted is 
shared among many proteins (i.e. peptides). Notably, the antibodies will work 
equally well for proteins from different species if the peptides with the desired 
motif(s) are present, making the technology species independent. In the end, one 
CIMS-antibody is thus able to bind specifically to hundreds of proteins, compared 
to classical antibody assays, e.g. ELISA, where one or two antibodies are needed 
to bind one protein.  

The GPS procedure start with sample preparation, where the sample proteins are 
digested with trypsin to generate peptides. CIMS antibodies are produced, 
purified and covalently coupled to carboxyl-coated magnetic beads. Incubation of 
digested sample with the beads allow binding of those peptides containing the 
correct motif, while unbound peptides are washed off. Elution of any bound 
peptides with an acid generates a sample ready for injection into the mass 
spectrometer.  

In comparison, the antibody microarray set-up is based on one to five antibodies 
per target, thus many antibodies are required for high multiplexity. It targets 
specific, predefined proteins (focused targets), and targeted proteins are detected 
and relative expression levels are determined. In contrast, the GPS platform is 
based on one antibody per numerous target proteins, all sharing the same motif. 
This allows few antibodies for multiplexicity. The GPS method targets a broad 
range of proteins, and the proteins are detected, identified, and quantified.  
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Figure 3: The GPS work flow 
 

Recently, an updated set-up of the GPS platform was investigated, where by 
attachment of a biotin molecule at a specific site on the scFv, the antigen binding 
site was directed outwards by all scFv attached to streptavidin-coated magnetic 
beads (Sall, Persson et al. 2016). 

Limitations of the GPS platform regards throughput, i.e. running time for analysis 
of one sample, instrument stability, and partly the inherent reproducibility with 
mass spectrometry.  

In paper III, we applied the GPS platform to analyze the difference in histological 
grade between grade 1, 2, and 3 tumors. Of note, using only nine CIMS 
antibodies, we could quantify 1,388 protein groups in 52 tumors. A multivariate 
analysis (three-group comparison), identified 49 proteins significantly 
differentially expressed between the three grades. Notably, a PCA plot showed 
that grade 1 samples differed from grade 3 samples, but grade 2 samples were 
evenly spread between the grades. 
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3.Applications on Breast Cancer 

Cancer occurs when a cell starts to proliferate and grow in an uncontrolled 
manner. Only 5-10% of cancers are caused by inherited mutations, while 85-90% 
are caused by genetic mutations that occur during one’s life-time (World Cancer 
Report, 2014). Researchers believe that four out of ten cancers are linked to life 
style choices, such as tobacco, diets, alcohol, and physical inactivity (Parkin, Boyd 
et al. 2011). In all cancer deaths, approximately 30% are linked to smoking, 30% 
linked to diet, and 15% are due to infection (Anand, Kunnumakkara et al. 2008). 
A drastic change in life style choices can thus significantly decrease the risk for a 
cancer diagnosis.  

In 2000, Douglas Hanahan and Robert A. Weinberg published “The Hallmarks 
of Cancer” that outlines six acquired capabilities that most tumors need during 
their development (Hanahan and Weinberg 2000), and in 2011 they added four 
new hallmarks (Hanahan and Weinberg 2011), all shown in Figure 4. 

Breast cancer affects one in ten women during their lifetime in Sweden 
(www.cancerfonden.se). Nevertheless, breast cancer is not one disease, but 
comprises of over twenty different types, depending on origin, placement, and 
invasiveness (WHO classification of tumors, 2003). Genetic studies have 
subdivided breast cancers into five subtypes, giving physicians refined diagnostic 
tools for treatment plans (Sorlie, Perou et al. 2001). 
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Figure 4: The Hallmarks of Cancer (adapted from Hanahan and Weinberg, 2011) 

 

Screening of women over a certain age often helps find breast cancer early, 
resulting in a greater chance for survival (Gotzsche and Jorgensen 2013). 
Screening for breast tumors is primarily done using mammography. After 
introduction of screening for breast cancer, the incidence-rate has stabilized in 
Sweden, and the mortality-rate has decreased (DeSantis, Bray et al. 2015). When 
an abnormal growth is detected, an ultrasound, and in rare cases an MRI, can be 
used to further visualize the growth, differentiating between solid mass and a mass 
filled of liquid. A biopsy is taken using a fine needle aspiration, and the sample 
will be sent for cytological evaluation. A more complete diagnosis can be set using 
tumor features (e.g. invasive or in situ), molecular (e.g. estrogen and progesterone 
receptor, and Her2 status), histological (e.g. grade) and genetic markers (e.g. 
BRCA1 and HER2 (Ludwig and Weinstein 2005)). An appropriate treatment is 
selected depending on a combination of these factors.  



 31 

3.1. Biomarkers in Cancer 

A biomarker generally refers to a measurable characteristic that can be measured 
objectively, and indicates a biological state or condition (Strimbu and Tavel 
2010). Most biomarker tests are directed against genomics, mRNA, proteins, or 
metabolic markers. The perfect biomarker would be present in sick, but absent in 
healthy, and could easily be measured. However, the perfect biomarker seldom 
exists. In cancers, the biomarker is often one of our own proteins that becomes 
affected by the disease, and will be expressed at a higher or lower level.  

The first biomarkers goes back to 1847, as H.B. Jones discovered the Bence-Jones 
protein (BJP) in urine (Jones 1848). BJP is a free antibody light chain, often 
produced by multiple myeloma cells (Drayson, Tang et al. 2001, Katzmann, 
Abraham et al. 2005, Shaw 2006). Since then, hundreds of biomarkers have been 
observed in the laboratory, but the number of biomarkers in clinic are few. In 
2012, there were 23 protein tumor markers approved by the food and drug 
administration (FDA), and currently used in clinical practice (Fuzery, Levin et al. 
2013). The gap from discovery of a potential biomarker, to implementation into 
clinic is very large and long. The FDA has as  a requirement for new biomarker 
assays to show that it has adequate analytical performance, i.e. accuracy, precision, 
and reproducibility, as well as clinical performance, i.e. sensitivity and utility 
(Gutman and Kessler 2006).  

One of the best-known single cancer biomarker is the Prostate Specific Antigen 
(PSA) (Balk, Ko et al. 2003, Welch and Albertsen 2009). Although increased level 
of PSA acts as an indicator of prostate cancer, the use of PSA as a specific 
biomarker for prostate cancer has been debated (Velonas, Woo et al. 2013). In 
Sweden, it was decided not to screen for prostate cancer using PSA without other 
symptoms of prostate cancer, since the negative effects are too high, including 
unnecessary needle biopsy, overtreatment, and false positive diagnosis 
(www.socialstyrelsen.se).  

Yet, instead of looking at a single biomarker, recently many tests for disease 
measures several genes or proteins, creating a signature to define a specific disease 
(Raman, Avendano et al. 2013). Since most available single biomarkers lack both 
sensitivity and sensitivity early in disease, a combination of low-specificity 
biomarkers could enhance the capability of an assay (Su 2013). It has been 
suggested that multiplexed biomarker signatures could increase the reliability of 
detection of disease, reducing many invasive and unnecessary biopsies (Arellano-
Garcia, Hu et al. 2008, Wei, Patel et al. 2009).  
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3.2. Biomarkers in breast cancer 

Breast cancer in women account for more than one in four diagnoses, and is the 
most common cancer diagnosis. It is also the second cause of death in female 
cancer patients (Siegel, Miller et al. 2016). At the same time, breast cancer research 
was the most NCI funded cancer area between 2010 and 2014, funding close to 
$3 billion - more than double the amount of lung cancer research, placed in 
second (www.cancer.gov). This effort has during the last decades given physicians 
new access to treatment choices, and the information necessary to treat patients 
with the best therapy, giving a more personalized care. The efforts made in 1980 
until the millennial shift gave more knowledge and insights than all the years 
before, in cancer prevention, early detection, and treatment. In the last two 
decades, a tremendous effect has been seen due to the research of protein and gene 
expression profiles, immunotherapy, cancer genetics, targeted therapies, and 
robotic surgery (Lukong 2017). The discovery of breast cancer subtypes and 
subsequent genetic tests, as well as new classes of drugs, has further added to the 
decrease in breast cancer deaths since the early 1990’s (Berry, Cronin et al. 2005, 
Siegel, Miller et al. 2016).  

Although there are several types of breast cancers (Lakhani, Ellis. I.O. et al. 2012), 
the most important aspect to become cancer-free, is an early detection (Etzioni, 
Urban et al. 2003, Wolf, Wender et al. 2010, McPhail, Johnson et al. 2015). 
With early detection, the tumor is often smaller and easier to remove completely 
by surgery, making post-surgical treatment both less harsh and less necessary 
(Blanks, Moss et al. 2000). The importance of early detection is thus very 
significant, representing a key unmet clinical need.  

A detailed diagnose of breast cancer takes several factors into account (Carlson, 
Allred et al. 2009). A full classification of the tumor would contain histopathology 
type, grade, stage, receptor status, and the presence or absence of genes as 
determined by DNA testing. Stage is the process of determining how much 
cancer, and where in the body it is located (Edge and Compton 2010), and is 
based on the TNM system (Edge, Byrd et al. 2010). TNM evaluation regards the 
size of the primary tumor (T), possible cancer cells in local lymph nodes (N), and 
if the tumor has metastasized (M). Presence or absence of hormonal receptors give 
treatment options, and if applicable, increases life expectancy of the patient 
(Fisher, Jeong et al. 2004). Genetic tests for single genes (e.g. BRCA1) or multiple 
genes (e.g. MammaPrint™) further help stratify the tumors for selecting the 
optimal treatment plan.   
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3.2.1. BRCA1 and BRCA2 
Women in high-risk groups are screened for two breast cancer predictive genes, 
BRCA1 and BRCA2 (Miki, Swensen et al. 1994, Wooster, Neuhausen et al. 
1994). Both genes acts as tumor suppressors, but mutations in one or two of these 
genes renders the proteins non-functional, and increases the risk of cancer. By 
testing the genetics, prevention of disease can be managed by an increase in 
mammography, preventive chemotherapy or prophylactic surgery. The ‘Angelina 
Jolie-effect’ started in 2013, when the film actress tested for mutations in BRCA1, 
and had subsequent risk-reducing mastectomy. The rate of referrals to genetic 
centers that test for BRCA1 mutations in UK rose with 50% in the following 
months after Jolie went public with advice to get tested (Evans, Barwell et al. 
2014).  

3.2.2. Hormonal status and proliferation 

Two hormonal receptors are tested for – the Estrogen receptor (ER) and 
Progesterone receptor (PR) (Ciocca and Elledge 2000). Both receptors act for 
growth and proliferation of the cancer cells. About two out of three breast cancers 
are positive for hormonal receptors (Anderson, Katki et al. 2011). These tumors 
are often treated with hormonal therapy, usually using Tamoxifen, which inhibits 
estrogen to bind the receptor on the tumor cell, thus decreasing the growth of the 
tumor. 

The oncogene HER2 is overexpressed in about 20% of breast cancers, and gives 
treating physicians both prognostic and predictive information (Hondermarck, 
Tastet et al. 2008). The presence of the protein Her2 on tumors can be 
determined through genetic testing using FISH, or protein detection using IHC 
of a cross section of the tumor. Recommended assays are a combination of both. 
Her2 positive tumors can be targeted by monoclonal antibodies, like 
Trastuzumab (Herceptin) (Tan and Swain 2003).  

However, between 10-17% of all breast cancer tumors are triple-negative, i.e. does 
not express ER, PR or Her2, and these tumors cannot be treated with hormone 
therapy or antibodies targeting Her2 (Rakha, El-Sayed et al. 2007, Reis-Filho and 
Tutt 2008). The scientific interest in triple negative tumors is increasing, looking 
for therapeutic alternatives to treat these tumors since only conventional 
chemotherapy becomes available (Bartlett, Thomas et al. 2010). 

For prognosis, Ki-67 is a protein that increases in level as a cell prepares to divide 
(Dowsett, Nielsen et al. 2011). By detecting the ratio of cancer cells that are 
positive for Ki-67, it can determine how quickly the tumor cells are dividing. The 
more Ki-67 present, the faster the tumor is growing, rendering it more aggressive.  
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Several other factors are included in determining the subtype of a breast cancer, 
including tumor size, stage, lymph node involvement, and histological grade. 
Together, these factors help determine the therapy to maximize the chance for a 
cure.  

3.2.3. Monitoring disease response 

Two biomarkers, CA 15-3 and CA 27-29, are used to monitor the disease 
response to therapy (Harris, Fritsche et al. 2007), as increased levels are associated 
with poorer diagnosis and recurrence. CA 15-3 is the most widely used biomarker 
in serum in breast cancer (Duffy, Shering et al. 2000). In malignant cells, the 
MUC1-gene overexpress the heavily glycosylated protein Mucin-1, coating the 
cell surface, and increasing levels are released into the blood stream (Klee and 
Schreiber 2004).   

3.2.4. Prognosis 

Urokinase plasminogen activator (uPA) is an extracellular matrix-degrading 
protease, who interacts with plasminogen activator inhibitor-1 (PAI-1) (Duffy, 
McGowan et al. 2014). The increased levels of both proteins in lymph node 
negative breast cancer indicates higher risk for tumor progression and metastasis. 
One prospective study showed that for early breast cancer patients with high levels 
of uPA/PAI-1, additional adjuvant chemotherapy was beneficial, while patients 
with low levels could be spared chemotherapy after surgery (Harbeck, Schmitt et 
al. 2013). Several expert panels recommend measurement of uPA/PAI-1 in the 
US and Europe (Duffy, McGowan et al. 2014). Nonetheless, they are seldom 
tested since the assay for measurement requires large amounts of tumor tissue, 
which is hard to spare in the lymph node negative tumors. 

3.2.5. Genetic subtyping 

In 2001, Therese Sörlie and colleagues presented a genetic classification of breast 
cancer tumors based on RNA (Sorlie, Perou et al. 2001). The sub-classification of 
tumors into five subtypes (listed in order of prognosis) consisting of Luminal A 
(ER positive and slow growing), Normal-like (ER positive, slow growing), 
Luminal B (ER-positive but fast growing), Her2-rich (Her2 positive), and Basal-
like (ER/PR/Her2 negative). Although the subtyping can generate important 
recurrence and prognostic value for patients, the use of genetic subtyping is not 
common in Europe unless protein biomarker tests cannot classify the tumors.  

Classification of tumors into hormone, or Her2, positive tumors is mainly useful 
for treatment selection. However, since recurrence prognostics is not binary, i.e. 
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no test can predict if recurrence will occur or not, assays where end-results predict 
an e.g. 40% chance for recurrence is based on population, not individuals, and 
can be hard to apply on a specific patient. 

3.2.6. Multiplexed biomarker panels 

Multiplexed biomarker assays are used in determining different cancers, and most 
are based on genes, and mRNA is usually used.  

van’t Veer and colleagues developed the Oncotype DX Test in 2002 (Cronin, 
Sangli et al. 2007). It targets 21 transcripts using RT-PCR, assessing the risk of 
cancer recurrence in early-stage breast cancer, and can determine how beneficial 
chemotherapy would be for the patient. It divides patients into three groups 
depending on score, where a low score indicates low risk for cancer recurrence if 
hormone therapy was administered. A large ongoing study, TAILORx, could 
assess the benefits for the patients with low score from the test (Sparano, Gray et 
al. 2015). The study confirmed the use of Oncotype DX test to allow low-score 
patients to not undergo chemotherapy, when classical diagnosis would suggest 
otherwise. However, since only 16% of patients fall in the low-scoring category, 
while 67% fall in the intermediate category where therapy is randomized.  

MammaPrint™ targets 70 gene transcripts with a microarray-based assay (van 't 
Veer, Dai et al. 2002). It is capable of classifying early-stage, lymph node negative 
patients into low and high-risk groups of distant tumor recurrence. It was the first 
assay to be cleared by the FDA targeting multiple variables to yield a single, 
patient-specific result in 2007 (Terry 2010).  

Prosigna™ is a genetic test of mRNA, indicated to use on early-stage, post-
menopausal women, with or without lymph node involvement, and who are 
hormone receptor positive (Nielsen, Wallden et al. 2014). The test is based on a 
50 gene subtype predictor, PAM50 (Parker, Mullins et al. 2009). The test shows 
an underlying intrinsic subtype, Luminal A or B, Her2, or Basal-like. Depending 
on subtype, the use of adjuvant endocrine therapy can be selected. 

EndoPredict combines a genetic test, combined with tumor size and lymph node 
status. The test is eligible for early-stage, hormone receptor-positive, Her2-
negative patients with maximum of 3 involved lymph nodes (Buus, Sestak et al. 
2016). Results give treating doctors information if only hormone therapy decrease 
the risk for distant metastasis after 10 years. 

Four other assays currently under evaluation are Breast Cancer IndexSM (BCI), 
Mammostrat™, BluePrint® and TargetPrint™ (Raman, Avendano et al. 2013). BCI 
analyzes the activity of seven genes in lymph node negative, hormone receptor 
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positive tumors to predict the risk of recurrence in 5-10 years (Zhang, Schnabel 
et al. 2013). It has shown greater prognostic accuracy compared to the Oncotype 
DX test (Sestak, Zhang et al. 2016).The study could also restratify low and 
intermediate risk group patients in regards to distant recurrence. Mammostrat™ is 
a tissue-microarray assay that targets the expression of five immunohistochemical 
markers to assess patients undergoing hormone treatment and their risk of future 
relapse (Bartlett, Thomas et al. 2010). Results give insight in prognosis, 
recurrence, predictive, and therapy selection. Both Mammostrat and Oncotype 
DX asses the risk for distant recurrence, but differ in what they measure. While 
Oncotype measures RNA from tumors, Mammostrat™ examines cancer cells only 
through IHC (Acs, Kiluk et al. 2013). BluePrint™ targets 80 genes to establish 
newly diagnosed, untreated tumors into three subtypes – basal, luminal or Her2 
(van de Vijver , He  et al. 2002, Fan, Oh et al. 2006). TargetPrint™ analyzes the 
ER, PR and Her2 expression levels, to determine if the patient is a candidate for 
hormone therapy. However, in a prospective study, only the results for ER showed 
that mRNA microarray analysis was in concordance with IHC, while both PR 
and Her2 showed lower concordance rates (Viale, Slaets et al. 2016). However, at 
least one study (Cardoso, van't Veer et al. 2016) showed the issue of over-
diagnosing, when calibration of the test was incorrect. A brief summary of the 
assays above is shown in Table 1.  

Table 1: Genetic assays and intended use 
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Oncotype DX Yes No No Yes Yes I and II Positive 

MammaPrint Yes No No Yes Yes I and II Positive 

Prosigna Yes No No Yes Yes I and II Positive and 
negative 

EndoPredict No No No No Yes I and II Positive 

Breast Cancer 
Index Yes No No No Yes I and II Positive 

Mammostrat Yes No No Yes Yes I and II Positive 

BluePrint No No Yes No Yes I and II Positive and 
negative 

TargetPrint No No No No Yes I and II Positive and 
negative 
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As can be seen from Table 1, all test targets therapy selection, while none are 
predictive, and only one is diagnostic. This set the market up for diagnostic, and 
most importantly, for predictive tests to find breast cancer early. 

3.3. Cancer and the immune response 

The idea that the immune response is involved in the emergence of cancer was 
first mentioned in 1957 (Burnet 1957) and has been refined and extended into 
the concept of immunoediting (Ikeda, Old et al. 2002, Dunn, Koebel et al. 2006). 
The theory includes three consecutive stages – Elimination, Equilibration, and 
Escape – where both the innate and adaptive immune responses shape these stages. 
The first stage, elimination, is the normal process where the immune system 
encounters and removes cells that have gained some cancer characteristics, initially 
through effector cells such as NK cells (Kim, Emi et al. 2007, Koebel, Vermi et 
al. 2007). During tumor progression into the equilibrium state, a balance between 
the immune system and the cancer cells is maintained, the cancer cells not being 
destroyed, nor being able to form a clinically apparent tumor (Mantovani, 
Allavena et al. 2008). The selection process often produces tumors cells lacking in 
production of major histocompatibility complexes class I and II, leading to both 
a decrease in presented tumor antigens, as well as the mechanism for cytotoxicity 
through CD8+ T-cells (Kim, Emi et al. 2007). A tumor, shaped and sculpted by 
the immune system, can then enter the escape phase, where growth and 
proliferation is no longer blocked by the immune system, having created a tumor 
microenvironment with an immunosuppressive ability (Teng, Swann et al. 2008, 
Kraman, Bambrough et al. 2010). 

Diagnostic tools used today looks at clinically apparent tumors, those already in 
the escape phase, at the time of diagnosis (Kim, Emi et al. 2007). These tumors 
have established an environment around them to grow, resulting in a tumor that 
can be difficult to remove completely and have a good prognosis. Any assay to 
find cancer earlier than those available today could help with overall survival in all 
types of cancer. With the introduction of mammography, a decrease of mortality 
in women over 50 with 16-32%  (Schopper and de Wolf 2009). However, up to 
25% of all new breast cancer cases affect women under 50, not yet eligible for the 
screening program. A recent study, using mass spectrometry, focused on finding 
potential biomarkers indicating early detection of breast cancer. They saw that 
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there was an alteration in serum protein profiles up to three years prior to 
diagnosis (Opstal-van Winden, Krop et al. 2011).  

In paper II, the aim of the study was to identify an immunosignature to diagnose 
early breast cancer with the antibody microarray. To this end, samples from 255 
women were analyzed, of whom 85 up to two years later received a cancer 
diagnosis. However, even though the time before diagnosis was given, the actual 
time from sampling to a clinical tumor was harder to determine, highlighted by 
the fact that the largest tumor was 120 mm in size, which suggests that the breast 
cancer has been present for a long time.  

The samples were sub-grouped based on both time between the sampling and 
diagnosis, as well as tumor size at the time of diagnosis. Tumors above the size of 
20 mm were excluded, to remove any uncertainty of due to uncertainty of where 
in the timeline they belonged. From the analysis, we could with moderate 
performance classify early breast cancer samples compared to matched controls.  

Data instead indicated that we could detect features that could be related to 
immunoediting. Even though they were not in accordance with an early diagnosis, 
the biological relevance was of interest, and importance.  

After dividing the early breast cancer samples into four groups, each in about six 
month intervals from diagnosis, a pattern of mainly upregulated proteins was seen 
in three of the groups, the fourth showing mainly downregulation, compared to 
healthy controls. Samples from 6 to 12 months before diagnosis showed the 
highest number of differentially expressed proteins, indicating significant changes 
in the immune response and cancer-associated processes.  

In the study by Opstal-van Winden and colleagues, C3a was identified as a 
potential biomarker for early detection. In our study, the complement protein C3 
was identified, and C3 is proteolytically cleaved into C3a and C3b upon 
activation of the complement pathways. Further, we identified several deregulated 
anti-tumor and immunosuppressive proteins, previously identified in 
immunoediting (Dunn, Koebel et al. 2006). Highlighting immunoediting, we 
looked at the stages before clinically apparent tumors emerged. The 
immunoprofiles of early breast cancer patients showed that key cytokines, 
previously described as markers for tumor progression, were deregulated, like 
cytokines with anti-tumor properties, e.g. IL-1a, IL-1b, IL-12, and IFN-g, and 
tumor-promoting proteins such as IL-10, TGF-b, and VEGF (Dunn, Bruce et al. 
2002, Irshad, Grigoriadis et al. 2012). Even though large changes in protein 
expression profiles were seen to change over time, the ratio of IL-10 to IL-12 or 
IFN-g did not change significantly, and the balance between these proteins is 
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essential when determining in which phase the tumor is regarding immunoediting 
(Irshad, Grigoriadis et al. 2012, Mittal, Gubin et al. 2014). The first phase of 
immunoediting, elimination, generates higher expression of IL-12 and IFN-g, 
promoting tumor immunity. Subsequently, the equilibrium phase instills a 
balance between tumor immunity cytokines and immunosuppressive cytokines. 
Finally, the balance shift towards IL-10 production, increasing the 
immunosuppressive nature surrounding the manifested tumor. 

3.4. Histological grade 

Histological grade is one of the oldest and most used prognostic factors in breast 
cancer patients (Bloom and Richardson 1957). Histological grade can be seen as 
the aggressive potential of the tumor, and is subdivided into three grades, 1 to 3. 
Most often, the grading follows the Nottingham Grading System (NGS), an 
Elston-Ellis modified protocol by Scraff, Bloom, and Richardson (Elston and Ellis 
1991). It is determined by microscopic evaluation of a cross-section of tumor. 
Three categories are evaluated; (i) tubule formation, (ii) mitotic count, and (iii) 
nuclear pleomorphism (Elston and Ellis 1991, Christgen, Langer et al. 2016). 
Tubule formation evaluates how much of the tumor that has normal milk duct 
structures. Mitotic count determines how many dividing cells are present, 
indicating the rate of growth. Nuclear polymorphism evaluates the size and shape 
of the nucleus in the tumor cells. Each category is scored 1-3, where a score of 1 
indicates that the cell looks like a normal cell or tissue, and a score of 3 means that 
the cells look most abnormal. A combined score of 3-5 is classified as a grade 1 
tumor, 6-7 a grade 2 tumor, and 8-9 a grade 3 tumor.   

While grade 3 tumors are more proliferative and poorly differentiated, grade 1 
tumors are slow-growing and well differentiated. Grade 2 tumors are moderately 
differentiated, but has less prognostic information for physicians to determine a 
proper treatment plan (Sotiriou, Wirapati et al. 2006). Since about half of all 
breast cancers are classified as grade 2 tumors, the need for improved classification, 
and further sub-classification, of grade 2 tumors can be seen. Both genetic and 
proteomic efforts have been made to subgroup tumors, and evident from foremost 
genetic studies are that grade 2 tumors can be divided into two groups – one more 
like grade 1 tumors, the other more like grade 3 tumors (Ivshina, George et al. 
2006).  
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One study suggests that a grade 1 tumor does not progress into grade 3, but that 
grade 1 and grade 3 tumors are of different types (Roylance, Gorman et al. 1999). 
They showed that 65% of all grade 1 tumors lack the long arm of chromosome 
16, while 84% of grade 3 tumors has an intact chromosome 16. This entails that 
a potentially binary classification regarding grade, those characterized as grade 2 
become either over or undertreated.  

In paper III, the GPS platform, based on nine antibodies against five peptide 
motifs, was applied to characterize the molecular expression profiles of histological 
grade of breast cancer tumors. Analyzing 52 breast cancer tumors, we were able 
to identify over 2,100 proteins, and quantify close to 1,400 proteins.  

Using ANOVA, we could differentiate grade 1, 2, and 3, using a 49-plex 
signature, with high specificity and sensitivity. Training a model with two thirds 
of the samples, and testing on the remaining test samples gave a ROC AUC of 
0.86 for differentiating between grade 1 and grade 3 samples. This confirmed that 
grade 1 and grade 3 were two separate groups. However, grade 2 was confirmed 
as a heterogeneous grade, but data indicated that it could be divided using a 
molecular protein expression profile into two groups, one more related to grade 
1, the other more like grade 3. Applying a SVM, using leave-one-out cross 
validation, classification of grade 1 versus grade 3 was achieved using a 50-plex 
signature, resulted in a AUC of 0.92. 

From the biological viewpoint, differentially expressed proteins upregulated in 
grade 1 were associated with ECM and stroma, e.g. Keratocan and Spondin-1. 
Proteins significantly upregulated in grade 3 were associated with mitosis and cell 
proliferation. Together, this indicates that low grade tumors have a more 
structurally intact structure, both inside the cell as well as surrounding the tumor. 
High grade tumors have lost the normal expression of these structural proteins, 
and levels of proteins involved in proliferation, e.g. CDK1, MCM2, and MCM7, 
has increased. These findings concur with the fundament that on which 
histological grade is based – mitosis, nuclear pleomorphism, and differentiation. 

As mentioned, the GPS surveys the global proteome, detecting proteins regardless 
of pathway or process. By using both the antibody microarray, that surveys the 
immune response, as well as a global proteome survey, we could complement both 
studies, searching in different aspects of the cancer proteome. To add more insight 
into the histological grade in breast cancer, in paper IV we performed an antibody 
microarray analysis on 50 solid tumor tissue extracts. With this technology, we 
could look at a specific aspect of the biology of breast cancer tumors, and find 
protein expression profiles to classify histological grade. Using 297 recombinant 
scFv, we targeted 98 immunoregulatory proteins and 30 short peptide motifs. 
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Initial data analysis, using SVM with leave-one-out cross-validation showed that 
grade 1 and grade 3 could be separated, with an ROC AUC of 0.83, while grade 
2 showed to be heterogeneous, overlapping both grade 1 and grade 3. To 
condense the number of analytes that impact the classification, backwards 
elimination was performed to separate grade 1 from 3, and the resulting signature 
was used to analyze grade 2 samples. Results showed that most grade 2 samples 
could potentially be reclassified as grade 1 or grade 3 tumors.  

Through bootstrapping, we were able to train a model using grades 1 and 3, and 
testing on grade 2. However, when building the training sets, some samples were 
picked more than once, leaving approximately 30% of the samples out of the 
training set, and could instead be added to the test set. Followed by backwards 
elimination, the twenty most informative antibodies were used as a signature, and 
the test set was applied to the model. One hundred rounds of training and testing 
gave a result from minimum 25% to 45% of grade 1 and 3 samples, as well as 
grade 2.  

The model gives a binary result, and grade 2 samples were classified as either grade 
1 or grade 3 in each round. Depending on the total number of times classified as 
either grade, a consensus grade was determined. Two samples were reclassified as 
grade 1, eleven as grade 3, and four samples were still intermediate.  

However, this model generated one hundred different signatures, and was 
dependent on the composition of the test set. By using the twenty most occurring 
antibodies as a consensus signature, the bootstrap and testing was performed 
again. Two grade 2 samples were reclassified as grade 1, while thirteen were 
reclassified as grade 3, and two remained as grade 2.  

A shift in focus compared to paper III, where classification of grades using 
molecular multiplexed signatures was the major focus, in paper IV we applied the 
antibody microarray to analyze grade 2 in more detail. Since there is evidence that 
tumor grade is not a progressing factor (Roylance, Gorman et al. 1999), but rather 
a type, correct classification is paramount. Further, 30-60% of tumors are graded 
in the intermediate grade 2 (Sotiriou, Wirapati et al. 2006), with little clinical 
information, the need for a more robust and easily made classification system is 
needed. The consensus signature of classification of histological grade consisted 
of several proteins important in structure, and a decrease in levels in more 
aggressive tumors. Most proteins were found with increased levels in higher grade, 
and correlated with decreased structural integrity, increased proliferation and 
higher metastatic capability.  
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Conclusions of paper III and paper IV were that higher histological grade clearly 
shows a downregulation of proteins involved in structural integrity of both tumor 
cells and surrounding tissue. Further, the proliferative ability, and the number of 
mitotic cells, are increased, as well as proteins that deregulate the ECM 
surrounding the tumor to potentially pave the way for future metastatic cells. 
Grade 2 tumors were seen as a heterogeneous group, and could potentially be 
subdivided into two separate groups, one more closely related to grade 1, and one 
more related to grade 3. Together, the GPS platform and the antibody microarray 
technology complemented each other, where GPS found motif-containing 
peptides from different part of the proteome, while the antibody microarray 
targeted the immune response against breast cancer tumors. 

Histological grade is a measure of the aggressive potential of the tumor, and by 
defining the grade using a molecular signature, less inter-observer discrepancy 
could be obtained. Further, since most tumors are graded as intermediate, the 
clinical relevance for these tumors are low. With a more unbiased grading system, 
most tumors today graded as intermediate, could be redefined as low- or high-
grade, thus giving clinicians a better base for treatment decision. 
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4. Applications on Pancreatic 
Cancer 

Around 900 people are diagnosed with pancreatic cancer each year in Sweden 
(www.cancerfonden.se), and over 50,000 new cases are diagnosed in the US each 
year (Siegel, Miller et al. 2016). It is the fourth leading cause of cancer deaths 
worldwide (Rossi, Rehman et al. 2014), and it has been estimated that there will 
be more deaths from pancreatic cancer than breast cancer in Europe by 2017 
(Ferlay, Partensky et al. 2016). Fifty per cent of patients diagnosed with pancreatic 
cancer has distant metastases, 30% have local and/or regional spread, and only 
3% have tumors confined to the pancreas (Pannala, Basu et al. 2009). Given the 
late diagnosis of most pancreatic cancer patients, the overall five-year survival is 
less than 5% and the median survival is only 6 months(Chang, Wong et al. 2014). 
Overall, cancer deaths in the US has decreased by 23% over the last two decades, 
but for pancreatic cancer patients, the number of deaths has increased (Siegel, 
Miller et al. 2016). 

Patients diagnosed with pancreatic cancer at stage I, a tumor with local spread, 
surgery to remove the tumor is preferred. Chemotherapy is usually given as a 
prophylactic treatment, and overall 5-year survival for this group is 20% (Ahrendt 
and Pitt 2002, Wang and Kumar 2011). This shows that early detection is crucial 
for a longer survival of patients with pancreatic cancer.   

The symptoms of pancreatic cancer are vague, and contribute to the late detection 
of pancreatic cancer (Hidalgo 2010). Around 80% of pancreatic tumors are 
located in the body of the pancreas, causing a compression of the surrounding 
structures, the bile and pancreatic ducts, duodenum, and mesenteric and coeliac 
nerves (Evans, Abbruzzese et al. 1997). The effect of the tumor on the pancreas 
cause diffuse symptoms, such as jaundice, abdominal pain, type II diabetes, and 
weight loss.  

At the moment, there is no screening program for pancreatic cancer. This is 
mainly due to that there is no available test that is reliable and accurate enough to 
find large numbers of pancreatic cancers at an early stage, and does not indicate 
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cancer when no disease is present, a false positive. However, recent studies have 
shown a great opportunity to screen high risk groups, and that the cost to society 
is relevant (Larghi, Verna et al. 2009, Ghatnekar, Andersson et al. 2013, Lu, Xu 
et al. 2015). Most screenings are accomplished using endoscopic ultrasound 
(EUS), as it can detect small lesions with a low risk of complications. MRI 
screening complement EUS, and though it cannot detect solid pancreatic lesions 
caused by tumors as well as EUS, it has a greater sensitivity regarding cystic lesions 
(Harinck, Konings et al. 2016). Conclusions from screening reports is that there 
is a great need for an assay that can help detect pancreatic cancer early. 

  

4.1. Pancreatic Ductal Adenocarcinoma 

Pancreatic ductal adenocarcinoma is the most common type of pancreatic cancer, 
comprising about 85% of all diagnosed cases (Ryan, Hong et al. 2014). 
Surrounding the pancreatic tumor, a larger than normal stroma, or tumor 
microenvironment, lies as a protective barrier, protecting against drug delivery 
and leading to a higher drug resistance than other tumors (Feig, Gopinathan et 
al. 2012).  

Close to all patients with pancreatic cancer has one or more out of four genetic 
defects (Maitra and Hruban 2008, Hidalgo 2010), but averaging 63 mutations of 
consequence per tumor (Jones, Zhang et al. 2008). KRAS2 is mutated in over 
90% of patients, leading to an activated form of Ras, and causing increased 
proliferative and survival signaling (Biankin, Waddell et al. 2012). In nearly 95% 
of tumors, p16/CDKN2A is inactivated (Schutte, Hruban et al. 1997), normally 
functioning as a regulator in the G1-S transition phase in the cell cycle. Loss of 
function further increase the proliferative ability of the cancer cells. TP53 is 
abnormal in 50-75% of tumors, leading to increased genomic instability, along 
with loss of cell ability to control DNA damage in control checkpoints (Olivier, 
Hollstein et al. 2010). SMAD/DPC4 is lost in half of pancreatic cancers, causing 
an abnormal signaling pathway through transforming growth factor b (TGF-b) 
(Jones, Zhang et al. 2008). 

Pancreatitis is the inflammation of the pancreas. There are three types of 
pancreatitis, acute, chronic, and autoimmune pancreatitis (AIP). Acute 
pancreatitis is usually caused by gallstones and/or heavy alcohol consumption, or 
in cases, such as infections of mumps, trauma, or certain medications. Chronic 



 45 

pancreatitis can follow as a result of acute pancreatitis, but also from heavy alcohol 
use, high blood levels of calcium or blood fats. Common for both types is that the 
inflammation causes the enzymes produced by the pancreas to be activated in the 
pancreas. Autoimmune pancreatitis have two subgroups, type 1 and type 2 
(Pearson, Longnecker et al. 2003). Type 1 AIP is distinctive since high levels of 
IgG4- positive cells has infiltrated small ducts in the pancreas, together with 
fibrosis around ducts and veins (Chari, Smyrk et al. 2006). Type 2 AIP is confined 
to the pancreas, and exhibits granulocytic endothelial lesions, and can cause 
pancreatic damage (Sah, Chari et al. 2010). 

The symptoms for pancreatitis are very similar to those of pancreatic cancer, 
further diffusing the line between correct diagnosis of pancreatic cancer. There is 
no assay available as of today that can reliably differentiate between pancreatic 
cancer, pancreatitis, and healthy.  

4.2. Biomarkers in Pancreatic Cancer 

The only FDA approved biomarker for pancreatic cancer is the carbohydrate 
antigen 19-9  (CA19-9), or sialyl Lewis a (Koprowski, Herlyn et al. 1981). 
Discovered in a study of patients with colon and pancreatic cancer, CA19-9 was 
revealed as an elevated serum marker. However, CA19-9 also has an elevated level 
in later stages of other pancreatic diseases (Ong, Sachdeva et al. 2008), making it 
hard to discriminate between benign disease and malignant pancreatic cancer. 
Further, not all patients express CA19-9 (Hamanaka, Hamanaka et al. 1996), 
leading to false negative diagnosis unless sialyl Lewis status is determined. 

A more adopted strategy to discover pancreatic cancer early is to scan high-risk 
groups for early signs of cancer (Canto, Harinck et al. 2013). For pancreatic 
cancer, people with high incidence of pancreatic cancer in the family history are 
included, as well as people with hereditary pancreatitis, or if you have one family 
member with pancreatic cancer and linked cancer syndrome, e.g. BRCA1 gene 
mutation. These patients take a blood test, and every three years they undergo a 
CT scan or ultrasound of the pancreas. In addition, sampling of the pancreatic 
juice can be performed to determine the changes in three particular genes, p53, 
K-Ras, and p16.  

Recently, the interest of micro-RNAs (miRNAs) in pancreatic cancer has given 
many candidates for pancreatic cancer specific biomarkers. (Li and Sarkar 2016). 
Together with CA19-9, miR-16 and miR-196a has been shown to be more 
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effective in classifying pancreatic cancer from both pancreatitis and healthy 
samples than CA19-9 alone (Liu, Gao et al. 2012). These test are however not 
FDA approved, and even though micro-RNAs boost the diagnostic performance 
of pancreatic cancer versus healthy, the aspect of differentiating from pancreatitis 
must not be excluded. 

The in-house developed antibody microarray platform has previously been used 
for classification of pancreatic cancer, regarding diagnosis and prognosis 
(Ingvarsson, Wingren et al. 2008), classification of pancreatic cancer against 
benign (pancreatitis) and healthy controls (Wingren, Sandstrom et al. 2012), and 
profiling different stages of disease against healthy controls (Gerdtsson, Wingren 
et al. 2016).  

 

4.3. Immunosignaturing of pancreatic ductal 
adenocarcinoma 

In paper I, we performed protein expression profiling of pancreatic cancer samples 
using the antibody microarray. We compared pancreatic cancer serum samples 
with healthy controls and benign controls. The benign controls consisted of 
patients diagnosed with acute or chronic pancreatitis, Langerhan neoplasm or 
pancreatic neoplasm. By randomly dividing the analyzed samples into ten training 
and test sets, we identified the 25 top predicative antibodies in each training set, 
and they were evaluated in the corresponding test set. The average AUC from 
ROC curves was 0.98 for PDAC versus healthy controls, and 0.67 for PDAC 
versus benign controls. Implementing a backward elimination strategy to identify 
the number of antibodies sufficient to discriminate between PDAC and healthy 
resulted in a panel of four to ten antibodies. However, given the difficulty of 
separating PDAC from benign controls, a larger number of antibodies was 
required to separate these groups (average 67 antibodies), indicating that a smaller 
immunosignature of 10 or less antibodies might not be specific enough for 
pancreatic cancer.  

Further, for the first time – to our knowledge – we could with a proteomic 
approach show that the position of the tumor within the pancreas could be 
determined using serum samples. The location of the tumor has shown prognostic 
relevance, those located in body or tail having a poorer survival compared to neck 



 47 

tumors (Artinyan, Soriano et al. 2008). Together, these findings showed that we 
could classify pancreatic cancer patients from healthy controls with excellent 
separation, from benign controls with fair separation. Using the antibody 
microarray, we could determine the location of the tumor, further adding to the 
prognostic information that could influence treatment selection in resectable 
tumors. 
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5.Concluding remarks 

With the emergence of new and improved therapeutic drugs for treating different 
cancers in the last decades, the importance of an early, correct, and easy diagnose 
of cancer has increased. Defining subtypes becomes essential to be able to select 
the optimal treatment, where biomarkers play a key role. However, the large 
discrepancy of the number of biomarkers potentially found, and the number of 
biomarkers approved by the e.g. the FDA, shows that several techniques still have 
development to be had. The need for improved therapies, as well as diagnostic 
tools, initiated the Cancer MoonshotSM initiative to accelerate cancer research 
aims of therapy, prevention, and early diagnosis.  

The aim of this thesis was to decipher molecular portraits of cancer. To this end, 
a recombinant antibody microarray platform technology was used, containing 
close to 300 recombinant antibodies, targeting the immune response. In addition, 
an in-house developed technique, GPS, combining the specificity of affinity 
proteomics and power of mass spectrometry, allowed for a specific survey of the 
proteome. Compared to other proteomic approaches, the sensitivity and 
reproducibility of the antibody microarray is a great advantage. Using antibodies, 
targeting low-abundant proteins in otherwise difficult sample formats such as 
serum, becomes possible, and allows for a great opportunity in biomarker 
research. 

A big opportunity to find key answers and mechanisms in how different cancers 
develop, behave, and respond to different treatments, lies within the field of 
proteomics. In the last decades, proteomics has evolved both in technical 
advancement, but also with the understanding on how to process samples, and 
what to look for. Through the possibility to use blood samples instead of tissue, 
the accessibility to actual samples increases.  

A general consensus lies in the fact that early detection of cancer improves 
outcome for patients. To this end, in paper II, we analyzed samples collected up 
to two years before diagnosis. Surveying the immune system, using the antibody 
microarray platform, we could see that patients up to two years before diagnosis 
showed altered levels of serum proteins. And some proteins, e.g. C3, had 



 50 

previously been marked as a candidate for early detection. Foremost, in this study, 
data indicated that we could identify several candidates that are involved in 
immunoediting, and the different stages thereof.  

Further, in the area of personalized medicine, we aimed to develop a molecular 
signature that reflects histological grade in breast cancer tumors. To this end, in 
paper III and paper IV, we used two different proteomic technologies – the 
antibody microarray, and the GPS platforms, to find and identify biomarker 
signatures. Histological grade is of importance in the selection of therapy, since it 
reflects the aggressiveness of the tumor. However, the intermediate grade 2 bears 
little clinical prognostic importance, and a deeper understanding of these tumors 
could be of great importance. In paper III, we used the GPS platform to identify 
a 49-plex signature that could differentiate the different grades from each other. 
Further, the protein levels indicated that the more differentiated grade 1 tumors 
were in fact more conserved regrading structure within and surrounding the 
tumor. Grade 3 tumors had lower stromal and ECM-associated protein levels, 
indicative for metastatic behavior. Grade 2 samples, were as expected a 
heterogeneous grade, overlapping both. This showed that several of the grade 2 
tumors should be able to be subdivided into those more, and less aggressive.  

In paper IV, we further looked at the potential of subdividing grade 2 tumors into 
grade 1 or grade 3. The antibody microarray platform was used to target another 
window of the proteome, compared to the GPS platform. Using the immune 
system as a sensor of disease, we could see that grade 2 samples could be classified 
as more like grade 1 or grade 3 tumors. In addition, we could see some samples 
from both grade 1 and grade 3 were transferred as well. Together with paper III, 
these studies analyzed two different parts of the proteome, to give complementary 
views regarding the same scientific question.  

While my main focus has been on breast cancer, I also had the opportunity to 
address pancreatic cancer. Implementing the microarray platform, we aimed to 
find a biomarker signature targeting pancreatic cancer, a research area in desperate 
need of new actionable results. In 2013, the US signed into law, Recalcitrant 
Cancer Research Act, calling on the NCI to develop frameworks for improving 
the survival of pancreatic cancer. With this in mind, in paper I, we identified an 
immunosignature, classifying pancreatic cancer samples from healthy controls, as 
well as benign controls, such as pancreatitis. Classifying pancreatic cancer against 
normal controls, AUC values of 0.95-0.98 were obtained, using as little as four 
antibodies. Classification against benign controls gave AUC values of up to 0.88, 
showing both the similarities of mainly pancreatitis to pancreatic cancer, but also 
the possibilities to create a test for further subdivision.  
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In summary, this thesis has focused on the diagnostic capabilities gained from 
using antibodies as affinity probes, by searching complex samples and 
differentiating protein levels. Although further validation will be needed, the 
studies hopefully give a small piece of a larger puzzle, regarding diagnosing 
pancreatic cancer, early detection of cancer, and personalizing medicine for 
patients inflicted with breast cancer. In the future, these studies will hopefully add 
to help complete the understanding of cancer, making a step towards an increased 
standard of care. 
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Populärvetenskaplig 
sammanfattning 

I modern tid har en förbättrad sjukvård gett oss längre liv. När man ser hur 
förekomsten av cancer ökat de senaste årtionden, räknar man med att varannan 
person kommer drabbas av cancer efter år 2030. En förbättrad sjukvård baseras 
på en ökad förståelse av sjukdomar, varför de uppstår, och därmed hur man ska 
kunna behandla, och förhoppningsvis bota dessa. 

För att man ska få cancer, måste de sjuka cellerna kringgå en hel del 
kontrollpunkter som varje unik cell har. Hur de kringgår alla kontrollpunkter är 
olika för olika typer, men stort sett finns det tio egenskaper som en cancercell 
måste förvärva för att kunna överleva. Dessa tio egenskaper kallas för ”Hallmarks 
of Cancer”. Ett av dessa Hallmarks är att undvika immunförsvaret, och 
följaktligen kan vi förstå att immunförsvaret formas av cancer, och tvärt om.  

I min avhandling har jag tittat på hur kroppen har reagerat på cancer med hjälp 
av immunsvaret. Vid sjukdom försvarar sig kroppen mot det främmande med 
hjälp av immunförsvaret, och det immunsvar som uppstår.  

Jag har försökt hitta signaturer, bestående av vilka protein, eller byggstenar, i 
kroppen som ändras, och hur de ändras. Genom att mäta de svar kroppen har mot 
till exempel cancer, kan vi ge en sjukdom en specifik signatur, och jämföra denna 
med en frisk individ. För när en person blir sjuk, kommer immunförsvaret 
aktiveras och olika delar av det ökar i kroppen, medan andra minskar. Är 
sjukdomen uppkommen av yttre faktorer, som bakterier eller virus, eller inre som 
cancer eller autoimmunitet, ser dessa nivåer olika ut.  

Immunförsvaret är komplext och består av många olika delar. En viktig del av 
immunförsvaret är antikroppen, en molekyl som binder till olika patogen, som 
bakterier eller virus. Genom att binda till patogen, kan kroppen bli av med hotet 
som orsakar sjukdom. Genom att använda konstgjorda antikroppar och 
bestämma vad dom binder, kan vi med vår teknologi se efter hur mycket av de 
andra delarna av immunförsvaret ändras i olika sjukdomar.  
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För att kunna mäta hur mycket antikroppen har bundit använder vi oss av två 
olika metoder. Microarray, som består av en yta med olika antikroppar fästa på. 
Dessa antikroppar binder sin motpart, eller målprotein, som i vårt fall är olika 
delar av immunförsvaret, och sen mäter vi hur mycket varje antikropp bundit. 
GPS använder antikroppar som binder delar av protein, peptider, som man sedan 
kan båda mäta, och även bestämma vilka aminosyror de består av i en 
masspektrometer. Den största skillnaden mellan dessa sätt är att i microarray 
undersöker vi en mindre, men väl definierad del av immunsvaret, medan med 
GPS mäter vi protein som härstammar från överallt i kroppen.  

Genom att använda oss av de olika egenskaperna som immunförsvaret har kan vi 
därmed mäta immunförsvarets respons till sjukdomar, och sen jämföra skillnader 
i sjuka mot friska. Alternativt använder vi oss av antikroppen som ”magnet” för 
att fånga upp en del av många olika peptider, och därefter mäter vi dessa för att 
kunna göra jämförelser.  

I min avhandling har vi undersökt bröstcancer och bukspottskörtelscancer. I två 
av artiklarna vill vi se om vi kan hitta hur skillnader i proteinnivåer beroende på 
hur aggressiv en bröstcancertumör är. Målet är att i framtiden kunna ersätta 
dagens metod, där man tittar på en bit av tumören och ser hur den ser ut, för att 
uttala sig om detta. Den största vinsten med detta kan bli att hälften av alla 
patienter som idag hamnar i en mittenkategori, istället kan fördelas in i antingen 
en mindre, eller mer aggressiv kategori, där behandlingarna är väldigt olika. 

En tredje artikel tittar på hur immunförsvaret ändrar karaktär innan man får 
bröstcancer. Idag finns en teori om att en cancercell och immunförsvaret går 
igenom tre faser, och om en sjuk cell går från den första vidare till den tredje så 
får man cancer. Dessa är eliminering, där immunförsvaret tar död på den sjuka 
cellen, den andra är jämvikt, där immunförsvaret har koll på cancern men inte 
kan ha ihjäl den ännu, och till sist flykt, där cellerna ändrats så mycket att 
immunförsvaret inte kan rå på dem, och blir cancer. För att undersöka dessa 
förändringar använde vi oss av blodprov tagna upp till två år innan patienterna 
blev diagnostiserade med bröstcancer.  

Det sista arbetet handlar om bukspottskörtelscancer. Denna cancer drabbas ca 
900 svenskar av varje år, men mindre än 10% överlever mer än ett halvår. En stor 
anledning till detta är att man allt försent hittar sjukdomen, och att den då redan 
är för långt gången för att kunna behandlas effektivt. I studien hittar vi signaturer 
som ska kunna särskilja patienter med cancer från friska, vilket kan leda till en 
tidigare diagnos, med ökad överlevnad. 
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vardagen inte fungera. Vad kommer hända nu? Vem kommer sjunga i 
korridorerna? Men tack Cornelia, du har redan visat dig fixa biffen. 

Hela avdelningen, gammal som ny, tack för alla år, allt kaffe och alla skratt.  

Henke och Levin, ni har hjälpt mig på många sätt, och hoppas ni vet hur mycket 
det betytt. Levin, din Ponatre kommer alltid leva kvar i hjärtat! Hoppas vi 
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fortsätter med våra luncher och en eller annan öl! Ufuk, även om du satt på the 
dark side så lyckades du nästla in dig. Ser fram emot nästa Kenneth-dag, vi får fira 
ordentligt. Karin – tack för att du lät mig fortsätta på Orbin trots alla problem! 
Liselotte, tack för all energi och labb du lagt ner det senaste året för att vi skulle 
kunna fixa den där GPS! Sofia – vilken energi du har! Tack för att du alltid ser 
möjligheterna! To all of you whom I’ve talked and laughed with every day for the 
last couple of years, you are all the best! Thanks for all the support and happy 
times! 

Tiden som doktorand är inte schemalagd, och har fått luta mig på vissa mer än 
andra. Det stöd som jag fått av familj och vänner har varit ovärderligt. Till min 
svärfamilj, tack för alla middagar! Uffe och Kerstin, tack för att ni välkomnade 
mig till er familj, jag är stolt och glad att få vara en del av the Berggrens. Aldrig en 
tråkig stund hos er! Matilda, Maggan och Olle, tack för att allt ni ger mig och 
familjen, skulle vara en tråkig värld utan er. Vet att Idun och Finn har de bästa 
mostrar och morbror i mannaminne! 

Anders – tack för allt stöd genom alla år. Det är få förunnat med en bror som gjort 
samma resa, jag har tur som har dig i mitt liv. Sen att du är ett wünderchild på R 
och statistik skadar inte heller! Hannes, tack för alla småsnack genom åren, du är 
den bästa lillebroren jag någonsin haft!  

Mamma – du har en envis förmåga att alltid tro på mig. Tack för att du 
introducerade vetenskapen så tidigt i mitt liv. Du är en stor inspiration, och 
förebild. Älskar dig! 

Pappa – saknar dig var dag, det finns så mycket jag missat att dela med mig utav. 
Vet att du ser ner och ler.  

Idun och Finn, hoppas ni förstår hur mycket ni betyder, att var dag få vara med 
om två mirakel är det bästa som hänt mig! 

Ellen. Älskar dig! Tack för allt. Tack för alla ord och allt stöd, alla stunder. Du är 
bäst, och jag är lycklig för var stund som jag får med dig!  
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