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Laplace’s equation and the

Dirichlet–Neumann map: a new mode for

Mikhlin’s method ⋆

Johan Helsing ∗ and Eddie Wadbro 1

Numerical Analysis, Centre for Mathematical Sciences,
Lund University, Box 118, SE-221 00 LUND, Sweden

Abstract

Mikhlin’s method for solving Laplace’s equation in domains exterior to a number
of closed contours is discussed with particular emphasis on the Dirichlet–Neumann
map. In the literature there already exist two computational modes for Mikhlin’s
method. Here a new mode is presented. The new mode is at least as stable as the
previous modes. Furthermore, its computational complexity in the number of closed
contours is better. As a result, highly accurate solutions in domains exterior to tens
of thousands of closed contours can be obtained on a simple workstation.

Key words: Laplace’s equation, exterior problem, multiply connected domains,
integral equations, fast solvers, Dirichlet–Neumann map
1991 MSC: 65R20, 77C05

1 Introduction

Solving Laplace’s or the biharmonic equation in domains exterior to a large
number of closed contours or surfaces is a common task in many branches of
applied mathematics. Often, in 2D, these problems can be reduced to bound-
ary value problems in the theory of analytic functions and, by particular
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choices of representations or by other means, recast as Fredholm second kind
integral equations. Examples can be found in materials science (microstruc-
tural evolution and particle coarsening), electrostatics, elasticity, and fluid
dynamics (Stokes flow). See chapters IV and V in Mikhlin [19] for a clas-
sic reference and [1–3,6,7,11,13,16,18,22,24,26–28] for more recent work and
applications.

Numerical methods based on integral equations are, as indicated, natural
choices for the problems just mentioned. When the boundary data correspond
to solutions with sources and sinks inside the contours, standard methods
for Laplace’s and the biharmonic equations seem to be those of Mikhlin and
Sherman [19,20]. These similar methods were popularized in the 1990s by
Greenbaum, Greengard, and McFadden [5] and by Greengard, Kropinski and
Mayo [7] who presented Mikhlin’s method and Sherman’s method (in con-
strained formulation) with two computational modes: one unpreconditioned
and one preconditioned. Despite the use of the fast multipole method [4,8,23],
these modes have some unwanted properties regarding complexity and stabil-
ity which become apparent when the number of closed contours is large. In
practice, the preconditioned modes are often chosen [1–3,6,16,28]. For large
problems they may be applied to smaller, overlapping, subproblems involving
a few hundred closed contours [1,2,28]. The overall resulting accuracy in the
solution is then, perhaps, only one per cent [1].

This paper presents a new computational mode for Mikhlin’s method in the
Dirichlet Laplace setting. The new mode is stable for large problems. Its com-
plexity in execution time and storage is almost linear in the number of dis-
cretization points and also in the number of closed contours. At least this holds
for a problem class which is common in materials science. Solutions with a
controlled relative error of, for example, less than 10−8 can be achieved in
domains exterior to 30, 000 closed contours on a simple workstation. No over-
lapping subproblems are involved. The leading idea is to reformulate Mikhlin’s
original method in a way which makes it more symmetric and then to apply
efficient right preconditioners on two levels: first to the main system which re-
sults from discretizing the integral equation and then to a smaller Schur com-
plement system appearing within the main-level preconditioner. The main-
level preconditioner is a modified approximation to the preconditioner used in
the preconditioned mode of [5]. Its purpose is to convert the main system into
a system whose condition number stays bounded not only when the number
of discretization points grow due to mesh refinement but also when they grow
due to an increased number of closed contours. The Schur complement system
preconditioner is an approximation to a certain logarithm matrix, capturing
the ill-conditioning of the underlying mathematical problem. Its inverse is
cheaply constructed using a modified version of an existing scheme for system
matrices resulting from the discretization of some first kind Fredholm integral
equations arising in potential theory [21].
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The paper is organized as follows: Section 2 contains the problem statement.
Section 3 reviews Mikhlin’s method and related integral equation methods for
Laplace’s equation in multiply connected domains. Section 4 covers discretiza-
tion and matrix partitioning. The three modes – the two modes of [5] and our
new mode – are presented in Section 5. The computation of the Dirichlet–
Neumann map in a post-processing step and the construction of test problems
are described in Sections 6 and 7. Section 8 presents numerical results includ-
ing a very thorough study of numerical errors and large-scale computations of
unprecedented size. The paper ends with a discussion in Section 9.

2 Problem statement

Let D be an infinite, multiply connected, two dimensional domain exterior to
M closed smooth contours L1, . . . , LM . We refer to Lk as boundary components
and call their union L. The normal of L, inwards D, is denoted ν.

The exterior Dirichlet problem for Laplace’s equation with boundary data
f(Q) is to find a function U(P ) which satisfies

∆U(P ) = 0 , P ∈ D , (1)

lim
D∋P→Q

U(P ) = f(Q) , Q ∈ L . (2)

A condition regarding the behavior in the far field is needed in order for this
problem to have a unique solution. We require that there is a real number λ
such that

|U(P )| ≤ λ , P ∈ D , (3)

that is, U(P ) is bounded.

Once U(P ) is found, its normal derivative g(Q) on L can be computed

g(Q) = lim
t→0+

ν(Q) · ∇U(Q + tν(Q)) , Q ∈ L . (4)

The mapping f(Q) → g(Q) is called the Dirichlet–Neumann map. Its efficient
computation on domains with large M is our topic.

In the remainder of this paper there will be no distinction made between a
point P = (x, y) ∈ R2 and a point z = x + iy ∈ C. The real and imaginary
parts of a complex number w are denoted ℜ{w} and ℑ{w}. Further, ζ and τ
always denote points located on L while z and zk are reserved for points not
on L. The boundary components have positive orientations and their lengths
are |Lk|. In the context of integration, an incremental element of arc is dσ. In
the context of discretization, N is the total number of discretization points.
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3 Integral equations of Mikhlin type

Mikhlin, in paragraph 31 of his book [19], suggests that the solution U(P )
to (1-3) be regarded as the real part of an analytic function ϕ(z)

U(P ) = ℜ{ϕ(z)} . (5)

The function ϕ(z) is represented as

ϕ(z) = ϕ∗(z) +
M
∑

k=1

ak log(z − zk) , z ∈ D , (6)

where zk is an arbitrary point inside Lk and ϕ∗(z) is a single-valued function in
D. To ensure that (3) is satisfied, the real coefficients ak need to be subjected
to the condition

M
∑

k=1

ak = 0 . (7)

The function ϕ∗(z) is sought in the form of a Cauchy-type integral and a
certain constant

ϕ∗(z) =
1

2πi

∫

L

µ(ζ)

ζ − z
dζ +

1

2π

∫

L
µ(ζ) dσ, (8)

where the density µ(ζ) is real, that is, µ(ζ) : L → R. Solving (1-3) now reduces
to finding µ(ζ) and ak. Replicating the arguments in [19] one arrives at the
system of equations

µ(τ) − 1
π

∫

L µ(ζ)ℑ
{

dζ

ζ−τ

}

− 1
π

∫

L µ(ζ) dσ

−2
∑M

k=1 ak log |τ − zk| = −2f(τ) ,
∑M

k=1 ak = 0 ,
∫

Lk
µ(ζ) dσ = 0 , k = 1, . . . , M−1 .

(9)

Having solved (9) for µ(ζ) and ak, the solution U(P ) to (1-3) is recovered
from (5,6) and (8). This approach is used in [5]. A particular aspect of (9),
which, as we shall see later, can have large implications on stability properties
of numerical algorithms, is a certain lack of symmetry; in the last line of (9)
the Mth boundary component LM is not included.

The representation (8) of ϕ∗(z) is not the only possibility. Another possible
representation is

ϕ∗(z) =
1

2πi

∫

L

µ∗(ζ)

ζ − z
dζ + c0 , (10)
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where c0 is a constant and µ∗(ζ) : L → R. Starting from this representation
one can arrive at the system of equations

µ∗(τ) − 1
π

∫

L µ∗(ζ)ℑ
{

dζ

ζ−τ

}

− 2c0

−2
∑M

k=1 ak log |τ − zk| = −2f(τ) ,
∑M

k=1 ak = 0 ,

1
2|Lk|

∫

Lk
µ∗(ζ) dσ = 0 , k = 1, . . . , M .

(11)

Having solved (11) for µ∗(ζ), ak, and c0, the solution U(P ) to (1-3) is recovered
from (5,6) and (10). One can observe a higher degree of symmetry in the
system (11) than in the system (9); all M boundary components in (11) are
treated in the same way. The connection between (9) and (11) is explored
further in Appendix A.

Yet another integral equation based approach to (1-3) starts with the repre-
sentation of U(P ) as a combination of single and double layer potentials. The
resulting Fredholm equation is used in some commercial software, see [17] and
the discussion in Section 9.

4 Discretization and matrix partitioning

We intend to solve the systems (9) and (11) using a Nyström algorithm based
on the trapezoidal quadrature rule.

The discretization of (9) with Nk points, denoted by ζk
j , on each boundary

component Lk generates the system

µl
i −

1

π

M
∑

k=1

hk

Nk
∑

j=1

µk
j



ℑ







ζk
j

′

ζk
j − ζ l

i







+ 1





−2
M
∑

k=1

ak log |ζ l
i − zk| = −2f(ζ l

i) , (12)

M
∑

k=1

ak = 0 , (13)

Nk
∑

j=1

µk
jhk = 0 , k = 1, . . . , M−1 . (14)

Here hk is the step in arclength on Lk, ζk
j

′
= dζ/ dσ(ζk

j ), and µk
j = µ(ζk

j ).

Appropriate limits, ℑ
{

ζk
j

′
/(ζk

j − ζ l
i)

}

= ℑ
{

ζ l
i

′′
/(2 ζ l

i

′
)
}

, are taken when ζk
j =

ζ l
i . The system (12-14) is the same as the system (25) of [5].

5



Remark 1 In some situations, such as when boundary components have high
local curvature or are closely gathered together, it might be advantageous to
adopt a nonuniform mesh spacing. This is easily accomplished by employing
suitable stretchings of the arclength coordinate [5] or by using composite Gaus-
sian quadrature and a special technique to evaluate layer potentials close to
their sources [9].

The discrete equations (12-14) can be written in block form







I − K B

C D













µ

a






=







−2f

0






. (15)

Here µ is the vector of the unknown density values, a is the vector of the
unknown coefficients, and f is the vector of given boundary values. The N by
N matrix K corresponds to the interactions of the double layer potentials and
the N by M matrix B represent the logarithmic terms in (12). The M by M
matrix D and the M by N matrix C represent the constraint equations (13,14).

The discretization of (11) generates a system analogous to (12-14)

µ∗l
i −

1

π

M
∑

k=1

hk

Nk
∑

j=1

µ∗k
j ℑ







ζk
j

′

ζk
j − ζ l

i







− 2c0

−2
M
∑

k=1

ak log |ζ l
i − zk| = −2f(ζ l

i) , (16)

M
∑

k=1

ak = 0 , (17)

1

2|Lk|

Nk
∑

j=1

µ∗k
j hk = 0 , k = 1, . . . , M . (18)

In block form this system reads







I − K̃ B̃

C̃ D̃





















µ
∗







c0

a





















=







−2f

0





 . (19)

Here the N by N matrix K̃ corresponds to the interactions of the double layer
potentials in (16). The M +1 by N matrix C̃ and the M +1 by M +1 matrix
D̃ represent the constraint equations (17,18). The N by M + 1 matrix B̃ can
be written

B̃ = [−2eN B] , (20)

where eN is a column vector with N elements all equal to one.
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5 Modes

The numerical method presented in [5] solves the system (15) making use of the
GMRES iterative solver [25] accelerated by the fast multipole method [4,8,23].
Actually, the method in [5] is presented with two computational modes –
one unpreconditioned and one preconditioned. In the rest of this paper we
denote the unpreconditioned mode of [5] by Mode I and the preconditioned
mode of [5] by Mode II. These two modes will now be presented more in
detail together with our new mode for the system (19). Our new mode will be
denoted Mode III.

5.1 Mode I

In Mode I, the linear system (15) is solved iteratively as it stands using GM-
RES. At each iteration a matrix-vector multiplication has to be computed.
This can be done in O(N + M) operations making use of the fast multipole
method for the blocks I −K and B and since the blocks C and D are sparse.
As we shall see in Subsection 8.3, the complexity of Mode I is not necessarily
O(N +M). The condition number of the system matrix in Mode I is observed
to grow linearly with M , given that the relative sizes of and distances between
the boundary components are not significantly changed as M increases, see
Subsection 5.1 of [3] and Subsection 2.1.1 of [16]. If these conditions are vio-
lated the condition number could grow even faster. The number of GMRES
iterations needed to meet a certain tolerance in Mode I may, therefore, depend
on M .

5.2 Mode II

In Mode II, the linear system (15) is solved iteratively using a left precondi-
tioner in GMRES. The preconditioner is

P =







I B

C D





 . (21)

Thus, rather than solving the system (15) as it stands, one solves the system







I B

C D







−1 





I − K B

C D













µ

a






=







I B

C D







−1 





−2f

0






. (22)
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At each iteration for (22) it is necessary to solve a linear system with the
preconditioner P of (21) as system matrix. To solve such a system







I B

C D













xµ

xa





 =







bµ

ba





 , (23)

one first forms the M by M Schur complement S of D in P

S = D − CB . (24)

One then obtains xa by solving

Sxa = ba − Cbµ , (25)

and xµ from the relation

xµ = bµ − Bxa . (26)

We refer to (22) as the main system and to the Schur complement system (25)
as the inner system in Mode II. The inner system is solved by Gaussian elim-
ination. Backsolving requires O(M2) operations each time the inner system
is solved. The total cost of one iteration for the main system is therefore
O(N + M2). The initial LU factorization of S, however, requires O(M3) op-
erations.

5.3 Mode III

In Mode III, the linear system (19) is solved iteratively using right precondi-
tioners in GMRES. In contrast to Mode II, not only the main system is solved
iteratively but also the inner system. In this way we overcome the O(M3)
cost of factorizing S which makes Mode II impractical for domains with large
M . In addition, as we shall see in Subsection 8.2, the combination of right
preconditioning and the fact that (19) is more symmetric than (15) will make
Mode III much more stable than Mode II.

5.3.1 The main system in Mode III

One could construct a preconditioner to the system (19) very similar to P
of (21), namely

P̃ =







I B̃

C̃ D̃






. (27)
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The M + 1 by M + 1 Schur complement S̃ of D̃ in P̃ has the form

S̃ = D̃ − C̃B̃ . (28)

The structure of the matrix S̃ is simple. The element S̃11 is zero. The elements
S̃1i and S̃i1, i = 2, . . . , M + 1, are one. The remaining elements of S̃ can be
seen as discrete versions of integrals of the type

1

|Lk|

∫

Lk

log |ζ − zi| dσ . (29)

For i 6= k we make the following observation:

1

|Lk|

∫

Lk

log |ζ − zi| dσ ≈
log |zk − zi|

|Lk|

∫

Lk

dσ = log |zk − zi| . (30)

This approximation is exact if Lk is a circle centered at zk, according to the
mean value theorem for harmonic functions. The approximation should also
be reasonable when Lk does not deviate too much from a circle and, more
importantly, when Lk is located far away from zi.

We now use (30) to build an alternative preconditioner P̂ given by

P̂ =







I B̂

C̃ D̃





 , (31)

where B̂ is an approximation to B̃ of (20) formed in the following way: all
elements in B̃, except for those in the first column, have the form −2 log |ζk

j −

zi|. These elements in B̂ are replaced by −2 log |zk − zi| whenever i 6= k. The
Schur complement Ŝ of D̃ in P̂ is then

Ŝ =





























0 1 1 · · · 1

1 S̃22 log |z1 − z2| · · · log |z1 − zM |

1 log |z2 − z1| S̃33 · · · log |z2 − zM |
...

...
...

. . .
...

1 log |zM − z1| log |zM − z2| · · · S̃(M+1)(M+1)





























, (32)

where S̃ii refers to the ith diagonal element of S̃ of (28).

Thus, rather than solving (19) as it stands, we apply P̂ as a right precondi-
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tioner and solve the system







I − K B̃

C̃ D̃













I B̂

C̃ D̃







−1

ω =







−2f

0





 , (33)

for the unknown N + M + 1 vector ω. We then obtain the solution to (19)
from















µ
∗







c0

a





















=







I B̂

C̃ D̃







−1

ω . (34)

5.3.2 Applying the preconditioner in Mode III

At each iteration for (33) it is necessary to solve a linear system with the
preconditioner P̂ of (31) as system matrix. Such a system is solved in a similar
manner as a corresponding system in Mode II, see (23-26). However, for the
equation corresponding to the inner system (25), that is,

Ŝxca = bca − C̃bµ , (35)

we do not factorize Ŝ. Instead we apply GMRES for (35) together with a right
preconditioner whose inverse Ŝ−1

P we construct explicitly.

The Schur complement Ŝ of (32), acting as system matrix in (35), can be
written in block form

Ŝ =







0 eT
M

eM F





 . (36)

Here eM is a column vector with M elements all equal to one, eT
M is its

transpose, and F denotes the bottom right M by M submatrix in (32). Our
plan for Ŝ−1

P is to find an approximation F̂−1 to F−1, and then to compute
Ŝ−1

P as the inverse of (36) using the Schur–Banachiewicz inverse formula [12]
and replacing F−1 with F̂−1 whenever it occurs. The result is

Ŝ−1
P =







−α αvT

αu F̂−1 − αuvT






, (37)

where α = (eT
M F̂−1eM)−1, u = F̂−1eM , and vT = eT

M F̂−1.

For the construction of F̂−1 we observe that F resembles a discretization of
the kernel of a single-layer potential, whose inverse is the Laplacian operator.
One could therefore expect that the matrix F , and perhaps also the matrix
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Ŝ, has a condition number which grows linearly with M . (In Subsection 8.2
we shall see that this can indeed be the case). Fortunately, there exists eas-
ily computed approximations to inverses of discretized single-layer potentials
based on geometrically local properties. We shall use a modification of a con-
struction suggested by Nabors, Korsmeyer, Leighton, and White [21]. Our F̂−1

is basically their Algorithm 5.1. The chief difference is that our choice of
“finest-level nonempty cubes” depends on system size M , but is independent
of the cube (or box in 2D) hierarchy of the fast multipole algorithm sub-
sequently used to compute matrix-vector multiplication. Further, we do not
simultaneously solve for several rows or columns in the approximate inverse,
but for one at a time. Our construction reads in its entirety:

Algorithm 1 Construction of F̂−1

Let p be the integer nearest to min(M, 10 log10(M)).

Fill the M × M matrix F̂−1 with zeros.
Let z1, . . . , zM be the points appearing in the definition of F .
for i = 1, . . . , M do

Let ij+1 be the index of the jth nearest point to zi. Let i1 = i.
Form the p × p matrix G with elements Gjk = Fijik .
Solve the system Gx = b, with b = (1, 0, . . . , 0)T .
for j = 1, . . . , p do

Set the ijth element in column i of F̂−1 equal to xj .
end

end

Note that the matrix F̂−1 is sparse and contains at most pM nonzero ele-
ments. The formula p = min(M, 10 log10(M)) in Algorithm 1 is determined
experimentally and found to work well for a wide range of domains.

We proceed with a numerical experiment in order to illustrate the efficiency
of Ŝ−1

P of (37). We compare the number of GMRES iterations needed to solve
a sequence of systems

Ŝx = b , (38)

for x, with and without right preconditioning. The geometric data used to
construct the matrices Ŝ in these systems is generated from the test domains
described in Section 7, below. The elements of b are chosen randomly in
[−1, 1]. Note that, for a given test domain, the system (38) and the inner
system (35) have the same system matrices – only the right hand sides differ.
If Ŝ−1

P is efficient for (38), where the right hand side is random, one could
expect that Ŝ−1

P also is efficient for (35), where the right hand side varies with
the iterations in the main system. The number of iterations needed to reach a
relative error of less than 10−8 in the residual of (38) is shown as a function of
system size M in Fig. 1. The relative errors in the solutions are shown in Fig. 2.
The reference solutions for x are computed by solving the unpreconditioned

11
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Fig. 1. Number of iterations for (38). The effect of right preconditioning is studied
for a sequence of systems with random right hand sides.
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Fig. 2. Accuracy of solutions for (38).

systems down to relative residuals of less than 10−12. Fig. 1 shows that the
number of iterations for the unpreconditioned system grows approximately
as M0.3 while the number of iterations for the preconditioned system grows
much slower. The speedup in the preconditioned system is about a factor of
20 for large M . This should be very promising for Mode III. Fig. 2 shows that
the computed accuracy of the solution in the preconditioned system always
is higher than the requested tolerance in the solver. The accuracy seems to
increase with system size.

To sum up Mode III: Each iteration for the inner system requires O(M log(M))
operations. If there are kiniter such iterations, the total cost of one iteration for
the main system is O(N + kiniterM log(M)). We have reasons to believe that
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Fig. 3. A typical domain with 100 boundary components.

kiniter grows only slowly with M for many problems of interest. The initial cost
for setting up the preconditioner is O(M(log(M))3).

6 The Dirichlet–Neumann map

All three modes in Section 5 compute quantities from which the solution to
Laplace’s equation in multiply connected exterior domains, that is, the map-
ping f(Q) → U(P ), can be directly evaluated via (5,6) and (8) or (10). In
order to get the Dirichlet–Neumann map f(Q) → g(Q), as we set out to do
in Section 2, we also need to compute the normal derivative (4) of U(P ) on
L, that is, the mapping U(P ) → g(Q), and then compose these two maps.

The function U(P ) represented by (5,6) and (8) or (10) is a sum of logarithmic
terms, the real part of a Cauchy-type integral, and a constant. The normal
derivative of the logarithmic terms can be computed analytically. The normal
derivative of the real part of a Cauchy-type integral, in this case the real part of
ϕ∗(z) of (8) or (10), can be computed numerically as the tangential derivative
of its harmonic conjugate. We obtain the harmonic conjugate by computing
ℑ{ϕ∗(ζ)} on L using the alternate point trapezoidal rule, see [5] for details.
The tangential derivative is obtained by Fourier approximation and the FFT.
We use the routines DCFFTF and DCFFTB from Netlib.

7 The test problems

The test domains in our numerical examples are domains exterior to M el-
lipses. A typical domain is shown in Fig. 3. The area fraction of the ellipses
is around 29%. The ellipses are placed sufficiently separated as to ensure a
relative accuracy of 10−8 in the Dirichlet–Neumann map using 128 discretiza-
tion points per boundary component Lk. The formal construction of the test

13



Fig. 4. The domain exterior to six ellipses used in Example 1.

domains, used in the numerical experiment of Subsection 5.3.2 and in the
large-scale problems of Subsections 8.2 and 8.3, reads

(1) Let rmin =
√

1/(35M) and let γ = 1.35.

(2) Place M circles Ck in the unit square:
• Choose M circle radii randomly in [rmin, 3rmin].
• Construct a sorted vector r of circle radii in descending order.
• Place M circles Ck with radii rk, sequentially picked from r, randomly in

the unit square in such a way that the distance djk between the centers
of any two circles Cj and Ck is at least djk = γ max(rj, rk)+min(rj, rk).

(3) Place an ellipse Ek inside each circle Ck:
• Choose the inclination angle, θk, of ellipse Ek randomly in [0, 2π].
• Set the length of the major axis, αk, of ellipse Ek equal to rk.
• Choose length of the minor axis, βk, of ellipse Ek randomly in [0.5αk, αk].

The points zk, introduced in (6) and needed for the construction of various
preconditioners, are placed at the centers of the ellipses Ek.

As for Dirichlet boundary data f(Q) in the test problems, we choose the
Gibbs–Thomson boundary condition

f(τ) = κ(τ), τ ∈ L , (39)

where κ(τ) denotes curvature. This type of boundary condition is typical in
certain material studies. One example is the simulation of particle coarsen-
ing during Ostwald ripening, where the evolution of interface boundaries is
determined by the Dirichlet–Neumann map [1,2,5,28].

8 Numerical results

This section presents numerical examples comparing the performance of, and
highlighting the differences between, the three computational modes of Sec-
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tion 5. The underlying computer programs are implemented in Fortran 77.
The numerical experiments are performed on a SunBlade 100 workstation.

Table 1
Data for Example 1. Each row contains data for one ellipse in (40) and (41).

a b cx cy θ sx sy

0.3626 0.1881 0.1621 0.5940 3.3108 0.1 0.5

0.5061 0.6053 -1.7059 0.3423 0.5778 -1.6 0.4

0.6051 0.7078 0.3577 -0.9846 4.1087 0.3 -0.9

0.7928 0.3182 1.0000 1.2668 2.6138 0.95 1.2

0.3923 0.4491 -1.9306 -1.0663 4.4057 -1.85 -1.0

0.2976 0.6132 -0.8330 -2.1650 5.7197 -0.8 -2.1

8.1 Example 1 – Verification and reproduction of earlier results

We start with the same setup as in Example 1 of [5]. The Dirichlet problem (1-
3) is solved in a domain exterior to six ellipses, see Fig. 4. Each boundary
component Lk, k = 1, . . . , 6, is parameterized by

x(φ) = cx + a cos θ cos φ − b sin θ sin φ , 0 ≤ φ ≤ 2π ,

y(φ) = cy + b cos θ sin φ + a sin θ cos φ , 0 ≤ φ ≤ 2π .
(40)

The boundary data f(Q) is obtained by choosing an exact solution of the form

U(P ) = c +
6

∑

k=1

dk log(|z − sk|
2) , (41)

where the points sk lie inside the ellipses. The precise centers (cx, cy), eccen-
tricities a, b, and inclination angles θ of the ellipses in (40) and the positions
of the points sk = (sx + isy)k in (41) are given in Table 1. The coefficients
in (41) are taken as

c = 1.0 , dk = k −
7

2
, k = 1, . . . , 6 . (42)

The points zk, introduced in (6), are chosen as zk = (cx + icy)k. In this way
zk 6= sk.

The solution to (1-3) and the Dirichlet–Neumann map (4) are computed, using
the three modes of Section 5. We test a number of different tolerances for the
relative error in the norm of the residual or pseudoresidual in the GMRES
solver, and a number of refinements in the discretization. Tables 2, 3, and 4
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Table 2
Relative error in the Dirichlet–Neumann map for Mode I at a number of tolerances
and refinements.

Nk\tol 10−4 10−8 10−12

32 3.242E-03 3.239E-03 3.239E-03

64 1.576E-04 1.028E-05 1.028E-05

128 1.574E-04 1.247E-08 1.757E-09

256 1.576E-04 1.247E-08 1.650E-12

Table 3
Relative error in the Dirichlet–Neumann map for Mode II at a number of tolerances
and refinements.

Nk\tol 10−4 10−8 10−12

32 3.239E-03 3.239E-03 3.239E-03

64 2.940E-05 1.028E-05 1.028E-05

128 2.841E-05 1.292E-08 1.757E-09

256 2.998E-05 1.383E-08 1.682E-12

Table 4
Relative error in the Dirichlet–Neumann map for Mode III at a number of tolerances
and refinements.

Nk\tol 10−4 10−8 10−12

32 3.240E-03 3.239E-03 3.239E-03

64 8.696E-05 1.028E-05 1.028E-05

128 8.639E-05 2.044E-08 1.757E-09

256 8.640E-05 2.037E-08 1.957E-12

present the relative errors in the Dirichlet–Neumann map for Mode I, Mode II,
and Mode III, respectively. We note that all three modes produce very similar
results.

8.2 Example 2 – Accuracy for large domains

This example investigates how the accuracy in the Dirichlet–Neumann map
achieved by the three modes of Section 5 depends on the number of bound-
ary components M in a domain. The Dirichlet problem (1-3) is solved for
a number of test problems with different sizes M , constructed according to
the description in Section 7. The Dirichlet–Neumann map is computed. All
GMRES tolerances (for relative errors of norms of residuals and pseudoresid-
uals) are set to 10−8 and 128 discretization points per boundary component
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are used. The reference solution is computed in Mode I with tolerance set to
10−12 and with 256 discretization points per boundary component.
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Fig. 5. Relative error in the Dirichlet–Neumann map as a function of problem size.

The relative errors in the Dirichlet–Neumann map for the three modes are
shown in Fig 5. Here one can make a very interesting observation. The rel-
ative error for Mode II is uncontrolled as M grows, while the relative errors
for Mode I and Mode III are controlled. The solution in Mode II is unsatis-
factory for M > 500 even if we are willing to accept low precision. A partial
explanation is offered in Fig. 6. This figure shows the condition numbers of the
Schur complements S and Ŝ, acting as system matrices in the inner systems
of Mode II and Mode III, as functions of M . The Schur complement S in
Mode II has a condition number that grows at an alarming rate and somehow
seems to depend on the choice of the special boundary component LM which
is not included in the constraint equation on the last line of (9). The Schur
complement Ŝ in Mode III has a condition number that grows linearly with
M , as conjectured in Subsection 5.3.2. Fig. 6 thus suggests that if one wants to
use the preconditioning strategy of Mode II it should, for stability reasons, be
applied to our new system (11) rather than to Mikhlin’s original system (9).

We note that when Mode II was used in [5], the largest problem size was
M = 200 and the question of precision in solutions for larger problems was
not addressed.

8.3 Example 3 – Large-scale computations and complexity

This example investigates how the computing time of the three modes of
Section 5 depends on the number of boundary components M in a domain.
The Dirichlet problem (1-3) is, again, solved for a number of test problems
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Fig. 6. Condition numbers of the Schur complements S of (24) and Ŝ of (32) acting
as system matrices in the inner systems of Mode II and Mode III.

Fig. 7. A test domain containing 30,444 boundary components. A blow-up part of
the domain could look like Fig. 3.

with different sizes M , constructed according to the description in Section 7.
The systems are solved with all GMRES tolerances set to 10−8 and with
128 discretization points per boundary component. For M < 2000, the test
problems are a subset of those in Example 2 (every other problem is chosen).
The largest test domain included in the study is depicted in Fig. 7.

Timing results for the three modes are compared in Fig. 8. One can see that
our new Mode III always outperforms Mode I in terms of speed and that
its asymptotic complexity is better. Comparison with Mode II may not be
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Fig. 8. Computing time in seconds as a function of problem size.
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Fig. 9. Iterations for the main system as a function of problem size.

so relevant since the solutions produced in Mode II are unreliable for large
problems. Still, for small problems, where Mode II performs better, our new
Mode III is only slightly slower. A comparison of Fig. 5, Fig. 6, and Fig. 8
shows that the wiggly shape of the curve for Mode II in Fig. 8 is correlated
with the condition number of the Schur complement S and the accuracy in
the solution. The seemingly rapid execution for some problem sizes M is a
consequence of that few iterations are needed to meet the GMRES tolerance.
The accuracy is bad for these problems and the condition number of the Schur
complement S is particularly high.

The timings for Mode I and Mode III in Fig. 8 chiefly reflect the number of
GMRES iterations needed for the main systems. These numbers are compared
separately in Fig. 9. The number of iterations in Mode I clearly grows with
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problem size, although not as bad as O(M0.5) which is a pessimistic estimate
for many iterative methods on systems whose system matrices have condition
numbers that grow as O(M). The number of iterations for the main system in
Mode III is nearly independent of M . This indicates that our alternative pre-
conditioner P̂ of (31) makes the system (33) behave like a discretized Fredholm
second kind equation in the sense that its condition number is independent of
the number of discretization points N . Note, however, that we can increase N
in two different ways – either by increasing M and holding Nk constant, or by
increasing Nk and holding M constant. In the latter situation, which is more
honest test for if a certain equation behaves as if it were of Fredholm second
kind but less relevant for large-scale problems, Mode I and Mode III behave
similarly.

The number of iterations needed to solve the inner system (35) in Mode III
is shown as a function of M in Fig. 10. (The largest number for all main
iterations at a given problem size). The dependence on M is, as predicted in
Subsection 5.3.2, very similar to that of the system (38) shown as stars in
Fig. 1. This indicates that Mode III should work well for test problems with
up to several hundreds of thousands of boundary components.

9 Conclusions and extensions

We have reformulated Mikhlin’s classic method [19] for the solution of Laplace’s
equation in multiply connected exterior domains with Dirichlet boundary data.
The new formulation differs from Mikhlin’s original formulation in that all
boundary components are treated in the same manner and in that the dis-
cretized integral equation has one extra unknown. Based on the new formula-
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tion we have constructed a new computational mode, denoted Mode III. Our
Mode III differs from Mode I of [5] in that it does use a preconditioner. It dif-
fers from Mode II of [5] in that it is stable and avoids costly LU-factorization.

Most previous investigators who need to solve the Dirichlet problem have set-
tled for Mode II [1,2,16,28], sometimes applied on overlapping sub-problems –
a strategy which introduces an error “generally better than one per cent” [1].
Neither Mode I nor Mode II is particularly good for large problems. Mode I is
quite slow already for small problems and its complexity is worse than linear
in M . Mode II is faster for small problems, but its complexity is cubic in M
and it exhibits instabilities. In contrast, our new Mode III has almost linear
complexity in M , it is always faster than Mode I, it is faster than Mode II for
medium-sized and large problems (the precise cross-over size depends among
other things on the requested tolerance and details in the implementation of
the fast multipole method), and it seems to produce results with user specified
accuracy. At least this holds for the problem class described in Section 7. It is
therefore our hope that our new Mode III will replace Mode I and Mode II as
the standard computational mode for Mikhlin’s method when used on larger
problems. On small problems, where Mode II can be justified, we hope, for
stability reasons, that it will be applied to the more symmetric and new sys-
tem (11) rather than to the original system (9).

We end with a few words regarding future work. An interesting possibility,
mentioned in Section 3, is to abandon Mikhlin’s method completely and to
represent the solution to Laplace’s equation as a combination of single and
double layer potentials. Judging from the experiments presented in [17] it
seems as if algorithms based on this approach behave similarly as Mode I.
Another idea concerns the removal of arbitrariness within Mikhlin’s method.
The representation of the solution requires that a point zk is placed inside
each boundary component Lk. What is the optimal placement of this point?
Replacing (6) by, for example,

ϕ(z) = ϕ∗(z) +
M
∑

k=1

ak

∫

Lk

log(z − ζ) dσ , z ∈ D , (43)

would remove the need for zk here, although some kind of points zk would
be needed for the construction of the preconditioner P̂ of (31). Removal of
arbitrarily placed points, used by classic authors when finding Fredholm sec-
ond kind equations for other boundary value problems of potential theory, has
previously shown to be successful [10,11]. Possible further applications of the
ideas put forward in this paper include elasticity and Stokes flow [3,6,7,13,24],
where Sherman’s method, in constrained formulation, could be presented with
a new computational mode, and problems where the Dirichlet data is given
on open arcs [14,15].
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Appendix

A Connection between the systems (9) and (11)

Consider the systems (9) and (11). Given a solution µ(ζ), ak to (9) we can
construct a solution to (11). We commence by defining

c0 ≡
1

2π

∫

L
µ(ζ) dσ =

1

2π

∫

LM

µ(ζ) dσ . (A.1)

We then define µ∗(ζ) : L → R by

µ∗(ζ) ≡











µ(ζ) , ζ ∈ Lk , k = 1, . . . , M−1 ,

µ(ζ) − 2π
|LM |

c0 , ζ ∈ LM .
(A.2)

It can be verified that µ∗(ζ), c0 together with the coefficients ak solve the
system (11). Conversely, given a solution µ∗(ζ), c0, ak to (11), it is possible to
construct a solution to (9) by keeping the coefficients ak and using (A.2) to
define µ(ζ).

It is proven in paragraph 31 of [19] that (9) has a unique solution. Assume now

that we have two solutions to (11); {µ∗(1), c
(1)
0 , a

(1)
k } and {µ∗(2), c

(2)
0 , a

(2)
k }. From

each of these solutions it is possible to construct a solution to (9); {µ(1), a
(1)
k }

and {µ(2), a
(2)
k }. Uniqueness of the solution to (9) directly gives that

µ(1) = µ(2) , (A.3)

a
(1)
k = a

(2)
k , k = 1, . . . , M . (A.4)

A simple calculation shows that c
(1)
0 = c

(2)
0 :

2πc
(1)
0 =

1

|LM |

∫

LM

2πc
(1)
0 dσ +

∫

LM

µ∗(1)(ζ) dσ =
∫

LM

µ(1)(ζ) dσ , (A.5)

2πc
(2)
0 =

1

|LM |

∫

LM

2πc
(2)
0 dσ +

∫

LM

µ∗(2)(ζ) dσ =
∫

LM

µ(2)(ζ) dσ . (A.6)

Finally we get that µ∗(1)(ζ) = µ∗(2)(ζ):

µ∗(1)(ζ) =











µ(1)(ζ) , ζ ∈ Lk , k = 1, . . . , M−1 ,

µ(1)(ζ) − 2π
|LM |

c
(1)
0 , ζ ∈ LM ,

(A.7)

µ∗(2)(ζ) =











µ(2)(ζ) , ζ ∈ Lk , k = 1, . . . , M−1 ,

µ(2)(ζ) − 2π
|LM |

c
(2)
0 , ζ ∈ LM .

(A.8)

It is now possible to conclude that the solution to (11) is unique.
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[27] K. Thornton, J. Ågren, P.W. Voorhees, Modelling the evolution of phase
boundaries in solids at the meso- and nano-scales, Acta Mater. 51(19), 5675–
5710 (2003), doi:10.1016/j.actamat.2003.08.008.

[28] K. Thornton, N. Akaiwa, P.W. Voorhees, Large-scale simulations of Ostwald
ripening in elastically stressed solids: I. Development of microstructure, Acta
Mater. 52(5), 1353–1364 (2004), doi:10.1016/j.actamat.2003.11.037.

24


