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Popular science summary

Electrons and many atomic nuclei possess intrinsic magnetic moments which behave like bar
magnets or compass needles in the magnetic field. If these small magnetic particles are placed
in an external magnetic field By, then the interactions between nuclear or electron magneti-
zation and the applied magnetic field By will generate a magnetic torque which tends to line
up the magnetization vector M with By. This type of magnetic interactions is called Zeeman
interaction. But unlike bar magnets or compass needles, electron or magnetic nucleus also has
intrinsic angular momentum called spin which make M being tipped away from the direction
of By so that M rotates about By (like a spinning top precessing about the direction of grav-
itational field). This process is named Larmor precession and the corresponding frequency is
termed Larmor frequency. In addition to the external field Bg, we also apply another By field
which is perpendicular to By to rotate M out of alignment with By (M — M), so that Larmor
precession of M’ in Bg can be detected. From the spectroscopic point of view, this process
occurs because of the quantisation of the Zeeman energy (nuclear magnetic moment only has
a few permitted orientations). If the applied electromagnetic radiation frequency matches the
difference between two Zeeman energy levels (in resonance), the detected nucleus will absorb or
emit radio-frequency photons and this phenomenon is called nuclear magnetic resonance (NMR).

Apart from B and B; fields that give rise to resonance phenomenon, the nuclei also experi-
ences internal magnetic field generated by the magnetic moments of nearby nuclei and electrons
which also fluctuates rapidly due to the thermal motions of their carrier molecules. Although
the fluctuating field is pretty weak, it causes generated non-equilibrium magnetization returns
to its previous equilibrium value (M’ — M) and we call this irreversible process as nuclear spin
relaxation.

At a first glance, the relaxation phenomenon seems a drawback in NMR, experiments because
it determines the waiting time for repeating another experiment and it is usually very slow
(sometimes it could take minutes). But every cloud has a silver lining — the relaxation time
is very sensitive to the surroundings of nuclei and the molecular motions which generate the
fluctuating internal field. Therefore, nuclear spin relaxation can be used as a very informative
source to probe the molecular dynamics which causes relaxation. Moreover, the relaxation rates
are used as contrast generating parameters in the clinical magnetic resonance imaging (MRI) —
a rapidly developing diagnostic technique allowing soft-tissue morphology to be imaged.

Water is the most important chemical substance for the sustaining of the life on earth. Water
proton ('H), as the most common and NMR-sensitive nucleus, naturally has been studied in NMR,
both theoretically and experimentally for several decades. The protons are mutually connected
via direct magnetic dipole-dipole interactions which depend on the distances between nuclei and
orientations of internuclear vectors (pointing from one proton to another) with respect to the
external By field. Therefore, the proton relaxation is mainly induced by the modulation of these
diplole-dipole couplings. In bulk water, the dipole-dipole couplings are quickly averaged to zero
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by unrestricted thermal motions of water molecules. The proton relaxation is thus pretty slow
(in the order of seconds). In 1960s, it was found in experiment that the relaxation is much more
efficient in protein solutions. The reason is that the proton motions are somehow slowed down
by water-protein interactions. Consequently, the dipolar interactions among these protons are
modulated relatively slowly and the protein molecules serve as relaxation sink in solutions.

With the development of NMR techniques, the longitudinal relaxation rate R; (describing
the decay of longitudinal magnetization) now can be measured over a wide field By range by
using field-cycling NMR, spectrometers. The dependence of R; on Bj is called magnetic relax-
ation dispersion (MRD). However, it is very difficult to extract dynamical information about
water—protein interactions from the observed proton MRD data due to the lack of the molecular
understanding of how protons sense the protein motions. Several microscopic molecular models
were brought up and this issue had been controversial for over 20 years. Now it is clear that
the relaxation is produced by some intermediary protons which temporarily reside in certain
protein side-chains and internal water molecules buried inside the protein molecules. The intra-
and intermolecular dipole couplings involving these intermediary protons are modulated by the
rotational diffusion (tumbling) of the protein molecules.

Water proton relaxation in tissue-like protein systems is more complicated. Due to their
supramolecular structures, the protein molecules in soft tissues (such as brain, liver, kidney,
etc.) experience direct protein-protein contact so that they can not move freely as in bulk water.
These proteins are thus effectively immobilized. To study the proton relaxation in immobilized
protein systems is not only of academic interest in biophysics, but also has the potential usage in
the detection of healthy and diseased tissues by using MRI. Particularly, it was found that the
longitudinal relaxation rate R; in the low external field will be enhanced enormously by protein
immobilisation. To employ this effect for quantitative diagnostics, we need to understand the
proton relaxation mechanism in such immobilized systems at the molecular level. In MRI field,
the tissue water proton relaxation is often described by a phenomenological model which does
not provide much microscopic understanding of relaxation and thus has no predictive power.
Other microscopic models involve some questionable assumptions and have already been refuted
in experiments.

The key to solve this problem is to understand the role of chemical exchange on relaxation.
Chemical exchange is a dynamic process that a given nucleus is transferred from one magnetic
environment to another different one which may or may not involve breaking/making chemical
bonds. The intermediary protons always change positions between protein molecules and bulk
water via chemical exchange. As mentioned before, if the protein tumble freely, then the exchange
merely transfers proton magnetizations between proteins and bulk water, and can not report
protein motions slower than the tumbling. However, when the free motion of protein molecules
is inhibited (e.g. in immobilized systems), the exchange process is much faster than the protein
tumbling. Now the exchange does not only transfer magnetizations, it also induces relaxation as
now the anisotropic dipole couplings are mainly modulated by exchange of intermediary protons.
In the tissue-like immobilized protein systems, the principal relaxation mechanism is therefore the
exchange-mediated orientational randomization (EMOR) of the anisotropic nuclear couplings.

So far, the EMOR relaxation mechanism which accounts quantitatively for the low-field
MRD has been tested and validated in the the tissue-like model protein systems. Theoretical
and experimental studies have been performed mainly by using spin I > 1 nuclei governed by
quadrupolar relaxation which only involves single spin. However, in purpose of clinical diagnosis,
it is crucial to apply EMOR model to the water 'H MRD in immobilized systems governed by
dipolar relaxation. In this thesis, I have formulated a multi-spin dipolar EMOR relaxation theory
from first principles of quantum statistical mechanics. This theory incorporates many intrinsic
physical features of the proton relaxation in immobilized protein systems (such as many-body
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effects arising from mutual dipole couplings of protons, complications for different exchange
cases, etc.). Moreover, it is a non-perturbative approach which overcomes the limitation of the
traditional relaxation theory that only allows the fast relaxation-inducing motions to be studied.
This theory is the first treatment of dipolar relaxation that enables the studies of slow exchange
cases, which is applicable for the interpretation of the experimental 'H MRD data from the tissue-
like immobilized protein systems. More importantly, it can provide a quantitative formalism for
the interpretation of the soft-tissue contrast in field-cycled MRI.
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Chapter

Introduction

1.1 Spin and NMR

In 1925, when Uhlenbeck and Goudsmit discovered that electron has a fourth degree of freedom
— spin, they asked Lorentz for his advice about their idea “a charge that rotates”. Lorentz replied
“Yes, that is very difficult because it causes the self-energy of the electron to be wrong”. Then
Uhlenbeck got panicked and went to their supervisor Ehrenfest to withdraw their paper but
Ehrenfest had already sent it off for publication. Later Ehrenfest told Goudsmit that “Well, that
is a nice idea, though it may be wrong, But you don’t yet have a reputation, so you have nothing
to lose” 1

Now we know that spin is one of the intrinsic physical properties possessed by elementary
particles and atomic nuclei The internal spin structures of nuclei are very complicated. Even
for the “simplest” nucleus — proton, people have spent over 30 years figuring out how is the
proton’s spin constructed by orbital motions and spins of its composing quarks and gluons and
there is still no consensus about this issue>? Like other counterintuitive phenomena in quantum
world, there is no classical analogue to spin and its physical origin is still unknown. But these
issues do not bother us here and we are satisfied with the “superficial” knowledge that spin
behaves exactly like angular momentum so that it can be described by the rotational symmetry
in quantum mechanics. The magnetic moment resulted from the spin angular momentum of
magnetic atomic nuclei and electrons lays the foundations of nuclear magnetic resonance (NMR)
— a physical phenomenon discovered by Bloch et al”’ and Purcell et al® in condensed matter in
1946. From spectroscopic point of view, NMR is a physical process that the nuclei absorb or emit
radio-frequency photons in the presence of magnetic field > The NMR spectroscopy has been
widely used in physics, chemistry, biology, material science, medicine, and has a very broad range

of applications from quantum computing” ™' to the magnetic resonance imaging (MRI).H’14

1.2 Nuclear spin relaxation

One fundamental aspect of NMR is relaxation. Magnetic or spin relaxation is the irreversible
process that a non-equilibrium magnetization returns to its equilibrium value (prescribed by
Curie’s law) due to the coupling of the spin system to the thermal motion of the surrounding
molecules (historically called lattice) X Various physical interactions which stochastically mod-
ulate the spin Hamiltonian will induce relaxation. In diamagnetic macromolecules, the main
relaxation-mediating interactions are quadrupolar, dipolar, scalar couplings and chemical shift
anisotropy (CSA)1Y Compared to the first two interactions, the scalar coupling is several orders
of magnitude weaker and usually is neglected. Moreover, the relaxation due to CSA is manifested
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either in the heteronuclear spin systems with large chemical shifts, or homonuclear systems in the
strong external field, which are not concerned in this work. Here we only briefly introduce the
first two interactions which are of significant importance for the relaxation mechanism discussed
in this thesis.

Quadrupolar coupling refers to the interactions between electric quadrupole of the nucleus
and the electric field gradient produced by the surrounding molecules. The orientation of the nu-
clear electric quadrupole tensor and that of the nuclear magnetic moment are tied to each other.
If the molecules carrying the charges which produce electric field gradient undergo thermal mo-

A9 The quadrupolar

tions, it modulates the electrostatic interaction and causes spin relaxation.
relaxation only involves single spins, and is the dominant relaxation mechanism for magnetic
nuclei with spin quantum number I > 1 due to the large magnitude of quadrupole coupling
constant (typically in the range of 0.1 — 10 MHz).

Dipolar coupling is the magnetic dipole-dipole coupling between the magnetic nuclei. There
are two types of modulation of the dipolar interactions. For a dipole-dipole coupled two-spin
system, either the distance between the two nuclei is fixed and the angle specifying the orientation
of the internuclear vector relative to the external magnetic field By fluctuates, or both the distance
and angle fluctuate. The former case normally occurs when the two nuclei belong to the same
rotating molecule and therefore referred to as intramolecular dipolar relaxation. The latter
case is called intermolecular dipolar relaxation as the two nuclei belong to different molecules
which undergo translational diffusion 2219 The dipolar relaxation is usually the main relaxation
mechanism for the nuclei with I = 1/2. Compare to quadurupolar relaxation, the dipolar
relaxation is less efficient (~10 KHz) but it is a multi-spin effect (involving at least two spins)
and therefore more difficult to deal with.

1.3 Water 'H relaxation in simple solutions

Nuclear spin relaxation is a powerful and versatile tool of studying the molecular dynamics in
solids and liquids!® Among all the nuclei, proton is the most common magnetic nucleus of
biological relevance and also the most sensitive NMR nucleus due to the largest gyromagnetic
ratio. Water is the most abundant carrier of protons on earth and also the most vital chemical
substance for the evolution of life. The water 'H relaxation has been studied over 70 years in
various systems, from bulk phase to protein solutions.

Bloembergen, Purcell, and Pound first described relaxation rate in terms of correlation time
(known as BPP theory) and obtained the spin-lattice relaxation time T} of protons in bulk water
at room temperature 1 Then Solomon extended their work by analysing intramolecular dipolar
relaxation of a dipole-dipole coupled heternuclear two-spin system in which the dipolar cross
relaxation was described1® Later, Solomon’s work was further extended to describe the water
'H relaxation in the presence of paramagnetic ions in solution, which is known as Solomon-
Bloembergen-Morgan (SBM) theory*® The pioneer study of water 'H relaxation in protein
solutions was done by Daszkiewicz et al in 1963 in which they found that the ovalbumin (hen
egg protein) dissolved in water increases the proton relaxation rate.? They attributed this effect
to the increasing of the water correlation time due to the exchange of water molecules rigidly
bound to the proteins with bulk water.

With the aid of the field-cycling technique,2%22 the magnetic relaxation dispersion (MRD)
which is the dependence of longitudinal relaxation rate Ry on the strength of applied magnetic
field By, can be measured over a wide field range. The interpretation of these MRD data min-
imises the ambiguity of the model-dependent analysis of single-field spin relaxation data and
opens up a new window to quantitatively study protein hydration dynamics and conformational
changes in solutions. Such studies have been of fundamental interest in biophysics and still re-
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maining an active field. Very soon, this technique was applied to protein-hydration problems.
The first protein (demetallated (apo) transferrin) proton MRD profile was published by Koenig
et al in 1969.23 However, the interpretation of water MRD data in terms of relaxation-inducing
motions in protein solutions was controversial during the following 25 years. Koenig et al pro-
posed a long-range hydrodynamic interaction model that relaxation of hydration water nuclei in
protein solutions was induced by a component of the motion of the water molecules that mimics
the protein motion.?* Kimmich-et al advocated another model that water relaxation in protein
systems was caused by the long-lived water molecules remaining “locked” within the hydration
shells which nevertheless are able to diffuse along the rugged protein surface.?> However, these
two models were both refuted by the 17O MRD studies in several protein solutions, which demon-
strated that the 7O relaxation dispersion is due to a small number of internal water molecules
buried inside the protein which exchange with bulk water.?5:27 A combined*H| 2H, and 7O
MRD study also showed that the water 'H relaxation in protein solutions can be quantitatively
accounted for in terms of exchanging internal water molecules, labile protons, and intermolecular
auto-spin relaxation of the protein protons which contributes additively.?® Moreover, this study
also confirmed that the effect of cross-relaxation which is the coupling between the longitudinal
magnetizations of different spins is negligible for the water 'H relaxation in protein solutions.

1.4 Water 'H relaxation in immobilized biological systems

Water 'H relaxation in the tissue-like immobilized systems is not only of academic interest but
also has the potential usage in the detection of healthy and diseased tissues by using MRI. In most
tissues, the tumbling of most protein molecules is slowed down due to supramolecular structures
so that they are effectively immobilized. Moreover, in some diseased tissues the protein molecules
may be immobilized by the pathological aggregation processes (for example, the amyloid fibrils
formed by AB40 which is the primary suspect causing the Alzheimer disease??3?). Due to
protein immobilisation, the longitudinal relaxation rate R; in the LF will be greatly enhanced
(several orders of magnitudes).3'32 The traditional MRI technology only measures relaxation
in the field far above the region-where this large MRD occurs. However, field-cycling technique
allows R; to be measured in the LF with the spatial resolution which enables us to detect
the immobilized proteins in vivo. The field-cycling MRI technology which may realise this aim
is being developed in several labs.?34% In order to employ this protein-immobilisation effect
for quantitative diagnostics, the molécular mechanistic understanding of water 'H relaxation in
immobilized protein systems is crucial. Unfortunately, there is still no consensus on this issue in
the MRI field.!

Most MRI'résearchers employ a phenomenological description of tissue water 'H relaxation —
the so-called “two-pool” model.#:42 In this model, the proton magnetization are exchanged be-
tween the water (free pool) and-polymer (bound pool) phases with different intrinsic longitudinal
relaxation rates. However, this model does not provide understanding of relaxation mechanism
at molecular level and thus has no predictive power. Koenig et al proposed a molecular theory of
water 'H relaxation in immobilized protein systems by postulating that the observed MRD pro-
file can be accounted for by the existence of a class of long-lived, temperature-independent water
in the first hydration shell, which can form four hydrogen bonds to protein surface atoms.*3 44
However, this model fails because: (i) it does not correctly identify the role of intermediaky
protons (protons from labile groups and internal water molecules) on the relaxation; (ii) MRD
data are interpreted based on Solomon equations which is only valid in the motional-narrowing
(MN) condition; (iii) the multi-spin effect is not treated. Another group of workers suggested
a microscopic model of tissue-water relaxation — the “spin fracton” model, which attributes
the water 'H relaxation to the small-amplitude localized longitudinal and librational collective
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motions of the protein backbone.*>~4” This model predicts that the longitudinal relaxation rate
decays with Larmor frequencies as'a-power law: Ry ~ Aw™" and especially b = 1/3 for w from
10* to 10® Hz. However, both experimental?® 149 studies of the vibrational energy
transfer in proteins show a classic w? scaling up to ~ 10'2 'Hz. Moreover, this model can not
explain the strong pH dependence of MRD profiles in the high-field.31:50 Furthermore, a H—D

substitution MRD study showed that the spin-fracton model fails te-predict the isotope effects
32

and theoretica

on the relaxation.

1.5 Chemical exchange on 'H relaxation

It is well known that NMR spectroscopy is affected by chemical exchange — a dynamic process
that a given nucleus is transferred from one magnetic environment to another different one
which may or may not involve breaking /making chemical bonds.”5! This process does not affect
the macroscopic equilibrium of the sample since when individial-nucleus moves to a different
environment, it is always replaced by another so that the equilibrium is maintained. The effect
of chemical exchange on proton relaxation was realised several decades ago.

McConnell added first order kinetics terms to the Bloch equations (known as Bloch-McConnell
equations) to study a model system in which a single spin-1/2 is transferred back and forth be-
tween two or more magnetic environments by kinetic molecular processes. The exchange was
assumed to be much slower than the (rotational) motions inducing relaxation so that the re-
laxation rate in each environment is independent of exchange rate.’?> About the same time,
Zimmerman et al studied the relaxation phenomena of water protons when water molecules were
adsorbed on the surface of silica gel.’3 They developed a stochastic relaxation theory based
on phenomenological rate law in which'relaxation rate was treated as a stochastic variable. In
this theory, water molecules interchange between two adsorbing phases with different intrinsic
relaxation rates (assumed independent of the exchange rate). The exchange was modelled as sta-
tionary Markoff process. From the analysis of this two-phase model system, they discovered that
the longitudinal magnetization decays exponentially under fast exchange limit (7ex < 1/R;, A(B))

AM,(t) = AM,(0)exp (—Riayt) (1.5.1)
where the average relaxation rate Rj ay is
Riaw = PARiA+PsRiB (1.5.2)
and bi-exponentially under slow exchange limit (7ex > 1/Ry A(m))
AM.(t) = AM,(0)[Paexp(—Riat)+ Peexp(—Ript)] (1.5.3)

where AM, is the observed longitudinal magnetization; Py and Pp are populations of water
molecules in phase A and phase B (Py + Pg = 1), and R; A and R;p are the corresponding
intrinsic relaxation rates, respectively.

Luz and Meiboom studied the relaxation of the hydroxyl and methyl protons in methanol
solutions containing low concentration of paramagnetic ions at different temperatures.’* In
this sample solutions, the methanol molecules exchange between the coordination sphere‘ef the
paramagnetic ions (phase A) and the bulk methanol (phase B). In this two-phase relaxation
model, the 'H relaxation in phase A is much more efficient than that in phase B (R1,A > RiB)
due to the presence of paramagnetic ions, while the population of protons in phase A is much
smaller than that in phase B (Py < Pp, dilute regime). In addition, the motions that induce
relaxation (with correlation time 7.) are much faster than the exchange (i.e., 7. < 7a), so that
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the intrinsic relaxation rate Ry a is independent of 4. Under these three conditions, they derived
an expression of longitudinal relaxation rate based on Bloch-McConnell equations
Pa

Ri= A (1.5.4)
TA+ Rll,A

where 75 is the residence time of methanol molecules in phase A. This expression is also only
valid under MN condition (7. < 1/R; a).

The role of exchange on the 'H relaxation in the protein solutions is more complicated. In
protein solutions, generally there are three types of relaxation-inducing motions need to be con-
sidered: (i) over-all tumbling of the protein molecule; (ii) chemical exchange of the intermediary
protons with bulk water protons;>® (iii) internal motion (vibrations, librations, rotate/flip about
the molecular symmetry axis, etc:). Here we only consider the relaxation caused by the first two
motions. The internal motions (in the order of picoseconds) are usually much faster than the
tumblings or chemical exchange and therefore it makes small contributions to the observed R;
and can be easily incorporated via order parameters.?? 56
The correlation time that enters into the expressiens’ of longitudinal relaxation rate can be

written as®® 57

1 1 1

— = —+ — (1.5.5)

Te TR Tex
where 7p is the protein tumbling time, and 7y is the exchange time of the intermediary protons.
This expression also appears in the SBM theory,” with the addition of a third term describing
electron spin relaxation. In solutions, the dipolartinteractions are averaged to zero by the protein
rotational motion (typically in the order of nanoseconds®®) which is much faster than exchange
(typically, in the range of microseconds to milliseconds®®). Therefore, Eq. (1.5.5) shows that the
correlation time 7. characterising the modulation of dipolar Hamiltonian is rotein tumbling
time 7R (7. = TR) since Tp <K Tex. In this case, the exchange merely transfers proton magneti-
zations between the proton residence sites on proteins and bulk region, and can not report any
motions slower than the protein tumbling.

However, when the free motion of protein molecules is inhibited by chemical cross-linking or
direct protein-protein contact, the exchange process between orientationally confined protein sites
and isotropic sites in bulk region is much slower than the protein tumbling (7 > 7ex). In this
case, the exchange does not only transfer magnetizations, it also induces relaxation as now the
correlation time for the modulation of the anisotropic spin couplings is the exchange (residence)
time of intermediary protons on proteins (7. = 7¢y).?? 2 In the tissue-like immobilized protein
systems, therefore the principal relaxation mechanisiti—is the exchange-mediated orientational
randomization (EMOR) of the anisotropic nuclear couplings.??:%9 61

1.6 Aim and challenges

So far, the EMOR relaxation mechanism which accounts quantitatively for the LF MRD has
been tested and validated in the the tissue-like model protein systems. Theoretical and experi-
mental studies have been performed mainly by using spin I > 1 nuclei governed by quadrupolar
relaxation. For example, a 2H and 'O MRD study has been performed to investigate the hy-
dration and conformational dynamics of the chemically cross-linked bovine pancreatic trypsin
inhibitor (BPTI) and ubiquitin proteins in the DoO/H27O solvent.? This study confirms that
the MRD is produced by a small fraction of long-lived internal water'molecules and labile protein
deuterons. However, in purpose of clinical diagnosis, it is crucial to apply EMOR model to the
water 'H MRD in immobilized systems governed by dipolar relaxation. The first attempt made
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use of the extended Solomon equations with invoking several approximations.?® 6! Although this
approach is not rigorous and some of the approximations are ad hoc, it provides-useful physical
insights on the dipolar EMOR mechanism.

The primary goal of the work presented in this thesis is to develop a rigorous water 'H
dipolar EMOR relaxation theory in complex biological systems. However, there are three main
challenges in developing such a theory from first principles:

1. Compared to dipolar relaxation, the quadrupolar relaxation is relatively simpler to deal
with because it is a single-spin mechanism and thus can be treated exactly within the low-
dimensional Hilbert or Liouville spin space. The rigorous theory of quadrupolar relaxation
based on this model is now available.?®0 In contrast, the dipolar relaxation involves multi-

spin system grows exponentially with the number of spins. Normally there are hundreds
or thousands of protons in one protein molecule. Considering a “simple” spin I = 1/2
system consisting of 10 spins, the dimension of the spin Liouville space is 1048576 and it is
impractical to generate all the corresponding matrix elements of the Zeeman and dipolar
Liouvillians, not even mention to invert these huge matrices and isotropically average them
with different orientations.

2. Conventionally, the relaxation behaviour of the dipole-dipole coupled spin systems was
studied by using the Bloch-Wangsness-Redfield (BWR) theory.!®%3 This second-order per-
turbation theory requires the molecular motion which induces thérelaxation is much faster
than the coherent evolution of the magnetization under dipolar interactions (wp 74 < 1),
which is usually the case in liquids. However, this so-called motional narrowing condition
is violated in the immobilized protein systems. Therefore, we need to use more general,
non-perturbative theoretical framework to describe the spin dynamics beyond the MN
limit.

3. The immobilized biological systems have both solid-like and liquid-like features. On one
hand, nonlabile protons reside permanently in the immobilized protein molecules which is
solid-like; on the other hand, the exchange of the intermediary protons transiently associ-
ated with the protein molecules with the bulk region averages out the associated nuclear
couplings which is thus liquid-like. The anisotropy of the spin system, the exchange be-
tween anisotropic sites and isotropic bulk region, and the presence of both fluctuating and
static dipole couplings (SDCs) must all be accounted for in a rigorous relaxation theory.

In this thesis, I have addressed these problems and formulated a multi-spin dipolar relax-
ation theory based on the EMOR mechanism, which can be used for the interpretation of the
experimental 'H MRD data from the tissue-like immobilized protein systems. Moreover, it can
provide a quantitative formalism for the interpretation of the soft-tissue contrast in field-cycled
MRI.



Chapter

Model

In this chapter, we first briefly describe the model of the spin systems based on dipolar EMOR
relaxation mechanism. Then we introduce the integral longitudinal relaxation rate which is
suitable to characterise the longitudinal relaxation in the dilute regime where the longitudinal
magnetization decays exponentially. These contents have been described in section II, paper II,
where more details can be found.

2.1 Spin systems

In the aqueous protein systems, there are three types of proton: (i) bulk water protons; (ii)
nonlabile protons that reside on protein molecules permanently; and (iii) intermediary protons
comprising the labile protons residing in certain side-chains (hydroxyl, carboxyl, amino, etc.)
and internal water molecules buried inside the protein molecules which exchange with the bulk
region” Dipolar couplings among bulk water protons are averaged to zero by unrestricted water
motions (on the picosecond scale). The second and third types of protons form a multi-spin
network through mutual dipole-dipole couplings in the protein molecules. Dipolar interactions
between protons from different protein molecules are neglected due to the fast decay over the
distances (~ 1/r3).

We consider an ensemble of such mutually non-interacting I = 1/2 spin systems where each
spin is subject to a Zeeman coupling with the external magnetic field By and experiences mutual
magnetic dipole-dipole couplings. In the spin system, some or all of the spins exchange between
the liquid-like bulk (B) state and the solid-like anisotropic (A) state. In state B, all dipole
couplings are assumed to be averaged to zero (the very small relaxation contribution from the
fast modulation of dipole couplings can be added, if necessary), leaving only the Zeeman coupling;
in state A, the spins experience both Zeeman and dipole couplings. The state A consists of a
large number (N) of protein molecules distinguished by different orientations, which are labeled
with the index a =1, 2, ..., N (o = 0 refers to the B state for notational convenience). As a good
approximation, we assume that the orientations of these N macromolecules sample an isotropic
distribution. Suppose each of N molecules hosts a spin system comprising ma (ma > 2) spins
of which mp (1 < mp < ma) spins exchange with the B state, we refer to the case mpg = ma
when all spins exchange as symmetric exchange, and mp < mp as asymmetric exchange when
only some of them exchange. The mp exchanging spins are referred to as labile spins, and the
ma — mp nonexchanging spins as nonlabile spins.

We identify different exchange cases using the notation “(spins in state A) — (spins in state
B)”. For example, IS-I and ISP-I are asymmetric exchange cases with one labile proton for two-
and three-spin systems, respectively; IS5-IS denotes a symmetric exchange case for a two-spin
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system with both protons labile. Here we are primarily interested in two asymmetric exchange
cases: (i) one labile (hydroxyl, carboxyl, etc.) proton spin which is dipole-coupled to the rest
protein proton spins undergoes exchange; (ii) two labile proton spins exchange as an intact unit,
which would be the two proton spins of a water molecule temporarily residing in a protein cavity
and dipole-coupled to the rest of protein proton spins. These two cases are denoted as IP,,,—I and
ISP, —1IS, with P symbolising nonlabile spins and m indicating the number of nonlabile protein
proton spins (m = ma — mg). In both cases (for m > 0), the spin systems are fragmented by
exchange, and the orientations of dipole couplings involving at least one labile spin are assumed
to be instantaneously randomized by exchange, which induces relaxation (see more details in
section 3.1.4). The theory dealing with these two cases can also be extended to variant cases
that several labile spins or spin pairs exchange independently (e.g. ISP,,—1/S).

Let Pa be the population of labile spins residing in state A, and Pg = 1 — Py be that
in state B. In the special case with Py = 1, the EMOR model reduces to the random phase
approximation or strong collision model, which assumes that the new state to which the spin
Hamiltonian jumps is completely uncorrelated to the old states®4 The general dipolar EMOR
theory developed here is valid without restrictions on Pa, but we will focus on the dilute regime
where Py < 1, which is more relevant in experiments and applications.

For simplicity, hereafter we mainly focus on exchange case IP,,—I, and the final results can
be easily generalised to ISP,,—IS case. Moreover, these m + 1 spins are treated as isochronous if
not specified since the chemical shift for protein protons rarely exceeds 10 ppm.

2.2 Integral longitudinal relaxation rate

The initial non-equilibrium proton magnetizations need to be prepared for the measurement of
'H MRD profiles in the aqueous proteins gels. In conventional relaxation experiments, the labile
proton spins can be excited selectively by using a soft radio frequency pulse if the nonlabile
protons have a much wider NMR. Alternatively, all proton spins can be excited non-selectively
in the field-cycling experiments by rapidly changing the magnitude of the By field.

Macroscopic spin observables (like the longitudinal magnetization for the observed spins) are
related to a density operator® summed over all sites,

(o(t) = Y o%t) = oP(t) + o) (2.2.1)

where 0% (t) is the spin density operator for a particular site v (see more details in section 3.1.3),
and oB(t) = 0%(t) as defined in section 2.1.

The intitial density operator ¢®(0) is proportional to the relative population P,. We express

this as
Pgn® fora=0
WA ™ fora>1
so that Eq. (2.2.1) yields
(0(0)) = oB(0) + o™(0) = Pgn® + Pan™ (2.2.3)

Here the n® and nP are spin operators that depend on the initial condition of the spin system.
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Specifically, for nonselective excitation

T = > On (2.2.4a)
=1
ne = Sn1 (2.2.4b)

where ¢ is the Dirac delta function, subscript n denotes the basis operator indices correspond-
ing to the longitudinal magnetization of the observed spins (we adopt the convention that the
longitudinal magnetization modes are always indexed before the other spin modes, and the first
one is the longitudinal mode for exchanging spin I). For I-selective excitation, we have instead

M =k = Ona (2.2.5)

As discussed in section 1.5 that the longitudinal magnetization decays exponentially in dilute
regime under general conditions (fast or slow exchange). The longitudinal relaxation rate of
the observed spins can then be identified as the inverse of the time integral of the observed
longitudinal magnetization, normalised by its initial value. The integral longitudinal relaxation

rate (ILRR) can be expressed as?6V

P I 7 O A ()
f = [/0 a aL<O>] = 5.0 (228)

where the subscript L represents the observed longitudinal spin modes. Laplace transform

or(s) = /Ooodt exp(—st) or(t) (2.2.7)

was used in the second step. Then we set s = 0 according to the definition of ILRR.

Substitution of Egs. (2.2.1) — (2.2.5) into Eq. (2.2.6|) yields

-1
ﬁl = oodt ZnB UEB (t) + ZTLA O-T?A (t) _ PB ZnB 771]{3)]3 + PA ZnA WSA
0 g g (0) + 225, 00, (0) > 5B (0) + 20, 52 (0)

(2.2.8)

where the sums run over the modes (or basis operators) corresponding to the longitudinal magne-
tization of the observed spin(s). As seen from Eq. (2.2.6) that if longitudinal magnetization de-
cays exponentially or,(t) = o (0) exp (—R; t), then R; is identical to the longitudinal relaxation
rate R;. However, if longitudinal magnetization deviates significantly from single-exponential
decay, then the integral rate f?l only provides some ‘“reduced” information. But we can still
extract some model parameters by fitting the measured or calculated §1.56






Chapter

Theory

In this chapter, we sketch essential scheme of the multi-spin dipolar EMOR theory. This theory
deals with the spin-dynamical problem for a system of exchanging dipolar nuclei described in
section 2.1 and is constructed based on a two-fold approach: stochastic Liouville equation (SLE)
and stochastic Redfield equation (SRE).

SLE theory was first developed by Anderson®® and Kubo®” for the analysis of spectral line
shape when the frequencies were modulated randomly — known as Kubo-Anderson process. It
is a very general and non-perturbative theoretical framework which is capable of describing the
EMOR relaxation mechanism over full range of exchange rates and spin coupling strengths. This
theory is valid for the systems comprising arbitrary number of spins, and for both symmetric and
asymmetric exchange cases. The exact EMOR SLE theory was first developed for quadrupolar

I = 1590 and then extended to dipolar relaxation for spin-1/2 systems

relaxation for nuclei with
in general form (in section II, paper II). For small-sized spin systems that can be described
within low-dimensional Liouville spin spaces (e.g. quadruplar relaxation with I = 1 or dipolar
relaxation with ma < 4 spin-1/2 systems), the SLE approach is simpler in terms of formalism
compared to SRE. However, there are two drawbacks with this approach: (i) as mentioned
in section 1.6 that in order to implement the multi-spin SLE theory, we need to evaluate all
matrix elements of Zeeman and dipolar Liouvillians in the (4™4 — 1)-dimensional Liouville space
(neglect the redundant identity superoperator), and then invert and isotropically average these
matrices, which is a formidable task for multi-spin systems (in paper IV, the SLE version of
the dipolar EMOR theory has been implemented for ma = 4, where the 65025 matrix elements
were generated analytically). It is also not clear how to construct a computationally efficient yet
reasonably accurate multi-spin dipolar EMOR theory within the framework of SLE; (ii) the SLE
approach is more of a “black box” which does not provide much physical understanding of the
complex relaxation behaviour exhibited in different EMOR cases.

SRE approach is the restricted second-order perturbative BWR, theory which also incorpo-
rates the exchange kinetics. Similar to Bloch-McConnell equations®® and extended Solomon
equations,” the SRE theory is only valid in the restricted motional-narrowing (RMN) regime
where the exchange is much faster than the coherent evolution of the magnetization under both
fluctuating and static dipolar interactions. Compared to SLE, the SRE enables us to directly
explore the physical origins of the peculiar features displayed on MRD profiles (most of them
appear in asymmetric exchange cases) despite of its complicated forms and restrictions. Similar
to the SLE results, the exact solutions for spin systems with ma < 4 have been obtained in paper
II — IV. Besides providing physical insights, more importantly, it is possible to systematically
formulate a multi-spin EMOR theory within the SRE framework by invoking a few physically
reasonable approximations, which is also valid beyond the MN limit. The validity of these ap-
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proximations can be tested by comparing with the exact SLE results available for small-sized
spin systems. This generalised multi-spin SRE theory (GSRE) is applicable to experimental 'H
relaxation data from aqueous protein gels.

3.1 Stochastic Liouville approach

Spin Hamiltonians

The spin Hamiltonians for the two states B and A discussed in section 2.1 are

Hp = Hy (3.1.1a)
N

Hy =Hz + Y Hf (3.1.1b)
a=1

Before writing down the explicit forms of Zeeman and dipolar Hamiltonian, it is useful to first
distinguish different reference frames that have been used to describe nuclear interactions %58
We define a Cartesian lab-fixed (L) frame in which the z-axis is set along the external By field.
Then we define a molecular (M) frame which is another Cartesian frame bound to the rigid
molecules. The axes of M frame are normally chosen based on the molecular symmetry for small
molecules. But for macromolecules with irregular geometries (e.g. proteins), the M frame can
be defined arbitrarily. Finally, we define a particular M frame — principal (P) frame in which
the spin Hamiltonian can be described by a diagonal tensor. The P frame depends on the type
of interactions. For the dipolar interactions concerned here, the z-axis of P frame is set along
the internuclear vector.

The Zeeman Hamiltonian for the IP,, system in the L frame is

m
Hy =wy, (Iz + ) RZ> (3.1.2)
=1

where wy, is the static Larmor frequency, I, and F;, represents the z-component of the spin
angular momentum of spin I and P;, respectively.

The dipolar Hamiltonian for a particular site o in A state can be written as a sum of that
for each of the w spin pairs (denoted as X)

Hf = Y Hf (3.1.3)
X

where the explicit form of Hfj igLoh oS0

2

HY = cwpx Y Ti(X)Dijo(9%) (3.1.4)
M=-2

Here, if the spin pair X related to fluctuating dipole coupling (involving labile spin I) or static
dipole coupling consists two spins ¢ and j which are separated by distance 7;;, the dipolar coupling
constant wp x is (in rad s™1)

3 Vil b

3o i) (3.1.5)

ij

wp x =
’ 8 T

where 7; and «y; are the gyromagnetic ratios for spin ¢ and j, respectively. TA24 (X) are orthonormal
(m + 1)-spin irreducible spherical tensor operators™ (see details in section 3.1.2) acting only on
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the spin variables, c is the constant related to D3?,,(0) and the normalisation of T4 (X) (e.g. for
m=1,2,3¢c—= —@, —%, and —23&, respectively), D3,,(Q%) are rank-2 Wigner functions
indicating transformations from L frame to P% frame.

The rotation of the z-axis of L frame to that of P§ frame (orientation of internuclear vector
r%) can be achieved by three successive coordinate frame rotations. For the L frame with axes
(z,y, z), first rotate the frame by angle ¢ about the z axis, then rotate the new frame by angle 9
about the 3’ axis. Finally, this intermediate frame is again rotated by angle ¢ about the 2’ axis.
Now the original L frame with (z, y, z) has been transformed to a new frame (2/, v/, 2’). The
L—P% transformation can be done with the same procedure by assigning these angles to specify
the orientation of the internuclear vector rx in site a which is the z-axis of P, frame, with respect
to the L frame. These three angles defined above are known as Euler angles (1,9, 0 = Q). The

operator corresponding to this three-step passive rotation is™

D(Q) = exp(—ipl,)exp(—iVI,)exp(—it I,) (3.1.6)

which can also be represented as a matrix form in a Hilbert space expanded by the 2/ +1 common
eigenvectors of angular momentum 12 and I,

Diyn(Q) = (IM |exp(—ip L) exp(—i 9 I)) exp(—it I.)| IN) (3.1.7)

This type of functions is known as Wigner function named after Hungarian-American theoretical
physicist Eugene P. Wigner. This expression can be further simplified by using the fact that
L|IM)y=M|IM)

Din(Q) = (IN|exp(—ipI)exp(—id I,) exp(—it I,)| IM)
= exp(—t M) (IM |exp(—i¥I,)| IN)exp(—iN ¢) (3.1.8)
= exp(=i M) djyn (9) exp(=i N )

where df,\(¥9) is the reduced Wigner function and its analytical forms have been calculated for
different angular momenta ™

Compared to the quadrupolar interactions which require asymmetry parameters to specify
the EFG tensors %59 the dipolar interactions have the cylindrical symmetry and the alignment
of z axis is all we need. For the two-spin systems, we therefore only need two Euler angles, 1) and
9, to specify the dipolar vectors and the third redundant angle ¢ can be chosen to zero. For the
three-spin systems, however, the ¢ is not redundant anymore and it serves as a dihedral angle
to indicate the orientation of the plane formed by the three spins. The internuclear geometry is
set up by first setting one dipolar vector as the z-axis in the M frame and the Wigner functions
of the other two vectors were transformed in two steps L—M—P by using the formula™

2

Din(Q%) = D Dirn(Q%ar) Dio(Qmp) (3.1.9)
N=—2

For the multi-spin system IP,, (m > 3), the z-axis of the M frame is chosen to be the internu-
clear vector pointing from spin I to its nearest nonlabile spin P;. The details of specifying the
internuclear geometry of multi-spin system are given in paper IV.

Spin operator basis

In quantum mechanics, a state of spin system is usually described in the Hilbert space which is
spanned by a complete set of orthonormal basis vectors. The relaxation problem in isotropic sys-
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3.1. Stochastic Liouville approach

tems can often be simplified by making use of extensive symmetries based on group theory/6%7273

However, in order to better employ these symmetry arguments, it is necessary to develop the
relaxation theory in the so-called Liouville representation of quantum mechanics >4
gives compact notations while avoiding the cumbersome multiple commutators. Here we adapt

which also

this representation and develop the dipolar EMOR relaxation theory in the Liouville space, which
is spanned by a complete basis set of orthonormal spin operators. These spin operators are irre-
ducible spherical tensor operators (ISTOs) with respect to rotations in the Liouville space. For
two such spin operators 1, and T,,, the orthonormality is expressed by

(T | Tp) = Te {T,} T0} = Sy (3.1.10)

The (m + 1)-spin ISTOs are constructed by consecutive couplings of the set of orthonormal
single-spin ISTOs for each spin. e.g.,

1
V2
Here we give an example of constructing the ISTOs for a four-spin (/P3) system, in which the
three nonlabile spins are denoted as S, P, and U.

(1) = Er; To(I) =V2IL; TL() = F1s (3.1.11)

For a four-spin ISPU system, 255 ISTOs are needed to span the complete Liouville space.
These ISTOs are denoted by Té{ ([kjks (f() k‘p] {f(}k:U), constructed by three consecutive cou-

plings of the set of four orthonormal single-spin ISTOs™ quII(I), TfSS(S), Tf; (P), and T(fg(U)
to obtain

15 ([krks (K) kp] {K Hho )
— (_1)k1—ks—kp—k‘U+f_(+f(+Q (2K 4 1)1/2(2K 4 1)1/2(21?' 4 1)1/2

K K kr f:( ky K I e [:{ by ko I
XQ:ZQ:Z—qFZkz(Q Q-Q _Q)(Q Q-Q —Q><(H Q—ar —Q>
x TH(I) Tgi e Tgi o(P) TSU_ 50

(3.1.12)

where I_(_ is the rank of the intermediate tensor operator obtained by first coupling spins I and
S, and K is that by consecutively coupling spin P, and K is the total rank by further coupling
spin U. @, @, and Q are the corresponding projection quantum numbers, respectively. All the
operators obtained from Eq. are orthonormal in the same four-spin Liouville space in
the sense

(75 ([krks (B) k] {K Vo ) 15" ( [k (K') K] (K}t ) )

— 5KK’ 5QQ/ 512(12(’ (SKK/ 6k1k’1 (Skskig 6kpk§;5kykb

(3.1.13)

Composite Liouville space

For the spin system IP,, defined in section 2.1, the total spin density operator for the sample is
the direct product of the spin density operators for the N + 1 different sites

o= 0dedre 0 (3.1.14)

14



3.1. Stochastic Liouville approach

where 0% is the ensemble averaged spin density operator of sites a (here the o® is interpreted
as the deviation from its equilibrium value). The N + 1 sites can be expressed as a (N + 1)-
dimensional site operator space {| a)}. These basis site operators also satisfy the orthogonal
relation («|B) = do3 and the completeness relation ) o) (| = 1. In this representation o
can be formally written as

o = (alo) (3.1.15)
Without exchange, the evolution of ¢® is given by Liouville-von Neumann equation2
d
aaa(t) = —iLY0%(t) (3.1.16)

where £% is Liouvillian, a superoperator acting on the spin Liouville space (see details in section
3.1.2) which is defined as
LYc%(t) = [HY, o(t)] (3.1.17)

where H® is the spin Hamiltonian for site a.

In spin Liouville space, o is expressed as a column vector of dimension D, = 22"« — 1,
where m, (= ma or mgp) is number of spins-1/2 in site « and the —1 comes from omitting the
superfluous identity operator. For example, for exchange case IP3—I, there is one 1-spin system
in state B (a = 0), so Dg = 22 —1 = 3. In A-a site, there is a four-spin system so that D, = 255
(a > 1). It is convenient to write the N 4+ 1 decoupled Liouville equations in matrix
form by constructing a composite (site + spin) Liouville space of dimension D = Dp + Dy N
and a composite spin density operator

0
o «
ol 91
o = , where o = : (3.1.18)
: o
oN 9D,

In this notation, the N + 1 independent Liouville equation (3.1.16)) can be expressed as

d .
&U(t) = —iLo(t) (3.1.19)

An element of the D-dimensional column vector o can then be expressed in the following equiv-
alent ways

on, = (nalo®) ={B} oa} ={B] (alo)}

Na

(3.1.20)
= (alon,) = {a|(nalo)) = {a,nalo}

where B, is a member of spin basis operators defined in section 3.1.2. The Liouvillian L is
block-diagonal in the composite space

Lo 0 0 --- O
0 L, 0 --- 0O
L=|0 0 Ly --- O (3.1.21)
. 0 0 0 --- Ly |

where L, is a D, x D, matrix with elements L?lapa and 0 is the D, x Dg null matrix.
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3.1. Stochastic Liouville approach

Stochastic Liouville equation

If the exchange process is included, then the Liouvillian £% is time-dependent and Eq. ([3.1.16])

becomes

d
°
The random modulation of L% can be regarded as a stationary Markov process. According
to Eq. , the composite spin density operator o(t) now becomes a function of the spin
state and stochastic variable. In the composite Liouville space, the time evolution of the spin
state follows Liouville-von Neumann equation (Eq. ), and the stochastic variable can be
represented by a propagator P(t), which follows a master equation®

() = —iLo(t) o (t) (3.1.22)

%P(t) — WP (3.1.23)
with the initial condition P(0) = 1. In site space, («|P(t) | 8 ) represents the conditional proba-
bility of finding spin at site « at time ¢, given the spin was initially at site 8. W is the stationary
rate operator describing the exchange kinetics, which only acts on site space.

The composite spin density operator evolves according to the Stochastic Liouville equation
(SLE)™%8 obtained from Egs. (3.1.19), (3.1.22)) and (3.1.23)

d .
aa(t) = W-=1iL)o(t) (3.1.24)

where the Liouvillian £ is time-independent and its matrix representation is given by Eq. .
W is the exchange superoperator describing the transfer of one or more spins from one site to
another.

An exchange from site « to site 8 can have two distinct effects. One effect is to instan-
taneously change the spin Hamiltonian from H® to H?. If this stochastic modulation (of the
dipole coupling) is sufficiently frequent, it produces relaxation. The other effect only occurs
in asymmetric exchange cases, in which the spin systems are fragmented by the exchange (e.g.
IP,,—I with m > 1). Then all multispin correlations within the spin system that have developed
as a result of the dipole coupling with the exchanging spin(s) are lost™ In contrast, for sym-
metric exchange, where the whole spin system exchanges as an intact unit, then all multi-spin
correlations are retained even though the couplings are modulated. Both of these effects can be
described by the exchange superoperator W

W="Ta®T — Kn®K, (3.1.25)

The superoperators Ty, and Ky, act on site operators only, so their direct product matrix rep-
resentations are block-diagonal with respect to the spin operators. These operators contain all
the kinetic information (exchange rates or mean survival times). The superoperators 75 and s
act on spin operators only, so (like £ expressed in Eq. ) their direct product matrix
representations are block-diagonal with respect to the site operators. These operators account
for the decorrelation of multispin modes by exchange fragmentation of the spin system. (see
section II - C in paper II for more details).

Formal solution of SLE in site space

The SLE (3.1.24)) is a stochastic differential equation involving superoperators acting in the
composite Liouville space. The EMOR model allows the exact analytical solution of SLE in site
space, leaving the spin-dynamical problem in a finite-dimensional spin Liouville space. Here we
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3.1. Stochastic Liouville approach

only present the essential results of the partial solutions for further discussion. More details
can be found in section II-D in paper II. Full derivation of solution was also given in paper II,
appendix B.

Eq. (3.1.24) can be converted to an algebraic equation by using Laplace transform (Eq.
(2.2.7))) so that
5(s) = (sE=W+iL)  a(0) = U(s) o(0) (3.1.26)
where £ is the identity operator and u (s) is referred to as resolvent superoperator.

Substituting Eqgs. (2.2.1)) — (2.2.3) and (3.1.25)) into Eq. (3.1.26) we may obtain

N N
= Z E (a|U(s)|B) Psn® (3.1.27)

where n? equals 1P for § = 0 and n® for 3 > 1 and Pg equals Pg for =0 and Py /N for > 1.

For asymmetric exchange case IP,,—I, where we need to use different spin operator bases for
states B and A, it is convenient to express the spin operator basis representation of Eq. (3.1.26]
in terms of partitioned matrices:

a5 (s 0% T B
[ ~A( ) ] = [ I~JAB( ) I~jAA( ) ] [ nA } (3.1.28)

Here the site-averaged density operator column vector has been partitioned into

1 (s) 1 (s)
o = : and & = : (3.1.29)
7p5 () 7, (5)
where D = 3. Furthermore, n® = [P ... n[B)B]T and n® = [ ... nﬁA]T. Finally, ijB(s),

~ BA ~A ~AA
o’ (s), U B(s) and U (s) are, respectively, (3 x 3), (3 x Da), (Da x 3) and (Da X Da)

submatrices of the spin basis representation of the site-averaged spin superoperator

N N
=) (alU(s) (3.1.30)

a=0 B=0
with the explicit form
U™(s) = 7 P [1B — GB(s) TGA(s) T] " GB(s (3.1.31a)
U™(s) = 5 Pa [15 — GB(s) T GA(5) T] ' GPB(s5) T GA(s) (3.1.31b)
U™s) = 7a Ps [14 — GA(s) T/ GB(s) T) ' GA(s) T/ GB(s) (3.1.31¢)
UM6) = 7a Py [1% — GA(s) T/ GB(s) T] ' G (5) (3.1.31d)

where

GP(s) = [(1+s78)1" + iLpms] (3.1.32)
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3.2. Stochastic Redfield approach

and
A 1 A . -1
G (s) = 3.2 dQ[s7a1® + K + iLa(Q) 7a] (3.1.33)
0
Here, 1B and 14 are the (3 x 3) and (Da x Dj) identity matrices; T and K are the (3 x Dy)
and (Da X D) matrices representing 75 and Kg; L and Lp are the Liouvillian supermatrices
corresponding to Hg and Ha (Eq. (3.1.1))), respectively. In the following, the matrix elements

in Eq. (3.1.31)) and (3.1.33) with s = 0 will be abbreviated as

UXY = (n|T(0)[p) (3.1.34)

and
gy = (|GA(0)|p) (3.1.35)

In the dilute regime, where Py < 1 and Pg = 1, the detailed balance relation Py 75 = Pg 7a
and Eq. (3.1.31]) show that the matrix elements U%;Y are of the following relative magnitudes

Up? ~ 1 (3.1.36a)
Upy ~ Pa (3.1.36b)
USE ~ Pa (3.1.36¢)
Ut ~ P} (3.1.36d)
so that . " | . B
U0 =5 1 + iLz7s — TG*(0) T’ (3.1.37)

Combination of Eqgs. (2.2.4)), (2.2.5), (3.1.28)) — (3.1.37)) yields the simple exact expression of
ILRR for asymmetric exchange case IP,,—I

~ i B Pa
R (IPy 1) = URP] = == (1—gn) (3.1.38)

TA

3.2 Stochastic Redfield approach

Stochastic Redfield equation

In the absence of exchange and in the RMN regime, where wp 7o < 1, the Liouville-von Neumann
equation (3.1.16)) can be replaced by BWR master equationl®

€ 5%(0) = iR (1) - /OoodT (B8 BB —7) 5°() (3.2.1)

where the angular brackets with subscript a denote an equilibrium ensemble average over the
molecular degrees of freedom in site c. The spin density operator in site o, c®(t) is expressed in
interaction representation

o%(t) = exp(i Hzt) o%(t) exp(—i Hzt) = exp(i Lz t) o®(t) (3.2.2)

and similar for the dipolar Liouvillians corresponding to fluctuating dipole couplings

~

L3(t) =exp(i Lzt) LH(t) exp(—i Ly t) (3.2.3)

and SDCs

o~

A%(t) = exp(i Lz t) A% (t) exp(—i L t) (3.2.4)
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3.2. Stochastic Redfield approach

For a rigorous BWR treatment of asymmetric exchange cases, the transformation of o(t)
or L§(t) from Schrodinger representation to the interaction representation should involve the
total static Liouvillian £z + A%(t). The first term in Eq. would then be absent, but
the following analytical development would be complicated by the fact that the ISTOs T, g are
only eigenoperators of Lz, but not of the total static Liouvillian. To avoid this complication,
the BWR theory for EMOR model was developed under RMN condition, wp r, 74 < 1 and
wp w TA < 1 (p and v denote the nonlabile spins), and the spin density operator and dipolar
Liouvillians were transformed to an intermediate interaction representation as in Eqs. (3.2.1) —
(13.2.4)).

Defining a relaxation superoperator R

R = / “ar (£8(0) 28 (—7) (3.2.5)
0

which is block-diagonal in the composite space (like £ expressed in Eq. (3.1.21])) and introducing
the exchange superoperator YW which is the same as in the SLE (3.1.25]), we obtain the stochastic
Redfield equation (SRE)

d

T o(t) = W—iLlyg—iA—R)o(t) (3.2.6)

where o(t) is the composite spin density operator in Eq. (3.1.24]). The relaxation supermatrix
R“ is given by

= %ZZ WD, X WD,y Z Z Farae (9%, Q5 J(=M'wo) Ch (3.2.7)

=—2M'=—2

where Fprpr (Q%, Q) is the angular function formed by a product of two Wigner functions.
J(—M' wo) is the generalised spectral density function and its explicit form is given in section
3.2.4. CY i M/ is the coefficient matrix involving double commutators (explicit form is given in
section 3.2.2). The coherent mode transfer supermatrix A%, which is present for the cases I P,,,—I
and ISP, —1IS if m > 2, is given by

ZWDX Z D%.(0%) DY, (3.2.8)

where Df\(/[ is the coefficient matrix involving single commutator. In Eq. 1) X and Y refer
to dipole couplings that involve at least one labile spin, so they are randomized by the exchange.
In Eq. (3.2.8), X refers to SDCs between pairs of nonlabile spins.

In the EMOR model, exchange plays a dual role: it transfers magnetization between the
A and B states and it induces relaxation in the A sites. In the SLE, both of these roles are
played by the exchange superoperator Y. In the SRE approach, in contrast, the exchange enters
the theory in two ways: (1) via the local (orientation-dependent) relaxation rate described by
R, reflecting the effect of orientational randomization of dipole vectors in site «, and (2) via
the exchange superoperator W, describing the exchange-mediated transfer (or destruction) of
localized (site-based) spin modes 0% (t) between the A and B sites. This exchange also brings
about isotropic averaging of the orientation-dependent local (site-specific) relaxation rate.
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3.2. Stochastic Redfield approach

Symmetry and selection rules

As we mentioned in section 3.1.2 that various symmetries can be employed in the study of
relaxation problems, which are only well defined in Liouville representation. Here we introduce
three different symmetries that have been extensively used in the present work. We also briefly
discuss how the selection rules deduced from these symmetries simplify the relaxation problem.
In addition, we introduce another set of selection rules deduced from the evaluation of single and
double commutators which appear in the static and relaxation superoperators.

Rotational symmetry

We first introduce the Wigner-Eckart theorem’”2 which allows the quick determination of se-
lection rules for the systems with rotational symmetry. Moreover, it also greatly simplifies the
calculation of matrix elements of a tensor operator with respect to the basis operators.

We consider the matrix element of an ISTO Té“ with rank £ and projection quantum number
q. Suppose the basis operators |[IM) are the eigenoperators of I? and I, then both T(f and [IM)
are transformed in the same rotation group. In this case, Wigner-Eckart theorem states that the
matrix element of T[f in this eigenoperator basis can be factorised into two parts

(JN|TF|IM) = (—1)% <J | T | 1> (JN|IkMq) (3.2.9)

where <J || Tk 1 > is called reduced matrix element which depends on the physical properties
of spin systems. (JN |IkMgq) is the Clebsch-Gordan coefficient which indicates the geometric
dependence of the system on the spin quantum numbers. These coefficients can be expressed in
terms of Wigner 3-j symbols

<JN|1qu>:(—1)N+q< T ’;) (3.2.10)

and evaluated separately. From the properties of Wigner 3-j symbols and combining Eqs. ([3.2.9))
and (3.2.10)), we obtain the selection rule that (JN [T} |IM) = 0 unless

M=qg+N (3.2.11)

and the triangle condition
|J -1 <k<|J+1I| (3.2.12)

is satisfied.

As stated in section 2.1, we assume that the number N of A sites is sufficiently large that
the Euler angles {2, indicating the orientations of these N sites can be treated as a continuous
variable €2 with a distribution function f(£2). Furthermore, we assume that this distribution is
isotropic .

10) =<
Eq. implies that any site-averaged superoperator derived from the Liouvillian £, such
as the resolvent superoperator (271 (s)), must share the cylindrical symmetry of the By field.
Eq. then implies that all such superoperators are block diagonal Q = @’ in the ISTO
representation. For example,

(3.2.13)

(& 1@ 1 TE) = doqy (T8 142451 | ) (3214)
In addition, if the external By field is absent, then the macroscopic system is rotationally invari-
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3.2. Stochastic Redfield approach

ant. Eqgs. (3.2.11]) and (3.2.12) then imply that the matrix elements of these superoperators are
not only block-diagonal in projection number @) but also in rank K. For example,

(T5 1N TE) = xcxcrdq (TE 1{U() | TF) (3.2.15)

Selection rules (3.2.14]) and (3.2.15)) are valid in both SLE and SRE approaches.

Spin inversion conjugation symmetry

Here we consider the effect of spin inversion, spin conjugation, and spin inversion conjugation

operation569773 on superoperators and operators, respectively.
The spin inversion superoperator acting on I-spin operators is defined a3
Vr = exp(inZy) (3.2.16)
with Z, = [I, ...], so that
YVl =—-1, (3.2.17a)
Vil =—1_ (3.2.17b)
YVrl_=—-1, (3.2.17¢)
The spin conjugation superoperator is defined in terms of its action on the shift operators®®>
Vi [ Im)(In| = (]Im><[n|)T = (|[In)(Im|) (3.2.18)
so that
Vil =1, (3.2.19a)
Vil =1_ (3.2.19Db)
Vil =1, (3.2.19¢)

Now the spin inversion conjugation (SIC) operation is simply the combination of the first
two operations W = VY %13 and

Wil =—I, (3.2.20a)
Wil =—1I, (3.2.20Db)
Wil =—1I_ (3.2.20¢)

The transformations of the relaxation superoperator R under these three operations are

YRY=RI (3.2.21a)
VRV =RI (3.2.21b)
WRW =R (3.2.21¢)

From Eq. (3.2.21¢)) we see that R is invariant under SIC operation. Moreover, the transfor-

mation of basis ISTOs under SIC operation is
WTE = (1) T1h (3.2.22)

where Ny = >4 k; is the number of single-spin operators (not counting identity operators)
involved in the basis operator.
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3.2. Stochastic Redfield approach

According to the basic orthogonality theorem of group theory, the matrix representation of R
in the ISTO basis can have nonzero elements only between basis operators of the same parity (that
is, belonging to the same irreducible representation of symmetry group).Y The longitudinal spin
modes have the odd parity under SIC operations (OSIC). Consequently, relaxation superoperator
R can have nonzero matrix elements only between OSIC basis operators.

Nuclear permutation symmetry

In the SRE approach, nuclear permutation symmetry refers to the spectral density functions5%13

For the isochronous multi-spin system, the relaxation superoperator R is invariant under permu-
tation (or interchange) of two nuclei if these nuclei are related by a symmetry operation of the
molecular point group (geometric symmetry) and if the dipole couplings between each of these
nuclei and any other nucleus are modulated in the same way by the molecular motion (dynamic
symmetry). These two requirements can be concisely expressed in terms of the spectral density
functions (SDFs). For example, in ISP,,~IS case, we consider a SDF Jxy (w) where X and Y’
denote two dipole couplings shared by one common spin. Then R is invariant under I < S
interchange if J[ph[pi (w) = Jgpi’spi (w) and JIS,IPi (w) = JIS,SPi (w)

If the relaxation is induced by isotropic motion, such as spherical-top rotational diffusion, all
dipole couplings are modulated in the same way (full dynamic symmetry). Now the geometric
equivalence implies nuclear permutation symmetry. This symmetry could be quite useful in some
special cases. For example, for a three-spin system in which three spin reside at the vertices of
an equilateral triangle (referred to as Az system), the relaxation behaviour of this model system
can be fully described within the small liouville space spanned by only three symmetry-adapt
basis operators®!' More applications of nuclear permutation symmetry can be found in paper V.

In the EMOR model, all labile spins are affected in the same way since all dipole couplings
involving labile spins are randomized in orientation by exchange. Nuclear permutation symmetry
is evident also in ILRR (for both SLE and SRE) which is solely determined by the internuclear
geometry. Consequently, the ILRR is invariant under any permutation of the observed labile
spins. Similar conclusions can be drawn for nonlabile spins, e.g. the ILRR for a specific labile
spin is invariant under any permutation of the nonlabile spins.

Additional selection rules

As seen from Eq. (3.2.7) and (3.2.8) that evaluation of R* and A® involves calculating the

real-valued elements for the two coefficient matrices

XN = {[BJN TJ%/,(X)] (T2,(Y), Bp]} (3.2.23)

D3 = {BLT3(X). B} = {[Bl T}H(0)] B, } (3.2.24)

where the last step follows from the cyclic permutation invariance of the trace. The ISTOs
TJ%/[ (X) are taken to be normalised in the two-spin Liouville space corresponding to the two spins
involved in the dipole coupling X. The basis operators B,, are normalised in the multi-spin
Liouville space as expressed in Eq. .

Several additional selection rules are derived from Egs. and by making use
of two general results. First, because two operators associated with different spins (such as I,
and Sy) necessarily commute, it follows that the commutator of two operators, each of which
is a product of single-spin operators associated with distinct spins, vanishes if the two product
operators have no spin in common. Second, since Tr{I.} = Tr;{I;} = Tr;{I_} = 0, it follows
that the multi-spin trace of a product operator vanishes if the product operator contains at
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3.2. Stochastic Redfield approach

least one lone operator, that is, if any spin occurs only once in the product operator. These
selection rules are presented in details in paper IV, which play important role in simplifying the
development of the multi-spin SRE theory.

Framework of multi-spin SRE theory

For the EMOR model, the SRE (3.2.6)) can be solved in site space in the same manner as the
SLE (3.1.24). Specifically, Eqgs. (3.1.28)—(3.1.37) remain valid, but Eq. (3.1.33) is replaced by

1
GA(s) = 53 [A2sa 1% + K +iLy7ma + i A%7p + RO7p] 7! (3.2.25)
0
where R® is the orientation-dependent relaxation supermatrix for site «. We may rewrite Eq.
(3.2.25) (setting s = 0) as
GA(0) = {((A")™h) (3.2.26)

where the angular brackets indicate an isotropic orientation average shown in Eq. (3.2.23)). The
supermatrix A“ associated with a particular site « is

A = K+R¥1A +1A%TA +iLy 7 (3.2.27)

Just as in SLE theory, the dimension of the supermatrix A is (4™ — 1), which is prohibitively
large for realistic spin systems. However, by using the SIC symmetry of R and A%, as well
as the symmetry rules derived from Egs. and , the SRE theory can be greatly
simplified.

If the multi-spin ISTO basis for state A is ordered with the odd-parity operators before
the even-parity operators, the relaxation supermatrix R® is block-diagonal whereas the SDC
supermatrix A® is anti-block-diagonal. Furthermore, K and Ly (for isochronous spins) are
diagonal. We can therefore partition A% in Eq. into blocks associated with the anti-
symmetric (A) and symmetric (S) subspaces:

(KAA —i—RXA TA —i—Z‘LZ’AA TA) Z'A?gg TA

A = ) .
i Ag, TA (Kss + R§g7a +iLy ss7a)

(3.2.28)
To calculate the ILRR from Eq. (3.1.38]), we only need matrix elements from the AA block of

the inverse (A%)~!, which is

(A) ik = [Kaa+ (RE, + X8 +iLg an)7al " (3.2.29)
with
X%y = A%g (Kss/ma + R +iLy s5) 'A%, (3.2.30)

By further decomposing the anti-symmetric subspace and implementing the RMN approximation,
we may obtain

where Gizz(0) = 1 — (Rizpz) ma + (Tzpz) 7a (3.2.31)
821z = Rizn, (R, + Wi, +iLlznm) R, 1z (3.2.32)

with
iy = XNy, — Yy (3.2.33)

Here, ILZ denotes one- or two-dimensional subspace spanned by basis operators proportional to
I, or S,, and N; denotes the subspace spanned by single-spin basis operators involving only
nonlabile spins, respectively. The supermatrix Wy , describes coherent transfer among single-
spin modes associated with different nonlabile spins. This transfer proceeds via two-spin modes
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3.2. Stochastic Redfield approach

(described by Xf y,) and three-spin and higher (up to m-spin) modes (described by Y§ y,),
which simultaneously undergo relaxation induced by the fluctuating dipole couplings between
the associated nonlabile spins and the labile spin(s). Explicit expressions of the supermatrices
appearing in Eqgs. (3.2.31) — (3.2.33) are presented in paper IV.

Developing exact multi-spin SRE theory which includes all spin modes is unattainable for the
spin systems with large m. Fortunately, the mathematical structure of the multi-spin SRE theory
allows us to systematically construct approximate theories by neglecting high-order spin modes

(or basis operators). Specifically, we have developed the three-spin mode (3SM) approximation
to SRE theory, which includes single-spin, two-spin and three-spin modes, but neglects four-
spin and higher modes. The SRE-3SM theory is exact (in the RMN regime) for exchange cases
comprising four or fewer spins, including I Ps—1I and ISP>,—1S5, and it can be expressed fully in
terms of the generic matrix elements needed for these four-spin cases.

Generalisations in GSRE theory

The validity of the SRE-3SM theory can be extended beyond the RMN regime by introducing
three generalisations. For the I P,,—I (m > 3) case, we first replace all spectral density functions
(SDFs) in SRE-3SM theory by the generalised form (GSDF)

-~ TA

J(nwy) = 3.2.34
(nwo) 1 + ¢ (wp,r7a)? + (nwo7a)? ( )
where wp 1 is the effective fluctuating dipole coupling
m 11/2
wp = [Z W 1, (3.2.35)
p=1 -
and the coefficient (s is
10+ wpr7al 2
= |—| = 3.2.36
G |:4+UJD,ITA_ 15 ( )

obtained from minimising the deviation between the exact ﬁldl} (0) computed from the SLE theory

for m = 3 without static dipole couplings (SDCs) and the ]?Eldl}(()) computed from the GSRE
theory.

Second, we implement a modification to the frequency term wy Q; appearing in the explicit
form of I'fz 17 in Eq. (3.2.32) which gives rise to an artificial inverted relaxation step in the
GSRE profiles even outside the RMN regime. Such modification is referred to as suppression of
nonsecular decoupling (SND), consisting of the substitution

wo

_ 3.2.37
(1+2wp 17a) ( )

wo — @0 =
which eliminates the spurious feature in the GSRE profiles that is not present in the exact SLE
results.

Finally, each individual SDC wp ,, appearing in the coherent mode transfer matrix Eq.
(13.2.33)) is replaced by the corresponding renormalized SDC

~ o WD Nz
_ : 3.2.38
LL)D,MV (1 T wD“L“/ TA)2 ( )

where the numerical factor ¢ = 4/3 resulted from a rough optimization.
The generalisations in the SRE-3SM theory for the ISP,,—1S (m > 2) case is pretty similar
as that for IP,,—I (m > 3) case, which only slightly modifies the GSDF and SND.
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Chapter

Results

In this chapter, we briefly discuss and summarise the results presented in appended five papers.
The equations and figures referred to in these papers are denoted by prefixes I — V.

4.1 Paper I: Two-spin symmetric exchange case

In this paper, we studied the longitudinal relaxation of a dipole-dipole coupled spin-1/2 pair
(denoted I and S, repectively) induced by EMOR mechanism. This two-spin symmetric exchange
case (IS-IS) is treated by using SLE approach and the gyromagnetic ratios () for the two spins
are allowed to be different.

The two spins I and S are referred to as “like spins” if the difference of their Larmor frequencies
satisfies the inequality (Eq. 1-2.6)

[(wr — ws) Ta]? < 1+ (wpTa)? (4.1.1)

where 74 is the mean survival time of the spin pair in an A site. The like-spin case applies to
homonuclear (y; = 7g) spin pairs, in particular when both I and S are proton spins. If the
inequality is not satisfied, we refer to the spins as “unlike”. In practice, this case applies
to all heteronuclear (77 # 7yg) spin pairs.

For the unlike spins, if the spin pair was excited selectively when only the observed I spin
has a nonzero nonequilibrium longitudinal magnetization at ¢ = 0, the ILRR is given by (Eq.
1-4.2)

RS = _ (4.1.2)

(LU (0)]1)
where the superscript US refers to unlike spins and selective excitation. If the spin pair was ex-
cited non-selectively which applies generally to field-cycling experiments with the initial nonequi-
librium state prepared by rapidly changing the magnitude of the By field, the ILRR is (Eq. [-4.4)

RN — _ 1 _ 4.1.3
P UO)I) + R (1L[U0)]2) (415)

where k = vg/~7. The labels 1 and 2 in these two expressions represent the longitudinal magne-
tization of spin I and .S, respectively.

For the two-spin system, the ILRR in Eq. and can be obtained numerically
with modest computational effort. To gain conceptual insight, we also derived analytical results
for these two expressions in the dilute regime (Py < 1), which are exact in both the LF and MN
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4.1. Paper I: Two-spin symmetric exchange case

limits (Eqgs. (I-4.12) and (I-4.13))

~ 015 0S]
RS _ et (4.1.4)
RN _ PIPS — OISOSI (4.1.5)

ps — KOs

where p and o are generalised auto- and cross-relaxation rates expressed on the following simple
analytical forms (Egs. (I-4.14) and (I-4.15))

o = P X2{ 0.17a n 0.1574
L AT a2 n /3 [(w1 — ws)al2 | L+ (WpTa)2np/3 + (wiTa)? "
0.157A 0.6 74 o
2 2 + 2
1+ (wpTa)? + (wr7a) 1+ (wp7a)? + [(wr + ws) Ta]
e p 2{_ 0.17a - 0.15 74
" AXD 1+ (wpa)2np/3 + (w1 —ws)Tal® 1+ (wpTa)?1p/3 + (Wi7a)? (41.7)
0.157A 0.6 74 o
2 2 + 2
L+ (wpTa)? + (wi7a) 1+ (wp7a)? + [(wr + ws)7a]
where (Egs. (I-4.16) and (1-2.4))
1+ (xp7a)?/3
= — 4.1.8
= T (xpra )22 (4.18)
2
XD = 3Wp (4.1.9)

The rates pg and ogr are obtained by interchanging w; and wg everywhere in Eqgs. (4.1.6) and
@E17).

O Ll " Lol " PR Lt d g
10* 10° 10° 107

, (rad s™)

Figure 4.1: Dispersion of the unlike-spin integral relaxation rates E}IS (red) and ﬁlUN (blue), computed exactly
(solid curves) and in the dilute approximation (dots) for Pa = 1072, 7a = 10 us, xp = 10° rad s™' and
k= 0.9412 (as for a 'H-19F spin pair). The inset shows the relative error of the dilute approximation, defined as
[R(Iiilute(wl) _ Rrixact (wI)}/R?xact (0)

Fig. 4.1 (I-2) compares the approximate analytical rates given by Eqgs. (4.1.4) — (4.1.9) with
that given by Eqs. (4.1.2)) and (4.1.3)) in dilute regime (Px = 107%). The approximate analytical
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4.1. Paper I: Two-spin symmetric exchange case

rates coincide with the exact rates at the high-frequency end of the dispersion, where the MN
condition is satisfied, and also at the low-frequency end, where the LF condition is satisfied.
Even at intermediate frequencies, where neither condition is satisfied, the analytical expressions
remain quite accurate.

For the like-spin case, we mainly consider the nonselective excitation which applies generally
to field-cycling experiments, the integral longitudinal relaxation rate of the total magnetization
of the spin pair is (Eq. (I-5.1))

E _ 2
LT ARO[ + (LEO)12) + @[UO)]1) + @1UO)2)

(4.1.10)

[

(LIUO)I1) + (1 KUO0)]2)

which indicates ﬁl is the same irrespective of whether one observes both spins or only spin [.
In the dilute regime, the analytical approximation of ILRR is Ry = p + o where p and o are

taken from Egs. (4.1.6) and (4.1.7)) with w; = wg (Eq. (I-5.2))
= 3
Ry = 5 P x5 (0.2.J1 + 0.8.J3) (4.1.11)

with the generalized spectral density (Eq. (I-5.3))

Ty = (4.1.12)

N 10° 10° 10
w, (rad s™)

Figure 4.2: Dispersion of the like-spin integral relaxation rate Ry in the dilute regime, computed numerically
(black solid curve), from the analytical approximation (red dots) and from the nonrigorous approximation®’
(blue dashed) for Px = 10737 7a = 10 pus and xp = 10° rad s~!. The inset shows the relative error of the
approximations, defined as [R}PP" (wr) — R****(wr)]/R$****(0). For the nonrigorous approximation (blue curve),
the error has been divided by a factor 10.

Fig. 4.2 (I-6) compares the approximate analytical rate given by Eqgs. (4.1.11]) and (4.1.12)
with that given by Eqs. (4.1.10). Similarly, the analytical approximations agree with the exact
results both in the MN and LF limits. At intermediate frequencies, the analytical expressions

remain quite accurate with a maximum error of ~ —2 %. Figure 4.2 also shows the relaxation
dispersion profile predicted by the nonrigorous analytical expression given in ref. 50. Here, the
error is much larger, reaching 30 % at low frequencies. The maximum error in R; varies from
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4.2. Paper II: Two-spin asymmetric exchange case

0.7 % to 50 % when 74 increases from 1 to 100 ps at yp = 10° rad s~ 1.

In this paper, we also demonstrated the quantitative breakdown of the previously used non-
rigorous extension of the Solomon equations outside the MN regime. Moreover, the basic EMOR
model was generalised by including the effects of fast internal motions in the macromolecular
and solvent phases as well as the effect of kinetic heterogeneity. Please note that in this paper
we did not realise the effect of fragmentation of the spin system in asymmetric exchange cases,

so we argued that IS-I case has the same effect as IS-IS. This error has been corrected in paper
II.

4.2 Paper II: Two-spin asymmetric exchange case

In this paper, we presented the general framework of the dipolar EMOR theory, which is il-
lustrated by a detailed analysis of the asymmetric two-spin case (IS-I). For the IS-I case, we
calculated ILRR in the dilute regime and the corresponding expression for the exchanging spin
I is given by Egs. . Unlike the IS-IS case treated in paper I, the LF and zero-field (ZF)

regimes are distinct in asymmetric exchange cases.

In the MN regime, according to SIC symmetry described in section 3.2 that the relaxation
superoperator R only has nonzero elements between six OSIC basis operators, which are ordered
as {I,, S, I+, S+, I_, S_}. Without exchange, the BWR master equation can be written

in interaction representation as (Eq. (II-E. 27))

IZ(t) IZ(t)
S2(t) S2(t)
d | 18t | ge 12(t)
a | s |~ Y s 2y
To(t) (1)
| Set) | S2(1) |

where, for clarity, we have represented the six spin density operator elements by the correspond-

ing basis operators. The time-dependent relaxation supermatrix is (Eq. (II-E. 28))

R RIS emirtRIL  miwst RIS ciwit RIL giwst RIS ]
RS! RSS e"Wit RSL emiwst R ewrt Y1 giwst RIS
ﬁa(t) _ e%wlt Rfrlz e%wlt Ris; ARiI#F eiAt Riﬂ ei%w;t Rilf ?iZt Ri&;
eiwst Ri{z ewst R:grf e A Riﬂ R:S;i et Ril_ et2wst Ri‘i
emirt RIL gmiwrt RIS gmi2ert RII =Nt RIS RIT  ~iAL RIS
e~wst RIL emiwst RS TNt RSI - emi2wst RIS At RS R5S
(4.2.2)
where
Y = wrtws (4.2.3a)
A = Wy —wg (423b)

In the ZF regime, where the frequencies wy, wg and wy+wg are much smaller than the relaxation

rates (of order wd 7a), the complex exponential factors in Eq. (E.28) can all be replaced by unity.
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4.2. Paper II: Two-spin asymmetric exchange case

The cross-mode relaxation rates then come into play, coupling the evolution of the longitudinal
and transverse magnetization components. This happens in the asymmetric IS—I case because
the I-S dipole coupling is not isotropically averaged. At higher fields, where wy, wg > w% TA,
the oscillating factors cancel all relaxation supermatrix elements, except possibly those involving
the difference frequency wy —wg (for a homonuclear spin pair). The relaxation supermatrix then

becomes block-diagonal,

[ RII RIS 0 0 0 0 |
RS RSS 0 0 0 0
Ry = | 0 Y R VRS0 0 (4.2.4)
0 0 e R RYY 0 0
0 0 0 0 RITL ¢miAt RIS
00 0 0 e RS RS

Nonsecular decoupling thus cancels all cross-mode rates so the longitudinal modes (I, and S,)
evolve independently from the transverse modes (/1 and Sy).

0 J O S —

(g 0.1 _
[0 ST T MR TIIT R RTIT EAATETTT EASRTTTT EATEE T, NSRRI RN ¢ [ BRI ETTT BT R TTT R B, L
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25 ~ (c) | 6 (d) -

0 Y] R R ET] B, L
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0 P T B Y] B, —

Figure 4.3: Dispersion of the integral longitudinal relaxation rate of spin I for exchange case I.S—I. Parameter
values: Py = 1073, ws = wr, wp = 10° rad s™" and 74 = 107" s (a), 107% s (b), 107° s (c) or 10™* s (d). The
three dispersion profiles show ﬁldl} computed from the SLE (red solid curves), SRE (blue dashed curves), and the
secular SRE result (black dash-dotted curves).

Figure 4.3 (II-2) shows dispersion profiles ﬁldi}(w]) for the integral longitudinal relaxation
rate of spin I in the dilute regime for four different values of the mean survival time 7 in the A

sites. As expected, the SLE and BWR results coincide in panels a and b, where (wp 74)? < 1.
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4.2. Paper II: Two-spin asymmetric exchange case

In panel ¢, where wp 74 = 1, the approximate BWR rate exceeds the exact SLE rate by 20%
in the ZF limit. In panel d, where (wp 7a)? = 100, the corresponding discrepancy is a factor
~ 21. The inverted and normal dispersion steps in panels a and b are centered at the frequencies
wr = w% TA and wy = 1/74, respectively, corresponding to the red and blue curves, respectively,
in Fig. 4.3. The slower relaxation in the ZF regime is a consequence of longitudinal-transverse
cross-mode relaxation in the anisotropic A sites (as seen from Eqs. and ) In the
LF regime (and above), cross-mode relaxation is abolished by nonsecular decoupling.

For the symmetric IS-IS case in the MN regime, the same I.S spin pair samples all anisotropic
A sites on a time scale that is short compared to the relaxation in each site because, when the
exchange time is also the correlation time (as in the EMOR model), the MN regime coincides
with the fast-exchange regime. The relaxation behavior is then governed by the isotropic average

of the relaxation supermatrix in Eq. (4.2.4))), which becomes

[ (RIT) (RIS 0 0 0 0
(RZI) (RZ 0 0 0 0
®w) = Y ; ,<AR5+> R ; ’ (4.2.5)
0 0 e (RE)  (RY) 0 0
0 0 0 0 (RI) e AY(RIS
0 0 0 0 eB(RSLY - (RSS) |

since all cross-mode rates vanish when isotropically averaged. This result, including the familiar
Solomon equations, is usually derived from BWR theory by invoking the secular approximation.
Fundamentally, however, the decoupling of the longitudinal and transverse magnetizations is a
consequence of isotropic averaging. Cross-mode coupling is therefore absent also at zero field,
which is not obvious if the secular approximation is invoked.
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Figure 4.4: Dispersion of the integral longitudinal relaxation rate of spin I for exchange case IS-I computed
from the SLE result (red solid curves, same as in Figs. 4.3) and for exchange case IS-IS computed from the
corresponding SLE result in paper I (blue dashed curves). Parameter values as in Figs. 4.3 but with 74 = 1077
s (a), 107* s (b).

In Fig. 4.4 (II-4), we compare the dispersion profiles for the IS-I and IS-IS cases with the
same parameter values as in Figs. 4.3(a) and 4.3(d). The red IS-I profiles are thus the same
in Figs. 4.3(a) and 4.3(d). Because of isotropic averaging, there is no cross-mode relaxation
in the A sites for the symmetric case so the integral relaxation rate is constant throughout the
extreme-narrowing (EN) regime (no inverted dispersion at the boundary between the ZF and
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4.3. Paper III: Three-spin EMOR cases

LF regimes). In addition, the dispersion midpoint occurs at a lower frequency for the symmetric
case. In the MN regime (panel a), the ratio ﬁﬁi}(IS—IS)/Eﬂi}(IS—I) is thus 5 in the ZF regime,
while it is ~ 2.5 in the LF regime. In the ultraslow-motion (USM) regime (wp 74)? >> 1 (panel
b), the ZF rates for the symmetric and asymmetric exchange cases converge to the same value,
ﬁldf}(O) = (2/3) Pa/7a, but the dispersion for the asymmetric case is upshifted in frequency and
deviates more from “Lorentzian” shape.

In this paper, we also presented a detailed analysis of the time evolution of the spin modes
in the ZF regime. The total I-spin longitudinal magnetization was found to be very nearly

exponential in the dilute regime.

4.3 Paper III: Three-spin EMOR cases

In this paper, we implemented the general dipolar EMOR theory for a three-spin (ISP) system,
where one (ISP-I), two (ISP-IS), or all three spins (ISP-ISP) exchange with the bulk solutions.
In contrast to the two-spin systems studied in paper I and II, there are now three dipole couplings,
so relaxation is affected by both self- and distinct-correlations (see more details in section 4.5).
Moreover, relaxation can now couple the magnetizations with three-spin modes and, in the
presence of a SDC, with two-spin modes for the ISP-I case.

S ———
ISP-ISP (a)
T ISP-IS | |
TV\
= ISP-I
<TS’5 ********
05| e - _ -
v N\
. \
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Figure 4.5: ILRR dispersion profiles for the three-spin cases. Color coding of exchange cases as in panel (a).
Parameter values: Py = 1072, wp = 10° rad s, 81 = Bs = 60°, and 7a = 107" s (a), 107% s (b), 1077 s (c), or
1073 s (d).

In Fig. 4.5 (ITI-2), we present the complete dispersion profiles of ﬁld’i}(ISP—I), ]?Eﬁi}s(ISP—
1S) and ITZIC“}SP(ISP—ISP) at four values of the mean survival time 75, ranging from the
MN regime ’With wp Ta = 0.01 to the USM regime with wp7a = 100. Here we also assume
an equilateral triangle geometry (5; = Bs = 60°) so all three dipole couplings have the same

magnitude, taken to be wp = 1 x 10° rad s~!, which corresponds to an internuclear separation
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4.3. Paper III: Three-spin EMOR cases

of rrg = 2.245 A for two protons. The profiles with solid lines are computed from SLE theory
and those with dashed lines are computed from SRE theory.

In Fig. 4.5(a), with 7o = 100 ns and wp7a = 0.01, we are squarely in the MN regime,
where the SRE results apply. For the symmetric exchange case ISP-ISP where the spin system

exchanges as an intact unit, we may expect that Eﬁi}sp(f SP—1SP) to be precisely a factor

2 larger than ﬁﬂi}s(f S —185) since each spin is involved in two equally strong dipole couplings.
This is true as long as we only take self-correlations into account. However, correlations between
distinct dipole couplings also contribute negatively to ﬁﬂi}s p(ISP—ISP) which happens to be
small for the equilateral triangle case (see more details in section 4.5).

Consider now the asymmetric exchange case ISP-IS with one nonlabile spin P. In the MN
regime, which is also the fast-exchange regime for the EMOR model, relaxation rates that couple
labile-spin (IS) modes are isotropically averaged, as in Eq. . In contrast, relaxation rates
involving one or two nonlabile-spin modes are not exchange averaged; cf. Eq. . The
local relaxation matrix (not exchange-averaged) has lower axial symmetry and relaxation can
therefore couple local spin modes with different quantum order (), which we refer to as cross-mode
relaxation (see more details in section 4.2). If, as is the case here, the exchanging spin system
contains one spin and the invariant odd-parity subspace only contains single-spin modes. The
only available cross-mode relaxation channel is therefore between the longitudinal and transverse
magnetizations of the same or different spins, at least one of which is nonlabile. The dispersion
profile (blue solid curve) exhibits an inverted secondary dispersion step at wy ~ w% TA, in addition
to the primary dispersion step at wy ~ 1/74. The blue-dashed dispersion profiles in Fig. 4.5(a)
were computed from the SRE results in the secular approximation, where cross-mode relaxation
is neglected. The secular approximation is evidently not valid in the ZF regime.

Finally, we consider the asymmetric exchange case ISP-I with a static dipole coupling (SP).
Like the ISP —1IS profile, the ISP — I profile in Fig. 4.5(a) exhibits a secondary dispersion
in addition to the primary dispersion at wy &~ 1/7o. However, the secondary dispersion step
now appears at wy ~ wp (rather than at wy ~ w]% 7o) and it is not inverted. The origin of the
secondary dispersion step in the I.SP—1I profile is the SDC between the nonlabile spins S and P.
If we set wp gp = 0 without altering the other two (equal) dipole couplings, then this secondary
dispersion step disappears and instead an inverted dispersion step at wg ~ w% TA appears (the
dash-dotted curve in Fig. 4.5(a)). In fact, for wp gp = 0 we have éld’i}(ISPfI) =2 ﬁldf}(ISfI).
The effect of static SP coupling is the singular nature of the matrix X in Eq. . More
details can be found in Appendix H in paper III.

Increasing 7a, thereby moving from the MN regime to the USM regime, has two principal
effects on the dispersion profile, as described in Papers I and II for the two-spin system. First,
the position of the primary dispersion step at wg ~ 1/7 is down-shifted in frequency until 7o
becomes comparable to 1/wp (= 1079 s, here) and eventually stops at wy ~ wp when the USM
limit is reached. Second, the ILRR in the ZF regime first increases and then decreases, with
a maximum near wp7A =~ 1. As seen from Fig. 4.5(a)-(d), this is true for all three exchange
cases. In addition, the USM profiles are no longer “Lorentzian” but exhibit a “fine-structure”
that is particularly striking for the three-spin cases, with two distinct maxima (or “bumps”) for
the equilateral triangle geometry (Fig. 4.5(d)).

In this paper, we also examined the dependence of ILRR on the internuclear geometry which
is specified by the relative orientation of the internuclear vectors as well as their lengths. Further-
more, we found that in contrast to the two-spin system, longitudinal relaxation for the symmetric
exchange case [SP-ISP can be significantly affected by chemical shifts and by the odd-valued
(“imaginary”) part of the spectral density function.
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4.4 Paper IV: Multi-spin EMOR cases

In this paper, we constructed a multi-spin dipolar EMOR theory which is valid beyond the RMN
limit based on the SRE-3SM framework. This theory mainly deals with the two EMOR, cases:
IPp,,~I (m > 3) and ISP,,—IS (m > 2), which correspond to one labile proton spin I or two
internal-water proton spins I and S coupled to m nonlabile protein protons and exchanging with
bulk water protons, respectively. In the dilute regime, we may compare the GSRE results for
these two cases with: (i) the exact SLE theory available for the spin systems containing up to
four spins; (i) multi-spin dipolar EMOR. theory based on extended Solomon equations®’ (ESE)
which ignores both cross-mode relaxation and all SDC effects.
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Figure 4.6: (left) Dispersion of ﬁfh} (wo) for the labile hydroxyl proton Thr-22 in ubiquitin coupled to m =1, 2

or 3 nonlabile ptorons. (right) Dispersion of ﬁﬁi}s(wo) for the protons of internal water W122 in BPTI, coupled
to m = 0, 1 or 2 nonlabile protons. In both panels, m increases from the lower to the upper profile and the
dispersion profiles were computed from SLE (red solid) and SRE (blue dash) theory with 74 = 10™"s (in the
RMN regime).

The multi-spin SRE theory is exact in the RMN regime for IP,,,—I (m < 3) and ISP,,-IS
(m < 2). As seen from Fig. 4.6 (IV-2) that it agrees with SLE theories quantitatively in the
RMN regime, as expected. Fig. 4.7 shows R\ﬂi}(wo) profiles for Thr-22 in ubiquitin with 1 —
10 nonlabile protons, computed from the SRE-3SM theory. Two secondary dispersion steps are
present for all m > 3. In the frequency range between these steps, the profile becomes more
smooth with increasing m. We may expect ]Sbﬂi}(wo) to increase monotonically with m as more
fluctuating dipole couplings are included. This is true above the inverted dispersion step at
wo =~ wa ; TA, but not in the ZF regime below this frequency. For ISP, IS (m > 2) case, the
ILRR is dominated by the strong intramolecular /-S coupling. Consequently, the SRE-3SM
profile never deviates much from the ESE profile, and the variation with m of ILRR converges
much faster than that for IP,,—I case.

Outside the MN regime, the slow-motion effect is incorporated in the SRE-3SM theory by
introducing the three generalisations discussed in section 3.2 (Egs.(3.2.34]) — (3.2.38))). For IP,,—I
case, the GSRE theory predicts that Eldl}(()) = Pa/7a for any m > 3 in the USM limit, which
indicates that the magnetization is randomised on the time scale 74 and 1/75 can be regarded
as the local relaxation rate in the ZF USM limit, independent of the SDCs. SLE (m = 3) and
ESE also give the same result or very nearly so. In slow-motion regime (74 = 107% s), the
GSRE theory predicts a too small ﬁ{h}(O) for most residues, by as much as 10 — 15 % in some

cases. However, the ESE theory overestimates ﬁld‘}(O) even more. Figure 4.8 (IV-4) illustrates
the effect of the different modifications in the GSRE theory. At 7o = 1070 s, close to the
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RMN regime, the SDCs have a large effect that is well captured by the GSRE theory. Well
outside the RMN regime, the SDCs have a much smaller effect, but the SND in Eq. and
the SDC renormalization in Eq. are both essential in making the GSRE profile agree
(approximately) with the exact SLE profile. More MRD profiles (including 20 labile protons in
ubiquitin and 5 internal water molecules in BPTI and ubiquitin) can be found in paper IV.
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Figure 4.7: Dispersion of fif‘f}(wo) for the labile hydroxyl proton Thr-22 in ubiquitin coupled to m = 1 — 10

nonlabile protons computed from SRE theory with 74 = 10~ 7s.
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Figure 4.8: ﬁﬂi}(wo) dispersion with 74 = 107° s (top left), 10™* s (top right) and 1072 s (bottom) for labile
protons in Thr-7 side-chains in ubiquitin coupled to three nonlabile protons, computed from the SLE theory with

SDCs (red solid) and without SDCs (black dash-dot) and from the full GSRE theory (blue dash) and from GSRE
theory without SND (green dash) or without SND and without SDC renormalization (magenta dash-dot).
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4.5 Paper V: Imaginary part of the spectral density functions

In this paper, we studied the longitudinal relaxation of a system of three dipole-coupled spins
(ISP) induced by rotational diffusion. This three-spin system was treated in arbitrary geometry
and with arbitrary rotational dynamics. Three possible types of geometric symmetry or equiva-
lence for this system were investigated. In the As system, the three nuclei reside at the vertices
of an equilateral triangle and are therefore geometrically equivalent. In the AsA’ system, the
nuclei define an isosceles triangle. If spin P is at the apex then spins I and S are geometrically
equivalent. Finally, in the AA’A” system, all three internuclear vectors have different lengths so
there is no geometrical equivalence.

The dimension of spin operator subspace required to describe the longitudinal relaxation of
the three-spin system can be reduced by systematically using the symmetries and associated
selection rules introduced in section 3.2. For isotropic dynamic models, such as spherical-top
rotational diffusion, Wigner-Eckart theorem implies that the longitudinal relaxation can be fully
described within the subspace of the ten zero-quantum OSIC operators, corresponding to the
three longitudinal magnetizations and seven zero-quantum coherences. In these ten OSIC op-
erators, seven of them are odd-rank and Hermitian whereas the rest three are even-rank and
anti-Hermitian. Therefore, the 10 x 10 relaxation supermatrix that governs longitudinal relax-
ation has 7 x 7 and 3 x 3 real symmetric blocks along the diagonal and 7 x 3 and 3 x 7 purely
imaginary “off-diagonal” blocks. The effect of the odd spectral density functions (OSDFs) is to
couple odd-rank and even-rank spin modes. If the OSDF is neglected, this coupling disappears
and the longitudinal relaxation is then fully described by the real symmetric 7 x 7 block associ-
ated with the odd-rank basis operators. This is the case in the EN regime, where, in addition,
the selection rule holds so that only the six rank-1 modes of this subspace can couple.
For AsA’ or As systems with geometrical symmetries, the number of required basis operators
can be further reduced.

A relaxation supermatrix element R,, with n # p describes cross relaxation between spin
modes n and p. Both auto relaxation rates Ry, and cross relaxation rates Ry, (n # p) may
have contributions from self correlations (correlations from the same dipole coupling) and from
distinct correlations (correlations from different dipole couplings). Fig. 4.9 (V-8) shows the
dispersion profiles of the total (R;) and self (Efelf) integral relaxation rates and of the initial

relaxation rate (RY) (defined as R = —4 {Uz(t)] ’ ) for an AyA’ system with Sp = 120°. As

T dt | 0,(0)

seen that distinct correlations have a large effect in this A3A’ system, reducing ﬁl by as much
as 36 % (in the EN regime) as compared to R, which is unaffected by distinct correlations.

Fig. 4.9 also shows that the OSDF increases El by up to 1.5 % in the dispersive regime, which
is at variance with conventional wisdom. This conclusion has been confirmed by comparing the
ILRR computed from SLE theory which implicitly incorporate any effect of the OSDF with that
from BWR with and without OSDFs. The reason we can make this comparison is that within
the MN regime (wp 7. < 1), the spherical-top rotational diffusion and strong-collision models
produce the same relaxation behavior. As shown in Fig. 4.10 (V-18) that the OSDF effect for
the AsA’ system with Sp = 108° is 2.6 %.

In this paper, we also analysed the time evolution of the total longitudinal magnetization via
decomposition of eigenmodes. The number of exponential components are computed for differ-
ent geometries, frequency regimes, and isotropic/anisotropic motions. We find that longitudinal
relaxation in the Ag geometry can involve up to six exponential components. From SLE theory,
we found that the chemical shifts break the nuclear permutation symmetry, thereby increasing
the number of relaxation components. An inverted relaxation dispersion step is predicted at
the frequency where the differential precession rate matches the relaxation rate. Above this fre-
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quency, nonsecular decoupling preferentially eliminates contributions from distinct correlations,
thereby increasing the integral relaxation rate. The effect of chemical shifts disappears when the
nonsecular decoupling frequency exceeds the main dispersion frequency, as is always the case for
homonuclear spin systems outside the MN regime.
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Figure 4.9: Dispersion of the integral relaxation rate El, its self-correlation part ﬁfdf and the initial relaxation
rate RY (all three in units of wSJS 7o) for an A2 A’ spin system with Sp = 120° and isotropic motion. The right

panel shows the relative differences between R; and R;*'f (blue), between R and RY (black), and between Ry
with and without the OSDF (magenta).
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Figure 4.10: Relative difference (ﬁlBWR - ﬁlsLE) /ElsLE of integral relaxation rates computed with BWR and
SLE theories, the former with or without inclusion of the OSDF, for an isochronous AsA’ system with 8p = 108°,
wp.rs = 10* rad s™*, 7. = 1077 s and isotropic motion.
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Outlook

In papers I to IV, we have systematically studied water "H MRD in different immobilised model
spin systems corresponding to different exchange cases. The complications accompanied by the
increase of the spin system size (e.g. distinct correlations, SDCs) were investigated in details.
Based on these studies, we have formulated a multi-spin dipolar EMOR relaxation theory which
yields a quantitative molecular description of tissue-water relaxation. In the near future, this
theory can be applied to the clinical field-cycled MRI for the soft-tissue imaging. However, as
one might notice that even for the spin system with 10 nonlaibile protons, the computations are
still quite time-consuming with present-day computers. We hope that the computation efficiency
could be improved with the further development of computation power.
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ERRATA

Paper 1

Page 8: The plus sign between the first and second terms in Eq. (4.24) should be a minus
sign.

Page 9: on line —5, left column, “single-quantum” should be “zero-quantum”.
Figure 6: the symbol on the abscissa should be wy.

Appendix E: in Eq. (E.3c), the plus sign should be a minus sign.
Appendix F: in Eq. (F.1), the second plus sign should be a minus sign.

Paper 111

Table S1 D: Basis operator 56 should be (1,S- —I1_S,)P_.

Table S1 D: Basis operator 57 should be —%[QI_S_PZ —(I,S-+1.5,)P_].

Appendix H: the line between Eqs. (H.18) and (H.19) should read “and, since U™ = UT.”.












THE JOURNAL OF CHEMICAL PHYSICS 139, 144203 (2013)

@ CrossMark
<

Nuclear magnetic relaxation induced by exchange-mediated orientational
randomization: Longitudinal relaxation dispersion for a dipole-coupled
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In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using
the field-cycling technique can characterize molecular motions on time scales ranging from nanosec-
onds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels,
cross-linked proteins, and biological tissues, where an immobilized macromolecular component co-
exists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax
predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear
(electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes
that dominate the MRD typically occur on a time scale of microseconds or longer, where the con-
ventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general
relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR
mechanism, is available for a single quadrupolar spin / = 1. Here, we present the corresponding
theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar
MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of
the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both
like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally
important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain
simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the
well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g.,
of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of
water 'H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis
of soft-tissue contrast in clinical magnetic resonance imaging. © 2013 Author(s). All article con-
tent, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported

License. [http://dx.doi.org/10.1063/1.4824105]

I. INTRODUCTION

Nuclear spin relaxation is among the most powerful and
versatile techniques available for studying molecular motions
in liquids and solids.! However, in complex biological or col-
loidal samples, where motions occur on multiple time scales,
the interpretation of single-field spin relaxation data tends to
be model-dependent. This ambiguity can be minimized by
measuring, with the aid of the field-cycling technique,>™ the
longitudinal relaxation rate R; over a correspondingly wide
field/frequency range. For a quantitative analysis of such mag-
netic relaxation dispersion (MRD) data, a rigorous theoretical
link between R; and the molecular parameters is needed.

Typically, this link is provided by the Bloch-Wangsness-
Redfield (BWR) theory of nuclear spin relaxation." This per-
turbation theory is valid when the molecular motion is fast
compared to the nuclear interaction (in frequency units) that
it modulates, as is usually the case in liquids. But MRD ex-
periments are increasingly performed on samples where this
so-called motional-narrowing condition may be violated. For
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example, this is the case in samples containing immobilized
macromolecules immersed in a mobile solvent, e.g, polymer
hydrogels, cross-linked proteins, or more complex biological
samples like cells and tissues.

From a nuclear magnetic resonance (NMR) point of
view, such samples have both solid-like and liquid-like fea-
tures. Nuclear spins residing permanently in the immobilized
macromolecules give rise to wide NMR spectra typical of
solids. However, for spins that are only transiently associ-
ated with the macromolecules and exchange chemically or
physically with the solvent phase, the NMR properties are
liquid-like provided that the immobilized macromolecules are
isotropically distributed so that anisotropic nuclear spin cou-
plings are averaged out. In such samples, the need to go be-
yond the conventional BWR theory arises whenever the mean
survival time of the macromolecule-bound spin is comparable
to, or longer than, the inverse of the anisotropic nuclear spin
coupling that it experiences in the bound state.

In samples of this kind, exchange plays a dual role. On
the one hand, exchange transfers magnetization between the
macromolecule and the solvent. On the other hand, exchange
randomizes the orientation of the anisotropic nuclear spin
interaction tensor and thereby induces spin relaxation. For
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this relaxation mechanism, known as exchange-mediated ori-
entational randomization (EMOR),6 the motional-narrowing
regime coincides with the fast-exchange regime. We have re-
cently presented a general theory of nuclear spin relaxation by
the EMOR mechanism for the case of a single spin / = 1 with
an asymmetric quadrupole coupling.® This non-perturbative
theory is based on the stochastic Liouville equation”® and it
is valid for arbitrary values of the exchange time, quadrupole
coupling, and Larmor frequency.

Here, we present the corresponding theory for a dipole-
coupled spin-1/2 pair. While the BWR theory of dipolar re-
laxation of a spin-1/2 pair is well established,"> !9 only a
few studies have considered dipolar relaxation outside the
motional-narrowing regime. The stochastic Liouville equa-
tion has been solved numerically to obtain lineshapes for
an intramolecular dipole coupling modulated by rotational
diffusion'! or for an intermolecular dipole coupling (with
the nonsecular parts neglected) modulated by translational
diffusion.'> Another numerical study of this kind considered
longitudinal intramolecular dipolar relaxation in the presence
of a fast internal motion, but only in the high-field limit.'?

Here, we present numerical as well as analytical results
for longitudinal relaxation of like and unlike spin-1/2 pairs
with a dipole coupling (including the nonsecular parts) mod-
ulated by the EMOR mechanism. Special attention is de-
voted to the experimentally important dilute regime, where
only a small fraction of the spins are associated with immobi-
lized macromolecules. For this regime, we obtain highly accu-
rate analytical approximations that generalize the well-known
BWR results for the auto-relaxation and cross-relaxation
rates. 14

A major motivation for the present work is the need for
a rigorous theory of the water "H MRD from gels and bi-
ological tissues. The spin-1/2 pair may then be identified
with either the two protons in a water molecule or with a
labile macromolecular proton and another (labile or nonla-
bile) proton. In the past, such data have been interpreted!>-!”
with semi-phenomenological models involving dubious as-
sumptions about the relaxation-inducing motions.'%!° Pre-
vious water 'H MRD studies of biopolymer gels from
this laboratory'®?® made use of a nonrigorous extension
of the multi-spin Solomon equations to conditions outside
the motional-narrowing regime. For a two-spin system, this
approach!® is closely related to a well-known result?! for two-
phase relaxation in the dilute regime. With the rigorous results
presented here, the accuracy of this approximation can be as-
sessed. The results presented here may also be seen as the
first step towards a rigorous theoretical foundation of relax-
ation contrast in magnetic resonance imaging of soft tissues,
in particular, in conjunction with field cycling.?

The outline of this paper is as follows. Section II summa-
rizes the salient features of the dipolar EMOR model. Further
details can be found in the preceding EMOR publications.5 2
An overview is presented of the three exchange scenarios
treated here, where the two spins exchange together, where
only one of them exchanges or where they exchange indepen-
dently. In Sec. III, we treat the stochastic Liouville equation
and its analytical solution. This section closely parallels the
corresponding development for the spin / = 1 case, except
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that the spin Liouville space is now spanned by 16 (rather
than 9) spin operators.

In Sec. IV, we calculate the MRD for unlike (heteronu-
clear) spin pairs with selective or non-selective excitation.
Rather than computing the time evolution of the magnetiza-
tion and extracting R; from an exponential fit,'> we focus
on the integral relaxation rate ﬁl, defined as the inverse of
the time integral of the normalized magnetization. This quan-
tity can be obtained more directly and, moreover, it is well-
defined (and measurable) whether relaxation is exponential or
not. For samples with an abundant solvent phase (i.e., in the
dilute regime), relaxation is usually found to be exponential
within experimental accuracy. The integral rate R, can then
be identified with the usual longitudinal relaxation rate R;.
We derive analytical approximations for the auto-relaxation
and cross-relaxation rates that make up R 1 and we show that
these simple results are highly accurate. We also consider var-
ious limiting cases of the general theory and we delineate the
quantitative breakdown of the previously used nonrigorous
extension of the Solomon equations.'3-2

In Sec. V, we calculate the MRD for like (homonu-
clear) spin pairs, e.g., two protons, along the same lines as in
Sec. IV. Finally, in Sec. VI, we generalize the basic EMOR
model by including the effects of fast internal motions in the
macromolecular and solvent phases as well as the effect of ki-
netic heterogeneity. Lengthy derivations are relegated to Ap-
pendices A—F of the supplementary material >

Il. MODEL
A. Spin Hamiltonian

We consider an ensemble of “isolated” nuclear spin pairs
with I = S = 1/2. Each spin is subject to a Zeeman (Z) cou-
pling with the external magnetic field B and the two spins ex-
perience a mutual magnetic dipole (D) coupling. The molec-
ular system is spatially heterogeneous and this is modeled by
assigning each spin pair to either of two states. In the isotropic
bulk (B) state, the dipole coupling is averaged to zero, leav-
ing only the Zeeman coupling. (Previously,® the B state was
denoted by I.) In the anisotropic (A) state, the spin pair experi-
ences, in addition to the Zeeman coupling, a (residual) dipole
coupling.

The relative equilibrium population of spin pairs in the
two states is denoted by P, and Pg = 1 — P5. The A and
B state populations are chemically homogeneous, but each of
the N4 spin pairs in the A state is distinguished by the ori-
entation 2, of the internuclear vector r;g relative to the B
field. We refer to these distinguishable members of the A state
as sites and label them with the index @ = 1,2, ..., Nu. For
notational convenience, we use the site label « = 0 to refer
to the B state. It follows then that site populations P, are re-
lated to state populations as follows: P, = Py for « = 0 and
P, = Pp/Np fora > 1.

The spin Hamiltonians for the two states are

Hg = Hy, (2.1a)

Hae = Hz + Hpa- (2.1b)
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The Zeeman Hamiltonian is

Hz=w1 I, + ws S, 2.2)

where w; and wg are the static Larmor frequencies of the
two spins averaged over all sites. The fluctuating part of Hy,
due to exchange among sites with different chemical shift,
does not affect the longitudinal relaxation of spin I since
[Mz., 1] = 0.

The dipole Hamiltonian may be expressed as!

\/6 2
HDa — _ T wp Z Tmz(ll)c2,m(9a)’

m=-2

(2.3)

where the Tmz(ll) are two-spin irreducible spherical tensor
operators (Sec. III A), the C;_,,(€2,) are (unnormalized) rank-
2 spherical harmonics,” and Q4 = (0, @) are the spherical
polar angles that specify the orientation of the internuclear
vector r;g in site o with respect to the lab-fixed frame (with
the z axis along the By field). To simplify the analytical re-
sults, we define the dipole frequency wp as
3

wp = EXD,

with the dipole coupling constant xp (in rad s~!) given by

2.4)

Mo lyryslh
D= — .
4

3 (2.5)
Trs
The dipole frequency wp is taken to be the same in all A sites
(this restriction is lifted in Sec. VI), which then differ only in
the orientation £2,.

The electron-mediated scalar coupling between spins /
and S can be ignored here since it is generally much weaker
than the dipole coupling (27 |J;s| < wp). The scalar coupling
therefore does not contribute significantly to longitudinal re-
laxation by the EMOR mechanism, where both couplings are
modulated by the same exchange process. Were it not for this
exchange averaging, the scalar coupling should have been in-
corporated into the time-independent Hamiltonian along with
‘Hz. A homonuclear spin pair would then be strongly cou-
pled at low field and weakly coupled at high field.?*?’ In the
two-spin EMOR model, a homonuclear spin pair is always
strongly coupled due to the large dipole coupling.

B. Like and unlike spins
We refer to spins I and S as “like” if

[ — ws) Tal®> < 1+ (wp Ta)*, (2.6)

where 7 4 is the mean survival time of the spin pair in an A site
(Sec. II C). If this inequality is satisfied, we can set w; = wg
and only the magnetic triplet state of the spin pair is relevant.
The relaxation behavior of the dipole-coupled spin-1/2 pair is
then analogous to that of a single spin / = 1 with a uniax-
ial quadrupole coupling,® except that the quadruple frequency
wq is replaced by the dipole frequency wp. In practice, the
like-spin case applies to homonuclear (y; = y ) spin pairs, in
particular when both 7 and § are proton spins. If the inequal-
ity (2.6) is not satisfied, we refer to the spins as “unlike.”
In practice, this case applies to all heteronuclear (y; # ys)
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spin pairs. Results for the unlike-spin case are presented in
Sec. IV, whereas the simpler like-spin case is considered in
Sec. V.

C. Exchange scenarios

In the basic version of the EMOR model, relaxation is
induced exclusively by the physical or chemical exchange of
spins or spin pairs among sites. (In Sec. VI, we generalize
the EMOR model to include effects of internal motions.) We
distinguish three exchange cases: IS exchange, I exchange,
and //S exchange.

For IS exchange the intact spin pair exchanges physically
without any covalent bond breaking. Like-spin IS exchange
is best exemplified by the protons of a water molecule ex-
changing between the bulk solvent (B state) and an internal
hydration site (A state) in a sample of immobilized macro-
molecules. In general, the two water protons are not magneti-
cally equivalent in an internal hydration site, but the inequal-
ity (2.6) is satisfied so we can set w; = ws. An example of
unlike-spin IS exchange is 'H-!°F in the HF molecule or in
partially fluorinated ethanol or acetate.

From a spin-dynamical point of view, IS exchange of
a dipole-coupled spin pair is equivalent to exchange of a
quadrupole-coupled single spin.® In both cases, exchange ran-
domizes the orientation of the interaction tensor effectively
instantaneously because, in the B state, the molecule rotates
on a time scale that is short compared to the mean survival
time 74 in an A site.%?® The spin dynamics can then be de-
scribed by a stochastic Liouville equation involving an ex-
change operator W with the nonzero matrix elements in the
site basis given by®

OWla) = -, 270
TA

(a|W]0) = Naty’ (2.7b)

(@ Wia) = — - (2.70)
TA

0wy = -, 2.7d)
B

where o > 1 refers to an A site. Furthermore, the populations
and mean survival times in the two states are linked by the
equilibrium condition®

PA 3B = PB TA- (28)

An example of like-spin / exchange is a labile proton
(D), such as a hydroxyl proton in a serine side-chain, dipole-
coupled to a nearby nonlabile proton (§), such as a methy-
lene proton next to the serine hydroxyl group. In this case,
only the 7 spin undergoes exchange, e.g., between an immo-
bilized hydroxyl group and bulk H,O. I exchange modulates
both the length and orientation of the internuclear vector r;g.
Moreover, the orientational randomization is slower than for
1S exchange (typically, nanoseconds rather than picoseconds)
because it involves translational diffusion of the I spin (typi-
cally on a nanometer length scale). Nevertheless, because of
its r,_s3 dependence, the dipole coupling is strongly attenuated
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once the / spin has exchanged. Moreover, the time scale for
diffusional averaging of the tiny residual dipole coupling is
typically short compared to 7. Therefore, also for I ex-
change, we can regard the EMOR process as effectively in-
stantaneous.

An example of unlike-spin I exchange is a labile proton
(1) covalently attached to a nitrogen atom (S), e.g., in a ly-
sine, arginine, or histidine side-chain. The results presented in
Sec. IV are valid for "N (§ = 1/2), as in an isotope-labeled
immobilized protein, but not for '“N (S = 1). In the latter
case, the dipole coupling is expected to be averaged out by fast
(microsecond) quadrupolar N relaxation rather than by pro-
ton exchange, which typically is much slower.”” Because the
I spin then undergoes “dipolar relaxation of the second kind,”
the mean survival time 7 5 does not play the role of correlation
time, as it does in the EMOR mechanism. For amide protons,
T is too long for this process to contribute significantly to
I-spin relaxation. On the other hand, a more rapidly exchang-
ing nearby proton, dipole-coupled to the amide proton, might
mediate resonant cross-relaxation at the discrete MHz fre-
quencies that correspond to transitions between the three non-
degenerate eigenstates of the static '*N spin Hamiltonian.?’

Finally, 7/S exchange refers to the case where both spins
exchange independently, as when both / and S are labile
protons. The dipole coupling is then averaged to zero by
exchange of either spin. Again, we can use the same ki-
netic model as for IS exchange, but the correlation time
is now shorter than the mean survival time of either spin:
TA = (1/‘EA,1 + 1/‘L'Aq 2)71.

In summary, the same kinetic model can be used to de-
scribe EMOR relaxation in all three exchange scenarios. In
each case, the I-S dipole coupling is spatially averaged to zero
by the exchange process.

lll. STOCHASTIC LIOUVILLE THEORY
A. Spin operator basis

In the direct-product space constructed from the
16-dimensional spin Liouville space (see below) and the (Na
+ 1)-dimensional site space, the composite spin + site den-
sity operator o (f) evolves according to the stochastic Liou-
ville equation,”® which we express in operator notation (see
Appendix A of the supplementary material®*) as

%o(r) =W-iL)o(@). 3.1
The Liouvillian £ =), lo)Lq (| is a superoperator in the
direct-product space and it is trivially diagonal in the site ba-
sis. The superoperator L, = [Hy, ...] acts in spin Liouville
space, which we represent by the spherical multipole basis,
consisting of two-spin irreducible spherical tensor operators>
Té((k,, ks) = |K Q kjks) of rank K = 0, 1, or 2 and quantum
orderQ=—-K,— K+ 1,... ,K—1,K, formed as linear com-
binations of products of single-spin operators of ranks k; and
ks (see Appendix B of the supplementary material’*). The set
of 16 such operators constitutes a complete orthonormal basis
for a spin-1/2 pair:*

(KQkiks | K'Q"kiks) = 8xx 800 8k,k; Siskl- (3.2)
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TABLE I. Basis operators A, with Q = 0.

n Explicit form Description

1 I, Es Longitudinal /-spin magnetization
2 E;S; Longitudinal S-spin magnetization
3 2L, S, Longitudinal two-spin order

4 % (I-Sy — 14 85) Odd-rank zero-quantum coherence
5 % (I-Sy+14850) Even-rank zero-quantum coherence

For numerical work, we use a basis of 15 spin operators
(the identity operator can be omitted), for brevity denoted by
A, with n = 1,2,...,15. The explicit form and ordering of
the spin operators can be found in Appendix B of the supple-
mentary material.>* The operators A;—As with total projec-
tion quantum number Q = 0 are also given in Table I. Two of
these operators (A3 and As) are actually linear combinations
of TOK (ky, ks) operators (Appendix B of the supplementary
material).?*

The spin observables are related to a reduced density op-
erator (o (f)), obtained by averaging over the molecular de-

grees of freedom,%23
Na  Na

(o®) =YY (alo)B)Ps, (3.3)
a=0 =0

where (x|o(f)|8) is the density operator for a sub-ensemble
where the spin starts out (+ = 0) in site B, with equilib-
rium population Pg, and ends up (at time ?) in site  (see
Appendix A of the supplementary material>*). The projec-
tions of the reduced density operator on the basis operators
are the so-called state multipoles,°

o g “'(6) = (K Q kiks |(o (0))). (34)
Our focus here is on aol(lo)(t) and a()l(()l)(t), which are pro-
portional to the non-equilibrium longitudinal magnetizations,
L,(t) — I and S,(¢) — So, respectively.

Laplace transforming the stochastic  Liouville
equation (3.1) and averaging over sites as in Eq. (3.3),
we obtain®

(3(s)) = (U(s)) o(0),

where we have introduced the site-averaged resolvent super-
operator

(3.5)

UE) = (s =W +iL)™. (3.6)

As before,® we assume that the number Na of A sites is suf-
ficiently large that 2, can be treated as a continuous variable
2 with a distribution function f(€2). Furthermore, we assume
that this distribution is isotropic,
1
f(Q) = e (3.7
b4
Because of the rotational invariance implied by Eq. (3.7),
any site-averaged superoperator derived from the Liouvillian
L, such as the resolvent superoperator ((/(s)), must share
the cylindrical symmetry of the B field. The Liouville-
space Wigner-Eckart theorem then implies that all such
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superoperators are block-diagonal (Q = Q') in the multipole
representation.®! For example,

(K Q kyks |{U(s))| K’ Q' k;K§)
=800 (K Q ks |{U())| K' Q kjK5).

Combination of Egs. (3.4), (3.5), and (3.8) now yields for the
Laplace transformed I-spin longitudinal magnetization

(3.8)

5,1 =3 3" 3 "(10101((s)| KO kiks)ag " (0).
K ki ks

(3.9)

B. Formal solution

To compute the integral relaxation rate, defined in
Sec. IV A, we need not compute the full time dependence
of the reduced density operator (o (¢)). It is sufficient to
obtain the time integral, that is, the Laplace transform at
s=0: fooo dt (o(t)) = (5(0)). Consequently, we need the site-
averaged resolvent superoperator (LNl(s = 0)), which, for the
kinetic model considered here, takes the form®

—1
<MW=mP&m+&a—m}
Pg

P
x [PB+PA <2+P—A+i£m) B]. (3.10)

B
Here, we have introduced the superoperator

B= %/dml +ilzta+iLp(@al™', (G.11)
where d2 = dg df sin6 is the element of solid angle. Fur-
ther, L7 = [Hz, ] and Lp(2) = [Hp(S2), ] are the Liouvil-
lians formed from the Hamiltonians in Egs. (2.2) and (2.3),
respectively. As discussed in Appendix C of the supplemen-
tary material,** Eq. (3.10) is exact only for the longitudinal
3 x 3 block (n =1, 2, 3) of {{£(0)), which is the only part that
is needed here (Sec. IV). The matrix representations of the
superoperators Lz and Lp(2) in the spherical multipole ba-
sis are given in Appendix D of the supplementary material.>*
The angular average in Eq. (3.11) was computed by Lebedev
quadrature of order 131, corresponding to 5810 points on the
unit sphere.3%33

IV. UNLIKE-SPIN RELAXATION DISPERSION
A. Integral relaxation rate

In the unlike-spin case, only one of the two spins, say I,
is observed. Our objective is to describe the relaxation of the
longitudinal I-spin magnetization under general conditions,
including the slow-motion regime where the conventional
BWR theory of spin relaxation fails. Under the conditions
(Po < 1) of primary interest here, the longitudinal re-
laxation is generally observed to be exponential. The lon-
gitudinal relaxation time can then be identified with the
time integral of the normalized non-equilibrium longitudi-
nal magnetization, so the longitudinal relaxation rate can be
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expressed as

. 0
RlE|:f dr
0

where 77(0) = fooo dr o1(t) is obtained from Eq. (3.9). Here,
and in the following, we use the simplified n label (Table I)
to specify components of the spin density matrix and ele-
ments of the resolvent supermatrix. The relaxation rate ob-
tained from Eq. (4.1) is referred to as the integral relaxation
rate, ﬁl. When relaxation is exponential, o (f) = o 1(0) exp
(— Ry 1), then ﬁl is identical to the longitudinal relaxation
rate R;. But the integral rate R, can be computed and mea-
sured even when relaxation is non-exponential. We therefore
use a notation that distinguishes (with a caret) the more gen-
eral integral relaxation rate.

In the case of selective excitation of the unlike spin pair,
when only the observed 7 spin has a nonzero nonequilibrium
longitudinal magnetization at = 0, we obtain from Eqgs. (3.9)
and (4.1):

_ a1
510

mmT‘ @

01(0)

RS =

A [UO) D
where the superscript US refers to unlike spins and selective
excitation. (Selective excitation of the S spin is not consid-
ered here, since the integral relaxation rate is not useful in
this case.)

In the case of nonselective excitation, which applies gen-
erally to field-cycling experiments with the initial nonequilib-
rium state prepared by rapidly changing the magnitude of the
B, field, Eq. (3.9) yields

51(0) = (1 [U0))| 1) 01(0) + (1 [{€A(0))| 2) 02(0).

For a heteronuclear spin pair, we have 6,(0) = x ¢1(0), with
k = yslyy, so that Egs. (4.1) and (4.3) yield

4.2)

4.3)

RW = ! - . 4.4)
(L UON D)+« (1 [{UO0))]2)

B. Dilute regime

In the dilute regime, where only a small fraction of the
nuclei reside in state A so that P < 1 and Pg ~ 1, the resol-
vent superoperator in Eq. (3.10) simplifies to

U©O) = (T +iLy)", 4.5)
with
Fsﬁ(l—s). (4.6)
TA

In the like-spin case (Sec. V), as well as for a single spin
I =15 we can simply drop £z in Eq. (4.5) because the
Q = 0 block of Ly is then a null matrix. In the unlike-spin
case, we cannot omit £z since the Q = 0 block of £ has
off-diagonal elements, proportional to @w; — wg, linking the
two zero-quantum coherences (n = 4 and 5 in Table I and
Appendix D of the supplementary material**). However, the
longitudinal 3 x 3 block of ((/(0)) is equal to the inverse of
the corresponding block of I' (but differs from the longitu-
dinal block of I'"1). Therefore, the integral relaxation rates
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FIG. 1. Dispersion of the unlike-spin integral relaxation rates I/Q\}JS (red) and
I?FN (blue), computed exactly (solid curves) and in the dilute approximation
(dots) for P = 1072, 7o = 10 ps, xp = 10° rad s~!, and x = 0.9412
(as for a 'H-'9F spin pair). The inset shows the relative error of the dilute
approximation, defined as [R‘lm“‘e(wl) — R wp)]/ R§*Y0).

I’ﬂjs and I,ﬂUN are rigorously proportional to Py in the dilute
regime, despite the Lz term in Eq. (4.5).

Figure 1 shows the dispersions of the two integral re-
laxation rates obtained from Egs. (4.2) and (4.4) with the
resolvent matrix elements computed either from the exact
Eq. (3.10) or from the dilute-regime approximation in
Eq. (4.5). Even for P, = 0.01, the approximate results differ
by less than 1% from the exact results. The maximum error
in RUS (RVN) varies from —0.02 (—0.03)% to —1.6 (—1.3)%
when 7, increases from 1 to 100 ps at xp = 10° rad s~
In most applications,!>16:1%20:34 p, « 1073 and Eq. (4.5) is
highly accurate (maximum error —0.2%).

C. Analytical approximations

Even though the integral relaxation rates can be obtained
numerically with modest computational effort, closed-form
analytical approximations offer conceptual insight. Analyti-
cal results are readily obtained in two limiting regimes. In the
motional-narrowing regime, here defined as

(0p 7a)* K 1+ [(|ls| — |ws]) Tal?, 4.7)

the relaxation behavior of a spin-1/2 pair is well-known.!-4

For the EMOR model, analytical results can also be obtained,
as previously shown for the quadrupolar case,% 2 in the low-
field limit, here defined as

[(Jor] + los)) Tal* < 1+ (@p Ta)’ . (4.8)

In the following, we present analytical results for the dilute
regime (P, < 1) that are exact in the both of these limits,
and, for many purposes, remain sufficiently accurate for all
values of 74, wp, wi, and ws.

_ The starting point is Eq. (3.5) with s = 0. Operating with
(U(0))~" on both members and making use of Eq. (4.5), valid
in the dilute regime, we obtain

Y [@ITIp)+i 1Lzl p)]Fp(0) = 0,(0).

p

(4.9)
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The second term within brackets can be dropped since
(n|Lz| p) = 0forn =1 or 2 (Appendix D of the supplemen-
tary material’>*). Furthermore, in the motional-narrowing and
low-field regimes, the Q = 0 block of the block-diagonal T’
supermatrix is itself block-diagonal with a decoupled 2 x 2
magnetization block (n, p = 1, 2). In the motional-narrowing
regime, this simplification corresponds to the well-known® '©
fact that the magnetizations evolve independently from the
longitudinal two-spin order because the corresponding spin
operators have different symmetry with respect to total spin
inversion.?! The approximation made here corresponds to ne-
glecting the dynamical coupling between the magnetizations
and the two-spin order under all conditions, not just in the
motional-narrowing and low-field regimes. In the like-spin
case (Sec. V), this amounts to neglecting the dynamical cou-
pling between the (total) magnetization (TO1 ~ I,) and the
rank-2 polarization (T ~ 312 — 1). In the spin / = 1 case,
this was referred to as the exponential approximation.®

From Eq. (4.9), we thus obtain a closed system of two
equations, with solution

50 = 2 01(0) —oys 02(0)’
P1 Ps — 015051

where we have defined the generalized auto-relaxation and
cross-relaxation rates

(4.10)

1—(11|B|1
pr= ([T 1) = py L= LIBID. G.112)
TA
1—-Q2|B|2
ps = (2|T|2) = Py L1812 @.11b)
TA
ors = (17]2) = — py LB12. @.110)
TA
osi =Q2IC[1) = — Py @ |TB| 1). (4.11d)
A

Combination of Egs. (4.1) and (4.10) yields for the inte-
gral relaxation rates

015051
RS = p; — =1, (4.12)
ps
ﬁ}IN _ P1Ps — O1sOst. (4.13)
pPs —KOIs
By introducing a further approximation, where

we neglect cross terms of order [(w;Ta)(wpTa)]” and
[(wsTA)(@pTA)]" With n > 2, we show in Appendices E and
F of the supplementary material®* that the generalized auto-
relaxation and cross-relaxation rates in Egs. (4.11a)—(4.11d)
can be expressed on the following simple analytical forms,

:01=PAXDZ{ 017
1+ (wpta)? 1p/3 + [(w1 — ws)TA]?
0.15 74
* 1 4+ (wpta)? np/3 + (wr1Ta)?
0.15t4

1 + (wpta)? + (wr Ta)?

0.6 TA }

4.14
* 1 + (wp7a)? + [(@1 + ws) TAT? “-14)
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FIG. 2. Dispersion of the unlike-spin integral relaxation rates I?FS (red)
and I/Q\FN (blue) in the dilute regime, computed numerically (solid curves)
and from analytical approximations (dots) for Py = 1073, 7o = 10 us,
XD = 10° rad s~!, and ¥ = 0.9412. The inset shows the relative error of
the approximation, defined as [R{™" " (w;) — R{*"(w;)]/ R{**(0).

0.1 o
1+ (wpta)? 1p/3 + [(w1 —
0.15 4
1+ (0pta)l np/3 + (0rTa)?
0.15 74
1 + (wpTa)? + (01 TA)?
0.61p
T @t + (@ + o)Al }

o1s = Pax? | —
IN A XD { 0s)TA?

(4.15)

where

2

o = 71 * (XDTA)Z/ 3. (4.16)
+ (XpTA)?/2

The rates pg and o, are obtained by interchanging w; and wg

everywhere in Eqgs. (4.14) and (4.15).

In Fig. 2, we compare the approximate analytical rates
given by Egs. (4.12)—(4.16) with the corresponding rates com-
puted numerically using Eq. (4.5), which is virtually exact at
P5 = 1073, The approximate analytical rates coincide with
the exact rates at the high-frequency end of the dispersion,
where the motional-narrowing condition (4.7) is satisfied, and
also at the low-frequency end, where the low-field condition
(4.8) is satisfied. Even at intermediate frequencies, where nei-
ther condition is satisfied, the analytical expressions remain
quite accurate with a maximum error of ~—2% for the a—
rameter values used in Fig. 2. The maximum error in R}
(ﬁUN) varies from —0.03 (—0.03)% to —10.0 (— 5 6)% when
74 increases from 1 to 100 us at xp = 10° rad s~

D. Limiting forms

In the motional-narrowing regime, where the inequality
(4.7) holds, Egs. (4.14) and (4.15) reduce to the familiar'-'4

J. Chem. Phys. 139, 144203 (2013)

forms
0.1 TA
= Paxg

194 A XD { 1+ [(w; — (x)s)"-'A]2

0.3 0.6

TA 2 } “4.17)
1+ (wrta)? 14 [(01 + ws) Ta]?
0.17p
=05 = Pa x4 —

ors asy A XD { 1+ [(CUI — a)s)TA]2

+
1+ [(wr + ws)Tal?
In the low-field regime, where the inequality (4.8) holds,

Egs. (4.14) and (4.15) and the analogous expressions for pg
and o g; reduce to

, l 0.75 7 0.251 }
pr = ps = Paxp
14 (wpta)®> 14 (wpTa)® np/3
(4.19)
615 = 05) = Pa XDz { 0.75 o _ 0.25 5 }
1+ (wpta)*> 1+ (wpta)?np/3
4.20)

Equation (4.20) implies that, in the low-field regime, o
= o5 = 0 for wpta = 3. For this special case, Ilﬂjs = R\FN
= py, as expected.

Combination of Egs. (4.12), (4.13), (4.19), and (4.20)
yields for the zero-frequency limit of the integral relaxation
rates in the dilute regime

TA

HUS —
(O) PA XD 1 4 (CODTA)Z (1 + 77D)/4 (421)
R T
VO =7 Paxp 1=k /2+(wpTA)? [14np+K (1—7p)]1/4
4.22)

Note that these two expressions are exact in the dilute regime.
Figure 3 shows the variation of RYS(0) and RVN(0) with
Ta. The maximum relaxation rate occurs at 7o =~ 1/xp
for RUS(0) and at 75 ~ (1 — «/2)"/xp for RVN(0).
This maximum is reminiscent of the transition from fast
to slow exchange in a two-state exchange model with a
sparsely populated high-relaxivity state.”!:3> However, in
the EMOR model, the survival time is also the correlation
time for the high-relaxivity state so “fast exchange” corre-
sponds to the motional-narrowing regime. The maximum in
R1(0) thus signals the breakdown of the motional-narrowing
approximation.

Figure 4 shows normalized dispersions R AUS (w)/ R, RUS )
and R9N(w;)/ RVN(0) for different values of the mean surv1va1
time 7. As expected the dispersion shifts to lower frequency
as site exchange is slowed down (making 7 longer). How-
ever, when 7, becomes longer than 1/wp (10 us in Fig. 4),
the position of the profile is less affected and in the ultraslow-
motion limit, where (wpta)? >> 1, the profile remains fixed
on the wy axis but decreases in amplitude on further increase
of 7. In the ultraslow-motion limit, Egs. (4.14) and (4.15)
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FIG. 3. Low-frequency limit of the unlike-spin integral relaxation rates
ﬁ}JS (red) and ﬁFN (blue) versus mean survival time t5 for Py = 1073,
xp = 107 rad s™!, and k = 0.9412 (only affects ﬁPN).

yield
4P, 0.1 0.15
Pr= 65{ 1n/3 + [(@1 — ws)/wpl*  1p/3 + (w1/wp)?
0.15 0.6 } 4.23)
1+ (wi/op)?* 1+ (o1 + ws)/wp]?
4 Py 0.1 0.15
o= 55{_nD/3+[(wI—ws>/wD]2+nD/3+(wI/wD)2
0.15 0.6
I+ (/) | 1+ [(wr + as)/onl } @29

showing that the effective correlation time is ~1/wp. In this
limit, information about site exchange kinetics is contained
in the zero-frequency rate, but not in the position (and shape)
of the dispersion profile on the frequency axis. As seen from
Fig. 4, while the analytical expressions based on Eqgs. (4.14)
and (4.15) are highly accurate in the slow-motion regime (and
exact in the motional-narrowing regime), they are less accu-
rate in the ultraslow-motion limit, particularly for I/Q\]US (wy).

As the ultraslow-motion limit is approached, the disper-
sion profile becomes steeper. This feature, which is most pro-
nounced for iﬂjs(wI), is not captured by the analytical ap-
proximations based on Egs. (4.23) and (4.24). Because the
dispersion changes shape, the low-frequency part of the dis-
persion actually shifts to higher frequency with increasing 7 5
close to the ultraslow-motion limit (Fig. 4(a)).

In the ultraslow-motion limit, the dispersion profile has a
characteristic temperature dependence: the amplitude grows
with increasing temperature, while the shape and position on
the wy axis are invariant. This follows since the dipole fre-
quency wp is essentially independent of temperature.

E. Breakdown of the motional-narrowing
approximation

In the motional-narrowing regime, the integral relaxation
rates I’ﬂjs and ﬂJN for the dilute regime are obtained by sub-
stituting Eqgs. (4.17) and (4.18) into Eqgs. (4.12) and (4.13).

Within the context of a two-state exchange model, this result

J. Chem. Phys. 139, 144203 (2013)
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FIG. 4. Normalized dispersion of the dilute-regime integral relaxation rates
(a) RYS and (b) RN for Py = 1073, xp = 10° rad s~ 1, x = 0.9412, and
different t4: 3 ps (magenta), 10 ps (blue), 0.1 ms (red), and 1 ms (black).
The dispersion profiles were computed numerically (solid curves) and, for
the shortest and longest 7 o, also from analytical approximations (dots).

corresponds to the fast-exchange limit. However, when wp 7
is sufficiently large to violate the inequality (4.7), these fast-
exchange (or motional-narrowing) expressions greatly over-
estimate the exact integral relaxation rates, as computed with
Eqgs. (4.2), (4.4), and (4.5).

A plausible but nonrigorous extension of the fast-
exchange result has been suggested,'® where

[ — (4.25)
Ta+ 1/Ria

and with the intrinsic integral relaxation rate R?l‘ A in state
A given by expressions like Egs. (4.12) and (4.13), but
with intrinsic auto-relaxation and cross-relaxation rates ob-
tained from Eqgs. (4.17) and (4.18) after setting Px = 1.
The expression (4.25) is of the same form as a well-known
result?! for the dilute regime, derived from the extended Bloch
equations® (which do not take dipolar cross-relaxation into
account). Equation (4.25) is the two-spin version of an ap-
proximate result previously derived for a homonuclear multi-
spin system. '8

In Fig. 5, we compare Eq. (4.25) with the exact dilute-
regime result based on Eq. (4.5). As expected, the two results
agree at high frequencies, where the motional-narrowing con-
dition (4.7) is obeyed, but diverge substantially at lower fre-
quencies. The maximum error in RS (RVN) varies from 0.4



144203-9 Z. Chang and B. Halle
60
wb n
Nl
20 -
O |
10* 10° 10° 107
, (rad s™)

FIG. 5. Dispersion of the unlike-spin integral relaxation rates I?FS (red)
and R\}JN (blue) in the dilute regime, computed numerically (solid curves)
and from the nonrigorous approximation based on Eq. (4.25) (dots) for
Pao = 1073, 7o = 10 ps, xp = 10° rad s~!, and « = 0.9412. The in-
set shows the relative error of the approximation, defined as [R?ppmx(wI)
_ R?xact(wl )]/R?xact(o).

(0.7)% to 25 (48)% when t 4 increases from 1 to 100 ps at xp
=103 rad s~

In contrast to Eq. (4.25), the stochastic Liouville ap-
proach adopted here introduces site exchange in a rigorous
way and without any restrictions on the mean survival time
Ta. In the dilute regime, the measured R is not in the “slow-
motion” regime; as seen from Figs. 1-3 and 5, 1/ R, is then al-
ways much longer than 7 5. The stochastic Liouville approach
is needed because the intrinsic relaxation rate (which does
not appear explicitly in our treatment) violates the motional-
narrowing condition unless the condition (4.7) is satisfied.

V. LIKE-SPIN RELAXATION DISPERSION
A. Homonuclear spin pair

If the spins 7 and S are both protons, their Larmor fre-
quencies are not likely to differ by more than ~10 ppm.
Since the EMOR dispersion generally occurs below w;
~ 107 rad s~!, we therefore expect that |w; — wg| < 107
rad s~!, which is much less than wp. For a proton pair, or
a homonuclear (y; = ys) spin pair in general, the inequality
(2.6) is thus satisfied and we can set w; = wg throughout.

For pedagogical reasons and to keep the general nota-
tion already introduced, we shall obtain the like-spin results
as a special case of the unlike-spin problem addressed in
Sec. IV. However, it is possible, and computationally prefer-
able, to obtain the like-spin results more directly by recogniz-
ing that we now have a I, triplet state and that the problem
is isomorphic with that of a single quadrupolar spin-1.% The
dimension of the spin Liouville space is then reduced from 16
to 9 (or from 15 to 8 after excluding the identity operator).
There are no single-quantum coherences and the longitudinal
O = 0 block then only involves the magnetization (basis oper-
ator Tol) and rank-2 (quadrupolar) alignment (TOZ)‘ All results
for the quadrupolar spin-1 case can thus be taken over directly
by replacing the quadrupole frequency wq by the dipole fre-
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quency wp and setting the asymmetry parameter to zero (since
the magnetic dipole-dipole interaction is uniaxial).®
Assuming nonselective excitation (¢ 1(0) = 6,(0)), which
applies generally to field-cycling experiments, the integral
longitudinal relaxation rate of the total magnetization of the
spin pair is
k\ 2
1= ~ ~ ~ ~ J
(1 [{UON | D+ U0 2)+2 [{UO0)) ] D2 [{U0))] 2)
_ 1
(LIUONI D + (1 {U©O)12)

where the matrix elements refer to the 15-dimensional two-
spin basis (Appendix B of the supplementary material’*), and
the equality of the two forms follows since the two like spins
must have the same relaxation properties. In other words, 1/3\1
is the same irrespective of whether one observes both spins or
only spin /. (Selective observation of spin / would be possible,
for example, if spin S had a static dipole coupling to a third
spin. But here we only consider an isolated spin pair.)

5.1

B. Dilute regime

For numerical calculation of 1?1 in the dilute regime,
we can drop the L7 superoperator in Eq. (4.5), because the
Q = 0 block is now a null matrix. As in the unlike-spin
case (Sec. IV), we can obtain approximate analytical results
for R, by neglecting the dynamical coupling between mag-
netizations and two-spin order. Equation (4.10) reduces to
61(0) = 01(0)/(p + o), since py=ps=pandoy =05 =0
in the like-spin case and o(0) = 0,(0) for nonselective ex-
citation. Equation (4.1) then yields R = p + o. The desired
analytical approximation is obtained by taking p and ¢ from
Egs. (4.14) and (4.15) with w; = wg, with the result

~ 3

R = 3 Pax2 (02, 4+0.8 1), (5.2)
with the generalized spectral density

J, A 5.3)

T 1+ (wp Al + (o Ta)?

This approximate result coincides with the exact result in the
low-field and motional-narrowing regimes and, as expected,
it is of the same form as the corresponding result for a single
spin I = 1 with a uniaxial quadrupole coupling.®

In Fig. 6, we compare the approximate analytical rate
given by Egs. (5.2) and (5.3) with the essentially exact rate
computed numerically from Egs. (5.1) and (4.5) (with £z
omitted). The approximate analytical rates coincide with the
exact rates at the high-frequency end of the dispersion, where
the motional-narrowing condition (wp TA)* < 1 + (w;TA)?
is satisfied, and also at the low-frequency end, where the low-
field condition (w;t4)* < 1 + (wp Ta)? is satisfied. Even
at intermediate frequencies, where neither condition is satis-
fied, the analytical expressions remain quite accurate with a
maximum error of ~—2% for the parameter values used in
Fig. 5. The maximum error in R; varies from —0.04%
to —5.5% when 7t increases from 1 to 100 us at
xp = 103 rad s7!.
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FIG. 6. Dispersion of the like-spin integral relaxation rate R, in the dilute
regime, computed numerically (black solid curve), from the analytical ap-
proximation (red dots) and from the nonrigorous approximation based on
Eq. (4.25) (blue dashed) for Po = 1073, 75 = 10 ps, and xp = 10° rad s~ .
The inset shows the relative error of the approximations, defined as
[R;‘ppmx(a)l)f R$™Y(w;)]/R§*(0). For the nonrigorous approximation
(blue curve), the error has been divided by a factor 10.

Figure 6 also shows the relaxation dispersion profile pre-
dicted by the nonrigorous analytical expression (4.25) with
the intrinsic relaxation rate ﬁLA = ﬁl /P obtained from
Eq. (5.2) after setting wp = 0 (as in the motional-narrowing
regime) in Eq. (5.3). Here, the error is much larger, reach-
ing 30% at low frequencies. The maximum error in R, varies
from 0.7% to 50% when t, increases from 1 to 100 ps at

xp = 10° rad s~

VI. GENERALIZATIONS

Several generalizations of the basic EMOR model were
considered in connection with the previous EMOR treatment
of the quadrupolar spin 7 = 1 case.® With obvious modifica-
tions, those generalizations are applicable also to the dipolar
two-spin case treated here. For simplicity, we shall only show
how the approximate analytical results for the dilute regime
are modified when the EMOR model is generalized. (As seen
from Figs. 2 and 6, those results are likely to be sufficiently
accurate for most purposes.)

We are thus concerned with the generalization of
Egs. (4.14)—(4.16) (unlike spins) or Egs. (5.2) and (5.3) (like
spins) when the EMOR model comprises, not one, but rna
anisotropic states, each represented by an isotropic distribu-
tion of sites with mean survival time 7, and fast anisotropic
internal motions described by intrinsic auto-relaxation and
cross-relaxation rates and an orientational order parameter
Sy, = wpy /w]g. In addition, a fast isotropic motion is asso-
ciated with the isotropic bulk state (B).

For unlike spins, the generalized auto-relaxation rate is

na

na
o1 = Pgprp+ Pa qu o +Z Xy ,OEILAOR(IU, S,
v=1

v=1

(6.1)

where x, is the fraction of all A sites that belong to state
v, and p;YOR(t,, S,) is the EMOR contribution to the auto-
relaxation rate from state v as given by Eq. (4.14) with 4
replaced by t,, and xp and wp multiplied by the order pa-
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rameter S,,. Similarly, the generalized cross-relaxation rate is

na

na
int EMOR
ors = Pgojss + Pa E Xy o7, + E Xy 075, (Tu, Sy).
v=1

v=1
(6.2)

For like spins, the relaxation rate in

Eq. (5.2) is generalized to

integral

na na
R, = Pg RI,B + Pa Z)CU Rllr?:} + ZXU REIX[OR(TV, Sv)
v=1

v=1
(6.3)

These generalizations are rigorously valid only under cer-
tain conditions. Notably, the internal motion is assumed to be
sufficiently fast that 7™ <« 7,, (1 — S2) (wp 7,™)* < 1, and
P 7, < 1 (and similarly for o} , and R{"). Here, )" is
the correlation time for the internal motion in state v. Fur-
thermore, the internal motion is assumed to modulate the
orientation (but not the length) of the internuclear vector
r;s and to exhibit at least 3-fold symmetry, so that S, = 1

— (3/2)(sin%6),.

VIl. CONCLUSIONS

We have presented a non-perturbative theoretical treat-
ment of longitudinal relaxation induced by EMOR of the
magnetic dipole coupling of a spin-1/2 pair. To our knowl-
edge, this is the first treatment of dipolar relaxation disper-
sion outside the motional-narrowing regime. For the exper-
imentally important dilute regime, we have obtained simple
analytical results that remain accurate to better than a few per-
cent over practically the entire parameter space. (The some-
what lower accuracy in the ultraslow-motion regime is of little
consequence, since the R; contribution from such sites, being
proportional to 1/7 A, tends to be negligibly small.) These ana-
lytical results provide conceptual insight and they can readily
be incorporated in nonlinear optimization protocols for MRD
data analysis.

So far, the main application of the EMOR theory for spin
I =1 has been to water ’H MRD studies of cross-linked pro-
tein gels.>* Such studies provide unique insights into inter-
mittent structural dynamics and transient solvent penetration
of globular proteins.?®3* Corresponding water 'H MRD stud-
ies are less useful for extracting clear-cut biophysical infor-
mation, since the smaller coupling constant (wp is an order
of magnitude smaller than wgq) allows more labile protons to
contribute to R in addition to well-defined internal hydration
sites. Nevertheless, '"H MRD can sometimes be a useful com-
plement to water ZH MRD measurements®” and, in addition,
can be used to study cosolvent interactions with proteins or
other macromolecules.

Arguably, the most important application of the present
results is to water 'H relaxation in biological tissues, which
is the primary determinant of contrast in magnetic resonance
imaging. Despite several decades of work, there is still no
consensus on the mechanism of water 'H relaxation in bio-
logical tissues. We believe that the EMOR mechanism is the
dominant source of water 'H MRD in tissues and the present
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work represents a first step towards a rigorous and quantitative
theory. We are currently extending the theory to larger spin
systems, including the effects of coherent processes involving
nonlabile protons with static dipole couplings.
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APPENDIX A: NOTATION

Here we elaborate on the notation introduced in Sec. III of the main text. Site exchange
is modeled as a stationary Markov process, specified by an operator P(t) obeying the

operator master equation!

d
o P =wee, (A1)

with the initial condition P(0) = 1. The sites are represented by an orthonormal basis
{|a)} with the formal mathematical properties of a linear vector space, such as orthonor-

mality and closure:

<O“5> - (504,3’ (AQ)
> la)al = 1. (A.3)

Taking matrix elements of Eq. (A.1) and using the closure relation, one recovers the usual

form of the master equation:

Ll P 18) = S (@l W) (v P 15) | (A4)

dt .
where the propagator («| P(t) |5), more commonly written as P(«,t|3), is the conditional
probability that a particular spin is in site « at time ¢ given that it was in site 5 at time
t = 0. The {|a)} basis matrix representation of the operator equation (A.1) thus involves
a square jump matrix with elements (a| W |y) and a column vector propagator with
elements (| P(t) |8) for a given initial site .
The probability that a particular spin is in site « at time ¢ regardless of its initial

location is given by the partially averaged propagator

Po(t) = ) (al P(t)8) Ps (A.5)

B
where Py is the equilibrium population in site 8. It is clear that P,(t) satisfies the same
master equation as the conditional probability P(«,t|3).

The density operator o(t), featuring in the stochastic Liouville equation (SLE) (3.1),
describes the state of the IS two-spin system and the state of the relevant molecular
degrees of freedom, specified by the site index a. We can therefore regard o(t) as a
vector in a composite space formed as the direct product {|KQ krks)} @ {|a)} of the spin
Liouville space and the site space. In this direct-product space, the Liouvillian can be

formally expressed as

L= la)Lalo| . (A.6)
From the orthonormality (A.2), it follows that £ is diagonal in the site basis:

(@ £18) = Gus Lo = dup [Ha,...] . (A7)
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Formally, the exchange superoperator W in the operator SLE (3.1) is related to the jump

operator W in the master equation (A.1) as
W =W Es, (A.8)

where Ejg is the identity operator in the two-spin Liouville space. Consequently, W is
diagonal in the spin basis.

There is a close analogy between the density operator o(t) and the site operator P(t).
We can thus define the conditional density operator («|o(t)|5) as the density operator
for the sub-ensemble of all site trajectories that start out (at t = 0) in site 8 and occupy
site o at time ¢. By taking matrix elements in the operator SLE (3.1) and using Egs.
(A.3), (A.7) and (A.8), we find, in analogy with Eq. (A.4),

d

3 (o)1) = —iLalalo(t)|B) + > (W) (la(®)18) - (A.9)

In analogy with Eq. (A.5), we can define a partially averaged propagator,

0u(t) = Y (alo(t)|B) Py, (A.10)

B
which satisfies the SLE
d .
3 0alt) = —iLaoa(t) + > (alWy) oy (t) . (A.11)

Y

The reduced density operator (o(t)), introduced in Sec. III of the main text, is the density

operator averaged over all site trajectories, that is,
(o) = > oal(t). (A.12)

This Appendix is dedicated to an anonymous reviewer.
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APPENDIX B: SPIN OPERATOR BASIS

The irreducible spherical tensor operators (ISTOs) T/5(ks, ks) that span the Liouville
space of the spin-1/2 pair are formed as linear combinations of products of the single-spin
ISTOs T,}*(I) and T,s(S) according to

ll ko k K
T (kr, ks) = (—1)b*s+Q2K 4 1)1/ reow
@ Z qr Q —dqr —Q

qr=—k;

) TAD T, (S).

(B.1)

For notational simplicity, we denote these operators by A, = Tg (krks), where the
subscript n indicates the basis ordering. The operators are grouped according to the total
projection quantum number ). Within the () = 0 manifold, we define A3 and Ajs as linear
combinations of 79(11) and T(11) in order to facilitate the physical interpretation. A;
and A, correspond to the longitudinal magnetizations of spin [ and S, respectively, As
corresponds to longitudinal two-spin order, and A, and As correspond to the odd-rank

and even-rank, respectively, zero-quantum coherence.

Table S1: Order and explicit form of basis operators.®

n A, = Th (kiks) explicit form

1 Ta(10) I, Eg

2 T5(01) E; S,

3 —aTP(11) + bTE(11) 21, S,

4 Ty (11 (S — 1. 5-)
5 bIP(11) + aTg(ll) (1= S+ + 1. 5-)
6 Ti(10) 1 Es

7 TE(01) 7 Er Sy

8 TE(11) IS, — 1.8,

9 T2(11) —(I. Sy + 1. S.)
10 T, (10) 7 1-Es

11 T, (01) 75 ErS-

12 T, (11) IS —1_8,
13 T2,(11) IS_+1_5,
14 T2(11) I, S,

15 T2,(11) IS

@ The coefficients in As and A are a = 1/y/3 and b = /2/3.
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APPENDIX C: FORMAL SOLUTION

For the kinetic model considered here, the exact result for the site-averaged resolvent

superoperator is®

(U(s)) = Ta[l = Ba(s) Bg(s)] " Ba(s) [Pa + Ps Bg(s)]

(C.1)
+ 18 [1 — Bg(s) BA(S)]_l Bg(s) [Ps + PaBa(s)] ,
where
Bu(s) = (1 + st + iLyms) ", (C.2)
Bu(s) = —— [dQ[l + sma + iLyma + i Lo(@) 7] " . (C.3)

4

Like <ﬁ (s)), the site-averaged supermatrices Bg(s) and By (s) are block-diagonal in Q.
Therefore, Bg(s) and Ba(s) commute if the individual @-blocks commute. This is the
case for like spins (w; = wg) and for a single spin I = 1,3 since the Q-blocks of Bg(s) are
then diagonal and proportional to the identity matrix. This is not the case for unlike spins
(wr # wg). However, the @ = 0 block of Bg(s) is itself block-diagonal, with a longitudinal
3 x 3 block (n =1, 2, 3) that is proportional to the identity matrix and a non-diagonal
zero-quantum coherence block (n = 4, 5). The longitudinal 3 x 3 block of Bg(s) therefore
commutes with the corresponding block of Ba(s). As long as we are only concerned with
the longitudinal 3 x 3 block of <Zj (s)), we can therefore proceed as if Bg(s) and Ba(s)
commute. Equation (C.1) can thus be simplified and, after setting s = 0, we recover Eq.
(3.10) of the main text.
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APPENDIX D: MATRIX REPRESENTATION

To evaluate Eq. (3.11), we need the supermatrix elements of the Zeeman and dipole

Liouvillians. Using Eq. (2.2) and the commutation relations

[IZ,Tq’jI([)] = q; Tq’jf([) (D.1a)
[S., T, (S)] = qsT,5(S) (D.1b)

we obtain
(Tg(kfks)y.cz\TQ,’w;kg)) = crup + csuws (D.2)

where the numerical values of ¢; and cg are evident from Eq. (D.8).
The matrix elements of L£p(§2) are obtained from Eq. (2.3) and the Liouville space
Wigner-Eckart theorem.* For K’ > K,

(7 Uerks) 1o (@) T8 (k) = VB0wp Cog-qr(@)(—1)5~9 [(—1)rHes — (—1)4r+45]
x [(2K + 1) (2K + 1)(2k; + 1)(2K, + 1)(2ks + 1)(2k} + 1)]*/*

K K' 2
K 2 K ke 1K ks 1 K

X k[ /{Z} 1
—Q Q-Q 1/2 1/2 1/2 1/2 1/2 1/2

ks Ky 1

(D.3)

Since Hp(€2) is Hermitian, matrix elements with K’ < K can be obtained from the

symmetry relation
(7 (hiks) | £0(Q) | T (kiKs) ) = (T& (ki) | £o(2) | TS (kaks)) (D.4)

In general, the matrix elements in Eq. (D.3) depend on two angles Q = (0, ¢). The angle
 describes a rotation about the By field axis and 6 is the angle between the By field and
the internuclear I — .S vector.

The explicit matrix representation M, in the spherical multipole basis, of the super-

operator
M(Q) =1+ iﬁzTA + iﬁD(Q>TA, <D5)

the inverse of which appears in the integrand of Eq. (3.11), can now be obtained from Egs.
(D.2) — (D.4) after evaluating the 3j, 65, and 95 symbols and substituting trigonometric
expressions for the Wigner functions in Eq. (D.3). The Zeeman and dipole couplings

involve the dimensionless quantities

L[ = WITA (D6a)
LS = Wg TA (D6b)
D = wpTa (D.6c)
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The nonzero off-diagonal elements can all be expressed in terms of three quantities:

a = % cos B sin 6 exp(i p) (D.7a)
b = 22\1/)5 sinf exp(i 2¢) (D.7b)
c = D (3cos®6 — 1) (D.7¢)

2v/2

The complete M matrix is given in Eq. (D.8) with the basis operators ordered as in Table
S1. Here, Ln =L; — Ls and Ly = L; + Lg.
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APPENDIX E: ANALYTICAL APPROXIMATION

Here, we derive approximate analytical expressions for the generalized auto-relaxation and
cross-relaxation rates defined in Eq. (4.11), starting with p;. Using the superoperator
identity 1 — M~ = (M — 1) M™!, we can express Eq. (4.11a) as

Py

TA
n

pr = (LM =Dn) (n M 1)) , (E.1)

where the superoperator M was defined in Eq. (D.5) and the angular brackets indicate
the isotropic average in Eq. (3.11). From the structure of the M supermatrix in Eq.
(D.8) it is clear that only the 7 terms with n = 4, 8, 9, 12, 13, 14 or 15 contribute to the
sum in Eq. (E.1). Noting that (n|M™!1) = (=1)"* (1|A|n)/A, where A = det M is
the determinant of M and the minor (1 |A|n) is the determinant of the matrix obtained

be deleting row (1| and column |n) from M, we can cast Eq. (E.1) on the form

=)+ ()< () (5] e

where we have defined the real-valued quantities

3¢

Hy = — 5 3 (1|Al4), (E.3a)
H = _4%2 [ (L|A[8) + a(1]A[12)] (E.3b)
H? = 4%2 (0" (1]A]9) + a(1]A]13)] (F.3¢)
H2 = Z\g (b (1]A]14) — b(1|A]15)] . (E.3d)

Here and in the following, we make use of the dimensionless quantities a, b and ¢, defined
in Eq. (D.7), and L;, Lg and D, defined in Eq. (D.6). The quantities A and Hj are
polynomials in L} L% D™ with n, p, m =0, 2, 4 or 6, n+p+m < 6, and with coefficients
that depend on the angle #, but not on .

We seek an analytical expression for p; that reduces to the known exact results in the
low-field and motional-narrowing regimes and that is sufficiently accurate to be quantita-
tively useful for any values of L;, Lg and D. To reproduce those limits exactly, we must
retain all pure terms in A and Hg , that is, terms proportional to L}, L% or D™. We
thus derive the approximate expression for p; by discarding all mixed terms in the full
expressions for A and H, g (Appendix F). These truncated expressions are then rearranged
(without further approximations) into forms that directly reduce to the known results in
the low-field and motional-narrowing limits.

The truncated determinant is expressed as
A(L;,Ls,D) = Ap(Ly,Ls) + Ap(D) — 1, (E.4)
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where Ap(D) =1 in the motional-narrowing regime and Ay (Ly, Lg) = 1 in the low-field

regime. These parts are given by

Ap(Ly,Ls) = (14 L7 (14 Lg)* [14 (L + Ls)?] [1 + (L — Ls)*] , (E.5)
Ap(D) = {1 + %] {1 + 45 ] [1+ D%, (E.6)

Since the truncated determinant A(Lj, Lg, D) does not depend on the Euler angles, we
only need to average the quantities Hg in Eq. (E.2).
The truncated Hg polynomials are derived in Appendix F. After isotropic averaging

over the angle 6, they can be expressed as
(HE) = cb [g5(L1,Ls) + hS(D) — 1], (E.7)

where gg(LI, Lg) is a polynomial in L; and Lg and hg(D) is a polynomial in D and the
coefficients cg are the numerical prefactors outside the curly brackets in Egs. (F.7) —
(F.10). Combining Egs. (E.2), (E.4) and (E.7), we can now write

pr = Paxp [01J; 4+ 0.15J] + 0.15J7 + 0.6.J5] , (E.8)

where we have introduced the generalized spectral densities

96 (L1, Ls) +h5(D) =1 7y
A(LnLs) +Ap(D)—1 1+ AE’

Jg = TA (Eg)

with
AL(L17LS) - gg(LI, LS) + AD(D) - hg(D)
96 (L1, Ls) + hy (D) — 1 (E.10)

= Wg;(LI,LS) + Fg(D) + O(L*D?).

K
AQ:

To be consistent with the preceding treatment, we discard the mixed terms, of order
L? D?, L% D? or higher. The first two terms in Eq. (E.10) are obtained by taking the
limits D — 0 and Lj, Lg — 0, respectively, of A§. We thus obtain,

Wy = (L;— Ls)?, (E.11a)
Wl =Ww? = L7, (E.11b)
W3 = (L + Ls)?, (E.11c)
and
Iy =TI = D;((fi;gj//s;) , (E.12a)
? =12 = D%, (E.12b)
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Finally, combining Eqgs. (E.8) — (E.12), we obtain the desired analytical approximation

o 0.174 N 0.15 74
pr = Paxp 1+ (L; — Ls)® + D?np /3 1+L%+D277D/3 (F.13)
1+ L3+ D> 14 (L;+Ls)?+D?]’
with 1+4D?/27
+
_ 1+4D)or E.14
™= 1229 o

Equations (E.13) and (E.14) correspond to Egs. (4.14) and (4.16) of the main text. It
follows from the symmetry of the problem that the auto-relaxation rate pg is given by an
expression identical to Eq. (E.13), except that L; and Lg are interchanged throughout.
We now consider the cross-relaxation rate o7 in Eq. (4.11c). Because the operator
basis is orthonormal, we can replace the superoperator B by 1 — B in the off-diagonal
element in Eq. (4.11c). We can then proceed in the same way as for the auto-relaxation

rate py, obtaining

ois = 22 3 (-1 ((m - oy BRI (B.15)

A
n

This result differs in two ways from the corresponding result for p;. First, because of the
sign of the cofactors, all terms have the opposite explicit sign compared to the case of p;.
Second, the minors (2 |A|n) now involve row 2 rather than row 1. Inspection of the M
supermatrix in Eq. (D.8) shows that the first and second rows are identical except for a

sign reversal in columns 4, 8 and 12. As a result, we obtain in place of Eq. (E.2)

o= [-(5) - (5 + (5) ()]

with the quantities H} still given by Eq. (E.3). Consequently, the desired analytical
expression for osg is identical to the expression for p; in Eq. (E.13) except for a sign
reversal in the first two terms, as in Eq. (4.15) of the main text. Finally, the cross-
relaxation rate og; is obtained from the expression for o;g by interchanging L; and Lg

everywhere.
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APPENDIX F: TRUNCATED Hg POLYNOMIALS

The polynomials Hg are obtained from the minors of the M matrix according to Eq.

(E.3). We truncate these polynomials by expressing them on the form

Hy = {Hg}y + {Hohp + {Ho by - (F.1)
where
{Hg}, = lim Hg (F.2a)
{H5}, = Lllir;n_mHQ , (F.2b)
(H}op = ,, Jim,  HE (P20

We thus obtain, with x = cos#f,

(3}, = ¢ [+ L3 [0+ T [+ (L + L)) (3 = 177, (F.3a)
{Hs}, = HH%T [1+ D?*(34% — 1) (3x2—1)+w , (F.3b)
{Ho},p = é(3x2 —1)%. (F.3¢c)
(R}, = (4 23] [0+ TA)° (14 (L4 L)) [+ (B = Ls)?) 2 (L= 2%), (F.dn)
(H}}, = g [1 ] { ] [14 D 2% (127, (F.4b)
{H} , = g (1 —2?) . (F.4c)
{le}L - {Hll}L ) (F.5a)

{H{}, = Z{H%} {1+4§ }[HD?} 2% (1 —a%), (F.5b)

{H}n = {Hi}p - (F.5¢)

{H2}, = g [1+ L2 [0+ L3])*[1 + (L — Ls)?] (1 — 22)?, (F.6a)

{H3}, = g [1 + %] {1 + %} [1+ D] (1—a%)?, (F.6b)

(2, = 2(1_;62)2. (F.6c)
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Isotropic averaging and substitution of these results into Eq. (F.1) yields

(H}) = 1—10{ [1+%2} {1+ 252} (14 D%

b+ T[4 B[+ (Lt L) -1 v
(0
b [ 1+ Z3 L (e Lo 1 (1 207 1), o
= 3{ 2] o
b I+ AT (o EP) L (B - 2] 1),
R (| O T

F P[4 2P (L — Ls)?] 1} ,
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In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal
spin relaxation of water protons is primarily induced by exchange-mediated orientational randomi-
zation (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked
on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous
theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange
rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical
framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange.
So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange.
Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and
unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the
axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally
anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation
operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted
relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general
dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case,
for which we present relaxation dispersion profiles over a wide range of conditions as well as
analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and
motional-narrowing regimes. The general theoretical framework presented here will enable a quan-
titative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with
immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based
magnetic resonance image contrast and molecular parameters. © 2016 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http:/creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4942026]

. INTRODUCTION

Soft-tissue contrast in clinical magnetic resonance
imaging derives largely from spatial variations in the
relaxation behavior of water protons. Yet, a rigorous theory
relating the water 'H relaxation rate to microscopic parameters
is still not available. The lack of theoretical underpinning
is also a limitation in biophysical studies of, for example,
water-protein interactions and intermittent protein dynamics
by field-cycling measurements of the water 'H magnetic
relaxation dispersion (MRD) in protein gels. Previously,
such data have been interpreted with semi-phenomenological
models!= involving questionable assumptions about the
relaxation-inducing motions.*> Earlier water 'H MRD studies
of biopolymer gels from this laboratory>® made use of a
nonrigorous extension of the multi-spin Solomon equations to
conditions outside the motional-narrowing regime.

Nuclear spins residing permanently in immobilized
macromolecules give rise to solid-state type NMR spectra,
whereas spins that are only transiently associated with
the macromolecules, because they exchange chemically or

Dpertil.halle@bpce.lu.se

0021-9606/2016/144(8)/084202/16

144, 084202-1

physically with the solvent phase, exhibit liquid-state NMR
properties provided that the immobilized macromolecules
are isotropically distributed so that anisotropic nuclear
spin couplings are averaged to zero. In such locally
anisotropic samples, exchange plays a dual role. On the
one hand, exchange transfers magnetizations and coherences
between macromolecule-bound spins and solvent spins. On
the other hand, exchange randomizes the orientation of
anisotropic nuclear interaction tensors, thereby inducing
spin relaxation. For this relaxation mechanism, known as
exchange-mediated orientational randomization (EMOR), the
motional-narrowing regime coincides with the fast-exchange
regime. For the EMOR mechanism, the conventional Bloch-
Wangsness-Redfield (BWR) perturbation theory of nuclear
spin relaxation’ breaks down when, as is frequently the case,
the mean survival time of the macromolecule-bound spin is
comparable to, or longer than, the inverse of the anisotropic
nuclear spin coupling that it experiences in the bound state. We
have therefore embarked on a program to develop a general
non-perturbative theory, based on the stochastic Liouville
equation (SLE),%° that can describe relaxation by the EMOR
mechanism over the full range of exchange rates and spin

coupling strengths.
© Author(s) 2016.
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The EMOR SLE theory was first developed for
quadrupolar relaxation'®!! and it has been extensively applied
to water 2H MRD studies of colloidal silica,'> polymer
gels,'>1* cross-linked proteins,'>'8 and cells.!” As compared
to quadrupolar relaxation, which only involves single spins,
dipolar relaxation is theoretically more challenging. The
EMOR SLE theory for dipolar relaxation of a homonuclear
spin pair exchanging as a unit* is isomorphic with the
corresponding theory for quadrupolar relaxation of a single
spin-1,'" but for heteronuclear spins, multispin (>2) systems
and/or fragmentation of the spin system by exchange,
qualitatively new phenomena appear in the dipolar relaxation.
In a previous report,”’ hereafter referred to as Paper I, we
developed the EMOR SLE theory for a (homonuclear or
heteronuclear) spin pair that exchanges as an intact unit, a
situation that we now refer to as symmetric exchange. Contrary
to our earlier expectations,?’ the case of asymmetric exchange,
where only one of the two dipole-coupled spins undergoes
exchange, differs fundamentally from the symmetric case. In
particular, since the non-exchanging spins are not isotropically
averaged, the longitudinal and transverse magnetizations are
dynamically coupled in the anisotropic sites. Such cross-mode
relaxation, distinct from the cross-spin relaxation familiar
from the Solomon equations,21 gives rise to an inverted
relaxation dispersion at low field.

Here, we develop the general dipolar EMOR SLE theory,
valid for spin systems of arbitrary size and for symmetric as
well as asymmetric exchange. To illustrate the general theory,
we present explicit results for the asymmetric two-spin case,
which is contrasted with the previously treated symmetric
two-spin case.”’ These results are directly applicable to, for
example, a macromolecular hydroxyl proton in chemical
exchange with water protons (asymmetric case) or to an
internal water molecule in physical exchange with bulk water
(symmetric case).

This paper is organized as follows. In Sec. II, we present
the dipolar EMOR formalism for an arbitrary spin system,
with general and two-spin results in separate subsections. As
compared to Paper I, the formalism has been modified and
extended in order to accommodate asymmetric exchange.
In Sec. III, we discuss the zero-field regime, which is
of special significance for asymmetric exchange, and the
motional-narrowing regime, where we obtain explicit results
for the asymmetric two-spin case that serve to rationalize
the unexpected inverted relaxation dispersion. In Sec. IV, we
illustrate the theory by numerical results for the two-spin case,
emphasizing the new phenomena that emerge for asymmetric
exchange. Further physical insight is provided by an analysis
of the time evolution of the relevant spin modes. Lengthy
derivations and tables are relegated to six appendices.?

Il. DIPOLAR EMOR THEORY
A. Spin systems and exchange cases
1. General case

We consider a system of spin-1/2 nuclei, some or all of
which exchange between a solid-like anisotropic (A) state and
a liquid-like bulk (B) state. The spins need not be isochronous
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(or even homonuclear), but the Zeeman coupling is taken to
be the same in states A and B. (In any case, longitudinal
relaxation is not affected by exchange-modulation of the
Zeeman coupling.) The A state comprises a large number, N,
of sites distinguished by their fixed orientations. Collectively,
the N site orientations approximate an isotropic distribution.
Each A site hosts a spin system with m, > 2 mutually dipole-
coupled spins. A subset (or fragment) of this spin system,
comprising mg spins (with 1 < mp < my), exchanges with the
B state. The exchange is said to be symmetric if mp = ma
and asymmetric if mp < ms. We refer to the mp exchanging
spins as labile spins and the ma — mp nonexchanging spins as
nonlabile. The general theory developed here is valid without
further restrictions on mx and mg.

To identify different exchange cases, we use the notation
“(spins in state A)—(spins in state B).” For example, 15-1
is a two-spin system with one labile spin and ISP-IS is a
three-spin system with two labile spins. The /S5-I case might
refer to a macromolecular hydroxyl proton () dipole-coupled
to a nearby aliphatic proton (S). The ISP-IS case might
refer to the two protons (IS) of a water molecule temporarily
trapped in a protein cavity, where the water protons are
dipole-coupled to a nearby aliphatic proton (P). Note that
both of these cases involve asymmetric exchange since the
spin system is fragmented, even though no covalent bonds are
broken in the latter case. We shall only consider cases where
a single type of spin system is present in each state, but we
note that it is straightforward to extend the theory to cases
where more than one subset of spins exchange independently,
possibly at different rates.

The orientations of all internuclear vectors involving at
least one labile spin are taken to be instantaneously random-
ized upon exchange, thereby inducing dipolar relaxation. This
assumption in the EMOR model is justified if the mean
survival time of the labile spin(s) in the A sites is long
compared to the time required for orientational randomization
when the labile spin(s) has been transferred to state B. This
is the case, for example, for chemical exchange of labile
macromolecular protons with bulk water and for physical
exchange of trapped (internal) water molecules with bulk
water.”>3 We can then ignore all dipole couplings among the
labile spins in state B. If so desired, the small and frequency-
independent relaxation contribution from fast modulation of
dipole couplings in state B can be added to the final expression
for the overall relaxation rate.?”

At any time, a fraction P of the labile spins reside in
state A, while a fraction Pg = 1 — P, reside in state B. The
nonlabile spins are only present in state A. The general dipolar
EMOR theory developed here is valid without restrictions on
P,. However, some of our results are only valid in the dilute
regime, where P, < 1. In most applications of interest, this
inequality is satisfied with a wide margin.*

2. Two-spin case

In Paper I, we analyzed the symmetric exchange
case 1S-1S. Here, we consider the more complicated and
interesting asymmetric exchange case IS-I. In a typical
application, spin / is a labile proton, e.g., in a hydroxyl
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group, exchanging with bulk water protons. This is actually
an IS-I, case, but since the /-/ dipole coupling in state B
plays no role (see above), the results are the same as for
the 1S—-I case. The only difference between the /S—I and
IS—1I, cases lies in the interpretation of the /-spin fraction:
PA(IS-I) = PA(IS-I)/[2 — PA(IS-I)].

The Zeeman (Hz) and dipolar (Hp) Hamiltonians for
the two-spin system are given by Eqs. (2.2) and (2.3)
of Paper I, with the dipole frequency wp defined as
3/2 times the usual dipole coupling constant, i.e., wp

= (3/2) [uo/ Am)l yrys /.

B. Composite Liouville space
1. General case

Formally, we can regard the total system as a mixture
of N + 1 species, labeled by « =0, 1,2, ... ,N, with @ =0
referring to state B and @ > 1 tosite a in state A. Thus, Py = Py
and P, = Po/N for @ > 1. All spin systems belonging to a
given species @ have the same spin Hamiltonian H¢, with
HO = Hz for@ =0and H” = Hz + Hf fora > 1.

To an excellent approximation, the individual spin
systems can be regarded as mutually noninteracting and
uncorrelated. The spin density operator of the total system then
reduces to a direct sum of species spin density operators o,
each of which represents an ensemble of spin systems in site
@.?*?0n the absence of exchange, the spin systems associated
with the N + 1 species evolve independently according to the
Liouville equation

4 o) = —i LY 7). (1)
dr
The Liouville-space representation o of the species density
operator o is a column vector of dimension D, = 2% — |,
where m,, (= ma or mg) is the number of spins in species a and
—1 comes from omitting the superfluous identity basis operator.
The spin density operator of the total system is represented
as a column vector in a composite Liouville space’*? of
dimension D = Dg + DaN, formed as the direct sum of the
spin operator spaces of the N + 1 species. Thus,

o’ o
1 0
o
o= . and o%=]| . |. 2)
: a
oV Do

An element of the D-dimensional column vector o can be
expressed in the following equivalent ways:

o, = (o) = Tr{BZaa'“} = Tr{B;rla (alo)}
= <a|0—na> = <a|(n(l |0—)> = {(l,na |O_}’ 3

where B,,, is a member of a complete set of orthonormal spin
basis operators for species «,

(B'hy'BPa) = Tr{BZ(IBpG} = 6”01’0' (4)

To make full use of symmetry, we represent spin Liouville
space in a basis of irreducible spherical tensor operators
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(ISTOs) Tg (4) of rank K, quantum order Q, and additional
quantum numbers 1.2

In the composite space, the N + 1 independent Liouville
equations (1) can be expressed as

d

@ o(t)=—-iLo@) 5)
with a block-diagonal Liouvillian supermatrix,

L0 0 - 0

0o L' 0 - 0

L=|0 0 L* -~ 0] (6)

o 0 o --- LV

where L is a Dy X D, matrix with elements L} , and 0is

the D, X Dg null matrix.

2. Two-spin case

Whereas D = Dy = 15 for the symmetric 1S-IS case,?’
we have Dy = 15 and Dy = 3 for the asymmetric /S5-I case.
The one-spin (state B) and two-spin (state A) ISTOs are given
in Appendix A of the supplementary material.>> For the IS
case, np refers to one of the three B-state basis operators,
while np refers to one of the 15 A-state basis operators. All
these operators are normalized in the same two-spin (/S)
space according to Eq. (4).

C. Exchange superoperator
1. General case

In the presence of exchange, the composite spin density
operator evolves according to the SLE

% o(t) = (W —i L) (). 0

The exchange superoperator ‘W describes the transfer of one
or more spins from one site to another.>+> An exchange from
site a to site B instantaneously switches the spin Hamiltonian
from H® to HB. If this stochastic modulation is sufficiently
frequent, it induces relaxation. For asymmetric exchange,
which breaks up the spin system into fragments, A — B
exchange has an additional effect: all multispin correlations
within the spin system that have developed as a result of
dipole couplings between labile and nonlabile spins in state
A are lost.”® For symmetric exchange, where the whole spin
system exchanges as an intact unit, all multispin correlations
are retained even though the dipole couplings are modulated.

To describe both of these effects, we decompose the
exchange superoperator as

(WZ7;1®7;_7<m®7(s' (8)

The “molecular” operators 7, and %, act on the site kets
|@), so their composite-space supermatrix representations are
block-diagonal with respect to the spin operators. These
operators define the kinetic model (site-to-site transition
probabilities), regardless of whether the spin system is
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fragmented or not. The superoperators 75 and % act on spin
operators, so (as for L) their composite-space supermatrix
representations are block-diagonal in the site basis. These
superoperators distinguish labile from nonlabile spins and they
account for decorrelation of multispin modes by exchange
fragmentation of the spin system.”® The composite-space
supermatrix representation of ‘W factorizes as

{a.ng (W B.pp} = (a| Tu|B) (na|7d Pp)
- <a|(]<m|:8> (n(r|7<s|pﬁ)- (9)

The first term in Eq. (9) describes the exchange-mediated
transfer of mode pg in site 8 into mode n,, in site . Conversely,
the second term represents transfer of mode n, in site @ into
mode pg in site S.

The matrix representation of the transition rate operator
Tm in the site basis is

(@l TalB) = 28 = L1500l = 650 + (1= 500)5
| Jm = 75 _TB a0 80 N a0)OB0
1 850
=—(1-0 ) —, 10
Tlg( aB)(aO+ N) ( )

where 7,p is the transfer probability from site 8 to site
a. The second step in Eq. (10) follows from the model
assumption'®? that direct exchange between sites belonging
to state A is not allowed, so that all 7,z = 0 except mo g>1 = 1
and m,>10= 1/N. The form of the site operator K, then
follows from probability conservation as?

N
da
(@ K B) = 60 Y, NN Tulay = =2 (1)
y=0 @

Combination of Eqgs. (9)—(11) yields for the four types of
matrix element

ns (W | pa) = = (. o) (122)
(@ [W 1 Bopsl == 6up (K pa). (120
(na W | a.pa} = = (T ), (120)
(@palWim) = 5 palTlm). (120

where we have suppressed the superfluous O site index for
state B.

The spin supermatrix elements (4|7 pg) and (n,|K;| pg)
in Eq. (9) can be regarded as selection rules; their values are
either 0 or 1. The element (ng|7| pa) in Eq. (12¢) equals 1
if A — B exchange converts spin mode p, into spin mode
ng; otherwise it equals 0. In other words, (ng|7;| pa) = 1 only
if the mode with sequence number ng in the B-state operator
basis is the same as the mode with sequence number p, in the
A-state operator basis, and if the exchange transfers all spins
that are involved in this mode. Thus,

(nB|75l pa) = (palTsl ng) = Ar(np, pa)
1, if A & Bexchangeinterconverts modes pa and ng,
- {O , otherwise,
(13)
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where Ar(ng, pa) is a sum of products of Kronecker deltas for
the exchange-linked modes.

The elements (ng| K| pg) and (na|%| pa) in Egs. (12a)
and (12b) are selection rules for the spin modes that leave
state B or A, respectively. Like (a| %, |B) in Eq. (11), these
matrices are diagonal. Since only labile spins can exist in
state B, it follows that (ng|%;| ng) = 1. However, state A may
contain modes that only involve nonlabile spins. For such
modes, (na|Ks| na) = 0. Thus,

(14a)
(14b)

(nB|7(S| pB) = 6nB,pB»
(Al TG PA) = Gnppall = Ax(na)],

where Ag(na) is a sum of Kronecker deltas over non-
exchanging modes, composed exclusively of operators
associated with nonlabile spins. In view of Egs. (12)—(14), the
exchange supermatrix in the composite space can be expressed
as

'_llB iT iT iT—
0 TA TA TA
! T’ 1K 0 0
NTB TA
1 1
W=|—T 0 -——K - 0 |, (15
NTB TA
LT’ 0 0 _iK
_NTB TA

where 75 and 7 are the mean survival times® in the two
states. Furthermore, 1B is the Dg X Dg identity matrix, T is
the D X D matrix with elements 7,,,,, = (ng|7| pa) given
by Eq. (13), T’ is the D X Dg matrix transpose of T, and K is a
diagonal Dp x DA matrix with elements K,,,,, = (na|%i| pa)
given by Eq. (14b). The elements of the matrices T and K
are thus either O or 1. The nonzero elements of T connect
labile-spin modes that are interconverted by exchange, and the
vanishing diagonal elements of K correspond to A-state modes
that only involve nonlabile spins. For symmetric exchange,
Ts=Ki=EsoT=K=1.

2. Two-spin case

For the symmetric IS—IS case,?® all spins are labile so
there is no exchange fragmentation. Consequently, T = K = 1,
the 15 x 15 identity matrix.

For the asymmetric /S5-I case, exchange interconverts
the three one-spin modes in state B, ng = 1, 2, and 3 (Table
S2), and the corresponding three one-spin modes in state A,
pa =1, 6, and 10 (Table S1).2> Consequently,

TanA = 6nB,1 6[1A,1 + 6nB,2 6pA,6 + 6nB,3 6pA,10- (16)

The three one-spin modes in state A that do not involve the
labile I spin are ns = 2, 7, and 11 (Table S1),? so

KnApA = 6nApA[l _6nA,2_6nA,7_6nA,11]- (17)

Therefore, K differs from the 15 x 15 identity matrix only in
that K»p = K77 = K111 = 0.
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D. Partial solution of the SLE
1. General case

The SLE (7) is a differential equation involving
superoperators acting in the composite Liouville space. As
previously shown for quadrupolar spins'®'! and for the
symmetric dipolar IS—IS case,?” the SLE for the EMOR model
admits an exact analytical solution that only involves spin
superoperators, without explicit reference to site operators.
Because we now develop the general dipolar EMOR theory
using a somewhat modified formalism, the full derivation of
the analytical SLE solution is presented in Appendix B.??
In this subsection, we merely display the definitions that are
needed for the following development.

A Laplace transform,

o(s) = /Owdt exp(—st) o (t), (18)

converts the SLE (7) into an algebraic equation with formal
solution

F)=(sE-W+iL)'o(0)=U(s)r(0), (19)

where & is the identity superoperator in composite space and
U(s) is referred to as the resolvent superoperator.

Macroscopic spin observables are related to a density
operator summed over all sites,

N
(@)= ) o) = o) + o), 20)
a=0

where o?(¢) = (@|o(¢)) and oB(¢) = ¢%(¢). Combination of
Egs. (19) and (20) yields

N N
@)= > (el Uls)|p) P (0). @1

=0 =0

In Paper I, o(¢) referred to a single spin system and
to obtain (o (f)) we then had to weight with the relative
population, P,, of spin systems in different sites @. Now, this
relative weight is subsumed into o(¢) so that {o(¢)) is simply
a sum over sites, as in Eq. (20), without the need to account
explicitly for the fact that the macroscopic sample contains
different numbers of spin systems in A and B sites. According
to this new convention, the initial density operator o®(0)
is proportional to the relative population, P,, for excitation
under high-field conditions or by a fast field switch.'® We
express this as

PBnB, fora =0
c®0)=3p 22
© WAnA, fora >1 22)

so that Eq. (20) yields
(0(0)) = o®(0) + o™(0) = Pen® + Panp™. (23)

Here, n* and n® are spin operators that depend on the
initial condition of the spin system (selective or nonselective
excitation) and, for heteronuclear spin systems, on the relative
magnetogyric ratios (Sec. II D 2).
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Combination of Egs. (21) and (22) yields

N N
@) =D (al Uls)|B) PsnP, 24)

@=0 =0

where n” equals ® for 8 = 0 and n” for 8 > 1 and Pg equals
Pg for =0 and Pa/N for § > 1. For asymmetric exchange,
when different spin operator bases are used for states A
and B, it is convenient to express the spin operator basis
representation of Eq. (24) in terms of partitioned matrices,

7] _[Us) UAs)] [#° ’s
)|~ [UMs) UM | (g2 25)

with the column vectors n®= [77113 .. .nLB)B]' and npt
=[nt... r]ADA]' (the prime denotes transposition). In Eq. (25),
the site-averaged density operator column vector has been
partitioned into (for notational simplicity, we omit the angular
brackets)

at(s) a(s)

ai=| and =] @ |. (26)

TDp(9) Tp,(5)

Furthermore, UBB(s), UBAs), UAKs), and UAAs) are,
respectively, Dg X Dg, Dg X Dp, Da X Dg, and Da X Dy
submatrices of the spin basis representation of the site-
averaged resolvent superoperator

N N
(Us)) = Y > (el U(s)|B) Pp. @7

a=0 =0

Without further approximations, we show in Appendix B??

that
UPHs) = 15 P5[1% — GB(s) T GA(s5) T'] ' GB(s), (28a)

fJBA(s) =1 PA[IB - GB(5) T GA(s) T’]_IGB(S) T GA(s),

(28b)
UAs) = 74 Pol1% - GA(5) T GP(s) T| ' G*(5) TV GB(s),
(28¢)
UA(s) = 74 PA[1* - GA() T/ GB(s) T] ' GA(s). (284)
where
GB(s) = [(1 + st5) 1® + i Ly 78] (29)
and

1
GA(s) = e /dQ [sTal® + K+ iLzta+iLp(Q)7a]l™

E<[STA1A+K+iLzTA+iLD(Q)TA]7l>. (30)

Here Lz and Lp(Q) are the Liouvillian supermatrices (in
the appropriate spin basis) corresponding to the Zeeman
and dipolar Hamiltonians, respectively. Because G* is
isotropically averaged, it must reflect the axial symmetry
of the spin system in the external magnetic field. For a basis
of ISTOs Tg (4), it then follows from the Wigner-Eckart
theorem?’ that G and the resolvent submatrices in Eq. (28)
are block-diagonal in the projection index Q. (For asymmetric
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exchange, where Dg < Dy so that the matrices UBA and
U”B are rectangular, also the “Q-blocks” are rectangular.)
Longitudinal relaxation can therefore be fully described
within the zero-quantum subspace. The dimension of this
subspace is 5 for two spins and 19 for three spins. However,
in the individual sites, the zero-quantum modes do not evolve
independently of the remaining modes. The matrix within
square brackets in Eq. (30) is not block-diagonal in Q so it
must be evaluated in the full Da-dimensional spin Liouville
space of state A.

2. Two-spin case

With the spin operators indexed as in Tables S1 and S2 for
the IS—1 case,? the elements of the initial-condition vectors
n® and 7* in Eq. (25) are for nonselective excitation

(31a)
(31b)

My = Ot + K O,
My = Oni-
For I-selective excitation, we have instead
My = 1 = Ont, (32)
while for S-selective excitation
(33a)
(33b)

Mo = KO,

1y = 0.
Here, « = ys/v/, the ratio of the magnetogyric ratios. For the
IS-IS case, n” is the same as for the IS—I case and n& = 5%

for all three excitation modes. In Paper I, we used a slightly
different notation.

E. Integral relaxation rate
1. General case

The integral longitudinal relaxation rate is defined as
the inverse of the time integral of the reduced longitudinal
magnetization and it may be expressed in terms of spin density
operator components as

ana,‘?B<r>+z,,AaﬁA(r> -
t
Sy E(0) + 2,0 (0)

Py Z"BU"B + Pa ZnAnnA
T St 50+ X,,,07,(0)
where the sums run over spin modes (or basis operators)
corresponding to the longitudinal magnetization of the
observed spin(s) and Eq. (23) was used to obtain the last

form. In the following, we specify the observed spin by a
subscript, e.g., Ry ;. According to Eq. (25),

R\IE

(34)

Dg

BA

(0) - Z BPB an Z Unigpa npA’ (35a)

pp=l pA—

Dy

FAO= D U0t + Z UM, b (35b)

pB=1 pa=1

where we have introduced the shorthand notation

UXY = (n[UX0)|p). (36)
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The values of 75 and 1%y, depend on the initial conditions for
the relaxation experiment, as exemplified by Eqgs. (31)—(33) for
the two-spin case. In field-cycling experiments, excitation is
always nonselective. In conventional relaxation experiments,
selective excitation of the labile spins can be accomplished
with a soft RF pulse if the nonlabile spins have a much wider
NMR spectrum than the labile spins. For selective excitation,
we only consider the case where the excited spin is also
observed. The excitation mode is indicated by a superscript,
e.g. Rnon or Rqel

In the dllute regime, where Pa < 1, the detailed
balance condition'! Py 715 = Pg7a and Eq. (28) show that
the matrix elements U)Y are of the following orders of
magnitude:

Ups ~ Py, (37a)
Ut~ 1, (37b)
Upd ~ 1, (37¢)
Uyt ~ Pa. (37d)

In the dilute regime, we only need to retain the matrix elements
of leading order in P, in the denominator of Eq. (34).
The condition Py < 1 is specified by a superscript, e.g.,
Rdil

LI

2. Two-spin case

For the 1S-I case, with the spin modes indexed as in
Tables S1 and S2,22 Eq. (34) yields

Pgn? + Pan

Rj=—1>b—°"L 38a
M7 EB0) + 7M0) (38
—~ PAUA
Ris=—— 2 (38b)
a5(0)
Using Egs. (31)-(33), (35), and (38) and noting that

P, + Pg = 1, we obtain for nonselective excitation

R =[URR+ U+ UNP + U + (U + UBHT,

(39a)
R = k PA[USE + UM + « USN, (39b)

and for selective excitation
Ry = [UEP + URA + U + UM, (40a)
R = PA[USM! (40b)

In the dilute regime, Eq. (37) allows us to reduce these
expressions to

R = [UfP, (41a)
I’é‘(]i,ig{non =k PA [UzAlB]_l (41b)

In Eq. (41a), we only display the superscript “dil” since
R‘dil/non — R‘dil/sel
LI LI .. . . .
The foregoing expressions for the integral relaxation rate
can be further simplified by expressing the matrix elements
UXY in terms of elements of the G*(0) matrix, defined by
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Eq. (30). This reduction is outlined in Appendix C 1;?? here
we merely quote the results for the rates in Eqgs. (40b) and
(41),

P
R =2 (1-gy), (42a)
TA
. P 1=
R(]il}S{non — IA K( g11>’ (42b)
TA 821
=~ 1 (1-gn)
RY, = il (42¢)

E (1-gi)gn+g81gu
with the shorthand notation

gnp = (IG™0)|p). (43)

As expected, I/éids is independent of P, whereas in the dilute

regime, the nonselective rates ﬁf‘ll and ﬁ?‘g "o are rigorously
proportional to Pa.

The corresponding expressions for the integral relaxation
rate in the /S—IS case, most of which are given in Paper I, are
readily obtained in the same manner. For convenience, these
expressions are collected in Appendix C 22? with the same
notation as used here for the /S5-I case.

lll. LIMITING CASES
A. Zero-field regime
1. General case

In the absence of an external magnetic field, the
macroscopic system is rotationally invariant (isotropic). The
Wigner-Eckart theorem?’ then implies that supermatrices that
are averaged over the A sites are block-diagonal in the rank
index K as well as in the projection index Q if they are
represented in the ISTO basis Tg (1) = B,,. Furthermore, the
nonzero matrix elements do not depend on Q. For example,

(T5(D 1 6* | T5 (1))
= 0xx 000 (T5() | GM I TS (V). (44)

We refer to the conditions under which this selection rule
is valid as the zero-field (ZF) regime. In the ZF regime, the
Larmor frequencies are much smaller than the rate of evolution
induced by the dipole coupling, so we can set L7 = 0.

In Paper I, we defined a low-field (LF) regime through
the inequality

(w1 Ta)* < 1+ (WpTa)% (45)

where wp is the dipole coupling frequency, as defined in
Sec. IT A 2, and wy is the Larmor frequency. In the ultraslow-
motion regime, where (wp 74)> > 1, inequality (45) implies
that w} < w3, that is, the Larmor precession is much slower
than the coherent dipolar evolution. In the motional-narrowing
(MN) regime, where (wp7a)? < 1, inequality (45) implies
that (w; 7a)*> < 1, which is the so-called extreme-narrowing
condition. Physically, extreme narrowing corresponds to a
situation where the local field (produced by the dipole
coupling) is randomized by exchange (on the time scale
7o) before any significant Larmor precession has taken
place.

J. Chem. Phys. 144, 084202 (2016)

For symmetric exchange, such as the /5—-1S case treated
in Paper I, the LF condition (45) also defines the ZF regime. In
other words, the integral relaxation rate is independent of w;
in the frequency range defined by inequality (45). In contrast,
for asymmetric exchange, such as the /S—/ case, the Zeeman
coupling can be neglected only if the Larmor precession is
slow compared to the cross-mode relaxation in the A sites
(Sec. III B 2). For asymmetric exchange, the ZF regime is
therefore defined by the more restrictive inequality

(wpT, A)2

T+ (@n P + @1 T (40)

lwr| Ta <

Figure 1 depicts the LF and ZF regimes for the case
of asymmetric exchange, as defined by inequalities (45)
and (46). In the MN regime (the lower half of Fig. 1),
the ZF regime corresponds to |w;| < w? s and the LF
regime to a)ZD TA < |wy| < 1/7a. In the ultraslow-motion
regime (the upper half of Fig. 1), the ZF regime corresponds
to |wy| < 1/7a and the LF regime to 1/7p < |w;| < |wp|.
The blue curve in Fig. 1, at the boundary between the
LF and adiabatic regimes, indicates the frequency of the
main dispersion step for the integral longitudinal relaxation
rate. The red curve, at the boundary between the ZF
and LF regimes, indicates the frequency of an inverted
dispersion step that only appears for asymmetric exchange
(Sec. III B 2).

In the ZF regime, selection rule (44) implies that G*
and other site-averaged supermatrices consist of (m, + 1)°
blocks. For a given rank K, the 2K + 1 blocks corresponding
to different values of the projection index Q are identical.
Furthermore, all blocks are symmetric. In the ZF regime,
the evolution of the longitudinal magnetizations can
therefore be fully described within the rank-1 zero-quantum
subspace.

104 R IR IR IR LU DL L IR I

zero-field regime

|wp| Ta

low-field regime

10—4 PERETTT B TR R EECE T EETATE R ST Ll
107 1072 1 102 10*

| wi| 7a
FIG. 1. For asymmetric exchange, the LF and ZF regimes are distinct, as

shown here. For symmetric exchange, the coincident LF and ZF regimes both
extend up to the blue boundary.
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2. Two-spin case

For two-spin (1S) systems in the ZF regime, selection rule
(44) implies that G* has one diagonal element corresponding
to the rank-0 singlet operator Tg(l 1), three identical 3 x 3
rank-1 blocks spanned by the operators Tol(k,ks), Tll(klks),
and T_ll(klks), respectively, with (k;ks) = (10), (01) or (11),
and five identical rank-2 diagonal elements corresponding to
Té(l 1). Since the matrix is symmetric, there are only 9 unique
elements. The evolution of the longitudinal magnetizations in
state A is fully described by the T (k;ks) block, spanned by
the basis operators (Table S1)??

By =T,(10) = L, (472)
B,=T,(01) = S,, (47b)
1
Bi=T)(11) = 7 (IS, -1,5.)
=iV2(I, S, - 1,5,). (47¢)

Since longitudinal relaxation in the ZF regime can be
fully described within the rank-1 zero-quantum subspace,
many results can be obtained in analytical form. For example,
in Appendix D,?? we derive, for the 15— case, closed-form
expressions for o1(s), o2'(s), and o{(s), from which the
time evolution of these spin modes can be obtained by an
inverse Laplace transformation. In Appendix D,?> we also
derive expressions for the integral relaxation rate in Egs. (39)

and (40). For example,
2

—~ 2 WH TA

RI(©0)= = PA —2——, 48
1,1( ) 3 1A 5+ (wpTa)? (482)

~ 2 w3 Ta

R (0)= — 2~ 48b
l,S( ) 6+(U)DTA)2 ( )

__In the MN regime, Eq. (48a) can be written as
R?f'I(O) = P RY(0), with an intrinsic A-state relaxation rate
R‘IA(O) =(2/15) w% 7a. This is as expected, because, for the
EMOR model, the MN regime is also the fast-exchange
regime. If relaxation in the A-sites were governed by an
internal motion independent of the exchange kinetics, then the
Luz-Meiboom equation, R| = Pa/(ta + 1/ R‘l“), should hold in
the dilute + MN regime.3! However, if Eq. (48a) is cast on
this form, we find that Rf(O) =(2/3) a)lz) TA/[5 + (wp Ta)%/3],
which agrees with the foregoing expression only in the MN
(fast-exchange) regime. This inconsistency arises because the
Luz-Meiboom equation is not valid for the EMOR model,
where the intrinsic relaxation is induced by the exchange
itself so that the MN condition (wp 74)* < 1 is automatically
violated as soon as we leave the fast-exchange regime.

B. Motional-narrowing regime
1. General case

In the MN regime, where (wp Tp)? < 1, the composite
spin density operator evolves according to the “stochastic
Redfield equation” (SRE)

% ot)=(W-iLy-R)o(1), (49)

where ‘W is same exchange superoperator (8) as in SLE
(7) and R is the relaxation superoperator prescribed by the

J. Chem. Phys. 144, 084202 (2016)

BWR perturbation theory.” The Liouvillian £y is associated
with the time-independent part of the spin Hamiltonian that is
unaffected by the exchange process. For symmetric exchange
in general and for asymmetric exchange with only one
nonlabile spin (ma = mp + 1), the static Hamiltonian only
contains the Zeeman coupling so Ly = Lz. For example,
this is true for the IS-IS and IS-I cases. However, for
asymmetric exchange with ma > mg + 2 (e.g., [ISP-I), so the
A sites contain at least two nonlabile spins, Ly includes the
static dipole coupling(s) besides the Zeeman coupling.

Like SLE (7), SRE (49) can be solved in site space, in
full analogy with the treatment in Appendix B.?? Specifically,
Egs. (25) and (28) remain valid, but Eq. (30) is replaced by

G s) = ([sTal* + K +iLJ ta + R*7a]™"),  (50)

where the angular brackets indicate the same isotropic
orientational average as in Eq. (30) and R is the orientation-
dependent relaxation supermatrix for site @. As noted in
Sec. II D 1, the isotropically averaged supermatrix G*(s) is
block-diagonal in the projection index Q. To determine the
integral longitudinal relaxation rate, as described in Sec. Il E,
we only need the Q = 0 block of the supermatrix

G*0) = (A7), (51)
with
A=K +i Lg A + RY74. (52)

In the EMOR model, exchange plays two roles: it
transfers spin modes between the A and B states and it
induces relaxation by randomizing the orientation of the
dipole vector(s) in the A sites. In SLE (7), both of these
roles are played by the exchange superoperator ‘W. In the
SRE (49), on the other hand, the first role is played by the
exchange superoperator ‘W, which describes the transfer
(or decorrelation) of local spin modes o¢(r), while the
second role is played by the orientation-dependent relaxation
superoperator R“, which describes relaxation induced by
orientational randomization of the dipole vector(s) in site .
Because of the dual role played by exchange in the EMOR
model, the MN condition (wp 74)*> < 1 not only ensures that
the BWR theory is valid, but it also corresponds to the fast-
exchange limit of the SRE because R 7 ~ (wp 15)? < 1. To
derive the integral relaxation rate in the MN regime from SRE
(49), we must therefore implement the MN condition twice:
first in obtaining the relaxation supermatrix R from the BWR
theory’ and then in implementing the fast-exchange limit by
expanding the matrix inverse (A%)~! to first order in ||[R?|| 7a,
that is, to second order in wp Ta.

The theoretical analysis of relaxation in the MN regime
is greatly simplified by making full use of symmetry.3>-3*
As noted above, rotational symmetry ensures that we only
need to consider the Q = 0 block of the isotropically averaged
supermatrix G*(0). In contrast, the relaxation supermatrix R?
in Eq. (52) pertains to a site & with a particular orientation so
it is not block-diagonal in Q. However, in the MN regime, the
relaxation problem can be further simplified by exploiting spin
inversion conjugation (SIC) symmetry.>>>* The ISTOs have
definite SIC parity (either odd or even) and the superoperators
i L7 and R? both have even SIC parity.*>* According
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to the basic orthogonality theorem of group theory,? the
supermatrices i Lz and R® in the ISTO basis can then have
nonzero elements only between basis operators of the same
parity. If we order the basis operators so that the odd operators
(including the single-spin longitudinal operators) precede the
even operators, then the supermatrices i Lz and R are block-
diagonal. For exchange cases with less than two nonlabile
spins, so that Ly = Lz, it then follows (since matrix inversion
does not alter the block structure and since K is diagonal) that
also the supermatrix A” in Eq. (52) is block-diagonal. As long
as we are concerned with longitudinal relaxation, we therefore
need to consider only the odd-parity zero-quantum subblock of
the G*(0) supermatrix. This partitioning of the Q = 0 subspace
on the basis of SIC parity is helpful also for exchange cases
with two or more nonlabile spins, even though the odd and
even subblocks are then coupled because the superoperator
i Lp associated with the static dipole coupling(s) has odd SIC
parity.>

2. Two-spin case

If we reorder the 15 basis operators in Table S1%2 so

that the six odd-parity (single-spin) operators (including I,
and S;) precede the nine even-parity (two-spin) operators, the
supermatrix A? in Eq. (52) is block-diagonal. Longitudinal
relaxation is fully described by the odd 6 X 6 block. Ordering
the odd basis operators as {1, I, I, S,, Sy, S_}, we can then
partition A into 3 X 3 submatrices as

@ @
AY = i(’/ j:(’f : (53)
s Ass

where, for the /S5-I case,
A7, =1+ 1aR}; +iw;Q), (54a)
Afs = TaRYg, (54b)
AS; = ta RS, (54¢)
ASs = Ta(RS +iws Q). (54d)

Here, 1 is the 3 X3 identity matrix and Q is a diagonal
matrix with diagonal elements [0, 1, —1]. To obtain Eq. (54),
we also noted that, according to Eq. (17), K;; =1 and
K;s = Ksr = Kss = 0.

For the elements of the four relaxation submatrices,
given explicitly in Appendix E,*> we use a notation where,
e.g., RIS = (Tol(lO) IR Tll(Ol)) =-2712(q, IR{¢| S1). These
local (orientation-dependent) relaxation rates are of four kinds.
First, there are longitudinal (R!! and R55) and transverse
(RL and RS?%) auto-spin auto-mode rates. Second, there are
longitudinal (R!S and RS!) and transverse (RS and R$))
cross-spin auto-mode rates. Auto-spin and cross-spin rates
also occur in the two-spin Solomon equations,’ but they are
then isotropically averaged. Third, there are the auto-spin
cross-mode rates RIZ, RI! and RIL, and the corresponding
rates for spin S. Finally, there are cross-spin cross-mode rates,
like R!3. All these rates pertain to a particular site @ and they
therefore depend on the orientation of the dipole vector in that
site as detailed in Appendix E.??

The cross-mode rates couple the longitudinal and
transverse magnetizations of the same or different spins. This
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coupling is a consequence of the spatial anisotropy of the A
sites. Indeed, we show in Appendix E?? that all cross-mode
rates vanish after isotropic averaging. As shown below, such
averaging occurs in the symmetric /S—IS case, where the
same [-S pair exchanges rapidly among the A sites (via
the B site), but not in the asymmetric /S5-I case, where the
two spins are no longer correlated after the exchange. As
shown explicitly in Appendix E,?? the cross-mode rates are
only effective in the ZF regime, as defined by Eq. (46). At
higher fields, they become nonsecular, that is, the longitudinal
and transverse magnetizations are decoupled by the Larmor
precession, which then is much faster than the (local) cross-
mode relaxation.

All the local relaxation rates, except for the longitudinal
auto-mode rates R!!, RS, and RIS = RS!, involve both the
even (real) and the odd (imaginary) parts of the complex
spectral density function (Appendix E??). However, the odd
spectral density function (OSDF) has no effect on longitudinal
relaxation in the two-spin cases. In the I.S-IS case, isotropic
averaging cancels the cross-mode rates so only the longitudinal
auto-mode rates are relevant. In the /S5-I case, the cross-mode
rates are only effective in the ZF regime, where the OSDF is
negligibly small compared to the real part. So, in either case,
the OSDF only affects the evolution of the transverse spin
modes, giving rise to the well-known second-order dynamic
frequency shift.>® However, for larger spin systems, the OSDF
can also affect the longitudinal modes, e.g., in the ISP-ISP
case.>*

Returning now to the derivation of the integral relaxation
rate for the IS—I case, we invert the partitioned matrix in
Eq. (53), obtaining for the /7 block

(A" i = [A], =AY (Ags)flAgJ_l
=[Z+ta®RS, -T2, (55)

where Eq. (54) was used in the second step. Here we have
also defined the diagonal matrix

Z=1+iw;tAQ, (56)
and the “cross relaxation” matrix
. -1
Iy, = R‘,’S(R‘SYS +iwg Q) RS;. (57)

We now expand the inverse in Eq. (55) to second order in
wp Ta and perform the isotropic site average, to obtain

(AN Ny =27 = Z7H[(R7) = (7D 277 (58)

We are primarily interested in the /-spin integral
relaxation rate in the dilute regime. This rate only involves the
matrix element

g = (GO 1) = (1 {[(A") 111} [ D). (59)
Combination of Egs. (42a) and (56)—(59) yields

RY = Py[(RILy - (TID)]. (60)

where R!! = (1|R¢,|1) and !/ = (1|I'%| 1). The first term
within square brackets in Eq. (60) is the well-known’!
longitudinal auto-spin relaxation rate, averaged over the

isotropic distribution of A sites (Appendix E??),
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(R = iw%[j(w,_ws)+3j(w1)+6j(w1+ws)],

45
(61)
with the reduced spectral density function given by
. TA
=—2 62
Jw)= 1~ PENE (62)

The second term in Eq. (60) accounts for cross-spin as
well as cross-mode relaxation. Cross-mode relaxation only
comes into play in the ZF regime, where all relaxation
channels are secular, meaning that all oscillating factors in
Eq. (E.28)*2 can be replaced by unity. According to Eq. (57),
the cross relaxation matrix element I'!! = (1|T';| 1) only has
contributions from the first row of R and from the first
column of R§,. The four off-diagonal elements in this group
of six elements involve the cross-spin cross-mode rates R!3
and RS!, all of which are multiplied by oscillating factors
exp(+iwgt) in Eq. (E.28).22 Two conclusions follow. First,
the longitudinal-transverse cross-mode relaxation contribution
to R{", in the zero-field regime involves the four cross-
spin cross-mode rates RS and R$! and the four auto-spin-$
cross-mode rates R5Y and RSS, but it does not involve the
four auto-spin-/ cross-mode rates R!! and RI!. Second, for
a heteronuclear spin pz}ir, with wg # wy, the entire cross-
mode contribution to R{", disappears when |ws| > wf,7a
(Sec. IV B).

Outside the ZF regime, cross-mode relaxation is
nonsecular and can therefore be neglected. The four relaxation
submatrices are then diagonal so Egs. (57) and (60) yield

15y2
Ri-n|en-(G) @

RZ?
where the orientation-dependent auto-spin and cross-spin rates
in the second term are given in Appendix E.?? In the LF + MN
regime, which is also the extreme-narrowing regime (Sec.
III A 1), these rates are given by Egs. (E.35a) and (E.35b).?2
Substitution into Eq. (63) yields after isotropic averaging

R = ¢ Pywd 1, (64)
with the numerical constant
‘= / PRUEVULEED)
0 (5-3x%
Result (63) is not valid in the ZF regime, where there is

cross-mode coupling. In the ZF + MN regime, Eq. (48a)
reduces to

=0.267779....  (65)

RE(0) = 2 75 Pa wh Ta, (66)
which is a factor 2.008 343 ... smaller than the result in
Eq. (64). It is clear, therefore, that longitudinal-transverse
cross-mode coupling slows down the longitudinal relaxation
of the labile /-spin. As the Larmor frequency increases from
below sz Ta to above this value, the integral relaxation rate
RClll thus exhibits an inverted dispersion step. The locus of
th1s dispersion step is indicated by the red curve in Fig. 1 (the
boundary between the ZF and LF regimes).

Itis instructive to contrast these results for the asymmetric
IS—-I case with the corresponding results for the symmetric
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IS-IS case.”® For the symmetric case, Eq. (41a) is replaced
by (Appendix C 2%?)

. .
R/ = [UFP + kU, (67a)

pdil/non _
Rl 1S

=(1+0[UPB+UBB 4+ (UBB+ UBB) ™', (67b)
depending on whether we observe spin / only or both spins.
Spin Liouville space is now spanned by the same 15 basis
operators (Table S1)?* for both states A and B. Further-
more, T = K =1 and Egs. (28a) and (50) yield (in the dilute
regime)

UBK0) = 1 +iLz1s — GA(0)]™! (68)

and
GA(0) = ([1+iLz7a + R 7]™")
=[M+iLlztal ' =1 +iLztal ' ta R [1 +iLy7al ™),
(69)

where we have invoked the MN approximation by expanding
GA(0) to second order in wp Ta. In contrast to the asymmetric
exchange case, relaxation now enters only via the isotropically
averaged relaxation supermatrix (R®). This has two important
consequences. First, all cross-mode relaxation rates vanish
(Appendix E??). Second, because the relaxation supermatrix
is now isotropically averaged, we can invoke the Wigner-
Eckart theorem to establish that (R?) is block-diagonal in Q.
To describe longitudinal relaxation, we therefore only need
to consider the 5 X 5 Q = 0 block. Moreover, because R is
invariant under SIC, this block decomposes into an odd-parity
2 x 2 block (spanned by I, and S;) and an even-parity 3 X 3
block (spanned by the basis operators Bs, By, and Bs in Table
S1).22 Although the Q = 0 block of Ly is not diagonal for
wj # ws, we only need the odd-parity sub-block, which is the
2 x 2 null matrix. We thus obtain from Eqgs. (68) and (69),

-1

proo (70)

o ps

R 1

UPR0) = =—
0) RN

where the familiar expressions for the longitudinal auto-
spm rates p; = (R!!) and ps = (RSS) and cross-spin rate

= (RIS) = (RS!) are given in Eq. (E.32) of Appendix E.*
Combmatlon of Egs. (67) and (70) then yields
. _ 2
R(]ill[/non — PA (PI ps — 0 ), (713)
’ (ps— ko)
1 _ 2
R(lilll/;lon = Py (1+ «)(p1 ps —07) ’ (71b)

(ps—0o)+k(pr—0o)

in agreement with the results (using a slightly different
notation) of Paper I. In particular, for symmetric exchange
of a pair of homonuclear (k = ys/y; = 1) and isochronous
(wy = ws) spins, both rates in Eq. (71) reduce to the familiar
form

E(liil/non _ Eglil]/;on — PA (p + O')
2
=13 Prwpj(wn) +4jQwp)]. (72)

In the MN regime, rotational and SIC symmetries ensure
that longitudinal relaxation can be fully described within
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the two-dimensional zero-quantum odd-parity subspace
corresponding to the longitudinal spin modes I, and S. This
is true for symmetric as well as for asymmetric exchange.
The crucial difference between these exchange cases in the
MN regime is that the intrinsic relaxation rates in the A
sites are isotropically averaged only for the symmetric /S—1S
case. For the asymmetric /S5-I case, the orientation-dependent
relaxation in the A sites must, in general, be described in the
six-dimensional odd-parity subspace corresponding to the
single-spin longitudinal and transverse local modes. However,
outside the ZF regime, the longitudinal local spin modes I¢
and S are decoupled from the transverse local spin modes I{
and S¢.

IV. NUMERICAL RESULTS FOR TWO-SPIN SYSTEMS

In this section, we illustrate the theoretical results ob-
tained in Secs. II and III by numerical calculations. Except in
Sec. IV B, we consider a homonuclear and effectively isochro-
nous (ws = wy) spin pair. The dipole coupling frequency
is setto wp = 1 x 10° rad s, corresponding to an internuclear
separation of r;g = 2.245 A for two protons, and the fraction
bound I spins is P = 1073, corresponding to the dilute
regime. Following the standard convention, we take w; to be
positive. We focus on the asymmetric /S—/ case, highlighting
differences compared to the symmetric /S—IS case.

A. Cross-mode relaxation
Figure 2 shows dispersion profiles R dﬂ(a),) for the

integral longitudinal relaxation rate of spin I in the dilute

0.3
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regime for four different values of the mean survival time
7 in the A sites. As expected, the SLE and BWR results,
computed from Egs. (42a) and (60), respectively, coincide
in panels (a) and (b), where (wp7a)’> < 1. In panel (c),
where wp7a = 1, the approximate BWR rate exceeds the
exact SLE rate by 20% in the ZF limit. In panel (d), where
(wp Ta)* = 100, the corresponding discrepancy is a factor
of ~21.

The inverted and normal dispersion steps in panels (a)
and (b) are centered at the frequencies w; = wf) 7o and
wy = 1/7a, respectively, corresponding to the red and blue
curves, respectively, in Fig. 1. The slower relaxation in the
ZF regime is a consequence of longitudinal-transverse cross-
mode relaxation in the anisotropic A sites (Sec. III B 2).
In the LF regime (and above), cross-mode relaxation is
abolished by nonsecular decoupling. The ZF drop in R, "}(«w;)
is close to 50% in the MN regime (Sec. III B 2), but it
becomes less pronounced in the slow-motion regime. The
ZF rate Rd‘l(()) agrees with Eq. (48a) at all 75 values and
in panel (d) it is already within 5% of the ultraslow-motion
limit R dll(O) (2/3) Pa/7a. In accordance with the frequency-
dependent MN condition (wp 74)? < 1 + (w; 74)? for isochro-
nous spins, the BWR and SLE results coincide in the high-
frequency part of the main dispersion in panels (c) and (d). As
seen from panel (d), the SLE profile merges with secular BWR
result (63), without cross-mode relaxation, at high frequency.
(In panels (c) and (d), the BWR and secular BWR profiles
cross over just below the main dispersion.) In the slow-motion
regime, the effect of cross-mode coupling on the exact SLE
profile is only evident as a distortion of the main dispersion
shape. As 74 is increased further, Rd‘l(O) decreases as 1/7
in accordance with Eq. (48a), but the locus of the main
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10’ 108 10° 107 10° 102 104 108 108
< S
25 | o (c) 4 (d) A+
T a
2 i
== B
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FIG. 2. Dispersion of the integral longitudinal relaxation rate of spin / for exchange case /. S—I. Parameter values: P = 1073, ws =wr, wp=10rad s~
s (c), or 107* s (d). The three dispersion profiles show R| R dil ', computed from the SLE result in Eq. (42a) (red solid curves), from

Ta=10"5(a), 100 s (b), 1075

and

the BWR result in Eq. (60) (blue dashed curves), and from the secular BWR result in Eq. (63) (black dashed-dotted curves).
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dispersion remains at w; =~ wp, as demonstrated in Paper I for
the symmetric S-S case.

B. Heteronuclear spins

Although our focus is on homonuclear spin systems, all
results in Secs. II and III are valid also for heteronuclear
spin systems. To illustrate the different relaxation behaviors
of homonuclear and heteronuclear spin systems, we shall
compare, for the /S-I case, the dispersion of the integral
relaxation rate Riﬂ1 (wy) for a homonuclear spin pair (ws = wy)
with that for a heteronuclear spin pair with wg = —0.1014 w;.
The homonuclear case might represent a serine side-chain
with the I spin in the labile hydroxyl proton and the S spin in
one of the adjacent methylene protons (chemical shifts have
no significant effect). The heteronuclear case might represent
an ’N-labeled lysine side-chain, with the I spin in one of the
labile amino protons and the S spin in the directly bonded
nitrogen atom so that x = ys/y; = —0.1014. In both cases,
we excite nonselectively but observe only the I spin. For
simplicity, the dipole coupling wp is taken to be the same for
the two cases.

In Fig. 3, the homonuclear dispersion profiles (red) are
compared with the heteronuclear profiles (blue) for the same
parameter values as in Fig. 2. The red profiles are thus the
same in the two figures. In the MN regime (panels (a) and
(b)), the principal difference between the two profiles is that
the inverted dispersion occurs at a 10-fold higher frequency
in the heteronuclear profile. This observation is consistent
with our earlier conclusion (Sec. III B 2) that the effect of
cross-mode relaxation vanishes when wg exceeds wlzj Ta, that
is, when w; > 10 w3 7a. Consequently, the inverted dispersion

0.3
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in the heteronuclear profile has only one step (that is, there
is no dispersion step at w; = u)lzj 7a) and it has the same
shape as in the homonuclear profile. In addition to the shift
of the inverted dispersion, there is also a small difference in
the main (normal) dispersion step, where differences in the
spectral densities j(ws), j(w; — ws), and j(w; + ws) result
in a slightly steeper dispersion in the heteronuclear profile.
As a result, the heteronuclear profile lies ~15% below the
homonuclear profile at the high-frequency end of the main
dispersion (but this is not visible on the scale of Fig. 3).

Outside the MN regime (panels (c) and (d)), the effects of
having wgs # w; are more complicated. For wp 74 = 1 (panel
(c)), the prominent maximum in the homonuclear profile is
replaced by a small shoulder in the heteronuclear profile. For
wp 7a = 10 (panel (d)), the heteronuclear profile has a down-
shifted and more nearly “Lorentzian” main dispersion and
a distinct high-frequency dispersion step. In all four panels,
the heteronuclear profile lies ~15% below the homonuclear
profile at the high-frequency end of the dispersion profile.

In Fig. 3, we also examine the effect of the relative
sign of the magnetogyric ratios y; and ys by comparing
dispersion profiles for ys = —0.1014 y; (blue solid curves),
corresponding to 'H-N, and yg = +0.1014y; (magenta
dashed curves). The sign of yg can affect the spin dynamics
in three ways: via the Larmor frequency ws = —ys By, via
the dipole coupling frequency wp o<y ¥s, and via the factor
k = ys/yr in the initial condition, reflecting the equilibrium
magnetization. Following standard practice, we regard w; as
positive, even though y; > 0 in the most relevant situation,
where [ refers to the proton spin.

The dispersion profiles in Fig. 3 pertain to the
dilute regime and nonselective excitation, so the initial
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FIG. 3. Dispersion of the integral longitudinal relaxation rate of spin I for exchange case 1 S—I and homonuclear spins with ws = wy (red solid curves, same as
in Fig. 2) and heteronuclear spins with wg =—0.1014 wy (blue solid curves) or ws =0.1014 w (magenta dashed curves). Other parameter values as in Fig. 2.

All dispersion profiles were computed from the SLE result in Eq. (42a).
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I-spin magnetization is strongly dominated by the equi-
librium magnetization in state B. Consequently (the
sign of) k has no significant effect on the dispersion
profiles.

In the MN regime (panels (a) and (b)), the spin dynamics
only depend on the square of wp so the only effect of reversing
sign of ys is to interchange the spectral densities j(w; — ws)
and j(w; + ws).>’ As seen from panels (a) and (b), this
effect is rather small; the maximum effect (barely visible in
liig. 3) occurs in the adiabatic regime (w; 7a > 1), where
R‘fjll(w,) is ~14% smaller for yg = +0.1014y; than for yg
—-0.1014y;.

Outside the MN regime (panels (c) and (d)), a sign
reversal in ys makes the dispersion profile more smooth,
without any pronounced shoulder. As in the MN regime,
this effect is entirely due to the sign reversal of wg.
Although the evolution of some spin modes depends
on the sign of wp (for example, see Eqs. (D.9f) and
(D.18)%?), the evolution of the longitudinal magnetizations
only involves even powers of wp. As in the MN regime,
E‘f’ill(w,) is ~14% smaller for ys =+0.1014y; than for
vs = —0.1014 vy, at the high-frequency end of the dispersion
profile.

C. Symmetric versus asymmetric exchange

In Fig. 4, we compare the dispersion profiles for the 15—/
and /S-IS cases with the same parameter values as in Figs. 2
and 3. The red IS/ profiles are thus the same in Figs. 2—4.
Because of isotropic averaging (Appendix E??), there is no
cross-mode relaxation in the A sites for the symmetric case so
the integral relaxation rate is constant throughout the extreme-

J. Chem. Phys. 144, 084202 (2016)

narrowing regime (no inverted dispersion at the boundary
between the ZF and LF regimes). In addition, the dispersion
midpoint occurs at a lower frequency for the symmetric
case.

The numerical calculations confirm the analytical predic-
tion, based on Eq. (48a) and Egs. (5.2) and (5.3) of Paper [,
that the ZF rate R{"(0) is a factor [5 + (wp7a)*]/[1 + (wp7a)’]
larger for the 1S—IS case than for the /S5-I case. In the MN
regime (panel (a)), the ratio Rl‘fi}(IS—IS)/R]‘fi,'(IS—I) is thus
5 in the ZF regime, while it is ~2.5 in the LF regime. In
the ultraslow-motion regime (wp7a)® > 1 (panel (d)), the
ZF rates for the symmetric and asymmetric exchange cases
converge to the same value, R]‘fi,'(O) = (2/3) Po/7a, but the
dispersion for the asymmetric case is upshifted in frequency
and deviates more from “Lorentzian” shape.

For the comparison in Fig. 4, we use the same P value
for the two exchange cases. If we want to compare the
contributions to the observed bulk water proton relaxation
rate from a single labile proton (/) and from the two protons
in an internal water molecule (1), we should compare the
exchange cases [S—1, and I, — I,. As noted in Sec. Il A 2, we
should then (in the dilute regime) divide P by a factor 2 for
the asymmetric /S—1I, case. Consequently, in the MN regime,
an internal water molecule contributes 10-fold more than a
labile proton to R,"/(0) and ~5-fold more in the LF regime,
other things (notably, 7a and wp) being equal. However, the
mean survival time 7, is typically longer for labile protons
than for internal water molecules.'® Figure 5 compares the ZF
rates for the asymmetric and symmetric cases as functions
of the mean survival time 7,. The maximum occurs at
7a = 1/wp for the symmetric case and at T = Vs Jwp fgr the

dil(o)

asymmetric case. In practice, the shift of the maximum R,
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FIG. 4. Dispersion of the integral longitudinal relaxation rate of spin / for exchange case I S—I computed from the SLE result in Eq. (42a) (red solid curves,
same as in Figs. 2 and 3) and for exchange case 1.S—-IS computed from the corresponding SLE result in Paper I (blue dashed curves). Parameter values as in

Figs. 2 and 3.
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FIG. 5. Zero-field limit of the integral longitudinal relaxation rate of spin 1
for exchange case I S—I computed from Eq. (48a) (red solid curve) and for
exchange case I.S-I1S computed from Eqgs. (5.2) and (5.3) of Paper I (blue
dashed curve). Parameter values: Pp = 1073, ws=wy, and wp= 10° rad s~ 1.

to larger 75 will be more pronounced because wp is generally
smaller for a labile proton in a macromolecule than for the
water protons. In the ultraslow-motion regime, (wp 74)> > 1,
the symmetric and asymmetric cases yield the same ZF
rate, R"(0) = (2/3) Pa/7a (black dashed-dotted curve in
Fig. 5).

D. Time evolution of spin modes

Further physical insight can be obtained by analyzing the
evolution in time of the longitudinal magnetization and other
spin modes. We shall perform such an analysis for the ZF
regime, where longitudinal relaxation can be fully described
in terms of the four rank-1 zero-quantum spin modes o(r)
= 13(t), o = 1), o5 = SX1), and o4(r) (Sec. III A 2).
Here we use a simplified notation where, for example,
13(1) = Tr{I, oB(t)}. Using Egs. (D.9) and (D.18)** and
performing the inverse Laplace transform, we obtain the
results shown in Fig. 6 for the /S—I case with nonselective
excitation. As before, we use Pa = 1073 so we are in the dilute
regime, where I, = I? + I? = IE. As seen from Fig. 6, to an
excellent approximation,

1B(1) = Py exp[-R{L(0) 1], (73)

with the integral relaxation rate I/é‘li‘ll(O) given by Eq. (48a).
The total /-spin longitudinal magnetization is thus very nearly
exponential even outside the MN regime. Consequently, very
little information is lost in charactering the decay of I(f) by

the integral relaxation rate R (0).

Figure 6(a), with (wp 74)> = 107, pertains to the MN
regime, where the longitudinal magnetizations are decoupled
from modes with even SIC parity so 0'4A(t) = 0. Because
the MN regime is also the fast-exchange regime, the ratio
of the longitudinal magnetizations in the two states is
maintained at the initial value throughout the relaxation
process,

IX1) _INO) _ P
B(1)  1%0) Py’

(74)

J. Chem. Phys. 144, 084202 (2016)
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FIG. 6. Time evolution of the normalized spin modes If(t) /Py (red solid
curve), I?(t)/PA (blue), S?(z)/PA (magenta), and o-f(z)/PA (green) for
the 7S-I case in the zero-field regime and with nonselective excitation.
The black dashed curve coinciding with If(t)/PB in all three panels is
the exponential decay in Eq. (73) and the black dashed curve coinciding
with S ?(z) /Pa in panel (a) is the biexponential function in Eq. (77b). The
black dashed-dotted curve in panel (a) is the exponential decay of I ?(t) /P
= S?(t)/PA for the symmetric 1 S—I S case. Parameter values: Py = 1073 and
wpTa=0.01(a), 1 (b),or5 (c).

The time evolution of the longitudinal modes can then be
described by two coupled equations (Appendix F??)

d
T L(t) = =P p1 L(t) — 0715 S2X(2), (75a)

d
T SMt) = —Pacsi I(t) — ps S¢).

For P, =1, Eq. (75) is of the same form as the two-
spin Solomon equations.”?! However, whereas p; = ps and
ors = 0osy in the Solomon equations in the ZF regime,
this symmetry is broken in the asymmetric /S—/ model.

(75b)
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In Appendix F,?? we show that

pr = wha (76a)
ps = gwé Tas (76b)
Ors = g wlz) TA, (76¢)
osr = % w% TA. (76d)

The solution to Eq. (75) subject to nonselective initial
conditions, 7,(0) = 1 and S2(0) = Pa, is then (Appendix F*?)

L(t) = exp[—]ff‘f’ﬂ,(O) t], (77a)

6 1 —_
S2(6) = Pa| 5 exp(=pst) = < exp[=R;(0)1]], (77b)

with 1?;1}',(0) given by Eq. (48a). The validity of this analytical
result is numerically verified in Fig. 6(a).

With the aid of these analytical results, the time evolution
in Fig. 6(a) can be understood in detail. On a short time scale,
of order (w3 7a)™", the total I, magnetization hardly changes
since only a tiny fraction P, < 1 of the labile I spins is
relaxed by dipole coupling to an S spin. Meanwhile, the S
magnetization of the nonlabile S spin relaxes at a rate pg, but,
because of cross relaxation with spin /, it does not approach
its equilibrium value (which, by our convention, is zero)
but a non-equilibrium steady-state value (corresponding to a
negative spin temperature). The steady-state magnetization is
obtained from Eq. (75b) by setting I,(f) = 1 and dS2(r)/dr = 0,
whereby S2(1)/S20) = —osi/ps = —1/5.

On a longer time scale, of order (P w% 74)7L, the I -spin
and S-spin magnetizations relax to their (zero) equilibrium
values at a common rate R{",(0). By inserting the steady-
state S2* magnetization, —(1/5) Pa I,(t), in Eq. (75a), we
see that this rate is given by Pa (o7 — o1s/5) = Pa[(2/9)
— (4/45)] w} Ta = (2/15) P w} Ta, consistent with Egs. (48a),
(76a), and (76c). The net magnetization flux due to cross
relaxation is thus from the S spin to the [ spin, thereby
retarding /-spin relaxation. In contrast, for the symmetric
IS—IS case, a similar analysis shows that the /-spin and S-spin
magnetizations relax at a common rate Pa (p; + 0ys) = Pa
[(4/9) + (2/9)] wd Ta = (2/3) Paw} Ta. The 5-fold slower
I-spin relaxation in the ZF + MN regime for asym-
metric exchange as compared to symmetric exchange
(Fig. 4(a)) is thus seen to be a consequence of a
smaller auto-spin rate p; (because of longitudinal-transverse
cross-mode relaxation in the A sites) and a reversed
magnetization flow from the negative steady-state S?
magnetization. The latter effect should operate also outside
the ZF regime, when local cross-mode relaxation does not
occur. R

The inverse of the S-spin integral relaxation rate R}’¢(0)
equals the time integral of the expression within brackets in
Eq. (77b). Noting that pg > I??III(O) in the dilute regime, we
thus obtain

J. Chem. Phys. 144, 084202 (2016)

5 R{"(0) ps

6 R{"(0) - ps

R0 = ~ =S RY0)

2
:_§PA(A)]2)TA, (78)

in agreement with Eq. (D.22b).??

Outside the MN regime (Figs. 6(b) and 6(c)), when the
mean survival time 74 in an A site is no longer short compared
to the time scale 1/wp of coherent dipolar evolution, all three
A-state modes show oscillatory features superimposed on the
initial decay, which occurs on the time scale of 74 when
(wp Ta)? > 1. However, as long as we are in the dilute regime,
the I® magnetization still relaxes exponentially as in Eq. (73).
Because the SIC parity selection rule does not apply outside
the MN regime, the odd-parity longitudinal magnetizations
couple with the even-parity zero-quantum coherence (1),
which builds up when I2 and S2 start to decay and ultimately
decays on the same time scale as IZ. As seen from Eq. (47¢) or
Egs. (D.9d) and (D.18),%? o}(¢) is purely imaginary so Fig. 6
shows Im{o-ﬁ‘(t)}.

V. CONCLUSIONS

The non-perturbative stochastic theory of longitudinal
relaxation by the dipolar EMOR mechanism, based on an
analytical partial solution of the SLE, was first developed
for the symmetric 7S—IS case.?’ Here, we have substantially
generalized the theoretical framework to spin systems of
arbitrary size with symmetric or asymmetric exchange. The
asymmetric case, where the spin system is fragmented by
the exchange, is of considerable interest since it applies
to chemical exchange of labile macromolecular protons as
well as to physical exchange of internal water molecules
involved in intermolecular dipole couplings. Of course, the
distinction between symmetric and asymmetric exchange
is irrelevant for the single-spin quadrupolar EMOR mech-
anism. %!

From a theoretical point of view, asymmetric exchange
has two important consequences: (1) a decorrelation of spin
modes involving both labile and nonlabile spins and (2) a
lowering of the rotational symmetry of the local relaxation
matrix. Both of these effects contribute to making the
relaxation of a labile spin less efficient when its dipole-coupled
partner is nonlabile. The effect of local symmetry reduction
is most readily appreciated and most clearly manifested
in the MN regime, where exchange is much faster than
relaxation in the individual A sites. In the symmetric case,
the local relaxation matrix is exchange-averaged over the
isotropic distribution of A sites and it therefore exhibits the
axial symmetry of the applied magnetic field. As a direct
consequence of this axial symmetry, relaxation can only
couple spin modes of the same quantum order. Longitudinal
relaxation therefore only involves longitudinal magnetizations
and zero-quantum coherences of odd parity under spin
inversion conjugation (of which there are none for a two-spin
system). In the asymmetric case, because the nonlabile spins
are not exchange-averaged, local relaxation can couple local
spin modes of the same parity but of different quantum order.
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In particular, the observed longitudinal relaxation is affected
by local longitudinal-transverse cross-mode relaxation in the
A sites. To the best of our knowledge, such cross-mode
relaxation phenomena have not previously been described in
the literature.

As an illustration of the general dipolar EMOR theory
and, in particular, of the previously unrecognized®® effects
of asymmetric exchange, we presented here a detailed
analysis of the asymmetric two-spin case IS—I. A variety
of analytical results were obtained for the ZF and MN regimes
and numerical results were presented under more general
conditions, including the case of a heteronuclear spin pair. We
demonstrated how local longitudinal-transverse cross-mode
relaxation slows down the observed relaxation of the labile I
spin in the ZF regime and that an unusual inverted dispersion
step occurs at higher fields, where the cross-mode relaxation
channel becomes nonsecular. This inverted dispersion splits
the extreme-narrowing regime into two sub-regimes, referred
to here as the zero-field and low-field regimes. We also
presented a detailed analysis of the time evolution of the spin
modes in the ZF regime.

The general theoretical framework developed here
will enable a quantitative analysis of frequency-dependent
water-proton longitudinal relaxation in model systems with
immobilized macromolecules and, ultimately, will provide
a rigorous link between relaxation-based magnetic resonance
image contrast and the molecular-level properties of the tissue.
In a forthcoming report, we apply this framework to a three-
spin system ISP, analyzing in detail the /SP-I, ISP-IS, and
IS P-ISP exchange cases.
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APPENDIX A: BASIS OPERATORS

Here we list the 15 irreducible spin tensor operators (ISTOs)" T4 (krks) that constitute
a complete (together with the identity operator) orthonormal basis for the spin Liouville
space of two spins [ and S. For the symmetric 1.5—IS case, the same two-spin basis (Table
S1) is used for the A and B states. For the asymmetric 1.S—1 case, the single-spin basis
in Table S2 is used for state B. All the operators in Tables S1 and S2 are normalized in
the same two-spin Liouville space. For example, (I.|I.) = Tr{I?} = Tr/{I?*} x Trg{&} =
% x 2 = 1. The two-spin basis used in paper 12 differs from that in Table S1 in that the
basis operators Bs and Bs were taken to be linear combinations of the ISTOs 79 (11) and
TZ(11).

TABLE S1. Spin basis operators B,, = T} (k;ks) for two spins IS,

n Q K ki kg parity? B}

1 0 1 1 0 — I,

2 0 1 0 1 — S.

30 0 1 1 + —%I - S

4 0 1 1 1 + ISy —1.5)
5 0 2 1 1 + % BLS.—1-8)
6 1 1 1 0 — —% I,

7 1 1 0 1 — — 75 54

g 1 1 1 1 + IS, — 1,5,

9 1 2 1 1 + — (.S, +1,85.)
10 -1 1 1 0 — \/%]_

11 -1 1 0 1 — %S,

2 -1 1 1 1 + IS —1_85,
13 -1 2 1 1 - LS +1.5,
4 2 2 1 1 + I, S,

5 =2 2 1 1 + I_S_

& Parity of B,, under spin inversion conjugation.
b Tdentity operators have been omitted.

TABLE S2. Spin basis operators B, = Té( for a single spin I.

n @ K B
1 0 1 L
1
2 1 1 -1
1
3 -1 1 7 I

& Identity operators have been omitted.

b The operators B,, are normalized in the two-spin Liouville space.
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APPENDIX B: PARTIAL SOLUTION OF THE SLE

Here we provide the details of the exact solution of the stochastic Liouville equation (7)

in site space. Combination of Egs. (8) and (19) yields
Us) = (€~ Ta®Ts + Kn®Ks+i L), (B.1)
which may be rearranged into

U(s) = U(s) [5 + Ta® T, z](s)] , (B.2)
with

Ug(s) = (sE+ Kn@Ks+iL)" . (B.3)
Using Eq. (B.2) and noting that Ui (s) is diagonal in the site basis, we obtain

=Y (al(s)18) Py = (a|U(s)|a) (B4)

5=0

P& + Z T |8) T2 Us(s)

B=0

Summing Eq. (B.4) over the A sites and noting that («| 7w |8) = dgo/(N7s) for a > 1
according to Eq. (10), we obtain

(Ms) = Y U(s) = Ta GA(s) {pAs + A7 Z:?B(s)] : (B.5)

B

with UB(s) = U°(s), Py = N P, and
1 N
= Z (sTAE + Ko +iL%7a) ", (B.6)

where £ now is the identity superoperator in spin space only. The spin superoperators
in this expression are to be evaluated in the spin operator basis of state A, where the
matrix elements of Ky are given by Eq. (14b). If N > 1 and the A sites are isotropically
distributed, we can replace the site average in Eq. (B.6) by an isotropic angular average
and substitute £* by LA(Q) = L7 + Lp(2). Consequently,

1

gA(S) s

/dQ [sTa € + Ko + i L) 7] (B.7)

Setting & = 0 in Eq. (B.4) and using Eq. (10), we obtain, in analogy with Eq. (B.5),

UB(s) = m15G5(s) [PBS + iTSzZZA(s) : (B.8)
TA
where
GP(s) = [(1+s78)E + iLPms] . (B.9)
Equations (B.5) and (B.8) can now be solved for the two unknowns, with the result
UMNs) = 74 [E—=GMs)Te GB(s) To)  GM(s) [PA €+ Ps T GB(5)] , (B.10a)
UP(s) = 75 [E—GP(s) T- G (s) Te] ~ GB(s) [P € + Pa Tz GA(s)] (B.10b)
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which allows us to obtain the site-averaged resolvent as

U(s) = U (s) + UP(s). (B.11)
The superoperator <Z:? (3)> acts in a composite spin Liouville space of dimension D =
Dg + Da. In Eq. (25), we partitioned the D x D supermatrix representations of <Z] (s))

into four blocks. To express Eq. (B.10) in terms of partitioned matrices, we partition the

1B o
8—>[0 1A], (B.12)

identity matrix as

where 1B and 14 are Dg x Dy and Dy x D, identity matrices, respectively, and 0 is a
Dg x Dy or Dy x Dg null matrix. According to Eq. (13),

0 T

Ts —
T 0

, (B.13)

where the D x Da matrix T (and its transpose T') was defined in connection with Eq.
(15). Furthermore,

GB(s) 0
B(s) — B.14
0 [ . 0] , (B.14)
where, according to Eq. (B.9),
GP(s) = [(1+sm) 1" + iLPrg] . (B.15)
Finally,
0 0
Als) — , B.16
where, according to Eq. (B.7),
G*(s) = %/dQ [sTal® + K + iLAQ) ], (B.17)
T

and the D x Dy matrix K is diagonal with elements [1 — Ag(na)].
Substituting these partitioned matrices into Eq. (B.10) and using Eq. (B.11), we can
express <Z;{v (s)) on the block form introduced in Eq. (25),

<Z/N{(3)> = [ ~ AB ~ AA (B.18)

with the submatrices given by Eq. (28) of the main text.
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APPENDIX C: INTEGRAL RELAXATION RATE

1. Asymmetric exchange

Here we simplify the expressions for the integral relaxation rate for the IS — I case by
expressing the matrix elements U)Y = (n|ﬁXY(0)|p) appearing in Eqgs. (39) — (41) in
terms of the elements g,, = (n|GA(0)B9%B0f the supermatrix G*(0) in Eq. (30).
We consider first the submatrix U (0). Combining Eqgs. (28a) and (29) and the
detailed balance relation Pg7py = PaTg, we obtain
~BB,  P3Ta

U (0) = P [1° + iL® 75 — TG*(0) T’]

-1

(C.1)

Because the matrix GA(O) is isotropically averaged, it must reflect the axial symmetry of
the spin system in the external magnetic field. According to the Wigner-Eckart theorem,!
G*(0) must then be block-diagonal in the ISTO basis of Table S1, with one 5 x 5 block
(Q = 0), two 4 x 4 blocks (@ = +£1) and two 1 x 1 blocks (@ = £2). Pre and post-
multiplication by the matrix T in Eq. (16) picks out the first diagonal element in each of

the first three blocks (Q = 0, £1) to give

gii 0 0
TGYO)T = | 0 g O : (C.2)
0 0 910,10

The Liouvillian for the B state, with only a Zeeman coupling, is

00 O
L® =w; |01 0 (C.3)
00 -1
Combination of Egs. (C.1) — (C.3) yields
(1 — gll)—l 0 0
~ BB P2r
(0) = &= 0 (1— gos + iwrrs) ™" 0 , (C4)
Py » .
0 0 (1 — 910710 — ZM[TB)
so that P2
Upp = BT C.5
11 PA(l . 911) ( )
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Comparison of Egs. (28a) and (28b) shows that

U 0) = % U"7(0) T GA0) . (C.6)

Using Eqs. (16) and (C.4), we thus obtain

_ P 1A g11

UBA UBB C.7
11 PB 11 J11 1 — g1 ( a)
Py Pp 1A 912
UBA — “2 [JBB = — C.7b
12 Py Ul 912 1— g1 ( )

Next, we consider the submatrix ﬁAA(O) in Eq. (28d). Like G#(0) it is block-diagonal,
so we need only retain the ) = 0 block. From Egs. (16), (29) and (C.3), it follows that
in the @ = 0 block of the matrix T/ G®(0) T all elements are 0, except the (11) element
which is 1. Consequently,

_911 0000 ]
g1 0 0 0 O
[GH(0)T'GP(0)T]g—0 = | g51 0 0 0 0 |, (C.8)
g1 0 0 0 O
| 951 0 00 O_
and
— - -1 — -
l—gn 0000 == 0000
g1 1.0 00 Ty 1000
1A -GHO)T'GP*(O)TlgLy = | =g 0 1 00| =] 0100
—gu 0 0 1 0 13“%0010
—gs1 0 0 0 1] | 12~ 00 0 1|
(C.9)
Combination of Egs. (28d) and (C.9) now yields
UAY = Para —21— (C.10a)
1 —gn
U = Pama 22— (C.10b)
L —gn
UpA = Para —2—, (C.10c)
1 —gn
Ups* = PaTa {—f” 2y 922] . (C.10d)
— g1
Finally, comparison of Egs. (28c) and (28d) shows that
~ A Pg ~AA
o) = U0 T GH0). (C.11)
A
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It follows from Egs. (16), (29) and (C.3) that the first column of the 15 x 3 matrix
T’ GP(0) has the first element equal to 1 and all others equal to 0. We then obtain from
Egs. (C.10) and (C.11),

Py gi11
UAB = 2 UAA — P C.12
11 Py 1 BTA T P ( a)
Uy® = U Upr = Para —22—. (C.12b)
Py I —gn

With the aid of Egs. (C.5), (C.7), (C.10) and (C.12), we can now express the integral
relaxation rate in Egs. (39) and (40) in terms of the matrix elements g,,. Noting that
Pg 4+ P, = 1, we obtain

= Py (1—g11)
Rron — 1A , C.13a
L1 7a P2+ Pa[(1+4 Pg) g11 + £ g12] ( )
o~ PA K (1 — 911)
Bron — IA , C.13b
LS Ta 921 + £ Pa[(1 — g11) g22 + 12 921] ( )
and
N P 1—
Ry = = 0~ gu) , (C.14a)

Ta P2+ PA(1+ Pg)gn

1 (1—g11)
R = — . C.14b
LS Ta (1= g11) 922 + G12 g2 ( )

In the dilute regime, where Py, < 1 and Pg ~ 1, the integral relaxation rate in Eqgs.
(C.13) and (C.14a) reduce to

7 dil/non S dil/se P
Rld,ll/ = Rld,ll/ L= 2 1-gn). (C.15)
TA
and . ,
pgron _ Panl=on). (C.16)
’ TA g21
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2. Symmetric exchange

For convenience, we collect here expressions for the integral relaxation rates analogous to
those given in Sec. II E.2; but for the symmetric /.S—15 case. Most of these expressions

were presented in paper I using a somewhat different notation.
With the spin modes indexed according to Table S1, Eq. (34) yields

- Py + Py
R = — , C.17
L= 3B 0y 7 5 0) (CA72)

~ P P
Ris = = m o+ Paniy (C.17b)
a5 (0) + 75'(0)

= B PB(771 +772) PA(Ul +772)
03 = 500) + 7B 0) + 700 T 50 T

where El, 15 is the integral relaxation rate associated with the total longitudinal magne-
tization of the two spins (in practice, relevant only for homonuclear spins).

For nonselective excitation, the initial conditions are
Mo = T = O+ K dn2, (C.18)
so Egs. (C.17) and (35) yield
Ry = [URP+ URM + URP + UM + s (URP + UB* + URP + UM (C.19a)
RMP = k[UBE + UBA v USE + USA + k (UBP + UBM + USP + UM™Y, (C.19D)

Rpgs = (1+5) [UBP 4+ UBP + UBA + UBA + UAP + UAP + UM + UA

(C.19¢)
+ w(URP+ U + UG + U3t + USSP + Usy® + U™ + Uss™) ™
In the dilute regime, Eq. (37) allows us to simplify Eq. (C.19) to
ﬁdil/non _ ; ’ (CQO&)
1,1 UPB | 1 UBP
ﬁdil/non _ # C.20b
bs Ut + kU’ ( )
~ 4 1+ k)
RIS = ( . C.20c
IS URE + USE + k (URP + UZP) (C-20c)

S8



For selective excitation of spin I, the initial conditions are

M=y = O, (C.21)
so Egs. (C.17a) and (35) yield
Ry = [URP + URA + URE + UMY, (C.22)
reducing in the dilute regime to
pdil/sel 1
R,/ = =55 (C.23)
Un

For selective excitation of spin .S, the initial conditions are

M = My = Kb, (C.24)
so Egs. (C.17b) and (35) yield
Ryl = [UBP + UBA + UAE + UM, (C.25)
reducing in the dilute regime to
7 dil/sel 1
22
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APPENDIX D: ZERO-FIELD REGIME

Here we derive analytical expressions, valid for the IS —1I case in the zero-field (ZF)
regime, for the Laplace transform of the spin modes oi*(t), 02 (t), o4 (t) and oP(t), with
the subscripts referring to the basis operators in Tables S1 and S2. We also obtain
analytical expressions, valid in the ZF regime, for the integral relaxation rates in Egs.
(C.13) and (C.14).

In the ZF regime, state A can be described in the subspace spanned by the rank-1

zero-quantum operators By, By and By in Table S1, so Eq. (25) can be written as

57(s) N on Ui
e | [0 0% ]|
20 | T | 5% GAA(S)] B | (1)
a1 (s) n

with the resolvent submatrices given by Eq. (28), where G2 now is a 3 x 3 matrix.

Furthermore, in the ZF regime, Eq. (29) reduces to
G® = (1+sm) 117, (D.2)

with 1B the 3 x 3 identity matrix, and Eq. (16) yields

H

I
o O =
o O O
o O O

—~

O

w

N~—

Combining these results with Eq. (28), we obtain

~ Pg 18
UBB(s) = , D.4
( ) (1 =911+ s) ( )
~ BA PATB
U (s) = (I—gu tsm) LI 912 91 | (D.5)
g1 G912 G14
~ AA 1+ s
U (S) = PA TA (1 Egll +]Z)TB) g21 G22 G24 s (DG)
g1 Gao G
g1
~ AB P
U (s) = = 921 | (D.7)

(1 —g11+s7B)
gn

where now g¢,, = (n|Ga(s)|p) (for simplicity, the argument s is suppressed) and
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(911 922 — g12 921)

Gay = g2 — (L+575) ; (D.8a)
Gos = go1 — (91152:;3}134)921) ) (D.8h)
o = ga - @292 =tn00) Do
G = g - 9184 gug) D50

Combination of Egs. (31), (D.1) and (D.4) — (D.8) yields for nonselective excitation

[Ps + Pa (911 + K g12)]

~Broy D.9
] (5) B (1 — g1 + STB) ( a)
P, P, 1
5{*(3) . [Ps 911 + Pa (911 +Kg12) (1 + s78)] 7 (D.9b)
(1 —g11+s7B)
FA(s) = 7a {Psgo1 + Pa[(g21 + K go2) (L +s78) — k(911 922 — G12 21)]} 7 (D.9¢)
(1 —g11+s7B)
FA(s) = 4 {Psgn + Pal(ga + K ga2) (1 +578) — k(911 gaz — G12 gn)]} . (D.9d)

(1 —g11 +s7B)

The corresponding results for I-selective excitation follow by setting x = 0 in Eq. (D.9).

The s-dependent quantities g,, used here are given by Eq. (B.7) as

() = (0]G°6)[2) = - [d2 0| M (5D |p). (D.10)
with
M(5;9Q) = sTaAEY + Ko + i Lp(Q) 7a
= s7AEY + Ko 4+ iDN(Q) Lp(0) D(Q) 7o (D.11)
= D'(Q) Mo(s) D()
where D(Q) is the unitary (D' = D~!) rotation superoperator and
Mo(s) = sTa & + K + i Lp(0) 7 . (D.12)

In the last step of Eq. (D.11), we noted that D(Q2) s DT(Q) = K since K is rotationally
invariant. Note that the full 15x 15 Mg matrix must be used here, since the Wigner-Eckart
theorem only applies after isotropic orientational averaging.

Identifying the basis operators B,, with the ISTOs Té( (k1ks) in Table S1 and using

the transformation rules
K

DTS = Y D (T, (D.13a)
P'=—K
K
TEDI(Q) = > DESQ) T (D.13Db)
P=—K
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and the orthonormality of the Wigner functions,! we obtain from Egs. (D.10) — (D.13)

() = = [[49 (T (ko) D) | M5 (5) | DO T (K ))

S Y (T M0 TE () - [09 D) D) g

P=—K P'=—K’
K
= Gk ag e S (TE (ko) | My (5) | T (K3

P=—K

Equation (D.14) yields for the six matrix elements occurring in Eq. (D.9),

1

g = %QZI (T3(10) | My () | TH(10)) . (D.15a)
g2 = é;; (T5(10) | Mg (s) | T4(01)) (D.15b)
o = 3 QZ (T3(01)| Mg (5) | T5(10)) | (D.15¢)
g2 = %le;l (TH01) | Mg (s) | TH(01)) (D.15d)
o = QZ (T311) | M ()| TH(10)) (D.15¢)
G = %Q:il (T4(11) | M5 (s) | TH(01)) . (D.15)
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The matrix representation of My(s;€2) in the ISTO basis of Table S1 is

O OO0 o0 o0 o0 o0 o0 o0 o oo o+

8
o 8 O

|
N
)

O O O O O O O O o o OoOw

—_

O O 0O OO0 OO0 o0 o0 o0 oo+ oo

> ol
[e)

8

_.
oooooooooooJrow‘
&

where we have defined

Eq. (D.15), we obtain

g11

g12

g21

922

ga1

ga2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1+ 0 0 0 0 0 0 0
0 142 0 3 —c 0 0 0
0 0 T g —c 0 0 0
0 = s l1+z 0 0 0 0
0 —c —c 0 1+ 0 0 0
0 0 0 0 0 142 0 =
0 0 0 0 0 0 T %
0 0 0 0 0 =5 s 1+z
0 0 0 0 0 c c 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
T = STa,
7
C = ——=WpTA -
V2

%{9:@(1 +foo)+2D2 N 2(1+x)[9x(;1+ x)+5D2]} |
2i; - 22}

912

%{9(1+x}z+2D2 N 2(1—1—90)[9(1;1— x)2—|—5D2]} |
z'\/iD{—% N [x(1+;1)+D2]}’

z'\/iD{l}rOx B [(1+x}1+D]} |

where we have defined

Jo
fi =

92(1 4+ )? + 2(1 + 22)D?

(1+2)[92(1 + x)* + 5(1 + 22)D? + D*,

D = wpTa.
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8

—_
[T i e I o S e B s S o Bl <o BN o S oo B e S o Sl e B e S )

8

—_
S+t oo oo oo oo o000 o oo

E
>

(D.17a)

(D.17b)

Inverting the block-diagonal matrix My in Eq. (D.16) and inserting the results into

(D.18a)

(D.18b)
(D.18c)

(D.18d)
(D.18e)

(D.18f)

(D.19a)

(D.19b)

(D.20)

]




The time evolution of the four rank-1 zero-quantum spin modes can now be obtained
by inserting the matrix elements g,,(s) from Eq. (D.18) into Eq. (D.9) (or the analo-
gous expressions for selective excitation) and performing the inverse Laplace transform
numerically.

Next we consider the integral relaxation rate in Eqgs. (C.13) and (C.14) in the ZF
regime. Here, we need the matrix elements g,,(s = 0). Combining Egs. (D.18) and
(D.19) and then setting x = 0, we obtain (for D # 0)

54 3D?

= — D.21
g 51 D27 ( a)
—1+iD?
= = — 9 D.21b
912 921 51 D2 ( )
81+ 39D? + 2D*
= D.21
ivV2D
= —— D.21d
a1 5+ D2’ ( )
i(3— D?
Ja2 = ( ) : (D.21e)
V2D (54 D?)
Inserting these results into Eqgs. (C.13) and (C.14), we obtain
~ 2 Py w?
Rron(0) = A D TA (D.22a)

15+ 3P2D2 — Py[3k — (1+ £ + Pg)D?] ’

~ 2K P w% TA
Rnon 0 — D22b
5 (0) —3+ D2+ Kk Pp(6+ D?)’ ( )

and

~ 2 Pyw? T

sel AWp TA

= D.2

R30) = 357 3P2D? 1 Pa(1+ Py)D2° (D-232)
~ QWA T

sel . D'A
RLS(O) = 61D (D.23Db)

In the dilute regime (Py < 1), Egs. (D.22a) and (D.23a) reduce to

2 W3 TA

ﬁfh}(o) = - P

3 "5+ (wpTa)?’ D24
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APPENDIX E: MOTIONAL-NARROWING REGIME

Here we obtain the elements of the four orientation-dependent relaxation submatrices
71, Ris, Rg; and Rgg, appearing in Sec. III B 2. We start from the semi-classical
Bloch-Wangsness-Redfield (BWR) master equation®
d o ~ ~ ~
o) = - /0 dr (£3(t) £5(t — 7)), (1) (£1)
where 5%(t) = exp(i Lz t) 0*(t) and L&(t) = exp(i L t) L2(t) exp(—i Lz t) are the spin
density operator and the dipolar Liouvillian for site a, both in the interaction repre-
sentation. The Liouvillians are the usual derivation superoperators L7 = [Hy, ...] and
LE(t) = [HB(L), ...], with Hz = wr I, +ws S, and the dipolar Hamiltonian H§(¢) as given
by Eq. (2.3) of paper 1.2 The angular brackets with subscript a denote an equilibrium
ensemble average over the molecular degrees of freedom in site a.
The ISTOs T%,(11) appearing in H&(t) are decomposed into eigenoperators A,y (Table

S3) of Lz, such that
Ty(11) = ZAM/\, (E.2)
A

and
L7 Any = Qua A, (E.3)

where the eigenvalues €27\ are linear combinations of w; and wg (Table S3). It then
follows that

AM)\(t) = exp(i ﬁz t) AM)\ = exp(i QM)\ t) AM/\ s (E4)
so that

Ly(t) = — \/?6 wp Y > exp(i Quat) Aun Crp(Q(t)) (E.5)

where AMA = [14]\4)\7 .. ]
Combination of Egs. (E.1) and (E.5) yields

3570 = = 2 T Y el (O + )

M M A (E.6)

X/ dr eXp(—iQM/)\/T) G]?/[M/(T> .AMAAM/)\/E&(t),
0

with the time correlation function
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TABLE S3. Eigenoperators and eigenvalues of L.

M A Anx 9575
4

T

_?g — O+ ws —wr
0 3 —76[+S_ Wy — Wg
1 1 _]zS-i- wg
1 2 _[—i-Sz Wwr
-1 1 IZS, —Wg
-1 2 I_ Sz —Wr
2 1 I, S, wr + wg
201 1_5_ — Wy — Wg

i (1) = (Ci(Qa(0)) Cip (7)),

(E.7)
= C(Q(0)) / dQa(7) f(Qa(T) | 2(0)) Cip(Qa(T))

where the dipole vector orientation €,(7) is modeled as a stationary random process.
Note that the time correlation function is not averaged over the initial orientation ,(0),
which is fixed by the nuclear geometry in site a. In the EMOR model, the orientation of

the dipole vector is randomized upon exchange, as expressed by the propagator

FQu(1)[90(0) = = + [0(00(r) = 2(0) — | esp(=r/ry). (©)

where 7A is the mean survival time in the site. Combining Egs. (E.7) and (E.8) and

making use of the orthogonality of the spherical harmonics C%,(£2,)," we find

v (T) = Fune () exp(=7/7a) (E.9)
with

Fanr(Qa) = Cip(Qa) Crip () = diro(B) dipg(B) expli(M + M')a] . (E.10)

With the time correlation function (E.9), we can write the master equation (E.6) as

d ~a _ Sa ~a
5t = —R(1)5°(0). (E.11)

The time-dependent relaxation superoperator is given by

ﬁa@) = gw% ZZZ;GXP[’L (QM)\ -+ QM/)\/>ﬂ

M M A
X Faar (2a) J (=) Apn Aner

(E.12)
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with a complex-valued reduced spectral density function

J(w) = j(w)+ikw) = /OoodT exp(i wT) ggﬁgi - H(T::TA)Q (1+iwr). (E.13)

Our development is more general than the standard treatment in two respects. First,
we retain the imaginary part, k(w), of the spectral density, which, contrary to conventional
wisdom,? can affect longitudinal relaxation under certain conditions.* Because k(—w) =
— k(w), we refer to k(w) as the odd spectral density function (OSDF). Second, we do not
invoke the secular approximation to eliminate terms with oscillating factors in Eq. (E.12),
since we want to describe relaxation over the full frequency range.

The integral relaxation rate is most conveniently obtained from a time-independent
relaxation superoperator. For this purpose, we transform the master equation (E.11) to

the Schrodinger representation as

%aa(t) = —iLy0%(t) — exp(—iLyt)R*(t)exp(i Lyt) o®(t), (E.14)

The two superoperators i Ly and ﬁa(t) appearing in Eq. (E.14) are invariant under
spin inversion conjugation and can therefore have nonzero supermatrix elements only
between ISTO basis operators B, of the same parity.* % In the motional-narrowing regime,
longitudinal relaxation can therefore be fully described within the subspace of the six
single-spin basis operators in Table S1. These operators have odd parity with respect
to spin inversion conjugation, whereas the remaining nine two-spin operators have even
parity. The supermatrix representation of the operator master equation (E.14) in the

subspace of the six single-spin basis operators B,, takes the form

d .. o
7 ° (t) = —iLzo(t) — R* o”(1), (E.15)

where o“(t) is the column vector of the six single-spin modes c%(t) = (B, |c%(t)) =

Tr{B} 0%(t)} and the time-independent relaxation supermatrix R® is given by

R = Z0b 303 S Fune(20) J(-Qar) G (E-16)
v

M M A

where we have defined a coefficient supermatrix Cj;y v with real-valued elements
Crmsvap = (] Avia Avrv|p) = Te{[B], Auna] [Avew, Byl} - (E.17)

The oscillating factors in Eq. (E.12) are absent from Eq. (E.16) because the single-spin

basis operators are eigenoperators of the Zeeman Liouvillian
Ly B, = Q,B,, (E.18)

and Qs + Qv = Q, — €, for all nonzero values of Casarrax np-
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Ordering the basis operators for the single-spin subspace as {I., I, I, S., Sy, S_},

we can write the supermatrix Ly in Eq. (E.15) as

0
L, = | 9 , (E.19)
0 wsQ
where 0 is the 3 x 3 null matrix, and
0 0 O
Q=01 0 (E.20)
0 0 —1
Similarly, we partition the relaxation supermatrix as
ROC (07
R = | 10 IS (E.21)
s1 Tigsg

The elements of the relaxation submatrices are obtained from Egs. (E.10), (E.16) and
(E.17), with spin operators and eigenfrequencies from Tables S1 and S3. Thus,

7
Rzz -

17 _
R:t:t -

wp [(do)*5- + 3 (d1)*j1 + 6 (d2)*j+] (E.22a)
wi {4 (do)*jo + (do)?j— + 3 (dr)?jr + 6 (d1)?jis + 6 (d2)*j+

+ i[(do)*k- + 3 (d1)*ks + 6 (da) k4] }
RIY = £re™™ [2dyjo+ (3sin® B — 1) js F iks| , (E.22¢)
R = tre™{ —dyj_ +2dyjr + 3 sin® 5,

2
9
1
9

(E.22b)

(E.22d)
Foi[—dok- +2dok; + 3 sin® Bky]},
R = et {dyj- —3 cos’ B ji +do js (E.220
F ildok_ — 3 cos* Bk +doky]}, '
and
RIZ = 2wp [—(do)?j- +6(d2)?)] (E.23a)
RYE, = Lwd{2(do)* (jo+ j=) + 3 (dr)*(jr + Js) (B.23b)
+ 7 [2 (d0)2 k_ +3 <d1)2(/{71 — kg)]} ,
RIY = tre™{dyj_ +jr+ 2 sin® B j, (E.230)
Fildok— + (3sin® B —1)kr — 2 sin® Bky]}, '
R = 4k eiia{do J—+7Js+ % sin? 35, (£.234)
Foildok- — (3sin?f — 1) ks + 2 sin® Bk,]}, '
RS = ne*{2dy jo — 3 cos® B (ji + js) + 2do j+ (E.230)

+4[3 COSQB(k1+kS)—2d0k+]}.
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The symbols in Egs. (E.22) and (E.23) have the following meaning

Jo = j(0) = 7, (E.24a)
1= jwr) - (E.24b)
= w = — .
JI J\wWr 1+ (wrma)?
. . TA
= = — E.24
Js Jj(ws) 1+ (wsTa)? ) ( c)
. . TA
= + = E.24d
I j(WI ws) 1+ [(w[ + ws) 7'A]2 , ( )
kr = k(wy) = —1 s (E.25a)
I = = 1+(w17'A)2’ )
2
ks = k = E.25b
S (UJS> 1 + (wS TA)2 ) ( )
(wr T wg) T2
ke = k(wr £ = E.25
+ (Cd[ wS) 1+ [(WI i WS) TAP ( C)
and
I = d20(8) (E.26a)
3
kK= — \/?_ wd dy , (E.26b)
n= - \/éw% ds . (E.26¢)

The elements of the submatrices Rgg and Rg; are obtained from the corresponding ele-
ments of R}, and R7g, respectively, by interchanging I and S everywhere, which amounts
to the following three substitutions: j; <> jg, kr <> ks and k_ <> —k_. We note that the
R%% and RS = RS,

Whereas the master equation (E.15) in the Schrédinger representation is most con-

OSDF affects all rates, except the longitudinal auto-mode rates R,
venient for obtaining the integral relaxation rate, the effect of nonsecular decoupling is
more apparent in the interaction representation. For this purpose, it is more convenient
to order the basis operators in the relevant subspace as {I., S,, I, Sy, I_, ,;S_}. In this

subspace, the supermatrix representation of master equation (E.11) becomes

(E.27)

|
R R RRR 3
I
|
=
R RS 3

|8 187402

I
~—~
~

| St

where, for clarity, we have represented the six spin density operator elements by the
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corresponding basis operators. The time-dependent relaxation supermatrix is

RI RS cWeRI cwsRE Rl st RIS

R5T RS et RST - emiwst RIS glwrt RST - giwst RSS

Ry | R RIS RI MRS ORI SR

ewst RYL - elwst RS eIl RST RS et RSL gi2wst RSS

e—z’w;t RI_]Z 6—z’w1t RI;S; e—z’QwIt R]_I+ e—iEt Rj;s_‘i_ RI_I_ e—z‘At RI_S_

| eTiwst RST giwst RSS omiNt RST - gmidwst RSS it RST RSS ]
(E.28)
where

Y = wrtws, (E.29a)
A= w—ws. (E.29b)

In the ZF regime (Sec. III A), where the frequencies wy, wg and w; + wg are much
smaller than the relaxation rates (of order w3 74 ), the complex exponential factors in Eq.
(E.28) can all be replaced by unity. The cross-mode relaxation rates then come into play,
coupling the evolution of the longitudinal and transverse magnetization components. This
happens in the asymmetric I.S—I case because the -5 dipole coupling is not isotropically
averaged. At higher fields, where w;, wg > w? 7a, the oscillating factors cancel all
relaxation supermatrix elements, except possibly those involving the difference frequency

wr — wg (for a homonuclear spin pair). The relaxation supermatrix then becomes block-

diagonal,
[ R!I RIS 0 0 0 0 1
RfZI Rff 0 0 0 0
o 0 0 RII 1At RIS 0 0
R (t) = fiAt_H_SI ’ SS++ (E.30)
0 0 e Ry Ry 0 | 0
0 0 0 0 RN it RIS
| 0 0 0 0 e!At RST RSS ]

Nonsecular decoupling thus cancels all cross-mode rates so the longitudinal modes (7, and
S.) evolve independently from the transverse modes (I+ and Si).

For the symmetric I5—IS case in the motional-narrowing regime, the same IS spin pair
samples all anisotropic A sites on a time scale that is short compared to the relaxation in
each site because, when the exchange time is also the correlation time (as in the EMOR
model), the motional-narrowing regime coincides with the fast-exchange regime. The

relaxation behavior is then governed by the isotropic average of the relaxation supermatrix
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in Eq. (E.28), which becomes

(R (RE) 0 0 0 0
(RST) (RE) 0 0 0 0
~a 0 0 (RIL) (RIS 0 0
R@)) = A ++
W= 0 0 ey ) o o |
0 0 0 0 (RIL)  emiAL(RIS )
0 0 0 0 eA(RSY (RS

(E.31)
since all cross-mode rates vanish when isotropically averaged, as is evident from their
dependence on the azimuthal angle « in Eqgs. (E.22) and (E.23). This result, including
the familiar Solomon equations, is usually derived from BWR theory by invoking the
secular approximation. Fundamentally, however, the decoupling of the longitudinal and
transverse magnetizations is a consequence of isotropic averaging. Cross-mode coupling
is therefore absent also at zero field, which is not obvious if the secular approximation
is invoked. The same result can be obtained from the time-independent relaxation su-
permatrix R in Eq. (E.21) (with a different basis ordering). As a consequence of the
vanishing of all cross-mode rates upon isotropic averaging, the four submatrices in Eq.
(E.21) become diagonal. It is then evident from Eq. (E.15) that the longitudinal and
transverse modes are decoupled.

The isotropically averaged auto-mode rates coincide with the familiar longitudinal and

transverse auto-spin and cross-spin relaxation rates for a two-spin system,>”
(RI) = 2wl (- +37r+6],) | (E.32)
(RZY) = %w% (j— +3js+64s) (E.32b)
(RIS) = (RE) = mub(—j-+6.) (2.320)
(RI) = %w% [4jo+j_+3jr+6js+6jy +i(k_+3k +6k.)], (E.32d)
(RS = 4—15w% [4djo+7_ +3js+64+6j, +i(—k_ +3ks+6k.)], (E.32)
(RI5) = %w% [2j0+2j_ +3jr+3js F i (2k_ +3k; —3ks)] , (E.32f)
(R = %w% [2j0+2j_ +3jr+3js £ i(2k_ +3kr —3ks)] . (E.32g)

In the extreme-narrowing regime, where w;,wg < 1/74, all the even spectral densities
in Eq. (E.24) are equal to 74 and all the odd spectral densities in Eq. (E.25) can be

neglected. The relaxation submatrices then take the form

Ri. R. —R.
Ry =Ris = | Re Ra R, |, (E.33)
~R: R Ru
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where

Ri. R —R,

K

is =R =2 R. Ree Ry |, (E.34)
—R: Ry Ra
R, = & (3sin’8+42)wh7a, (E.35a)
R = 2 (3sin®8—1)wp7a, (E.35b)
Ry, = £ (10 — 3 sin®B) wi 7a (E.35¢)
Ry = % (3 cos’f + 1) w% TA (E.35d)
R, = ‘/75 sin 8 cos B exp(ia) wp A (E.35€)
R, = & sin®f exp(i2a) wi a - (E.35f)
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APPENDIX F: TIME EVOLUTION OF I, AND S,

Here we derive analytical results for the time evolution of the longitudinal magnetiza-
tions in the ZF + MN regime, where only the spin modes ¢ = I, and o) = S, are
coupled in state A. It must then be possible to describe the evolution of the longitudinal

magnetizations in the A and B states by three coupled equations:

d g, _ 15 LA

dt Iz (t> - TB ]z (t) + TA Iz (t) 9 (Fla)
d A 1 B 1 A A

— I (t) = — I; t) — (pr+— I (t) — o1s S (1), (F.1b)
dt B TA

SN0 = —os IN0) — ps SN0 (F.1¢)

where, without loss of generality, we have set the equilibrium magnetizations to zero.
Apart from the exchange terms, Egs. (F.1b) and (F1.c) have the same form as the two-
spin Solomon equations,>® but the four relaxation rates are not the same for the IS—1T
EMOR model as for an isolated spin pair in isotropic solution. In the ZF regime, p; = pg
and o9 = og; in the Solomon equations,®® but this symmetry is broken in the IS —1
EMOR model since only spin / can exchange with state B. For nonselective excitation,

Eq. (F.1) is to be solved subject to the initial conditions
I2(0) = Pg, I2(0) = 52(0) = Pa. (F.2)

The MN regime is also the fast-exchange regime, so 1/74 > py, ps, 015, 051. Because
exchange is much faster than auto-spin and cross-spin relaxation, the ratio of the I,

magnetizations in states A and B remains at the initial value,

M) _ IMN0) _ Py

B()  I1B(0)  Ps
When I2(t) relaxes to the lattice (directly and via spin S), it is ‘immediately’ replen-

(F.3)

ished with magnetization from state B. Consequently, the total I-spin magnetization,
I(t) = I*(t)+1B(t), relaxes slowly with an effective rate that is proportional to Py w3 7a.
Summing Egs. (F.1a) and (F.1b), we obtain

d

3 () = —pr It — ors 2. (F.4)

Substituting I2(t) = Pa I,(t) from Eq. (F.3) into Egs. (F.4) and (F.1c), we find
SL(t) = ~Papr L) — 015 S2(0) (F.5a)
%Sﬁ(t) = — Paogi L(t) — psS2(t) . (F.5b)

We shall consider Eq. (F.5) in two different time regimes. At short times, such that

t < 1/(Pyw? Ta), the I and S spins are decoupled because the I spin has not yet relaxed.
We can then set I,(t) = 1,(0) =1 in Eq. (F.5b), whereby

d

asf(t) = —os1 Pa — psS2(t) = —ps [S?(t)JrPA %] : (F.6)
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With SA(0) = P, from Eq. (F.2), the solution to Eq. (F.6) is

SA(t) = Py {(1 + @) exp(—pst) — 51| (F.7)
Ps Ps
The S-spin magnetization thus relaxes to a (negative) steady-state value, —Px og1/ps,
rather then to its zero equilibrium value.
After S2(t) has reached its steady-state value while I, () remains essentially constant,
both magnetizations relax together to zero at the same rate. This coupled evolution, on
the time scale t > 1/pg, is obtained by solving Eq. (F.5) subject to the initial conditions

L) = 1, S40) = =Py 2 (F.8)
Ps
The solution is
1
L(t) = (s = A=) I.(0) — 015 S2(0)] exp(=A_t)
— [(ps — A+) L.(0) — 015 S2(0)] exp(=A; )},
1
SA(t) = (Pa pr — A_) S2(0) — Py osy I(0)] exp(—=A_t)
(A — A_){ [ } (F.9Db)
— [(Papr— A1) S2(0) = Pyosr L(0)] exp(=As ) }
where
— 1 1 2 1/2
A = 2(ps+Papr) £ 2 [(ps— Papr)® +4Pyorsos] ' . (F.10)
In the dilute regime, we can expand these rates as
Ay = ps + Pa “Ii) 951 L o(P?), (F.11a)
S
A = Py (pj - IS USI) + O(P}). (F.11b)
pPs
Substitution from Egs. (F.8) and (F.11) into Eq. (F.9) yields
L) = [1—O(P})] exp(—A_t) + O(P3) exp(—A;t), (F.12a)
SAt) = |-P ? + (’)(Pf\)} exp(—A_t) + O(P3) exp(—\; t). (F.12Db)
S
Neglecting terms of second and higher order in P, we thus obtain
]z(t) = eXp(_ltislow t) ) (F13a)
SA(t) = — Py % exp(—Rejow 1) , (F.13D)
S
with
o150
Ryow = Pa (m _ 28 S’) . (F.14)
Ps
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Combination of Egs. (F.3), (F.7) and (F.13) finally yields

[,z]'g(t) = -PB eXp(_Rslow t) ) (F15a)

I}t) = Pa exp(—Raowt) (F.15b)

SA(t) = Py {(1 + E) exp(—pst) — Ist exp(—Raow t)| - (F.15c¢)
Ps Ps

In the ZF + MN regime, the auto-spin and cross-spin relaxation rates py, pg, o7s and
osr are all proportional to w3 7a, but they differ from the ‘Solomon values’ p; = ps =
(4/9) wd 74 and o715 = 057 = (2/9) wd Ta because, in the IS—I EMOR model, cross-mode
relaxation occurs in the A sites. However, as we shall see, p;+0r5 = ps+osr = (2/3) wd 7a
in both cases.

To obtain the numerical coefficients in front of w% Ta in pr, ps, ors and ogr, we need
four relations involving these rates. Such relations can be obtained in several ways, making
use of the ZF results in Appendix D and then taking the MN and dilute limits. Three
relations can be obtained from integral relaxation rates. Using Egs. (F.2) and (F.15), we

find for nonselective excitation in the dilute ZF + MN regime

~ 1.(0) ( 015051)
RI0) = 222 = Ryow = P, - =22 F.16a
1,1( ) 7.(0) 1 A PI 05 ( )
A
7 dil/non o SZ (0) _ Ps VAR __pS
Ry $™0) = 550) - ost Rgow + O(Py) = - Rgiow - (F.16b)

A third relation can be obtained from ﬁfeé(O) To this end, we integrate Eq. (F.5) from
t =0 to t = oo and apply the initial conditions for S-selective excitation, 7,(0) = 0 and
SA(0) = Py, to obtain

0 = PyprL.(0) + 016 52(0), (F.17a)
Py = PyosiL(0) + psS2(0). (F.17b)
Eliminating I.(0), we find
—1
S2(0) = Pa (Ps L USI) : (F.18)
Pr

so that 55(0)
Rib(0) = 22 = pg - HE0SL F.19
1:5(0) o) T (F.19)

The three expressions in Eqgs. (F.16) and (F.19) must be identical with the dilute MN
limit of the corresponding expressions in Egs. (D.22) and (D.23), that is,
2

§1d,ifl<0) T A W TA (F.20a)
75 dil/non 2
RY™(0) = — g Pawhma (F.20Db)
~ 1
R%(0) = gw% A . (F.20c)
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For the fourth relation, we choose the S-spin initial relaxation rate with nonselective
excitation
1 dSA®1)
SA0)  dt

B 55?(3)
S20)

RP§™M0) = — = lim L1 : (F.21)
t=0

where £7! denotes the inverse Laplace transform. The initial time derivative in Eq. (F.21)
is obtained directly from Eq. (F.1c) and the nonselective initial condition (F.2),
dS2(t)
dt

= —0s1 If(O) — pPs Sﬁ(O) = —Pa(ps+osi1), (F.22)
t=0

so that
RY§™(0) = ps+0si - (F.23)

It remains to obtain an expression for RR ¢°(0) from Appendix D. From the ZF result

in Eq. (D.9¢), we have for nonselective excitation (k = 1) and in the dilute regime
(Pr < 1),

1 SA(s) = g + (921 + g2o) @

Pp7A Py(1—gn)+a
where we have noted that Py s7s = Pgs7a =~ s7a = x in the dilute regime. With ¢,
go1 and goo from Egs. (D.18) — (D.20), we obtain

(F.24)

PAITA SA(s) = % : (F.25)
with
U = 812" +4052° + 18 (45 + 4 D*) 2° + 45 (18 + 5 D?) x*
+ (405 + 243 D* + 19 D*) 2® + (81 + 99 D* + 26 D*) 2 (F.26)
+1D*(27+ 15D +4 D"z + 2 D*(D* - 3),
and

V = 812° +27(15+3Py) 2" + 18 (45 +7D* + 18 Py) 2°
+9[90 + 54 Py + (49 + 14 Py) D?)] 2°
+ [405 + 324 Py + (567 + 351 Pa) D* + 49 D*) 2*
+ [81 (1 + Py) + (315 + 324 Py) D* +49 (2 + Py) D*) *
+ D?[63 4+ 99 Py + (59 + 75 Py) D* + 4 D*]
+ D*[10+ 26 Py 4+ (24 4 Py) D*|z + 5 Py D°.

(F.27)

The MN approximation is valid on time scales much longer than the correlation time,
that is, for ¢ > 74. We can therefore neglect the higher powers of x = s7a in Eqgs. (F.27)
and (F.28). Specifically, we retain terms up 2% in U and up to 2 in V. Moreover, in each
term, we only retain the leading power of D (since D? < 1 in the MN regime). We also
implement the dilute regime approximation (Py < 1). We thus obtain
1 §A( _ 8122 +9D?x —2D*

813 +63D222+10D*z’

F.28
PA TA ( )
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and

s S2(s) 6D?(9x + 2D?) 202 7,
F(s) =1 - = - . i B L RS (F.20)
SA0) 8122+ 63D%*x+10D* s+ 2wiTa
Combination of Egs. (F.21) and (F.29) then yields
ROVHOH(O) = hm ,C_lF(S) — 2(.&)2 T hm E—l ;
1,8 t—0 3 b A4S0 5+ gw% A (F.30)

, 2
= gw%TA 11_{% exp(—gw%t) = §w]23TA.

The four desired relations can now be obtained by identifying Eqs. (F.16) and (F.19)
with Eq. (F.20) and Eq. (F.23) with Eq. (F.30). This yields

015 08T 2

pr— ; =1 Wi TA (F.31a)
s
2
O'[S—plps = ——w%TA, <F31b)
osJ 3
1
ps — U[Sposl = 3 Wi TA (F.31c)
I
2 5
ps +osr = ngTA. (F.Sld)
Solving for the four rates, we find
2
PI = GWDTA (F.32a)
5 4
pPs = § Wp TA , (F32b)
4 4
ors = §OJD TA (F.32¢)
Loy
os; = 9 DTA - (F.32d)
Inserting ps and ogy into Eq. (F.15c¢), we finally obtain
A 6 1 Hdil
SA1) = P |5 exp(—pst) — 7 exp[-RH0)1]] | (F.33)

with pg given by Eq. (F.32b) and }A%ldl}(O) by Eq. (F.20a).
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In aqueous systems with immobilized macromolecules, including biological tissue, the longitu-
dinal spin relaxation of water protons is primarily induced by exchange-mediated orientational
randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting
from the stochastic Liouville equation, we have developed a non-perturbative theory that can
describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole
couplings, and Larmor frequencies. Here, we implement the general dipolar EMOR theory for a
macromolecule-bound three-spin system, where one, two, or all three spins exchange with the bulk
solution phase. In contrast to the previously studied two-spin system with a single dipole coupling,
there are now three dipole couplings, so relaxation is affected by distinct correlations as well as by
self-correlations. Moreover, relaxation can now couple the magnetizations with three-spin modes
and, in the presence of a static dipole coupling, with two-spin modes. As a result of this complexity,
three secondary dispersion steps with different physical origins can appear in the longitudinal
relaxation dispersion profile, in addition to the primary dispersion step at the Larmor frequency
matching the exchange rate. Furthermore, and in contrast to the two-spin system, longitudinal
relaxation can be significantly affected by chemical shifts and by the odd-valued (“imaginary”) part
of the spectral density function. We anticipate that the detailed studies of two-spin and three-spin
systems that have now been completed will provide the foundation for developing an approximate
multi-spin dipolar EMOR theory sufficiently accurate and computationally efficient to allow quantita-
tive molecular-level interpretation of frequency-dependent water-proton longitudinal relaxation data
from biophysical model systems and soft biological tissue. © 2016 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http:/creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4955423]

. INTRODUCTION

For many years, the absence of a rigorous molecular
theory of nuclear magnetic relaxation induced by magnetic
dipole couplings in aqueous systems with immobilized
macromolecules has prevented a reliable quantitative analysis
of water-proton NMR (or MRI) relaxation data in terms
of structure and dynamics of soft biological tissue or
biophysical model systems, such as cross-linked protein gels.
In such systems, protons exchange on a wide range of time
scales between the bulk aqueous solution phase and the
locally anisotropic macromolecular sites. This exchange
affects proton relaxation by transferring magnetizations and
coherences between the two environments. In addition, by
randomizing the orientation of internuclear vectors, the
exchange is also the motion that induces spin relaxation in
the macromolecular sites. For this relaxation mechanism,
known as exchange-mediated orientational randomization
(EMOR), the motional-narrowing regime coincides with
the fast-exchange regime. The conventional Bloch-Wangsness-
Redfield (BWR) perturbation theory of nuclear spin
relaxation' therefore breaks down when, as is frequently
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the case, fast-exchange conditions do not prevail. Starting from
the stochastic Liouville equation (SLE),>> we have therefore
developed a non-perturbative theory of relaxation induced by
EMOR modulation of magnetic dipole-dipole couplings, valid
without restrictions on exchange rate, dipole couplings, and
Larmor frequencies.*>

In the dipolar EMOR theory, we consider a system
of ma > 2 mutually dipole-coupled spin-1/2 nuclei in the
anisotropic (A) sites. This spin system comprises mp labile
spins, which exchange with the isotropic bulk (B) phase, and
ma — mg nonlabile spins, which reside permanently in the
A site. We distinguish two scenarios: symmetric exchange
(mpg = mp), where the spin system exchanges as an intact
unit, and asymmetric exchange (mp < mya), where the spin
system is fragmented by exchange. In asymmetric exchange,
all multi-spin correlations that have developed as a result
of dipole couplings between labile and nonlabile spins in
the A site are lost,>® leading to a qualitatively different
relaxation behavior as compared to symmetric exchange.
To identify different exchange cases, we use the notation
“(spins in state A)—(spins in state B).” In previous reports
in this series of papers, we have examined the symmetric
case IS-IS (Paper I*) and the asymmetric case IS—I

(Paper II°).
© Author(s) 2016.
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Here, we implement the general dipolar EMOR theory,
presented in Paper II, for a three-spin system, examining the
symmetric exchange case IS P—-ISP and the asymmetric cases
ISP-IS and ISP-I. The exchanging entity in these cases
might be a hydronium ion binding to a specific site in a
protein (ISP-1SP), a water molecule temporarily occupying
an internal cavity in the protein (/S P-I5S), or a labile hydroxyl
proton in an amino acid side-chain (/SP-I). As compared to
the previously analyzed two-spin system, several new features
emerge for the three-spin system. Because there are now
three dipole couplings rather than one, relaxation is affected
by distinct correlations (as well as self-correlations) and the
magnetizations are dynamically coupled to two-spin and three-
spin modes. Furthermore, in the /SP-I case, one of the three
dipole couplings is static. As a result of these complications,
three secondary dispersion steps (some of them inverted)
with different physical origins can appear, under different
conditions, in the longitudinal relaxation dispersion profile,
in addition to the primary dispersion step where the Larmor
frequency matches the exchange rate. Furthermore, and in
contrast to the two-spin system, the longitudinal relaxation
can be significantly affected by chemical shifts and by the odd-
valued (“imaginary”) part of the spectral density function.’

The outline of this paper is as follows. In Sec. II, we
develop the general dipolar EMOR theory for a three-spin
system. Once the matrix elements of the Zeeman and dipolar
Liouvillians in the 63-dimensional three-spin Liouville space
have been calculated, it is straightforward to implement the
general dipolar EMOR theory of Paper II. In Sec. III, we
develop a limiting form of the dipolar EMOR theory, based on
the BWR master equation, and valid in the motional-narrowing
regime. The semi-analytical results obtained here are used to
rationalize the rich variety of relaxation behavior exhibited
by the three-spin system. In Sec. IV, we illustrate the theory
developed in Secs. II and III by numerical results, emphasizing
the new features that emerge at the three-spin level. Lengthy
derivations and tables are relegated to eight appendices.®

Il. GENERAL RESULTS
A. System, model, and solution

We consider a system of three mutually dipole-coupled
spin-1/2 nuclei, denoted I, S, and P, some or all of which
exchange between a solid-like anisotropic (A) state and a
liquid-like bulk (B) state. The spins may be homonuclear
or heteronuclear and the chemical shifts may differ between
states A and B. State A comprises an isotropic distribution
of sites, labelled @ =1, 2,..., each of which has a fixed
orientation. At any time, a fraction P, of the labile spins
reside in state A, while a fraction Pg = 1 — Py reside in state
B. In most applications of interest,>'! P, < 1, a condition
that we refer to as the dilute regime. We consider three
exchange cases.

In the symmetric case, denoted ISP—ISP, the three spins
exchange as an intact unit, for example, the three protons in a
hydronium ion, H3;0%, or in an acetate ion, CH3COO™.

In the asymmetric 1S P-I case, the labile spin / exchanges
with state B, whereas the nonlabile spins S and P remain in
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state A so their mutual dipole coupling is static. An example
of this case is a serine side-chain, with spin / identified as
the labile hydroxyl proton and spins S and P identified as the
adjacent nonlabile methylene protons.

In the asymmetric ISP-IS case, the labile spins / and S
exchange as a unit, leaving the nonlabile spin P (without any
dipole couplings) in state A. An example of this case is an
internal water molecule, where, in the A sites, the two water
protons [ and § are also dipole-coupled to a nonlabile protein
proton P.

In the EMOR model, the orientations of all internuclear
vectors involving at least one labile spin are instantaneously
randomized upon exchange, thereby inducing dipolar relax-
ation. This assumption is justified if the mean survival time
of the labile spin(s) in the A sites is long compared to the
time required for orientational randomization when the labile
spin(s) has been transferred to state B. We can then ignore
all dipole couplings among the labile spins in state B. If
so desired, the small and frequency-independent relaxation
contribution from fast modulation of dipole couplings in state
B can be added to the final expression for the overall relaxation
rate, as described in Paper I.

The Zeeman Hamiltonian in state A is

Hy = 0} I + 05 S, + wh P,

=0l [+ (1 +69) S, +(1+8p) P, (D)

and similarly for state B. The “chemical shifts” are defined
with reference to spin / so 6% = 0 and 6% = (wy — W) /W
for X = S or P. As noted in Paper I, scalar couplings among
non-isochronous spins in state A are neglected here because
they are invariably much smaller than the corresponding
dipole couplings. For the ISP-ISP and I1SP-IS cases, scalar
couplings among non-isochronous spins in state B would
affect the relaxation behavior, but, for the applications that we
have in mind (see above), molecular symmetry ensures that
the proton spins are isochronous in state B.
The dipolar Hamiltonian for A-site « is

HY = Hp ;s + Hp ;p + Hp gps 2

with (X denotes either of the three spin pairs IS, IP, or SP)

2

2 . e

HE x = = wn.x D1 THX) DY), B)
M=-2

Here, T]%,I(X ) are orthonormal three-spin irreducible spherical
tensor operators (see below), D?WO(Q‘;() are rank-2 Wigner
functions,'? and Q¢ are the Euler angles that specify the
orientation of the internuclear vector rx in site @ with respect
to the lab-fixed frame.

Rather than using the three sets of Euler angles Q, it is
more convenient to specify the internuclear geometry by the
three interior angles 8y, Bs, and Bp of the ISP triangle (Fig. 1)
and then specify the orientation of this triangle with respect to
the lab-fixed frame by the Euler angles Q% = (%, 9%, ¢%). We
adopt the following convention: ¢ is the angle of rotation of
the vector r{, about the lab-fixed zr. axis (parallel to the By
field), ¥ is the angle between the positive z, axis and r‘,’S,
and ¢“ is the angle of rotation of the triangle plane about the
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I

FIG. 1. Internuclear geometry of the three-spin system.

vector r‘,’s. Then

D3, o(QFs) = exp(iMy™) diyo(9%), (4a)

2
D3/o(Q7p) = exp(iMy“) Z dyy N

N=—
X exp(iN¢™) dro(Br), (4b)
2
D}io(Q5p) = exp(iMy™) )" (=N diyp (9)
N=—
X exp(iN @) dro(Bs)- (4c)

The internuclear geometry, which is the same in all sites
@, is fully determined by specifying two of the three interior
angles (which sum up to 180°) and one of the three dipole
coupling frequencies wp, s, wp,1p, and wp_sp (Which depend
on the internuclear separations rx). If we specify

3 h
wp,1s = 5 (ﬂ) n )3/S > 5
2\4n is
then the remaining two dipole couplings are given by
_ [sin(8r + Bs) |’
Wp,Jp = |————F | WD.1IS>» (6a)
sin Bg
. 3
sin( By +
wp,sp = [M] wp, 15- (6b)
sin 51

In the general case of a non-degenerate triangle (8; # Bs
# Bp), the three dipole couplings are all different. In the special
case of an isosceles triangle with §; = Bs (so spin P is at the
apex), Eq. (6) reduces to wp, ;p = wp sp = 8 sin3(,8p/2)a)DJs.
For an equilateral triangle (8; = Bs = Bp = 60°), of course,
all three dipole couplings are equal.

The composite spin density operator o (¢f) evolves
according to the stochastic Liouville equation (SLE)>3

d .
G0 =(W=iL)o), )

where the Liouvillian £ = [H,. . .] is the derivation superoper-
ator corresponding to the Hamiltonian in each site: H? in state
B and Hé‘ + H{ in A-site @. The exchange superoperator ‘W
describes the transfer of labile spins from state B to A-site &
or vice versa (direct exchange between A-sites is not allowed
in the EMOR model’) and the consequent instantaneous
switching of the spin Hamiltonian. For the asymmetric cases

J. Chem. Phys. 145, 034202 (2016)

ISP-I and ISP-IS, the spin system is fragmented by the
exchange. Consequently, all multi-spin correlations that have
developed as a result of dipole couplings between labile and
nonlabile spins in state A are lost.>® To describe both of these
effects, we decompose the exchange superoperator as’

W=Tu®T s—Kn® K, (8)

The “molecular” operators 7, and Ky, act on the site kets
|a), so their composite-space supermatrix representations are
block-diagonal with respect to the spin operators. These
operators define the kinetic model (site-to-site transition
probabilities), regardless of whether the spin system is
fragmented or not. The superoperators 7 s and K act on spin
operators, so (as for L) their composite-space supermatrix
representations are block-diagonal in the site basis. These
superoperators distinguish labile from nonlabile spins and they
account for decorrelation of multi-spin modes by exchange
fragmentation of the spin system.>°

Macroscopic spin observables are related to a density
operator summed over all sites,

N
(@) = o) = o) + ), ©)
a=0

with the initial value
(a(0)) = Pen® + Pan™. (10)

The operators n* and 7%, which act in spin Liouville space,
depend on the initial condition of the spin system (selective or
nonselective excitation) and, for heteronuclear spin systems,
on the relative magnetogyric ratios.

The Laplace-transformed density operator (o (s)), repre-
sented in spin Liouville space as a partitioned column vector,
can be computed from the (exact) supermatrix equation’

~3 B
[0’ (s) [ZA} ’ a1

a(s)
with the Laplace-transformed site-averaged resolvent matrices
given by’

ijB(S) ijA(s)
ﬁAB(s> fjAA(s)

UPB(s) = 75 P5[GB(s) ' = TGA5)T],  (12a)

UM(s) = 1A PA[GA(5) ' = TGP(5) T]”',  (12b)

UPA(s) = % UPB(5) T G™(s), (12¢)
B

UAB(s) = % UM (s) T GB(s). (12d)
A

Here, T4 and 7p are the mean survival times in the two states,
related by the detailed balance condition Ps 7g = Pg 7. The
dimensions of the spin Liouville subspaces, excluding the
physically irrelevant identity operator, are for state A Dp = 63
and for state B Dg = 3 (ISP-I case), Dg = 15 (ISP-1S), or
Dg = 63 (ISP-ISP). In Eq. (12), we have also introduced the
supermatrices

GB(s) = [(1 + s7p) 1B +i LB 7] (13)
and

Gs) = ([sTal* +K+iLy 1o +iLp(Q) 7al ™), (14)
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where L; and Lp(Q) are the Liouvillian supermatrices
corresponding to the Zeeman and dipolar Hamiltonians,
respectively, and the angular brackets indicate an isotropic
orientational average.

To make full use of symmetry, we represent spin Liouville
space in a basis of irreducible spherical tensor operators
(ISTOs) B, = Tg(/l) of rank K, quantum order Q, and
additional quantum numbers A.'?> The explicit form of the
ISTOs in the three bases (of dimension 3, 15 and 63) used
here is given in Appendix A of the supplementary material.®
All of these operators are normalized in three-spin Liouville
space. Explicit expressions for the elements of the Zeeman
and dipolar Liouvillian supermatrices L and Lp are derived
in Appendices B and C,? respectively.

In Egs. (12) and (14), T and K are the supermatrix
representations of the spin superoperators 7 ¢ and K in
Eq. (8). For the symmetric /[SP-ISP case, all spins are
labile so there is no exchange fragmentation. Consequently,
T = K =1, the 63 X 63 identity matrix.

J. Chem. Phys. 145, 034202 (2016)

For the asymmetric /SP-I case, exchange interconverts
the three one-spin modes in state B, ng = 1, 2, and 3 (Table S3)
and the corresponding three one-spin modes in state A,
pa = 1,20, and 35 (Table S1).% Consequently,

TanA = 6nB,1 617A,1 + 6nB,26pA,20 + 5nB,3 6pA,35- (15)

Identifying the 15 one- and two-spin modes in state A that do
not involve the labile I spin (Table S1),® we obtain

KnApA = 6nApA[1 - 5nA,2 - 5nA,3 - 5nA,13 - 6nA,l()
—Onp19 = Onp 21 — Onp22
= 0np31 — Onp34 = 0np 36 — 0np37 — Ong 46
—0np49 = Onp55 = Onp61l- (16)

For the asymmetric /SP-IS case, exchange interconverts
the 15 modes in state B (Table S2) and the correspond-
ing one- and two-spin modes in state A (Table S1).3
Consequently,

Togpa = Ong10pa1+ 0np20p,2+ 0ng30p, 11+ 0ngalpa 17+ 0ng50p, 14
+0np,60pr20F Onp70pa21 + 0np 805,20+ 0np00p, 32+ Onp100p,,35

+ 0np,110p,,36 + Onp,120pp44 + Onp 130,47 + Onp 140 p .53 + Ong,150p 4. 59- (17

The three one-spin modes in state A that do not involve either
of the labile spins / and S are ny = 3, 22, and 37 (Table S1),8
)

KnApA = (5nApA[1 - 6nA,3 - 6nA,22 - 6nA,37]' (18)

The angular brackets in Eq. (14) signify an average over
the isotropic distribution of site orientations, f(Q) = 1/(87?).
Because G is isotropically averaged, it must reflect the axial
symmetry in spin Liouville space, imposed by the external
magnetic field. For a basis of ISTOs Tg(/l), it then follows
from the Wigner-Eckart theorem'? that G* and the resolvent
matrices in Eq. (12) are block-diagonal in the projection index
Q. Longitudinal relaxation can therefore be fully described
within the 19-dimensional zero-quantum subspace. However,

this does not mean that the zero-quantum modes evolve
independently of the remaining modes. The matrix within
square brackets in Eq. (14) is not block-diagonal in Q,
so it must be evaluated in the full 63-dimensional spin
Liouville basis of state A. The matrix elements of Lz and
Lp(Q) in this basis are given in Appendices B and C,}
respectively.

B. Integral relaxation rate

The integral longitudinal relaxation rate (ILRR) is
defined as the inverse of the time integral of the observed
longitudinal magnetization, normalized by its initial value.*
The ILRR may be expressed in terms of spin density operator
components as’

P P X b, + PaX, (19)
1= )

Son [ S Ubbon + Sy U B+ Spa [S0y Uiy + S0, Unto] 1

\

where we have made use of Egs. (10) and (11) and experiments,
introduced the shorthand notation UXY = (n|UXY(0)|p). The

. . " . A= 51+ KsOno+Kpd (20a)
primed sums in Eq. (19) run over spin modes (or basis Mn = On1+ KsOn2+ KpOn3,
operators) corresponding to the longitudinal magnetization of On,1 (ISP-I),
the observed spin(s). In the following, we specify the observed ,75 =361+ KsOnn (ISP-IS), (20b)

spin(s) by a subscript, e.g., Ry ;s.

The elements of the vectors n® and n* depend on
the initial conditions for the relaxation experiment. For
nonselective excitation, which always applies to field-cycling

B

(5,1’1 + Kg 5n,2 + Kp 5,,’3 (ISP—ISP)

Here, the relative magnetogyric ratios ks =7ys/yr and
kp =yp/yr account for the relative magnitude and sign
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of the equilibrium spin density operator components in the
high-temperature approximation.! For selective excitation of
the labile spin(s), 7y = n5 with B as in Eq. (20b). These
two initial conditions will be indicated by a superscript,
e.g., ﬁ'l“’l" and I?TIIS Explicit expressions for the ILRR,
based on Eq. (19), are given in Appendix D?® for the
various combinations of excited, observed, and labile
spin(s).

In the dilute regime, where P, < 1, all matrix elements
in the denominator of Eq. (19) except U EEPB can be neglected
if the observed magnetization includes at least one labile spin.
Furthermore, in the numerator, the second term (proportional
to P,) can then be neglected. The ILRR is then the same

Hdil _ 77/BB BB BB1-1
RLI—[U11+K5U12+KPU13 ,

pdil  _ BB BB BB BB
R's = I+ k) [UT + U0 + ks (U, + Uy,

pdil _ BB BB BB BB BB BB BB BB BB\1-1
RLISP—(1+K5+KP)[U” + U+ Uz + ks (U + Uy + U +kp(Us +Uyy + U T

According to Eq. (12a), Up» o 1/P, in the dilute regime.
It then follows from Egs. (21)—(23) that the ILRR is strictly
proportional to Ps. For the ISP-I case, the 3 X 3 matrix
UBB(0) is diagonal and, as shown in Appendix D% Eq. (21)
yields

S . Pa
Ry = RY}s = Rijsp = ™ (I-gu)s 24)
with the shorthand notation g,,, = (n|G*(0)|p). This result is
of the same form as for the asymmetric two-spin case 1S—I
considered in Paper II.

C. Nuclear permutation symmetry

In the EMOR model, all labile spins are affected in
the same way by the relaxation-inducing dynamics, since
all dipole couplings involving labile spins are completely
randomized in orientation by the exchange. The symmetry of
the ILRR under nuclear permutation is therefore determined
solely by the internuclear geometry, that is, the lengths of the
internuclear vectors and the angles between them (Fig. 1).
Consequently, the ILRR is invariant under any permutation
of the observed labile spins. This is generally true for the
dipolar EMOR model, even for non-dilute conditions and
for multi-spin systems. For the three-spin system considered
here, Ry ;sp(ISP-ISP) is invariant unde’r\ any permutation of
the three spins I, S, and P, whereas R; ;s(ISP-ISP) and
ﬁl,IS(ISP—IS) are invariant under / < § interchange.

lll. MOTIONAL-NARROWING REGIME

_ The results of Sec. II allow us to calculate the ILRR
R, for any combination of excited, observed, and labile
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for nonselective excitation as for selective excitation of the
labile spin(s). We therefore use the superscript “dil” without
specifying the excitation mode. For the ISP-I case, we
obtain

Eclml = E?IIIS = Ecll,ﬂlsp = [Ullng]_l- 21
Similarly, for the /SP-IS case,
R = [UBP + ks U, (22a)
Ri}s = Rijsp = (1+«s)
X[UP +USP + ks (U + U™, (22b)
and for the ISP—ISP case,
(23a)
)+ kp (UBE + USP), (23b)
(23¢)

spin(s). With modest effort, we can compute the complete
relaxation dispersion profile R|(wg) for arbitrary values of
the mean survival time 74, dipole coupling constant wp s,
internuclear geometry SB; and SBs, and chemical shifts in
the A and B states. The main virtues of the SLE-based
approach are its generality and computational efficiency,
but it does not necessarily provide an understanding of the
physical basis of the computed relaxation behavior. In this
section, we shall therefore obtain the ILRR by a different
approach, based on the semi-classical BWR perturbation
theory.! Although restricted to the motional-narrowing (MN)
regime, where wp7Ta < 1, the BWR approach is more
physically transparent. (As discussed in Appendix E,} we
assume that all three dipole couplings satisfy this inequality,
including the static SP coupling in the ISP-I case.) In
addition, the requirement that the SLE- and BWR-based
results coincide in the MN regime provides a valuable
check.

In the MN regime, the composite spin density operator
evolves according to the “stochastic Redfield equation”
(SRE)

%o’(t): [W—-iLz;-iA-R]o(t),
where ‘W is the same exchange superoperator (8) as in
the SLE (7), Lz is the Zeeman Liouvillian, and R is
the relaxation superoperator prescribed by BWR theory.!
The superoperator A = Lp sp is associated with the time-
independent dipolar coupling between spins S and P in the
ISP-I case. For the other two exchange cases, this term
is absent. For the EMOR model, the SRE (25) can be
solved in site space in the same manner as the SLE (7).
Specifically, Egs. (11) and (12) remain valid, but Eq. (14) is
replaced by

(25)
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G s) = ([sTal* + K+iLS 1A +i A" 7o + R7 74] "),

(26)

where R? is the orientation-dependent relaxation supermatrix
for site @ (Appendix E®).

We use the same notation as in Paper II for
relaxation supermatrix elements between basis operators
that involve a single spin. For example, R!f = (1|R“|22)
= —273/2(1,|R?| P,), with the basis operators numbered as in
Table S1.8 These local relaxation rates are of four kinds. First,
there are longitudinal (R!Z, R3S and RFF) and transverse
(RIL, R3S and REP) auto-spin auto- mode rates. Second,
there are longitudinal (e.g., RS and RSF) and transverse
(e.g., RIS and R3F) cross-spin auto-mode rates, Third, there
are the auto-spin cross-mode rates R!Z, Rfé, and RIL and
the corresponding rates for spin S and spin P. Finally, there
are cross-spin cross-mode rates, like R!P. All these rates
pertain to a particular site @ and they therefore depend on
the orientation of the dipole vectors in that site as detailed in
Appendix E.3

In addition to these single-spin-mode rates, R* contains
local relaxation rates connecting modes involving two or
three spins. The two-spin modes have even parity under
spin inversion conjugation (SIC),”'3!4 whereas the single-
spin and three-spin modes have odd parity. The relaxation
supermatrix R% in the ISTO basis is therefore block-
diagonal; that is, it does not couple modes of different
parity (Appendix E®). The longitudinal relaxation behavior
(and the ILRR) is therefore affected by local relaxation
rates involving two-spin modes only in the ISP-I case,
where A® couples the odd and even blocks of R? (Appendix
E®). The three-spin modes are destroyed by fragmentation
of the spin system in the asymmetric exchange cases
so the ILRR is affected by relaxation rates involving
three-spin modes only in the symmetric ISP-ISP case.
To sum up, the local relaxation rates that affect the
ILRR are of types (1-spin|R%|1-spin) and (2-spin|R®|2-spin)
for the ISP-I case; of type (1-spin|R?|1-spin) only
for the ISP-IS case; and of types (1-spin|R?|1-spin),
(1-spin|R%|3-spin), and (3-spin|R%|3-spin) for the ISP-ISP
case.

We shall carry out the BWR treatment for three
homonuclear spins in the dilute regime, which are also the
conditions of primary interest for applications. Consequently,
we have ks = kp = 1 and Pp < 1. The ILRR in the dilute
regime, given by Egs. (21)—(24) for the different exchange
cases, only involves elements of the supermatrix UPB(0).
Combining Eqgs. (12a) and (13) and the detailed balance
relation Potg = PRTA ~ Ta, WE Obtain

T7BB TA4{B, :TB A -1

U (0):P—A[1 +iLy s -TGHO)T'] , 27
with G*(0) given by Eq. (26). Because the supermatrix
GA(0) is isotropically averaged, it must reflect the axial
symmetry in spin Liouville space. According to the Wigner-
Eckart theorem,'> G*(0) must then be block-diagonal in the
projection index Q of the ISTO basis of state A (Table S1).8
The supermatrix T connects spin modes in states A and B
that are transferred by exchange. It is clear, therefore, that
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the supermatrix T G*(0) T’ is block-diagonal in the projection
index Q of the ISTO basis of state B (Appendix A%), as is
Lg. Because the ILRR is determined by elements from the
0 = 0 block of UBB(0) and since the block-diagonal structure
is maintained under inversion, we need only retain the Q = 0
block of the matrices in Eq. (27). The dimension of this
block is 1, 5, and 19 for exchange case ISP-I, ISP-IS, and
ISP-ISP, respectively (Appendix A). Further simplification
can be achieved by considering the SIC parity”!3!* of the
supermatrix G*(0). We now consider the ILRR in the MN
regime for the three exchange cases, in order of increasing
complexity. For exchange cases ISP-IS and ISP-I, we
only sketch the derivation, which is fully reproduced in
Appendix F.?

In Subsections III A-IIT D, we restrict the treatment
to isochronous spins. The Zeeman Liouvillian in Eq. (27)
can then be dropped, because the Q =0 block of LE is
a null matrix. Explicit expressions for the elements of the
supermatrices A and R® are derived in Appendix E.2 In
Sec. IV D and Appendix G,® we generalize the BWR treatment
to include the effects of chemical shifts.

A. Exchange case ISP-ISP

In this case, T and K are identity matrices and there is no
static dipole coupling, so Egs. (26) and (27) yield

UBB(0) = —2[1-G*0)]"' (28)
Pa

and
G*0)=([1+RY 7o +iLo7a]l™")
=1+ iLQ ) -1+ iLQ INE
X (R 7o (1+iLo7A)7", (29)
where, consistent with the MN approximation, we have
expanded to second order in wpta (that is, to first order
in ||[R%||7a). In Egs. (28) and (29), all matrices refer to

the 19 X 19 Q =0 block of the full 63 X 63 supermatrices.
Because the Q = 0 block of LQ is a null matrix, we obtain

UBB(0) = <R“>* (30)

The desired ILRR can now be obtained by inserting the
required supermatrix elements from Eq. (30) into Eq. (23).
For example,

DR

n=1 p=1

Hdil _
Rl,ISP =Py

-1
(R ] . (31)

For clarity, the summand in Eq. (31) is the (np)-element of
the inverse of the 19 x 19 O = 0 block of the isotropically
averaged relaxation supermatrix (R®), given explicitly by
Eq. (E.17).8 Actually, since the relaxation supermatrix R
itself is block-diagonal with respect to the SIC parity of the
basis operators (Appendix E®), we need only invert the 10 x 10
odd-parity Q = 0 block of (R?) corresponding to the subspace
spanned by the first ten basis operators in Table S1 A.® These
ten spin modes comprise the three single-spin longitudinal
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(L) magnetizations and seven three-spin zero-quantum
coherences (ZQCs), so the 10 X 10 matrix can be further
partitioned as

R.  Ryzoc

(R%) = : (32)

Rzoc  Rzoc
The 3 x 3 longitudinal block of the inverse (R*)™! in Eq. (31)
can then be expressed as

_ _ -1
[(R") 'L = [RL - RuyzocRyhc Rzoen] - (33)

The elements of Ry are auto-mode rates produced exclusively
by self-correlations. In contrast, the elements of Ry zqc
and Rzqc/1. are cross-mode rates produced exclusively by
distinct correlations, corresponding to X # Y in Eq. (E.17).8
Because all relaxation rates are positive, it follows from
Egs. (31) and (33) that the distinct correlations make a
negative contribution that reduces the ILRR: R‘lj'], sp S R‘lml Sse},,f
Relaxation coupling to the three-spin ZQCs occurs only in the
ISP-ISP case, where the three spins exchange as an intact
unit.

B. Exchange case ISP-IS

In this case, UBB(0) in Eq. (27) is a 5X 5 matrix in
the subspace spanned by the first five basis operators (with
Q = 0) in Table S2.% Since there is no static dipole coupling,
the block-diagonality of R* with respect to SIC parity carries
over to G*(0) and UBB(0). To obtain the ILRR, we therefore
need to consider only the 2 X 2 odd-parity Q = 0 subspace
spanned by the first two basis operators I,/V?2 and S./V2, so
that

-1
ﬁBB(O) _ A I—gn —812
Pal —g21 l-—g»
TA 1

T Pa(1—g11— g0+ 8182 — g12821)

[1 — 822 812
X

, (34)
821 I-gn

where, as before, g,, = (n|G*(0)|p). The desired ILRR
can now be obtained by inserting the required supermatrix
elements from Eq. (34) into Eq. (22). For example,

=i PA2(1 —g11— 80+ 81182 — 812821)
Rl == ! . (35
TA 2—gi1—82+812+81)

Evaluating the four matrix elements g,,, in Eq. (35), we obtain
(Appendix F®)

. 2(R;;Rss — RisR.
R(li,llIS:PA ~( 11Rss ~ Ris s~1) ’ (36)
(Rrr + Rss — Rys — Rsy)

where
Ry Rs| _ [(RED) (R [T (Tus) an
Rs;  Rss (RSY (RSS (Tsr) (Tss)|
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The elements of the last matrix are obtained by orientational
averaging of the “cross relaxation” rates

T Iis|_|RD R RYE
Is; Tss RY RY RY
PP PP PP -1
RZZ RZ+ RZ—
x |REP(REF +iwy) REP
REF REF (RPP — i wp)
1P SP
RZZ RZZ
X |(RLDY (RSP, (38)

(REY (RED)

where wy is the common Larmor frequency of the three
isochronous spins in state A. The local relaxation rates
that appear in Eq. (38) are given in explicit form in Egs.
(E.21)~(E.25).% They include cross-spin rates, such as R!”,
as well as cross-mode rates, such as Rf +P . But because all
these rates connect single-spin modes, they only involve
dipolar self-correlations, as follows from the selection rule
(E.15).

As shown in Appendix F,} the ISP-IS result in Eq. (36)
reduces to the previously obtained*> ILRR for the symmetric
two-spin case IS—1S if spin P is removed and to the previously
obtained® ILRR for the asymmetric two-spin case I PI if spin
S is removed.

In the secular approximation, valid for wg > w%) TA,
all cross-mode rates vanish and Egs. (36)-(38) yield
(Appendix F®)

2(rirrss = ris)

R =p — 39
LIS TS A G ¥ rss = 2r1s) 59
where
(RIP 2
rir = (R —< RZ;P , (40a)
2z
(RSP 2
rss=(R>> —< ik (40b)
2z
RIP RSP
ris =(RL) - <—Z;P;Z > (40c)
2z

In the secular approximation, the ILRR is thus seen to be fully
determined by the six unique longitudinal auto-mode rates.

C. Exchange case ISP-I

The dilute-regime ILRR for the ISP-I case, given by
Eq. (24), only involves the element g;; of the supermatrix
G*(0) defined by Eq. (26), where the supermatrix A®
associated with the static SP dipole coupling now must
be reckoned with. Evaluating the element g;;, we find
(Appendix F%)

Ry, = PA[(RI) - (TID)], (41)

with the “cross relaxation” rate



034202-8 Z. Chang and B. Halle

(R + XSg +iwpQ)

11 _ pa
Iﬂzz = RIS,IP X<
PS

where Q = diag(0,1,-1) and Rf ;, = [R]g R7p]. The ele-
ments of the 1 X3 cross-spin relaxation matrices Rf¢ and
R, are given in Eq. (E.25)% and the elements of the 3 x 3
auto-spin relaxation matrices RS, and R%,, can be obtained
from Egs. (E.21)—(E.24).8 All these rates connect single-spin
modes and therefore only involve self-correlations.

The static SP dipole coupling affects the ILRR via the
3 x 3 matrices XS, X, X3¢, and X$ 5, in the single-spin §
and P subspace. In Appendix F,® we show that
Xss Xsp

X(Y —
Xps X

a
AS,SO

[0
AP,s()

where Qgs00 = diag(0,0,0,1,1,—1,—1,2,-2). The elements of
the 9 X 9 relaxation matrix R, in the two-spin-S P subspace,
obtained from Egs. (E.9) to (E.11).% involve IS and IP
self-correlations as well as 1S—/ P distinct correlations. The
elements of the 3 x 9 static dipolar Liouvillian matrices Ag,so
and A}, , can be obtained from Eq. (E.26).®

If we neglect the static SP dipole coupling, then Eq. (42)
reduces to (Appendix F%)

! =RYs(Reg +iwy Q) Ry

+RYp (RS +iwp Q) 'Ry,

(Rgsoo +iwg stOO)_l[ Ag,ZO A(;,ZO]’ (43)

(44)

showing, with Eq. (41), that the IS and /P dipole cou-
plings contribute additively so that R‘I”ﬂl(l SP-I) = R‘llfll(l S-1I)
+ ﬁ‘ffll(l P-I), with the two-spin ILRRs as given in Paper II.
If spin P is located far away from spins / and S, so that
both dipole couplings to spin P are negligibly weak, then
the ISP-I result reduces further to the previously obtained®
result (specialized to isochronous spins) for the asymmetric
two-spin case IS—1.

If we (artificially) neglect cross-spin relaxation, so that
R{, = R}, =0, then Egs. (41) and (42) yield

R\TIII =Pa <RZ = % P (sz,IS + wlz),IP)
x [j(0) + 3 j(wo) + 6 j(2wo)],

where Eq. (E.20a)® was also used. This (unphysical) result
shows that cross-spin relaxation is necessary for the ILRR to
approach zero at high field.

In the secular approximation, valid when wq > a)lzjr A for
the fluctuating 7S and /P dipole couplings and wq > wp for

the static SP coupling, Eq. (42) reduces to (Appendix F%)
R (RO + R (R + X(R2 + Ri[)?

SS pPP SS | RPP
R2? REP + X(R2? + RE)

(45)

ril= , (46)
with
2 2 2
X= §[‘UD,SP Dgy(Qsp)| p- (47)

Here, p is the “33 element” (corresponding to basis operator
Bjo in Table S1 A)? of the inverse of the 3 x 3 O = 0 block
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X{,
REp +XGp+iwpQ)

at

1S,1P 42)

of R in the two-spin-SP subspace. This result shows that,
even in the secular approximation, the dipole couplings of the
labile spin / with the two nonlabile spins S and P do not
contribute independently to the ILRR if wp sp # 0.

D. Chemical shifts

The BWR results presented in Secs. III A-III C were
derived under the assumption that the three spins are
isochronous. In Appendix G,® we generalize the BWR
treatment to include the effects of chemical shifts in the
Zeeman Hamiltonians H? and Hg, as shown in Eq. (1).
Whereas the SLE theory of Sec. Il is valid for arbitrarily large
chemical shifts (including heteronuclear spins), we restrict
the generalized BWR treatment to homonuclear spins, so that
0 < 1. For example, proton shifts rarely exceed 10 ppm.

Chemical shift effects on the ILRR in the dilute regime are
examined in detail in Appendix G.3 One effect is to displace the
primary and secondary dispersion steps to higher or lower fre-
quency, but the relative displacement, of order ¢, is negligible
for homonuclear spins. For the asymmetric exchange cases
ISP-IS and IS P-I, this is the only effect of chemical shifts in
the MN regime. For the two-spin cases I.S-I1S and 1S-1, this
is also the only (negligibly small) effect of chemical shifts.*>

In contrast, for the symmetric exchange case ISP-ISP,
chemical shifts can significantly alter the ILRR dispersion
profile even if § << 1. Formally, this effect can be described
by replacing Eq. (33) with (Appendix G®)

(R™) ™,

- -1
= [RL - PaRy/zoc (PaRzoc +i W) 'Ryqe] ', (48)
where we have introduced the 7 X 7 frequency matrix
WZQ)Q(PADA+PBDB). (49)

The elements of the matrix D4 are linear combinations of the
chemical shifts 6% and 6%, and similarly for Dg, as shown by
Egs. (G.4) and (G.5).3

This modification gives rise to a novel secondary
dispersion step, not present for isochronous spins, centered at
the nonsecular decoupling (NSD) frequency (Appendix G®)

Pa a)zD TA
where 6* can be approximately identified as the largest of 6’;
and 6?, and similarly for &B. At low frequencies, such that
wo < wnsp, chemical shifts have no effect on the ILRR.
At wy = wnsp, there is an inverted secondary dispersion
step as the (negative) contribution from distinct correlations
in the L/ZQC cross-mode rates is partly lost. At higher
frequencies, such that wg > wnsp, R‘ljfll < p remains larger than
for isochronous spins but it never exceeds the ILRR produced
solely by self-correlations.

If chemical shifts are present only in state A, so that
6% =0, then Eq. (50) yields wnsp = w? 74/6™. This result

WNSD = (50)
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is also obtained for the special case P, =1, which has
been discussed previously.” If the chemical shifts are the
same in states A and B (6* = 6® = ), then Eq. (50) yields
wnsp = Pa w% 7a/0, so the secondary dispersion appears at
a much lower frequency. In general, the chemical shift effect
can be neglected if the secondary dispersion step occurs well
above the primary dispersion, that is, if wnsp > 1/74. As seen
from Eq. (50), this is true if the chemical shifts in both states
are sufficiently small that |Pa 6% + Pg 68| < P (wp Ta)%

IV. NUMERICAL RESULTS

In this section, we present numerical calculations that
illustrate the theoretical results obtained in Secs. II and III.
Since the prime application is water-'H relaxation in

|

n=1 p=1
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tissue-like systems, we consider only homonuclear spins
(ks = kp = 1) although the SLE theory in Sec. II can
also handle heteronuclear spin systems. Moreover, in Secs.
IV A-IV C, we assume that the spins are effectively isochro-
nous, so that we can set 65 = dp = 0 in both states A and B.
This assumption is justified in Sec. IV D, where we show that
the effect of chemical shifts is negligibly small in virtually all
situations of practical interest.

In most calculations, the bound fraction of labile spin(s)
is set to the experimentally relevant value of P, = 1073, so we
are in the dilute regime. Whereas the BWR theory of Sec. III
is restricted to the dilute regime, the SLE theory of Sec. II is
valid for arbitrary P,, including the opposite limit of P = 1.
In this limit, Eqs. (12b), (13), (14), and (D.15)? yield for the
ISP-ISP case

-1
3 3
Riisp=3 {Z S (nl{/ra+ilz+iLpy ') - I/TA]_llp)} , (51)

a result that we have used in a previous study.” In some
calculations, we use Pa = 10~ to ensure that the BWR and
SLE results agree to a high level of accuracy.

The calculation of the ILRR from SLE theory proceeds
as follows. First, we construct the 63 X 63 supermatrix within
square brackets in Eq. (14) from the Zeeman and dipolar
Liouvillian supermatrices Lz and Lp (Appendixes B and C?)
and the exchange supermatrix K (Sec. II A). We then invert
this matrix and compute the isotropic average over the Euler
angles Q% = (y*,9%,¢%). For the angles ¢ and 9%, which
determine the orientation of the internuclear vector r{, weuse
Lebedev quadrature with 350 points on the unit sphere.'>!®
For the angle ¢, which determines the orientation of the
nuclear plane about the r{, axis, we use a uniform grid with
30 points. From the G*(0) supermatrix obtained in this way
and the exchange matrix T (Sec. II A), we obtain UPB(0)
from Eq. (12a). Finally, the ILRR in the dilute regime for the
three exchange cases, R‘I’fll, Rcl"“l g Or Rj"ﬂl p- i calculated from
Egs. (24), (22b), or (23c), respectively. When using Eq. (24)
for the ISP-I case, the ILRR is actually obtained directly
from G*(0), bypassing the calculation of UBE(0).

For the calculation of the ILRR from BWR theory, we
use Eqgs. (41)—(43) for the ISP-I case, Egs. (36)—(38) for
the ISP-IS case and Eqgs. (31) and (33) for the /ISP-ISP
case, along with the required elements of the local relaxation
supermatrix R? from Appendix E.? The isotropic orientational
averages are computed in the same way as for the SLE theory.
For all three exchange cases, we have confirmed that the BWR
results coincide, to within numerical accuracy, with the SLE
results in the MN regime.

A. Overview of dispersion profiles

To provide an overview of the longitudinal relaxation
behavior of the three-spin system, we present in Fig. 2 the

complete dispersion profiles of Eﬁ‘fll(l SP-I), 1/2\?‘11 SUSP-IS),
and E‘f“,s H(ISP-ISP) at four values of the mean survival
time T, ranging from the MN regime with wp7s = 0.01
to the ultraslow-motion (USM) regime with wp7a = 100.
These 12 profiles, all calculated from the SLE theory, are
shown in the panels in left column of Fig. 2. Here, we
assume an equilateral triangle geometry (8; = Bs = 60°)
so all three dipole couplings have the same magnitude,
taken to be wp = 1 x 10° rad s~!, which corresponds to an
internuclear separation of r;g = 2.245 A for two protons.
(Other internuclear geometries are considered in Sec. IV B.)

The panels in right column of Fig. 2 show the
corresponding dispersion profiles for a two-spin (/S) system
with the same values of wp and 74 as in the left-hand panel.
These profiles were computed from the two-spin dipolar
EMOR theory presented in Papers I and II. The 1S/ profile
can also be obtained from the three-spin /SP-I result by
setting Bp to a small value, which corresponds to locating
spin P far away from spins / and S. Likewise, the IS—IS
profile can be obtained from the three-spin /SP-IS result
with small Sp. In both of these cases, the remote spin P is
nonlabile.

In contrast, if we make the labile spin P remote in
the ISP-ISP case, we obtain a situation where the ILRR
is very small because the temporal decay of the observed
total longitudinal magnetization of the three spins has an
extended tail due to slow relaxation of the weakly dipole-
coupled spin P. Because the magnetization decay is then
strongly non-exponential, it is not adequately described by
the ILRR. In any event, this “pathological” scenario is of
little practical relevance, partly because of the special nature
of the spin system and partly because of our neglect of
scalar couplings, which would have a substantial effect in
this particular case. This situation cannot occur when the
exchanging species contains one (ISP-I) or two (ISP-IS)
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FIG. 2. ILRR dispersion profiles for the three-spin cases (left column) and for the two-spin cases (right column; same y-axis range as in the left column).
Color coding of exchange cases as in top panels. Parameter values: P = 1073, wp=10°rad s}, Br=Bs=60° and 75 = 1077 s (a), 107% s (b), 1072 s (¢),

or 1073 s (d).

spins, which are the cases of primary interest for applications
(see Sec. I). For those cases, as well as for the ISP—ISP case
with magnetic equivalence (or, at least, three similar dipole
couplings), we expect that the decay of the total observed
longitudinal magnetization of the labile spin(s) is very nearly
exponential in the dilute regime, as shown explicitly in Paper

II for the two-spin /S5-I case.

1. Motional-narrowing regime

In Fig. 2(a), with 7o =100 ns and wp7s = 0.01, we
are squarely in the MN regime, where the BWR results
of Sec. III apply. Let us first compare the symmetric
exchange cases ISP—ISP and I1S-IS, where the spin system
exchanges as an intact unit. The /S—IS profile is given in
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Paper I as
R, s(IS-1S)
2 0.2 0.8
= ZPyw? A LS (52)
3 1 +(a)0TA)2 1 +(2a)0TA)2

In the three-spin system, each spin is involved in two
equally strong dipole couplings, so one might expect
IS‘?:‘ISP(ISP—ISP) to be precisely a factor 2 larger than
R, ((IS-IS). This is true as long as we only take

self-correlations into account, that is, E‘fﬂ;?g(ISP—ISP)

=2 I?‘lml $(IS—IS). However, correlations between distinct
(albeit, here, equally strong) dipole couplings also contribute
(negatively) to R, s ,(ISP-ISP). This contribution happens
to be quite small for the equilateral triangle geometry

considered in Fig. 2, so E‘lifIISP(ISP—ISP) ismerely 0.74% less

than ZET‘II (IS-IS) in the extreme-narrowing (EN) regime.
(Depending on wy, the relative difference varies between
—0.6% and —0.8%, just as for spherical-top rotation in
isotropic fluids.”)

Consider now the asymmetric exchange cases ISP-I1S
and IS-I, with one nonlabile spin. In the MN regime,
which is also the fast-exchange regime for the EMOR model,
relaxation rates that couple labile-spin modes are isotropically
averaged, as in the first part of Eq. (37). In contrast, relaxation
rates involving one or two nonlabile-spin modes are not
exchange averaged, cf. Eq. (38). The local relaxation matrix
(not exchange-averaged) has lower than axial symmetry and
the Wigner-Eckart theorem does not forbid relaxation coupling
of local spin modes with different quantum order Q, which
we refer to as cross-mode relaxation.’ If, as is the case here,
the exchanging spin system contains one or two spins, the
invariant odd-parity subspace only contains single-spin modes.
The only available cross-mode relaxation channel is therefore
between the longitudinal and transverse magnetizations of the
same or different spins, at least one of which is nonlabile.”

Single-spin cross-mode relaxation is associated with
nonsecular terms in the BWR master equation, that is,
terms with M’ # —M in Eq. (E.4).% It is therefore eliminated
by differential Larmor precession at higher frequencies, a
phenomenon that we refer to as nonsecular decoupling. As
a consequence, the EN regime is split into two subregimes:>
the zero-field (ZF) regime with wy < sz Ta, and the low-
field (LF) regime with sz TA < wo < 1/74. Single-spin
cross-mode relaxation is only effective in the ZF regime,
where it makes a negative contribution to the ILRR.> As a
result, the dispersion profile exhibits an inverted secondary
dispersion step at wp = (uzD Ta, in addition to the primary
dispersion step at wg ~ 1/7. The dashed dispersion profiles
in Fig. 2(a) were computed from the BWR results in the secular
approximation, where cross-mode relaxation is neglected. The
secular approximation is evidently not valid in the ZF regime.
Comparing the ISP-IS and IS-I profiles in Fig. 2(a), we
see that, while the secondary dispersion occurs at the same
frequency, the step is much smaller for the ISP-IS case (~4%
versus a factor ~2).

In the two-spin /S system, the ILRR is reduced by a factor
5 in the ZF regime and by a factor ~2.5 in the LF regime when
the S spin becomes nonlabile,’ that is, going from IS—IS to
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1S-1. In contrast, in the three-spin ISP system, the ILRR is
only reduced by ~29% in the ZF regime and by ~26% in the
LF regime when the P spin becomes nonlabile, that is, going
from ISP-ISP to ISP-IS. This difference reflects the fact
that, for the three-spin system, the labile / and S spins are
each involved in two dipole couplings, only one of which is
fragmented by exchange.

Like the I1SP-IS profile, the ISP-I profile in Fig. 2(a)
exhibits a secondary dispersion in addition to the primary
dispersion at wg =~ 1/74. However, the secondary dispersion
step now appears at wy =~ wp (rather than at wg ~ sz Ta) and it
is not inverted. (The irregular “fine-structure” in the secondary
dispersion step of the 1S P-I profiles in Figures 2(a) and 2(b)
is a real feature — not a numerical imperfection.) The origin
of the secondary dispersion step in the ISP-I profile is the
static dipole coupling between the nonlabile spins S and P. If
we set wp, sp = 0 without altering the other two (equal) dipole
couplings, then this secondary dispersion step disappears and
instead an inverted dispersion step at wg = a)%) T appears (the
dashed-dotted curve in Fig. 2(a)). In fact, for wp sp = 0, we
have E‘ffll(l SP-I)=2 E‘ffll(l S-I), as noted in Sec. ITI C.

In Appendix H,? we examine in detail how the static dipole
coupling removes the inverted secondary dispersion step at
wo = w% 7a and instead produces a non-inverted secondary
dispersion step at wp =~ wp. To characterize the strength of
the static dipole coupling, we introduce the dimensionless
parameter

wp,sp
e= 2 (53)
wD’I TA
2 _ 2 2 L
where wp, ; = wp, ;¢ +wp . We refer to the static dipole

coupling wp sp as weak if € < 1 and as strong if € > 1. For
the equilateral triangle geometry assumed in Fig. 2, where all
three dipole couplings are equally strong, Eq. (53) implies that
€ > 1 in the MN regime (wp7a < 1). The weak coupling
limit € < 1 is only relevant when one of the nonlabile spins is
located far from the other two spins, in which case the 1.5P-/
case effectively reduces to the 1S—1 case (Appendix H®).

The key to understanding the effect of the static dipole
coupling is the singular nature of the matrix X in Eq. (43).
Specifically, at all frequencies wy, X has one zero eigenvalue
and the associated eigenvector defines a one-dimensional
unitary subspace, even though X is Hermitian only for wy = 0
(Appendix H®). A weak static dipole coupling has no effect
at all; the dispersion profile is the same as for wp sp =0
(the dashed-dotted profile in Fig. 2(a)), with an inverted
secondary dispersion at wg ~ sz T A, Where single-spin cross-
mode relaxation is abolished by nonsecular decoupling. A
strong static dipole coupling projects the cross-spin and auto-
spin relaxation matrices onto the unitary subspace associated
with the zero eigenvalue (Appendix H®). As a result, the ZF
regime is extended from wy = a)zD Ta t0 Wy = wp,sp, Where a
secondary dispersion step appears. Above this frequency,
single-spin cross-mode relaxation is no longer effective
and the secular approximation, Eq. (46), is valid (dashed
profile in Fig. 2(a)). Single-spin cross-mode relaxation occurs
throughout the extended ZF regime (up to wy = wp, sp), but it
is modified by the static dipole coupling. Above wy = wp, sp,
this modified single-spin cross-mode relaxation is abolished
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by nonsecular decoupling, but this effect, which increases R{" ,
is overshadowed by the effects of nonsecular decoupling on

the matrix X in Eq. (43), which decreases R | thus accounting

for the non-inverted shape of the secondai}g/ dispersion step
in the presence of a strong static dipole coupling. Nonsecular
decoupling modifies X in two ways. First, it eliminates the
nonsecular part of static dipole coupling, that is, terms with
M # 0in Eq. (E.8).% Second, it eliminates the nonsecular part
of the two-spin relaxation matrix RS, corresponding to terms
with M’ # —M in Eq. (E.4).® Note that, although relaxation
coupling of two-spin modes with different quantum order Q
is thus eliminated, cross-mode relaxation within the Q-blocks
can still occur above the secondary dispersion (wo > wp,_sp).
Note also that, whereas the strength of the static dipole
coupling determines the frequency of the secondary dispersion

step, it has no effect on R in the ZF regime as long as the

coupling is strong (€ > 1).

2. Ultraslow-motion regime

Increasing 74, thereby moving from the MN regime to
the USM regime, has two principal effects on the dispersion
profile, as described in Papers I and II for the two-spin system.
First, the position of the primary dispersion step at wy = 1/7
is down-shifted in frequency until 74 becomes comparable
to 1/wp (=107 s, here) and eventually stops at wp = wp
when the USM limit is reached. Second, the ILRR in the ZF
regime first increases and then decreases, with a maximum
near wpTa ~ 1. As seen from Figs. 2(a)-2(d), this is true for
all three exchange cases. The continuous variation of R%(0)
with 74 is shown in Fig. 3 for the five cases. For the two-spin
cases, these curves are given by the analytical ZF results in
Papers I and II,

2
U.)D TA

[5 + (wpTa)?]

RI(0) = %PA (IS-1),  (54a)
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FIG. 3. Zero-field limit of the ILRR versus mean survival time for exchange
case I S P-I (red solid curve), IS P-1S (blue solid curve), I S P-I S P (black
solid curve), I1S—I (red dashed-dotted curve), and I1S—IS (blue dashed-
dotted curve), computed from the SLE results of this work (solid curves)
or from Eq. (54) (dashed-dotted curves). Parameter values: P = 1073, wp
=10 rad s~ and B = B.s = 60°. The black dashed curve is (2/3) Pa/Ta.
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il 2 WhTA

RO = 3 AT wp rar]
For the three-spin cases, where simple analytical results are
not available, the maximum occurs at T4 values slightly below
1/wp. For the equilateral triangle geometry examined in Fig. 3,
the /SP-IS curve happens to be close to the /S-IS curve,
but for other internuclear geometries, the detailed shape, and
even the rank order, of the three-spin curves can differ from
that shown in Fig. 3. In the IlSM limit, wp7a > 1, the
two-spin curves both reduce to R¥(0) = (2/3) Pa/7a. In the
same limit, the three-spin curves, while not far from this
value, differ slightly, as seen in Fig. 2(d) for the equilateral
triangle geometry. Also for other internuclear geometries,
R%(wy) is inversely proportional to 7 in the USM regime,
so we can write 1/5?”(0) =(2/3) (Pa/7a) f(B1, Bs), where
f(Br1,Bs) is a different function for each of the three cases.
For B; = Bs = 60°, f =~ 0.907, 0.957, and 0.925 for ISP-I,
ISP-IS, and ISP—ISP, respectively.

Returning to the dispersion profiles in Fig. 2, we note
that, once the USM limit is reached (as in Fig. 2(d)), E?il(wo)
is inversely proportional to 7 over the whole frequency range
and the shape and position of the dispersion profile no longer
change as 74 is further increased. For the IS—IS case in the
USM regime, we showed in Paper I that

R (15-15)
2P 0.2 0.8
"~ 3 74 [+ (wo/wp)* 1+ Quwo/wp)?|’

so the dispersion has the same “Lorentzian” shape as in
the MN regime, but now with 1/wp playing the role of an
apparent correlation time. In fact, Eq. (55) is obtained from
Eq. (52) by substituting 1/wp for 7. For the other four cases,
where analytical results are not available, the USM profiles
are no longer “Lorentzian” but exhibit a “fine-structure” that is
particularly striking for the three-spin cases, with two distinct
maxima (or “bumps”) for the equilateral triangle geometry
(Fig. 2(d)).

(IS-1S).  (54b)

(55)

B. Internuclear geometry

The ILRR depends on the fixed relative orientation of the
internuclear vectors as well as on the length of those vectors,
which determines the magnitude of the dipole couplings. In
other words, the ILRR depends on the angles 8y and SBs (Fig. 1)
directly via Eq. (4), as well as indirectly via Eq. (6). This is
true for all three exchange cases. For the ISP-ISP case in
the MN regime, Eq. (E.17)® shows that the direct dependence
on these angles enters solely via the distinct correlations.

So far, we have examined the equilateral triangle
geometry, where the three dipole couplings are of equal
magnitude. To illustrate the effect of the internuclear geometry,

we show in Fig. 4 the dispersion profiles of R‘li’“I(I SP-I),
I?‘lml ISP-IS), and I?‘lml ¢p(ISP-ISP) for five less symmetric
nuclear configurations. For all these geometries, the I-S dipole
coupling is taken to be the same, wp js = 1 X 10° rad s~'. The
other two dipole couplings are then determined by the angles
B1 and Bs in Eq. (6). The examined internuclear geometries

are drawn to scale in Fig. 4, where thick and dashed-dotted
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FIG. 4. ILRR dispersion profiles for the three-spin cases with different nuclear geometries as indicated to the right. Parameter values: Po=1073, wp, ;s

=10°rad s™!, and 7 = 10~ s (left column) or 10 s (right column).

lines represent dipole couplings that are stronger or weaker,
respectively, than wp s s. For reference, we show the equilateral
triangle geometry (B; = Bs = 60°) in Fig. 4(a). The other
panels show the effect of weakening one (Fig. 4(b)) or two
(Fig. 4(c)) dipole couplings, or making one coupling stronger
and the other weaker (Fig. 4(d)). In Figs. 4(b) and 4(d), two
geometries are included that differ by interchange of the 7 and
S spins. Because of the nuclear permutation symmetry of the

ILRR (Sec. I1 C), the 1’3‘(11111 g and ﬁ‘f‘ll p profiles are unaffected
by this permutation. For the permuted geometry (drawn below
the original geometry in Fig. 4), we therefore display only the
R‘fll profile (dashed).

The mean survival time 75 = 1 us for the panels in the left
column of Fig. 4, whereas 75 = 100 us for the panels in the
right column. These 74 values are in the range typically found

for internal water molecules and labile protons in globular



034202-14 Z. Chang and B. Halle

proteins.!” Because wp ;5 Ta = 0.1 in the left column, these
dispersion profiles can be rationalized almost quantitatively
with the aid of BWR theory (Sec. III). On the other hand, since
wp,1s Ta = 10 in the right column, these dispersion profiles
are nearly in the USM limit with respect to the I-S dipole
coupling, but not always for the other dipole couplings.

We examine first how the dispersion profile is affected
by internuclear geometry when 75, =1 us (left column of
panels). Going from an equilateral triangle (Fig. 4(a)) to an
isosceles triangle with 8; = 140° and Bs = 20° (solid curves in
Fig. 4(b), corresponding to the uppermost geometry depicted
on the right), so wp sp is ~15% of wp s = wp,rp, we find
that ﬁ‘f“l sp(0) and Rdl 1 5(0) are reduced by factors of 0.51 and
0.78, whereas the dlspers10n shape is nearly unaffected. A
twofold reduction of R‘I"ll sp 1s expected in the MN regime if
distinct correlations can be neglected, so the three longitudinal
magnetizations do not couple with the seven three-spin zero-
quantum coherences in (R?) of Eq. (32), and if wp sp =0,
so R and RIP are reduced by a factor 2 and R =0
(Appendix E®).

In contrast, while Rdll ;(0) is only reduced by a factor 0.90,
the dispersion shape changes markedly when the static S—P
coupling is weakened (Fig. 4(b)). In Fig. 4(a), the secondary
dispersion step at wy = wp_sp = 10° rad s™' merges smoothly
with the primary dispersion step at wg ~ 1/74 = 10% rad s7!
In Fig. 4(b), where wp sp ~ 1.5 % 10% rad s7!, the secondary
dispersion is downshifted and reduced in magnitude, whereas
the primary dispersion step is nearly unaffected since the
dipole couplings involving the labile / spin are the same as
in Fig. 4(a). Interchanging the / and S spins, so that Br=20°

and Bs = 140°, has no effect on the R(f‘ll ¢p and R3 I ¢ profiles

(Sec. II C), but the Rd‘ 1 profile (dashed) changes qualitatively
because now the weakened dipole coupling is not the static
one.

Next, we consider the isosceles triangle geometry
(Br=Bs = 75 )in Fig. 4(c), where wp 1p = wp, sp is ~14% of
wp,ss- The R1 15 pwo) profile is strongly affected; relative to

Fig. 4(a), Rd' LIS p(0) is reduced by a factor 0.028, a much larger
effect than the factor 1/3 expected (for the self-correlations)
from removal of two out of three dipole couplings. As already
noted, this large reduction of the ILRR is the result of
a distinctly biphasic magnetization decay with very slow
magnetization transfer from the weakly dipole-coupled spin
P. In contrast, making the (nonlabile) P spin remote converts
the 1SP—IS case to the S—IS case. Indeed, 1’2\‘11‘11 SUSP-IS)in
Fig. 4(c) differs by only 0.8 % from E?j', S(IS-1S) in Fig. 2(b).
For the 1SP-I case, the situation is more complex. Whereas
Ed" L(ISP-T) closely follows Rdll L (IS-1) for wy > 10° rad s7*,
it does not exhibit the pronounced inverted dispersion step
seen in Fig. 2(b). Instead, there is a small bump in the R‘lel
profile due to two small overlapping secondary dispersion
steps, one of which is inverted. For this geometry, € ~ 1.4
so the static dipole coupling is neither weak nor strong and
the secondary dispersion steps appear at almost the same
frequency wg = wp,_sp ~ wZD I TA-

Figure 4(d) shows the dispersion profiles for a right-
angled triangle geometry with 8; = 90° and Bs = 30°, making
wp,7p larger by a factor 5.2 and wpgsp smaller by a

J. Chem. Phys. 145, 034202 (2016)

factor 0.65 as compared to wp, ;5. The relaxation is now
dominated by the strongest dipole coupling wp,;p, Which
corresponds to a proton-proton separation of 1.3 A (less than
the smallest physically realized proton-proton separation of
~1.5 A). In contrast to the equilateral triangle geometry in
Fig. 4(a), distinct correlations now play an important role
for the ISP-ISP profile, reducing R‘li‘lls »(0) by 40% in the
BWR approximation and strongly coupling the longitudinal
magnetizations to the three-spin zero-quantum coherences.
As a result, even though the longitudinal auto-mode rates are
now much larger (by a factor 14 for RI, and RI” and by
a factor 27 for RIP), RT“I sp(0) is actually somewhat smaller
than in Fig. 2(b). In addition, the primary dispersion is slightly
upshifted and features a small high-frequency shoulder (hardly
visible). In Fig. 4(d) (in contrast to Fig. 4(c)), the RGll LIS profile

pdil
1LLISP

Consider now the Rdll profiles in Fig. 4(d). The upper
geometry corresponds to a weak static dipole coupling
(e = 0.23), so we observe an inverted secondary dispersion
step at woy ~ wp, ;¢ Ta = 3 X 10° rad s7'. The lower geometry
corresponds to a strong static dipole coupling (e = 36),
yielding a non-inverted secondary dispersion step at wy
X wp,sp ® 5 X 10° rad s~!, which is hardly visible in Fig. 4(d)
because it overlaps with the primary dispersion and because
Rdll is small (since the fluctuating dipole coupling wp,;p is
8- fold smaller than for the upper geometry).

We now consider the effect of internuclear geometry
when 74 = 100 us (right column of panels in Fig. 4). Since
we are nearly in the USM limit, a further increase of 74
hardly affects the shape of the dispersion profiles. Except
for certain special cases (see below), the dispersion shape is
much less sensitive to the internuclear geometry in the USM
regime than in the MN regime. For example, Rd”(O) differs
by at most a few percent among the geometries in Figs. 4(a)
and 4(b). This is also true for RGlll |5 and Rd‘1 in Fig. 4(c),
although the primary dlspersmns are shghtly down-shifted
in frequency as compared to Figs. 4(a) and 4(b). As for
A =1 ps, R‘lml ¢p in Fig. 4(c) is strongly suppressed because
of slow magnetization transfer from the weakly coupled P
spin. The dispersion profiles in Fig. 4(d) vary considerably
in shape. The pronounced fine-structure in the Rdl \.15 profile

happens to be very similar to the R profile.

(also present, albeit to lesser extent, in the Rdl LISP profile) is
likely related to the (orientation-dependent) elgenfrequenmes
of the dipolar Liouvillian. If the unphysically strong I-P
coupling is made slightly weaker by increasing SBs from 30
to 37°, whereby wp jp =2.34 X 10° rad s7! corresponding
to ryg = 1.69 A, the fine-structure almost disappears (blue
dashed-dotted curve in Fig. 4(d)).

C. Odd spectral density function

With the exception of the longitudinal auto-mode rates,
such as R3S and R5P, the local relaxation rates involve the odd-
valued spectral density function (OSDF) k(w) = wo7a j(w)
as well as the usual even-valued spectral density function
j(w) = ta/[1 + (woTa)?] (Appendix E®). We have recently
shown that, contrary to conventional wisdom,' the OSDF
can affect the longitudinal relaxation of a three-spin system
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without full nuclear permutation symmetry.” It is therefore of
some theoretical interest to examine the effect of the OSDF
in the three EMOR cases: ISP-I, ISP-IS, and ISP-ISP.
Because the spectral density function only appears in the
BWR theory, this issue is only relevant in the MN regime.
Figure 5 shows the dispersion of R‘lj"l sp(USP-ISP) for
an isosceles triangle geometry with 8; = 110° and Bg = 35°.
The profiles computed from the SLE and BWR theories
coincide, as expected since wp, ;s Ta = wp,7p Ta = 0.01 and
wp,spTa ~ 0.002, so all three dipole couplings are in the
MN regime. The upper panel of Fig. 5 shows that, for this
internuclear geometry, removal of the OSDF decreases R‘li‘ll sp
by up to 2.5%. Two conditions must be met for the OSDF to
influence the longitudinal relaxation of a three-spin system.”
First, the three spins must be geometrically or dynamically
nonequivalent. The three spins are dynamically equivalent in
the ISP-ISP EMOR model, but they are not geometrically
equivalent for the geometry considered in Fig. 5. (The OSDF
has no effect on R4 __ for the equilateral geometry examined

LISP
in Fig. 2.) Second, the OSDF can only have an effect in
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FIG. 5. Dispersion of R‘f‘ll spISP-1SP) computed from the SLE theory
(red solid curve), from the BWR theory (blue dashed), and from the BWR
theory with only self-correlations included (black dashed-dotted). Param-
eter values: Po=10"% 7o=10"" s, wp, 1S = 10° rad s, Br=110° and
Bs =35° The upper pzmel shows the effect of removing the OSDF k(w) as
the relative difference [R Urspk=0)— R‘li‘lsp(k + 0)]/R ISP(k #0), with

both rates computed from the BWR theory.
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the disperswe regime, 0.1 < woTa < 10, as is evident from
Fig. 5. For R‘f lISP, which is governed by the 10 X 10 odd-parity
zero-quantum block of the isotropically averaged relaxation
supermatrix (R*) in Eq. (31), the OSDF only appears in
the cross-mode rates that couple the seven odd-rank modes
with the three even-rank modes.” If the OSDF is neglected,
it is therefore sufficient in Eq. (31) to invert the odd-rank
7 x 7 block. Moreover, because the coupling of the three
longitudinal modes with the seven zero-quantum coherences is
mediated entirely by distinct correlations, the OSDF can only
affect R‘lml sp Via the distinct correlations.” For the geometry
considered in Fig. 5, distinct correlations are seen to make a
large (negative) contribution to R‘lj"l p» thereby maximizing
the OSDF effect.

For the ISP-IS case, the OSDF has no effect at all
on R‘]j”, - To demonstrate this, we first note that, if there
is an OSDF effect, it must be fully manifested already
in the secular approximation, valid for wg7a > (wpTa)>
This follows because (wp74)? < 1 in the MN regime and
woTa ~ 1 in the dispersive regime (see above). Any OSDF
effect on R‘I“II ¢ must therefore by contained in Eq. (39). As
seen from Eq. (40), this expression only involves longitudinal
auto-mode rates, which are unaffected by the OSDF (Appendix
E®). Hence, the OSDF cannot affect R‘f‘ll ¢ as we have also
confirmed numerically.

For the 1SP-I case, the same arguments imply that the
OSDF can only affect R, via the “cross-relaxation” rate '’ in
Eq. (46). Since the longltudlnal auto-mode rates are unaﬁected
by the OSDF (Appendix E®), any OSDF effect must enter via
the quantity X in Eq. (47), specifically via the relaxation rates
in the 3 X3 zero-quantum two-spin-SP relaxation matrix.
Figure 6 shows the dispersion of Rdll for an equilateral triangle
geometry. The profiles computed from the SLE and BWR
theories coincide, as expected since wpTa = 0.01. As seen
from the upper panel (red solid curve), omission of the OSDF
increases RClll in the dispersive regime, but only by a tiny
amount (at most 14 ppm in this example). To demonstrate that
this really is an OSDF effect, we multiplied k(w) by a factor
of 100. The effect of removing this artificially inflated OSDF
(blue dashed-dotted curve in Fig. 6) is qualitatively the same,
but more than three orders of magnitude larger than for the
true OSDF. The opposite signs of the OSDF effects in Figs. 5
and 6 reflect their different origins: via cross-mode relaxation
between odd-rank and even-rank zero-quantum modes for the
ISP-ISP case, and via the static dipole coupling wp _sp and
two-spin rates for the /S P—I case. We note also that the OSDF
can influence Rd" even when the three spins are geometrically
equivalent, because they are not dynamically equivalent in the
1SP-I case.

D. Chemical shifts

For the ISP-ISP case and in the MN regime, chemical
shifts increase the ILRR above the frequency, wnsp, where
cross-mode relaxation is largely eliminated (Sec. III D). This
behavior is illustrated in Fig. 7 for a nuclear configuration
with By =90° and Bs =30°. For the chosen parameter
values, wp, x Ta < 0.005, so all three dipole couplings are in
the MN regime. As expected, the profiles computed from
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FIG. 6. Dispersion of Rdll "(ISP-I) computed from the SLE theory (red
solid curve), from the BWR theory (blue dashed), and from the BWR
theory in the secular appr0x1mat10n (black dashed-dotted). Parameter val-
ues: PA=10"% 74o=10" s, wp=10° rad s~!, and B; =Bs=60° (equi-
lateral triangle). The upper panel shows the effect of removing the OSDF
k(w) as the relative difference [Rdﬂ (k=0)= R4 (k 0)] /Rd‘l (k #0), with
both rates computed from the BWR theory 1n the secular approximation.
The resulting curve (red solid) has been multiplied by a factor of 10°.
Also shown (blue dashed-dotted curve) is the percent relative difference
[Rd” (k =0)— R4 (100k)]/R"",(100 k), where k(w) has been artificially
multlphed by a factor of 100.

the generalized BWR theory (Sec. IIl D, Appendix G)
coincide with the profiles computed from the SLE theory,
which incorporates the full effect of chemical shifts. For
the internuclear geometry examined in Fig. 7, cross-mode
relaxation is almost completely abolished even for modest

shifts, so that, for wg > wnsp, 1’2\‘1“11 ¢p Nearly coincides with

the ILRR R‘lj'l,sse},f induced solely by self-correlations.

This is true for most other geometries, but for the
equilateral triangle geometry, chemical shifts only eliminate
60% of the cross-mode contribution to R ", sp- (Due to the
small cross-mode contribution for that geometry, the shift
effect is merely 0.4%, other parameters being the same as in
Fig. 7))

For the dispersion profile in Fig. 7 pertaining to equal
shifts in states A and B, the secondary dispersion step exhibits
two substeps, corresponding to NSD frequencies of ~10°
and ~2 x 10* rad s™!, as predicted by Eq. (50) for the I-S
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FIG. 7. Dispersion of I/?\‘]i‘l, spISP-1SP) computed from the SLE theory
(red solid curves), from the generalized BWR theory (blue dashed), and
from the BWR theory without shifts (black dashed) and with only self-
correlations (black dashed-dotted). Parameter values: P = 1074, 74 =1078s,
wp,1s=10rads™!, By =90° Bs =30° 65 =5 ppm, and § p = 10 ppm. The
superimposed SLE- and BWR-derived profiles were computed with the same
shifts in states A and B (6 = 68) or with no shifts in state B (6B = 0).

and /-P dipole couplings, respectively, adopted here. Also
in accordance with Eq. (50), the secondary dispersion is
upshifted by a factor 1/P, = 10* when the shifts are removed
from state B (Fig. 7).

Within the MN regime, the chemical shift effect on
the R‘lml sp dispersion profile becomes negligibly small
when wnsp7a > 1, or, for equal shifts in states A and
B, when & < Pa(wpTa)?> (Sec. III D). For P, = 1073
wp ~ 10° rad s~!, and chemical shifts of order 10 ppm,
we thus expect the chemical shift effect to be negligible for
T4 > 107 5. Although this prediction is strictly valid only
within the MN regime, Fig. 8 shows that it is consistent with
the (exact) SLE-based results.
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FIG. 8. Relative difference, [ﬁl,lsp(u)(), ds, 6p) - El’ Isp(a)(), 0, 0)]/
R 1,1sp(0,0,0), of the ISP-ISP ILRR with and without chemical shifts,
computed from the SLE theory. Parameter values: Pj= 1073, wp, IS
=10°rad s™!, B; =80°, Bs =40°, 55 =5 ppm, 6 p = 10 ppm (same shifts in
states A and B), and 74 = 10785,107%s, or 1074
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In Appendix G,® we show that chemical shifts have no
significant effect for the asymmetric exchange cases ISP-I1S
and ISP-I as long as we are in the MN regime. Calculations
based on the SLE theory confirm that this is true also outside
the MN regime, the relative shift effect being less than 0.01%
in all examined cases.

V. CONCLUSIONS

In Papers I and II, the general non-perturbative
stochastic theory of longitudinal relaxation by the dipolar
EMOR mechanism® was implemented for two-spin systems
with symmetric (/S-1S) and asymmetric (/S-I) exchange,
respectively. Here, we have implemented the theory for
three-spin systems with symmetric (/SP-1SP) or asymmetric
(ISP-1S and ISP-I) exchange. The theory is valid for
homonuclear as well as heteronuclear spins and for any
distribution of labile spins between the anisotropic (A) sites
and the isotropic bulk (B) state. However, because water-
proton relaxation in tissue-like systems is arguably the most
important application of the dipolar EMOR theory, our
theoretical analysis emphasizes homonuclear spin systems
in the dilute regime (P < 1). Within this realm, the three
examined exchange cases might describe a protein-bound
H30" ion (IS P-ISP), an internal H,O molecule with a nearby
nonlabile proton (ISP-IS), or a labile O-H or N-H proton
with two nearby nonlabile protons (/SP-I).

A substantial part of the present study concerns the
development of a perturbation (BWR) theory for the three-
spin dipolar EMOR model. The semi-analytical results
obtained for this limiting form of the general (SLE-based)
theory reveal explicitly how the various features of the
relaxation dispersion profile emerge from the interplay of
the Larmor frequency (including chemical shifts), the static
dipole coupling (in the ISP-I case), and specific elements
of the local relaxation supermatrix, including cross-spin and
cross-mode relaxation rates. Apart from the primary dispersion
step at wo = 1/74, three kinds of secondary dispersion step
can appear. (1) For the ISP-IS case and the ISP-I case
with a weak static dipole coupling, an inverted secondary
dispersion appears at wg = w%, ; Ta because of nonsecular
decoupling of longitudinal-transverse cross-mode relaxation.
(2) For the ISP-I case with a strong static dipole coupling,
a (non-inverted) secondary dispersion appears at wy = wp_sp,
primarily due to decoupling of the nonsecular parts of the
static dipole coupling and the two-spin relaxation matrix. (3)
For the 1SP-ISP case, an inverted secondary dispersion step
appears at wy ~ wp Ta/6™ or PAw? Ta/d in the presence of
chemical shifts.

Compared to our findings for the two-spin system in
Papers I and II, the present analysis of the three-spin system
has revealed several new phenomena or features:

o Longitudinal relaxation in the MN regime involves in
addition to the usual single-spin modes I, S,, and P,
two-spin modes (/SP-I case), and three-spin modes
(ISP-ISP case), and it can therefore not be described
by extended Solomon equations.

J. Chem. Phys. 145, 034202 (2016)

e Correlations between distinct dipole couplings affect
the longitudinal relaxation in the MN regime
for the ISP-ISP case (via one-spin/three-spin
and three-spin/three-spin rates) and for the ISP-I
case (via two-spin/two-spin rates), but not for the
ISP-IS case (which only involves one-spin/one-spin
rates).

e The shape of the longitudinal relaxation dispersion
profile depends on the relative orientation of the
internuclear vectors, as well as on their lengths. For
some internuclear geometries, the dispersion profile
exhibits a fine-structure, particularly pronounced in the
USM limit.

o For the IS P—-I case, a strong static S—P dipole coupling
gives rise to a secondary dispersion at wo =~ wp,sp,
while removing the inverted secondary dispersion seen
at wo ~ sz’ ; Ta with a weak (or absent) static dipole
coupling. A strong static coupling thus extends the
zero-field regime up to wp = wp, sp-

e The longitudinal relaxation dispersion profile is
significantly affected by chemical shifts only in the
ISP—-ISP case, where an inverted secondary dispersion
step appears when the contribution from cross-mode
relaxation is (partly) eliminated. Outside the MN
regime, the chemical shift effect gradually disappears
with increasing Ta.

e In the region of the primary dispersion step in the
MN regime, the OSDF can increase the ILRR by few
percent for the ISP-ISP case and decrease it by a
few ppm for the IS P-I case. The OSDF is manifested
exclusively via distinct correlations and therefore has
no effect for the ISP-IS case, which only involves
self-correlations.

In a forthcoming final part of this series of papers,
we will use the insights gained from our detailed studies
of the two-spin and three-spin systems to formulate an
approximate theory of longitudinal relaxation by the dipolar
EMOR mechanism in multi-spin systems with one or two
labile spins, which will then be applied to experimental 'H
relaxation data from aqueous protein gels.
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APPENDIX A: SPIN OPERATOR BASES

As a basis for three-spin Liouville space, we use the 64 irreducible spherical tensor op-
erators (ISTOs) T (kiks{ K }kp), constructed by two consecutive couplings of the set of

four orthonormal single-spin ISTOs for each spin, e.g.,

1) = =B T = VAL Th() = F s, (A1)

to obtain®?

TX (kiks{KYkp) = (—1)ki—ks=hetR4Q (9] 4 1)V2(2K +1)V/?

S (K k ki ok
_1Q b P, 1 - S - A
XQ:Z,-@IZ_k,( ) (Q 0-Q —Q)(qf Q- —Q) (4-2)
« TH() TS (S)Th o (P)

where K is the rank of the intermediate tensor operator obtained by first coupling spins
I and S. Here, and in the following, the rank superscript is written in upper case for
ISTOs that are normalized in three-spin Liouville space and in lower case for ISTOs that
are normalized in single-spin Liouville space. The ISTOs T}%(X) appearing in the dipolar
Hamiltonian (3) belong to this basis set; e.g., T2(IS) = T2(11{2}0) = (31,5, —I1-S)/v/3.
The 63 basis operators (excluding the identity operator) listed in Tables S1 A — D are used
to describe the three-spin system in state A and, in the symmetric case ISP—ISP, also
in state B. For the asymmetric case ISP—1S, where state B only contains two spins, we
use a basis comprising the 15 operators in Tables S1 A — D with kp = 0. For convenience,
these 15 operators are collected in Table S2. For the asymmetric case ISP — 1, where
state B only contains one spin, we use a basis comprising the 3 operators in Tables S1
A — C with ks = kp = 0. For convenience, these 3 operators are collected in Table S3.
All the operators in Tables S1 — S3 are normalized in the same three-spin Liouville space.
For example, (By|By) = 5 (L|I.) = 5 Tr{I?} = 5 Tr{I2} x Trs{Es} x Trp{Ep} =
TXEIx2x2=1
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TABLE S1 A. Spin basis operators B, = T (k;ks{K}kp) for three spins ISP.

n K k’] k?s k’p K we Bé”c
T
1 1 1 0 0 1 - 75 L
1
2 1 0 1 0 1 - 75
1
3 1.0 0 1 0 - 7 P
4 11 1 1 0 - ~208(1.8) P,
51 1 1 1 1 - V2[I(8-P) — S.(I-P)]
6 1 1 1 1 2 - 5 [2P.(I-8) - 3L(S-P) - 35.(I-P)]
73 1 1 1 2 - Z[BLS.P.-L(SP)-S.(I-P)-P8S)
§ 0 1 1 1 1 - ~i 2= (IxS)-P
9 2 1 1 1 1 - i 2 (IxS)-(3P.e.— P)
0w 2 1 1 1 2 - iV2[L (SxP)+ S, (IxP)-e,
e
1 0 1 1 0 0 + ~%I-S
2
2 0 1 0 1 1 + ~%IP
3 0 0 1 1 1 + %= S-P
4 2 1 1 0 2 + NG [3[ S —I.5]
B 2 1 0 1 1 + 5 BLP, —I-P)
6 2 0 1 1 1 + 75 [3S.P. - S-P]
7 1 1 1 0 1 + i(IxS)-e,
8 1 1 0 1 1 + i(IxP)-e,
9 1 0 1 1 1 + i(SxP)-e,

@ Parity of B,, under spin inversion conjugation. ? Identity operators have been omitted.

¢ e, denotes the unit vector along the z axis.
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TABLE S1 B. Spin basis operators B, = T[ (k;ks{K }kp) for three spins ISP.

n K ki ks kp K W© Bp

20 1 1 0 0 1 — —ITL

201 0 1 0 1 - —3 5

2 1.0 0 1 0 - -z Py

2 1 1 1 1 0 - % (I-S)P,

24 1 1 1 1 1 - (L.Sy —1.S.) P+ 5 (I-Sy — I.S_) Py

2% 1 1 1 1 2 - LS, +1,S.) P+ IS P — L.S.P + (I -S) P,]

26 2 1 1 1 1 - (L.Sy —I.S.) P, — 5 (I_Sy — I.S_) P,

27 2 1 1 1 2 — YU4LS,-I.S —I.S,)P, +2I.S P —2(LS,+1,S.)P,]
28 3 1 1 1 2 — ——2[A4LS.~ LS. —1.8,)P —1.8;P +4(.S; +1,S.) P]
29 1 1 1 0 1 + % (IS, — I..S.)

30 1 1 0 1 1 + 75 (ILPy = I.P,)

31 10 1 1 1 + 5 (S.Py — S, P,)

32 2 1 1 0 2 + — 75 (L.S+ + IL.S:)

33 2 1.0 1 1 + — 75 (LPy + 1. P,)

34 2 0 1 1 1 + —% (S.P. +S.P,)

@ Parity of B,, under spin inversion conjugation. ® Identity operators have been omitted.
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TABLE S1 C. Spin basis operators B, = T (k;ks{K }kp) for three spins ISP.

n K ki ks kp K W©° B

3 1 1 0 0 1 - I

36 1 0 1 0 1 - 1S5

3% 10 0 1 0 - ip

383 11 1 1 0 - — % (I-S) P

391 1 1 1 1 - —(LS_ —1_S.)P.+3(I_Sy +1,5_)P_

40 1 1 1 1 2 = ~V3((I.S-+1.8.) P.+ I_.S_P, — L.S.P- + }(I-S) P_]

41 2 1 1 1 1 - (LS —1.S,)P.+3(I_S — 1.5 )P

2 2 1 1 1 2 — B(ALS ~I1,S —~I8)P +2I.S P, —2(S-+1.5,)P,]
43 3 1 1 1 2 — £[4LS.—LS —1.5)P. —I.S P, +4(L.S +1.5.)P,]
44 1 1 1 0 1 + 75 (L.S- —15;)

45 1 1 0 1 1 + 75 (IL.P-—I_P,)

46 1 0 1 1 1 + 75 (S:P- — S_P.)

47 2 1 1 0 2 + % (I,S-+1_5,)

48 2 1 0 1 1 + 55 (LP-+1_P)

49 2 0 1 1 1 + 75 (S:P- +S_P,)

@ Parity of B,, under spin inversion conjugation. ® Identity operators have been omitted.
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TABLE S1 D. Spin basis operators B,, = Tg(k‘lks{[_(}k‘p) with QQ = &2 or £3
for three spins ISP.

n Q K ki ks kp K W@ By
50 2 2 1 1 1 1 — —(I,S; —I,S.) P,
502 2 1 1 1 2 — 75 2184 P, — (IS4 + I,.S.) Py]
5 2 3 1 1 1 2 - (1,8, P, + (IS} + I,.S.) Py]
53 2 2 1 1 0 2 + s,
54 2 2 1 0 1 1 + 5 1Py
52 2 0 1 1 1 + 5 S+ Py
56 -2 2 1 1 1 1 — (I.S.—I1_+8,)P_
57 -2 02 1 1 1 2 — —Z2I.SP— (LS +I1 +85,)P]
5. =23 1 1 1 2 - I_S_P.+ (I.S-+1.5.) P]
59 -2 2 1 1 0 2 + s
60 -2 2 1 0 1 1 + T 1P
61 -2 2 0 1 1 1 + 75 S-P_
62 3 3 1 1 1 2 — —1.S8,.P,
63 -3 3 1 1 1 2 — I_S_P_

@ Parity of B,, under spin inversion conjugation. ? Identity operators have been omitted.
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TABLE S2. Spin basis operators B,, = Té((k']k‘g) for two spins 1.5.

n Q K ki kg W@ Bbe

1 0 1 1 0 - L

2 0 1 0 1 - 755
30 0 1 1 + ~%1-8

4 0 1 1 1 + i(IxS)-e,
50 2 1 1 + S@BLS. -1I-8)
6 1 1 1 0 - -1

7 1 1 0 1 - —15;

8§ 1 1 1 1 + (LS —15.)
9 1 2 1 1 + -5(LS+L5S,)
0w -1 1 1 0 - 51

11 -1 1 0 1 - 35-

12 -1 1 1 1 + 5(LS ~I185)
13 -1 2 1 1 + (LS +I185)
4 2 2 1 1 + %u&

5 -2 2 1 1 + 1S

2 Parity of B,, under spin inversion conjugation. P Identity operators have been omitted.

¢ The operators B,, are normalized in the three-spin Liouville space.

TABLE S3. Spin basis operators B, = Tg for a single spin I.

n @ K B
1

1 0 1 5L

2 1 1 —iI

3 -1 1 11

& Identity operators have been omitted.

b The operators B,, are normalized in the three-spin Liouville space.
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APPENDIX B: ZEEMAN SUPERMATRIX

Here we calculate the supermatrix representation of the Zeeman Liouvillian L7 = [Hz, ]
in the ISTO basis of Table S1. To this end, we first consider the matrix representation of
the superoperator Z, = [I, ], that is,

(7 (ks (K Yop) | T. | TG (ks { b))
= V2 | (T (heks{ K Yp) | T3 (10(1)0) | TS (ks {K "} 7)) (B.1)
— (T& ek AR V) | T (ki s LK 1) | T3 (10(1)0)) |

Regarding the coupled I and S spins as a composite system, we can write this as

(T8 Usrks{ K bop) | .| TS (kL K} i) )

K > K( K' (1o (B2)
= V2 [ (T5 (Kke) | T300) | T5 (K'Kp) ) = (T8 (Kke) | T8 (K'K3) | T(10))]
According to the Wigner-Eckart theorem,*
_ . K 1 K
TE(Kkp) | TE00) | TE (K'Kp)) = doq <—1>K-Q< )
<Q ’ ) -Q 0 Q (B.3)
X (2K +1)12 (TX (Kkp) || T'(10) [| T (K'k}) )
and
_ I o K K 1
(Tg(KkP)ngf (K’kp)!Tol(lo)> = doq (1) ( )
—Q Q 0 (B.4)
x (2K + 1)2 <TK(Kkp) | 7K (K'k) || T1(10)> .
The reduced supermatrix elements can be expressed as!
<TK([_(kp) I T1(10)||TK’(I%'1<;3)> — 3(2K' +1) (2K + 1) (2kp + 1)]/?
R I ) (B.5)
XK K1 o (T (k) || TMA0)[| T (k) ) (ke | TO(P) [ )
kp kb 0
and
<TK([_(I<:p) |5 (K'K,) ||T1(10)> — 3(2K' +1) (2K + 1) (2kp + 1)]/?
K1 R ) , (B.6)
XK 1R 5 (TR (k) || T (k) || T (10) ) (ke || T (P) ] 0)
ke 0 K

Note that the argument (10) in 7%(10) refers to (Kkp) in Eqs. (B.2) — (B.4) and on the
left-hand side of Egs. (B.5) and (B.6), but to (k;ks) on the right-hand side of Egs. (B.5)
and (B.6).
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The single-spin reduced supermatrix elements in Eqgs. (B.5) and (B.6) can be expressed

} (B.7)

The two-spin reduced supermatrix elements in Eqs. (B.5) and (B.6) can be expressed in

in terms of a 65 symbol as!

(ke | T(P) 1K) = (kp || T(P) ] 0)
kp Ky

1

2 2

= (1) (2K + 1) {

= O

terms of single-spin reduced supermatrix elements, as in Eqs. (B.5) and (B.6),
(T (krks) | T QO T (k) ) = (3 (2K + 1) (2ky +1) (2ks + 1)]2

K K 1 (B.8)
X ke K1 o (kTN k) (ks 1| TO(S) [ ks)
ks ki 0

and
(T5 ks | T (Ki) | TH(10)) = [3 (2K + 1) (2hy + 1) (2ks + 1)]2
K 1 K (B.9)

<k 1k (kIR (ks 1 T5(5) [[0)
ks 0 Ky

The single-spin reduced supermatrix elements in Eqgs. (B.8) and (B.9) can be expressed

in terms of 67 symbols as

(et T 1K) (ks NTO(S) N1 Ks) = Clr 174 (1) 111) (ks I T%(5) []0)

B.10)
. kr K, 1 ks kg 0 (
= (1)l [3<2k}+1)(2k’s+1>]”2{ Lol }{ LT }

2 2 2 2 22

Combining Egs. (B.2) — (B.10) and using the symmetries of the Wigner 37, 65 and 9j
symbols with respect to column permutations,' we find

(75 erks AR Yop) | Z. | T (MG { K }iy) ) = dgq (1) 21 AW

K K 1 kr ko1 ks ki 0 kp kp 0
X 0 O 0 111 1101 111
2 2 2 2 2 2 2 2 2 (B.11)
(K K 1 K K 1
X kr ko1 K K 1 ,,
| ks kg O kp kp 0
where
A = (_1)k1+ks+kP + (_1)k/1+kiq+k3>7 (B12)
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and

W = 3[6(2K +1)(2K'+1) (2K +1) (2K’ +1) B3
B.13
X (2k + 1) (2K} + 1) (2ks + 1) (2K + 1) (2kp + 1) (2K + 1)]V/2.

Using the identity, for integral a and b,’

{ 2}:5 ) il (B.11)

P 220+ 1)
and noting that k;, k7 = 0 or 1, we see that

ks ki 0 kp K, 0 (1= 2k;)
A = Okt Oksht, Okph! . (B.15)
B L e T e

= o

N~ Q

Next, we rewrite the 95 symbols in Eq. (B.11) with the aid of the identity!

a b c
(_1)b+d+g+c a b c
d = 4 ) B.16
, Z g P12+ )29+ D2 ) ¢ d g (B.16)

Combining Egs. (B.11), (B.15) and (B.16), and noting that, since k; = 0 or 1,
kr kp 1
2 2
we obtain

(T ks {R Yop) | Z. | T (RS U Yeir) ) = S Gty Sry Dt O

= =

x (—1)SHEFhsthe=Q 16 (2K + 1) (2K + 1) (2K + 1) (2K" + 1))/

KR K K 1 K K 1
—-Q Q 0 K' K kp 1 1 ke |-
In the same way, we find

<Tg(k1k5{K}kP) |S. | TK’/(k,IkZS{K,}k%U = 0Qq 5’61’“9 5ksk's 5’?13’“3: Oks1

(B.18)

x (—1)krtkr=Q (6 (2K + 1) (2K’ +1) (2K + 1) (2K’ + 1)]/?
y K K 1 K K 1 K K 1
-Q Q 0 K K kp 1 1 &k ’
and

(Tg(k]kg{[?}kp) |Pz | TQ//U{]Ikag{[%/}k}.)) = 5@@/ 619119'1 (Skskls 5]4513]633 6161:'1 51?]3/

(B.19)

x (—1)KHE FhitksH1=Q [6 (2 )¢ + 1) (2K’ 4 1) (2K + 1) (2k; + 1)]*/2

><KK’1 K K 1 K K 0

510

(B.20)



Using the identity!

K K 0 B (—1)K+hrths
{ kr kr ks } N [(2[_(4_1) (2k1+1)]1/2’ (B.Ql)

we can also rewrite Eq. (B.20) as

(Té{(klks{f_(}kP) | P. | TQ//<kllkf9{[€,}k33)> = 0Qq" Ok, Okskty Okpkl, Okp1 O

_ N\K+K'+K+1-Q / 1/2 K K' 1 K K 1
x (—1) [6 (2K + 1) (2K’ +1)] (_Q 0 0){ - K},

(B.22)

which is independent of I and S except for the Kronecker deltas. Note that the superma-
trix elements in Eqgs. (B.18) and (B.19) are not simply related by an I <+ S interchange,
because all basis operators are not invariant under this permutation.

According to Eq. (1), the Zeeman Liouvillian is
L7 = wr (IZ—}-SZ—f—Pz) + wr (558Z+5p73z) . (B23)

The supermatrix representation of Z, + S, + P, is diagonal with the diagonal elements

equal to @), so
(n|Lz|n') = dppwr @ + wrlds(n|S.|n")+dp(n|P,|n)], (B.24)

with the matrix elements (n|S,|n') and (n|P,|n’') given by Eqgs. (B.19) and (B.22),

respectively. For isochronous spins, with dg = dp = 0 so that w; = ws = wp = wy,

(n|Lz|n') = dpwwo@. (B.25)
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APPENDIX C: DIPOLAR SUPERMATRIX

Here we calculate the supermatrix representation of the dipolar Liouvillian £5 = [HJ, ] in
the ISTO basis of Table S1. According to Eq. (3), the first part of the dipolar Liouvillian,
corresponding to the I-S dipole coupling, is

2 2
S,IS = - ﬁ Wwp,18 Z 7-1\/21(11{2}0) DJZ\/;O(QIQS) ) (C-l)

M=—2

where 7,7 = [T%;, ]. We thus consider the matrix element

(| TRO1(20) |0) = (T4 ek (R Yhp) | TE(1{210) | T (R k5 {K 1K)

i , , (C.2)
— (T (ks {R Yhe) | T (KRR Vo) | T (11{2}0))
Regarding the coupled I and S spins as a composite system, we can write this as
(n] T3 (1142}0) [ ') = (T (Kkp) | T(20) | T5 (K'kp) ) o)
_ .3
~ (T§ (Kkp) | T8 (K'kp) | T(20))
According to the Wigner-Eckart theorem,*
(75 (k) | TE20) | T (K'Kp)) = Burgoer(—1) @ (2K + 1)1
K 2 K/ _ , = (04)
x (T (Kkp) | T20) | T (K'Kp) )
-Q Q-Q
and
(T8 (Khp) | T (K'K3) | T3(20)) = Sug-or(—1) 2 (2K + 1)1/
K K 2 ] . (C.5)
x , | (T (Bkp) | T (RRp) | T2(20) )
-Q Q@ Q-Q
The reduced supermatrix elements can be expressed as'
(T*(Kkp) || T2(20) || T/ (K'Kp) ) = 152K +1) (2K + 1) (2kp +1)]/2
KoK 3 (C.6)
x KK 2 g (TR (i) || T20) [| T (ki) ) (Rp | TO(P) || k)
kp Kb 0
and
<TK(I_(kP) |5 (K')) || T2(20)> = 52K +1) (2K + 1) (2kp + 1)]V2
K 2 K’ ) (C.7)
xd K2 K5 (T krks) | T (k) 11 7200) ) (ke | T (P) [ 0)
kp 0 Kb
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The single-spin reduced supermatrix elements in Eqgs. (C.6) and (C.7) are given by
Eq. (B.7), and the two-spin reduced supermatrix elements can be expressed in terms of

single-spin reduced supermatrix elements as
(5 (krks) || T2(0) | T (kiKG) ) = [5 (2K +1) (2 + 1) (2ks + 1)]/2

K K' 2 (C.8)
X & kr Ky 1 o (KT [k (ks || TH(S) || ks)
ks kg 1
and

(T (rks) | T5 (K1) [ T2(11)) = [5 (2K + 1) (2k; + 1) (ks + 1)]/2

K 2 K' (C.9)
x4k 1 kg (RNTS )1 (ks I T(S) (11
ks 1 K
The single-spin reduced supermatrix elements in Egs. (C.8) and (C.9) can be expressed

in terms of 65 symbols as

(ke[| T (D) 1K) (ks [T (S) 1 Ks) = (kT 111) (ks 1 7%5(5) |1 1)

C.10)
o ) . kr kK. 1 ke kb 1 (
= <—1>’“f+ks3[<2k1+1><2ks+1>]”2{ L }{ LT }

2 2 2 2 2 2

Combining Egs. (C.2) — (C.10) and using the symmetries of the Wigner 3j, 6 and 97

symbols with respect to column permutations,’ we find

(n|T;(11{2}0) |n) = drq-o (—1)K'-@ [(_1)k1+ks+kp _ (_1);41%/5%33]

x 15 [(2K +1) (2K + 1) (2K + 1) (2K’ + 1) (2k; + 1) (2k] + 1) (2ks + 1) (2K + 1)

K K 9 K K' 2 K K' 2
><(2kp+1)(2k:;3+1)}”2( 0O O Q,> kr Ky o1 K K' 2
ks Ky 1 kp K» 0
kr ko1 ks ki 1 kp kn 0
Y1 11 111 111 (-
2 2 2 2 2 2 2 2 2
(C.11)

The last 65 symbol in Eq. (C.11) may be expressed with the aid of Eq. (B.14). For the
second 95 symbol, Eq. (B.16) yields

KR 2 P G R B S

/ S o . 12
K K' 2 K Bk T2 ) KK ke (C.12)
kp Kp 0
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Combining Egs. (C.11), (C.12) and (B.14) with Eq. (C.1) and noting that (since
kr, k7, ks, kg =0 or 1)

[(_kaw _ (_1)k}+k/s} — 9 (%ks — 5k}k’s) 7 (C.13)

we obtain

(Rl L5 1517) = (Okins — Okyas,) Oprsy, (1) P72 2/30 wp s DE (o ()

X [(2}( +1) (2K + 1) (2K + 1) (2K" +1) (2k; + 1) (2K, + 1) (2hks + 1) (2K + 1)] 2
K K 2 ki K ks K. K K 2 KK 2

X / / 11 1I 1S 1S 7 ki kl] 1
-Q Q@ Q-Q 2 3 3 3 K' K kp

ks Ko 1
Since the first factor, (kg — Okay), vanishes if kr = k7 and ks = kj, it follows

(C.14)
that (n|Lg g |n) = 0, that is, only off-diagonal (n # n') supermatrix elements can be

= =
W=

nonzero. In the same way, we find
(] L8 1p17) = (Skykp — Ouagy) Srgry (— 1) HETRHR = 9 /30 wpy 1p DI 0 6(Qf1)
_ _ 1/2
X [(2[( F1) (2K +1) (2K +1) (2K +1) (2k; + 1) (2K, + 1) (2kp + 1) (2K + 1)}

!/ / / = > K K/ 2
K K 2 kr K, kp K K K 1 S
<\ , . 11 [ T K K 1
Q Q Q Q 2 2 2 2 I 1 S

kp kp 1
and

(C.15)
(n] L5 gp17) = (Srskp — Ouyhs,) Onyy (—1)SHETRIHES = 9 3/30 wpy sp DE (o (Q25p)

N—= =
N[—= =

x [(2}( +1) (2K + 1) (2K +1) (2K + 1) (2ks + 1) (2K + 1) (2kp + 1) (2K + 1)} 2

o K K 2
K K 2 ks ko 1 kp kb 1 K K 1 _
X / / 1 1S 1 1 1P 1 / K K/ 1
-Q Q Q-Q 5 3 3 5 5 3 ks ks ki b K 1
(C.16)
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APPENDIX D: INTEGRAL RELAXATION RATE

Here we present explicit expressions, based on Egs. (19) and (20), for the integral lon-

gitudinal relaxation rate in terms of the matrix elements UYY = (n|I~JXY(0)|p) and the
relative magnetogyric ratios kg = s/ and kp = yp/v;. Results are listed separately
for the three exchange cases. Whereas Eqs. (21) — (24) of the main text are restricted to
the dilute regime (Py < 1), the results given here are valid for arbitrary Pa. Excitation
is either nonselective (‘non’), meaning that all three spins are excited (as in a field-cycling
experiment), or selective (‘sel’), meaning that the labile spin(s) (present in both states)

but not the nonlabile spin(s) (present only in state A) are excited.

1. Exchange case ISP—1
If only one of the three spins is observed, we have for the I-magnetization,
R = [UBB + UBA + UAP + UMM + ks (UBA + USN) + kp (UB + USM]™!,  (D.1a)
Ry = [UBP + UBA + UAR + UMM, (D.1b)
for the S-magnetization,
RM = ks Pa[UsP + Up® + ks U + kp Ut ! (D.2)
and for the P-magnetization,
RIS = kp Py (U + UAM + ks U + kp UL (D.3)
If the combined magnetization of spins / and S is observed,

RISy = (14 kg Pa) [UBP + UPM + UAP + UAR + UM + UM

+ ks (UB + U + Us™) + kp (U + Ui + U™t (D-4e)
Rty = [UBP + UBA + U + USP + UM + UL (D.4b)
If the combined magnetization of all three spins is observed,
Rifse = [+ (ms p) P UR? + URS 4 UP 4 U0+ U2 4 U O )
+ Ui + ks (U + Uiy + Uy + Us™) + kp (U + U + U™ + U™
Rilgp = [UBP + UBA + UAR + USP + UAR + USA + UsA + USRI (D.5b)
2. Exchange case ISP—1S
If only one of the three spins is observed, we have for the I-magnetization,
R = [UBP 4 UBA + USB + UN + ks (UBE + UBM + UAE + USY) (D.63)
+rp (U + U5
R = [UPP + UBA 4 UAP + UAM + ks (URE + UBA + USE + UMY, (D.6D)
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for the S-magnetization,
Aln,%n = kg [UBB + UBA + URB + UM + kg (UBP + UBH + UL + UM (D.72)
+ kp (Ugy + U],
Ryl = kg [USE + UBA + U + Up® + ks (UBP + UBA + U + UM™Y, (D.7h)
and for the P-magnetization,
R = kip P [USP 4+ U™ + ks (Ui® + U™ + wp U] (D.8)
If the combined magnetization of spins I and S is observed,
R = (14 ks) [URP + U + UBA + URA + U + U + U + Ut
+ kg (UBB 4+ UBP + UBA 4 UBA + UAP + ULR + UAA + UMY (D.9a)
+ kp (UBA +UBA + USRS + UMY,
Ry = (14 kg) [UBE + USP + UBA + UBA + UAP + USP + UAA + USA
+ kg (UBB + UBP + UBM + UBA + UAR 4+ ULB + UM + UM
If the combined magnetization of all three spins is observed,
Ri%up = (1+ ks +rp Pa) [UBP + UBP + UBA + UBA + UNP + URP + USP
+ UM+ UM +UN + ks (URP + UBP + UBA + USA + USE + USE + ULE (D.10a)
+ UM + U + UMM 4 5p (UBH + UBA + UM + UM + UMY,
Ri%sp = (1+ ks) [URP + UBP + UR + UB + UPP + URP + USP
+ UAN + UM + US4+ kg (USE + UBE + UBA + UBA (D.10b)
+ UBB 4+ USP + USP + UM + UM + USM] L.
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3. Exchange case ISP—I1SP

If only one of the three spins is observed, we have for the I-magnetization,

pnon _ psel BB BA AB AA
Rl,l = Rl,] = U7 + U + Uiy +Up

+ kg (UBP + UBA + UAP + UM + kp (UBB + UBA + UAE + UMM, (D-11)
for the S-magnetization,
RM = Ry = kg [USE + UPA + USE + UM (D1
+ kg (USB + UBA + USP + US™) + kp (URE + UBA + UBA + UMM,
and for the P-magnetization,
R = Ri% = rp[USP + UM + URP + U (D13

+ kg (USB + UBA + USP + USY) + kp (UBP +- UBA + UBA + UM
If the combined magnetization of spins I and S is observed,
R} = R = (1+ k) [UBE + UBE + UBA + UBA + UAR + USE + U
+ UM + kg (UBB 4+ UBB + UBA L UBA L UAR + ULAR + UM + USY)  (D.14)
+kp (URR +UBB 4+ UBA + UBA + USE + URB + UL + UMY
If the combined magnetization of all three spins is observed,
RMM, = Ri%p = (1+ ks +wp) [UBE + USE + UBE + UBN + UBN + UM
+ UBB 4 USB 4 USB 4 UM + UM + U 4 kg (URP + UBP + UBP + UBA
+ UBAM 4+ UBA - UAR + USP + UL + UL + U + USY) + kp (USE + UBB
+UBB+UBM 4+ UBA + UBA v USB + URR + USB + UM + UGS + UM

(D.15)

4. Exchange case [SP—1I in the dilute regime

In the dilute regime (Py < 1), Egs. (D.1), (D.4) and (D.5) reduce to
R = Rifls = Rilsp = 55 - (D.16)

We shall now show that UBP can be expressed in terms of the element g1, = (1|G*(0)[1)
of the supermatrix G*(0) in Eq. (14).
Combining Eqs. (12a) and (13) and the detailed balance relation PgTa = PaTp, we
obtain P2
U 0) = %ATA (1P + il —TGA0)T] " (D.17)
Because the matrix G*(0) is isotropically averaged, it must reflect the axial symmetry

in spin Liouville space. According to the Wigner-Eckart theorem," G*(0) must then be
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block-diagonal in the projection index @ of the ISTO basis (Table S1). Pre- and post-
multiplication by the ISP —1 matrix T in Eq. (15) and its transpose picks out the first
diagonal element in each of the first three blocks (Q = 0, £1), that is,

g O 0
TG*0)T = | 0 gxxn O : (D.18)
0 0 435,35

Only spin I can access state B in the I.SP—1I case, so the Zeeman Liouvillian supermatrix

in the B-state basis is simply

0 0 O
L; =wP |01 0 (D.19)
0 0 —1
Combination of Egs. (D.17) — (D.19) yields
(1 — gll)_l 0 0
~ BB P2 _
0) = BP#AA 0 (1 — g2020 +iwpTe) ™ 0 ;
0 O (]. — 935’35 — iw]IBTB)_l
(D.20)
so that P2
UBB — __BTA D.21
11 PA(l . 911) ( )
Finally, combination of Eqgs. (D.16) and (D.21) yields for the dilute regime
7 dil 7 dil 7 dil P
R1,1 = Rus = Rl,[SP = E(l _911)‘ (D-22)
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APPENDIX E: BWR RELAXATION THEORY

Here we obtain the elements of the orientation-dependent relaxation supermatrix R in
site «, starting from the Bloch-Wangsness-Redfield (BWR) master equation®

%GQ(t) = — i A(t) 5(t) — /0 Cdr (B0 Lyt —7)) 5°(t), (E.1)

where the angular brackets with subscript o denote an equilibrium ensemble average over
the molecular degrees of freedom in site a. Further, 0%(t) = exp(i Lz t) o“(t) and E%(t) =
exp(i Lz t) LY(t) exp(—i Ly t) are the spin density operator and the dipolar Liouvillian for
site «r, both in the interaction representation. For exchange cases ISP—I.S and ISP—ISP,
all three dipole couplings fluctuate so L{(t) = L ;5(t) + L ;p(t) + LY gp(t) and the
first term in Eq. (E.1) is absent. For exchange case ISP —1, the SP dipole coupling
is static so L{(t) = L ;5(t) + L ;p(t) and, in the first term, A (t) = A%’Sp(t) =
exp(i Lzt) L gp exp(—i Ly t).

In a rigorous BWR treatment of the 1.5 P—I case, the transformation to the interaction
representation should involve the total static Liouvillian Lz + £Lf) gp. The first term in Eq.
(E.1) would then be absent, but the ensuing analytical development would be complicated
by the fact that the ISTOs Tg are only eigenoperators of Ly (see below), not of the total
static Liouvillian. The rigorous BWR treatment, which is valid without restrictions on
the static dipole coupling wp sp, leads to spectral densities at frequencies that are linear
combinations of wy and wp gp. To avoid these complications, we pursue a restricted BWR
treatment, valid for wp gp T4 < 1, where we transform to an intermediate interaction rep-
resentation as in Eq. (E.1). This additional restriction is unimportant, since, in practice,
wp sp cannot exceed 3 x 105 rad s™!, corresponding to the smallest physically realizable
proton-proton separation of ~ 1.5 A. If 74 is so long that the condition wp,spTa K 11is

L'in order not to violate the analo-

violated, then wp ;s and wp rp must be < 10° rad s~
gous (motional narrowing) conditions on these fluctuating dipole couplings. But for the
dilute conditions (Py < 1) of primary interest, the ILRR is negligibly small if all dipole
couplings involving the labile I spin are < 10° rad s™!. In conclusion, Eq. (E.1) and the
results that follow from it, is valid for all three exchange cases, provided that wp x 7a < 1
for all three dipole couplings, regardless of whether they are static or fluctuating.

For simplicity, we assume that the spins are isochronous, that is, 4 = 63 = 0 in
Eq. (1) so w? = w5 = wh = wy. The ISTOs in Table S1 are then eigenoperators of the
Zeeman Liouvillian,

L;TH = QuoTh | (E.2)
so the interaction representation of the Liouvillian for dipole coupling X in site a becomes

2

WD, X Z exp(iMwot) T3(X) D3 (Q%) , (E.3)

M=-2

o~ 2

%,X(t> - _%
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where T,2(X) = [T4(X), ...]. Combination of Egs. (E.1) and (E.3) yields for the EMOR,

model

d —~ . 2 2 . * « e}
—5°(t) = i—=wpsp Y exp(iMwgt) D}jo(Q%p) Ty7 (SP) 5°(t)

dt V3 =,
(E.4)
——ZZU)DXu)DyZ Z eXp M—I—M)wot]
M=—2 M/'=—2
X Fanr (%, QF) J(=M'wo) Ty (X) Ty (V) 5°(2) -
Here, we have introduced the angular functions
Py (Q%, Q%) = Dijo(Q%) Dijio () (E.5)

with the Wigner functions for the three internuclear vectors given by Eq. (4), and the
reduced spectral density function (SDF)

TA

T wml (I+iwTa) . (E.6)

J(W) = jlw) +ikw) =

Note that we retain the imaginary part, k(w), of the SDF, which can have a small effect
on the ILRR for exchange cases ISP—ISP and ISP —1, but not for the ISP—1S case
(Sec. IV C). Because k(—w) = — k(w), we refer to k(w) as the odd SDF (OSDF).

Since we want to describe relaxation over the full frequency range, we shall not invoke
the secular approximation to eliminate terms with oscillating factors in Eq. (E.4). Instead,
we remove these factors by transforming the master equation (E.4) back to the Schrédinger
representation. The supermatrix representation of the master equation in the space of

the ISTO basis operators B,, of Table S1 then takes the form
d
o0 = - [iLy +iA*+ R o%(1), (E.7)
where o®(t) is a column vector of spin modes ¢%(t) = (B, |o®(t)) = Tr{B! c*(t)}. In

view of Eq. (E.4), the static dipolar Liouvillian supermatrix is
A% = ——wD ,SP Z D Qgp ])]\47 (ES)

and the relaxation supermatrix is

= —ZZWDXWDYZ Z Far (2%, Q%) J(— M'w )CMM" (E.9)

=—2M'=-2

Note that, in the sums over dipole couplings, X and Y can be I.S, I P or SP for exchange
cases [ISP—IS and ISP—ISP but only IS or IP for exchange case ISP —1, where the
static S P coupling appears in A*. In Eqs. (E.8) and (E.9), we have defined the coefficient

supermatrices Dy, and C3, with elements

Dityp = (n|T3i(SP)|p) = Te{B} [T (SP), B,]} , (E.10)
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and
Canvemp = (0T (X) Tip.(V)lp) = Te{[BL, T (X)) [Ti7(Y), By} - (E.11)

According to Eq. (E.9), the relaxation supermatrix is determined by 3 x 3 x 5 X
5 = 225 coefficient supermatrices C3/,/, each with 63 x 63 elements. Fortunately, the
computational task can be simplified considerably by making use of symmetry. First,
we consider spin inversion conjugation (SIC) symmetry.>” As indicated in Table S1, the
ISTO basis operators have definite SIC parity (either odd or even). Furthermore, the
relaxation superoperator R® has even SIC parity.> " According to the basic orthogonality
theorem of group theory,® the supermatrix R® in the ISTO basis can then have nonzero
elements only between basis operators of the same parity. If we order the 63 basis operators
so that the 36 odd operators (above the dashed lines in Table S1) precede the 27 even

operators, then R is block-diagonal,

R: 0
R = | , (E.12)
0 RY

where the subscripts indicate odd (or antisymmetric = a) and even (or symmetric = s) SIC
parity. Conversely, the superoperator A* has odd SIC parity and therefore has nonzero
matrix elements between ISTO basis operators of different SIC parity. Consequently, the
supermatrix A® is anti-block-diagonal in the SIC-parity ordered ISTO basis,

0 A}
A - [ ] | ©1
A, O

If we are interested in relaxation of the longitudinal magnetization, described by the
odd-parity operators I, S, and P,, it might seem that we only need to consider the odd
relaxation matrix Rj,. This is true for exchange cases ISP—IS and I.SP—ISP. However,
exchange case ISP —1 also involves the static dipolar precession supermatrix A*, which
couples the odd and even blocks, Ry, and Rg,.

Several symmetry relations for the elements of the coefficient matrices C}/y, can be
derived from the defining relation (E.11). First, it can be shown that all elements of these
matrices are real-valued.® Using this fact, the cyclic permutation invariance of the trace,
and the identities 7%, = (=1)MT?2,, and (AB)! = BT Af, we find from Eq. (E.11) that

Casgpn = (DM CXY (E.14)

Let a, and bg denote two of the nine single-spin operators with a, b =1, S or P and
a, B =z, + or —. Within this subspace,

Corntt anty = XY Cosntt ans (E.15)

As a consequence of this selection rule, relaxation matrix elements R by within the single-

spin subspace only involve self-correlations (X = Y), that is, there is no contribution from
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distinct correlations (X # Y'). To establish this selection rule, we start from the defining
Eq. (E11): Cifip ans, = Trilal, Ti(X)] [T3,(Y), bg]}. For both commutators to be
nonzero, it is necessary that a € X and b € Y. For example, if X = I P, then a, must
be an I-spin operator or a P-spin operator. The operators T3 (X) are products of two
single-spin operators (or sums of such products), one for each of the two spins associated
with dipole coupling X. Therefore, each of the commutators is a product of two single-
spin operators (or a sum of such products) associated with the two spins contained in
X or Y, respectively. It then follows that, if X # Y, only two of the four operators in
the trace belong to the same spin. In other words, two of the three spins are represented
by only one operator in the trace. Since Tro{a,} = 0, it follows that Ciy, . b, = 0 if
X #Y. On the other hand, if X =Y, the trace contains two operators associated with
each of the two spins contained in X and it can therefore be nonzero.

In a similar way, one can show that Cy¥, , , = 0 if aq is a single-spin operator and
n is a three-spin basis operator. In other words, the single-spin and three-spin subspaces
are coupled in the relaxation matrix only via distinct correlations (X # Y).

The relaxation supermatrix R® depends on the site orientation Q¢ via the angular
functions Fyur (2%, Q). Recalling the orthogonality of the Wigner functions,! we obtain

after averaging these functions over the isotropic distribution of site orientations,
2

(Fuar) = Z <D%4*0(Q§<) D?\ffN(Qgc»Dszz(Qxﬂ

N=—2

2

]' « [e] * « *

- <_1)M Z [@/dQX D3M0<QX> D%J/N(QX> Dzzvo(QXY)
N=-2

(E.16)

2
1
= (- Z 5M’,7M5N03D]2VB<QXY)

N=-2
1
= 5M’,—M (—1)M 5 PQ(COS BXY) s

where fOxy is the fixed angle between internuclear vectors X and Y (in all sites «).
Combination of Egs. (E.9) and (E.16) yields for the isotropically averaged relaxation

supermatrix,
2

(R%) = % %: zy: wp,x wp,y P2(cos Bxy) Z (=)™ J(M wy) CJ\Xf_M : (E.17)

M=-2
When expressed in the ISTO basis of Table S1, the isotropically averaged relaxation
supermatrix (R”) is block-diagonal in the projection index @, in accordance with the
Wigner-Eckart theorem.! Since R® is also block-diagonal with respect to SIC parity, as
expressed by Eq. (E.12), it follows that the evolution of the longitudinal magnetization
modes under the site-averaged relaxation supermatrix (R®) can be fully described within
the subspace of the ten odd-parity zero-quantum basis operators above the dashed line

in Table S1A. We have previously® presented in explicit form the 18 unique coefficient

matrices Cﬁ/_M, then defined as Cy, = (—=1) Cf\?f_M_
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The secular approximation is valid in the frequency range wy > wf 74, where the
rapidly oscillating complex exponentials in Eq. (E.4) effectively eliminate all terms except
those with M’ = —M. Consequently,

o« 4

Rsec -
3

2
Z Z WD, x WD)y Z FM,_M<Q§(, Q%) J(M wo) C})\?’CM . (E18)
X Y M=—2

Comparison of Eqgs. (E.17) and (E.18) shows that, with regard to rotational symmetry,
secular truncation has the same effect as isotropic averaging: all the supermatrices C)]@Y_ Mo
as well as Rg,., are block-diagonal in (). Furthermore, within the single-spin subspace,

Eq. (E.15) yields
C]\)},}:M,aabﬁ = 5XY C]\)},)—(M,aabﬁ = 5XY 50450]\)4(,)—(M,aaba . (Elg)

As a consequence of this selection rule, the secular contributions to relaxation matrix
elements in the single-spin subspace only involve auto-mode relaxation, that is, no cross-
mode relaxation. To establish the second equality in Eq. (E.19), we start from the
definition (E.11): C3iX,, o, = Tr{lal, T3,(X)][T2,(X), bg]}. For both commutators
to be nonzero, it is necessary that a,b € X. The trace then contains a product of two
single-spin operators for each of the two spins associated with the dipole coupling X. Since
the only non-vanishing traces of a product of two single-spin operators are Tr,{a?} = %
and Tr,{ayaz} = 1, it follows that the total trace vanishes unless oo = f5.

The elements of the relaxation supermatrix R* needed to calculate the ILRR can be
obtained from Eqs. (E.9) and (E.11) or, in the case of isotropically averaged rates, from
Eq. (E.17). In the following, we present explicit expressions for some of these rates. The
isotropically averaged rates required in Eq. (31) for the ISP—I1SP case can be obtained
from Eq. (E.17) and the coefficient matrices Cf\?’i ar» Which have been presented in explicit
form.> In Eq. (37) for the ISP—1IS case, we need the isotropically averaged longitudinal

auto-spin and cross-spin rates

(R & (Wi 15 +wdp) [7(0) + 35(wo) + 65(2w)] , (E.20a)
(RZY) = (Wi s + wisp) [7(0) +35(wo) +65(2wo)] (E.20b)
(RIZ) = Zwp s[—(0) +65(2wp)] . (E.20¢)

In Eq. (41) for the ISP—1I case, we only need (RI), which is still given by Eq. (E20a).
The various local relaxation rates R;;, appearing in Eqgs. (38) and (42) are all in the

single-spin subspace. The local auto-spin rates required for the ISP —1I case are

2g = p¥, (E.21a)
Ry, — o7, (E:21b)

and for the ISP —15 case
Ryp = p' + p°". (E.22)
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Here we have introduced the generic auto-spin relaxation matrix

pe. PE PR
= | ol pX ep | (E.23)
X, pX pt

with the five unique rates
Py = %W]%,X{% Foo(X) 7(0) — 5 Fi_1(X) j(wo) + F2—2(X)j(2¢00)} ; (E.24a)

pY = ()" = Sl FelX)(0)

(E.24b)
— 1 F11(X) [3(wo) + i k(wo)] + 5 Foa(X) | (2W0)+2k(zwo)]}
Xo= —(pr) = 2wl 3L (X — j(wo) — 1 k(wo
pY. = —(0X)" = fwd x{ 25 Forr (0 [2(0) = jw) — i k(o) ot
— e P (X) [j(wn) = i k(wo)] }
X o= —(pn) = 2wd v 2= Fon(X) [5(0) — 25(wo) +i2k(w
pre = = (05" = dwd {25 Fu(X) [i(0) = 2j(w) + i 2k(wo)] -
L Fin(X) [j(2w0) — i k(2e)] |
P = () = Bl = 5 F(X) 1(0) + (2w0) — i k(2w0)] ot

+ 3P (X) [jw0) = i k(wo)] }

where Fypr(X) is a short-hand notation for Fyar (2%, Q%).
The required local cross-spin rates are contained in the row matrices R7g and Rp for
the ISP—I case, and in R}, and R§p for the ISP—IS case. The three elements of these

matrices are of the form,

RY = %%:2) [—‘FOO(X) (0) + Fo 2(X)j(2wo)} , (E.25a)

RY, = —(RX)" = jwix Fo_1(X) [5(0) + j(wo) + i k(wo

= —(RY) = b {5 Forr (X) [H0) + (o) + i k()] -
— 5 Fia(X) [j(wo) + j(2w0) — i k() + i k(2uw0)] }

For isochronous spins, the cross-spin rates have the symmetry Rg; = R7g and similarly
for the other two pairs. As can be seen, all the cross-mode rates involve both the even
and odd parts of the SDF.

All of the local relaxation rates in Eqs. (E.20) — (E.25) connect single-spin modes
and are therefore entirely produced by self-correlations. These rates fully determine the
ILRR in the ISP—1S case. For the other two exchange cases, the ILRR is also affected
by distinct correlations via those elements in the 10 x 10 odd-parity @ = 0 block of (R%)
that involve at least one three-spin zero-quantum coherence (ISP—ISP case) or via the
elements of the 9 x 9 relaxation matrix Rg,, spanned by two-spin-SP operators (ISP—I
case). These rates can be calculated from Egs. (E.17) and (E.9), respectively, but they

are too numerous to list here.
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The ILRR in the IS P—1I case also involves the static dipolar Liouvillian supermatrix
A" in Eq. (E.8) or, more precisely, the 3 x 9 submatrices connecting single-spin S or P

modes with two-spin-SP modes. For example,

a Wwp, Sp
Ay = N
0 0 \%Do D, D, D_, —-D_4 2D, —2D_,4
x| 0 —V3D_, —-D_, —\%Do —V3Dy —V2D_y —V2D_, —2D, 0
0 3Dy ~Dy  —V2Dy V2D, —\/LgDo V3Dq 0 V2D,
(E.26)

where Dy = D3,,(Q%p), the complex conjugate of which is given by Eq. (4c). In Eq.
(E.26), the basis ordering for the single-spin-S subspace is {S./v/2, —S, /2, S_/2}, while
the two-spin-S P operators are in the order in which they appear in Table S1, that is, {13,
16, 19, 31, 34, 46, 49, 55, 61}. The matrix A%, differs from A% only in that the sign
is reversed for all elements in columns 3, 4 and 6 (corresponding to the odd-rank basis
operators 19, 31 and 46). Further, since the supermatrix A® is Hermitian, it follows that
A5 = A%jso-
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APPENDIX F: INTEGRAL RELAXATION RATE
IN THE MN REGIME

Here we present derivations of explicit expressions for the ILRR in the motional narrowing
(MN) regime for exchange cases ISP—IS and ISP—I. Tt is convenient to express G*(0)
from Eq. (26) as

with G*(0) = ((A")71), (F.1)

AQEK+RQTA+iL%TA+iAaTA, (FQ)

where the last term appears only for exchange case I.SP—1. We shall now use symmetry
arguments and the MN condition wp 74 < 1 to simplify the supermatrix A*. Throughout
Appendix F, we assume isochronous spins (68 = 6% = 0), with wp = wh = wh = wp. In

Appendix G, we generalize the treatment to include the effects of chemical shifts.

1. Exchange case ISP—1S

To obtain the four elements of G*(0) that appear in Eq. (35), we need only consider the
36 x 36 odd-parity block (Appendix E)

A%, = Ko+ RUTA+iL5 0 7a - (F.3)

Before invoking the MN approximation, we reorder the 36 odd-parity basis operators so
that the three operators (numbered 3, 22 and 37 in Table S1) that only involve spin P
are at the end. With K,, from Eq. (18), we can then partition the supermatrices in Eq.
(F.3) as

A = (F.4)

o o -r A
Rg; 7a (Rgo7a +1 Lz,oo TA)

(1+R$ 7a+iL3, 7a) RS, 7a ]

where the subscripts indicate whether K, = 1 or 0. We need only consider the ‘11’ block

of the inverse (A2,)~!, which is

a \— o ; [e% [e% - -1 [e% -t
[(A%) i = [1 + R A+ L%,n Ta — Riy (RGy +1 Lé,oo) RGi TA] F5)
- — «@ @ e . -1 @ — ’
— 7 1_7z1 [RH - R (Roo + ZL%,OO) R01] AL 1 ’

where, in the last step, we have expanded to second order in wp7a (the MN approximation)
and defined Z =1 + z'L%11 Ta. According to Eq. (F.1), isotropic averaging of this result
yields the corresponding 33 x 33 block of G*(0). For the ILRR, we only need elements
from the upper left 2 x 2 block of GA(O), corresponding to the basis operators I, /v/2 and
S./+/2. In this subspace Ly = 0, so Eq. (F.5) yields

G*(0) = 1-Rma, (F.6)
with

R = (R®) — () . (F.7)
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In the interest of notational economy, we do not explicitly indicate that all quantities in
Egs. (F.6) and (F.7) are 2 x 2 matrices in the subspace spanned by the basis operators
I./v/2 and S./v/2. Combination of Egs. (35) and (F.6) yields for the ILRR

2 (EUESS — EISESI)

I
' (R + Rss — Ris — Rsi)

(F.8)

where the supermatrix R is indexed by I and S rather than by the labels n = 1 and 2.
The first part of R is the isotropic orientational average of the longitudinal relaxation
matrix

RI[ }yS

R =
I SS
RZZ RZZ

(F.9)

The second part is the isotropic orientational average of the “cross relaxation” supermatrix
_ , -1
I = Ripsp Rip +iwo Q)7 Ry g, (F.10)

where Q = diag(0,1,—1). Further, R?;/SP is the Hermitian conjugate (or conjugate

transpose) of the rectangular relaxation matrix

(F.11)

1P IP IP
RIP RIP RIP
SP SP SP )
RSP RSP RS

and

Rpp = | BT RIT RIT | (.12

RFF RPP RPP

In Egs. (F.9) and (F.10), we have made use of the following symmetry relations: R3] =
RIS R%; = RYp, Reg = Rep, RIE = RIP* and R = RSP*. All these relations,
except the first one, are only valid for isochronous spins. In contrast, Esz =+ fils in Eq.
(F.8), because, as seen from Eqgs. (E.22) — (E.24), R%p is not symmetric. The individual
relaxation rates appearing in Egs. (F.9), (F.11) and (F.12) are given in explicit form in
Appendix E. All these rates connect single-spin modes and, according to the selection
rule (E.15), they therefore only involve dipolar self-correlations. However, the ILRR is

affected by cross-spin rates, such as RS, as well as cross-mode rates, such as REF.

In the absence of spin P, the 1.5 P—I S results derived here must reduce to the previously
obtained results for the symmetric two-spin case 1.S—1S. With wp ;p = wp sp = 0, the
“cross-relaxation” supermatrix in Eq. (F.10) vanishes so Eq. (F.7) reduces to R = (R®).
For isochronous spins (RIl) = (R3%) and (RIS) = (RS!), so Egs. (F.7) — (F.9) yield the
expected®? result

~ 2 . )
Rfi,l}s = Pa [<Rii>+<R2§ } = E AW]%,IS[](WO)+4J(2W0)] ) (F~13)

where we have also used Eq. (E.20).
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If spin S is removed, the IS P—1S case degenerates into the asymmetric two-spin case
IP—I. With wp 15 = wpsp =0, RIS = RSl = R%5 =0 in Eq. (F.9) and Rgp = 0 in Eq.
(F.11). The only nonzero element of G*(0) is then

g = 1— (R 75 + <R?P (Rp +iwp Q)" R?;> Ta. (F.14)

Replacing P by S to obtain the corresponding result for the previously treated [.5—1I case

and noting that, for this case, E{h} = (Pa/7a) (1 — g11), we recover the expected? result

Bt = Pa[(RI) — (Rig (Rgs +iw0 Q) Ry (F.15)

The secular approximation is valid in the frequency range wy > wf 7a, where the
rapidly oscillating complex exponentials in Eq. (E.4) effectively eliminate all terms except
those with M’ = —M. The selection rule (E.19) then shows that all single-spin cross-mode
rates vanish. As a result, Egs. (F.7) — (F.12) yield

2(rirss —rig)

Rl = p , F.16
here LIS A (rir+1rss —27r;1s) (£.16)
wihner
RIP 2
rip = (RIY — <(RTP)> , (F.17a)
RIP RSP
ris = (RE) — <—z]ﬁ2P;z > : (F.17b)

rss = (R32) — <(R§ZP>2> : (F.17c)

PP
Rzz

2. Exchange case [SP—1

If the basis is ordered with the 36 odd-parity operators before the 27 even operators, the
supermatrices Lé and R® are block-diagonal whereas A” is anti-block-diagonal, as shown
in Egs. (E.12) and (E.13). Noting also that K is diagonal, we can partition A* in Eq.
(F.2) as

(Kaa+RgaTA+iL%,aaTA) ’iAaaSTA

AC“ = - A o -1 A
(AN N (K + R 7a +1 L7 TA)

(F.18)
where the odd (or antisymmetric = a) and even (or symmetric = s) SIC parity is indicated
by subscripts. The single-spin-/ subspace is contained within the odd-parity subspace so

we only need the ‘aa’ block of the inverse (A*)~!, which is

1

(A")d = [Kaa+ (RE + XSG +iLy ) 7] (F.19)

aa

with

X% = A% (K +RETa + 0Ly 7a) 'A% TA (F.20)
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We further partition the submatrices according to whether K,,,, = 1 or 0. Ordering the
basis so that, within the odd and even subspaces, basis operators with K,, = 1 precede
those with K,,, = 0, we have

K, — [ laatr Oaato ] and K. — [ 1s11 Ossio ] ’ (F.21)
02201 Oaaoo Oss01 Osso0
where the subscripts indicate the subspace. Since there are six single-spin S and P
operators in the ‘aa00’ subspace and nine two-spin-S P operators in the ‘ss00’ subspace,
it follows that 0., is a 6 x 6 null matrix, while O is a 9 x 9 null matrix. Furthermore,
1..11 is a 30 x 30 identity matrix, while 1417 is a 18 x 18 identity matrix. We can thus
partition the matrix to be inverted in Eq. (F.19) as
(Aa)—l _ [ Laann + (Rgan + X i LZ aall) TA (Riato + Xaa10) 7a ] 1 '

- (Raaor + Xaao1) 7a (Raaoo + Xaaoo 1 LZ aaOO) TA

(F.22)

We only need the aall block of (A%)..!, which is

aa

(Aa)aall = [1aa11 + (Rgann + Xoan1 + iL%,aall) TA
@ « 1 «@ « -1 (F23)
(Raalo + XaalO) (R‘aaOO + XaaOO + i LZ aaOO) (Raa01 + XaaOl) TA

Expanding to second order in wp7a (the MN approximation) and performing the isotropic
orientational average, we obtain with Eq. (F.1)
Gﬁan(o) =7 -7 [(Ria11) + (XGa11)] 7a z

- a a a . a a - (F24)
+ Z 1<(]':{aalO + XaalO) (RaaOO + XaaOO k. L?,aaOO) (Raa()l + Xaa01)> TA Z ! )

with Z = 1,11 + iLé,aall 7a. The ILRR is determined by the single element ¢;; =
(1]G2,,(0)]1) of this 30 x 30 supermatrix, where |1) = By = I,/+/2. For this element, two
simplifications can be made in Eq. (F.24). First, because (1|L%,aa11|n) = (n|Lé,aa11|1) =0,
it follows that (1|/Z 'n) = (n|Z"'|1) = 6,1. Second, because I, commutes with 7% (SP),
it follows from Eq. (E.10) that (1]A%|n) = (n|A%,|1) = 0 and, in view of Eq. (F.20),
that (11X5,,1]1) = (1|1XZ,0ln) = (n|X50:11) = 0. After these simplifications, Eq. (F.24)
yields

gn=1— [(RI)—(TI)] 7a, (F.25)
which is combined with Eq. (24) to yield

R = Py [(RI) —(TI)] . (F.26)
Here, we have defined the “cross relaxation” rate
Fig = (1|R:a10<Rga00 + XgaOO + Z.L%,aaOO)ilea01|1)

-1
_ pe (Reg + X% +iwo Q) X5 . (F.27)
1S,1P XQPS (R%P + XQPP + i wp Q) I1S,IP »
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where Q = diag(0, 1, —1) and we have noted that Rgp = 0 since the SP dipole coupling
is static. Further, R7q;p = [R7s R7p] and R7g, Rip, Rgg and Rpp are defined in
analogy with Eqs. (F.11) and (F.12). The individual relaxation rates appearing in these
relaxation matrices are given in explicit form in Egs. (E.21) — (E.25). All these rates
connect single-spin modes and therefore, according to the selection rule Eq. (E.15), they
only involve self-correlations.

The static SP dipole coupling affects the ILRR via the 3 x 3 blocks Xgg, X5p, Xbg

«
aal

and X%p of the 6 x 6 supermatrix X, ,, in the single-spin S and P subspace. According

to Eq. (F.20), we have, for example,
Xsp = A%, (HY) AL, (F.28)

with HS, = K/7a + RS+ L%,ss' Note that subscript ‘s’ refers to the symmetric subspace
spanned by the 27 two-spin operators in Table S1, while subscript S refers to the single-
spin-S subspace, spanned by S./v/2, —S,/2 and S_/2. It follows from Eqs. (E.8) and
(E.10) that the supermatrices A% and Af{ p have nonzero elements only within the ‘s0’

subspace spanned by the nine two-spin-SP operators. Consequently,
XgP = A%,so (Hgs)aolAzo,P . (F~29)

To obtain the quantity (H2 )y, we partition HY in the same way as for K in Eq. (F.21),

HY — (Lss11/7a + Ry, + iL%,ssll) RS0 (F.30)
> R (R0 + iLigo)
The required block of the inverse (HS)™! is
a\— « . @ [e] . -1 « -1
(Hss)Ool = [RSSDO +1 LSASOO - R’ssOl (18511/TA + Rssll +1 Lg‘gll) RSS].O:| (F 31)

= (R ‘H'Lﬁéoo)il ;

where, in the last step, we have expanded to second order in wp7a to be consistent with
the MN approximation. Finally, combination of Eqgs. (F.29) and (F.31) yields

o a . —1 A
Xo. X = A5/Pso (R0 + @ wo Qusop) Asjp’so ) (F.32)
PS “4\pp

where Qg9 = diag(0,0,0,1,1, -1, 1,2, =2), AY, p is the 6 x 9 matrix

07

OfS‘/RsO = [AOZSZ] ) (F33)

and Aﬁ;} peo 18 its 9 x 6 Hermitian conjugate. This follows because the supermatrix A is
Hermitian, so A, g = A%LO and A p = ACIVDTS(). The static dipolar Liouvillian submatri-
ces A and A%, can be obtained from Eq. (E.26). The elements of the 9 x 9 relaxation
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matrix Rg,,, obtained from Eqs. (E.9) and (E.11), involve I.S and IP self-correlations
as well as IS—IP distinct correlations.

We now consider several special cases. If we neglect the static SP dipole coupling by
setting wp gp = 0, then A}, = A}, = 0 so the antisymmetric and symmetric blocks in
Eq. (F.18) are decoupled and the relaxation behavior is fully described by the single-spin
modes. Because now X2, =0, Eq. (F.27) yields

[ = Ris (R§s +iwo Q) 'R + Rip (REp +iwy Q) 'RYY, (F.34)

showing, with Eq. (F.26), that the IS and I P dipole couplings contribute additively to
the ILRR ﬁld’} If both dipole couplings to spin P are set to zero, then the ISP-I case
must reduce to the asymmetric two-spin case IS-1. With wp ;p = 0, the second term in
Eq. (F.34) vanishes and what remains is, as in Eq. (F.15), the result obtained previously
for the IS-I case, when specialized to isochronous spins.’

If we (artificially) neglect cross-spin relaxation, so that R = R{p = 0, then Egs.

(F.26) and (F.27) show that
R = Pa(RIL) = & Pa(wiss +whp) [5(0) +3(wo) +6j(2wo) ], (F.35)

where Eq. (E.20a) was also used. This (unphysical) result shows that cross-spin relaxation
is necessary for the ILRR to approach zero at high field, as it must.

The secular approximation is valid in the frequency range wy > wf 7a, where the
rapidly oscillating complex exponentials in Eq. (E.4) effectively eliminate all terms except
those with M’ = —M. The selection rule (E.19) then shows that all single-spin cross-
0, 0] and similarly for Rfp and Eq. (F.27)

shows that T'L is a sum of four terms, each being the product of two such longitudinal

mode rates vanish. As a result, R}q = [RL?,
cross-spin rates and the zz component of the corresponding block inverse. Moreover, these
inverses are trivial because all the 3 x 3 blocks in Eq. (F.27) are diagonal in the secular
approximation. For Rg¢ and R%p, this follows from the vanishing of the cross-mode
rates. For the four single-spin blocks of X, ., the diagonality follows from Eq. (F.32),
where now Rg, is block-diagonal in @ (because M’ = —M in Eq. (E.4)) and A%, has
only five nonzero elements, proportional to Dy in Eq. (E.26). The latter simplification
follows because the secular condition wy > wp on the static SP coupling picks out the
M =0 term in Eq. (E.8). As a result of these simplifications in Eqgs. (F.27) and (F.32),
the “cross relaxation” rate in the secular approximation becomes
REJ(RIT)* + REV(RE)* + X(RIZ + RID)®

FII —
. RSP REP 4+ X(REP + REF)

(F.36)

Here, we have defined

2
X = §[WD,SP D(%O(QSP)}2p> (F.37)

where p is the ‘33’ element (corresponding to basis operator Bjg in Table S1A) of the
inverse of the 3 x 3 ) = 0 block of Rg,,.
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APPENDIX G: CHEMICAL SHIFTS

Here we generalize the BWR treatment of Sec. III A — C and Appendix F by allowing the
Larmor frequencies of the three homonuclear spins to differ, as in the Zeeman Hamiltonian
of Eq. (1). In the BWR theory, the ILRR depends on the chemical shifts in two ways.

First, there is an implicit dependence on the chemical shifts via the local relaxation su-
permatrix R* in Eq. (26). This implicit shift effect essentially amounts to a replacement
of wyp in the spectral densities by a linear combination of the unequal Larmor frequencies.
The effect is therefore present in the frequency range (wg =~ 1/74) of the primary disper-
sion, but not in the extreme-narrowing regime (wp7a < 1). Chemical shifts displace the
primary dispersion step along the frequency axis, but this displacement is of the same
order as the chemical shifts themselves, so it is entirely negligible for homonuclear spins
(with 0 <« 1). In the generalized BWR treatment, we can therefore retain the isochronous
R® derived in Appendix E.

Second, there is an explicit dependence on the chemical shifts via Lé and L]Z3 in
Eqgs. (26) and (27), respectively. This explicit shift effect can be incorporated in the
generalized BWR theory by using the non-isochronous Zeeman Liouvillians L% and L
derived in Appendix B. For the asymmetric exchange cases ISP—IS and I.SP—I, we find
that the explicit shift effect amounts to displacements of the secondary dispersion steps
of the same negligible order of magnitude as for the implicit shift effect on the primary
dispersion step. In contrast, for the symmetric exchange case ISP — ISP, the explicit
shift effect is of higher order, giving rise to a novel inverted secondary dispersion step.

In summary, for homonuclear spins within the MN regime, chemical shifts have a
significant effect on the longitudinal relaxation dispersion profile only for the symmetric
exchange case ISP —ISP. Under these conditions, the dispersion profiles computed
from the generalized BWR theory developed here agree with the corresponding profiles
obtained from the SLE theory, which rigorously incorporates all chemical shift effects. In
Sec. IV D, we use the SLE theory to examine the effect of chemical shifts outside the MN

regime.

1. Exchange case ISP—ISP

Combination of Egs. (27) and (29), which are valid in the presence of chemical shifts,
yields

~ BB T _ o -

U (0) = 5 [2Ze -2 + 2, (R Z)'] (G.1)
where A

Zyn = 1+iLly7a, (G.2)

and similarly for Zg. All matrices appearing in Egs. (G.1) and (G.2) are block-diagonal
with respect to the projection index @) and with respect to odd/even SIC parity. It is
therefore sufficient to consider the 10 x 10 ) = 0 odd-parity block of these matrices. For
isochronous spins, Ly = LY = 0, so Eq. (G.1) reduces directly to Eq. (30).
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According to Appendix B, the Zeeman Liouvillian in the presence of chemical shifts is

0 O
Ly = wr : (G.3)
0 Dy
where the upper left null matrix 0 is 3 x 3 and Dy is the 7 x 7 matrix
0 4,
Dy = Al (G.4)
or O
and where §, is the transpose of
2ok L(oh-20p) —Y0sh 0
oa = | —26% B (sh—206B) Y5 54 — Y20 54 . (G.5)
0 —1oy B0 -26p) (05 —25p)

The supermatrix L has a completely analogous form. In view of Eqs. (G.2) and (G.3),

1 0 1 0
Ty = and  Z;' = Sy (G.6)

where
Yi = 1+iwt 7o D, (G.7)

and similarly for Yg.
The orientationally averaged relaxation matrix (R*) in Eq. (G.1) may be partitioned
into a 3 x 3 longitudinal (L) block Ry, a 7x 7 zero-quantum coherence (ZQC) block Rzqc,

and two rectangular cross-mode blocks Ry, /zqc and Rzqc/p,

o Ri  Rizqce
(RY) = 70 (G.8)
Rzqc/  Rzqe
Combination of Egs. (G.1), (G.6), and (G.8) yields
-1
~ BB 1 RL RL 7 CYil
U (0) = 5| v » LiZQe ta . (G.9)
A YA RZQC/L YA RZQCYA +(YB—YA )/TA
We only need the 3 x 3 longitudinal block of I~JBB(O), obtained from Eq. (G.9) as
~BB _
U, (0) = [PaRe — PRyjzqo (PaRuge +i W) Rygen] (G.10)
where we have defined the frequency shift matrix
. P
W = —Z—YA<YBYA—1). (Gll)
TA

So far, no approximations have been introduced. To obtain a more transparent expression
for W, we note that € = dwy7a < 1 for homonuclear spins (§ << 1) in the frequency

range (wo7a < 10) where longitudinal relaxation is effective. Here, 0 is the largest of the
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shifts ds and dp, and wy = wy, which differs from w? by a negligible amount of order §.
To leading order in €, we obtain from Egs. (G.7) and (G.11),

W = CU()(PADA—FPBDB) . (G12)

To the same level approximation we can neglect the shift effect on the relaxation superma-
trix (R®) (see above), which can then be taken from Appendix E. We can now calculate
R{, by combing Egs. (23¢), (G.10), and (G.12), with D, and Dy given by Egs. (G.4)
and (G.5).

In the absence of chemical shifts, W = 0 so Eq. (G.10) reduces (after division by
Py) to Eq. (33). As discussed in Sec. III A, the second term in Eq. (G.10), or Eq.
(33), represents the effect of cross-mode relaxation driven by distinct correlations, which
reduces ﬁldf}sp below the value ﬁld i}’;;lf that would prevail if only self-correlations were
included. It then follows from Eq. (G.10) that chemical shifts suppress the effect of
cross-mode relaxation (and distinct correlations), thereby increasing ﬁﬂi}s p- As shown in
Sec. IV D, this suppression can be nearly complete, but it only sets in above a certain
frequency (indeed, W vanishes in the ZF limit). By considering the order or magnitude
of the terms in Eqs. (G.10) and (G.12), this nonsecular decoupling (NSD) frequency can

be identified as
PA w% TA

= - 1
WNSD PA 6A I PB 5B (G 3)

We can now summarize the effect of chemical shifts on the dispersion profile ]3le1[1 sp(wo).
At low frequencies, such that wg < wnsp, there is no effect. At wy &~ wnsp, there is an
inverted secondary dispersion step as the (negative) contribution from distinct correlations
in the L/ZQC cross-mode rates is partly lost. At higher frequencies, such that wy > wxsp,
]/%ﬂi}sp remains larger than for isochronous spins but it never exceeds the ILRR ﬁld i}’;]e;lf

produced by self-correlations alone.

2. Exchange case ISP—1S

Because LE = 0 in the longitudinal two-spin subspace spanned by I. and S,, the argu-
ments leading from Eq. (27) to Eq. (34) remain valid for non-isochronous spins. We
therefore only need to calculate the corresponding 2 x 2 matrix Gi*(0) in this longitudinal
(L) subspace. Because also L%,u = 0 in this subspace, it follows that the development in
Appendix F.1 remains valid, the only explicit effect of chemical shifts being the replace-
ment of wy with wy(1 + §%) in Eq. (38). For isochronous spins, this explicit frequency
dependence gives rise to an inverted secondary dispersion step at wy &~ w3 Ta, above which
cross-mode relaxation no longer contributes to ﬁif“}s The effect of the chemical shift (of
the nonlabile spin P; the shift of spin S has no effect here) is thus to displace the position
on the frequency axis of this secondary dispersion step by a relative amount of order
6%, which is negligible for homonuclear spins. In fact, this explicit shift effect is of the

same order as the implicit shift effect on the primary dispersion step (at wg ~ 1/7a) that

534



we neglect by retaining the isochronous relaxation supermatrix R® from Appendix E. In
conclusion, for exchange case ISP —1S the effects of chemical shifts are of higher order

than for exchange case I.SP—ISP and can be neglected altogether for homonuclear spins.

3. Exchange case [SP—1

The development leading up to Eq. (41) remains valid in the presence of chemical shifts,
because the 30 x 30 matrix L%,aall is block-diagonal with the first scalar block (corre-
sponding to basis operator I,) equal to zero. The two explicit occurrences of the Larmor
frequency in Eqgs. (42) and (43) are associated with the two secondary dispersion steps
related to cross-mode relaxation and to the static S—P dipole coupling, respectively. The
explicit shift effect in Eq. (42) amounts to replacement of wy by wo(1 + d5) in the S.S
block and by wy(1 + d%) in the PP block. The explicit shift effect in Eq. (43) amounts

to replacement of the diagonal 9 x 9 matrix Q,, by the block-diagonal matrix

(Q, 0 0 0 0 |
0 Q O o0 o
QSSOO = 0 O Q—l 0 0 (G14)
0 O 0 @ O
| 0 0 0 0 Q-
The diagonal blocks are
. 0 0 V26
= — 0 0 o_ , G.15a
QO \/g ( )

V26_ 6 0

1] E(2+64) 5
Qi = 5 5 L2404, | (G.15b)
Qir = +(2+44), (G.15¢)

where 64 = 05 £ 65.

The effect of chemical shifts is thus to displace the positions of the two secondary
dispersion steps by relative amounts of order §*, which is of the same order as the neglected
implicit shift effect on the primary dispersion step. In conclusion, for exchange case
IS P—I, the effects of chemical shifts are of higher order than for exchange case ISP—ISP

and can be neglected altogether for homonuclear spins.
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APPENDIX H: ISP—I CASE IN THE MN
REGIME: EFFECTS OF THE STATIC DIPOLE
COUPLING

Here we examine in detail how the static dipole coupling wp gp affects the MRD profile
for the ISP —1 case in the dilute MN regime. According to Eq. (41), the ILRR of the
labile 7-spin is

R(wo) = Pa [(RIE(wo)) — (T2l (wo))] - (H.1)

with the isotropically averaged longitudinal auto-spin relaxation rate (R!(wp)) as in Eq.

(E.20a) and the “cross relaxation” rate I':Z(wg) as in Eq. (42), which we now express as
IM(w) = eViel, (H.2)

with the 1 x 6 cross-spin relaxation matrix o

15 IP]

o = [0, o s 1S _IS _IP _IP IP}. (Hg)

= [Uzz Gz+ 0-2— Ozz 0z+ Jz—

The elements of o' and o/ are proportional to wg ;¢ Ta and w? ;p Ta, respectively. The

6 x 6 matrix V, the inverse of which appears in Eq. (H.2), is
V=X+p+iwQy, (H.4)

where Q,; = diag(0, 1, —1, 0, 1, —1) and

B pIS 0
p = [ 0 pIP] : (H.5)

The elements of the 3 x 3 auto-S-spin and auto- P-spin relaxation matrices p’® and p’”
are proportional to wj ;g 7a and wg ;p Ta, respectively. The static dipole coupling wp sp
affects the ILRR exclusively via the 6 x 6 matrix X, given by

X =A (RQSpin + in Q2)_1 AT ) (HG)

where Q, = diag(0, 0, 0, 1, 1, —1, —1, 2, —2). The elements of the 9 x 9 relaxation
matrix Rogpin in the two-spin-SP subspace involve 1.S and I P self-correlations as well as
IS—-IP distinct correlations. The elements of the 6 x 9 static dipolar Liouvillian matrix
A are proportional to wp sp.

Figure Sla shows a typical Rld‘}(wo) dispersion profile for the ISP —1 case in the MN
regime and Fig. S1b shows the component parts (RI(wo)) and (I'/f(wp)) in units of
wp 1 Ta, where wg ; = Wi ;g +wp p. If the static dipole coupling is artificially removed by
setting wp gp = 0, then Rldl} (wp) is reduced at all frequencies. In other words, the effect of
the static dipole coupling wp sp is to speed up the longitudinal relaxation of the labile I

spin. When wp sp = 0, the two fluctuating dipole couplings contribute additively so that
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ﬁldl} = Rdﬂ(IS I+ th}(IP I), where Rdﬂ(IS—]) is the ILRR for the two-spin 1.5—1
case.”

The Rld}l(wo) profile exhibits a primary dispersion step at wg ~ 1/75, due mainly to
the SDFs j(wp) and j(2wp) in (R (wo)). However, as seen from Fig. Slb, <FH 0))
also contributes to the primary dispersion step. In particular, it ensures that Rfl}(wo)
approaches zero asymptotically. This happens because the contributions from the zero-
frequency SDF to (R (wp)) and (I'ZL(wp)) cancel out, so that (RI(c0)) = (I'f(c0)).

In addition, <FZ (w )> exhibits a secondary dispersion step at a lower frequency. In
the absence of a static dipole coupling (or if wp gp is “weak”), the secondary dispersion
occurs at wy A~ wf ; 7a, which then defines the (upper) boundary of the zero-field (ZF)
regime. In the ZF regime, [-spin relaxation is slowed down by longitudinal-transverse
cross-mode relaxation, which is eliminated by nonsecular decoupling when wy >> wg ; 7a.
In the presence of a (“strong”) static dipole coupling, this description is no longer valid.
The secondary dispersion step at wy ~ w]%’ ; Ta then disappears and the ZF regime extends
all the way up to wy =~ wp sp, where a new secondary dispersion step appears. Cross-mode
relaxation occurs throughout this extended ZF regime, but it is modified by the static
dipole coupling. Although relaxation in the ZF regime is modified by the static dipole
coupling, it does not depend on the strength of this coupling as long as wp gp is “strong”
(in a sense to be defined). In this Appendix, we rationalize this rather intricate relaxation

behavior.
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Figure S1: (a) Dispersion profile of }A%ﬂi}(wo) for the ISP —1I case in the MN regime with
(upper red) and without (lower red) static dipole coupling, and in the secular approxima-
tion (blue dashed). (b) Dispersion profiles for ( R2Z(wp)) (black dash-dot) and (I'Zf(wy)),
both normalized by wg ; 7a. (I'£(wp)) is shown with (lower red) and without (upper red)
static dipole coupling and in the secular approximation (blue dashed). Parameter values:
Py =103 74 = 1077 s, wprs = 1 x 10° rad s7!, Br = 50°, and fBg = 70°, yielding
wp rp = 0.7828 x 10° rad s™* and wp gp = 1.4449 x 10° rad s~ .
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1. Weak static dipole coupling

We characterize the strength of the static dipole coupling by the dimensionless parameter

w
€ = f’SP . (H.7)
wDJTA

The static dipole coupling wp sp is said to be weak if ¢ < 1 and strong if e > 1. For
the homonuclear ISP —1 case, the value of € depends on the internuclear geometry (3;
and fs) and on the MN parameter wp ;s 74, which is < 1 in the MN regime. For an
equilateral triangle, where all three couplings are equal, € = 1/(2wp 574 ), which is > 1
in the MN regime. If either of the nonlabile spins is remote from the other two spins, one
of the fluctuating dipole couplings is much larger than the static one, so that e < 1. For
example, if spin P is located far from spins [ and S, the apex angle 8p is very small and
¢ = B3/(wp 15 Ta). But as long as all three dipole couplings are of comparable magnitude,
€ > 1 in the MN regime. In this subsection we set wp gp = 0, but the results are the
same for a finite wp gp as long as it is weak (e < 1). As seen from Fig. S2, the weak-
coupling limit of (I'/Z(0)) applies for € < 0.1, whereas the strong-coupling limit is a good
approximation already for € 2 2.

If we set wp sp = 0 in Eq. (H.6), then X = 0, so V in Eq. (H.4) is block-diagonal
and Egs. (H.2) — (H.5) yield

<Fg(w0)>0 = (" (p"" +iwy Q) o) + (' (p" +iwy Q) ' T) ,  (H.8)

where Q, = diag(0, 1, —1) and the 0 subscript reminds us that wp sp = 0. As expected,
this is the sum of the (I'//(wy)) expressions for the two-spin IS—1I and IP—1 cases.”
To identify the frequency of the secondary dispersion step, we introduce dimensionless

quantities (labeled by a tilde) by writing o/ = wﬁ 1S TA &'® and similarly for the other

-1
ool )

rates. Thus

WD JS TA

-1
ﬁIP_'_Z.QLQl] E_IPT> '

Wprp TA

(T (), = s <

2 ~
+ wD,IP TA <0'

Well below the primary dispersion step, such that wy < 1/7a, the cross-spin and auto-spin

(H.9)

rates in Eq. (H.9) are all frequency-independent, so any dependence of <FH Wo >0 on wy
in this regime must come from the explicit frequency factor in front of Q.

Because the nonzero elements of 'ﬁls, ﬁIP and Q; are of order 1, the secondary dispersion
step should appear when the pre-factor in front of Q, is of order 1, that is, at frequency
wo ~ wp 7 Ta. In the ZF regime, where wy < wpj ; 7a, longitudinal-transverse cross-mode

relaxation increases <FH wo >0 to the value

<Fg(0)>0 — Wl%,zs A <5_Is (513)71&IST> 4 wl%,IP - <5_IP (5IP)71&IPT> _ E WD]TA ’

(H.10)
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Figure S2: Variation of normalized (I'/Z(0)) with wp sp while all the other parameters

are fixed at the values of Fig. S1.Vertical dashed lines correspond to indicated e values.

where the last result has been derived before.” In the LF regime, where wy > wI%’ I TA,

nonsecular decoupling of cross-mode relaxation reduces <TZ (w0)> o to

(Tl(wo))y = YW TA (H.11)

where v = 4/9 — ¢ = 0.17666. . ., as shown before.® This kind of secondary dispersion
occurs only in spin systems with at least one nonlabile spin without strong static dipole
couplings.

The secular approximation, which neglects longitudinal-transverse cross-mode relax-
ation, is justified at all frequencies such that wy > wg, ; Ta, where Eq. (H.9) yields

<FZ(W0) Zec = WI%,ITA’Y(WOTA), (H.12)
where Gy
O-ZZ
Y(woTa) = <5—X> : (H.13)

This result is valid at all frequencies above the secondary dispersion step, even in the
primary dispersion step (wp &~ 1/74), where the intrinsic rates 52X and pX are frequency-
dependent. Note that v(wg7a) is independent of X. As shown above, v(0) = 0.17666. . .
and y(o0) = 2/45 = 0.044444 . .. (cf. Fig. S1).
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2. Strong static dipole coupling

Introducing dimensionless quantities through p = wj ;74 p and X = [wg gp/ (w3 ; Ta)] X,

we can write Eq. (H.4) as

V = w]%JTA

€2X+l~’+i;u—0Q11] 5 (H.14)

wDJTA

with € defined by Eq. (H.7). Similarly, with A = wp gp A, Eq. (H.6) yields

-1
~ ~ ~ w ~
X = A Rogin +i—2—Q,| A (H.15)
In this subsection, we assume that the static dipole coupling is strong in the sense that
e> 1.

2.1. Zero-field regime

In the extreme-narrowing regime, wy7a < 1, the relaxation matrices p and Ragpin are
Hermitian. It follows, therefore, from Eqs. (H.14) and (H.15) that also the 6 x 6 matrices
X and V are Hermitian in the limit wy = 0. For € > 1, as assumed here, V is strongly
dominated by the first term within square brackets in Eq. (H.14). All elements of V are
therefore proportional to w[%’ gp- Accordingly, one might expect V! and, by way of Eq.
(H.2), (T'21(0)), to be inversely proportional to w3 gp. However, numerically we find that
Vs independent of wp gp when € > 1. This counter-intuitive behavior occurs because
the matrix X is singular, with one zero eigenvalue.

Let A be the diagonal eigenvalue matrix and U the unitary matrix (U™ = UT) whose

columns are the corresponding right eigenvectors of the Hermitian matrix X. Then

XU = UA, (H.16)

or

X = UAU'. (H.17)

Since X is Hermitian, its eigenvalues are real. Numerical calculations confirm this and
also show that the eigenvalues are non-negative and non-degenerate. Because of the nor-
malization of 5(, the eigenvalues are independent of wp g¢p and depend on the fluctuating
dipole couplings only through their ratio wp rg/wp rp. Finally, the eigenvalues are inde-
pendent of the site orientation Q¢ but they do depend on the relative orientation of the
dipole vectors as parametrized by S; and 5. For convenience, we order the eigenvalues
in ascending order, so that A\; = 0. The other five eigenvalues are of order 1.
Combining Eq. (H.14) with wy = 0 and Eq. (H.17), we obtain

V = wl,;aUMU', (H.18)
and, since V71 = VT,
1
v = — TAUM—1UT, (H.19)
D,I
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where

M= EA+UBU. (H.20)
We partition the 6 x 6 matrix M as
My, My,
M — [ 1 1 ] 7 (H.21)
Mcl MCC

where subscript ¢ refers to the five-dimensional subspace spanned by eigenvectors us —
ug. All nonzero elements of M are of order 1, except the diagonal elements of M., which
are of order ¢ > 1. Consequently, all elements of M_! are < 1 and it follows from the
standard expressions for the partitioned matrix inverse that all elements of M~ are < 1,
except (M™1)1; = 1/My,, which is of order 1. We thus obtain from Eq. (H.19),

u; u}

V= (H.22)

w]%J Ta My
where u; is the (column) eigenvector corresponding to the eigenvalue A; = 0. According
to Eq. (H.20),

My = (U'pU),, = ulpu;. (H.23)
Combining Eqs. (H.2), (H.22) and (H.23), and noting that o u;ul of = o uy (o u;)’ =

|ou;|?, we obtain
o uy)?
(r) = (1520 (129
1P

The components of the eigenvectors uy, refer to basis operators {S,, S,, S_, P,, P,, P_}

(disregarding normalization constants). The eigenvector u; has the special form

1 L8 y)
u; = 72 [ 0 ] : (H.25)

where ug is a 3 X 1 column vector and the numerical factor has been introduced to obtain
the convenient normalization ug) up = 1. (Since U is unitary, it follows that u{ w = 1)
Making use of Eqgs. (H.3), (H.11) and (H.25), we can now write Eq. (H.24) as

o~ (£258L)

In Eq. (H.26), the eigenvector ug has the effect of projecting the cross-spin and auto-spin
15

relaxation matrices onto the stationary (A\; = 0) subspace: o
15

uy = aif Ug,1 + aﬁ Ug2 +
Sups and u) p'Suy = 3 >, Up oy P (For wy = 0, p'® is Hermitian, ensuring
that, for any 0r1entat10n, u} p’Suy, and thus I'71(0), is real-valued.) The eigenvector ug
is independent of wp gp, but it depends on the ratio wp ;s/wp rp and on the orientation
Q% p of the static dipole vector. Consequently, while a strong static dipole coupling causes
(P'IL(0)) in Eq. (H.26) to differ from (T'ZZ(0)), in Eq. (H.10), the actual value of (I'/Z(0))
does not depend on wp gp as long as this coupling is strong (e > 1). As we shall see,
this behavior, illustrated for wy = 0 in Fig. S2, is actually observed throughout the ZF

regime, that is, up to the secondary dispersion.
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2.2. Secondary dispersion

For wy > 0, the explicit frequency term in Eq. (H.15) makes X non-Hermitian. This
follows by noting that the inverse of a Hermitian matrix is also Hermitian, so X can be
Hermitian only if {ﬁgspin + i [wo/(wd ; 7a)] Qq} is Hermitian. But this cannot be true for
wo # 0, because the diagonal elements of a Hermitian matrix must be real.

Because X is no longer Hermitian, the eigenvector matrix U in Eq. (H.16) is not

unitary so Eq. (H.17) must be replaced by
X = UAU'. (H.27)

In general, both the eigenvalues A, (as before, numbered in ascending order) and the
eigenvectors uy, (the columns of U) depend on the Larmor frequency wy. However, the
singular eigenvalue A; = 0 occurs for all frequencies wy and the associated (orientation-
dependent) eigenvector u; is independent of wy, that is, it is the same as for wy = 0.

For wy = 0, when X is Hermitian, all eigenvectors are orthonormal, u,t u; = 0. For
wp > 0, when X is non-Hermitian, the eigenvectors are still normalized, uL u; = 1, but
they are not orthogonal. The columns of U are still the eigenvectors uy, but the rows of
U are not equal to uL. However, the eigenvector u; corresponding to the eigenvalue
A1 = 0 defines a one-dimensional unitary subspace, such that uL u = ui u, = 0 for all
k # 1. With the chosen ordering, the first column of U is u;, while the first row of U™"
(or UT) is uI. Moreover, the half-eigenvector ug, defined by Eq. (H.25), has the property

(for any wy and any orientation)

[uo2| = |uogal - (H.28)
For wy > 0, we have in place of Egs. (H.19) and (H.20)
1
Vi=__—~—UM'U", (H.29)
with
M = 62A+U_1ﬁU+iw2on U'Q,U. (H.30)
DI A
We partition this M matrix as in Eq. (H.21), where now
1~ Y _ ~
My = (U'pU), +i——(U'Q,U),, = ulpu, (H.31)
where we have noted that Eq. (H.28) implies that
00 O
(U'QuU), =2uf |0 1 0 |uy=2(Juoel — |us?) = 0. (H.32)
00 —1

Comparison of Egs. (H.23) and (H.31) shows that M, is independent of wy throughout

the extreme-narrowing regime, where wy < 1/74 so that p(wy) = p(0).
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As long as the nonzero diagonal elements, €2\, for k& > 1, in the first term of Eq.
(H.30) are much larger than any elements in the other terms, the arguments presented
below Eq. (H.21) hold and Egs. (H.22), (H.24) and (H.26) remain valid also for wy > 0.
To establish quantitatively the extent of the ZF regime in the presence of a static dipole
coupling, we consider first the regime wq < w]% ; Ta. According to Eq. (H.15), X is then of
order 1, as are the eigenvalues )\, for £ > 1. All matrix elements in the second and third
terms of Eq. (H.30) are of order 1 or less, whereas €2 \;, > 1 for k > 1 if the static dipole
coupling is strong. The ZF result in Eq. (H.26) thus remains valid. In other words, a
strong static dipole coupling abolishes the secondary dispersion at wy &~ w]%’ I TA-

To find the upper limit of the ZF regime, we consider now the regime wq > wg’ I TA-
According to Eq. (H.15), X is then of order wp 1 Ta/wo, as are the eigenvalues Ay for
k > 1. The order of magnitude of €*X; for k > 1 is then w3 gp/[wowg ;7a]. With
increasing Larmor frequency wy, the first term in Eq. (H.30) thus decreases, whereas the

third term increases. The condition for dominance of the first term is
wy K WpD,SP , (H33)

which defines the ZF regime in the presence of a strong static dipole coupling.

Let us now summarize the frequency dependence of <I’Z(w0)> below the primary
dispersion at wy ~ 1/7a, as depicted in Fig. S1. For a weak (¢ < 1) static dipole
coupling (or none), nonsecular decoupling of single-spin cross-mode relaxation occurs at
Wy ~ wg’ ; TA, giving rise to a secondary dispersion near this frequency, where <Fg (w0)>
drops to the secular-approximation value <FZ (wo) zec. In the presence of a strong (e >
1) static dipole coupling, there is no dispersion step at wy = w]%7 ;7o and cross-mode
relaxation remains effective also at wg > w]%, 1 TA, albeit modified by the static dipole
coupling. Whereas for weak static dipole coupling the ZF regime extends up to wﬁ 1 Ta, for
strong static dipole coupling it extends all the way up to wp gp. Now there is a secondary
dispersion at wy ~ wp sp, where <FZ (w0)> increases to the secular-approximation value
<FZ (w0)>sec. This secondary dispersion is not caused by the SDFs, because we are still
in the EN regime. Rather, it is caused by the explicit Q,; term in Eq. (H.14), which
decreases (T (wp)), and by the explicit Q, term in Eq. (H.15), which increases (I'2(wy)).
As seen from Fig. S1, the latter effect dominates.

The secular approximation result in Eq. (46), which was derived under the assumption
that wg > w]%J Ta and wy > wp gp, is valid without restriction on wp gp. For weak static
dipole coupling (¢ < 1), we can neglect the X terms in Eq. (46), which thereby reduces to
Eq. (H.12). Conversely, for strong static dipole coupling (e > 1), the X terms dominate
and Eq. (46) reduces to

RIS RIP 2
( 2z + zz) > , (H34)

()™ = (i

which is independent of wp gp. It can be shown that this result for <Fg(w0)>5ec is smaller

than the result (I'(wp))," in Eq. (H.12), as is evident from Fig. S1.
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The secular approximation simplifies the cross-spin relaxation matrix o in Eq. (H.3),
the auto-spin relaxation matrix p in Eq. (H.5), and the static dipole matrix X in Eq.
(H.6). By applying the secular approximation selectively to these matrices, we find that,
for strong static dipole coupling, the secular approximation acts mainly via X, whereas,
for weak static dipole coupling, the effect is on o and p (since X is not involved). The
different nonsecular decoupling effects for weak and strong dipole coupling explains why

the Eldl} (wp) dispersion is inverted for weak but not for strong static dipole coupling (Fig.

S1).
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Nuclear magnetic relaxation by the dipolar EMOR mechanism:
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In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relax-
ation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of
intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation,
we have previously developed a rigorous EMOR relaxation theory for dipole-coupled two-spin and three-spin
systems. Here, we extend the stochastic Liouville theory to four-spin systems and use these exact results as a
guide for constructing an approximate multi-spin theory, valid for spin systems of arbitrary size. This so-called
GSRE theory includes the effects of longitudinal-transverse cross-mode relaxation, which gives rise to an in-
verted step in the relaxation dispersion profile, and coherent spin mode transfer among solid-like spins, which
may be regarded as generalized spin diffusion. The GSRE theory is compared to an existing theory, based on
the extended Solomon equations, which does not incorporate these phenomena. Relaxation dispersion profiles
are computed from the GSRE theory for systems of up to 16 protons, taken from protein crystal structures.
These profiles span the range from the motional narrowing limit, where coherent mode transfer plays a major
role, to the ultra-slow motion limit, where the zero-field rate is closely related to the strong-collision limit
of the dipolar relaxation rate. Although a quantitative analysis of experimental data is beyond the scope
of this work, it is clear from the magnitude of the predicted relaxation rate and the shape of the relaxation
dispersion profile that the dipolar EMOR mechanism is the principal cause of water-'H low-field longitudinal
relaxation in aqueous systems of immobilized macromolecules, including soft biological tissue. The relaxation
theory developed here therefore provides a basis for molecular-level interpretation of endogenous soft-tissue

image contrast obtained by the emerging low-field magnetic resonance imaging techniques.

PACS numbers: 76.60.Es, 82.56.Na, 87.64.kj, 87.61.Bj

I. INTRODUCTION

During the past two decades, a rigorous molecular the-
ory has been developed for nuclear magnetic relaxation
induced by exchange-modulated electric quadrupole!™
or magnetic dipole*™ couplings in aqueous systems with
immobilized macromolecules. Such a theory is needed,
for example, to interpret water 'H or 2H field-cycling
(FC)®10 relaxation dispersion data in biophysical studies
of water-protein interactions,®'!~17 and to connect endo-
geneous soft-tissue image contrast to molecular-level phe-
nomena in magnetic resonance imaging (MRI) analysis
using emergent fast FC'® or SQUID-detected!® low-field
MRI techniques. For biophysical applications, the 2H nu-
clide is the NMR probe of choice on account of the more
straight-forward analysis of relaxation data involving the
single-spin quadrupolar mechanism. But medical MRI
applications invariably utilize the 'H resonance, thereby
forcing us to confront the more challenging multi-spin
dipolar relaxation problem.

The present work completes a series of four papers de-
voted to the theory of dipolar relaxation by the mecha-
nism of exchange-mediated orientational randomization
(EMOR). In the three preceding papers, here referred

a)bertil.halle@bpc.lu.se

to as Paper I, 118 and III,” we treated two-spin and
three-spin systems. Here, we make the leap to multi-spin
systems, comprising one or two labile spins exchanging
with an isotropic bulk phase and dipole-coupled to an
arbitrary number of nonlabile spins in a solid-like envi-
ronment.

In the EMOR mechanism, exchange plays a dual
role: it transfers magnetization between the anisotropic
macromolecular sites and the isotropic bulk phase and it
drives relaxation by modulating the dipole couplings of
the labile spin(s). The conventional Bloch-Wangsness-
Redfield (BWR) perturbation theory of nuclear spin
relaxation®? therefore breaks down when, as is usually the
case, fast-exchange conditions do not prevail. We have
therefore developed a non-perturbative relaxation theory,
based on the stochastic Liouville equation (SLE),?!22
and valid without restrictions on exchange rate, dipole
couplings and magnetic field strength.> To better un-
derstand the rich relaxation behavior exhibited by the
dipolar EMOR model, we have also developed a pertur-
bation theory, based on the stochastic Redfield equation
(SRE), that is, the BWR master equation supplemented
with exchange terms, which, however, is valid only in the
restricted motional-narrowing (RMN) regime, where the
exchange rate exceeds all (fluctuating and static) dipole
couplings.

For larger spin systems, the SLE theory becomes com-
putationally intractable. We therefore turn to the more



computationally efficient and physically transparent SRE
theory, extending its validity beyond the RMN regime by
certain physically inspired, but essentially ad hoc, modifi-
cations. These modifications were calibrated against the
exact SLE solution of the EMOR model for four-spin sys-
tems, which is also presented here. The resulting gener-
alized SRE (GSRE) theory, which is applicable in the full
parameter space of the EMOR model, is then applied to
spin systems comprising up to 16 protons extracted from
crystal structures of two globular proteins. The GSRE
theory is also compared to a previously proposed approxi-
mate theory,* based on the extended (by exchange terms)
Solomon equations®® (ESE). Unlike the GSRE and SLE
theories, the ESE theory does not take into account
longitudinal-transverse cross-mode relaxation or coher-
ent transfer of magnetization (and higher spin modes)
induced by the static dipole couplings.

The outline of this paper is as follows. In Sec. II, we
briefly define the multi-spin dipolar EMOR model; more
details can be found in Paper II. In Sec. III, we develop
the analytical multi-spin SRE theory, making extensive
use of symmetry selection rules, and, in Sec. IV, we re-
derive the multi-spin ESE theory, which, in the RMN
regime, turns out to be a special case of the SRE theory.
The exact solution of the SLE for four-spin systems, de-
scribed in Sec. V, is used in Sec. VI to construct and
assess the multi-spin GSRE theory for spin systems of
increasing size. Finally, in Sec. VII, we discuss some
limitations of the GSRE theory and how these can be
overcome by suitable generalizations. The results pre-
sented in this paper are based on a substantial amount
of analytical and numerical work, as reflected by the 14
appendices of the supplemental material.?*

Il. MODEL AND EXACT FORMAL RESULTS
A. Model definition
1. Spin system and EMOR mechanism

We consider an immobilized protein molecule contain-
ing one or two labile protons dipole-coupled to m nonla-
bile protein protons and exchanging with the protons in
the surrounding bulk water phase. The case of a single
labile proton, with spin I, might represent a hydroxyl or
carboxyl proton in an amino acid side-chain. The case
of two labile protons, with spins I and S, represents a
water molecule transiently buried in a cavity inside the
protein. For spins associated with nonlabile protons, we
use the generic label P or lower-case Greek letters p, v,
Ky Ay onn o

To identify different spin systems and exchange cases,
we use the notation ‘(spins in state A)—(spins in state B)’,
where state A comprises protons associated with the pro-
tein and state B includes the bulk water protons. The
two generic multi-spin exchange cases treated here are
thus denoted I P,,—I and ISP,,—1S. The two-spin cases

15—IS and I P—I were treated in Papers I and II, respec-
tively, whereas the three-spin cases [ P,—I and ISP—1S
(as well as ISP —1SP) were considered in Paper I1I. In
the following, we present exact solutions for the four-spin
cases I Ps—I and IS P,—1S and approximate solutions for
the generic multi-spin cases I P,,—I and ISP,,—1S with-
out restriction on the number m of nonlabile protons.

The physical system that we have in mind is an aque-
ous protein gel or a soft biological tissue, where most or
all protein molecules are effectively immobilized by chem-
ical cross-links or non-covalent interactions. The system
contains a large number of randomly oriented protein
molecules, each of which is referred to as a site and iden-
tified by the generic label a. These sites, which make up
state A, are identical in all respects except for their orien-
tation (with respect to a lab-fixed frame), which conforms
to an isotropic orientational distribution.

The labile protons undergo chemical or, in the case
of internal water molecules, physical exchange with bulk
water protons and their mean survival time in the A sites
is denoted by 7a. Detailed balance®® then requires that
Pg A = Pa 7, where Py = 1 — Py is the fraction of all
labile protons (including bulk water) that, at any given
time, reside in A sites. In practice,®1?15 Py < 1 and the
following development will therefore focus on this dilute
regime.

Exchange not only transfers magnetization between
the A and B states and quenches multi-spin modes by
fragmenting the spin system;2® it is also the motion
that induces spin relaxation by stochastically modulat-
ing all dipole couplings involving the labile spin(s) re-
siding in A sites. In this dynamic model, which we re-
fer to as exchange-mediated orientational randomization
(EMOR), the orientation of all internuclear vectors in-
volving the labile spin(s) is instantaneously randomized
upon exchange. This simple model is justified if 74 is
long compared to the time required for orientational ran-
domization when the labile spin(s) has been transferred
to state B. This is the case for chemical exchange of la-
bile macromolecular protons with bulk water as well as
for physical exchange of internal water molecules with
bulk water.?27

In the interest of clarity, we have here described the
model in terms relevant for the most important applica-
tions. However, the theory developed in the following is
more general. For example, the macromolecules need not
be proteins, the bulk phase need not be water, and the
spin-1/2 nuclei need not be protons.

2. Spin Hamiltonian

From an NMR point of view, the A state has the pecu-
liar property of combining solid-like and liquid-like fea-
tures. Whereas I—u, S— and I=S dipole couplings are av-
eraged to zero by exchange, thereby inducing spin-lattice
relaxation, p— v dipole couplings are static and therefore
induce coherent evolution of the spin system. The dipo-



lar spin Hamiltonian (in angular frequency units) for site
ais
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Hp x = G ZWD,X Z Ti(X) Dio(Q%), (1)
X M=—2

where the first sum runs over all mutual dipole couplings
among the m + 1 or m + 2 spins in site a. The irre-
ducible spherical tensor operators (ISTOs) T4 (X) are
normalized in the two-spin Liouville space of the spins
involved in dipole coupling X, as in Table S1 of Pa-
per II. The argument of the rank-2 Wigner functions
D?,,(9%) are the Euler angles Q% that specify the orien-
tation of the internuclear vector rx in site a with respect
to the lab-fixed frame.?® As in papers I — I1I, we incorpo-
rate a factor 3/2 in the definition of the dipole coupling:
wp,x = (3/2) [uo/(4m)] 7> h/r.

As shown in Paper III, the effect of proton chemical
shifts is negligibly small under the conditions of interest.
The spins can therefore be taken to be isochronous, so
the Zeeman spin Hamiltonian is the same in all sites,

HY = wy {Iz +S. 4+ PW] : (2)

pn=1

the S, term being present only for the ISP,, — IS case.
The Zeeman Hamiltonian in state B is the same as in
state A, but without the sum over nonlabile spins. We
omit the rapidly fluctuating dipolar Hamiltonian in state
B, which gives rise to a small and frequency-independent
relaxation contribution that, if so desired, can be added
to the final expression for the relaxation rate.®

B. Integral relaxation rate in the dilute regime

Our primary objective here is to calculate the
frequency-dependent  longitudinal relaxation rate,
Ri(wp), of the abundant water proton spins. Under
most conditions of interest, the system is in the dilute
regime and relaxation is therefore strictly exponential.
The so-called integral longitudinal relaxation rate
(ILRR), ﬁld“(wo), that is most readily obtained from
theory,"6 is then identical to the observable R;(wg). For
this reason, and in the interest of notational economy,
we shall omit the caret as well as the “dil” superscript
(indicating dilute regime conditions) used in previous
papers in this series. On the other hand, we will indicate
with a subscript I or IS whether the relaxation rate
pertains to the I P, —1I or ISP,,— IS case.

The general formalism for relaxation by the dipolar
EMOR mechanism presented in Paper II is valid for ar-
bitrarily large spin systems. The relaxation rate in the
dilute regime and with observation of the labile spin(s),

is given, for the two exchange cases considered here, by

Py
Ri; = , 3a
RN (3a)
2 Py
Ris = . (3b
BTy (Ui + Ura + Usy + Usg) (3b)
where U, = (n|Ulp) is a Liouville-space supermatrix

element of the superoperator U and the basis operators
B, = |n) are taken to be ordered so that B; ~ I, and
By ~ S,. (The quantity here denoted by U corresponds

~ BB
to Pa/7a times the resolvent superoperator U (s) at
Laplace variable s = 0, as defined in Paper I1.) According
to Paper II, in the dilute regime,

1
U = [1+iLZTB—TGAT' : (4)

where the exchange topology supermatrix T connects all
B state basis operators (which only involve labile spins)
with the corresponding operators in the larger A state
basis, and T is the transpose of T. Furthermore,

G* = (A7), ()

where the angular brackets indicate an isotropic orien-
tational average (over all sites) and the supermatrix A%,
associated with a particular site «, takes different forms
depending on whether the subsequent theoretical devel-
opment is based on the general stochastic Liouville equa-
tion (SLE) or its limiting form, the stochastic Redfield
equation (SRE).%7 As seen from Eq. (3), for both ex-
change cases, the relaxation rate is strictly proportional
to Pa in the dilute regime.

In the multi-spin SLE theory, valid in the full param-
eter space of the EMOR model, A is given by®

Aa:K+iL%TA+iLzTA7 (6)

where L} and Ly are the Liouvillian supermatrices cor-
responding to the dipolar and Zeeman spin Hamiltonians
in Egs. (1) and (2), and the supermatrix K differs from
the identity matrix only in that diagonal elements corre-
sponding to basis operators that only involve nonlabile
spins are zero. In the multi-spin SRE theory, valid in
the restricted motional narrowing (RMN) regime, A% is
instead given by”

A = K+RY7A +iA%7A +iLy7a , (7)

featuring the relaxation supermatrix R and the coher-
ent mode transfer supermatrix A”, the explicit forms of
which are given in Sec. IIT.A.

The supermatrix G* is isotropically averaged and
therefore shares the cylindrical symmetry of the Zee-
man Hamiltonian. The Wigner-Eckart theorem?® then
implies that G* is Q-block-diagonal in the ISTO basis
for state A. The supermatrix T G* T’ is therefore Q-
block-diagonal in the B state basis, as is the Zeeman



Liouvillian supermatrix Lyz in Eq. (4). Since the block
structure is retained under matrix inversion, it follows
from Eq. (4) that also U is @-block-diagonal. As seen
from Eq. (3), we only need elements from the @ = 0
block of U, so we can disregard the other @-blocks. For
the I P,,—I case, the @ = 0 block is one-dimensional and
[Lz]o=0 = Lz,11 = 0. For the ISP,,—IS case, the Q@ =0
block is 5-dimensional, but, if the labile spins I and S
are isochronous in state B, we have [Lz]g—¢ = 0. For
both exchange cases, Lz can therefore be omitted from
Eq. (4), whereby

—1
Ug—o = |1 — ToG*T}| (8)

where Ty connects B state () = 0 operators with the
corresponding A state operators.
For exchange case I P, —1,

TO,np = 51’11 51)1 5 (9)
so Eq. (8) yields
1
U = ——, 10
U (T—gn) (10)
where g,, == (n|G*|p). Combination of Eqs. (3a) and
(10) then yields
P,
Rip = = (1-gu). (11)
TA

This is an exact result for the multi-spin I P,,—1I case in
the dilute regime.

For exchange case ISP,, —IS, the @ = 0 subspace is
5-dimensional. However, to an excellent approximation,
we need only retain the 2 x 2 block of G* spanned by the
first two basis operators By and By, which have odd spin
inversion conjugation parity.?®3! As shown in Appendix
A?* the relaxation rate then becomes

Py 2 (1 — 911 — 922 + 911922 — 912921)

Ri1s = —
! TA (2—g11 — g22 + 912 + g21)

(12)

The test calculations reported in Appendix A?* demon-
strate that, in practice, this may be regarded as an exact
result.

I1l. MULTI-SPIN SRE THEORY
A. Relaxation and coherent mode transfer

The starting point for the multi-spin SRE theory is the
restricted BWR master equation, which we derive in Ap-
pendix B.?* As shown in Paper II, this master equation
leads to the exact results of Sec. II, notably Egs. (5),
(11) and (12) with A given by Eq. (7). For isochronous

spins, the relaxation supermatrix R® appearing in Eq.
(7) is given explicitly by’

R® = ;ZZ WD, X WD,y
X Z Z FMILI’ QX,Qa)J(

M=—2M'=—2

(13)

wo) CM]\/[’ .

The coherent mode transfer supermatrix A%, which is
present for m > 2, is obtained as the obvious multi-spin
generalization of the ISP —1 result given in Paper III,

Z WD, X Z D37o(9 M . (14)

In Eq. (13), X and Y refer to dipole couplings that
involve at least one labile spin, so they are randomized
by the exchange. In Eq. (14), X refers to static dipole
couplings between pairs of nonlabile spins.

For the EMOR relaxation mechanism, the spectral
density function (SDF) in Eq. (13) is of the form

TA

J(nwy) = e ry— o a2

(15)
As shown in Paper III, the odd SDF has no effect for the
ISP—1S case and a completely negligible effect for the
IP,—1 case. In Eq. (15), we therefore retain only the
even part of the SDF.

The angular functions in Eq. (13) are defined as

Farnr (9%, Q%) = D370(9%) D3fo(93)
= expli(MyS +M'¥$)] digo(9%) dipo(05) -

To compute the Wigner functions D3%/,(Q%) in Egs.
(14) and (16), we need a convention for parametriz-
ing the internuclear geometry. The Euler angles Q% =
(Y%, 9%, —) specify the orientation of the dipole vector
rx with respect to the lab-fixed frame. First, we need a
convention for the direction of the dipole vector rx. For
fluctuating dipole vectors, rx is taken to point from the
labile spin (I or S) to the nonlabile spin (u) or, for the
intramolecular water dipole coupling, from spin I to spin
S. For static dipole couplings between nonlabile spins p
and v, rx is taken to point from p to v with pu < v.
The total number of (static or fluctuating) dipole cou-
plings is m(m +1)/2 for the IP,,—I case and 1+ m(m+
3)/2 for the ISP,, —IS case. A description that, for
each site o, specifies the two angles % and 9% for
each of those dipole couplings is redundant. To obtain
a more parsimonious description, we perform the trans-
formation from the lab-fixed frame L, with the zp, axis
along the By field, to the dipole-fixed frame X, with
the zx axis along the dipole vector rx, via an interme-
diate site-fixed frame D. The first transformation step,
which rotates the L frame into coincidence with the D
frame of site «a, is specified by the X-independent Eu-
ler angles Qfy = (¢%, 6, ¢®). The second transforma-
tion step is specified by the site-independent Euler angles

(16)



Qpx = (yvx, Bx, —), that is, the spherical polar angles
that define the orientation of the dipole vector rx with
respect to the D frame. In terms of the two successive
transformations L. — D — X, the Wigner functions can
be expressed as

2
> Din(©fp) D5 (Qpx)
N=-2
2

Dip(Q%) =

= exp(iM@™) Y dirn(6) expliN (™ + vx)] o (Bx) -

N=-2

(17)

In Appendix C,2* we describe the conventions used to
define the D frame and the Euler angles Sx and 7yx.

The isotropic orientational average in Eq. (5) involves
the Euler angles Q¢ = (¢%, 6, ). For the angles
¢ and 0°, which determine the orientation of the zp
axis, we use Lebedev quadrature3?33 with Ny, points on
the unit sphere. For the angle ¢, which determines
the orientation of the xp and yp axes, we use a uniform
grid with N, points. Unless otherwise noted, we use
Nq = N1, x N, = 14 x 5 = 70 Euler angle sets, but when
extreme accuracy is desired we use N = 50 x 15 = 750
sets.

«

B. Symmetry rules
The real-valued elements of the coefficient supermatri-
ces in Eqs. (13) and (14) are,”

Crnermp = T{IBL T (X [T (V). Byl} . (18)

= Te{[B], Ti7(X)] By} .

where the last equality follows from the cyclic permuta-
tion invariance of the trace. Whereas the ISTOs T/ (X)
are normalized in the two-spin Liouville space corre-
sponding to the two spins involved in the dipole coupling
X, the basis operators B,, are normalized in the multi-
spin Liouville space, that is, Tr{B] B,} = 0,, with the
trace including all m + 1 or m + 2 spins. The numerical
prefactors in Eqgs. (13) and (14) are consistent with these
conventions.

The coefficients C’A)fﬁj(/[,’np and Df\(/[,np exhibit symme-
tries that allow us to formulate the SRE theory in a
small part of the full (4™*+2 — 1)-dimensional spin Li-
ouville space. The Liouville subspace notation used to
describe these symmetries is defined in Appendix D.24
For example, the subspaces . and N are spanned by
basis operators involving only labile or nonlabile spins,
respectively. The one- or two-dimensional subspace LZ
is spanned by basis operators proportional to I, or S,
and the 27-dimensional subspace N3(puvk) is spanned by

basis operators involving only the three indicated nonla-
bile spins. These subspaces may be further decomposed
into subspaces spanned exclusively by basis operators
with odd (antisymmetric = a) or even (symmetric = s)
spin inversion conjugation (SIC) parity.2%3! For exam-
ple, N = NA @& NS. The odd and even subspaces can
then be decomposed into subspaces with basis operators
involving a specific number of distinct spins, for example,
NA =N; & N3 & Ny if m = 6.

By using the general properties of the commutator and
trace operations, we can establish useful symmetry rules
for the coefficients C3yY. ,,,, and Dy; . in Egs. (18) and
(19). Here we merely state these rules; the proofs can
be found in Appendix E.2* The rules can be expressed
most succinctly in terms of the relevant blocks of the
supermatrices Ca/y or Diy.

Symmetry Rule I. Labile single-spin modes are
relaxation-coupled to nonlabile single-spin modes but not
to other nonlabile odd-parity modes, and the relaxation
coupling only involves self-correlations.

Calvr v, = 0xv 0k Capypr Ly, » (k=odd) . (20)

Symmetry Rule II. Relaxation does not couple
nonlabile-spin modes involving different number of spins.
CiV(I}J{l’,NkNl = O Cfﬁ/ﬂ,Nka . (21)

Symmetry Rule III. Within the nonlabile k-spin sub-

space N, relaxation only couples modes that involve the
same set of k spins.

CXY —
MM’ N (preX-- )Ng (p/' v/ &’ X---) (22)

5 Cain
MUK VRN - S MM Ng (pvs--- )Ng (- )

The supermatrices C)A%/[,ﬁNka and RfY, , are therefore
block-diagonal in spins (k = 1), spin pairs (k = 2),
etc. Furthermore, relaxation coupling between single-
spin modes only involves self-correlations.

Symmetry Rule IV. Relaxation supermatrix ele-
ments within the single-spin subspace only involve self-
correlations.

Citrtrmp = Oxv Ciingrmp » Hn,peWi.  (23)

Symmetry Rule V. Coherent dipolar evolution does not
couple directly to labile-spin modes.

D)Agf,mw = Dﬁ,WL =0. (24)

Symmetry Rule VI. Coherent dipolar evolution does
not couple nonlabile-spin modes with mixed modes.

Di\(/I,NU = Di\(/I,IUN =0. (25)

Together, symmetry rules V and VI show that coherent
dipolar evolution can only couple nonlabile-spin modes
to other nonlabile-spin modes.



Symmetry Rule VII. Coherent dipolar evolution cou-
ples nonlabile single-spin modes with nonlabile two-spin
modes, but not with any other nonlabile k-spin modes.

DY e = Or2 DAy, - (26)

Symmetry Rule VIII. Coherent dipolar evolution only
couples nonlabile spin modes differing by one spin. Thus,
for k > 2,

X _ X
D vy, = Ok Dy wengs,y - (27)

For k = 1, only the plus sign applies and Eq. (27) reduces
to Eq. (26).

Symmetry Rule IX. Coherent dipolar evolution couples
k-spin modes with (k4 1)-spin modes only if & spins are
shared between the modes. The mode coupling is induced
by dipole couplings between the non-shared spin and each
of the shared spins.

C. Integral relaxation rate

We have now defined all quantities in Eq. (7) that
make up the supermatrix A%, which must then be in-
verted and isotropically averaged to obtain the elements
of the supermatrix G* in Eq. (5) needed to calculate the
relaxation rate from Eq. (11) or (12). Even though the
dimension of the supermatrix A® is prohibitively large
for realistic spin systems, a computationally manageable
theory can be obtained by using the SIC symmetry of
the supermatrices R* and A* and the symmetry rules
in Sec. III.B. We shall thus generalize the three-spin
treatment of Paper III to the multi-spin cases I P, — I
and ISP,,—IS, without any limitation on the number m
of nonlabile spins. This will be done exactly for m < 3,
whereas, for m > 4, we neglect four-spin and higher spin
modes. Here we only present an outline of the derivation
of the multi-spin SRE theory; the full derivation can be
found in Appendix F.%*

Provided that the multi-spin ISTO basis for state A is
ordered with the odd-parity operators before the even-
parity operators, the SIC symmetry ensures that the re-
laxation supermatrix R® is block-diagonal whereas the
coherent mode transfer supermatrix A% is anti-block-
diagonal. To make use of this symmetry, we partition A*
into blocks associated with the anti-symmetric (A) and
symmetric (S) subspaces. We only need the AA block of
the inverse (A*)~!. Expanding this inverse to first or-
der in R“74, that is, to second order in wp7a, consistent
with our use of the RMN approximation in Eq. (13),
and performing the isotropic average in Eq. (5), the rel-
evant 1 x 1 (IP,,—1I case) or 2 x 2 (ISP,,— 1S case)
block of the supermatrix G* can be expressed in terms
of the auto-spin relaxation supermatrix Ri7;; and the
cross-relaxation supermatrix I'(’; 7 for site a,

G]I[}Z,]LZ =1- [<REZJLZ> - <I‘HOfZ,LZ>] TA - (28)

\

FIG. 1. Spin mode transfer pathways for the IP;—1 case,
showing B <+ «a exchange, auto-spin relaxation (solid arrows)
and cross-spin relaxation (dashed arrows) in site a. In the
upper part of the figure, wavy lines indicate coherent trans-
fer of among the single-spin modes of the three nonlabile
spins in site a via two-spin modes (solid) or via the three-
spin mode (dashed), as well as auto-relaxation (arrows) of all
these modes.

Using symmetry rules I and V, we obtain for the cross-
relaxation supermatrix,

@
Iiz1z =

. 1
Rizn, (R§1N1 + XN, — YRy, i LZ,NlNl) Rl(\lh,(mz )
29

The supermatrices Xy y, and Yg y, describe coherent
transfer among single-spin modes associated with dif-
ferent nonlabile spins. This transfer proceeds via two-
spin modes (described by X, y,) and also three-spin and
higher (up to m-spin) modes (described by Y, y, ), which
simultaneously undergo relaxation induced by the fluctu-
ating dipole couplings between the associated nonlabile
spins and the labile spin(s).

The physical significance of the different parts of Eq.
(29) may be appreciated with reference to Fig. 1, show-
ing the pathways of dissipative (relaxation) and coher-
ent (evolution under the static dipolar Hamiltonian) spin



mode transfers for the I P3—I case. The 1x9 supermatrix
Rjz n, describes cross-spin relaxation between the labile
spin I and the three nonlabile spins u, v and « in site «,
including cross-mode relaxation between longitudinal I,
magnetization and transverse nonlabile-spin magnetiza-
tions. These pathways are indicated by dashed arrows in
the lower part of Fig. 1. The 9 x 9 supermatrix R y,,
which is block-diagonal in spin (with three 3 x 3 blocks
along the diagonal), describes auto-spin relaxation of the
single-nonlabile-spin modes (longitudinal and transverse
magnetizations), as indicated by the three solid arrows
pointing out from the corners of the triangle in the upper
part of Fig. 1. The 9x9 supermatrix Xg, y, describes the
coherent interconversion of single-nonlabile-spin modes
via two-spin modes, corresponding to two consecutive
solid wavy lines in Fig. 1. Finally, the 9 x 9 super-
matrix Y§,y, describes the coherent interconversion of
single-nonlabile-spin modes via two-spin and three-spin
modes, for example, y — puk — pre — vk — v, in-
volving two solid and two dashed wavy lines in Fig. 1.
Simultaneously, the two-spin and three-spin modes un-
dergo relaxation, as indicated by the thicker arrows in
Fig. 1.

Expressions for the 3m x 3m supermatrices X§, y, and
YR, n, in terms of the relevant blocks of the relaxation
and coherent mode transfer supermatrices R* and A*
can be obtained by using the symmetry rules of Sec. II1.B
and expanding to second order in wpTy (consistent with
the RMN approximation). For Xf, y,, we thus obtain

XglNl = 0&1N2 (R§2N2 + Z'LZ»NQN2) IACIY\IQNl . (30)
The supermatrix Yy, involves coherent spin mode
pathways of the general form

1 = 2 —» 3 — {mixingof3—spinmodes} — 3 — 2 — 1.

(31)
The mixing of the three-spin modes involves modes from
two-spin up to m-spin. To obtain a computationally
tractable theory, we neglect k-spin modes with k£ > 4.
With this three-spin mode (3SM) approximation, we ob-
tain

@ _ « «@ - —1 A
Ny = ARn, Riw, +1 Lz, n,n,) 7 AR, X

. . _ -1
[R§3N3 + 2]:JZ1N3NS + A%;;NQ (R‘I(\IQNQ + /LLZ»NQNZ) 1A(I)<12N3:|

@ « . —1 A
x Ay, (RN, + 7Lz, n,n,) NoN; -

(32)

Expressions suitable for machine computation of the
relaxation rates Ry ; and Rj s are presented in Ap-
pendix G.2* These expressions are based on Egs. (11),
(12), (28) — (30) and (32), but also make use of special
properties, such as block-diagonality and Hermiticity, of
the relaxation and mode transfer supermatrices. As re-
quired, these expressions reduce to the results presented
in Paper III for three-spin systems.

Explicit expressions for all relaxation supermatrices
and coherent mode transfer supermatrices appearing in

Egs. (28) — (30) and (32) are given in Appendix H.?
Whereas the single-spin mode relaxation supermatrices
Ri712, Riz N, and Ry, only involve self-correlations,
that is, correlations of the dipole coupling between the
same two spins at two different time points, the two-
spin and three-spin mode relaxation supermatrices Ry, ,
and Rg,y,, appearing in Egs. (30) and (32), also in-
volve distinct correlations. Distinct correlations can be
of two kinds: three-spin correlations, where one spin is
shared between the two dipole couplings, and four-spin
correlations, where four distinct spins are involved in
the correlation. For the multi-spin EMOR cases con-
sidered here, a four-spin correlation must involve dipole
couplings X = Iy and Y = Sv. However, it follows from
Eq. (18) that such correlations do not contribute. The
multi-spin SRE theory thus only involves two-spin and
three-spin correlations.

The theory simplifies considerably if all static dipole
couplings between nonlabile spins are neglected. Then
the coherent mode transfer supermatrices Af y, and
ARy, vanish, so X§ y, = Yg,n, = 0. Computation
of the cross-relaxation supermatrix I'f';;, in Eq. (29)
then only requires taking the inverse of the 3 x 3 blocks
of the block-diagonal single-spin relaxation supermatrix
RSy,

IV. MULTI-SPIN ESE THEORY

A simpler and less rigorous theoretical approach to the
multi-spin EMOR problem for the I P,,—I and [SP,,—IS
cases has been described.* The starting point for that
analysis was the multi-spin extended Solomon equations
(ESE), describing the auto-spin and cross-spin relaxation
of the longitudinal magnetizations of the labile and non-
labile spins and the exchange of the former between the
anisotropic « sites and the isotropic B state. Being re-
stricted to longitudinal magnetizations, the ESE theory
cannot describe cross-mode relaxation and the inverted
relaxation dispersion associated with it.%7 Moreover, be-
cause the orientation-dependent relaxation rates in the
anisotropic « sites are replaced at the outset by isotrop-
ically averaged rates, the ESE theory disregards the de-
pendence of the relaxation rate on the relative orientation
of the dipole vectors, a dependence which, at least for
small spin systems, is significant.®” Finally, by neglect-
ing static dipole couplings between nonlabile spins, the
ESE theory omits all effects of coherent mode transfer.

On the other hand, the ESE theory is more general
than the SRE theory because it does not assume fast ex-
change (that is, wp 74 need not be small), although it
describes relaxation in the « sites with the aid of BWR
theory (which presupposes that wp 7a < 1). The ESE
theory is thus a hybrid approach, lacking internal con-
sistency. Nevertheless, because the ESE theory is com-
putationally expedient and at least approximately valid
for arbitrarily slow exchange, it is of interest to compare
it to the more rigorous, albeit more computationally de-



manding, theories developed here. Before doing so, we
shall use the SRE framework established in Sec. III to
re-derive the ESE theory. Apart from correcting a minor
error in the original formulation,* this exercise allows us
to precisely identify the approximations implicit in the
ESE theory. The full derivation is relegated to Appendix
I;?* here we merely quote the final result.

According to the multi-spin ESE theory, the relaxation
rate can be expressed on the familiar3* dilute-regime form

Py 7

R = —2
L TP

(33)

with the effective local longitudinal relaxation rate given
by*

F= 12—59]% [J(wo) +4J(2wo)] , (34)

with the SDF as in Eq. (15). Equations (33) and (34) are
valid for both exchange cases, but with different mean-
ings for the effective, frequency-dependent, dipole cou-
pling Qp. For the IP,,—1I case,

- 2.J(0) + 3 J(wo)
% = o [J(o)+3J(wo)+6J(2w0)} W

with the cumulative dipole coupling wp,; defined through
m
w]%,[ = Z w]%,[/t . (36)
p=1

For the ISP,,—IS case, {)p has a more complicated form
(Appendix I).

V. FOUR-SPIN SLE THEORY

The general theoretical framework for the exact multi-
spin SLE theory, which is valid also outside the RMN
regime, was established in Paper II. Unfortunately, im-
plementation of the SLE theory is not practically feasi-
ble for large spin systems, because of the huge number
of matrix elements that must be evaluated (by symbolic
computer algebra) and because the required numerical
computations (inversion of very large matrices at each
of many Euler angle sets for each frequency point in the
dispersion profile) become too time-consuming.

In Paper III, we implemented the SLE theory for the
three-spin cases I Po—1I and ISP—IS. Here, we describe
the implementation of the SLE theory for the four-spin
cases I Ps—I and 1.SP,—IS. The motivation for this signif-
icant undertaking is to establish a benchmark and guide
for the development of the more computationally effi-
cient and physically transparent generalized multi-spin
SRE theory described in Sec. VI. The three-spin cases
are less suitable for this purpose, since they involve at
most a single static dipole coupling. In contrast, the
I P;—1 case involves three static dipole couplings and it
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FIG. 2. (a) R1,1(wo) dispersion profiles for the labile hydroxyl
proton in Thr-22 (ubiquitin) coupled to m = 1, 2 or 3 nonla-
bile protons. (b) Ri1,rs(wo) dispersion profiles for the protons
of internal water W122 (BPTI), coupled to m = 0, 1 or 2
nonlabile protons. In both panels, m increases from the lower
to the upper profile and the dispersion profiles were com-
puted from SLE (red solid) and SRE (blue dash) theory with
7a = 1077 s (in the RMN regime) and Ng = 750.

can therefore be expected to capture the essential fea-
tures of larger multi-spin systems. As an additional ben-
efit, the four-spin SLE solution can be compared to the
SRE solution in the RMN regime, where both theories
are exact, thereby providing a valuable check on the con-
siderable algebra and computer coding underlying these
calculations.

The 256 ISTOs spanning the four-spin Liouville space
were generated by symbolic computer algebra using three
successive angular momentum couplings, as described in
Appendix J.24 A complete list of these basis operators
can be found in Table $3.24 The 65,025 elements of the
supermatrix representation L, in this basis of the dipo-
lar Liouvillian corresponding to the dipolar Hamiltonian
in Eq. (1) were generated as described in Appendix K,*
again using symbolic computer algebra. The superma-
trix representation Ly of the Zeeman Liouvillian corre-



sponding to the isochronous Zeeman Hamiltonian in Eq.
(2) is diagonal in the ISTO basis, with elements Q wy.
The supermatrix A” is then computed from Eq. (6), nu-
merically inverted and isotropically averaged to yield the
supermatrix G in Eq. (5). Finally, the relaxation rate
is calculated from Eq. (11) or (12).

Several checks were performed on the four-spin SLE so-
lution. First, we demonstrated that it agrees, to machine
precision, with the previously presented two-spin® and
three-spin? SLE solutions in the special cases where one
or two nonlabile spins are located far away from the la-
bile spin(s). Second, we demonstrated that the SLE and
SRE theories agree, to machine precision, in the RMN
regime, where both theories are exact. This agreement
is shown in Fig. 2 for the I P, —1I and ISP,,—IS cases.
Here, we also include the corresponding results for two-
spin and three-spin systems to highlight the substantial
qualitative differences in the shape of the dispersion pro-
file as more nonlabile spins are incorporated in the spin
system.

VI. MULTI-SPIN GSRE THEORY

In this section, we develop a generalized SRE (GSRE)
theory that reduces to the SRE theory of Sec. III in
the RMN regime, but also remains approximately valid
outside the RMN regime, that is, for arbitrarily long 7a
values. We consider first the multi-spin case I P,, —1I for
m > 3 and we then describe the few additional modifica-
tions needed for the ISP,,— 1S case.

The degree of success of the GSRE theory will be
judged by comparison with results obtained from the
exact SLE theory for the four-spin cases IP;— 1 and
ISP, —1IS. These test calculations were performed on
25 four-proton fragments (20 side-chain hydroxyl or car-
boxyl protons and five internal water molecules) ex-
tracted from crystal structures of the globular proteins
ubiquitin and BPTI, which have been studied extensively
by water 'H, 2H and 7O MRD.335738 The six dipole
coupling constants wp_x for each of the 25 fragments are
listed in Tables S4 and S5 of Appendix L.?* The nuclear
coordinates from these structures were also used to com-
pute the Euler angles Bx and vx (Appendix C?4). In Sec.
VI.C, we use the GSRE theory to examine the scaling and
convergence of the dispersion profile with increasing num-
ber m of nonlabile spins. For these calculations, we used
protein fragments with up to m = 15 nonlabile protons,
selected in order of increasing distance from the labile
spin(s). All calculations reported in this paper use the
experimentally relevant value Py = 1 x 1072.3'2 How-
ever, as seen from Egs. (11) and (12), Rq(wo) is strictly
proportional to Pa, so the value chosen is unimportant.

A. Exchange case IP,,—1

For the two-spin cases IP—1I and IS—15,%% the exact
SLE theory leads to simple analytical results for the the
zero-field (ZF) relaxation rate R; ;(0). For the IS—1IS
case, this result suggests that the validity of the SRE
theory can be extended beyond the MN regime simply
by replacing the SDF with a generalized SDF (GSDF),

TA
1+ (wpTa)2+ (nwoTa)?’

J(nwo) = (37)
where the caret distinguishes the GSDF from the reg-
ular SDF in Eq. (15). For the IS —1IS case, the re-
sulting GSRE theory accurately reproduces the exact
(SLE) dispersion profile Ry r(wo) over the full 75 range
and it is exact in the MN and ZF regimes.® A similar
GSDF accurately describe the exact Ry j(wg) profile for
the quadrupolar spin-1 EMOR case.? For the I P—I case,
the exact ZF rate Ry 7(0) is reproduced with a GSDF
of the same form, but with a factor 1/5 multiplying the
(wp 7A)? term.% No attempt was made to reproduce the
full dispersion profile with a GSRE theory for the ITP—1T
case, or for the three-spin cases treated in Paper III.
Although exact ZF results are not available for I P,,,—I
cases with m > 1, physical considerations suggest a
GSDF similar to that in Eq. (37), but with a differ-
ent numerical coefficient in front of the (wp 7a)? term.
Accordingly, we base the multi-spin GSRE theory on the
GSDF
~ TA
Jnwo) = 1+ ¢ (wp,r7a)? + (nwoTa)?

(38)

To assess the accuracy of this ansatz, we first consider
R1,1(0) for the IP,, —I case without static dipole cou-
plings (SDCs), which will be dealt with subsequently,
whereby Egs. (G.1) — (G.5) and (38) yield

2P (wpama)’

. 39
15 7a 1 4 (7 (wp,r 7A)? (39)

Ry 1(0) =

Trial calculations of Ry ;(0) for the I Ps—I case without
SDCs show that the exact SLE result is reproduced to
within a few percent over the full 74 range (Fig. 3, and
Figs. S2 and S3 of Appendix M?%), provided that the
coefficient (; is allowed to vary from 1/3 near the MN
regime to 2/15 in the ultraslow-motion (USM) regime,
where (wp 7 7a)? > 1, according to

1004+wpr7a| 2
= |— —. 40
Cr |:4+WD,ITA:|15 (40)
The ZF rate predicted by Egs. (39) and (40) coincides
with the exact SLE result, not only in the MN limit, but
also in the USM limit, where
P
Rig(0) = =~ (41)
TA
This is a particularly simple instance of the exact result,
R1,1(0) = C Pa/Ta with a numerical constant C' of order
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FIG. 3. R11(0) versus 7a for the labile protons in Thr-7
(a) and Asp-39 (b) side-chains of ubiquitin coupled to three
nonlabile protons without SDCs, computed from the SLE (red
solid), GSRE (blue dash) and ESE (black dash-dot) theories.

unity, which holds generally for the dilute EMOR model
in the USM limit. Importantly, this result is valid for the
dipolar®” EMOR model for any m and with or without
SDCs, as well as for the quadrupolar’:?> EMOR model.
For the two-spin dipolar EMOR model (the TP —1 and
IS —1S cases) and for the isomorphic axially symmetric
quadrupolar I = 1 case (or any integral I),"2 C' = 2/3.
In both of these cases, there are three ZF energy levels,
two of which are degenerate. For the three-spin dipolar
EMOR model (the I P,—I and ISP—IS cases), C' depends
on the relative lengths and orientations of the dipole vec-
tors. For the axially symmetric quadrupolar case with
half-integral I, with (21 — 1) pairs of doubly degenerate
energy levels, C' = 2/3—(21+1)/[41(I+1)], varying from
C =2/5for I =3/2to C =2/3 for I - oo.! For the
four-spin dipolar EMOR model (the I Ps—I and IS P,—IS
cases), Eq. (41) is valid (that is, C = 1) regardless of
the strengths and geometry of the dipole couplings. By
adopting the GSDF defined by Eqgs. (38) and (40), we
ensure that the multi-spin GSRE theory reproduces the
simple USM result in Eq. (41) for any m.
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An intuitive understanding of Eq. (41) can be ob-
tained from the classical vector picture. The labile spin
(or an ensemble of such spins) precesses (uninterrupted
for many periods in the USM regime) with frequency
wp,r in the local magnetic field wp /v produced by the
m nonlabile spins in a particular site «, independent of
the SDCs. A spin undergoing such local precession con-
tributes a certain amount to the macroscopic longitudi-
nal magnetization along any lab-fixed axis. After the
spin leaves site «, it looses all correlation with the site
orientation so that the next visited site can have any
orientation drawn from an isotropic distribution. Con-
sequently, the magnetization is randomized on the time
scale 7o and we can regard 1/75 as the local relaxation
rate in the ZF USM limit. Note that the SDCs play no
role here, consistent with our SLE results. This local
relaxation rate is closely related to the so-called dipo-
lar relaxation rate, for which a semi-phenomenological
“strong-collision” theory (invoking the spin temperature
concept) yields Ry p = Cp/7c, where 7, is the correlation
time for some local rotational motion and the numerical
coefficient Cp depends on what fraction of the dipolar
energy is modulated by this motion.39:40

The USM result in Eq. (41) can also be obtained from
the ESE theory by taking the slow-exchange limit of Eq.
(33), since 774 > 1 in the USM limit. This is true also
if the local relaxation is induced by a different motion
than exchange (as in the EMOR model). Making use of
the detailed balance condition, Eq. (41) can also be ex-
pressed as Ry ;(0) = 1/7g, implying that spin [ is relaxed
as soon as it reaches any A site. However, in contrast to
the GSRE theory, the ESE theory grossly overestimates
R1,7(0) at intermediate 74 values, and it is not even cor-
rect in the MN limit (Figs. 3, S2 and S3).

We now consider the full dispersion profile Ry ;(wo),
but still without SDCs. The GSRE theory is based on
Egs. (G.1) — (G.5) — but without the last two terms
in Eq. (G.5), which vanish in the absence of SDCs —
and the GSDF in Eq. (38) is used to calculate all relax-
ation supermatrix elements. This GSDF not only pre-
dicts Ry 7(0) accurately; it also describes how the fre-
quency of the primary dispersion varies from wy ~ 1/7a

in the MN regime to wy = C}ﬂwD,[ in the USM regime.

However, for wp ;7a 2 1, the GSRE profile also ex-
hibits an inverted secondary dispersion step at wg /= 1/7a
that is not present in the exact SLE profile (see Figs.
S4 — S7 of Appendix M?*). The origin of this spu-
rious GSRE dispersion is most readily appreciated in
the USM regime. Well below the primary dispersion
step, that is, for wy < wp,;, the GSDF reduces to
J(nwo) = J(0) = 15/(2wd ; 7a) so the elements of the
auto-spin relaxation matrix Ry, (,)n, () in Eq. (G.5) are
of order 1/74. When wgy 2 1/7a the term iwy Q; in Eq.
(G.5) then cancels the off-diagonal cross-mode elements
of Rl%l(ﬂ)Nl(H)7 thus giving rise to the secondary disper-
sion step. To eliminate this spurious feature, we replace
the Larmor frequency in the iwp Q; term of Eq. (G.5),



but not in the GSDF, by the renormalized frequency

~ wo
= ———. 42
0 (1+2wD,17'A) ( )

We refer to this modification of the SRE theory as sup-
pression of nonsecular decoupling (SND).

As seen from Figs. S4 — S7, a GSRE theory that fea-
tures the GSDF in Eq. (38) as well as the SND mod-
ification in Eq. (42) reproduces the exact SLE profile
quite well also outside the MN regime. The numerical
factor of 2 in Eq. (42) was not rigorously optimized, but
without it the GSRE profiles for 74 = 10~* s exhibit a
small residual ND hump (more prominent for m > 3). In
the USM limit (7o = 1072 s), the ZF regime extends all
the way up to the primary dispersion in the GSRE pro-
file, whereas the SLE profile exhibits some fine structure
in the low-frequency (LF) regime (1/74 S wo < wp,1)-
However, the difference between the two profiles is rather
small (Figs. S6 and S7).

So far in this section, we have ignored the SDCs. What
is their effect on the R; j(wp) profile? Judging from exact
SLE calculations for the I P;—I case (Fig. S8), the SDCs
greatly increase the ZF rate Ry ;(0) in the RMN regime,
but as 74 becomes longer their effect is diminished and,
as we have seen, in the USM limit they have no effect at
all on Ry ;(0). Moreover, the frequency of the primary
dispersion is hardly affected by SDCs at any 7o value
(Fig. S8).

In contrast, the GSRE theory, as developed up to this
point, predicts that the SDCs greatly increase Rj j(wo)
for all T4 values, also in the USM regime (Fig. 4). The
origin of this spurious effect is the assumption in the
derivation of the SRE theory that, not only the fluctuat-
ing dipole couplings, but also the SDCs are “motionally
narrowed” in the sense that wp ,, 7a < 1. Formally,
the spurious Ry,7(0) increase can be understood in terms
of Egs. (G.1) — (G.5). The ZF rate Ry,;(0) can be in-
creased by decreasing the cross-relaxation rate <Fé£ (0))
in either of two ways: by increasing the nonlabile auto-
spin relaxation rates or by increasing the rate of coherent
mode transfer among the nonlabile spins, described by
Rgﬁ (w)N1 (1) and [on\th ()N (v) — Y§1 (1)Ny (V)], respectively,
in Eq. (G.5). These two phenomena are akin to incoher-
ent and coherent spin decoupling, respectively. However,
like the SRE theory itself, this picture is not valid out-
side the RMN regime. Indeed, according to the exact
SLE theory, if the SDCs are artificially increased so that
wp,uw TA > 1, while keeping wp ;74 < 1, then the SDCs
actually decrease Ry 1(wp).

Outside the RMN regime, where wp ,,, 74 2 1, we must
therefore introduce a SDC correction in the GSRE the-
ory. The finding that the (true) SDC effect vanishes in
the USM limit suggests a renormalization such that the
individual SDCs vanish when wp ,,, 7A > 1. Accord-
ingly, we replace the SDCs appearing in the coherent
mode transfer supermatrices ARy y, and AY, y, in Egs.
(30) and (32) of the GSRE theory by the renormalized

SDCs,

WD, uv
(1 + % WD, v TA)2 ’

(43)

WD, v =

where the numerical coefficient was chosen to optimize
the agreement with the exact SLE profiles for the I P3—T1
case. In addition, the SND correction in Eq. (42) is
also applied to the iwpQ, and Ly n,n, terms of Egs.
(G.6) — (G.9) to suppress nonsecular decoupling in the
nonlabile two-spin mode and three-spin mode relaxation
supermatrices. This additional SND correction has only
a small effect for m = 3, but it is required for convergence
of the dispersion profile with increasing m (Sec. VI.C).

As seen from Fig. 4 and Figs. S9 — S14 of Appendix
M,?4 the GSRE theory, incorporating the renormalized
quantities defined in Egs. (38), (42) and (43), reproduces
the exact Ry j(wo) dispersion profile for the IP;—1I case
with good to excellent accuracy in the full parameter
space of the EMOR model. In particular, the GSRE
prediction of the Ry ;(wo) profile is virtually exact up to
7a ~ 107% s, Ry ;(0) is exact in the USM limit, and the
dispersion frequency is close to the exact one under all
conditions.

B. Exchange case ISP,,—IS

The ISP,,—1S case features three types of dipole cou-
pling (I—p, S—p and I—S) and two types of Euler angles
(Qr, and Qg,). It is therefore not possible to derive a
simple result analogous to Eq. (39). Nevertheless, we
postulate a GSDF analogous to that in Eq. (38), but ac-
counting for the three different types of dipole coupling,

o~

J(nwy) =
TA

14¢rs(wp,rs7a)?+Cr(wp,r7a)? +Cs(wp,s7a) 2+ (nwoTa)?
(44)

The function (; is given by Eq. (40) and (s by the analo-
gous expression with wp r replaced by wp s. The function
(1s is taken to be of the same form, but with different
numerical coefficients,

10 +wp, 15 7A
9+ wp,15 TA

Crs = { ] 0.6425 . (45)
This choice of GSDF ensures that Ry ;5(0) = Pa/7a in
the USM limit. In the (unrealistic) special case that
wp,rs > (wp,r, wp,s), the ISP, — IS case reduces to
the IS —1S case, for which we have the exact ZF result
Crs = 1, yielding the exact ZF USM result R; ;5(0) =
(2/3) Po/7a.? Even though the I—.S dipole coupling is
dominant in the examined ISP, —1S cases (Table S4),
the SLE theory yields Ry ;5(0) = Pa/7a exactly in the
USM limit, just as for the I P;—1I case. We assume that
this result holds also for the I.SP,,—15 case with m > 2.
To get the correct m-scaling in the GSRE theory, we

11
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FIG. 4. Ry r(wo) dispersion profiles with 7a = 107% s (a), 10™* s (b) and 1072 s (c) for labile protons in Thr-7 (left column) and
Asp-39 (right column) side-chains of ubiquitin coupled to three nonlabile protons, computed from the SLE theory with SDCs
(red solid) and without SDCs (black dash-dot) and from the full GSRE theory (blue dash) and from GSRE theory without
SND (green dash) or without SND and without SDC renormalization (magenta dash-dot).

must use a numerical coefficient in Eq. (45) that yields
R1,15(0) = Pa/7a. With the coefficient 0.6425 in Eq.
(45), the GSRE theory for the IS P,—I1S case reproduces
this USM result to better than 0.5 % for all five internal
water molecules.

As for the IP; — 1 case, the GSRE theory for the
ISP, —18S case without SDC reproduces the exact SLE
result for the ZF rate R; ;5(0) to within a few percent
over the full 7o range when Egs. (44) and (45) are used
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for the GSDF (Fig. S15). In the MN regime, where
the GSDF in Eq. (44) reduces to the regular SDF in
Eq. (15), the (G)SRE profile agrees quantitatively with
the SLE profile. This is true up to 74 ~ 107% s (Fig.
S16). The dispersion shape at 74 = 1076 s exhibits a
small (because of the dominance of wp rg) inverted sec-
ondary dispersion at wy ~ wj ;74 ~ wj ¢ 7a (Fig. S16).
The origin of this secondary dispersion step is nonsecular
decoupling of longitudinal-transverse cross-mode relax-



ation in the nonlabile auto-spin relaxation supermatrix
R§1(M)N1(u)(w0)7 which does not involve wp sg, effected
by the term ‘wg Q; in Eq. (G.5).

In the USM regime, the primary dispersion step in the
SLE and GSRE profiles occurs at wo ~ [0.6425w) ;g +
(2/15)(wd ; + wd ¢]*/?, rather than at wy ~ wp (Fig.
S17). However, the GSRE profile also exhibits a small
inverted secondary dispersion step at wg ~ 1/7a that is
not present in the exact SLE profile (Fig. S17). To elimi-
nate this spurious feature, we introduce a SND correction
analogous to that in Eq. (42),

~ wo

S = .6
0= (T2 s rub, v R )

As seen from Figs. S16 and S17, the GSRE profile based
on the GSDF in Eq. (44) and the SND correction in Eq.
(46) agrees rather well with the exact SLE profile without
SDC, even though the fine structure in the USM regime
is not captured by the GSRE theory.

For the five ISP, — IS cases examined here, the sin-
gle SDC is relatively weak (Table S4); it therefore has
only a small effect on the dispersion profile, even in the
RMN regime (Fig. S18). It may be noted that the fine
structure seen in the USM regime (Fig. S18) is evidently
not caused by the SDC. To approximately reproduce the
SLE profiles in the presence of the SDC, we use Eq. (43)
to renormalize the SDC. The ZF rate R; j5(0) computed
with the GSDF in Eq. (44) and renormalized SDC ac-
cording to Eq. (43) agrees almost quantitatively with the
exact (SLE) result (Fig. S19). Because of the dominant
wp,1s coupling, the agreement is excellent also near the
R;.15(0) maximum. This is a welcome result since in-
ternal water molecules often have 7o values in the range
1076 — 1075 s.316:17 Similarly to the IP;—1I case, the
GSRE theory is much more accurate than the ESE the-
ory near the Ry ;s(0) maximum.

Applying also the SND correction in Eq. (46) in all
explicit Zeeman Liouvillians in Egs. (G.5) — (G.9), as for
the I P3—I case, we find that the GSRE theory reproduces
the exact Ri rs(wo) dispersion profile for the I.SP,—1IS
case with excellent accuracy in the full parameter space
of the EMOR model (Figs. S20 and S21).

C. Spin system scaling

Having calibrated the GSRE theory with the aid of
exact SLE results for four-spin systems, we now exam-
ine the predictions of the GSRE theory for larger spin
systems. We recall that the GSRE theory invokes the
3SM approximation for m > 4 (Sec. III.C). Specifically,
we shall determine how, and at what rate, the dispersion
profile converges as the number m of nonlabile spins in-
creases. For the analysis of the 1P, —I case, we focus
on the labile protons in the side-chains of Thr-7, Thr-22
and Asp-39 in ubiquitin (Table S5), successively adding
nonlabile protons up to m = 15 in order of increasing
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FIG. 5. (a) Cumulative labile-nonlabile dipole coupling

squared, w]%’j, defined by Eq. (36), for the labile protons
in Thr-7 (red, solid line), Thr-22 (blue, dash) and Asp-39
(black, dash-dot) of ubiquitin coupled to m nonlabile pro-
tons. (b) Fractional (in %) convergence to m = 100 of the
normalized w%y I-

distance from the labile proton. Figure 5 shows how the
the cumulative dipole coupling squared, wS’ 1, increases
with m for these labile protons.

We first consider the ZF rate R; ;(0) (Fig. 6). At
7a = 1076 s, we are near the RMN regime, where, in the
absence of SDCs, Eq. (39) predicts that Ry ;(0) scales
with m as Wl%,[» so, at m = 15, Ry ;(0) has attained
~ 95 % of its converged value at m = 100 (as inferred
from Fig. 5). In the presence of SDCs, R; ;(0) converges
even faster, albeit less smoothly, coming within 5 % of
convergence already at m ~ 7. At 7o = 107% s, we are
approaching the USM limit, where Ry ;(0) = Pa/7a =
10 s~!. Among the three examined labile protons, Thr-7
has the largest cumulative dipole coupling (Fig. 5) and
is therefore closest to the USM limit. In the absence of
SDCs, Ry 1(0) converges rapidly (~ 95 % convergence at
m = 6) to a value ~ 20 % below the strict USM limit. In
the presence of SDCs, Ry, ;(0) converges more slowly to
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computed from SLE theory for m < 2 and from GSRE theory for m > 3. (c,d) Fractional (in %) convergence to m = 15 of the

normalized ZF rate.

a value ~ 30 % above the true USM limit. At 74 = 10~
s, the SDC effect is modest for m = 3 (Fig. 4), but, for
larger m, the SDCs increase R; ;(0) substantially (Fig.
6).

‘We now consider the convergence with increasing m of
the entire Ry ;(wo) dispersion profile (Fig. 7), focusing
on the labile proton in Thr-22 (Figs. S22 — S27 of Ap-
pendix N2 show similar results for Thr-7 and Asp-39).
At 74 = 1076 s, two secondary dispersion steps are evi-
dent below the primary dispersion for all m > 3 and, in
this frequency range, the profile becomes more smooth
with increasing m (Fig. 7). Above the ZF regime, the
profile scales approximately as wg’ 1, as seen by normal-
izing Ry (wo) by RRI(O) = % Py Wl%,] Ta, which is the
ZF rate in the MN regime in the absence of SDCs, as
seen from Eq. (39). Whereas Ry ;(0) converges at m ~ 7
(Fig. 6), the normalized rate R]J((A}Q)/RRI(O) above the
ZF regime converges already at m ~ 5 (Fig. 7). At
7a = 107* s, the profiles for m > 3 only exhibit the pri-
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mary dispersion and, although the ZF rate R; ;(0) con-
verges rather slowly (Fig. 6), the shape of the dispersion
profile changes very little for m > 4 (Fig. 7). In fact,
when normalized by the ZF rate, the profiles are virtu-
ally superimposed for m > 4 (Fig. 7). At 74 = 1072
s, in the USM regime, the ZF rate is independent of m,
consistent with Eq. (41), and the primary dispersion fre-
quency is essentially proportional to wp, ; (Figs. S26 and
S27), and therefore converges at modest m values (as can
be inferred from Fig. 5).

As expected on account of the dominant intramolecular
I—S coupling (Appendix L), both the ZF rate Ry ;s(0)
and the shape of the Ry s(wp) dispersion profile converge
faster with m for the ISP,,—IS case than for the I P,,—I
case (Figs. S28 and S29).
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FIG. 7. (a,b) Ry,1(wo) dispersion profiles at 7a = 107% s (a) and 10™* s (b) for the labile proton in Thr-22 (ubiquitin) coupled
to m =1 (black), 2 (magenta), 3 (brown), 4 (cyan), 5 (orange), 6 (blue), 7 (red) or 8 (green) nonlabile protons, computed from
SLE theory for m < 2 and from GSRE theory for m > 3. (c,d) Dispersion profiles with Ry ;(wo) normalized by the ZF MN/no
SDC rate Ry ;(0) (c) or by the ZF rate R1,1(0) (d), including profiles with m = 5 — 8 and the ESE profile with m = 8 (black,

dash-dot).

Vil. CONCLUDING REMARKS

This is the last one in a series of four papers devel-
oping the theory of longitudinal relaxation by the dipo-
lar EMOR mechanism in systems comprising one or two
spins exchanging with an isotropic bulk phase and dipole-
coupled to a solid-like collection of m mnon-exchanging
spins. The previous studies®” provided exact solutions
for two-spin and three-spin systems. Here, we have ex-
tended the exact theory to four spins, and presented an
approximate treatment — the GSRE theory — applicable
to arbitrarily large spin systems. For our Matlab imple-
mentation of the multi-spin GSRE theory, the computing
time scales as m?. Fortunately, the relaxation rate con-
verges rapidly with m; in practice, it is rarely necessary
to go beyond m = 10, corresponding to a distance of
3.5 — 4.5 A from the labile proton(s).

The multi-spin GSRE theory takes into account the
transfer among the m nonlabile spins of magnetization,

as well as of two-spin and three-spin modes, induced by
the SDCs between these spins. This coherent process de-
cisively influences the relaxation of the labile spin in the
RMN regime, but the effect is attenuated as exchange be-
comes slower. In the more familiar so-called spin diffusion
process, magnetization can be coherently transferred over
large distances to a relaxation sink, which then drives
the relaxation of the entire dipole-coupled spin system.*!
Spin diffusion from nonlabile to labile spins can greatly
enhance the relaxation of the nonlabile spins, if their
magnetization can be selectively detected. But when
the magnetization of the labile spins is observed, as in
a field-cycling experiment in the dilute regime, the mag-
netization starts at the relaxation sink (Fig. 1), so long-
range transfer of magnetization (and higher spin modes)
is unimportant. In the context of the EMOR mechanism,
the labile spin is the relaxation sink.

Whereas we have obtained exact solutions for small
spin systems, up to and including the I Ps—I and [.SP—IS

15
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FIG. 8. (a) Ri1,1(wo) dispersion profiles at 74 = 107 s for the
labile proton in Asp-39 (ubiquitin) coupled to eight nonlabile
protons. (b) Ri,7s(wo) dispersion profiles at 7o = 107% s for
the labile protons in W122 (BPTT) coupled to seven nonlabile
protons. The profiles were computed from the GSRE theory
with (red solid) or without (blue dash) SDCs and from the
ESE theory (black dash-dot).

cases, the multi-spin GSRE theory contains several ap-
proximations. The 3SM approximation neglects coher-
ent transfer involving four-spin and higher modes and
is therefore invoked only for m > 4. Given the lim-
ited range of coherent transfer in the EMOR context
(see above) and the minor effect of SDCs outside the
RMN regime, we do not expect the 3SM approximation
to be a significant source of error. The GSRE theory was
obtained by introducing three modifications designed to
extend the validity of the SRE theory beyond the RMN
regime: the GSDF and the renormalization of wy and
SDCs. Although inspired by theoretical considerations,
these ad hoc modifications represent a trade-off between
simplicity and accuracy. A more accurate GSRE theory
could presumably be obtained at the expense of greater
formal complexity. For example, to keep the theory sim-
ple, we have chosen to use a single GSDF, even though

16

the multi-spin dipolar Hamiltonian has multiple eigenfre-
quencies. The non-axially-symmetric quadrupolar spin-1
EMOR theory involves three GSDFs, corresponding to
the three NQR frequencies.? Since the dipolar Hamilto-
nian for a system of three or more spins also lacks axial
symmetry, a GSRE theory featuring a single GSDF can-
not be expected to achieve the same quantitative accu-
racy as for a two-spin system.?

Some time ago, one of us presented a more approximate
relaxation theory for the dipolar EMOR mechanism in
multi-spin systems in the dilute regime.* In Sec. IV, we
re-derived this so-called ESE theory in a way that clearly
identifies the approximations involved. Although less rig-
orous than the GSRE theory, the ESE theory is less com-
putationally demanding. It is therefore of interest to di-
rectly compare the predictions of the ESE and GSRE
theories. This is done in Fig. 8 for a labile carboxyl side-
chain proton and for an internal water molecule. For each
case, we have chosen an experimentally relevant 74 value
and included a sufficient number (m = 7 or 8) of non-
labile spins to approach convergence. For the carboxyl
proton, the ESE profile differs surprisingly little from the
GSRE profile, although the ESE theory fails to reproduce
the low-field inverted dispersion step associated with non-
secular decoupling of longitudinal-transverse cross-mode
relaxation. However, the near agreement in this case is
largely a fortuitous result of error cancellation. Because
the ESE theory does not include SDCs, it is more re-
vealing to compare it with the GSRE profile calculated
without SDCs. As seen from Fig. 8, the two theories
then differ substantially. Also for the internal water case
in Fig. 8, where SDCs play only a minor role, the ESE
theory is seen to overestimate the relaxation rate signif-
icantly. The ESE theory was proposed with large spin
systems in mind; for the two-spin and three-spin systems
treated in Papers II and III, it is not a viable alternative.

There can be little doubt that the EMOR mechanism
is the principal cause of water-'H low-field longitudi-
nal relaxation in aqueous systems of immobilized macro-
molecules, including soft biological tissue.'? '® Neverthe-
less, the GSRE theory presented here ignores certain
complications that should be addressed before the the-
ory is used to quantitatively analyze experimental data.
The two most obvious complications are as follows.

In the foregoing, we have tacitly assumed that the
macromolecule is rigid, so exchange is the only motion
capable of inducing spin relaxation. Conformational fluc-
tuations tend to be fast (compared to 74) and, under
typical conditions, their direct effect appears as an addi-
tive contribution to the labile-spin relaxation rate.2® The
only significant effect of internal motion on the EMOR
contribution is that all dipole couplings are multiplied by
orientational order parameters. For simplicity, this has
not been done for the sample calculations reported here,
except for the internal water molecules (Appendix L).

In the analyzed spin systems extracted from protein
structures, all spins, except for the central labile spin(s),
were treated as nonlabile, that is, non-exchanging. This



assumption is justified for most of the cases analyzed
here, where the ten nearest protons are bound to car-
bon or amide nitrogens. However, to correctly describe
special cases with two adjacent polar side-chains or a
cluster of internal water molecules, the theory needs to
be modified. This complication can be approximately
handled by associating an effective mean survival time
Ta1p = 1/(1/7a,1+1/7a ) to each I—p dipole coupling.
This simple amendment might suffice for labile protons
in side-chain hydroxyl or carboxyl groups, as considered
here. For the three protons in the ammonium group of a
lysine side-chain, a more rigorous analysis is warranted,
explicitly incorporating all three labile spins in the dipo-
lar Hamiltonian and in the exchange topology superma-
trix. However, at neutral or acidic pH, nitrogen-bound
protons tend to exchange too slowly to contribute signifi-
cantly by the EMOR mechanism.?3® Barring such com-
plications, the total water-'H relaxation rate in the dilute
regime can be obtained simple as a population-weighted
sum over all individual labile protons and internal water
molecules.?”
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APPENDIX A: ILRR FOR THE ISP, —1S5S CASE

Here we derive and test an approximate formal expression for the ILRR wvalid for the

exchange case ISP,,—IS. For this case, the exchange topology matrix is
Tonp = On1 Op1 + 0n2 Opa + 0n3 Opgs + Ona Opgy + Ons Opgs (A.1)

where g3, g4 and g5 are the sequence numbers in the A state multi-spin basis that corre-
spond to basis operators 3, 4 and 5, respectively, in the B state two-spin basis, as defined
in Table S2 of Paper III.} Combination of Egs. (8) and (A.1) yields

=g —g12 —J1qs —J1q —YJ1gs
—g21 1 =922 —Gag —92q4 —92gs
Ug—o = | —Gss1  —Ys2 1= 9505 —Y9gs0s  —YJasas : (A.2)
Y91 T Yg2 —Yargs 1 = Gpuar  —Yques
| Yes1 Y52 “ Y543 “Ya5q 1 - Yasa5 |

The five basis operators spanning the two-spin () = 0 subspace are of two kinds: B;
and By are single-spin operators (proportional to I, and S,, respectively) with odd spin
inversion conjugation (SIC) parity,>® whereas By,, B,, and B, are two-spin operators
(involving both /-spin and S-spin operators) with even SIC parity. The SIC symmetry of
the basis operators can be used to establish selection rules for the matrix elements g,,,
but only if the superoperator G* has definite SIC parity. In SLE theory this is not the
case, because the superoperators Lz and Lf have different SIC parity. In terms of the
supermatrices appearing in A” in Eq. (6), Ly is block-diagonal (or diagonal for isochronous
spins) with respect to SIC parity whereas Lp is anti-block-diagonal. Therefore, G* is
neither block-diagonal nor anti-block-diagonal. In SRE theory, A* in Eq. (7) involves
the supermatrices R® and Lz, which are block-diagonal with respect to SIC parity, and
(for m > 2) the supermatrix A”, which is anti-block-diagonal. Therefore, just as in SLE
theory, G* is neither block-diagonal nor anti-block-diagonal. Consequently, the full 5 x 5
matrix in Eq. (A.2) must be retained in an exact (SLE or SRE) treatment of the exchange
case ISP, —1S.

In the absence of static dipole couplings, as for the three-spin ISP — IS case, the
SRE A® matrix in Eq. (7) only involves block-diagonal (or diagonal) matrices, so also
G* is block-diagonal with respect to SIC parity. In the MN regime, where SRE and
SLE are equivalent, also the SLE-derived G* must be block-diagonal with respect to
SIC parity. However, outside the MN regime, the SLE-derived G* is no longer block-
diagonal. Consequently, two conditions must be satisfied simultaneously for the mixed
odd/even blocks in Eq. (A.2) to vanish: (1) there are no static dipole couplings, and (2)
the fluctuating dipole couplings are in the MN regime (wp 74 < 1).
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In the zero-field (ZF) regime, the Wigner-Eckart theorem®? implies that G is block-
diagonal in the rank index K, as well as in the projection index @ (see Paper I1°). Apart
from By ~ I, and By ~ S, only one more of the five ) = 0 two-spin basis operators are
of rank K = 1, namely By ~ i (I x S) - e, (with basis ordering as in Table S2 of Paper
IIT'). Consequently, in the ZF regime, Eq. (A.2) reduces to

-1

1—g11 —012 —J14
UQ:O,K:l = —g21 1 —g22 —gu . (A'3)
—g41 —Gi2 1 —gu

As we shall see, to a very good approximation, we can neglect the odd/even blocks in
Eq. (A.2) so that Ug— becomes block-diagonal. In view of Eq. (3b), we only need to be
concerned with the odd parity block,

-1
I—gu  —g12 ]

UQ:O,aa -
[ —go1 1 — g

(A.4)

— 1 1 — g2 912
(1 = g11 — 922 + 911922 — 912921) g21 1—gn1 '
Combination of Eqgs. (3b) and (A.4) then yields

Rigs — Py 2 (1 — g11 — goo + 911922 — G12921) ‘ (A5)

TA (2= g11 — 922 + G12 + 921)

To assess the accuracy of this approximation, we use SLE theory for the ISP, — 15
case to calculate Ry js(wp) approximately from Eq. (A.5) and exactly from Eqs. (3b)
and (A.2). As seen from Fig. S1, Eq. (A.5) is virtually exact in the MN regime, where
condition (2) is satisfied. In the slow-motion regime, the approximation causes a very
slight upshift of the primary dispersion. Even for 74 = 107° s, the relative error is only
~ 0.01 % in the ZF regime, where Eq. (A.3) is valid.

For the ISP—1IS case, where condition (1) is satisfied automatically, we can examine
the consequences of violating condition (2) by comparing the ILRR computed from the
standard SLE theory, corresponding to the full 5 x 5 matrix in Eq. (1.11), with the ILRR
computed from a modified SLE theory where only the 2 x 2 odd-parity block is retained
in Eq. (1.11). Within the MN regime, of course, the two methods yield the same ILRR.
Outside the MN regime they do differ, but not by more than a few % and typically by

less than 1 % over the full parameter space.
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APPENDIX B: RESTRICTED BWR EQUATION

For completeness, we present here the derivation of the restricted BWR master equation,
valid in the presence of static as well as fluctuating dipole couplings. This derivation
closely follows the conventional one for the case with only fluctuating dipole couplings.”
For clarity, we focus in this subsection on the exchange case I P,,—I. However, the final
result is valid also for the exchange case ISP,,—I5S.

For the exchange case I P,,— I, where the spin system comprises a labile spin I and
m nonlabile spins, the mutual dipole couplings are of two kinds: static (between two
nonlabile spins) and fluctuating (involving the labile spin 7). For site «, the corresponding
Liouvillians are denoted Lf , and L{(t), respectively. In a semiclassical description, the
stochastic time-dependence of the latter is associated with the exchange of the labile spin
I between an anisotropic site a and an isotropic bulk state. In addition, the Zeeman
Liouvillian Ly describes the interaction of the m + 1 isochronous spins with an external
magnetic field.

The evolution of the stochastic spin density operator for site «, p*(t), under these

Liouvillians is governed by the Liouville - von Neumann equation,’

d
a’

The BWR master equation is obtained from a perturbation expansion, truncated after

“t) = —i [Lo+ Lo+ LH0] p(0) (B.1)

second order in the small quantity wp 7o. Here, wp is the typical magnitude of a fluctuating
dipole coupling and 7, is the correlation time. Before performing this expansion, we must
remove the coherent time-dependence from the density operator by transforming to the

interaction representation according to

p(t) = exp(i Lyt) p™(t) (B.2a)
Do(t) = exp(i LG t) L] exp(—i LG 1), (B.2b)
L2(t) = exp(i LS t) LE(t) exp(—i LI ) (B.2¢)
with Ly = Ly+L0,. (B.3)

In this interaction picture, the Liouville - von Neumann equation (B.1) becomes

%ﬁa(t) — LB (). (B.4)

This differential equation is converted into an integral equation by a formal integration,

t
(0 = 50 — i [ at By i) (B.5)
0
which, when substituted into the right-hand side of Eq. (B.4), yields the exact result
d ~ b ~
G50 = B0 70 ~ [ By By) 7). (B.6)
0
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The time dependence of the fluctuating dipolar Liouvillian, £&(¢), is stochastic. There-
fore, the time dependence of the spin density operator, p*(¢), in Eq. (B.6) is also (partly)
stochastic. The spin density operator related to the observable magnetization is obtained

by taking an ensemble average,

() = (p°(1)) - (B.7)

The ensemble may be thought of as a collection of trajectories, in each of which the labile
spin I exchanges (but at different time points) from site «, thereby randomizing all dipole
couplings that it is involved in. Neither the Zeeman Liouvillian £z nor the static dipolar
Liouvillian Lp is affected by this ensemble averaging.

Taking the ensemble average of Eq. (B.6), we obtain

G0 =~ >—/ (Lo (t) Lo () B (1)) - (B.8)

Ensemble averaging does not affect the initial spin density operator so the average in the
first term on the right-hand side of Eq. (B.8) can be written

(L3(t) p™(0)) = <£A%(t)>3a(0) = exp(i L5 t) (LY(t)) exp(—i L t) 7*(0), (B.9)

where Eq. (B.2c) was used. The fluctuating dipolar Liouvillian is

t) = —c) wor Y, Tar(In) Dijp(5,(1)) . (B.10)

where ¢ is a normalization constant. The ensemble average only involves the Wigner

function, and

(DR@5,00) = [A9%,(0) FI05,(0 195,00 Diip@,(0) . (Ba)

with the EMOR propagator

1

PO 196,000 = g5 + [008,0) ~ 0,0 - g | exp(-/ma) . (B2

where 7,4 is the mean survival time of the labile spin [ in site a. Consequently,

(Dio(27,(1)) = Dijo(Q1,(0)) exp(—t/7a) . (B.13)

Up to this point, the treatment is exact. We now introduce the motional narrowing
(MN) approximation, stating that the time scale ¢ for substantial variation in the ob-
servable of interest, that is, the longitudinal magnetization of the labile spin I, and the
associated density matrix elements is much longer than the time scale 74 of fluctuations
in the dipole couplings of the labile spin. Several simplifications follow from this assump-
tion. First, since the exponential factor in Eq. (B.13) is < 1 and, therefore, (£g(t)) ~ 0,
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we can drop the first term in Eq. (B.8). Physically, this simplification results from the
orientation Q?ﬂ(t) of the I —pu dipole couplings being completely randomized on the time
scale t > Tx.

As a second consequence of the MN approximation, the integrand in Eq. (B.8) can be

simplified as

(Lo(0) L5 () 7 (1)) = (Lp(1)
= (L3(1) L3 (1)) 3" (1) (B.14)
= (L3(1) L3 (1)) 7°(1)
Inserting this expression in Eq. (B.8), changing integration variable according to t' =

t — 7, and extending the upper integration limit to co (a third consequence of the MN

approximation), we find

%8“(1%) = - /OoodT (L3 () Ly(t — 7)) 5°(t) (B.15)

The master equation (B.15) in the interaction representation can be transformed back

to the Schrédinger representation with the aid of Eq. (B.2), yielding

%aa(t) = —iLg5o%(t) — /Ooodr (L3(t) exp(—iLiT) LY (t—T) exp(iLiT)) o*(t). (B.16)

Finally, we make use of the stationarity of the stochastic process to set t = 0 in the time

correlation function in the integrand, whereby

d ol raa a o
370 = —iL5o(t) — R*a"(1), (B.17)

with
R = /O dr (L3(0) L3 (—7)) (B.18)

and
LY(—T1) = exp(—i L5 T) LE(—T) exp(i LG T)

(B.19)
= exp[—i (Lz + Ly ) 7] L(—T) expli (Lz + LD ) 7] -

So far, we have only used the MN approximation, which is a condition on the dipole
couplings with spin I: wp,7a < 1. In the multi-spin SRE theory, we also impose a
similar restriction on the static dipole couplings: wp ., Ta < 1. As a consequence of the

latter assumption, we can omit L3, from Eq. (B.19) so that
L5(—7) = exp[—i Ly 7| LT(—T) expli Lz 7] . (B.20)

This simplification is possible because the essential contribution to the integral in Eq.
(B.18) comes from 7 values on the order of 75 or less, so that £, 7 < £, 7a < 1. This

argument only relies on the smallness of the numerical factor wp ,, 7 and is not invalidated
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by the fact that L7 and Lf ; do not commute. This can be shown explicitly by Taylor
expanding the exponentials in Eq. (B.19).

The master equation (B.17) predicts that the density operator o®(t) evolves towards
zero rather than towards the equilibrium density operator og,. As usual, this deficiency
is corrected by the ad hoc replacement of o*(t) by the difference Ac®(t) = 0*(t) — o5, in
the last (relaxation) term of Eq. (B.17):

d

GO0 = —iL3a"(t) = R* Ao (1). (B.21)

Since g, is independent of time, we can replace o*(t) by Ac®(t) also on the left-hand

side of Eq. (B.21). The same substitution can be made in the coherent term, because

1
‘Cg O-gq = E [H(?v eXp<_ﬁ H(?)] =0 ) (B22)

where f = 1/(kgT’) and Z = Tr{exp(—p H§)} and last equality follows by Taylor ex-

panding the exponential operator. We thus arrive at the restricted BWR master equation

%Aaa(t) = LS ACY(t) — ROAGO(H) . (B.23)
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APPENDIX C: EULER ANGLE CONVENTIONS

Here we delineate the conventions used to define the D frame and the Euler angles Sx
and vy that specify the relative orientation of the dipole coupling vectors rx in any A
site.

For the I P,,—1I case, we first identify the nonlabile spin y = 1 nearest to spin I. The
vector 7%, from I to spin 1, and the corresponding unit vector e}, = 7%, /r%, defines the
positive zp axis, so that ef} = ef  and 8;; = 0. For m > 2, we also identify the second-
nearest nonlabile spin p = 2. The vector r¢, from [ to spin 2, and the corresponding
unit vector e}, = 7%, /7%, is taken to lie in the xf — 28 half-plane with 8 > 0, so that

ef, ey >0 and v, = 0. For the m dipole vectors emanating from spin I, Eq. (17) then

yields
Dio(Qf) = exp(iMo®) diy(0%) (C.1a)
2
Dip(Q%) = exp(iM¢™) Y diy(0%) exp(iN®) d(Brs) , (C.1b)
N=-2
2
Dip(Q2,) = exp(iMo®) Y diyn(0%) expliN (o™ + v1)] do (Br) (C.1c)

N=-2

with g =3,...,m in Eq. (C.1c¢). Furthermore,
COS Blu = B?M ) 8?1 (lu =23, ... 7m) ) (CQ)

which is independent of a.. The range of gy, is [0 — 7].
For ;1 > 3 we need the azimuthal angle v, which is also independent of . This angle

is uniquely defined by the two relations

CoS Yy = % , (C.3a)
sinvyr, = % : (C.3b)

where, in view of Eq. (C.2),
sin 87, = (1 — cos®By,) Vo [1—(ef, - e)’] v (C4)

The range of v, is [0 — 27], but Eq. (C.3a) cannot distinguish between v, and
27 — 1. Therefore, we first compute a provisional 77, in the range [0 — 7] from the

inverse of Eq. (C.3a),
e}, el
' = arccos| —£—* ) C.5
o (e (©5)
Next, we use Eq. (C.3b) to compute sin~yr,. If sinyr, > 0, then 47, = 77, (in the range

0 —m). If sinyy, <0, then vy, = 27 — 77, (in the range m — 27).
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For m > 2, there are also dipole couplings between nonlabile spins. With the D frame

defined as described above, Eq. (17) yields for these static dipole couplings

2

Di() = exp(iMe®) Y diyn(0%) exp(iNg®) dio(Bro) . (C.6a)
N=—2
2
Dip(,) = exp(iM¢®) Y diyn(07) expliN (9 +7)] dio(Bu) - (C.6b)
N=—2

where © < v and pv # 12 in Eq. (C.6b). Because the spins I, 1 and 2 all lie in the zf—28
plane, Eq. (C.5a) is of the same form as Eq. (C.1b) (that is, 772 = 712 = 0). Let rf,
be the vector from p to v with 4 < v and let e, = 7}, / r,, be the corresponding unit

vector. In analogy with Eq. (C.2),

cos B, = €, - ef . (C.7)

In analogy with Eq. (C.3), we have for uv # 12

« «

e’ -e
nv D

COS Yy = ——, C.8a

T sin B, ( )
et -e”

sinvy, = :;/n—ByD (C.8b)
uv

To define the internuclear geometry of the I P, spin system with m > 2, we need to
specify m(m + 1)/2 distances rx and m(m + 1) — 4 internal angles (Sx, vx). For m =1,

only one distance (r;p) and no angles are needed.

For the ISP,,—1S case, the vector r{¢ pointing from spin I to spin S in site a defines
the positive 2 axis, so that ey = e and ;5 = 0. The second vector needed to define
the orientation of the D frame is taken to be ¢, from spin / to the nearest nonlabile
spin g = 1. This vector is taken to lie in the zfj — 2{ half-plane with zf, > 0, so that

e7, -ey >0 and ;1 = 751 = 0. For the 2m dipole vectors emanating from spin I or spin
S, Eq. (17) then yields
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Dii(Qs) = exp(iM¢”) dyo(0°) (C.9a)

D3o(Q)) = exp(iM¢®) Ni_2 dirn(0%) exp(iN ™) do(Br) , (C.9b)
DES) = eplid1o") 3 a0 i) () €99
D3i(97,) = exp(iM¢®) Ni; i (0%) exp[iN (0 + v1u)] divo(Bra) (C.94)
D3i(Q8,) = exp(iM¢®) Ni; dirn (0%) exp[iN (% + vs)] divo(Bsp) » (C.9e)

with g =2,...,m in Egs. (C.9d,e). In place of Eq. (C.2), we now have

cos B1, = €7, - €fg (u=1,2,...,m), (C.10a)
cos Bs, = eg, - €lg (n=1,2,...,m). (C.10Db)

The azimuthal angles 77, and ~g,, are obtained from Egs. (C.3) and (C.5) and their S-spin
analogs (with I replaced by S everywhere).

For the static dipole couplings between nonlabile spins (present when m > 2), Eq.
(C.6b) applies for all uv such that u < v (including pr = 12, since the nonlabile spin

i = 2 is now not in the xg —z3 plane),

2

Dio(€0,) = exp(iM¢™) Y dn(6) exp[iN (0™ + )] dio(Bu) - (C.11)

N=—2

In place of Eq. (C.7), we have (for all pv)
cos B, = €, - €7, (C.12)

and the azimuthal angle v, is obtained from Egs. (C.8).

To define the internuclear geometry of the ISP, spin system with m > 1, we need
to specify 14 m(m + 3)/2 distances rx and m(m + 3) — 2 internal angles (8x, vx). For
m = 0, only one distance (r;s) and no angles are needed.

A slightly different convention was used for the three-spin system treated in Paper
I11,' where 3; and g were defined as the inner angles at spin I or S, respectively, in the
triangle formed by the three spins I, S and P. For the [ P,—1I case, the correspondence
is B; = B2 and Bg = m — (2. For the ISP—1S case, the correspondence is 8; = ;1 and

Bs =m — Bs1.
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APPENDIX D: LIOUVILLE SUBSPACE NOTATION

Here we define the notation for the spin Liouville subspaces used in the derivation of the
SRE theory. For the I P,,—1 and ISP,,—IS cases, the full spin Liouville space W can
be written as the direct sum W =L & N @ U, where L is the subspace spanned by basis
operators involving only labile spins (7, or I and S), N is the subspace spanned by basis
operators involving only nonlabile spins, and U is the remaining subspace, spanned by
basis operators involving both labile and nonlabile spins (at least one of each).

Each of these subspaces, as well as the full Liouville space, may also be decomposed
into subspaces spanned exclusively by basis operators with odd (antisymmetric = a) or
even (symmetric = s) spin inversion conjugation (SIC) parity, that is, involving single-
spin operators associated with an odd or even number of distinct spins, respectively.
For example, W = A @ S and N = NA & NS. The odd and even subspaces can be
further decomposed into subspaces with basis operators involving a specific number of
distinct spins. For example, if m = 6, then NA = N; & N3 & N5y = N; & NA’ and
NS = No® N, P Ng = Ny NS, where NA' is the subspace of odd nonlabile basis operators
involving more than one spin and NS’ is the subspace of even nonlabile basis operators
involving more than two spins. These generic subspaces may be further decomposed into
subspaces involving specific spins. For example, Ly = Ly (/) & L,(S) (for the ISP,,—1S
case), or Ny = 3 | Ny(u), or Ny = 37 Ny(ur), where the (direct) sum goes over
all m(m — 1)/2 distinct two-spin subspaces Ny(uv). Note that the order of the spins is
irrelevant here: v and pv refer to the same subspace.

For a spin system with m nonlabile spins, the number of distinct k-spin subspaces
Ni(pvk -« +) is given by the binomial coefficient m!/[(m — k)!k!], that is, the number of
distinct ways of choosing a subset of k spins, irrespective of their order, from a set of
m spins. Each distinct k-spin subspace Ny (uvk -+ ) is spanned by 3* basis operators, so
it comprises 3 k-spin modes. In other words, the dimension of Ny (uvk---) is 3*. The
dimension of the total k-spin subspace Ny, comprising all distinct combinations of £ spins,
is 3*m!/[(m — k)'k!]. For m = 3, for example, there are three single-spin subspaces —
Ny (1), Ny (v) and Ny (k) — each of dimension 3, three two-spin subspaces — No(uv), No(uk)
and Ny(vk) — each of dimension 9, and one three-spin subspace N3(uvk) of dimension 27.

The subscripts n and p denote basis operators B,, and B,. To identify a basis oper-
ator belonging to a particular subspace, we give the subspace symbol as an argument.
For example, the basis operator n(IL;) contains one single-spin operator associated with
an unspecified labile spin, whereas n(L;(I)) = n(/) is one of the three basis operators
(proportional to I., I, or I_) that span the [-spin Liouville space. The one- or two-
dimensional subspace spanned by basis operators proportional to I, or S, is denoted by
LZ and the associated basis operators are n(LZ). Similarly, the basis operator n(Nj)
contains one single-spin operator associated with an unspecified nonlabile spin, whereas
n(Ny(un)) = n(p) is one of the three basis operators (proportional to p,, p4 or p_) that
span the p-spin Liouville space. Finally, the basis operator n(Njy) contains a product of
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two single-spin operators (or a sum of such products), each associated with a different
nonlabile spin, whereas n(Ny(uv)) = n(ur) is one of the nine basis operators that span
the two-spin Liouville subspace associated with the specific nonlabile spins p and v (re-
gardless of their order). The extension of these conventions to the nonlabile three-spin

Liouville subspace N3 is obvious.

APPENDIX E: PROOFS OF SYMMETRY RULES

Employing the subspace notation defined in Appendix C, we shall now prove nine sym-
metry rules for the coefficients C3yy, ., and Dy, in Egs. (18) and (19). To do this,
we shall make use of two general results. First, because two operators associated with
different spins (such as I, and p.) necessarily commute, it follows that the commutator
of two operators, each of which is a product of single-spin operators associated with dis-
tinct spins, vanishes if the two product operators have no spin in common. Second, since
Tr{l.} = Tr/{l.} = Tr;{I_} = 0, it follows that the multi-spin trace of a product oper-
ator, as in Egs. (18) and (19), vanishes if the product operator contains at least one lone
operator, that is, if any spin occurs only once in the product operator. Each symmetry
rule will be derived from Eqgs. (18) and (19) for basis operators B,, and B, belonging to
certain subspaces, but the symmetry rule will be expressed more succinctly in terms of
the corresponding block of C/y,, or Dy;.

Symmetry Rule I. Labile single-spin modes are relaxation-coupled to nonlabile single-
spin modes but not to other nonlabile odd-parity modes (involving 3 or 5 or ... nonlabile

spins) and the relaxation coupling only involves self-correlations.
CivrLn, = Oxv 0 CinpLy, -  k=odd. (E.1)

Proof. Assume that B, = n(L;) = n(I). For the other possibility, B, = n(S), the
following arguments are the same except that I and S are interchanged everywhere. The
first commutator in Eq. (18) then vanishes unless the dipole coupling X involves spin I,
that is, if X = Ijpor X = IS. Because B, = p(Nj) only involves nonlabile-spin operators,
the second commutator in Eq. (18) vanishes unless the dipole coupling Y involves one
nonlabile spin, that is, if Y = Irv or Y = Sv. To avoid having a lone I-spin or S-spin
operator, which would cause the trace in Eq. (18) to vanish, we must have X = Iu
and Y = Iv. By assumption, B, is a product of an odd number of single-spin operators
associated with distinct nonlabile spins (or a sum of such products). If B, involves 3 or
more distinct nonlabile spins, the trace will vanish because its argument involves at least
one lone nonlabile spin. For the trace to be nonzero, B, must involve only one nonlabile
spin, which must also occur in the dipole couplings X and Y. In other words, X =Y = Ipu
and B, = p(n). Q.E.D.
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Symmetry Rule II. Relaxation does not couple nonlabile-spin modes involving different
numbers of spins.

Chrr NN, = O C]\X/[}](W,Nka . (E.2)

Proof. Since B,, and B, only involve nonlabile spins, the dipole couplings must be X = In

and Y = Iv or X = Sp and Y = Sv and the nonlabile spins 1 and v must be contained

in B,, and B,, respectively. The trace over nonlabile spins then involves a product of k

mutually distinct nonlabile-spin operators times a product of [ mutually distinct nonlabile-

spin operators. If k£ # [, at least one lone nonlabile-spin operator occurs, causing the trace
to vanish. Q.E.D.

Symmetry Rule I1I. Within the nonlabile k-spin subspace N, relaxation only couples

modes that involve the same set of & spins.

CMM’ N (pvsd- N (W v/ s/ N ) = 5#’/"6)\"'7!/'/"‘6/)\' CMM’ , Ni (pvrX- )Ng (e ) - (Eg)

The matrices Cﬁﬂ,7Nka and R, y, are therefore block-diagonal in spins (k = 1), spin
pairs (k = 2), etc. Furthermore, relaxation coupling between single-spin modes only

involves self-correlations. Thus,

CMM/ N ()N (p!) — 5XY (s,uu CMM’ N1 ()N () (E.4a)
CMM’ , No (uv)No (u/v') = 5/“’/1 v CMM’ , No (uv)Na (pv) (E4b)
CMM’ N3 (uvr)Na(w/v's!) — 6#”“ WK CMM’ ,N3(pvr)N3(pvs) - (E4C)

Proof. For the trace to be nonzero, it is not only necessary that B,, and B, involve the
same number of nonlabile spins; actually, the identity of the nonlabile spins must be the
same in B,, and B,. Only then will all spins be pairwise matched so the trace can be
nonzero. Moreover, for k£ = 1, the identifications X = I and Y = I/, established in the
proof of Eq. (E.2), imply when p = ¢/, as dictated by Eq. (E.4a), that X =Y, so only
self-correlations contribute to R y,. Q.E.D.

Symmetry Rule I'V. Relaxation supermatrix elements within the single-spin subspace

only involve self-correlations.
CMM’ np 6XY CMM/ np lf n, p E Wl . (E5)

Proof. According to Eq. (18), Ciir, np €an be nonzero only if B, and X share one spin
(otherwise the first commutator vanishes) and if B, and Y share one spin (otherwise the
second commutator vanishes). The argument of the trace in Eq. (18) is then a product
of four single-spin operators associated with the four spins that are involved in the two
dipole couplings X and Y. Because the (partial) trace of a lone single-spin operator
vanishes, the four operators must consist of two operators associated with one spin and
two operators associated with another spin. Since a dipole coupling involves two different

spins, it follows that Cjfy, . can be nonzero only if X =Y. Q.E.D.
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Symmetry Rule V. Coherent dipolar evolution does not couple directly to labile-spin
modes.
Dﬁ,mw - D})\;,WL =0. (EG)

Proof. Since X = pv, the commutator in Eq. (19) vanishes if either B,, or B, only

involves labile-spin operators. Q.E.D.

Symmetry Rule VI Coherent dipolar evolution does not couple nonlabile-spin modes
with mixed modes.

D?\(LNIU = D?\(LIUN =0. (E7)

Together, symmetry rules V and VI show that coherent dipolar evolution can only couple
nonlabile-spin modes to other nonlabile-spin modes.
Proof. The trace in Eq. (19) vanishes because it involves at least one lone labile-spin

operator, contributed by the basis operator from the U subspace. Q.E.D.

Symmetry Rule VII. Coherent dipolar evolution couples nonlabile single-spin modes

with nonlabile two-spin modes, but not with any other nonlabile k-spin modes.
X X
DM,N1Nk - 5k2 DM,N1N2 : (ES)

Proof. For B,, = n(u) or n(v) and X = pv, the commutator yields pv. The only way to
match these two operators without introducing any new lone-spin operators is if B, is a

two-spin operator. In fact, it is necessary that B, = p(uv). Q.E.D.

Symmetry Rule VIII. Coherent dipolar evolution only couples nonlabile spin modes

differing by one spin. Thus, for £ > 2,

X _ X
DM,N;CNI - 5l7ki1 DM,Nkail : (Eg)

For k = 1, only the plus sign applies and Eq. (E.9) reduces to Eq. (E.8).

Proof. The commutator in the second form of Eq. (19) can be nonzero only if the basis
operator B,, = n(Ny) involves either or both of the spins in the dipole coupling X = uwv.
In the former case, where B, = n(p---) does not involve spin v or B, = n(v---) does
not involve spin p, the commutator yields pv---. The trace in Eq. (19) can then be
nonzero only if B, = p(uv---), that is, if B, contains the same spins as B, plus the
second spin (here, v) involved in the dipole coupling X. Hence, [ = k + 1. In the latter
case, where B,, = n(uv - --) involves both spins in X, the commutator yields products of
k + 1 operators associated with k spins, such as pqupv - - - and pv,v, - - - . Since one spin is
represented by two operators, the trace in Eq. (19) can be nonzero only if B, = p(u---)
not involving spin v or if B, = p(r---) not involving spin pu, that is, if B, contains
the same spins as B,, except one of the spins involved in the dipole coupling X. Hence,
l=k—1. Q.E.D.
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Symmetry Rule IX. Coherent dipolar evolution couples k-spin modes with (k+ 1)-spin
modes only if k spins are shared between the modes. The mode coupling is induced by
dipole couplings between the non-shared spin and each of the shared spins.

Proof. Implicit in the proofs of symmetry rules VII and VIII.

Special cases of symmetry rule IX are

X _ nuv v
Dot w ety = OXmw | O Dig wy (o uy T+ O DM,N1<V>N2<W>] ) (E.10)

and
X [ K VK
Divs o sy = Omaw |9 DIt g g () + X DI, N v N ()|

+ 5/\777/15 _5X7MV DIXZ N (urk)N3(pvk) + 5X7V’€ DVMK, Ng(un)Ng(uw@)_ (Ell)

+ 5)\777’/” _6X7NV D/XZ N2 (vk)N3(uvk) + 5—)(:/“§ D}]T/,;, Ng(un)Ng(pun)_ :

APPENDIX F: MULTI-SPIN SRE THEORY

Here we present the full derivation of the multi-spin SRE theory. Specifically, we obtain
the supermatrix G*, the elements of which determine the ILRR according to Eq. (11) or
(12).

First, we exploit spin inversion conjugation (SIC) symmetry. If the (4™*% — 1)-
dimensional multi-spin ISTO basis for state A is ordered with the odd-parity operators
before the even-parity operators, the relaxation supermatrix R® is block-diagonal whereas
the static dipole coupling supermatrix A* is anti-block-diagonal. Furthermore, K and Ly,
(for isochronous spins) are diagonal. We can therefore partition A” in Eq. (7) into blocks

associated with the anti-symmetric (A) and symmetric (S) subspaces:

(KAA‘FRXATA—FZ'LZ,AATA) iAO&STA

A* = i )
i Agy TA (Kss + Rgg7a + 7Ly ss7a)

(F.1)

To calculate the ILRR, we only need elements from the AA block of the inverse (A*)~!

(A)ph = Kus+ (R, + X0, +iLgan)7al (F.2)
with
XXA = AXS (KSS/TA +R§S +iLZ,SS)_1A§A . (F3)

We decompose the anti-symmetric subspace as A = LA + NA, where ' = L+ U. Noting
that Kyana = 0, we can partition Eq. (F.2) as

o (e} - (e} o
(A%);! = Tyapa+REgpa+ X0 pa+ilzana)Ta (R a na+XTrana) A
« « (07 (e} .
(Ra s+ XRama)7a (Riva ma +X8ana +iLz nana) Ta

(F.4)
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But we only need the IL'A,IL'A block of (A%),},

a\—1 « « .
(A")para = [1JL’A,1L’A + (Riapa + Xiapa Tilzwama) ma
1
- (RL’A,NA + X]L’A,NA) (RNA,NA + Xjana 17 LZ,NA,NA) (RNA,]L’A + XNA,IL’A) TA]

(F.5)

This result is ill-suited for computations, because the IL’A subspace is very large for
multi-spin systems. However, Eq. (F.5) can be simplified by implementing the RMN
approximation. We thus expand the inverse in Eq. (F.5) to first order in R%74, that is,
to second order in wpTy, consistent with our use in Eq. (13) of a relaxation supermatrix
derived from BWR theory under the assumption that (wp7a)? < 1 (for fluctuating and
static dipole couplings). Performing also the isotropic orientational average, we then
obtain from Egs. (5) and (F.5),

Gﬁ’A,]L’A = Z_1 - Z_l [<RE’A,L’A> + <XEIA7LIA>j| TA Z_l

+Z7! < (RE’A,NA + XE’A,NA) (RIC\\YIA,NA + XNana iLZ,NA,NA)_l (R%AJL’A + X%A,JL'A) >7'A z',
(F.6)

where Z = 1papa + Lz apa 7a. The LA subspace comprises all odd-parity basis
operators that contain at least one labile-spin operator (I or S). But to obtain the ILRR,
we only need matrix elements of G, arsa 0 the LZ subspace. In this subspace, Ly = 0
so Z =1 and the 2 x 2 block GﬁZLZ of Gﬁ,AVL,A becomes

GfZ,JLZ =1- <Rﬂofz,w> TA — <XEZ,LZ> TA

+ <(REZ,NA + XEZ,NA) (Rftama + Xiana T1 LZ,I\IA,I\IAY1 ( NaLz T X%A,}LZ)> TA -
(F.7)

It follows from Eqs. (14), (25) and (F.3) that X7, 1, = X{'zna = Xjarz = 0, whereby

Eq. (F.6) simplifies to | | |

where G]éZ,]LZ =1- <REZ,]LZ> TA + <FEZ,}LZ> TA 5 (F.8)
I‘EZ,]LZ = REZ,NA (RI%A,NA + XIQ\IA,NA + Z’LZ,NANA)_I RI%A,ILZ . (F9)

According to Egs. (13) and (20), Ry ys is nonzero only in the nonlabile single-spin

subspace Ny, so Eq. (F.9) becomes |

I'iz1z = Rizw, (RNA,NA + Xjana tiLz, NA,NA)NlNl Ry, 1z - (F.10)

Decomposing the NA subspace as Ny + NA', we can write the inverse in Eq. (F.10) as

« « - -1 [ « - o —1
(Ritana + XRapa +iLzmana) gy, = Ry, + Xiw, +ilznn — Yiy,) o (F1D)

where

. —1
fon = (RE, nar + X8, ner) (Rt mar + X{ar Nar + i Lz, v va) (RI%IA’,M +X§A',N1) :
(F.12)
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According to Eqgs. (F.10) and (F.11),
[ 67 [e% @ @ . —1 a
I'iz12z = Rizn, ( NN, XNy, — Yy, T ZLZ,NlNl) Ry, 1z - (F.13)

We shall now use symmetry arguments and the RMN approximation to simplify the
supermatrices X y, and Yy,

Unlike Ry ,, the 3m x 3m supermatrix Xg, y, is not block-diagonal in spin. However,
any one of the m? 3 x 3 blocks X%l(u)Nl(y), associated with spins p and v, can be expressed
on a generic form involving matrix elements of the same form for all spins. To show this,

we use Eq. (F.3) to write

XNlNl = NiS |:a KSS + RgS + 2 LZ,SS ASNl 5 (F14)

We now decompose the symmetric subspace as S = 'S+ NS, where " = L+ U as before.
Noting that Kysns = 0 and that, according to Eqs. (14), (25) and (26), A}, 1,5 = 0, we
obtain from Eq. (F.14),

« _ « o .
Xnn, = AN ns [RNS,NS + 1 Lz nsns
-1
« « . -1nxa «
_ R‘NS,]L/S (1]L/S,]L/S/TA + R]L’S,]L/S +1 LZ,L’S,]L’S) R]L’S,NS ANS,Nl (F15)
a (Ra + iL )flAa
Ny,NS NS,NS Z,NS,NS NS,Nj

where, in the last step, we have expanded to second order in wp7Ta (consistent with the
RMN approximation). Decomposing the NS subspace further as Ny+NS', we can partition
Eq. (F.15) as

o
NS’,N;

(F.16)
But Ry, s = 0 according to Egs. (13) and (21), and Af, ye = 0 according to Eqs. (14)
and (27). Consequently, Eq. (F.16) reduces to

-1
o - o o
Xa = |:Aa a :| RN2N2 +1 LZ,NQNQ RNQ,NS’ NoN;
NiN1 — N1N2 N, NS/ o o ’ .
Rys/ v, Ryg ns + 1 Lz, v s A

@ e’ @ . -1 A a
NlNl - NlNQ (RN2N2 + ZLZaNQNZ) ANgNl : (F17)

The dimensions of the Ny and Ny subspaces are 3m and 9m (m — 1)/2, respectively.
Consider the 3x3 block X§, (,)n, () associated with the nonlabile spins y and v. Block-wise
matrix multiplication in Eq. (F.17) yields

Xagomae) = D D Aoy (REn 712,00 ) 4 oy oy A waoma) - (F-18)
(KA) (K'N)

where each sum runs over the m (m — 1)/2 distinct two-spin subspaces associated with
different pairs of nonlabile spins (without regard to order). According to Egs. (13)

and (23a), the two-spin relaxation supermatrix Ry, is block-diagonal in spin pairs, so
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R%Q(HA)NQ(HIA/) = (SN)\,,{/,\/ R%z(K)\)NQ(/i/\)‘ Furthermore, LZ7N2(,€)\)N2(,€//\/) = 55)\,,@/)\/ Wo Q2 and, if
the two-spin basis operators are ordered as in Table S1 of Appendix H,

Q, = diag(00011—1-12-2). (F.19)
Thus,

03 1 (0%
Ny (1)Ny (v Z AN1 (11)Na (k) RNQ(K,\ JNa(kA) T 1 Wo QQ) ANQ(I{)\)Nl(V) : (F.20)

This result can be further simplified with the aid of Egs. (14) and (E.10). For off-diagonal
blocks X§, (N, () With g # v, the spin pair KA must contain both p and v so the only
term in the sum that survives is the one with kA = puv. For diagonal blocks Xy, v, ()
one spin in the pair kA must be p whereas the other spin in the pair can be any of the

remaining (m — 1) spins (except ). Thus,
o o o o . aT
NI(M)NI(V) - Nl(H)N2(HV) ( NQ(MV)NQ([,LV) _l_ LWy Q2) A )Nz(,u,z/) 5 (F21a)

a . « . OlT
N1()N1(p) — Z AN1 (p)Ng (uv) (RNQ(/LV)NQ(MV) +two QQ) A 1)Na () 0 (F21b)

where 1 # v in both equations, as indicated by the prime in Eq. (F.21b). Here, we have
also noted that AR, )N, o) = AOR“J(V)NQ(W) since A" in Eq. (14) is Hermitian.

Equation (F.21) shows that each of the m? 3 x 3 blocks of the 3m x 3m matrix X§ y,
can be computed from the 3 x 9 matrices AR, (,)n, () a0d the 9 x 9 matrices Ry, (v, (
It follows from Eqgs. (14) and (E.10) that AR, )n,(u) and A%,

static dipole coupling wp, ,,, between nonlabile spins p and v. Thus, while the off-diagonal

pv):

JNo () OBLY involve the

(1 # v) block X§, (i, vy only involves wp ., the diagonal block X§, (), () involves all
static dipole couplings with spin pu.

We now turn to the supermatrix Yg y, in Eq. (F.12). It follows from Egs. (13) and
(20) that R, yar = Rian, = 0, so Eq. (F.12) reduces to

YNINI = XNl,NA/ (RNA’,NA' + XNA’,NA’ +1 LZ’NA/’NA/) NA/,N; - (F22)
To simplify this expression, we examine the quantity Xg y,/, given by Eq. (F.3) as
XIO\[M,NA/ == A?\hg (KSS/TA _I_ RgS + Z LZ7§S)_1ACSY7NA/ . (F23)

According to Egs. (14), (27) and (28),

ARs = Ay, (F.24)
and
AL fork=1
< T Aa — NaoN3 ’ . F25
S,NA Noy,NA { AO&%N%ﬂ  fork>2 ( )
Combination of Egs. (F.23) — (F.25) yields
-1 m
"] 5]
X§17NA/ = Aolith E%QN% A%QkNZkJrl + E§2Nzk A%chWc—l ) (F'ZG)
k=1 k=2
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where the upper limit of the sums is the largest integer contained in (m —1)/2 or in m/2,
respectively. Thus, for example,

X%l,NA/ (m = 2) = O ; (F.27a)
XIO\[M,NA/ (m = 3) = AclihNQE%zNgA%gNg ) <F27b)
XK]MNA/ (m - 4) - ?\IIN2 E§2N2 ?\IQNS, + A?\TlNQEIO\lIQN4 ?\14N5 ) (F27C)

showing that Yﬁ‘,lNl = 0 for the IP,—1I and ISP,—1S cases. Furthermore,

—
=
e

* = 7 (U%K)!, (F.28)

Ugs = Kss + Rgg7a +iLzss7a - (F.29)
We decompose the even-parity subspace as S = NS + 'S, with NS = Ny + N, + ...

comprising the even parity subspaces containing only nonlabile spins and the remaining
subspace 'S = L + U including even-parity mixed labile/nonlabile subspaces (Us,, Uy,
etc) and, if the spin system contains two labile spins, also the labile two-spin subspace
L. Accordingly, we partition the supermatrix Ugg in Eq. (F.29) as

o (Ritsns Ta + @ Lz ns,ns 7a) Ris s Ta
ss = o N , (F.30)
R]L’S,NS TA (1 + RIL’S,]L'S TA +1 LZ,]L’S,]L’S TA)
The (NS, NS) block of the inverse of this matrix is
(U§S)§SI,N§ = <RIO<IS,NS 7a + @ Lz nsns TA
(F.31)

-1
o o . —1lpa
— RNS,]L/S TA(l + RL’S,L/S TA +1 LZ,]L/S,]L'S TA) R’L’S,NS TA) .

We now apply the MN approximation again by truncating the expansion of (14+Ry)g /s Ta+
iLypssis Ta)” ! after second order in wpTa,

(1 + Rﬁ/S,L/S TA + iLZ,]L/S’]L/S TA)il =7 — 7 R’E’&L’S TA Z + O (<WDTA)4) s (F32)
where Z = (1 + i Lz g5 7a) ' Inserting this result into Eq. (F.31), we get

a \—1 a . « a
(USs)nsns = (RNS,NS Ta+iLznsns Ta — Risps 7a Z Rivg ns Ta
. (F.33)
«a «a @
- RNS,L’S TA Z RL’S,]L’S TA V4 R]L’S,NS TA) .

6

The last two terms are of order (wp7a)? and (wpTa)8, respectively, and they can therefore

be neglected in the MN regime. Consequently,

o \— o . —1
( SS)NSl,NS = (Rfisns7a +iLlznsns7a) - (F.34)

According to Egs. (13) and (21), the supermatrix Rfgyg is block-diagonal with ma-

trices R%ka on the diagonal. Furthermore, Lz nsys is purely diagonal. The matrix
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(USs)ns.ns is therefore also block-diagonal with diagonal blocks (R, y, 7a +i Lizn, v, 7a) ™"

Consequently,

—_a -1

SNoNop 7a ( gS)NgNQk = Ok1TaA (U§S)§;N2 = O <R§2N2 +iLZ,NzN2)_1a (F.35)

which is substituted into Eq. (F.26) to give, for k =3, 5, ...,

0 , iftm< 3
NNy = o o . e , (F.36)
6k’3 ANlNQ (RNQNQ + t LZ7N2N2) ANgNg ) lf m Z 3 :

Note that the second sum in Eq. (F.26), starting with & = 2, does not contribute to

XR§, N, In the same way, we obtain, for k=3, 5, ...,

0 if m <3
X¢ = o i e (F.37)
5k53 ANgNQ (RNQNQ + t LZ7N2N2) ANgNl ) lf m Z 3 :

In view of Egs. (F.36) and (F.37), it follows from Eq. (F.22) that Y§ y, = 0 for m < 3
as already noted below Eq. (F.27), whereas, for m > 3,

« _ « e . -1 A
YN1N1 - AN1N2 (RNzNg + ? LZ7N2N2) ANQN?,

1

. ] | ) (F.38)
x (Rt oy + Xiia oy + 1 LZ,NA’,NA’)N3N3 Af,n, (Rifn, + 6 Lzyn,) ™ Ay, -

Now consider the matrix Mg, yas = Ry nar + Xiarnar + 4 Lz narnar. The Zeeman
Liouvillian Ly nas nas is completely diagonal, whereas Ry, yas is block-diagonal according

to Egs. (13) and (21). However, as we shall now show, Xg,, yu is not block-diagonal. In
analogy with Eq. (F.23),

Sarna = Afws (Kss/7a + R + zLZ,SS)—lAgM, . (F.39)

Using the selection rule for A, in Eq. (F.25) and the corresponding relation for A, s,
we obtain for m > 3
« « |:v—a

_ - a —=a a
Nog11Nogp 1 ™ Nog11Ngp | =NopNyy AN21N21+1 + —NoxNojyo AN21+2N21+1i|

(F.40)

+ AN2k+1N2k+2 [HN21€+2N21 Aszsz-H + —Nog42No;1o AN21+2N21+1} )

with B¢ defined by Egs. (F.28) and (F.29). It follows from Eqs. (F.30) — (F.35) that

Y

— _ frnle? _ a . -1
HNQkNQl - 5lk HNQkNQk - 6lk (RNQszk + ZLZ7N2kN2k> Y (F41)

which is combined with Eq. (F.40) to give

o _ o —=a o o =« o
XN2k+1N21+1 - 5lk AN2k+1N2k —NopNop “*NopNop 1 + AN2k+1N2k+2 —Nop42Nog 4o AN2k+2N2k+1]

Py 6]

e} —a o o —
+ 517’“*1 AN2k+1N2k —NoiNog ANszzkﬂ + §l’k+1 AN2k+1N2k+2 —Nog+2Nok 12 AN2k+2N2k+3 :

(F.42)
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The supermatrix Xg,, yys thus has a block-tridiagonal structure, as does the supermatrix
Mg, nas in Eq. (F.38). To obtain the N3Nj block of the inverse (My,, )" We must
invert the full matrix (not just the diagonal blocks). The block-dimension of Mg,/ y,/ is
[(m — 1)/2], that is, the smallest integer contained in (m — 1)/2. For m = 3 or m = 4,

the supermatrix My, o thus contains a single block,

Mgy e = MRy, = Ry, + Xy T 1Lz vy, , for m=3or4, (F.43)
with
X3, = Aym:§MA§M7 ) X for m=3"""(pa
AN3N2 =Ny No ANQNg + AN3N4 ‘—'N4N4 AN4N3 , for m=4

For m =5 or m = 6, the supermatrix Mg,y has a 2 x 2 block structure,

a _ ( 10\[73N3 + X§3N3 + Z-]:‘Z,I\T?J\TS) X%SNS
NA/NA! = o N N , ,  (F.45)
N5Ns (R,n, + Xn, 17 Lz, vgws)
where Xg.y, has the same form as for m = 4 (this form is valid for all m > 4),
X§T3N5 = ACI%:;N;; :§4N4 ACI<I4N5 ) (F46a)
XI%T5N3 = A%%N;; E§4N4 ACI<I4N3 ) (F46b)
and
ARy, B AR for m=>5
fos = 3 Aa _S“N“ s . . (FAT)
N5N4 SN4Ny N4N5 + AN5N6 ‘—'N6N6 NgN5 for m=

For m = 5 or m = 6, the inverse of My, y, in Eq. (F.38) is obtained from Eq. (F.45) as

« -1 o « « . e «@ «@ . 1 1
(MR nar ), = (R, n, + Xfon, + 0Lz van — X, Ry, + Xfons + 1Lz wws) ™ X, )

(F.48)
For m = 2, Y§,x, = 0 since there are no nonlabile three-spin (or higher) modes. For
=3, Egs. (F.38), (F.41) and (F.44) yield

YI%lNl(m = 3) = aRIlNQ (R§2N2 + Z LZ7N2N2)_1 ?\!QNE}
6 - (03 (e N - « -1
X [RNSNB + ¢ LZ’N3N3 + ANSNQ (RN2N2 + 2 LZ7N2N2) ! NQNS] (F49)
X ACI%:;NQ (RKIQNQ + /L LZyN2N2)71ACI<T2N1 N

Similarly, we obtain for m = 4,

fo(m =4) = ARy, (RR,n, + 1Lz m,n,) ARy,
X [Ri,n, T Lz, ngs + Ay, (Rin, + 1 Lz mon,) T Ay,
+ Ay, (Rin, + 1Lz naw) T AR, ] B
X An, (Rin, + 1Lz mm,) ARy,

(F.50)
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and, using also Eq. (F.48), for m = 5,
Yiiw(m=5) = Aw, (Riyn, + 1Lz ) Ay,
x {Rfi, + 1 Lo + Ay, (Riyn, + 1Lz, vav) ™ A,
+ Ay, Ry, T 1Lz nw,) T ARy, — Afyn, Ry, 1Lz ww,) ARy, (F51)

[} . a a . —1 A -1
X [RN5N5 + ¢ LZ7N5N5 + AN5N4 (RN4N4 + ¢ L27N4N4> AN4N5:|
-1
a o . —1 A [ a . -1 A
X AfYyn, (Riyn, +7Lz,nmn,) AN4N3} ARy, (Rign, 1Lz mn,) " Ay, -

We now consider the individual 3 x 3 blocks Y§, )y, () of the 3m X 3m supermatrix
Yy, in Eq. (F.49). For m = 3, there are three single- spln modes (i, v and k), three
two-spin modes (uv, pk and vk), and only one three-spin mode (uvk). Performing the
block-wise matrix multiplications in Eq. (F.49) and making use of the symmetry rules in
Egs. (E.4), (E.10) and (E.11), we obtain for u # v,

Y me(m = 3) = [A?wmwzwu) (RS, (o () + 1900 Qo) ™ ALY, (1) )
AR o () B (i () 790 Qo) ™ ARy () Ng(,ul/n)]
[RN?,(W,@ g (o) T 1Wo Qg + XN;(WH)N:;(WH)] - (F.52)
X [ N (um)Na () (RN () Na () T 1 w0 Qo)™ 1AOI§2(W)N1(V)
+ AN () (o) B mNa () 700 Qo)™ 'Ag, yn)Nl(V)} ;
and for p = v,
M =3) = | A%, o) Riaumatuon + 190 Q)™ Aty
+ AR, (N (ur) B ()N () T 7@W0 Qo)™ AR, ,un)Ng(;wn)}
X [R§s<uun>N3<uun> +iwo Qy + Xg??)(uw)Ns(Wﬁ)] B (F.53)
X [A%S(W@Nz () (R (o) 7900 Qo) ™ AR, i ()

a - -1 AQ
A untan) Rkt T 160 Qa)™ Ay gy -

The supermatrix Xg, (0N, sy @PPearing in Egs. (F.52) and (F.53) is given by

@ . @ «@ . —1 A

N3(uve)N3(pve) — AN3(}U/I{)N2(,UJ/) (RN2 (pv)Na(pv) + 1w QQ) ANQ(,U,V)N:),(}U/I{)
+ AN;; (pvK)Na (uk) (RNQ(MH Na(uk) + 1w QQ) Nz(um)Ng(uum) (F54)
+ ANg (rvK)Na (V) (RNQ(VKZ)NZ(Z/H) +iwo QZ) IA?\IQ (vk)N3(pvk) *

Here we have also introduced the 9 x 9 diagonal matrix Q, from Eq. (F.19) and the

analogous 27 x 27 matrix

Q, = diag(0000000111111-1-1-1-1-1-1222-2-2-23-3), (F.55)
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provided the 27 three-spin basis operators are ordered according to () index, as in Table
S2 in Appendix H.

From the general result in Eq. (F.38), we see that, for any m > 3, the coherent spin

mode pathways are of the general form
1 - 2 — 3 — {mixing of 3—spinmodes} — 3 — 2 — 1. (F.56)

The mixing of the three-spin modes is brought about the matrix

_ . 1
( %A',NA')N;Ng = (RI%A’,NA’ + XNarnar 1 LZ,NA’,NA’)N3N3 . (F.57)

The block-tridiagonal matrix Xg, y,/ involves modes from two-spin up to m-spin. We
now introduce the three-spin mode (3SM) approximation by neglecting k-spin modes with
k > 4. The 3SM approximation is thus needed only for m > 4. The matrix Mg,/ y,, then

contains only one block, so that

-1

(MI%A’,NA/)KI;N3 = [RNgNg +iwo Q3 + AR,n, (Riy,n, + 7 wo Q)" NQNg] (F.58)

In the 3SM approximation, Eq. (F.49) applies also to m > 3,

YIOé\th(m) - AN1N2 (R§2N2 + Z'CUO Qz)ile&QNg
a . _ @ —1
[RN3N3 +iwo Qg + ARy, (Ri,n, +iwo Qy) 1AN2N3} (F.59)
X AN3N2 (RNQNQ + ZWO QZ) 1AOI£T2N1 .

For a set of m spins, there are m!/[(m — k)!'k!] distinct k-spin subspaces Ny, so the
(approximate) generalizations of Eqs. (F.52) — (F.54) are as follows. For off-diagonal

blocks (u # v),

YR, Z Z Z Z AR ot () (B (umpiia ey + 100 Q) ™

—1 F.60
X AN2 (pur)N3(pkk’) [RN3N3 + XN3N3 +i LZ1N3N3}Ng(;mn’)Ng(yAA’) ( )

X AR sy (R eans ey T 1wo Q)" Na (VAN (1) 4

where the primed sums over spins are restricted to ensure that a k-spin subspace contains

k distinct spins. For diagonal blocks (p = v),

Yﬁl( Z Z Z Z AR, 1)N2 (pk) RNz (1r)N2(pr) + 1w QQ)

o -1 F.61
X ANQ(/LK)N;?,(/LNH/) [RNSNS + XNBNS +1 LZ7N3N3} N3 (i’ )Nz (uAN) ( )

X AR oaniaan) B g (i) 190 Qo) ™ AR, iy () -

The supermatrix Ry,y, is block-diagonal with m(m — 1)(m — 2)/6 blocks of dimension

27 x 27 on the diagonal. The supermatrix Xg,y, is not block-diagonal and has [m(m —
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1)(m — 2)/6]? blocks of dimension 27 x 27 and of the general form

Xglg(,uun)Ng(u’u’ff’) = 5#’# 61//7/ ACIiIg(uw@)Ng(uy) (RIO\?Q(MV)NQ(MV) + Z.WO QQ) 0&2 (uv)Na(pvs’)
a o . 1
+ Oy O AN3(HVR)N2(;LH) (RN2 (ur)Na(ur) T 2 W0 Q)" ANg(,un)Ng(,uz/n)

+ 61"” 51{'11 A%g(uuﬁ)Ng(l/n) (R%g (vk)Na(vk) + 1w QQ)ilA%Q(Z/N)Ng(M/VN) :
(F.62)

Equation (F.62) shows that the 27 x 27 blocks of Xg, \, vanish unless the two involved
three-spin subspaces have at least two spins in common. For the nonzero off-diagonal
blocks, connecting distinct subspaces sharing exactly two spins, only one of the three
terms in Eq. (F.62) contributes. For the diagonal blocks, where the two subspaces are
identical (sharing all three spins), all three terms in Eq. (F.62) contribute.

The effect on the ILRR of coherent spin mode transfer induced by static dipole cou-
plings can be identified by computing the ILRR from the multi-spin SRE theory with and
without the X§ y, and Y[, y, supermatrices, which vanish in the absence of static dipole

couplings. Omitting these supermatrices from Eq. (F.13), we obtain

Z R~ () (RE () T T w0 Q)"! RY, (- (F.63)

The multi-spin SRE theory developed here reduces correctly to the results derived
in Paper III for three-spin systems.! For the ISP — IS case, there are no static dipole
couplings, so Eq. (F.63) applies. Setting m = 1 and N;(u) = P, we find

5, = Rop (Rpp +iwo Q) ' RE, (F.64)

in agreement with Paper III.} For the IP,—1 case, m = 2 and YN, = 0. From Eq.
(F.13), we then obtain, in agreement with Paper III*

re — a RO (Rs + XGg +iwo Q) Xsp S1
11 — 15 1P X< R< X . RY '
PS (Rpp + Xpp +iwy Q) P1
(F.65)
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APPENDIX G: EXPLICIT SRE RESULTS

In this Appendix, we summarize the steps involved in computing the ILRR from the
multi-spin SRE theory in the 3SM approximation (only used for m > 4). In particular,
we present explicit expressions for the special cases with m = 1, 2, 3 or 4, as well as

general expressions, valid for any m, suitable for machine computation.

1. Exchange case [P, —1

According to Eqgs. (11) and (F.8), the ILRR for the /P,,—1I case is given exactly by
Rii(wo) = Pa [(R(wo)) — (Tii(wo))] - (G.1)
The auto-relaxation rate ( RZ!) is obtained from Eqs. (H.5) and (H.7a) as

(RI(w0)) = 2w}, [(0) +3.J(w0) + 6 J(2w0)] (©2)

45

where the cumulative fluctuating dipole coupling wp ; is defined as

m 1/2
Wwp = [Z w]%m] : (G.3)
pn=1
The cross-relaxation rate (I'!1) is obtained from Eqgs. (F.13) and (H.13a) as

<Fg(w0)> = <R1 N1 VIC\Yth)_l R§1,1>

G4
= ZZ< 1,N7 () V§1N1)_ N1 ()N R?Rh > : ( )

p=1 v=1

The m 1x 3 blocks R y, () of the 1x3m cross-spin relaxation matrix R y, have elements
proportional to wg ;, 7a given by Egs. (H.11) and (H.12). The m? 3 x 3 blocks V§, ,)x, ()

of the 3m x 3m matrix Vy y, are given by

Vi) = O (B, gomn +190 Q1) + X8, ome) — Yo - (G.5)

The 3 x 3 single-spin auto-relaxation matrix R§1(N)N1(N«) has elements proportional to
wp 1, Ta given by Egs. (H.10) and (H.14). The m* 3 x 3 blocks Xg, (), Of the 3m x

3m coherent transfer matrix Xg y, are obtained from Eq. (F.21), reproduced here for

convenience:
_ AT
X%l(ﬂ)Nl(l/) A%h N2 (uv) ( %2@1/)1\]2(;”) + 1wy Qg) Ny ()Na (uv) 2 (G6a)
« - « . at
XNy (N1 () = Z AR, ()N (uv) (RNz(#V)N2(#V) +1wo Qz) AR ()Na () * (G.6b)
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The m? 3 x 3 blocks Y§ Ny (N vy Of the 3m x 3m coherent transfer matrix Y§,y, are
obtained from Egs. (F.60) and (F.61):

Ygﬁ(#) Z Z Z Z A 1)N2 (k) R‘N2 (pr)Na (pr) +iwo QQ)

1 G.7
X ANg(;m N3 (pukr’) [RN3N3 + XN3N3 +ilg N3N3]N3(,unn’)N3(u)\)\’) ( )

X AN (AN )Na () (RNQ(VA)NQ(VA) +iwgQy) ! AR, (AN () 1

Ny ()N: (i Z Z Z Z AR, (1)Na () RNQ (ur)Na () T L W0 Q,)!

-1 (G.8)

X ARG (ur)Ns () [RN3N3 + Xy 8Lz, 850 | g, s (o

«@ «@ - —1 A
X AR (s (u3) (B goma ey 760 Qo)™ AR, (uayw, (4) -

The [m(m—1)(m—2)/6]* 27 x 27 blocks of the 9m(m —1)(m —2)/2x Im(m—1)(m—2)/2
supermatrix Xg,y, are given by Eq. (F.62):

« 1
XNg(uun)N3(u’V’n’)(m) - 5M ‘W 51’ v AN?,(MVH)NQ(MV) (RNQ(IJ,V N2 (uv) + 1w QQ) ANQ([,LV N3 (uve')
1 Aa
+ Oy O ANS(WH)NQ(W) (RNQ(#H)NQ(W +iwo Q) AR, (1ur)N3 (ur' k)

+ 61//1/ 5'4/{ AaN;g(uwi)NQ(un) (RIO\CIQ(VH)NQ(VH) + 1w Q2)71AOI<TQ(VK)N3(M’VK) :
(G.9)

The m(m — 1)/2 9 x 9 blocks RE, (), (u) Of the block-diagonal 9m(m — 1)/2 x
9m(m — 1)/2 two-spin auto-relaxation matrix Rg,y,, appearing in Eqs. (G.6) — (G.9),
have elements with terms proportional to WIQL I TAS WIQ), 1, Ta and wp 1, wp T and are
given by Egs. (H.15a) and (H.16) — (H.36) (and similar expressions).

The m(m — 1)(m — 2)/6 27 x 27 blocks RY,(,,,.)n,(uws) Of the block-diagonal 9m(m —
1)(m —2)/2 x 9m(m — 1)(m — 2)/2 three-spin auto-relaxation matrix Rg,y,, appearing
in Egs. (G.7) and (G.8), have elements with terms proportional to wg ;, Ta, Wf 1, Ta,
w]%’m TA, WD, 14 WD, Iy TA, WD, 1, WD, 1x Ta and wp 1, Wp 14 Ta, and are given by Eqs. (H.37a)
and (H.38) — (H.44) (and similar expressions).

The m?(m—1)/2 3 x 9 blocks A, (,)x, ()

2-spin mode transfer supermatrix A% y,, appearing in Eqgs. (G.6) — (G.8), have elements

of the 3m x 9m(m — 1) /2 coherent 1-spin —

proportional to wp . given by Eqs. (H.45) and (H.46). Actually, there are only m(m —1)
nonzero 3 x 9 blocks A%, v, ()¢ for each of the m(m — 1)/2 two-spin subspaces Ny(uv),

these are the 3 x 9 matrices 5N1( and OR, )N, (w) 0 Eq. (H.45), with one spin

No (uv
shared between the single-spin ang )twg spin subspaces.

The m?(m —1)*(m —2)/12 9 x 27 blocks AL, (,.,)n, (uwry Of the 9m(m —1)/2 x 9m(m —
1)(m — 2)/2 coherent 2-spin — 3-spin mode transfer supermatrix AR y,, appearing in
Egs. (G.7) - (G.9), are each a sum of two 9 x 27 matrices proportional to wp ., and wp .,
and given by Eqgs. (H.47) and (H.48) (and similar expressions). Actually, there are only
m(m — 1)(m — 2)/2 nonzero 9 x 27 blocks: for each of the m(m — 1)(m — 2)/6 three-

spin subspaces N3(pvk), these are the three 9 x 27 matrices AR, (v, () AN (rs)Ns (urm)
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and AN

According to Eq. (H.47), each of these matrices is a sum of two 9 x 27 matrices, such as

2 () Na (i) With two spins shared between the two-spin and three-spin subspaces.
O ()N () () A0 OR (g () (V). Altogether, m(m — 1)(m — 2)/2 such matrices

must be computed.

Before considering the general case, we shall examine the special cases with m = 1—4.
Here, we use subscript I for the labile spin (actually the I, mode) and p = 1,2, ... ,m
for the nonlabile spins. (The lower-case Greek letters are generic nonlabile spin labels.)

For m = 1, there are no static dipole couplings, so X{ y, = Yx,n, = 0 and Eqgs. (G.4)
and (G.5) yield

(Pi(wo)) = <R?,N1<1> (Rl m T w0 Q) Ry >> ) (G.10)

consistent with Eq. (F.63) and the results of Paper I1.9

For m = 2, there is a single static dipole coupling, so Y§ y, = 0 and the sum in Eq.
(G.6b) contains only one term. Equations (G.4) and (G.5) then agree with Eqgs. (42) and
(43) of Paper III," with the four 3 x 3 blocks of X§ y, obtained from Eq. (G.6) as

1

X mme (M =2) = Aoz (Riuoma +iw0 Q) Aoy (G11a)
X omm (m = 2) = A% omns (R +i90 Q) ANy (G11D)
Xfam(m =2) = Afqynyaz) (R Nx12)Nx(12) T 4 Wo Q) 1A 1N(12) 7 (G.11c)
XM (m=2) = AR onaz) (R No(12)Ny(12) 2 Wo Q,) A ‘A N1(2 JNo(12) ° (G.11d)

For m = 3, there are three two-spin subspaces (12, 13 and 23) and one three-spin
subspace (123). Equation (G.6a) then yields

1

Ximme (M =3) = ARy ama (Riazmaz + 1w Qz) AaT 2)NA12) 7 (G.12a)
Xfuemn(m =3) = Af o (Riazmaz +iwoQy) A A 1)Na(12) (G.12b)
Xfume (M =3) = ARy amas (Riyasmas) +iwo Qa) lA 3)Na(13) * (G.12¢)
X amm (m =3) = A% anns Riagmas +iw0 Q) Ay (G12d)
Xfuome (M =3) = ARy onyes) (Riyosnges +iwo Q) A A 3)Na(23) (G.12¢)
Xiuame (M =3) = Afygnyes) (R Ny(23)No(23) T2 Wo Q) lAaT 2)N(23) * (G.12f)

According to Egs. (H.45) and (H.46), A} o)y differs from AR q)y,q0) only by
having reversed sign for the elements in columns 3, 4 and 6, whereas AY )y 3) differs

from AR q)ny12) only through the dipole coupling (wp, 13 versus wp 12) and the Euler angles
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. . . . 2* .
1 = . . (G.
(Q3 versus (212) in the Wigner functions Dy, = Dy (2x). From Eq. (G.6b) we obtain

« o « . at
XN1(1)N1(1)<m =3) = A 1)Ny(12) ( NA(12)Ny(12) T 2 W0 QQ) Ay 1(1)No(12)

(G.13a)
+ AR 1)Ny(13) (RN2 13)No(13) T ¢ Wo Q2) N1(1)N2(13)
« _ _ «@ o - OCT
Xfi o) (M =3) = A%z (Riazme +100Q) Al (G.13b)
+ ARy 2)Ny23) (R§2(23)N2(23) +iwQ,) Atll\ll(z )N(23)
X§1(3)N1(3)<m = 3) = A%h 3)Ny(13) ( %2(13)1\]2(13) +1wo QZ) Nl( )N2(13) (G 13C)
+ AR 3)nu23) (RN2 23)Ny(23) T L Wo Q) A%1(3)N2(23)
Equation (G.7) yields for the off-diagonal blocks
Y§1(1)N1(2)(m =3) = [ ?\11(1)1\12(12) (R§12(12)N2(12) + 1w QQ) ANQ(12)1\13(123)
+ AN yma13) (Riasmas) + 1w Qo)™ ARy a)ng123)]
(0% (6% . —1
[RNg (123)Ny(123) T XNy(123)Ny(123) T 1 Wo Q3} (G.14a)

(A oo (Riazmz + w0 Qo) A gz
at a : 1 OéT
AN2(23 )N3(123) ( No(23)Ny(23) + 1w Q2) A N2(23)] ’

Y§1(2)N1(1)<m =3) = [Aoﬁh 2)Ny(12) (R§2 12)N(12) T 2 Wo Q2)71 A?NQ (12)N3(123)
+ ANl(Q)Ng 23) (RN2 23)Ny(23) T i wo Qz) N2(23)N3(123)}
[RNg 123)Nx(123) T XN3(123)N3(123) +iwo QS} o (G.14b)
(A oo (Riazmaz + w0 Qo) ANz
A?\rzug ing123) (Riyasympas) +iwo Qa)” 1A&T N2(13)] ;

Y§1(1)N1(3)(m =3) = [A?\Il( 1)Ny(12) (R§Q(12 )No(12) T 1w QQ)_l AORZIQ(12)1\13(123)

+ AR 1)ny13) Rivyasyngas) + 7 wo Q)" 0&2(13)1\13(123)}
1

[RNg (123)Ny(123) T XNy(123)Ny(123) T 1 Wo Q3} (G.14c)
at ot
[A (13)N3(123) (RN2 13)Ny(13) + 1w Qz) ANl(g)N2(13)

1 aT
+ AN2(23 1ny(123) (Riges)maes) +1wo Qg) ™ A N2(23)] ;

Y§1(2)N1(3)<m =3) = [ 01{11( 2)Ny(12) (R§2 12)N(12) T 2 Wo Q2)71 %2(12)1\13(123)
+ ANl(Q)Ng 23) (RN2 23)Ny(23) T iwoQy)” ! ?\12(23)N3(123)}
[RNg 123)Nx(123) T XN3(123)N3(123) +iwo QS} o (G.144)
(AN 1o Riasmaas +iwo Qo) Al g s
+ AN2(23 YN3(123) ( §T2(23)N2(23) +iwyQy)” 1AM N2(23)] ’

where, to conserve space, we have omitted Y, s)n,1) and Yy s)n, o), since they are easily

obtained by analogy with the expressions shown in Eq. (G.14).
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Equation (G.8) yields for the diagonal blocks

Y§11(1)N1(1)(m =3) = [A(ll\h( 1)Ny(12) (R§2(12)N2(12) +iwo QQ)_l A%Q(lz)Ng(m?))

+ AR ) (Riyasmaas) + 190 Qo) ™ Afyus)ngis))
—1

[RNg (123)Ny(123) T X%g (123)Ny(123) T 4 Wo Qg} (G.15a)
« a.l.
[A ! 12 N3(123) (RNQ 12 N2(12) + 7’ Wo QQ) ANl(l)NQ(IQ)

1 At
+ AN2(13)N3(123) (Ritasymaz) + 1 wo Qo) T ARy as ] -

Y§1(2)N1(2) (m=3) = [Aoﬁh 2)Ny(12) (R§2(12 JNo(12) T Wy Q2)_1 A?N2(12)N3(123)
+ AN 2)ma23) (Rity2s)naes) T iwo Qz)” ! 01{12(23)1\13(123)]
[Rm (123)Nx(123) T XN3(123)N3(123) +two Qs} - (G.15b)
(AN, 1o Riazmaae) +iwo Qo)™ AN s
+ A?NQ 23)N5(123) (R§2(23)N2(23) +iwo Qy)” 1A(XT N2(23)] ’

Y§1(3)N1(3) (m = 3) = [A?\Ir; 1)Ng(13) ( §2(13)N2(13) +iwo QQ)_l AO&Q(ls)Ng(n:g)
+ AR, 3)Na23) (Riy23)na23) T8 wo Q,) ! %2(23)1\;3(123)]
[RNg (123)Ns(123) T XNy(123)No(123) T L W0 Qg} ! (G.15¢)
[Aa (13)g(123) (Biyas)nyas) +iwo Qo) ACIY\]JI(3)N2(13)
+ AN2(23)N3(123) (Riy23)ny23) T w0 Qo)™ IAQT N2(23)] :

Equation (G.9) yields for m = 3

X§3(123)N3(123) (m = 3) - A?\]g(lQ N3(123 (R§2(12)N2(12) + iwo Q2>_1A?\12(12)N3(123)
+ AO‘T (13)N3(123) (RN2(13)N2(13) + ZWO QQ) lAOI%z (13)N3(123) (G]‘G)

+ Aa L35 (123) (R (23)Na(23) T 1 w0 Qo)™ 1A01§12(23)N3(123)

For m = 4, there are six two-spin subspaces (12, 13, 14, 23, 24 and 34) and four three-
spin subspaces (123, 124, 134 and 234). Equation (G.6a) then yields for the off-diagonal
blocks of Xg y,

Xlo\[h(p)Nl(l/) (m = 4) = Io\éll(u)Nl(l/) (m = 3) s for W,V S 3 s (Gl?)
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and, for the additional blocks involving spin 4,

X§1(1)N1(4)(m =4) = Ny(1)No(14) (R§2(14)N2 14y T 1w Qz)
X§1(4)N1(1)(m =4) = AC1<11(4)NQ(14) (R§2(14)N2 14y T 2 Wo QQ)
X§1(2)N1(4) (m=4) = A(I<T1(2)Ng(24) (R§2(24)N2 24) T i Wo Qz)
Xme) (m =4) = ARy (R§2(24)N2 24) + 1 Wo Q,)
Xi@mw(m =4) = AY gy (Riyengey + 00 Qa)
X (m =4) = ARy, a)ny) (R§2(34)N2 34) T 1Wo Q2)

1

1

1

1

1

1

4)N2 14)
AN1 (1)Ny(14) >
1(4)N2 24)
ANl (2)Nx(24)
A Ni(4)No(34)

N1(3)N2 34)

(G.18a)
(G.18b)
(G.18¢)
(G.18d)
(G.18¢)

(G.18f)

Whereas the off-diagonal blocks of X§ , always contain a single term, Eq. (G.6b) shows

that the diagonal blocks contain three terms for m = 4,

Xgll(l)Nl(l)(m =4) = Oﬁu(l)m(m) (R§12(12)N2(12) +iwo QQ) AQT 1)Ny(12)
+ AR a3 (Riyasmas) +iwo Qa) A?\h(l JNa(13)
+ AR ) (Riguam +iwo Qy) A?\h(l)NQ(M)
X§11(2)N1(2)<m - 4) - AO&(Q)NQ(H) (R§2(12)N2(12) + 1w QQ) Ao&lu)NQ(m)
+ AR 2)nu23) (R§2(23)N2(23) +iwyQ,) ACIQ(Q )No(23)
+ N1(2)N2 (24) (RN2(24 Ny(24) T LW Qz) N1(2)N2(24)

XI%l( )Nl(S)( 4) = Aoﬁfl(:’,)NQ(m) ( §2(13)N2(13) + 1w Qz) Aa 3)Ny(13)

+

A 3)maz3) (Riyesmues) + 100 Qo)

+

Nu(3)Na(34) (RN2 34)Ny(34) T L Wo Qz)

A?\Tl(:i )No(23)
AN1(3)NQ(34) )

X§1(4)N1(4)<m =4) = A%1(4)N2(14) (R§2(14)N2(14) + 1w Qz) Aa 4)Ny(14)

+

A?\Tl(4)Nz (24) (R§2(24 )Ny(24) T LW Qz)
T N1(4)Nz (34) (RN2 34)Ny(34) T i wo Qg)
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A(Iih(ﬁl )No(34) *

(G.19a)

(G.19b)

(G.19¢)
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For m = 4, Eq. (G.8) yields for the off-diagonal block with ;=1 and v = 2,

Y§1(1)N1(2)(m =4) =
[A%I(l)NZ(lz) (RR,(12)ny(12) T iwo Q)" AN 12)v,0123) T AR )y13) (RR,13)n,013) T w0 Q)" A?\Tz(ls)Ng(ma)]

. -1
x [Ri,n, + Xfjn, +1 LZ7N3N3]N3(123)N3(123)

at a . —1 At af a . — at
[AN2(12)N3(123) (Riy(12)v512) w0 Qo) AR 2)ns12) T ANys)ng123) (Riy(23)5(23) T 700 Q2) IAN1(2)N2(23)]

+ [A?\Il(l)l\b(u) (Ri,(12)mu(12) + 1 wo Q)" ANy 12)Ns123) T ANy1)ns(13) (Ri,1s)ny13) T iwo Q)" A%2(13)N3(123)]
o o . —1
< R, + Xfin, +1 LZ7N3N3]N3(123)N3(124)

t a . -1 i T a ; -1 T
[A%2(12)N3(124) (RN2(12)N2(12) +iwo Qy) A%I(Q)Ng(u) + A(fy\12(24)1\13(124) (RN2(24)N2(24) +iwo Qy) A§1(2)N2(24)]

+ [A%, (1)ma12) Ria2ymaa2) + w0 Qo) ™ AR 1oyng123) + ANaymaz) (Riasnas) +iwo Qz) ™! ANy sngi2s)]

@ « - -1
X [RN3N3 + Xin, 1Lz, NSNS]N3(123)N3(234)

ot . —1 aaf at . —1 At
[AN2(24)N3(234) (R§12(24)N2(24) +iwo Qy) ANI(Q)N2(24) + ANQ(2:>,)N;:,(234) (R§2(23)N2(23) +iwo Q) AN1(2)N2(23)]

+ [Aoﬁh(l)NQ(m) (Ri,(12)m,(12) T iwo Q)" AN 12)N,0124) T ANy 1) ny(14) (R (14)n,14) T 1 W0 Q)" A(11\12(14)N?,(124)]

. -1
X I:Rl%gNg + Xf,n, T LZvN3N3]N3(124)N3(124)

at a . —1Aaft at « : —1 At
(AN 12)my120) Bi12)na12) + 100 Qa) T AN oy n,19) + AR asyaze) Riaeanaee +iwo Qo) T AR 4 v 00

+ [ANy1yma12) Ria2)ny12) + w0 Q)" AN 12)ng124) T ANy 1)Na14) (R (14)m,14) T W0 Q)" AR 14)Ny(124)]
a @ . -1
x [Rin, + Xfjn, +1 LZ>N3N3]N3(124)N3(123)

at a . —1 At at « . —1 At
[AN2(12)N3(123) (Rit,12)v,12) + 1 wo Qz) ANy2)Ng12) T ANy23)Ny123) (Riy(23)n,(23) + w0 Q) AN1(2)N2(23)]

+ [Acﬁh(l)m(u) (Ri,(12)m,(12) T iwo Q)" AN 12)Ns124) T ANy1)Ns(14) (R (14)ny14) w0 Q)" A%12(14)N3(124)]
@ e . -1
X [RN3N3 + Xigng T4 LZ7N3N3]N3(124)N3(234)

at « - —1 A0t at «@ . —1 At
[AN2(24)N3(234) (R 24)n520) T 100 Q2) ARy2)Na24) T ANy3)Ng234) (Rii(23)n523) T 100 Qo) AN1(2)N2(23)]

+ [A 1)) Riasmnas) T 1w Qo) ™" ANy zynaisa) + ANy nymaia) Biaanaa) +iwo Qz) ™ ARyayny130))
(e} « . _1
X [Rifgn, + Xian, + ZLZ7N3NS]N3(134)N3(123)

at a . —1 At at a ; —1Aaf
I:ANQ(QS)N3(123) (Rt (23)n,(23) + w0 Qg) AN@)Na23) T Any12)ny(123) (Rit,12)my12) T wo Qo) AN1(2)N2(12)]

+ [A%1(1)N2(13) (Ri,(13)m,(13) T iwo Q)" AN 13)N5(134) T ANy 1) ny(14) (R (14)ny14) T W0 Q)" AOR‘I2(14)NS(134)]
« a . -1
x [Rin, + Xijn, +1 LZvN3N3]N3(134)N3(124)

at a . —1 At at « . —1 At
[AN2(14)N3(124) (RN2(14)N2(14) +iwo Qy) ANl(z)N2(14) + ANQ(lQ)N3(124) (RN2(12)N2(12) +iwo Qy) AN1(2)N2(12)]

+ [A%h(l)l\b(lg) (RR,13)m,(13) + 1 wo Q.)! AN 13)Ns134) T ANy 1)Ns(14) (R (14)ny14) i w0 Q)" A%12(14)1\13(134)]

. ~1
X [Rityn, + Xi,n, +i LZ7N3N3]N3(134)N3(234)

at « - —1 A0t at «@ . —1 At
[AN2(24)N3(234) (R 24)no20) T 100 Q2) ARy2)Na24) T ANys)Ng234) (Rity(23)n523) T 100 Qa) AN1(2)N2(23)] ‘

(G.20)
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For m = 4, Eq. (G.8) yields for the diagonal block with 4 =1 and v =1,

Y§1(1)N1(1)(m =4) =

[A%l(l)Nz(lz) (Ri,(12)m,(12) T iwo Q)" AN 12)N,123) T ANy 1)ny(13) (R, (1s)ny13) T w0 Q)" A%2(13)N3(123)}

X [Rglst + X, +1 LZ’N3N3]I<131(123)N3(123)

[A§2(12)N3(123) (RN2(12)N2(12) + itwo QQ) Nl(l)N2(12) + A N(13)N3(123) (RN2(13)N2(13) +iwo Q)" AOIih(l)Ng(lB)]

+ [AN 1)ma2) Rz +1wo Qo) ™ ANy rang2e) + ARy (1)ma1a) (Riaamaa) + 100 Qo) ™" Afy1ayng(i24)]
x [Rifn, + Xy, +iL7 N3N3]§31(124)N3(123)

[A%2(12)N3(123) (RN2(12)N2(12) +iwQy) Nl(l)N2(12) + ANg(13)1\13(123) (RN2(13)N2(13) +iwo Qy)” A§1(1)Ng(13)]

+ [A?\Il(l)NQ(m) (Ri,(12)v,(12) T iwo Q)" AN 12)Ns123) T ANy 1)ns13) (R (13)my13) +iwo Q)" A%2(13)N3(123)]
@ @ . -1
X [RNgNg + Xigng T4 LZ7N3N3]N3(123)N3(124)

« af . «
[AN2(12)N3(124) (RN2(12)N2(12) +iwo Qz) Nl(l)N2(12) + A1\12(14)1\13(124) (R§2(14)N2(14) +iwo Qy)” 1A1\71(1)1\12(14)]

+ [A(Il\h(l)Nz(m) (Ri,(12)n,(12) T+ iwo Q)" AN 12)Ns(124) T AN 1)ny14) (R (14)my14) + w0 Q)" A(fl\12(14)1\13(124)]
X [R§3N3 + X§3N3 +i LZ’N3N3]§31(124)N3(124)

[A§2(12)N3(124) (RNQ(lz)NQ(m) +iwo Qz) Nl(l)N2(12) + AO&Q(14)N3(124) (R§2(14)N2(14) +iwo Qp)” AO§11(1)N2(14)]

+ [AN1)ma12) Ria2)ny12) +iwo Q)" A 12)n(123) T ANyma3) (RE,3)ma13) T w0 Q)" AR (13)Ny(123)]

. ~1
x [Rigyn, + Xfyn, +1 LZ7N3N3]N3(123)N3(134)

@ . 1
[AO§12(13)N3(134) (RN2(13)N2(13) +iwoQy)” Aa Ny(1)No(13) T AN2(14)N3(134) (RN2(14)N2(14) +iwg Qy) Nl(l)N2(14)]

+ [Acﬁll(l)NQ(m) (RRy(13)ny(13) T 7 Wo Q)" AR, (13)ny(134) T ARy (1)na(14) (Biy(14)85(14) + 7 W0 Q)" A%I2(14)N3(134)]
X [R§3N3 + X{,n, i LZvN3N3]§31(134)N3(123)

[AC§12(12)N3(123) (Ri(12)ma012) + w0 Q)" Nl(l)N2(12) + AN2 13)N3(123) (Rit(13)n5013) T 100 Q2) ™ AaNl 1)N2(13)]

+ [A(Il\h(l)Nz(H) (RR,(12)n,(12) + i wo Q)" AN 12)Ns(124) T AN 1) ny14) (R (14)my14) + W0 Q)" A?\lz(14)N3(124)]
X [R§;3N3 + X§3N3 +1i LZ’N3N3]§;124)N3(134)

[AQN2(13)N3(134) (Ri,(13)ma(13) +iwo Qo)™ A§1(1)N2(13) + A%I(M)Ng(m) (R 1aymo(14) T 900 Q2) ™ AO§11(1)N2(14)]

+ [AN1)ma13) (Ria3)ny13) +iwo Q)" A (13)Ny(134) T ANy1)Na14) (R (10)mp010) T W0 Q)" AR (14)Ny(134)]
x [Rif,n, + Xfn, +1 LZ7N3N3]I<I3»1(134)N3(124)

[A§2(14)N3(124) (RN2(14)N2(14) +iwoQy) Nl(l)N2(14) + AN2(12)N3(124) (RN2(12)N2(12) +iwoQy) Nl(l)N2(12)]

+ [A(Il\ll(l)NQ(13) (RRy(13)ny(13) T 7 wo Q)" AR, (13)ny(134) T ARy 1)na(14) (Biy(14)8,014) + 7 W0 Q)" ACIY\IQ(14)N3(134)]
X [R§3N3 + X{,n, i LZvN3N3]§31(134)N3(134)

[A01§2(14)N3(134) (RN2(14)N2(14) +iwo Q2) Nl(l)N2(14) + ANQ 13)N3(134) (RN2(13)N2(13) +iwo Q2) Nl(l)Nz(IB)] :
(G.21)
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For m = 3, with a single three-spin subspace, the supermatrix Xg,y, consists of a
single 27 x 27 block. For m = 4, with four three-spin subspaces, Xy, y, has 4% = 16 blocks
given by Eq. (G.9). Each of the four diagonal blocks contains three terms, corresponding
to the three two-spin subspaces contained in each three-spin subspace,

Xy (123)N5(123) (M = 4) = A%i(lg)NS(lgg) (R, (12, (12) T 7900 Q2) ™ AR, (1995 (123)

af &4 . —1 Ac
A, 13)Ns(123) B asna(13) 7100 Q) ARy gy, 123 (G22a)

+ o+

at . -1
AN2(23)N3(123) (R§2(23)N2(23) +1wo QQ) ACIiIg(QS)N;;(lQ?:) )

Xy (124)N5 (124) (M0 = 4) AC&Z(H)NS(M) (R, 12, (12) T 7900 Qa) ™ AR, (1995 (124)

af @ . — a
AR s (120 B ama (e T 1wo Qo) T AR, (uyn(120)  (G-22D)

+ o+

ot «a . —1 A
Ay, 24)N5(124) (R, 24), (24) T 1w0 Qo)™ AR, (24, (124) -

X Ry (134)N5(134) (M = 4) A?\yl(lg)m(lg@ (R, (13)m,(13) T 7900 Qa) ™ AR, 13y, (130)

AC&Z(M)NS@M) (R, a1y T 190 Q2) ' AN a1z (G22¢)

+ o+

ot «a . —1 A
AN2(34)N3(134) (RN2(34)N2(34) +iwo Qy) 1AN2(34)N3(134) )

X (234)N5(230) (M = 4) = A%i(Qg)N3(234) (RR, (23)Na(23) T i wo Q2)71A?\12(23)N3(234)

af «a . — a
A 0015 (231) BR a)ma(20) T 1900 Qo) T AN gy 230y (G-22d)

+ o+

at o . —1 A
A 30y (230) (R 30 (30) 790 Qo)™ ARy 34y 254) -

For the off-diagonal blocks, only one of the three terms in Eq. (G.9) contributes,
because there can only be one two-spin subspace contained in each of two different three-
spin subspaces (which must share two spins). Some of the 12 off-diagonal blocks for m = 4
are (the others are readily obtained by analogy),

X§3(123)N3(124) (m=4) = AO&Z(lQ)Ng(m?,) (R§12(12)N2(12) + 1wo Qz)_le&z(m)Ng(lm) , (G.23a)
XRa(124)5(123) (M = 4) = AO&Z(12)N3(124) (RR, (12)n5(12) + w0 Q2)_1A01§2(12)N3(123) , (G.23b)
X§3(123)N3(134) (m=4) = AO&Z(13)N3(123) (R§12(13)N2(13) +iwo Q2)71A01<!2(13)N3(134) o (G.23¢)
X (123)Ny(234) (M = 4) = AOI%Z(23)N3(123) (R, 28)n,(23) T %0 Q2)_1A(1<12(23)N3(234) , (G.23d)

XNy (230N (124) (M = 4) = AO&Z(24)N3(234) (R, (24)Ny (24) T 10 Qz)*lA%Q(M)Ng(m) . (G.23e)

We now consider the general case, with m > 3. The ILRR for the I P,,—1I case is given
by Egs. (G.1) — (G.5). In Eq. (G.4), we need to invert the 3m x 3m matrix Vg y,, the
constituent 3 x 3 blocks of which are given by Eq. (G.5). To obtain V§ y,, we need to

calculate m diagonal blocks R, (., (u) 7° blocks X yn, (), and m? blocks Y, (n, )-

)
The matrices Xy y, and Yy, are neither symmetric, nor Hermitian.
According to Eq. (G.6a), the off-diagonal (1 # v) 3 x 3 blocks Xg, v, () contain a

single term, which involves the two-spin subspace Ny (uv). The diagonal blocks X§, (., ()
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contain m — 1 terms, corresponding to the two-spin subspaces involving spin p and one

of the remaining m — 1 spins. We can thus express Eq. (G.6b) as

« at
XNl(#) Z A N2 (ay,) RNg(a‘u)Ng(aM) +iwo Qz) ANl (1)N2(an) (G.24)

a,=1

where Ny(a,) denotes one of the m — 1 two-spin subspaces that includes spin p.
The 3 x 3 blocks Y§, (v () are given by Egs. (G.7) — (G.9). Equations (G.7) and

(G.8) may be expressed concisely as

N(m) N
o) = D Z VR ()N () S5 (A,)N3(AL) VN3 (AN () 5 (G.25)
A,=1 A,=1

where N3(A,) denotes one of the N'(m) = (m — 1)(m — 2)/2 three-spin subspaces that
includes spin p. For example, for m = 5 the six subspaces that include spin 3 are 123,
134, 135, 234, 235 and 345. Note that the ordering of the spins is irrelevant here; we
consistently use ascending order. Note also that some subspaces may occur in both sets
{N3(A,)} and {N3(A,)}. For example, for m = 4 the three-spin subspaces that include
spin 1 are 123, 124 and 134, whereas those including spin 2 are 123, 124 and 234.
Equation (G.25) is valid for diagonal (1 = v) as well as for off-diagonal (u # v) blocks.
In either case, Y§, () is composed of [N(m)]* = (m — 1)*(m — 2)?/4 terms. Three
new quantities are introduced in Eq. (G.25). The 3 x 27 matrix VR ()Ns (A ) and the

27 x 3 matrix ?%g( AN, () A€ defined as

o 1 o
Ny (0)Ns () = Z AR 05 (1,0 (B (b s (b,) 100 Qo) A9y, - (G268)

2
o _ af @ . a
Via(AM () = Z AN (b, )Ns (A, (RN2<bu>N2<bu> +1Wo Qa) ANl(M Na(b,) > (G26b)
b=1
where Ny(b,) denotes one of the two two-spin subspaces that contain spin p and one of
the other spins in the three-spin subspace N3(A,,).
The 9m(m — 1)(m —2)/2 x 9Im(m — 1)(m — 2)/2 matrix Eg,y,, whose 27 x 27 blocks

Py

ER,(A,)Ns(A,) aPPear in Eq. (G.25), is defined as

-1

E§3N3 = (R§3N3 + X§3N3 + iLZ,NgNg) (GQ?)

This matrix inversion is the most computationally demanding step in the multi-spin SRE-
3SM theory. For m = 3, 4, 5 and 6, the dimension of this matrix is 27, 108, 270 and 540,
respectively. For large m, the dimension grows as m3. The three-spin-mode relaxation
supermatrix Ry,y, is block-diagonal, with the 27 x 27 blocks computed as described in
Appendix H. The three-spin Zeeman supermatrix Ly n,n, is also block-diagonal, and all
the blocks are equal to wy Qs, with the 27 x 27 diagonal matrix Qs given by Eq. (F.55)

if the three-spin basis operators are ordered as in Table S2 of Appendix H.
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The 27 x 27 blocks of the 3 — 2 — 3-spin mode transfer matrix Xg,y, are given by
Eq. (G.9). The off-diagonal blocks may be expressed as

o . at «a
XN3(A)N3(B) - 6C(A ANQ(c)Ng’ (RNQ NQ(C) + ZCL)O Q2> NQ(C)Ng(B) ) (G28)

where N3(A) and N3(B) are two different three-spin subspaces. The delta function
Oc(A)c(B) signifies that X{, ayn,m) Vvanishes unless these subspaces share two spins, in
which case the two-spin subspace Ny(c) comprises the two shared spins. For a given
three-spin subspace N3(A), how many other three-spin subspaces N3(B) share exactly
two spins with N3(A)? The three-spin subspace N3(A) contains three pairs, for each of
which we can form another three-spin subspace N3(B) in m — 3 ways, corresponding to
having any of the m — 3 spins not present in N3(A) as the third spin in N3(B). Conse-
quently, among the m(m — 1)(m — 2)/6 three-spin subspaces, 3(m — 3) share two spins
with another subspace. Of the total number [m(m — 1)(m —2)/6]> — m(m — 1)(m —2)/6
off-diagonal blocks, only 3(m —3) x m(m —1)(m —2)/6 = m(m —1)(m —2)(m — 3)/2 are
nonzero. For m = 4, all 12 off-diagonal blocks are nonzero. However, for m = 10, only
2520 of the 14280 off-diagonal blocks are nonzero (~ 18 %). The supermatrix Xg,y, is
thus rather sparse for large m.

According to Eq. (G.9), the diagonal blocks of Xy, contain three terms,

. -1 Aa
XNy (A)Ns(A) Z AN2 ons(a) By (ema(e) T 1wo Qo)™ A, o)y (a) - (G.29)

where ¢ denotes one of the three pairs contained in A.

2. Exchange case ISP, —1S

According to Eqgs. (12) and (31), the ILRR for the I.SP,,—IS case is given by

Rl,lS(WO) — 2P, ~<§H ><RSS > - <§IS ><RSI Wo > (G.30)

(RI(wo)) + (RSS(wo)) — (RIS (wo)) — (RS (wp))

with
(R(wp)) = (RI(wo)) — (T (wo)), (G.31a)
(RS (wn)) = (RS5(w) — (D55 (w0) (C.31)
<Eif(wo)> = <R£f(w0)> - <F£5(Wo)> : (G.31c)
(Rl (wo)) = (B (wo)) — (T (wo)) - (C.31d)

S37



The longitudinal auto-mode rates are obtained from Egs. (H.6), (H.7), and (G.3) (along

with the analogous expression for wa g) as

(Rl(wo)) = &(wh s+ wpy)[J(0)+3J(wo) +6J(2wo)] (G.32a)
(RZ(wo)) = Z(wi s +whs) [J(0) +3J(wo) +6.J(2wp)] (G.32b)
(RIS (wo)) = (RS (wo)) = 2 wh s[—J(0)+6J(2wp)] . (G.32c)

The cross-relaxation rates are obtained from Eqs. (32) and (H.13) as

<F££(W0)> = Xmgi< aI,Nl(u (VNlNl)Nl(M)Nl(V) R(ﬂ\rl(u)> ) (G.33a)
p=1 v=

(I (wo)) = ii <RO§,N1(#) (Vi) N (N1 (v )RCQTNI(V)> (G.33b)
p=1 v=

(T2 (wo)) = ilzm;< TN () (VI%INJ&( N1 (v R%Nl(u)> (G.33c)
p=1 v=

(T8 (wo)) = ijzm:< S (VRN (o 0) Raz,Twl(u)> : (G.33d)

1 v=1

=
Il

The m 1% 3 blocks Ry, () and Ry, () of the 2 x 3m cross-spin relaxation matrix Ry v,
have elements proportional to wD7 I TA and WD,SM Ta, respectively, given by Eqs. (H.11)
and (H. 12)

The m? 3x 3 blocks Vi, ,)n, () Of the 3m x 3m matrix Vi y, are given by Eq. (G.5), as
for the I P,,—I case. The longltudlnal auto-mode rates in Eq. (G. 32) depend on the dipole
coupling wp rg between the two labile spins, but the quantities RN XN o ») and
YR, (o, (v) @pPpearing in V{ ,)n, () do not involve wp .

The elements of the 3 x 3 smgle spin auto-relaxation matrix Ry ()N, () 81ven by Eqs.
(H.10) and (H.14b), have one term proportional to wﬁ 1, Ta involving angular functions
Frine(€21,) and another term proportional to w]%’SH Ta involving Fiar (Qsy)-

The m?* 3 x 3 blocks Xy,
given by Eq. (G.6), and the m? 3 x 3 blocks YR, (N, () ©f the 3m x 3m coherent transfer

Ny (v) Of the 3m x 3m coherent transfer matrix Xg y, are
matrix Y§ y, are obtained Egs. (G.7) — (G.9). These expressions apply to both the
exchange cases IP,,—1I and ISP,,—1S. The only difference between these two cases
for the quantities appearing in the expressions for Xy, y, and Yy, y, is that the two-spin
auto-relaxation matrix Ry, y,, given by Eq. (H.15b), and the three-spin auto-relaxation
matrix Ry, y,, given by Eq. (H.37b), now involve S—pu as well as I —p dipole couplings.
The 1-spin — 2-spin mode and 2-spin — 3-spin mode coherent transfer matrices AR y,
and Afg,y, only involve dipole couplings between nonlabile spins, and are therefore the

same for the two exchange cases.

538



Before considering the general case, we shall examine the special cases with m = 0—4.
For m = 0, that is, the symmetric exchange case I.S—195, there are no nonlabile spins so
the cross-relaxation rates in Eq. (G.31) vanish and the longitudinal auto-mode rates are
given by Eq. (G.32) with wp; = wps = 0.

For m = 1, that is, the exchange case ISP—1S, there are no static dipole couplings,
so Xy, = Yy, = 0 and Eqgs. (G.5) and (G.33) yield

(Mll(wo)) = <R? n() (Ryaymay +iwo Qr) - R} 11-\;1 > (G.34a)
(P25 (wo)) = < S vy (R ayngr) +iwo Qy) ! RETNl > (G.34b)
(T12(wo)) = < ) (Riyyma) +iwo Q)" R?TNI(1)> (G.34c)
(T2l (wo)) = < S vy (R vy +iwo Q)™ 1R?11§1(1)> (G.34d)

For m = 2, that is, the exchange case I.SP,—I.S, there is a single static dipole coupling,
so Yy, = 0 and the four 3x3 blocks of X§ , are given by Eq. (G.11), the only difference
form the /P, —1 case being that the two-spin relaxation matrix Ry, 1o)n,12) nOW involves
S —u as well as I —p dipole couplings.

For m = 3 and m = 4, that is, the exchange cases ISP3—1S and ISP;—1S, Xy,
and Y7, are given by the expressions in Eqs. (G.12) — (G.23), the only difference form
the IP;—1 and IP;—1 cases being that the two-spin and three-spin relaxation matrices
Ry,n, and Ry, y, now involves S—pu as well as [ —p dipole couplings.

In the general case, with m > 3, the expressions for X, (v, ) and Y, ), o) 10 Egs.
(G.24) — (G.29) are valid for the ISP,,— IS case as well as for the IP,,—1I case. Again,
the only difference is that the two-spin and three-spin auto-relaxation matrices Ry, y, and

Ry,n, now involve S—p as well as I —p dipole couplings.
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APPENDIX H: R AND A"™ MATRIX ELEMENTS

1. Relaxation of single-spin modes

In this Appendix, we specify in explicit form all the matrix elements required in the multi-
spin SRE theory, beginning with relaxation matrix elements between single-spin basis
operators. According to Eq. (24), such matrix elements only involve self-correlations,
that is, X = Y in Eq. (13). It also follows from Eq. (18) that for auto-spin rates,
where n and p refer to the same (labile or nonlabile) spin, all (exchange-modulated)
dipole couplings involving that spin contribute to the rate. Conversely, for cross-spin
rates, where n and p refer to distinct (labile or nonlabile) spins, only the dipole coupling
between those two spins contributes to the rate.

Since single-spin relaxation matrices only involve self-correlations, the angular func-

tions appearing in Eq. (13) and defined in Eq. (16) take the simpler form
Fan(X) = D2y(0%) D2g(O%) = expli(M -+ M)03] d(0%) dZo(0%) . (1)
Noting that d2,,,(3) = (—1)Md%,,(8), we obtain the symmetry relations
Fun(X) = Faru(X) = (=1)M™ME2 0 (X)) (H.2)

We consider first the isotropically averaged relaxation matrix in the labile single-spin

longitudinal subspace LZ, which appears in Eq. (31),

(Rz2) (R:Z)

Wizsal = | (m) (s -

This 2 x 2 matrix is relevant for the ISP, —IS case, whereas only the element (R) is
needed for the I P,,—I case. These matrix elements are obtained by combining Eq. (13),

symmetry rule (24), and the Wigner function orthogonality relation

(Fyr (X)) = B (1) 3 (.4)

For the I P,,—1I case, we thus obtain

(R = > (o), (H.5)

pn=1
and for the ISP,,—1S case
(RID) = (pI3)+ > (o), (H.6a)
pn=1
(RZZ) = () +>_ (o3r) (H.6D)
pn=1
(RZ) = (RZ) = (02) . (H.6c)
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Here we have introduced the generic isotropically averaged longitudinal auto-spin and

cross-spin relaxation rates associated with dipole coupling X,

(p2.) = Zwpx[J(0) +3J(wp) +6J(2uw)] , (H.7a)
(0X) = 2wl x[—J(0)+6J(2wp)] , (H.7b)

with the SDF J(nwy) given by Eq. (15).
Next, we consider orientation-dependent local relaxation matrices in single-spin sub-

spaces. These can all be expressed in terms of the generic auto-spin relaxation matrix

associated with the dipole coupling X
Pl Py P
e S S (H.8)

X, o X

and the generic cross-spin relaxation matrix associated with the dipole coupling X

X X X
gzz Uz+ Uz—
X _ X X X — Xt
o" = |0y, of, of_ | =o' (H.9)
X X X

o, o2, o0°_

A comment about indexing is in order here. In single-spin mode relaxation matrix ele-
ments, such as RS or R%3, the left (row) basis operator is indicated by the left superscript
and subscript, and the right (column) basis operator is indicated by the right superseript
and subscript. In generic auto-spin and cross-spin rates, such as pi’i or ai’;, the subscripts
are the same as in the corresponding relaxation matrix element (indicating row and col-
umn position in the matrix), but the superscript now refers to a dipole coupling X. For
cross-spin rates, X involves the same two spins as the left and right basis vectors, but for
auto-spin rates this is not always the case since several dipole couplings may contribute
to a given auto-spin rate. In the generic rates, where the superscript refers to a dipole
coupling X, the order of the two spins is irrelevant and we use the order corresponding

to the convention adopted for the direction of the dipole vectors (Appendix C).
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In terms of the angular functions in Eq. (H.1) and the SDF in Eq. (15), the elements

of the generic auto-spin relaxation matrix are obtained from Egs. (13) and (18) as

pl = 2wp x{Foo(X) J(0) =3 Fi_1(X) J(wo) + 6 Fy_o(X) J(2wo) } , (H.10a)
pre = 2wd x{5Foo(X)J(0) = 9F1_1(X) J(wo) + 6 Fo—2(X) J(2wg)},  (H.10b)
pxy = Bwd {Fyo1(X)[2(0) — J(wo)] — V6 Fi_a(X) J(wo) } . (H.10c)
P = —(pR)", (H.10d)
p. = B wd A Fn(X) [J(0) — 2 J(wo)] + V6 F_15(X) J(2wp) } | (H.10e)
Pt = = ()", (H.10f)
pEl = swdx{ = V6 Fu(X) [J(0) + J(2w)] + 3 Fia(X) J(wo) } (H.10g)
Xy = (pr ) (H.10h)

Similarly, the elements of the generic cross-spin relaxation matrix are obtained as

o = 2wl o { — Foo(X) J(0) + 6 Fr_o(X) J(2wo) } , (H.11a)
0%y = 3wpx{2Fn(X)J(0) =3 F_1(X) J(wo)} (H.11b)
0¥ = Luwl {Foo1(X) [J(0) + J(wo)] — V6 Fi_a(X) [J(wo) + J(2wp)]},  (H.11c)
ol = —(0%)", (H.11d)
or, = (o) = —oi, (H.11e)
oX, = (o) = —ol, (H.11f)
ot = Pwd x{ =2 Foa(X) [J(0) + J(2w0)] + V6 Fia (X) J(wo) } (H.11g)
oX, = (o} ) (H.11h)

As indicated in Eqs. (H.9) and (H.11), the generic cross-spin relaxation matrix o is

Hermitian. The generic auto-spin relaxation matrix p* is Hermitian only at wy = 0.

The 1 x 3 cross-spin matrices R y,(,), which constitute the blocks of the 3 x 3m
supermatrix Rf'; y, in Eq. (32), correspond to the first row of the cross-spin relaxation
matrix 0¥ in Eq. (H.9), that is,

S = [RY R RM) = [0l ol o], (H.12a)

Srngy = (RS R R = [0 o2t o2t]. (H.12b)

zz zZ—

Similarly, the 3 X 1 cross-spin matrices RY,,), correspond to the first column of the

cross-spin relaxation matrix X in Eq. (H.9), that is,
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i vl
Rzz
«a _ vI
N = | BY
vi

| B2

B vS
Rzz

« _ vS
Ni(v),2 — R+z
vS

. R_Z

The 3 x 3 nonlabile single-spin auto-relaxation matrices R, )y, (

at
17N1(V) ?

RoT

Q,Nl(l/) N

1)

(H.13a)

(H.13b)

which constitute

the blocks of the 3m x 3m supermatrix Ry, y, in Eq. (32), are obtained from the generic

relaxation matrices as

« I
Ni(u)Ni(w) — P !

N ()N ()

— p],u_i_ps,u

(IP,,—1I case) ,
(ISP, —IS case) .

(H.14a)
(H.14D)

TABLE S1. Basis operators for the Ny(uv) subspace for spins p and v.

n @ K P*? B}

1 0 0 + —\%u-u

2 0 2 + \%(Buzl/z — p-v)
3 0 1 - V2 (uxv)-e,
4 1 1 - oz Vi — g Vs

5 1 2 + (UZV++U+VZ)
6 1 1 - Wy Vo — [i_ U,

7T -1 2 + Py Vo + p_ v,

8 2 2 + Wy Vg

9 -2 2 + o V_

& Parity of B,, under spin permutation y <> v.
b The basis operators B,, are normalized in the two-spin (uv) Liouville space.
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2. Relaxation of two-spin modes

The 9 x 9 nonlabile two-spin relaxation matrices R‘f{b( appearing in Eq. (F.21)

pv)Na (uv)
can be expressed as

RN, () Na () = p'1v (IP,,—1I case) , (H.15a)

R, () Na () = plt1v 4 pSm S (ISP, —1S case) . (H.15Db)

Y

The elements pXY of the 9 x 9 two-spin relaxation matrix p*¥ are all auto-(spin pair)

rates, and eitherp auto-mode (n = p) or cross-mode (n # p) rates. The nine two-spin
modes are ordered as in Table S1. As noted in Sec. III.C of the main text, terms like
p'5Y which involve four-spin correlations, do not appear in the SRE theory.

Because the two-spin modes involve two different nonlabile spins (¢ and v), the two-
spin rates involve two different dipole couplings (X = Iu and Y = [v) for a given labile
spin. In general, the two-spin rates therefore have contributions from self-correlations
(s) as well as from distinct correlations (d), corresponding to the diagonal (X =Y') and
off-diagonal (X # Y') terms, respectively, in the double sum of Eq. (13). Accordingly, we

decompose the two-spin rates as
Doy = Pip(X) 4 i, (V) + iy (XY) (H.16)

where pg (XY') is the sum of the two terms in Eq. (13) that differ by X <+ Y interchange.
Consequently, the ordering of X and Y in pJ (XY') is irrelevant.

Within the @-blocks (where @, = @,; see Table S1), anpY only has contributions from
M’ = —M terms in Eq. (13). The @Q-blocks are Hermitian, so pg‘;ly = (pffpy)*, implying
that pXY is real. The quantities pS (X) and p$, (V) are identical, except for the X < Y
interchange. This is also true for off-diagonal elements pS,(X) and p,;, (V) if the basis
operators B,, and B, have the same parity under spin permutation (Table S1). If the
parity is different, p;; (X) and p;; (V) differ in sign (apart from the X <> Y interchange).
Off-diagonal elements pffpy within the ()-blocks are real if B,, and B, have the same spin
permutation parity, and complex (for np = 45 and 67) or purely imaginary (for np = 13
and 23) otherwise. From Table S1, it is seen that basis operators with odd rank have odd

parity under spin permutation.

The generic two-spin rates within the 3 x 3 @ = 0 block are obtained from Egs. (13)
and (18) as

P11 (X) = wd x{Foo(X) J(0) =2 Fi_1(X) J(wo) + 2 Fo2(X) J(2wo)} ,  (H.17a)

P (XY) = Swp xwpy{ — Foo(X,Y) J(0) + 2Re[F1_1(X,Y)] J(wp) (H.17b)
— 2Re[Fo_a(X,Y)] J(2wp) }

Paa(X) = %wS,X{ZS Foo(X) J(0) = 7 F1-1(X) J (wo) + 10 F3—5(X) J(QWO)} ,  (H.18a)

p§2(XY) =9 Wp, x u}D7y{ - Re[Fl_l(X, Y)] J(WO) -+ 4R8[F2_2(X, Y)] J(Q(UO)} s (H18b)

W~
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p3s(X) = swi {5 Foo(X) J(0) — 9 F1_1(X) J(wo) + 6 Fo_o(X) J(2wp) } , (H.19a)
ps3(XY) = 2wp ywpy{ —2F(X,Y) J(0) + 3Re[F1_1(X,Y)] J(wo)} , (H.19b)

Ol

pia(X) = 2 wd {Foo(X) J(0) = Fyo(X) J(wo) = 2 Fpo(X) J(2wo) ), (H.20a)
v2 Wp, X wD,y{ -2 F00<X7 Y) J(O) + RG[F1,1<X, Y)] J(WO)

=
-
=
[
@S ©

(H.20b)
+ 2Re[Fo_s(X,Y)] J(2wo) } ,
pa(X) = 0, (H21a)
p{i?)(XY) =1 M Wp, x wD7y{ — Im[Fl_l(X, Y)] J((JJ()) + 2 Im[Fg_g(X, Y)] J(QUJO)} y

(H.21b)
p33(X) =0, (H.22a)

pgg(XY) = i%ﬁ wp,x wDy{Im[Fl,l(X, Y)] J(wo) — 2Im[Fo_o(X,Y)] J(2w0)} )
(H.22b)

It may be noted that Eq. (16) implies that Re[Fa—m(X,Y)] = Re[Fy—m (Y, X)], whereas
For the 2 x 2 Q =1 and Q = —1 blocks, we obtain in the same way
pin(X) = K wd x{7Foo(X) J(0) — 15 F1_1(X) J(wp) + 18 Foo(X) J(2wp) } , (H.23a)

pin(XY) = 2wp xywpy{ — Foo(X,Y) J(0) + 3Re[Fi_1(X,Y)] J(wo)

(H.23b)
— GRG[FQ_Q(X, Y)] J(?(,Ug)} s
p35(X) = pia(X), (H.24a)
PE(XY) = —pd(XY), (H.24b)
pZB(X) = %W§7X{FOQ(X) J(O) Fl 1(X) J(UJQ> —2F2 Q(X) J(QOJO)} (H25a)
pis(Y) = —gwiy {Foo(Y) J(0) = Fi_1(Y) J(wo) — 2 Fo_o(Y) (QWO)} (H.25b)
pis(XY) = i2wp xwpy{ —Im[F_1(X,Y)] J(wo) + 2Im[F>_»(X,Y)] J(2wo) } ,
(H.25¢)
pes(X) = piu(X), (H.26a)
pes(XY) = piy(XY), (H.26b)
p1:(X) = p35(X), (H.27a)
PR(XY) = pd(XY), (H.27b)
Per(X) = —pis(X), (H.28a)
pe(Y) = —pis(Y) (H.28Db)
PH(XY) = pi(xY) (H.25¢)



Finally, for the () = +2 rates, we obtain

pss(X) = §wi x {5 Foo(X) J(0) =9 Fy 1 (X) J(wo) + 6 Fo5(X) J(2wo) } ,  (H.29a)

pss(XY) = 2wp xwpy {2 Foo(X,Y) J(0) — 3Re[F1_1(X,Y)] J(wo)} , (H.29b)
Poe(X) = pgg(X), (H.30a)
PH(XY) = p&(XY). (H.30b)

Outside the @)-blocks, the Wigner-Eckart theorem requires that pffpy = 0 whenever
|Qn — Qp| > 2, the rank of the ISTO T%(X) in the dipole coupling. With the basis
ordering of Table S1, the ten vanishing elements are np = 49, 94, 59, 95, 68, 86, 78,
87, 89, and 98. The remaining 81 — 19 — 10 = 52 nonzero off-() elements have a more
complicated structure since it is now the M’ # —M terms in Eq. (13) that contribute.
Also, there is no simple relation between p ¥ and Ppn XY As examples, we show only four
of the 52 off-Q) elements. First, for np = 14 or 41, with one basis operator from the Q) = 0
subspace and the other from the () = 1 subspace, we obtain from Eqs. (13) and (18),

Pi(X) = Ewd x{ —3V2Fy_1(X) [J(0) = J(wo)] + 2V3 Fi_2(X) [J(wo) — J(2wo)] } ,

(H.31a)
pa(Y) = = fwdy{ =3V2 R (V) [J(0) = J(wo)] +2V3 Fia(Y) [J(wo) — J (2w0)] } ,
(H.31b)
pii(XY) = Fwpxwpy{3V2[F)1(X,Y) = Fio(X, Y)][J(0) + J(wo)]
(H.31c)
—2VB[Fo(X,Y) = Foon(X,Y)] [J(wo) + J (2wo)] } ,
and
P(X) = fgwp x{ = 3V2 Fu(X) [J(0) = J(wo)] +2V3 Fo12(X) [J(wo) — J(2w0)]} ,
(H.32a)
pi(Y) = — F i x{ = 3V2Fn(X) [J(0) = J(wo)] +2V3 F1a(X) [ (wo) — J (2w0)]} ,
(H.32b)
P (XY) = — Fwp xwpy {3V2[Fu(X,Y) — Fio(X, V)] [J(0) + J (wo)]
(H.32¢)
—2V3[F12(X,Y) = By (X, Y)] [T (wo) + J(2wp)]}
In view of Eq. (H.2), it follows from Eqs. (H.31) and (H.32) that
pin(X) = —[piu(X)]", (H.33a)
pL(XY) = [ph(XY))". (H.33b)
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Similarly, we obtain for np = 58 or 85, with one basis operator from the () = 1 subspace
and the other from the () = 2 subspace,

p3(X) = Ewd VB Foi(X)[2(0) = J(wo)] — 6 Fio(X) J(wo)} . (H.34a)
PROY) = ey (VB (LY + PV + Tl o
— 6 [F2(X,Y) + Foot (X, V)] [T (wo) + J (2w0)] }
and
pss(X) = L wd {V6Fp(X)[J(0) — 2 J(wp)] + 6 F_12(X) J(2wo) } (H.35a)
ps(XY) = —Lwpx WD,Y{\/6 [For(X,Y) + Fio(X, Y)] [J(0) + J(wo)] (H.35D)

— 6 [FL12(X,Y) + Foug (X, Y)] [ (wo) + J(2w0)] } -

As in Eq. (H.33b), we have p&(XY) = [p&(XY)]*, but, unlike Eq. (H.33a), there is
no simple relation between pg;(X) and pis(X). For basis operators B; and Bg, which
both have even parity under spin permutation (Table S1), p5(Y) = pS%(X —Y). In
contrast, for basis operators B; and B, which have different spin permutation parity,
pi,(Y) = — piy(X—=Y), as seen from Eq. (H.31b).

Finally, we note that, apart from a normalization factor, the self-correlated two-spin
rates in Eqs. (H.34a) and (H.35a) are identical to the single-spin cross-mode rates in Eq.
(H.10) that involve the same single-spin operators (u, and p ),

ps(X) = 50

7 : (H.36a)
pss(X) = 5p

(H.36b)

T

3. Relaxation of three-spin modes

The 27 x 27 nonlabile three-spin relaxation matrices Ry (), () 0t the block-diagonal

UVE

supermatrices RY,y, appearing in Egs. (F.60) and (F.61) can be expressed as

R%3(#VH)N3(MVR) = plu, T 1w (IPm—Icase) ) (H37a)

RN, () Na (urm) = plrIvie o pSw. 5,5k (ISP,,—15 case) . (H.37b)

The elements p; Y7 of the 27 x 27 three-spin relaxation matrix p**# are all auto-(spin
triplet) rates, and either auto-mode (n = p) or cross-mode (n # p) rates. The 27 three-
spin modes are ordered as in Table S2.

Because the three-spin modes involve three different nonlabile spins (u, v and k), the
three-spin rates involve three different dipole couplings (X = Iu, Y = Iv and Z = [k)
for a given labile spin. In general, the three-spin rates therefore have contributions from

self-correlations (s) as well as from distinct correlations (d), corresponding to diagonal
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and off-diagonal terms, respectively, in the double sum of Eq. (13). Accordingly, we

decompose the three-spin rates as
Pop © = Pop(X) + 00, (V) 4 03, (2) + pigp (XY) + 03y (X Z2) + 95y (YZ) . (H.38)

where, for example, pg (XY) is the sum of the two terms in Eq. (13) that differ by
X < Y interchange.

TABLE S2. Basis operators for the N3(uvk) subspace for spins p, v and k.

n Q@ K Pj By

0 0 -" T ne — v) Vi — iAo Rl — vy

2 0 1 + —% Kay(pgv— 4+ p_vy +2u,10,)

30 1 = %[uz(wm +vokiq) = vi(p—fip + pgr)]

4 0 1 + —\/%[3uz(y+/<a_ +v_ky) + 3 (ke + pfig) — 26, (Ve 4+ p—vy) + 8usk ]
5 0 2 = %[uz(wm —v_kiy) FVa(p-Ky — pgpkio) = 262 (py v — povy )]

6 0 2 + %[Nz(V—/%L — Vi) + Vs (U—Fg — pgro)]

703 40 (et vn) (g o) R+ pvs) — Apvk]
g 1 1 + Tt (v + v + 2p.0z)

9 1 1 = 3 [y (povy = pyve) + 262 (pavy — pyvs))

o 1 1 + \/% [fq- (g v— + pvy) + Opypvy i + 6z (pevg + pgvz) — dpzvzky]
mw 1 2 - 5 Ry (v — pvy) + 262 (pavy — pyvs))

121 2 + —2%/5 (G (pav— + povy — dpavz) + 262 (Vg + g vz) — 24 vy K]
13 1 3 +P \/% [-vibiy + pyvobiq + pyvis) — Apgvzks + vk + pava6y )]
4 -1 1 + —% Ko (paV— + p-viy + 20202)

15 -1 1 - 3 [ (pvy — pyvo) = 26, (pav— — povs))]

6 -1 1 + —\/% [Fo(pav_ + pvy) + 6p_v_ry + 6K (pav— + p_vy) — dpvsk_|
7 -1 2 - % [—h—(pyv— — povy) + 262 (pzv— — p-vz)]

18 -1 2 4+ —2—\1/5 (fe(pyve + povy —Apsvy) + 26 (v + iy vy) — 20—V Ky |
19 -1 3 4P _\/%75 [sV_ho + pvih +pv_ry) — A(p—Vehy + PV Ky + vk )]
20 2 - Ky (v — pav/4)

21 2+ — 5 (R (s + pavi) = 20104k

22 2 3 4P %5 (LaVibg + Uy Vokiy + P ViRy)

23 -2 2 - (v — p_vy)

24 -2 2 4+ % [ (v + pav_) — 2U_V_K,]

25 —2 3 4P % (Vb + p_Vsko + p_V_Ky)

26 3 3 4P — U VpRy

27 -3 3 4P U_V_K_

& Parity of B,, under spin permutation p < v.
b These basis operators have full spin permutation symmetry.

¢ The basis operators B,, are normalized in the three-spin (uvk) Liouville space.
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The generic three-spin relaxation matrix p*¥# contains 272 = 729 elements. Among
these, 141 elements are within the Q-blocks (where @,, = @,; see Table S2). Outside the
@-blocks, the Wigner-Eckart theorem requires that p, " = 0 whenever |Q, — Q| > 2.
Consequently, there are 156 vanishing elements and 729 — 141 — 156 = 432 nonzero
elements outside the (-blocks.

The sequential coupling scheme used to construct the basis operators does not, in
general, produce operators with definite parity under spin permutation. While all our
basis operators have definite (odd or even) parity under p <> v interchange (see Tables
S1 and S2), definite permutation parity involving other spins is only present in special
cases. Among the 27 three-spin basis operators in Table S2, only eight have definite parity
under all possible spin permutations: B; is odd whereas B7, B3, Big, Bos, Bos, Bog and
By; are even. Because our three-spin basis is not fully symmetry-adapted, the relations
found among the elements of p**" only apply to p;,(X), p5,(Y) and pS,(XY), but not
in general to p3,(Z), pg,(XZ) and pg,(Y Z), where the dipole coupling Z = I involves
spin k.

To illustrate these considerations, we shall examine a few elements of the three-spin re-
laxation matrix pX¥Z | calculated from Eqs. (13) and (18). Consider first matrix elements

between fully permutation symmetric (odd or even) basis operators,
P11 (X) = §wd x{Foo(X) J(0) =2 F1_1(X) J(wo) + 2 Fo2(X) J(2wo)} ,  (H.39)

= dup xwpy{ = Foo(X,Y) J(0) + 2Re[Fy_1(X,Y)] J(wp)
— 2Re[F2_2(X,Y)] J(QWO)} )

>
Ha
—~
>
).<
SN~—
S

(H.39D)

prr(X) = g5 wp x {4 Foo(X) J(0) = 9 Froy(X) J(wo) + 12 Fy(X) J(2wo) |, (H.40a)

pir(XY) = frwp x wpy{Foo(X,Y) J(0) = 6 Re[F1_1(X,Y)] J(wo) (H.40D)
+ 18 Re[Fo2(X,Y)] J(2w0) }

P3r07(X) = $wi x{5Foo(X) J(0) = 9 Fi_1(X) J(wp) + 6 Fo—o(X) J(2wo) } , (H.4la)

P2d7,27(XY) - _% Wp,x wD,Y{ — 2 Foo(X,Y) J(0) + 3Re[F1 1 (X, Y)] ‘](WO)} - (HALb)

In addition pgg%f = p37s7. For these four diagonal elements between fully permutation

invariant basis operators,

prn(Y) = pin(X = Y), (H.42a)
Prn(Z) = pun(X = 2, (H.42b)
pS(XZ) = pd (XY = XZ), (H.42c)
pd (YZ) = pd (XY =Y Z). (H.42d)

As anticipated, these diagonal elements are real, and there is complete symmetry among

the dipole couplings X, Y and Z.
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In contrast, consider two diagonal matrix elements involving basis operators that only

have p <> v symmetry,

p2(X) = Gwp x{Foo(X) J(0) = 2 Fi1(X) J(wo) + 2 Foa(X) J(2w0) },  (H.43a)
P(Y) = pp(X —=Y), (H.43Db)
p3o(Z) = 2w 2 {Foo(Z) J(0) = 3F1_1(Z) J(wo) + 6 Fos(Z) J(2wo) } , (H.43c)
p3(XY) = —3wp ywpy{Foo(X,Y) J(0) — 2Re[F1_1(X,Y)] J (wp) (H.43)
+2Re[Fy_5(X,Y)] J(2wo) } ,
p(XZ) =0, (H.43e)
p(YZ) =0, (H.43f)
pes(X) = 35 wpx {7 Foo(X) J(0) — 15 Fi_1(X) J (wo)
+ 18 Fo_5(X) J(2wo) } (H.44a)

pes(Y) = pe(X = Y),
pes(Z) = Lwd 5 Foo(Z) J(0) — 9 Fyi_1(Z) J(wo) + 6 Foo(Z) J(2wp)},  (H.44b)
pss(XY) = Zwp xwpy{Foo(X,Y) J(0) — 3Re[F1_1(X,Y)] J(wp)

) (H.44c)

+6 RG[FQ,Q(X, Y)] J(2CL)0>} y
pes(XZ) = %WD,X WD,Z{ —2Fy(X,Z2)J(0) + 3Re[F1_1(X, Z)] J(wo)} , (H.44d)
p&(YZ) = pS(XZ =Y 7). (H.44e)

Also these diagonal elements are real, but now the components involving dipole coupling

7 deviate from those involving only X and Y. Although all diagonal elements pxYZ are

real, the Q-blocks of p*Y# are not Hermitian.

4. Coherent spin mode transfer

The coherent spin mode transfer supermatrices AY, y, and Af,y, describe, respectively,
coherent transfer between single-spin and two-spin modes and between two-spin and three-
spin modes. The former enters into X, )y, ) in Eq. (F.21) and into Y, (,)n, () in Eas.
(F.60) and (F.61). The two distinct generic matrices are expressed as

@ . WD, uv ca

AN, (Na(ur) = ~ 372 ON, (ju)Na (uv) (H.45a)
& J— wD7“V o
MEN@) T T3S 0N, ()N (uv) (H.45b)
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With the single-spin basis ordered as {y,, p4, p—} and the two-spin basis ordered as in

Table S1, Egs. (14) and (19) yield for the dimensionless 3 x 9 matrix oy, (), ()

Ny ()N () =

1(+) 2(+)  3(=) 4(-) 5(+)  6(=)  7(+) 8(+) 9(+)

0 0 —2Dy  V3D_, 3Dy 3Dy —V3Dy —2V3D_, 23D,

0 3D, —3D Dy 3Dy V6D, 6Dy,  —/6D_, 0

0 3D, —v3D_y v6D_, —V6D_, Dy —3Dg 0 V6D,
(H.46)

where Dy = D3(Q5,), as given by Eq. (C.6) or (C.11), with the internuclear vector
pointing from spin u to spin v and pu < v. The two-spin basis operators are defined as in
Table S1, again assuming that p < v. The Wigner-Eckart theorem requires that d;,, = 0
whenever |@Q,, — Q,| > 2, the rank of the ISTO T4 (X) in Eq. (19). The two elements
that vanish for this reason are shown in boldface in Eq. (H.46).

The matrix Oy, )y

is identical to Oy, (,)ny(u) i Ed. (H.46), except for a sign

reversal of all elements :h;t involve a two-spin moge with odd permutation parity (and
odd rank K). The parity is given in Table S1 and it is also reproduced on the line above
the matrix in Eq. (H.46), showing that elements in columns 3, 4 and 6 are sign inverted
IO, ()N )

The two-spin to three-spin transfer matrices enter into Y%y, ,n, ) directly in Egs.
(F.60) and (F.61) and via X}y, in Eq. (F.62). The three distinct transfer matrices can

be expressed in terms of six generic matrices as

AQI\IQ(/JJ/)N3(MVKZ) = WD,ux 6%2(MV)N3([AVF{,) (,uli) + WD vk 6%2(HV)N3([AVK)) (Vﬁ) ) (H47a)
A?\]Q (ur)N3(pve) — WD, uv 6§2 (pr)N3(pve) (:U’V) + WD,k 6§2 (/J,H)N3(/,LI/I€)<VK) ) (H47b)
%Q(VH)N:’)(ILLVK) = WD,uw 5%2 (vk)N3(pvk) (ILLV) + WD, uk 5%2 (v)N3(pvk) (:L“i> : (H47C)

With the two-spin basis ordered as in Table S1 and the three-spin basis as in Table S2,
Egs. (14) and (19) yield the result in Eq. (H.48) for the dimensionless 9 x 27 matrix
Oy (s (o) (1110) With Doy = D35(Q5,), as given by Eq. (C.6) or (C.11). In Eq. (H.48),
the numbering of the two-spin and three-spin basis operators is given to the left of and
above the matrix, along with the p <+ v permutation parity. The Wigner-Eckart theorem
requires that 63, = 0 whenever |Q, — Q,| > 2, the rank of the ISTO T3/(X) in Eq. (19).
The 42 elements that vanish for this reason are shown in boldface in Eq. (H.48).

The matrix O, (), () (V6) I Eq. (H.47a) is identical to OR, ()N, () (145), €xcept
for a sign reversal of all elements that connect two-spin and three spin modes with different
v <> v permutation parity. (Also the Euler angles are €27, instead of Q,..) The other
four generic matrices in Eq. (H.47) are similar to the one shown in Eq. (H.48). However,
the identity (apart from a sign reversal when the basis operators have different parity)
of the pair of matrices applies to Eqgs. (H.47b) and (H.47c) only for the eight columns

associated with three-spin operators with full permutation symmetry (Table S2).

551



6%2 (pv)Ng(pvk) (/J’H) =

[ (=)  2(+) 3(-) A(+) 5(—) 6(+) 7(+) 8(+) 9(-)
1(+)| O 0 0 0 —2Dy 0 0 0
2(+) | 1Do 0 0 0 ~¥2p,  ¥Ep, 0 —¥2D_,
3(-)| o -26p, ¥2p, Op, 0 0 ~¥5p, ¥2p_, -¥p_,
A=) o -¥p, YSp, hop  L2p  p Yiip,  SLp, _¥2p,
5(+) | 1Dy 0 ¥Sp, -¥lp, _¥2p, ¥p,  Iip, 0 —¥Z D,
6(-)| o -¥p, Yop, ¥NOp, _¥2p, _op, YBp, 2p, _¥p,
7(+) | $D-1 0 ~¥Sp_, ¥p, -¥2p, ¥p, -Bp, o -BD,
8(+) | 1D2 0 ¥p, -¥p, “2p, _¥p, _¥bp, 0 ~¥3p,
L 9(+) | 1D-s 0 ~¥6p_, ¥Op , Lp, _LBp, Bp, 0 0

10(+) 11(-) 12(+) 13(+)  14(+) 15(=)  16(+) 17(=)  18(+)

1(+) 0 2Dy 0 0 0 0 0 2Dy 0
20+) | ¥p_, ¥2p, -¥p, -¥Xp, 0 ¥p, -¥Xp, ¥Zp, _¥p,
3(-) | -¥p_, -¥Sp , -¥2p, WOp, Lp _¥ip, _Jp  ¥ip, = ¥p
()| -¥p, -¥£Lp, -¥p, -¥Xp, 2p, -LBp, -¥Bp, -¥p, -1ip,
5(+) | %Dy,  -¥2Dp, ¥p, -¥¥p, 0 ¥p, -¥sp, ¥p, 1D,
6(-)| -¥p, YD, p, -¥p, ¥p, _¥Zp, -¥Np, Lp, Lp,
| ¥p, ¥Yp, -lp, ¥p, 0  ¥2p, -¥Np, -¥2p, Yp,
s+ | ¥p, -¥p,  1lp %D, 0 0 0 0 0
9(+) 0 0 0 0 0o ¥p, -¥p, -¥p, lp,

19(+)  20(—=)  21(4+)  22(+)  23(—)  24(+)  25(+)  26(+)  27(+) ]

1(+) 0 —2D_, 0 0 —2D;, 0 0 0 0
2(+) | ¥p, “Lp., -¥ép_, Lp, Lp, _Ybp, _V3p, 0 0
3(-) | 2°p, ¥Bp, “2p, -lp, —¥p, _¥2p, _lp, 0 0
A=) | -¥p, ¥p., ip, ¥p, 0 0 0 ~¥3D_, 0
5(+) | —8D, ¥p_, 1D, 0 0 0 0 D, 0 ’
6(—) | —¥D, 0 0 o -¥p, -lp, LD 0 —¥3D,
7(+) | 2D, 0 0 0 Bp, -ip 0 0 ~¥3p,
8(+) 0 2Dy -¥Dp, -¥Dy 0 0 0 p_, 0
I+ | -BD, 0 0 0 ¥2p, -¥8p, LD, 0 ~¥3p,
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APPENDIX I: MULTI-SPIN ESE THEORY

In this Appendix, we use the SRE framework and well-defined approximations to derive
the multi-spin ESE theory for the IP,, —1I and ISP,,—1S cases. Our starting point is
the multi-spin SRE framework as defined by Egs. (5), (7), (11) - (19) of the main text.
The RMN condition wp 74 < 1 will not be assumed except in so far that the relaxation
supermatrix in Eq. (13) is based on BWR theory. Specifically, we will not implement the
RMN approximation via series expansions, as we did in the derivation of GﬁZLZ in Eqgs.

(31) — (35) (see Appendix F).

1. Single-spin mode truncation

The first approximation required to obtain the ESE theory is the single-spin mode (1SM)
approximation, where all couplings between single-spin modes and multi-spin modes are
neglected so the theory can be developed within a single-spin Liouville subspace of di-
mension (3m + 3) for the [P, —I case and (3m + 6) for the ISP, — 1S case. Within
the SLE framework, the 1SM is not a viable approach, because L) = 0 in the single-spin
subspace. This follows because all single-spin operators have odd SIC parity, but L{, has
nonzero matrix elements only between odd and even basis operators.

The single-spin Liouville subspace can be partitioned into a (3 m)-dimensional non-
labile single-spin subspace N; and a 3-dimensional (for exchange case [P, —I) or 6-
dimensional (for exchange case ISP,, —15) labile single-spin subspace L;. Two conse-
quences of the rather drastic 1SM approximation can be noted immediately. First, because
labile two-spin operators are omitted, only the 2 x 2 single-spin block of the 5 x 5 matrix
in Eq. (A.2) remains, so Eq. (12) is obtained without further approximation. Second,
because all single-spin operators have odd SIC parity, A%, which is anti-block-diagonal
with respect to SIC parity, can be omitted from Eq. (7). The ESE theory, being based
on the 1SM approximation, therefore cannot describe the secondary dispersion step at
wo & wp or any other effects of the static dipole couplings.

Partitioning the supermatrix A” in Eq. (7) (without A”) into L; and N; subspaces,
and noting that Ky, =1 and Ky,n, = 0, we obtain

A = (L1)

(I—G—Rilh TA+iLZ,L1L1 TA R?fql\h TA ]

« « N
RN1]L1 TA (R’NlNl TA + t LZ:NlNl TA)

We need only the L;IL; block of the inverse (A%)™,

[(A*) e, = [1 + RS, Ta+iLz, ta — RE .y, (REw, +iLzmm) R, TA} gy
(1.2)

According Eq. (23a), Ry, y, is block-diagonal in spin, with one 3 x 3 block for each of
the m nonlabile spins, provided that the basis operators of the N; subspace are grouped

by spin. Moreover, Ry, y, only involves self-correlations. If all spins are isochronous, Eq.
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(I.2) can therefore be expressed entirely in terms of 3 x 3 matrices as

o ~1
[(A) M, = |1+ Ryp7a+ iw@TAQl] . ([P, —1I case) (1.3)
~ ~ —1
1+R ) R
[(Aa)_l]lLﬂLl = (1+ Mj—g—i_zonAQl) ~a HSTA, ., (ISP,—IS case)
R ma (14+Rgg7a +iwemaQy)

(1.4)
where Q, = diag(0,1,—1). Here, we also use the short-hand notation I = L,(/) and

S =L;(95) for the 3-dimensional labile single-spin subspaces. Furthermore,

Ry = Ry - Iy, (I.5a)
Rg; = R —Tgp, (I.5¢c)
Rgs = Rgg — TI'ss, (I.5d)
Iy = ) Ringy Riomo + 90 Qi Ry (I.6a)
p=1
(03 — - (e} 6] . -1 o
Ifs = > Ry Riugomeo +i00Qi] R (s (L.6b)
p=1
(63 — - o o . —1 o
L = > Ring R gomeo + 90 Qu] - Riygor s (L6c)
pn=1
(0% J— - (e} (e} . _1 (0%
L8s = Y Ry, R gomo 90 Qi Riygs (L.6d)

1

=
Il

where the sums run over the m nonlabile spins p.
The 3 x 3 relaxation matrices appearing in Eqgs. (I.5) and (I.6) can be expressed in

terms of the generic auto-spin and cross-spin relaxation matrices in Eqs. (H.8) and (H.9).

R 7]
Wi =9

and Ry, ) = RO&I(“)S = o°*. The nonlabile auto-spin matrix RY, (o () 18 glven by
Eq. (H.14). In analogy with Eqgs. (H.5) and (H.6), the labile auto-spin matrices are for
the IP,,—1I case,

: : a _ pa _ IS a _ potf
For the cross-spin matrices, we thus have Ryg = Ry = 0°7, Ry, () = Ry,

Rf, = ) p™, (L7)
pn=1

and for the ISP,,— 1S case,

m

=0+ p™, (I.8a)

p=1
m

Ris = p'" + > p. (1.8b)

p=1
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The calculation of the ILRR in the 1SM approximation involves the following steps.
Given wy, 7a, and the internuclear geometry, which defines the dipole couplings wp x
and the Euler angles Qpx = (vx, fx, —), we compute the SDF J(nwp) from Eq. (15)
and the angular functions Fjysy(X) from the expressions in Appendix C. These are then
substituted into Eqgs. (H.10), (H.11), (H.14), (I.7), and (I.8) to obtain the relevant auto-
spin and cross-spin relaxation matrices. Combining these matrices with Eqgs. (1.3) —
(1.6), we obtain the 3 x 3 (IP,,—I case) or 6 X 6 (ISP,,—IS case) matrix [(A%)™]L,L,,
the relevant elements of which are then isotropically averaged, as in Eq. (5), to obtain
the matrix elements g, required to calculate the ILRR from Eq. (11) or (12). With the
single-spin basis ordered by spin type (first spin I and then spin S for the ISP,,—IS case),
the matrix elements needed in Eq. (12) are g11 = (1|Gi,,(0)[1), g1z = (1|G{,,(0)]4),
go1 = (4|G},,(0)]1), and ga» = (4|G{ 1, (0)|4). Note that the L; subspace contains all
three components of the labile spin operators, whereas the longitudinal ILZ subspace only
contains the z component.

For the three-spin case I SP—IS in the MN regime, there are no static dipole couplings
and the ILRR only involves single-spin modes. In the MN regime, the 1SM approximation
is therefore exact for the ISP — 1S case. In contrast, for m > 2, including the I P, —1

case, the 1SM approximation is not exact even in the MN regime.

2. Isotropic pre-averaging

The second approximation required to obtain the ESE theory amounts to replacing all
local relaxation rates by their isotropic orientational averages, rather than performing this
average at the end, as in Eq. (5). Averaging the angular functions as in Eq. (H.4), we
find that Eq. (13) in the single-spin subspace (so that X =Y’) reduces to

2

o 2

(R*) = = D whx > (=DMI(Mw) CYY (1.9)
X M=—2

Let a, and bg denote two single-spin operators, with a, b =1, S or p and o, 8 = 2, + or

—. Within the single-spin subspace, Eq. (18) yields for the coefficients with M’ = —M,

CA)},)—(M,% bg 0ap C]\)j,)—(M,aa be, 3 (1.10)

the proof of which is the same as for the three-spin system (see Appendix E of Paper
II1'). As a consequence of the symmetry rules in Eqs. (24) and (1.10), all cross-mode
rates vanish, so that all averaged 3 x 3 relaxation matrices are diagonal.

For the IP,,—1I case, Egs. (5), (11) and (1.3) now yield

VN

Riy = — A
b 1+7rr7a

(L.11)
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Similarly, for the ISP,,—1S case, Egs. (5) and (I.4) yield

147
gy = (LHTssTa) (I.12a)
Piso
147
g2 = A+ 717a) +TUTA), (I.12Db)
Piso
TIs T,
J12 = 921 = — L A, (I.12¢)
Piso
with
Piso = 1—|—[f][+fgs]TA+[f][fss—ffs] Ti. (113)

Combination of Eqgs. (12), (I.12), and (1.13) yields a result of the same form as Eq. (I.11),

Pyr

R =
1,IS ].+7:7—A )

(I.14)

with the effective local relaxation rate 7 now given by

9 (FrrFoa — 72
p= 20uTss —7is) (L15)
(Frr + Tsg — 271g)

The effective longitudinal auto-mode rates appearing in Egs. (I.11) — (I.15) are

m RIMQ

= () - 30 YL (1160
/J,Zl <RZZ

) o RSy

g = <Rff>—; (R (1.16b)

R”‘> <R ) (1160

Frs = fsr = (RZ) — Z<
pn=1

With the aid of Egs. (H.5), (H.7), (H.12) and (H.14), the effective rate in Eq. (I.16a) can
be expressed, for the I P,,—1 case, as

m

Fir = 3 () + (0 Hwnma) = 22w [T(en) + 4 Cu)] Hlwora),  (117)

p=1

with the cumulative dipole coupling wp ; defined in Eq. (39), and

_ (o) — (o) _ 2.J(0) + 3 J(wo)
Hiwora) = (plt — J(0) + 3 J(wo) +6J(2wp) | (118)

As seen from Egs. (15) and (I1.18), the function H(wy7a) increases monotonically from
1/2 to 2 as wyTa goes from 0 to co. Consequently, 7;; in Eq. (I.17) approaches zero
asymptotically, as befits a longitudinal relaxation rate.
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For the ISP,,— IS case, we use Eqs. (H.6), (H.7), (H.12), and (H.14) to express the
effective rates in Eq. (1.16) as

11 = 1 (W 15+ Qb 1) [J(0) + 3 (wo) + 6J(2wp)]
[J(wo) +4J(2wp)] [2J(0) + 3J (wo)] (I.19a)

+ 208 :
15 °"D,IT [J(0) + 37 (wp) + 6J(2wp)]

rss = % (ng,ls + QI%,IS) [J(O) +3J(wo) + 6.J(2 WO)]
[J(wo) + 47 (2wp)] [2J(0) + 3J (wp)] (I1.19Db)
[J(0) + 3J (wo) + 6J(2wyp)] ’

2 2
+ 55 ss

2

[6J(2wp) — J(0)]

Frs = Z2wi ¢[6J(2wy) — J(0)] — 2 Q2 , I1.19¢
18 45 D,]S[ ( 0) ( ):| 45 D,IS [J(O) + 3J(WO> + 6(](2&}0)} ( )
where we have defined
0%, = i _“bn (I.20a)
' 1 WD, T W s,
02 4 = i T (1.20b)
’ =1 WD + W sy
02,4 = zm: m. (1.20c)
7 u=1 w]%,]u + w]%,Su
We note that
QI%,H + QI%,SS + 29]%,15 = W]%,I "‘Wl%,s ) (I.21)

with wp ; defined by Eq. (39) and wp ¢ analogously.
Substituting from Eq. (I.19), we can express the effective rate in Eq. (1.15) on the

same form as in Eq. (1.17),

7= 135 [Qp(wora)]?[J(wo) + 4 J(2wp)] (1.22)

where the effective dipole coupling Qp(woTa) depends on wy7a. The full expression for
Qp(woTa) is lengthy, but in the absence of dipole couplings to nonlabile spins it reduces
to wp,1s, as expected. The limits of the full expression for Qp(weTa) are

4 (WJ%,IS + QI%,IS) (WJ%,IS + WI%,I + W]%,s) +3 (Q]%,HQI%,SS - Q]%,IS)

[0 (0))* = . (1.23a)
3(wh s twh +whg) +wh g +4Q5 /s

[Qp(00)* = wh, 15 +wh +whs - (1.23b)

It is clear, therefore, that 7 approaches zero asymptotically, as expected.
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The multi-spin ESE theory developed here is equivalent to the theory previously ob-
tained from the extended Solomon equations.® For the IP,, —1I case, the result in Eqgs.
(L.11) and (I.17) is essentially identical to the result in Eqs. [18] and [23] of the 2006
paper. The only (and trivial) difference is that, in the 2006 paper, we added the bulk
relaxation rate and allowed for internal motions by multiplying all dipole couplings with
orientational order parameters. For the I SP,,—15 case, the 2006 paper suggests that, in
Eq. (1.22),

1
[QD(WOTA)] 2 = w]%,IS + 5 [W%,I —+ W%S]H(WOTA) . (124)

This is not the correct result for the model considered in the 2006 paper (and here).
However, as seen from Eq. (1.23), it agrees with the correct result in the limit wy 74 — oc.
Equation (1.24) is also exact for the special case of equilateral triangle geometry, where
Q2(0) = (3/2) wp and QE(0c0) = 3wd. Furthermore, in the USM limit, both the 2006
theory and the present corrected ESE theory correctly yield Ry ;(0) = Ry 15(0) = Pa/7a.
However, for both exchange cases, neither the 2006 theory nor the present corrected ESE
theory is correct in the MN regime, since isotropic pre-averaging eliminates cross-mode

relaxation.
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APPENDIX J: FOUR-SPIN OPERATOR BASIS

As a basis for four-spin Liouville space, we use the 28 = 256 irreducible spherical tensor op-
erators (ISTOs) Tg( [k?]kg (l_() k/’p:| {[_(}k:U), constructed by three consecutive couplings

of the set of four orthonormal single-spin ISTOs for each spin, e.g.,

1) = =B T = VAL Th) = Fls, (1.1)

to obtain®?

TG ([krks (K) kp] {K}ho)

(_1)k’1—k5—kp—k‘U+f_<+f(+Q (QK + 1)1/2(2K + 1)1/2(2[? + 1)1/2

(J.2)

where K and K are the ranks of the intermediate tensor operators obtained by first
coupling spins I and S and then spin P. In This Appendix, the fourth spin is denoted U.
Here, and in the following, the rank superscript is written in upper case for ISTOs that are
normalized in three-spin Liouville space and in lower case for ISTOs that are normalized
in single-spin Liouville space. The explicit forms of the 255 basis operators (excluding the
identity operator) are listed in Table S3, ordered first by increasing projection index @
and then by increasing rank K. Note that the operators corresponding to the longitudinal
magnetization of the I and S spins have sequence numbers 14 and 15 in Table S3, whereas
they are assigned sequence numbers 1 and 2 elsewhere.

All the operators in Table S3 are normalized in the same four-spin Liouville space, in

the sense

(78 (ks (K) kp] {8 o) | T ([l (K7) K] {1}L)) s

= OkK' 0QQ O g Ok ik Oksk, Okghly Okpkly Okysky, -
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TABLE S3: Basis operators B,, = Tg( [k:[k‘g ([_() kfp:| {I?}k:U) for four spins ISPU.

n T ([kiks (K) kp] {K }hv) B,
001 T9([11(0)0]{0}0) 55 I-S+ + I.S- +2I.S;)
002 T9([10(1)1]{0}0) —53U-Py + 1. P_ +2L.P,)
003 T9([01(1)1]{0}0) — 53 (P-S4 + PyS_ +2P.8S;)
004 Tg([ll(l)l]{O}O) I,PJrSsz,PZS+7I+P,Sz\~/‘r6]+stf+IZP73+7IZP+S,
005 T([10(1)0]{1}1) —5v3 -Us + LU- +2L.U)
006 TO([01(1)0){1}1 L (S_U, +S,U_+25,U,
0 23
007 Tg([ll(l)O]{l}l) 717S+UZ+I,SZU++I+S,U\Z/%I+SZU,7IZS,U++IZS+U,
008 T9([00(0)1]{1}1 L (P.U, +P,U_+2P.U,
0 2v/3
009 T()O([l()(l)l]{l}l) 71_P+UZ+I_PZU++I+P_U\Z/%I+PZU_7IZP_U++IZP+U_
010 T(S)([Ol(l)l]{l}l) P,S+Uz7P,SZU+7P+S,UZ%P+SZU7+P257U+7PZS+U,
011 TO(11(0)1){1}1) SISy + I S_ +2L.S.)(P-Uy + PLU_ +2P,U,)
012 Tg([ll(l)l]{l}l) I,(—P,S+U++P+S+;]\7;2P+SzUZ—QPZSZU+)
+Lr(P,S,U++2P,SZUZ—P+S,U,—QPZSZU,)
2V3
+212(—P75'+Uz—P+57$zf+stfU++PzS+U7)
2v3
013 Tg([11(2)1]{1}1) I,(P,S+U++6P+S,U++P+S+L6/':/§6P+SZU274PZS+UZ+6PZSZU+)
_|_I+(P,S,U++6P,S+U7+6P,SZUZ+P+S,U,74PZS,UZ+6PZSZU,)
6v5
_|_2Iz(SP,S+U272P,SZU++3P+S,Uz72P+SZU,+3PZS,U++3PZS+U,+8PZSZUZ)
6v5
014 T3 ([10(1)0]{1}0) 31
015 5 ([01(1)0]{1}0) 352
_Sy—I1.5_
016 T3 ([11(1)0]{1}0) =S
017 T ([00(0)1]{1}0) 3P
018 T1([10(1)1]{1}0) e R
019 T ([01(1)1]{1}0) M;i;’;&
-(I-S S_ 2S»
020 T3 ([11(0)1]{1}0) — Bell=Satly 5oy 20 5%)
021 T3 ([11(1)1]{1}0) L (P-Sy + Py S_) = S.(I_Py + I, P_)]
022 T&([11(2)1]{1}0) 7(3I,P+Sz—2I,PZS++3I+P,SZ—221\;§ZS,+Iz(3P,S++3P+S,+8PZSZ))
023 T; ([00(0)0]{0}1) 3U-
024 T} ([11(0)0]{0}1) —UZ“—S”’;;—”IZS”
025 T} ([10(1)1]{0}1) —UZ(LP+“¢+5P*+”2PZ>
026 TL([01(1)1]{0}1) — Lol P Bt P D4R
027 T ([L11(1)1){0}1) VAU(I_PS. ~ 1 P.S, ~I,P_5.
+I,P,S_ +I,P.S, —I,P.S")
028 Te([10(1)0]{1}1) %
029 TE([01(1)0]{1}1) Sty—rele
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TF(11(2)1{1}1)

L(S_Uy + S4U-) = S,(I_Uy + ILU_)]

P U,—P,U_
2V2

HL(P-Uy + P,U_) = P.(I_Uy + [, U_)]

3[S:(P-Uy + PLU_) = P.(S_Uy + S,U-)]
(PoU_—P_U)(I_S4+I45_+2I.8.)

V6
I_(P_S, U +P S U_+2P,S. U )—1,(P_S_Uy+P,S_U_+2P,S,U_)
2v2
21, P, (S4U_—S_Uy)
+ 2\/5
17(7P7S+U+76P+S7U++P+S+U7 76PZSZU+)
2/30
n I.(—P_S_U.46P_S U_+P,S_U_+46P,S.U_)
21/30
I 21,(2P_S.U;—2P;S.U_—3P.S_U4+3P,S,U_)
2v/30
 [-21-84U.+31_8,Uy—2148_U.+31,S,U_+1,(3S_U4+3S, U_+8S.U.)]
215
 [=20_PLU.+3I_P,Uy—2I, P_U,+314 P,U_+I1,(3P_U,+3P,U_+8P,U.)]
215
 [-2P_S U, +3P_S,U;—2P.S_U,+3P;S,U_+P,(35_U4+3S,U_+8S.U.)]
215
—I_(3P_S,U.+3P;S,U_+4P, S, U, 4+8P,S U.—6P.S.Uy)
2v/30
e (3P_S_U,+4P_S,U,+3P,S_U_+8P,5_U,—6P,S,U_)
24/30
4 21, (—2P_S,U.4+2P;S_U,—3P,S_U,+3P,S,U_)
2v/30
I_(Uy(P_S442P.5,)—P,(25_U,+S, U_+45,U.))
2v/10
e (P_S_U,4+2P_S,U_+4P_S,U.,—P,S_U_—2P,S.U_)
210
i 21, (2P_S,U,—2P_S. Uy —2P,S_U.+2P,S.U_+P,S_U;—P.S,U_)
2v/10
_{J_S44115_ —4I.5.)
2v6
_ (I_Pi+I P —AIP,)
2v6
_ (P_S++P+S_74stz)
2V6
(I_PyS.+2I_P.S,—I,P_S,—2I,P.S_ +I.P_S,—I.P,S_)
23
$(I_PyS.—I,P_S.,—I.P_S, +I.P,S_)
_ U441, U_—4I1.U.)
2v6
_ (SfU++S+U7 74SZUZ)
2v6
21 S U.+I_S,U,—21,8 U,—I1;S.U_—I1,S_ U +I1.5,.U_
2v/3
_ (P_UL+P,U_—4P,U,)
2v6
2 P U.+I_P.U;—2I,P U,—I,P.U_ —I.P_ U +I.P,U_

23
—2P_S,U,—P_S,U,+2P.S_U,+P,S,U_+P.S_U,—P,S . U_
2V3
(I_S++I+S_+QIZSZ)(P_U++P+U_ 74PZUZ)
3V2
I (—P_S,U;+P S, U_—4P,S.U.—2P,S.U,)

26
I (—P_S_Uy+4P_S,U.+P;S_U_+2P.S.U_)

26
I 21.(2P_S,U.+2P,S_U.+P.S_U;+P.S,U_)
26
I (P_S U +6P,S U,+P S, U_—12P,S,U.+8P.S, U, +6P.S.U,)
610
n I.(P_.S U, +6P_S,U_—12P_S,U,+P,S_U_+8P,S_U,+6P,S,U_)
610
21.(6P_S,U,+2P_S, Uy +6P,S_U,+2P,S,U_—3P,5_U,—3P,S,U_+16P.5,U.)
6110
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056 T2([11(2)0]{2}1) LIS, Uy —L.S.U_+ LS Uy — LS U_)
057 TZ([10(1)1]{2}1) 1(I_P.Uy —I4P.U_+LP.U; —L.P,U_)
058 TZ([01(1)1]{2}1) H(P-S.Uy — PLS.U_+P.S_ Uy — P.S,U_)
I_(P_-S;UL—P, S, U_—-2P.S.U. I, (-P_S_U;++PS_U_—-2P, S, U_
059 Tg([ll(l)l]{2}1) ( +UL—P Sy 2 +)2+\/%( ++Py 2 )
+ZIZPZ(S_U++S+U_)
2V2
060 Toz([l].(Z)].]{2}l) _I_(P_S+U+—2P+S_U\7j—P+S+U_+2PzSzU+)
26
+1+(P,s,U+—2P,S+U,+P+s,U,+2PZSZU,)
2V6
Jr212(—213,szU+—2P+SZU,+PZS,U++PZS+U,)
2V6
061 T2([11(2)1]{3}1) v iz [I(PS+U+ + P, (S_Uy +S,U_+3S.U,)+3P,S, U, —4P.S.U,)
—I.[-3P_S,U. +4P_S.U; — 3P, S_U, + 4P, S.U_
+4P.(S_Uy + S4U- + 3S.U,)]
+ I (P.S U, +P.SU_+3P_S,U,+P,S U_+3P,S U, —4P,S,U_)
062 Tg([ll(?)l]{?)}()) _(I—P+Sz+1_PzS++I+P—Sz+I\-¢_/125_+Iz(P—S++P+S—*4Pz5z))
10
063 Tg’([ll(2)0]{2}1) (-S4 U +I_S Uy +I4S_ UZ+I:./SZU_+IZ(S_ Uy +S,U_—45.U.))
10
064 Tg’([10(1)1]{2}1) _ (I-PLU.+I_P.U 41 P_ UZ+I_&%U_+IZ(P_U++P+U_ —4P,U.))
065 Tg’([Ol(l)l]{Q}l) _ (P_S4U.+P_S.Ui+P.S_ UZ+P\;EZU_+PZ(S_ U,+S,U_—4S.U.))
10
I_ (-P_S,U,—P S U_+4+2P, S, U,+4P, S, U.+2P,S. U
066 T3([11(1)1]{2}1) (P Ue Py By Vot PP B Ut P B Vet 2P 5 )
Jrh(P,s,UJr—2P,SZUZ+P§55,U,—4PZS,UZ—2PZSZU,)
Jr212(P,S+Uz—P+S,UZ—PZS,U++PZS+U,)
2V5
067 Tg([ll(Z)l]{Q}l) 17(P75+U+—2P+57U+—P;}>/%U—+6P+52Uz+2pzSzU+)
215
n I (P_S_Ut+2P_S U_—6P_S,U,—P;S_U_—-2P,S,U_)
2v/15
+212(73P,S+U272P,SZU++3P+S,Uz+2P+SzU,+PZS,U+7PZS+U,)
2V15
_(=P_S —P.S_ S, U_ .S
068 Tg’([ll(?)l]{?}}l) I ( P. +U+ P+ 3;;0+P+ +U +4P U+)
+I+(7P,S,U++P,S+U,+P+S,U,—4PZSZU,)
V30
+ 4IZ(P,S'ZUJrfPJrSz(\J/,:erS,UJrszSJrU,)
30
069 Té([11(2)1]‘{3}1) I_(P_S+U++P+(S_U++S+$_774SZUZ)74PZ(S+UZ+SZU+))
70
+I+(P_(S_U++S+U_—4SZUZ)+P+S_U_—4PZ(S_UZ+SZU_))
V70
41, (P_S U, +P_S. U +PyS U, +P S, U_+P,(S_ U +S U_—4S.U.))
) V70
I
070 TL([10(1)0]{1}0) —5s
S.
071 TL([01(1)0]{1}0) ~575
072 T ([11(1)0}{1}0) LISy — 1,.S.)
073 T1([00(0)1]{1}0) —2%
074 TH([10(1)1]{1}0) MIPy — I, P,)
075 T ([01(1)1]{1}0) L(PyS. — P.S4)
076 TH([11(0)1]{1}0) el Syt I 8- 431.5,)
_ S, — S_— .S .P.,S
077 Ti([11(1)1){1}0) LPy Syl Py N’gm’ +2l. P Sy
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_ S. _S S_ . S2)—41, S. =P S
078 Tll([11(2)1]{1}0) [1 P+ ++I+(6P ++P+ QJ%P ) 41 P+ +61, P, +]
U.
079 T ([00(0)0}{0}1) v
Uy(I-Sy+I1,.S_+2I,S,
080 T{([11(0)0]{0}1) +( ++\/% +21.S.)
081 TL([10(1)1]{0}1) s
082 7! ([01(1)1){0}1) e
—I_ S.+I_P,S S, — . S_—I,P_S 2P S_
083 Tll([ll(l)l]{()}l) U+( I P+ JrI P. ++I+P \/g I+P I,P. ++I P+ )
084 TH([10(1)0]{1}1) LUy — 1L U)
085 71 ([01(1)0}{1}1) 3(8.U4 — S,U.)
_S -1 S_U—21.5.U, 254U
086 Tll([ll(l)o]{l}l) I +U+ I+ U+2\/2§I+ U,+21 +U
087 T} (100(0)1]{1}1) 3(P.Uy — PLU.)
I_P.UL—1,P U2 P,U.+2[,P, U,
088 TLH([10(1)1]{1}1) et +2l: Py
— 75' 57 Sz z zs 3
089 TH([01(1)1]{1}1) P e L e 00 20
1 (PUy—=PLU)(I-Sy+14S_+2I.85.)
090 TLH([11(0)1]{1}1) — e
091 THL()1{1}1) L[I-Py(S+U. — 5.Uy) — I (P-S.Uy + PL.S_U. +2P.S.U.)
+I,(P-S,U; + PLS_Uy +2P.S, U.)|
I_(P+S,U,—-3P.S.U. P.S U
092 TH([11(2)1){1}1) (D50 80 B, Dot B 5 )
n I.(6P_S+U,—3P_S,Uy+PyS_U,+2P,S_U4+6P,S.U.)
215
I,(3P_S U4++3P,S_U4+4P,S,U,—6P,S U, +8P,S,U,)
B 215
I_S U++1L(S_U. StU_+6S.U, 1.,5,U,—41,S,U.
093 TH[11(2)0){2}1) +Us+14 (S-Us 4654 = )+61,5+U;—41, 5. Uy
I_P,U I (P_U PLU_+6P, U, I,P,U,—41,P,U.
094 TE([10(1)1]{2}1) +Us 41y (P Uy +6P = )61, P+ Uy —41, P.Uy
P_S U++PL(S_U. S U_+6S,U, P,S U,—4P,S. U
095 TE([01(1)1]{2}1) +Us+ P (S Us 4654 = )+6P.5+U,—4 +
—I_(-3P+SLU.+P S, U. P,S U
096 TH[11(1)1){2}1) e
+IJr(P,SzU+—3P+S,UZ-HSP+SZU,+2PZS,U++61DZSZUZ)
2V/15
+IZ(P75+U+—P+S7U++6P+S+U7+6PZS+UZ)
2V/15
_ S, U.—S,
007 THLEU{2}) Y
+I+(72P,S+UZ+P,SZU++P+S,Uz72P+SzU,+4PZS+U,+2PZSZUZ)
25
+IZ[S+(P—U++2PzUz)*P+(S—U++2S+U7+4SZUZ)]
25
098 T7([11(2)0]{2}0) —5(I4 8.+ I.Sy)
099 T7([10(1)1]{2}0) —5(I4P. + I.Py)
100 T2([01(1)1){2}0) ~1(PyS. + P.S4)
—I_P.S I,pPyS_—-2I,.P,S,+2I,P,S
101 T2([11(1)1}{2}0) R
_P.S —2P_S S_ 2 S2)—41, P S, 2 P25
102 TZ([11(2)1]{2}0) e St L (AP Sy b Py N?P LA R
103 T2([10(1)0){1}1) ~ LU + LUL)
104 77 ([01(1)0]{1}1) —3(8+U: + S.U4)
—I1_Sy UL +I1,.S_U;4+—21,S5,U,+21,5,U,
105 T2([11(1)0]{1}1) e D S L
106 T2(100(0)1]{1}1) ~1(PLU. + P.UY)
107 Tf([lO(l)l]{l}l) —I_P U +I P U, -2 P,U,+2I.P U,

2v/2
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P7S+U+7P+S7U++2P+SZU272PZS+UZ

108 T2([01(1)1]{1}1) 42
109 Tf([ll(O)l]{l}l) (P+UZ+PZU+)(I?/S§++I+S,+2[ZSZ)
110 TZ([11(1)1){1}1) LI_Py(S4U. + S.Uy) + 1. (P-S.Uy — P S_U, — 2P.S.U.)
—I(P_S Uy + P,S_U, —2P.S,U.)]
111 T2([11(2)1]{1}1) Lms s L 2
4 Le(6P S U-438P_ S.Uy £ P S U.—2P.5_Us46P:S.U-)
2V15
L8PS Uy 48Py S Uy 4Py S.U. 46P. S, U 8P S.U, )
2V15
112 T2([11(2)0){2}1) —oSe Ut 1 (5 Uy 99, Ut 25, e )41, 54 Up 41, 5. U
113 T2([10(1)1){2}1) — =Py byt b (P Uy 2P Ut 2P )4 9 Py Uil Pl
114 T2([01(1)1){2}1) — B Pt Py (Bl B Do 2 U )4 8P By e AP % U
115 Tf([ll(l)l]{?}l) I—(—P+S+Uz+1;+\/S§zU++2PzS+U+)
L Le(oPS:Us 4 PyS U 42Py S.U_~2P.S_Uy ~2P.S.U-)
2v/3
+Iz(P75+U+7P+SfU+72P+S+U7+2PZS+UZ)
2v/3
116 TZ([11(2)1]{2}1) [I-Py(3S.Uy — S, U.) + I (2P_S, U, — 3P_S.Uy — PLS_U,
9P, S.U_ +4P,S,U_ — 2P,S.U.) + L(~3P_S U, + 3P, S_U,
—2P;S,U_+4P;S.U, —2P.5,U.)]
117 T2([11(2)1]{3}1) I*(74P+S+Uz+§%zU++3PzS+U+)
4 Le(=AP S U.+3P_S.Uy 4Py S U:+10P; S.U_+3P.S Uy +10P:54U_+16P. 5. U.)
3v35
+ Iz(3P7S+U++P+(357U++10S+U7+16SZUZ)+16PZS+UZ712PZSZU+)
3v35
118 Tl?)([ll(Q)l]{?)}O) [I_P+S++I+(P_S++P+S\_/%SIPZSZ)74IZ(P+SZ+PZS+)}
I S U4++1(S-Ut++SLU_—-4S,U,)—41,.(S+U.+S.U.
119 Tl?’([ll(Q)O]{Q}l) [I-S4U++14( ++S5+ = ) (S+U-+ +)]
I_P.U +I1,.(P_U PLU_—4P,U,)—41,(PLU,+P,U.
120 Tf’([lO(l)l]{Q}l) [ U +14 ( ++Py = ) (P+U:+ +)]
P_SiU;++PL(S_Uy+S;+U_—-45,U,)—4P,.(S+U.+S.U
121 T13([01(1)1]{2}1) [ +U++Py( ++5+ = ) (S+U:+ +)]
—I_(2Py S U.,+P. S, U 2P,S, U
122 Tlg([l].(].)].]{Q}l) (2P} Sy +\/% ++ +U4)
4 Lo (PoS:Us 2Py S_U. 4Py S:U_+2P.S_Uy —4P.S.U:)
V15
1P S Ut Py S Uy —PyS,U_44P. 5, U.)
V15
123 T3([11(2)1]{2}1) Jf*”gfﬁ;”””
I (—4P_S,U.—3P_S,U;+2P;S_U,+P;S,U_—2P,S. U_+4P,S.U,)
3v5
_IZ(73P7S+U++P+(357U++S+U77SSZUZ)+4PZS+UZ)
3v5
124 T3([11(2)1){3}1) L(P*S*Uf?”;;%U*?'PzS*U”
4 Le(P_84U.—3P 8.Uy+P4S U.A5Py .U ~3P.S Uy +5P. S U ~4P:5.Uz)
3v10
IZ(3P7$'+U++P+(337U+75S+U7+4SZUZ)+4PZS+U2712PZSZU+)
B 310
I_(PyS4U.+P;S.U+P.S U
125 TH([11(2)1]{3}1) LB A T8 U b 5o Te)
4 Lo (P S UAP S.U +PL S Ust Py S.U_FP.(S_Us 5, U_ —4S.U.))
V14
L L(PoS UG Py (S Uy 84 U_—48.U.) 4P (S U 4S:Uy))
V14
I_
126 T, ([10(1)0]{1}0) L
S_
127 T, ([01(1)0]{1}0) 7
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128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148

149
150
151
152

153

154
155
156
157

T, (11(2)1]{2}1)

$(I.S_ —1_8.)
P_

2v2
WI.P.~I_P.)

5(P_S.—P.S)

P_(I_Sy+IS_+2I.8.)
V6
I_P_S,42I_P,S,—I.P_S_—2I.P,S_
2v2
 [—(P_S4+6P S_+6P.S.)+14P_S_—4I,P_S.4+61.P,S_]
2v/30
U
2v2
U_(I_S4+I1,.S_+42I.8.)
V6
U_(I_Py+I, P_+2I.P,)
V6
_U_(P_S{+P{S_+2P.S.)
V6
U_(I_PyS,—I_P,S.—I1,P_S,+I.P,S_+I.P_S,.—I1,P.S_)
V3

(LU_-1.U.)

3(S.U- - S_U.)

I_S,U 42 _S,U,—I,S_ U_—2I.5 U,
2V2

1
LPU_ - P.U.)
I1_P,U_42I_P,U,—I P _U_=-2I.P_U,

2v2
—P_(S4U_+28.U.)+P;S_U_+2P.S U,
2v2
_(PU_—P_U.)(I_S4+1,S_+2I.5)
V3

=1 (P_S U.+ PyS.U_+2P.8.U.) + I, P_(S_U. — S.U_)

+ L(P.SU_+P.S U +2P.5 U.)]

I_(P_S U.+6P,S_U,—3P;S.U_42P,S,U_+6P,S.U.)
2V15
I I, (P_S_U.,—3P_S,U_+2P,S_U_)
215
I.(3P_S U_+4P_S,U,4+3P,S_U_—6P,S_U.+8P,S,U_)
- 2V15
[I_(68_Uy+S4U_46S,U)+14S_U_+61,S_U,—4I,S,U_]
24/30
[I_(6P_Uy+P U_+6P,U,)+I P_U_+6I,P_U,—4I,P,U_]
24/30
 [P_(65_Uy+84+U_+6S.U.)+PLS_U_+6P,S_U.,—4P,S,U_]
2v/30
I_(—3P_S,U,+6P_S, U, +P,S,U_+2P,S,U_+46P,S,U.)
215
I.(—3P_S_U.,4+P_S.U_+2P.S_U_)
- e
I.(6P_S_U,—P_S . U_+P,S_U_+6P.S_U.)
_ e
I_(P_S,U.-2P_S.U;—2P.S_U.+P,S.U_+4P.S_U,+2P.S.U.)

25
+ I,P_(S_U,—S.U_)
25
I.(=P_(2S_Uy+S1U_44S.U.)+PyS_U_+2P,S_U.)
25

1(I_S.+1.5-)
1(I_P.+I.P.)

$(P_S.+ P.5_)

I_P_S.—2I_P,S,—I.P_S_+2I.P,S_
2v/2

+
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158 T 1([11(2)1]{2}0) _(I,P,SJr7217P+S,+217PZSZC}I+P,S,74IZP,SZ+212PZS,)
_ 2v6
159 T2, ([10(1)0}{1}1) 1(I_U. +LU-)
160 T2, ([01(1)0]{1}1) 1(S-U. + S.U-)
161 T_l([ll(l)O]{l}l) I,S+U,721752U;$+S7U7+212S,Uz
162 T2,([00(0)1]{1}1) LH(P_U.+P.U-)
163 Tfl([l()(l)l]{l}l) I,P+U,72I,PZU;:/g+P,U,+212P,Uz
164 T 1([01(1)1]{1}1) —P,S+U7+2P,SZUZ\;->P+S,U,—2PZS,U2
- 22
165 T_l([ll(())l]{l}l) _(P,UZ+PZU,)(I?/§++I+S,+2IZS2)
166 T2 ([11(1)1){1}1) tI-(P-S4U. — P.S.U_+2P.S.U.) — I, P_(S_U, + S.U_-)
+ L(P-S U_+ P S_U_-2P.S_U.)]
I_(P_-S4U,+6P+S_U,+3P;S.,U_—2P,S,U_+6P,S,U.
167 T2, ([11(2)1){1}1) — P 5e Uet OR 5. et 30 2, U= )
I (P_S_U.+3P_S.U_-2P.S_U_)
2V15
_IZ(BP_S+U_—4P_SZUZ+3P+S_U_+6PZS_Uz+8PZSzU_)
2V15
168 T2, ([11(2)0]{2}1) _[I,(—2S,U++S+U,+2SZU5)J,\-;+S,U,+2IZS,UZ—4IzSzU,]
- 2v6
169 T 1([10(1)1]{2}1) _[I,(—2P,U++P+U,+2PZUZ)-|\—;+P,U,+212P,UZ—4IszU,]
- 26
170 T 1([01(1)1]{2}1) 7[P,(—2S,U++S+U,+ZSZUZ)+;}S,U,+2PZS,UZ—4PZSZU,]
- 26
I_(—P_S U,—2P_S,U. P S, U_4+2P,S,U_+2P,S, U,
171 T2, ([11(1)1]{2}1) (P54 e )
Jr1r+(19,s,Uz—P,szU,—2PZS,U,)
2v/3
n I,(2P_S_Ui+P_S U_—-P,S_U_—2P,S_U,)
23
172 T2, ([11(2)1]{2}1) F[I-(P_S U. +2P_S.Uy —2P,S_U. + 3P, S.U_ — 4P.5_U,
+2P,S.U.)+I,P_ (S U, -3S,U_)+1.2P_.S U, —3P_S,U_
—4P_S.U, + 3P;S_U_ 4+ 2P.5_U.)]
I_(—4P_S,U,+10P_S,Uy—4P,S_U,+3P, S, U_+10P,S_U,++3P, S, U_+16P,S, U,
173 T2, ([11(2)1){3}1) P +Uzt s s £8P 54U+ )
I (—-4P_S_U.+3P_S.U_+3P.S_U_)
3v/35
_ I.(10P_S_U; +3P_S, U_+16P_S.U.+3P;S_U_+16P,S_U.—12P.S.U_)
3V/35
174 T31([11(2)1]{3}0) _[I,(P,S++P+S,74PZSZ)$IJP,S,74IZ(P,SZ+PZS,)]
- 30
175 T31<[11(2)0]{2}1) _[I_(S_U++S+U_74SZUZ)4\}17+S_U_74IZ(S_UZ+SZU_)]
- 30
176 T31([10(1)1]{2}1) I (P_UL+P U_—4P, Uz)jliP_ U_—41,(P_U,+P,U_)]
- 30
177 T31([01(1)1]{2}1) [P (S-U4+S4U_—-4S.U,)+P S _U_—4P,(S_U.+S.U_)]
- 0
I_(2P_S, U,+P_S,U;+P{S,U_+2P,S;U_—-4P,S, U,
178 T3, ([11(1)1]{2}1) (2P-5:Us+ BV il 5 )
I,(2P_S_U,+P_S,U_+2P,S_U_)
) V15
+Iz(—P,S,U++P,S+U,—P+S,U,+4PZS,UZ)
V15
I_(-2P_S,U,—P_S,U;+4P,S_U,+3P;S,U_+2P,S_U;—4P,S,U,
179 T3, ([11(2)1){2}1) ( = st AP ST b0 P Sy + )
I, P (28 U.+3S.U)
3V5
+12(—P,s,U+—3P,S+U,+8P,SZUZ+3P+S,U,—4PZS,U2)
3v5
I_(P_S U,+5P_S,U. pP.S_U,-3P S, U_+5P,S_U,—-3P,S,U_—4P,S,U,
180 T3, ([11(2)1){3}1) (PS5 U+ 2Py e + - )
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I,(P_.S_U,—3P_S,U_—3P,S_U_)

_|_

I.(=5P_S_U,+3P_S,U_ +4P,sz(3fﬂp+s, U_+44P.S_U.—12P,S.U_)
181 Tfl([11(2)1]{3}1) I [PS’+UZ+PSZU++P+SUzi\l/’\/zSZUJer(SU++S+U4SZUZ)]
I, (P_S_U.+P_S.U +P.S_U_)
_ L[P_(S_-U;+S U- 74SZUZ;/+%+S_U_ —4P,(S_U.+S.U_)]

V14
182 73 ([11(2)0}{2}0) 3154
183 T3([10(1)1]{2}0) iI.Py
184 77 ([01(1)1]{2}0) 3P+ Sy
185 T3([11(1)1]{2}0) W
186 T2([11(2)1){2}0) _ (1+P+52721+5§S++IZP+S+)
187 T3([10(1)0]{1}1) 31U
188 T2([01(1)0]{1}1) 15,U4
189 T3([11(1)0]{1}1) W
190 73 ([00(0)1]{1}1) 3PUs
191 TZ([10(1)1]{1}1) w
192 T2([01(1)1]{1}1) w
193 T2([11(0)1]{1}1) _P+U+<I—S+y§+5—+21zsz>
194 TZ([11(1)1]{1}1) UL (=1_Py Sy + 1, P.S_+2I,P.S, —2I.P.S.)
195 T2([11(2)1]{1}1) UL (I_PySy+1, (6P S++P+2SI;%6PZSZ)74IZP+SZ+612PZS+)
196 T2([11(2)0]{2}1) - <*21+S+UZ+I+V%U++IZS+U+>
197 T2([10(1)1]{2}1) - <—21+P+UZ+ID§ZU++IZP+U+>
198 T2([01(1)1){2}1) _ (_2P+S+UZ+P+\/gzU++PzS+U+)
199 T2([11(1)1){2}1) I (PLS_ U++4P+SzUz—2PzSzU+2)\;§S+(I, P U{+4I,PLU.—21.P,U,)
200 TZ([11(2)1]{2}1) H—I-PyS UL — I.(—2P_S,Uy + PL.S_Uy + 4P, S.U.

—8P.S U, +2P.S.Uy) — 2I.(2P; S, U, — 2P, S.U; + P.S, Uy)]
201 T2([11(2)1]{3}1) _ I,P+S+U++I+(P,S+U++P+(S,U+J;§):%+U,+10SZUZ)+10PZS+U274PZSZU+)
+212(75P+S+UZ+2P+SZU++2PZS+U+)

3v/35
202 T3([11(2)1]{3}0) ’+P+Sz+f+1\}§5++fzp+5+
203 T5([11(2)0]{2}1) Lefeletle S et LB Uy
204 T$([10(1)1){2}1) LUt e B et L e e
205 T3([01(1)1]{2}1) P+5+Uz+P+jz§U++PzS+U+
206 T23([11(1)1]{2}1) Sy [I_ P+U+—zzz(P+Uz+PZU+)]+\176(—P+S, U,42P, S, U.+2P.S,Uy)
207 T23([11(2)1]{2}1) I_P S U +I,(—2P_ S+U++P+Sg5§+—2P+SZUZ+4PZS+UZ+2PZSZ U.)

+2Iz(—P+S+Uz—2P+SzU++PzS+U+)

3v2

208 T3([11(2)1{3}1) FI-PyS UL + I (P_S Uy 4 Py (S_Uy — 3S,U_ +4S.U.)
+4P,S U, —4P,S.Uy) — AL (=P S U. + P, S.U; + P.S, Uy)]

209 T4([11(2)1]{3}1) _I_P S U 41 (P_S4Ui+Py(S_Uy+S,U_—4S.U.)—4P. (S U.+S.Uy))

2V7
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412(P+S+UZ+P+SZU++PZS+U+)

+ e
210 T2, ([11(2)0]{2}0) 175
211 T2,([10(1)1){2}0) 1P
212 72,(101(1)1]{2}0) 1p 5.
213 T2,([11(1)1]{2}0) Po(lsS-—1-5.)
214 T2,([11(2)1]{2}0) I—P—Sz—21_\l/3§S_+IZP_s_
215 T2,([10(1)0}{1}1) A
216 72,(/01(1)0){1}1) 15 U
217 T2,([11(1)0]{1}1) D)
218 72, ([00(0)1]{1}1) 1p U
219 T2,([10(1)1]{1}1) UuPo 1 Py)
220 T2,([01(1)1]{1}1) AL RLES
221 T2,([11(0)1]{1}1)  PoU (=Sl 5 431.5,)
222 T2, ([11(1)1]{1}1) WW_(I_P_S; +2I_P,S, — I,P_S_ —2[,P,S")
223 T2,([11(2)1){1}1) _ U—(I—(P—S++6P+S—+6Pz5;)\;-é+P—S——4IzP_Sz+GIZPzS_)
224 T,z([11(2)0]{2}1) 721757UZ+IZ/%ZU,+IZS,U,
225 T2, ([10(1)1]{2}1) AP U PUALP U
226 T2,([01(1)1]{2}1) —2P_S_ UZ+P?/§ZU_ +P.S_U_
227 T2, ([11(1)1]{2}1) 1—(P—S+U—+4P—SzUz—2PzSzU_;—\/g+P_s_ U_+21.S_(P,U_—2P_U.)
228 T2,([11(2)1]{2}1) I (-P-S4U- —4P_S.U. +2P.S_U_+8P.S_U. — 2P.S.U_)
—I,P_S_U_-2I.(2P_-S_U, —2P_S.U_+ P.S_U_)]
229 TEQ([11(2)1]{3}1) _ I,(15P,S,U++P,S+U,+1OP,SZUZ+P;%U,+10PZS,UZ—4PZSZU,)+I+P,S,U,
_|_I,(212(75P,S, U,+2P_S,U_+2P,S_U_)

3v35
230 T3,([11(2)1){3}0) e
231 T°,([11(2)0]{2}1) I_5_ UZ+I_%§U_+IZS_U_
232 T3,([10(1)1]{2}1) I—P7U2+17}\’/2§U7+12P,U,
233 T3,([01(1)1]{2}1) U e
234 T3,([11(1)1){2}1) L<P—S+U7—2P—SzUz—2PzSzU7>¢—61+P737U7+2zzsf(P7UZ+PZU7>
235 TEQ([11(2)1]{2}1) 7I,(P,S+U,—QP,SZUZ—2P+S,U;\-}-§4PZS,Uz+2PzSzU,)+I+P,S,U,

2, (=P_S_U.,—2P_S.U_+P.S_U_)

3v2

236 T3, ([11(2)1]{3}1) F[—I1-(—3P_S_Uy + P_S,U_+4P_S.U. + P,S_U_+4P.S_U,
—4P.S.U_) — I, P_S_U_ + 4L (-P_S_U. + P_S.U_ + P.5_U_)]
237 T4, ([11(2)1]{3}1) _ L(Pf(SfU++S+U:4SZUZ)+P+52,\%, —4P.(S_U.+S. U N+I,P_S_U_
+4IZ(P,S, U.4+P_S.U_+P,S_U_)

2V7
238 T3([11(2)1]{3}0) J+1;+§S+
239 T3([11(2)0]{2}1) _7f+5¢+§U+
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240 T3([10(1)1]{2}1) _%

241 T3([01(1)1]{2}1) — el

242 T3([11(1)1){2}1) PLUL (IS — 1.5)

243 Tg)([ll(2)1]{2}1) U+(I+P+Sz72]\.;§PZS++IZP+S+)

244 TE([11(2)1]{3}1) I+(—3P+S+Uz+P+SZU\_;g-PzS+U+)+IZP+S+U+
245 Tg‘([ll(2)1]{3}1) _I+(P+S+UZ+P+SzU+\}-§PZS+U+)+IZP+S+U+
246 T3 4([11(2)1]{3}0) =

247 T3,([11(2)0]{2}1) =20

248 T3,([10(1)1]{2}1) I—’;—;’—

249 T3,([01(1)1]{2}1) P*f/%U*

250 T3, ([11(1)1]{2}1) PU(I,S-—-1_8,)

251 TE3([11(2)1]{2}1) U,(I,P,SZ—QI\;gPZS,-i-IZP,S,)

252 T§3([11(2)1]{3}1) I,(—3P,S,Uz-‘rP,SZU:/g-PzS,U,)-‘rIZP,S,U,
253 TE3([11(2)1]{3}1) I,(P,S,Uz-‘rP,SzU,\-/FEPZS,U,)-FIZP,S,U,

254 TH([11(2)1]{3}1) I,P.S Uy

255 T4 ,([11(2)1]{3}1) I_P.S U

APPENDIX K: LIOUVILLIAN SUPERMATRICES

Here we calculate the supermatrix representation of the Zeeman Liouvillian L7 = [Hyz, ]
and the dipolar Liouvillian £ = [HS, |, with the Hamiltonians given by Egs. (1) and (2),
in the four-spin ISTO basis of Table S3. For isochronous spins, the Zeeman Liouvillian is

diagonal and
(n[Lz]n") = 0w wo@ . (K.1)

Similar manipulations as in the three-spin case (see Paper II1') yields for the six terms
in the dipolar Liouvillian, with the Wigner functions D3* o o(Q%) given by the expressions

in Appendix C,
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APPENDIX L: PROTEIN SPIN SYSTEMS

All SLE and GSRE calculations reported here pertain to protein-derived fragments of
proton spins, with m nonlabile protons and one labile side-chain proton (I P,,—I case) or
one internal water molecule (ISP, — 1S case). The nuclear coordinates were extracted
either from the BPTT crystal structure 5PTI (A conformer) or from the ubiquitin crystal
structure 1UBQ (H atoms added with WHATIF). Proton dipole coupling constants were
obtained from the internuclear separation ry as wp x (rad s™') = (3/2) [po/(47)]| v* h/r3 =
1.132 x 109 [rx(A)] 3.

For the I P,,—1I case, the labile proton I was chosen as one of 25 hydroxyl or carboxyl
protons in the serine, threonine, tyrosine, aspartic acid or glutamic acid side-chains of
ubiquitin (Table S5). No order parameters were used.

For the ISP,,— IS case, the labile protons I and S were identified with the H,O
protons of five internal water molecules in BPTI (W111, W112, W113 and W122) and
ubiquitin (W128). The intramolecular I—S dipole coupling was set to wp 15 = 2.46 x 10°
rad s~!'. This value was estimated from the experimental H-H separation in liquid water,
rrs = 1.545 A, and a typical orientational order parameter of 0.8 for the I-S vector.'%!!

For each fragment, all protons except the selected labile ones were regarded as nonla-
bile. Dipole couplings for the four-spin systems used to calibrate the approximate GSRE
theory against the exact SLE theory are listed in Tables S4 and S5.

TABLE S4. Dipole couplings (10° rad s™!) for four-spin systems with an internal water
molecule (protons I, S) and two nonlabile protons (y, ) in BPTI and ubiquitin.

spin I wpr, wWprw Wp;® Wpsy Whsy Wpg® WD
WI111 0.54 0.82 0.98 1.28 0.54  1.39 0.30
W112 1.04 124 162 1.06 053 1.18 0.58
Wi113 0.73 1.06 1.29 084 0.27 0.88 0.20
Wi122 081 057 099 156 0.75 1.73 0.14
Wi128 059 052 078 1.31 0.74 1.50 0.18

@ Defined as in Eq. (39).
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TABLE S5. Dipole couplings (10° rad s™!) for four-spin systems in ubiquitin with a

labile hydroxyl or carboxyl side-chain proton (/) and three nonlabile protons (u, v, k).

spin I wpr, Wprw Wpik Wprt WD Whus Whws Wpp©
Ser-20  0.98 0.57 057 1.27 2.60 0.43 0.27 2.65
Ser-57 1.02 099 055 1.53 0.21 2.60 0.23 2.62
Ser-65 0.79 0.79 0.75 1.34 0.18 0.95 0.11 0.97
Thr-7 146 101 078 194 024 0.67 0.17 0.73
Thr-9 146 0.70 070 1.76 032 049 1.46 1.58
Thr-12 069 064 053 1.08 0.81 2.60 046 2.76
Thr-14 090 033 028 1.00 0.81 0.23 0.21 0.87
Thr-22 0.67 061 053 1.06 081 2.60 045 2.76
Thr-55 099 097 088 164 029 0.15 0.22 0.40
Thr-66 0.72 059 039 1.01 083 045 2.60 2.77
Tyr-59 142 106 066 189 1.00 0.14 0.22 1.03
Asp-21 1.12 053 042 131 092 0.14 0.34 0.99
Asp-32  0.29 0.18 0.17 038 260 0.48 0.68 2.73
Asp-39 0.73 050 027 093 199 260 0.32 3.29
Asp-52  0.68 0.29 024 0.78 0.81 0.09 0.06 0.82
Asp-58  0.30 0.22 021 043 0.16 0.80 0.09 0.82
Glu-16 024 023 021 039 092 048 2.60 2.80
Glu-24 031 0.19 0.19 041 091 2.60 048 2.80
Glu-51 054 021 020 062 064 260 0.51 2.73
Glu-64 0.58 030 028 0.71 0.11 0.64 0.26 0.70

@ Defined as in Eq. (39).
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APPENDIX M: ACCURACY OF GSRE THEORY

In this Appendix, we compare the results of GSRE and SLE calculations on the four-spin
systems listed in Tables S4 and S5 (Appendix L) to assess the accuracy of the GSRE
theory for the IPs—1I and ISP,—1S cases. We also include results from the ESE theory.

1. Exchange case [P;—1

Figures S2 and S3 show that, for the 20 four-spin systems in Table S5 without SDCs, the
simple GSRE result for R ;(0), based on Egs. (42) and (43), remains very close to the
exact Ry 7(0) computed from SLE theory over the full 7o range. While the GSRE result
is exact in the MN and USM limits, it remains highly accurate also at intermediate 75
values. For example, at 74 = 107" s, the GSRE result is off by less than 2.5 % in 16 out of
20 cases. In contrast, the ESE theory yields a much too large R; ;(0) near the maximum
and is not even correct in the MN limit.

Figures S4 — S7 show that, for the 20 four-spin systems in Table S5 without SDCs, a
GSRE theory that incorporates the GSDF in Eq. (41) as well as the SND correction in
Eq. (45) removes the spurious secondary dispersion (evident in the green profiles, without
SND correction) and brings the GSRE theory into good agreement with the exact SLE
theory over the full frequency range and for all 7o values. It may be noted that, even
though wp ;74 ~ 400 at 7A = 102 s for the labile protons with smallest wp.s (most Asp
and Glu residues), the SLE profiles are not fully in the USM limit, where Ry ;(0) = Pa/7a.
In contrast, the GSRE profiles are in this limit, and therefore have a slightly larger Ry ;(0).
For 7o = 1072 s, the ESE profile nearly coincides with the GSRE profile, although the
primary dispersion is slightly upshifted and closer to the SLE profile.

The exact SLE dispersion profiles in Fig. S8, for the four-spin systems of Thr-7 and
Asp-39 (Table S5), demonstrate how the effect of the SDCs is diminished as 74 becomes
longer.

Figures S9 — S14 show that, for the 20 four-spin systems in Table S5, a GSRE theory
that incorporates the GSDF in Eq. (41) as well as the SND correction in Eq. (45) and
the SDC renormalization in Eq. (46), provides a good to excellent approximation to the
exact SLE R; r(wp) dispersion profile in the full parameter space of the EMOR model.
These figures also show the corresponding ESE profiles.

For 74 = 1075 s (Figs. S9 and S10), the GSRE theory, unlike the ESE theory, repro-
duces the hump in the profile, including its fine structure, and accurately describes the
primary dispersion step. On the other hand, R; ;(0) is too large by typically 5 — 7 % for
those spin systems that include a strong SDC (2.6 x 10° rad s™!, for two protons in a
CHs, or CH3 group). This discrepancy is a result of insufficient renormalization of these
strong SDCs. By using a different functional form in Eq. (46), better agreement between
the GSRE and SLE profiles at 74 = 107% s can be achieved. However, the agreement

will then deteriorate somewhat for 74 values above the R; ;(0) maximum, which is the 74
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range for most labile protons near neutral pH. Moreover, the renormalization function in
Eq. (46) predicts that @p ,, — 0 when wp ,, — 0o, thus ensuring that Ry ;(0) = Pa/7a
for any m > 3. Without the square in the denominator of eq. (46), Wp ,, tends to a finite
value when wp ,,, — 00 so the coherent mode transfer matrices Xy, n, and Yy, n, do not
vanish and R; ;(0) increases with m in the USM limit, contrary to expectation.

For 74 = 107* s (Figs. S11 and S12), the GSRE theory predicts a too small Ry ;(0)
for most residues, by as much as 10 — 15 % in some cases. However, the ESE theory
overestimates R ;(0) even more. As for 74 = 107% s, the GSRE theory accurately pre-
dicts the primary dispersion frequency. At 74 = 107° s, the GSRE theory substantially
overestimates Ry 7(0) for some residues, but it is still much better than the ESE theory.

For 74 = 1072 s (Figs. S13 and S14), in the USM regime, all three theories predict
that Ry ;(0) = Pa/7a or very nearly so. The SLE profile exhibits a depression with fine
structure in the LF regime, features that are not captured by the approximate theories.
In most cases, at least the high-frequency part of the primary dispersion is accurately

described by the approximate theories.
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2. Exchange case [SP,—1S

Figure S15 shows that, for the five four-spin systems in Table S4 without SDC, the ZF
rate Ry 15(0) computed from the GSRE theory based on the GSDF in Eq. (47) remains
very close to the exact R;;s(0) computed from SLE theory. This is true over the full
range of 74 values, from the MN regime to the USM regime. While the GSRE theory is
exact in the MN and USM limits, it remains highly accurate even for 74 = 107 s, erring
by at most 2.1 %.

Figures S16 and S17 show that, for the five four-spin systems in Table S4 without SDC,
a GSRE theory that incorporates the GSDF in Eq. (47) as well as the SND correction in
Eq. (49) removes the spurious secondary dispersion (evident in the green profiles, without
SND correction) and brings the GSRE theory into good agreement with the exact SLE
theory over the full frequency range and for all 7, values.

The exact SLE dispersion profiles in Fig. S18, for the internal water molecules W111
and W113 in BPTI coupled to two nonlabile protons, demonstrate the small effect of the
SDC for the ISP, —1S case with a dominant I —S coupling.

Figure S19 shows that the ZF rate Ry 15(0) computed with the GSDF in Eq. (47) and
the renormalized SDC in Eq. (46) almost coincides with the exact (SLE) result, which is
not the case for the ESE theory. For 74 = 107% s, the GSRE theory errs by at most 0.2
% for the five cases. Although not evident from Fig. S19, the GSRE theory is also highly
accurate in the USM regime; for 74 = 1072 s the GSRE theory errs by at most 0.7 % for
the five cases.

Figures S20 and S21 show R; js(wp) dispersion profiles for 74 = 1075, 107°, 10~* and
1072 s, comparing the predictions of the approximate GSRE and ESE theories with the
exact SLE theory. For 74 = 107% s, the GSRE theory is nearly exact and, unlike the ESE
theory, it reproduces the tiny hump in the profile for W128. For 74 = 107° s, the GSRE
theory remains highly accurate, although the primary dispersion step is slightly stretched
to low field. For 74 = 10~ s, the picture is much the same as for 74 = 107° s, although
the difference between the GSRE and ESE theories is not so large. For 74 = 1072 s, in
the USM regime, all three theories predict that Ry ;(0) = Py/7a or very nearly so. The
SLE profile exhibits a depression with fine structure in the LF regime, features that are

not captured by the approximate theories.
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Figure S20: R; ;s(wp) dispersion with 74 = 107% s (left column) or 107° s (right col-
umn) for internal-water protons in BPTT and ubiquitin coupled to two nonlabile protons,
computed from the SLE (red solid), GSRE (blue dash) and ESE (black dash-dot) theories.
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Figure S21: R 15(wp) dispersion with 74 = 107" s (left column) or 1072 s (right col-
umn) for internal-water protons in BPTT and ubiquitin coupled to two nonlabile protons,
computed from the SLE (red solid), GSRE (blue dash) and ESE (black dash-dot) theories.
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APPENDIX N: GSRE THEORY FOR LARGER m

In this Appendix, we present dispersion profiles, computed from the multi-spin GSRE
theory, for some of the labile protons and internal water molecules listed in Tables S4 and
S5 (Appendix L), but now coupled with up to eight nonlabile protons. We also include
results from the ESE theory.

1. Exchange case [P, —1

The following figures show R; j(wy) dispersion profiles for the labile protons in Thr-7,
Thr-22 and Asp-39 in ubiquitin coupled to m = 1 — 8 nonlabile protons and at 74 = 1076
s (Figs. S22 and S23), 107" s (Figs. S24 and S25) and 1072 s (Figs. S26 and S27). The
profiles were computed with the SLE theory for m = 1 and 2 and with the GSRE theory
for m = 3 — 8. The ESE profile for m = 8 is also included. In Fig. S23, the profiles
at 74 = 107° s are shown normalized by Pxwg;7a. In Figs. 25 and 27, the profiles at

7a = 107* and 1072 s are shown normalized by the corresponding ZF rate Ry 1(0).

2. Exchange case ISP, —1S

Figure 528 shows the relative fast convergence with m of the ZF rate Ry ;(0) for the
ISP, —1S case with m = 0 — 12, and Fig. S29 shows the similarly fast convergence of
the shape of the R ;s(wp) dispersion profile for m = 0 — 7. In both figures, we use the
internal water W122 in BPTT as an example. The other four internal water molecule in

Table S4 give rise to similar results.
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Figure S22: Dispersion profiles, Ry ;(wp), with 74 = 107¢ s for the labile protons in Thr-7
(top), Thr-22 (middle) and Asp-39 (bottom) in ubiquitin coupled to m = 1 — 8 nonlabile
protons, computed from SLE (m = 1 and 2) or GSRE (m = 3 — 8) theory.
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Figure S23: Scaled dispersion profiles, Ry j(wo)/[Pawp ;7al, with 74 = 107% s for the
labile protons in Thr-7 (top), Thr-22 (middle) and Asp-39 (bottom) in ubiquitin coupled
to m = 1 — 8 nonlabile protons (left column), computed from SLE (m = 1 and 2) or
GSRE (m = 3 — 8) theory. The right column shows the GSRE profiles for m = 5 — 8
together with the ESE profile for m = 8 (dashed).
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Figure S24: Dispersion profiles, Ry ;(wp), with 74 = 10™* s for the labile protons in Thr-7
(top), Thr-22 (middle) and Asp-39 (bottom) in ubiquitin coupled to m = 1 — 8 nonlabile
protons, computed from SLE (m = 1 and 2) or GSRE (m = 3 — 8) theory.

5100



Ubiquitin, Thr-7, tauA = Te-4 s Ubiquitin, Thr-7, tauA = Te-4 s
T T T

T T T T
m=1 1 mes 1
m=2 = N m=6
m=3 m=7
m=4 09l N m=8
m=5 — — 1SMm=8
m=6 \
m=7 —~ 08| \ 4
" nis B \
1 3 \
8 Dot \ 1
£ o \
& 06} 4
5 w \
& 1 1] \
= G o5l \ 1
& < \
5 T 04 B
H i € N
= 5
= 5
« =03t \ g
& \
| 02} \ B
\
\
011 N g
0 L L L 0 L L I
102 10° 10* 10° 10° 10° 10" 10° 10°
omega0 (rad/s) omega0 (rad/s)
Ubiquitin, Thr-22, tauA = 1e-4 s Ubiquitin, Thr-22, tauA = 1e-4 s
T T T T T T T
mo1 1
m=2
m=3
1 m=4|
m=5
m=6
m=7 . 1
——-m=8 |
° -
3081 1 =
8 @0 1
E 3
[ o) 4
S w
Lo061 4 o«
g 3 i
= =
= = ]
S & o
204 E 5
3 =1 1
&
02 E 1
0 . . .
102 10° 104 10° 10° 10° 104 10° 10°
omega0 (rad/s) omega0 (rad/s)
Ubiquitin, Asp-39, tauA = 1e-4 s Ubiquitin, Asp-39, tauA = le-4 s
T T T T T T T
m=1 1 1
m-2
m=3
m=4| 09
m=5
m=6
m=7 —~08 4
~ _ m-8 :
° -
2 1 =
8 D07 1
T el
o m‘vos 4
2 ] @
El Gos 4
z g
5 T 04 J
E 1 £
z g
S =03 g
&
| 02 g
01 g
0 . . . . 0
102 10° 10* 10° 10° 10° 10" 10° 10°
omega0 (rad/s) omega0 (rad/s)

Figure S25: Normalized dispersion profiles, Ry ;(wo)/R11(0), with 74 = 107 s for the
labile protons in Thr-7 (top), Thr-22 (middle) and Asp-39 (bottom) in ubiquitin coupled
to m = 1 — 8 nonlabile protons (left column), computed from SLE (m = 1 and 2) or
GSRE (m = 3 — 8) theory. The right column shows the GSRE profiles for m = 5 — 8
together with the ESE profile for m = 8 (dashed).
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Figure S26: Dispersion profiles, Ry ;(wp), with 74 = 1072 s for the labile protons in Thr-7

(top), Thr-22 (middle) and Asp-39 (bottom) in ubiquitin coupled to m = 1 — 8 nonlabile
protons, computed from SLE (m = 1 and 2) or GSRE (m = 3 — 8) theory.
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Figure S27: Normalized dispersion profiles, Ry j(wy)/R11(0), with 74 = 1072 s for the
labile protons in Thr-7 (top), Thr-22 (middle) and Asp-39 (bottom) in ubiquitin coupled
to m = 1 — 8 nonlabile protons (left column), computed from SLE (m = 1 and 2) or
GSRE (m = 3 — 8) theory. The right column shows the GSRE profiles for m = 5 — 8
together with the ESE profile for m = 8 (dashed).
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Longitudinal relaxation in dipole-coupled homonuclear three-spin
systems: Distinct correlations and odd spectral densities
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A system of three dipole-coupled spins exhibits a surprisingly intricate relaxation behavior. Following
Hubbard’s pioneering 1958 study, many authors have investigated different aspects of this problem.
Nevertheless, on revisiting this classic relaxation problem, we obtain several new results, some
of which are at variance with conventional wisdom. Most notably from a fundamental point of
view, we find that the odd-valued spectral density function influences longitudinal relaxation. We
also show that the effective longitudinal relaxation rate for a non-isochronous three-spin system
can exhibit an unusual inverted dispersion step. To clarify these and other issues, we present a
comprehensive theoretical treatment of longitudinal relaxation in a three-spin system of arbitrary
geometry and with arbitrary rotational dynamics. By using the Liouville-space formulation of
Bloch-Wangsness-Redfield theory and a basis of irreducible spherical tensor operators, we show
that the number of relaxation components in the different cases can be deduced from symmetry
arguments. For the isochronous case, we present the relaxation matrix in analytical form, whereas,
for the non-isochronous case, we employ a computationally efficient approach based on the stochastic
Liouville equation. © 2015 Author(s). All article content, except where otherwise noted, is licensed
under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4937377]

. INTRODUCTION

A few years after Solomon’s seminal analysis of dipolar
cross relaxation in two-spin systems,' Hubbard investigated
longitudinal relaxation in systems of three or four dipole-
coupled spins.? In multi-spin systems, correlations between
distinct dipole couplings (usually referred to as cross
correlations) come into play, and Hubbard showed that their
effect is to make the relaxation of the total longitudinal
magnetization in the extreme-narrowing (EN) regime weakly
bi-exponential and slightly slower.”> Subsequent studies*~!°
confirmed Hubbard’s results and extended them to non-EN
conditions, where longitudinal relaxation is tri-exponential,
and to anisotropic rotation models, where distinct correlations
can have a more pronounced effect.

All of these studies considered a system of three
geometrically equivalent spins, located at the vertices of
an equilateral triangle, as in the widely occurring —CH3 and
—NH3; groups. Relatively little attention has been devoted to
less symmetric nuclear geometries, where the three dipole
couplings differ in magnitude. The first attempt in this
direction, pertaining to three isochronous spins at the vertices
of an isosceles triangle, predicted that longitudinal relaxation
in the EN regime involves seven exponentials.'! However,
as noted by several authors, a correct treatment of this
case yields four-exponential longitudinal relaxation in the
EN regime.'>”'> In two rarely cited papers,'>!3 Schneider
examined the relaxation (also outside the EN regime) of three

Dpertil.halle@bpce.lu.se
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isochronous spins at the vertices of equilateral, isosceles,
and right-angled triangles. In contrast to all other authors,
he retained the odd-valued spectral density function (OSDF)
and showed that it influences longitudinal relaxation in the
dispersive regime when at least two of the three dipole
couplings differ in magnitude.'>!* To our knowledge, this
is the only explicit demonstration in the literature that the
OSDF affects relaxation. Although the effect is numerically
small for the isotropic rotation model considered by Schneider,
it is of fundamental theoretical interest, not least because of
the widespread belief that the OSDF or, equivalently, the
imaginary part of the spectral density function, only gives rise
to coherent evolution, %23

For example, Abragam'® dismisses the OSDF with the
following assertion: “It can be shown that the imaginary
term results in a very small shift in the energy levels of the
system which can be included in a redefined unperturbed
Hamiltonian and thus dropped from the relaxation equation.”
It is true that the imaginary part of the relaxation superoperator
R, associated with the OSDF, can be expressed as a
commutator superoperator, —i Im{R} = —i [H’, .. .], just like
the Liouvillian associated with the time-independent spin
Hamiltonian.?>** (Karthik and Kumar,?? following Jeener,'®
refer instead to the anti-Hermitian part of R, but for all cases
considered here this is identical to the imaginary part of R.)
It is also true that if there were no other terms in the equation
of motion, the total evolution superoperator would be unitary
(since H’ is Hermitian), resulting in purely coherent evolution
without dissipation. However, in the presence of the real
part of R, we (and Schneider'>!%) find that the imaginary
part of R does affect (longitudinal) relaxation, in addition

© Author(s) 2015
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to its well-known coherent effect of inducing a second-order
dynamic frequency shift.!®%23-27

Consistent with these results, Pfeifer argued in general
terms that the OSDF can affect relaxation outside the
EN regime, except when the relaxation function is strictly
exponential so that a unique relaxation time can be defined.?®
However, this general conclusion must be amended in at
least two respects. First, for the isochronous three-spin
system, both cross relaxation between nonequivalent spins
(with different dipole couplings) and correlations between
distinct dipole couplings (equal or unequal in magnitude)
can give rise to multi-exponential relaxation. The relaxation
effect of the OSDF is only associated with the latter type
of non-exponentiality. Second, the relaxation effect of the
OSDF vanishes when the relaxation superoperator is invariant
under permutation of all spins. Such invariance requires both
geometric and dynamic equivalence, as for three spins at
the vertices of an equilateral triangle undergoing spherical-
top rotational diffusion. For lower geometric or dynamic
symmetry, longitudinal relaxation is affected by the OSDF.

To clarify the subtle and sometimes misunderstood
manifestations of distinct correlations, cross relaxation (in
the Solomon sense), and the OSDF in multi-spin systems, we
present here a comprehensive analysis of longitudinal dipolar
relaxation in a three-spin system. Using the Liouville space
formulation of Bloch-Wangsness-Redfield (BWR) theory!'>%°
with a basis of irreducible spherical tensor operators to exploit
inherent symmetries, we obtain in analytical closed form the
10 x 10 relaxation supermatrix that governs the longitudinal
relaxation of three isochronous spins with arbitrary nuclear
geometry and without restrictions on the motional model (as
long as the bath is isotropic). Depending on the number of
unequal dipole couplings (one, two, or three), on the dynamic
symmetry, and on the Larmor frequency, the relaxation of
the total longitudinal magnetization involves between two and
ten exponential components. In practice, it is often useful
to characterize longitudinal relaxation by a single effective
rate* R, which we refer to as the integral relaxation rate. To
illustrate the full range of relaxation behavior, we compute
the relaxation dispersion profile Rj(w) for several cases of
interest, including two anisotropic rotation models. While
the emphasis is on the isochronous three-spin system, we
also examine the effect of different chemical shifts for the
three nuclei. We find that chemical shifts can give rise to an
unusual inverted step in the dispersion profile, resulting from
symmetry-breaking nonsecular decoupling that principally
affects distinct correlations. We establish the range of validity
of the isochronous relaxation theory and we show that the
effect of chemical shifts on longitudinal relaxation is always
negligible outside the motional-narrowing (MN) regime.

This paper is organized as follows. In Sec. II, starting
from the BWR master equation, we develop the theory of
longitudinal relaxation in an isochronous three-spin system of
arbitrary geometry and without restrictions on the motional
model other than the overall isotropy of the molecular
system. In Sec. III, we specialize to isotropic motions and
investigate, for each of the three geometric cases (with one,
two, or three distinct dipole couplings), the eigenmode rates
and weights and the integral relaxation rate over the full
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frequency range. We also examine the time dependence
of the longitudinal magnetization. In Sec. IV, we explore
two anisotropic motional models: axial internal rotation
superimposed on spherical-top rotation and symmetric-top
rotation with arbitrary orientation of the rotational diffusion
tensor. In Sec. V, we use the stochastic Liouville equation
to examine the effect of chemical shifts on the longitudinal
relaxation behavior, finding an unusual inverted relaxation
dispersion at the nonsecular decoupling frequency. Finally, in
Sec. VI, we summarize the principal results of this work.

Il. RELAXATION THEORY
A. Liouville space formulation of BWR theory

We consider three isochronous spin—1/2 nuclei, labeled
I, S, and P, subject to Zeeman and mutual intramolecular
dipole couplings. If we neglect scalar couplings, the static
Hamiltonian is

HZ:w0(1z+Sz+Pz), (D

where wy is the common Larmor frequency. In Sec. V, we
consider the more general case where the three nuclei have
different Larmor frequencies.

The fluctuating dipolar Hamiltonian, with vanishing
ensemble average, is

Hp(t) = Hp,ss(t) + Hp,ip(t) + Hp_sp(t), 2

with (X denotes either of the three spin pairs IS, IP, or SP)

2
Hp, x(t) = —% wpx ), Ty(X) Diy@x(®). ()
M=-2

Here, the TI%,[(X ) are orthonormal three-spin irreducible
spherical tensor operators (Sec. II C), the D12\40(QX) are
rank-2 Wigner functions,®® Qx(¢) = (0x(1),¢x(t)) are the
fluctuating spherical polar angles that specify the orientation
of the internuclear vector rx with respect to the lab-fixed
frame, and the dipole coupling frequency is defined as wp x
= (3/2)(po/4m) y* h/ry. Since the geometric arrangement of
the three nuclei is arbitrary, the three dipole couplings may
differ in magnitude.

We start from the semi-classical BWR master equation'®

G0 == [ aw @O Le-0)F0. @
where o (r) = exp(i Lzt) o (t) and fD(t) =exp(i Lz1t) Lp(t)
exp(—i Lz1t) are, respectively, the density operator (relative
to its equilibrium value) and the dipolar Liouvillian in
the interaction representation, and the Liouvillians are the
usual derivation superoperators Lz = [Hz, ...] and Lp(r)
= [Hp(t), . ..]. The angular brackets denote an equilibrium
ensemble average over the molecular degrees of freedom (the
so-called “lattice” or “bath”).

The set of three-spin irreducible spherical tensor operators
Tg , to which the TZ,(X) in Eq. (3) belong, are eigenoperators
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of the Zeeman Liouvillian (Sec. II C),
LTS = QT ®)

The BWR equation (4) can therefore be expressed, in the
Schrodinger representation, as

& o) = i Lz~ R0 (©)

The relaxation superoperator is given by

2 2 o
R = g Z Z WD, X WD,y Z Z / dt exp(iM'wyt)
X Y 270

M=-2 M'=
X Gy (1) Tod(X) T, (1), ™
where the superscript T signifies the adjoint (Hermitian
conjugate) and we have introduced the superoperators
THX) = [Th(X), ...].
The time correlation functions in Eq. (7) are defined as

Gi(1) = (D3 (Qx(0)) D3 Qy(1)), (8)

where the angles Qx(7) are modelled as a stationary random
process. We assume that the bath is isotropic, meaning that

4 oo
Jxy(w) = 3 WD, X WD,y [/ dt cos(w 1) Gxy(T) + i/
0 0

= ij(w) +1i kxy((u).

Clearly, the real and imaginary parts of Jxy(w) are even and
odd functions of frequency, respectively: jxy(—w) = jxy(w)
and kxy(—w) = —kxy(w). We refer to these parts as the
even spectral density function (ESDF) and the OSDF. The
complex-valued spectral density functions have the general
properties,

J;}Y(w) = Jxy(-w),

Jyx(w) = Jxy(w).

(13a)
(13b)

The second relation follows from Eq. (12) and the equality
Gyx(t) = Gxy(t), which in turn follows from Eq. (9) and the
assumption that the stationary process obeys the principle of
detailed balance, which ensures that the propagator is invariant
under time reversal. Throughout Sec. II, we place no further
restrictions on the time correlation functions G xy (7). Specific
motional models will be introduced in Secs. III and IV, where
we also present numerical results.

Although we have not yet specified the motional model, it
is convenient to loosely define a correlation time 7. as the time
scale for the essential decay of the time correlation functions
G xy(7). This allows us to distinguish three frequency regimes:
the EN regime (wg7. < 1), the dispersive regime (wot, ~ 1),
and the adiabatic regime (wo7. > 1). There are no fixed
and universal demarcation lines between these regimes. For
example, the value of wot. below which relaxation can be
considered to be independent of wg depends on the chosen
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Qyx is uniformly distributed, and that, as a result of molecular
motions, this distribution is sampled by each spin-bearing
molecule on a time scale that is short compared to 1/wp, x.
The propagator P(Qy,7 | Qx,0) is then rotationally invariant
so that time correlation functions involving Wigner functions,
which transform according to the irreducible representations
of the rotation group, obey the symmetry selection rule’!

GaviAT) = Saraa (Pa(cos x(0)) Py(cos Oy (7)))
= 0pmm Gxy(7), 9

which evidently is a real-valued quantity. Combination of
Egs. (7) and (9) yields

R = ZZ i ny(M(x)()) CXY, (10)
X Y M=-2

where we have introduced the superoperators
CxY = THX) T (V) = (DM T(X) T3,(Y),  (11)

and the complex-valued spectral density functions

0o

dr sin(w 1) Gxy(T)

(12)

(geometric and dynamic) model and on the desired accuracy.
For some purposes, it is more appropriate to refer to the
zero-field limit rather than to the EN regime.

The foregoing results are well-known; their derivation is
sketched here merely to establish our notation and to exhibit
the underlying assumptions.

B. Spin inversion and conjugation symmetries
of the relaxation superoperator

The density operator must remain Hermitian at all times>?

so the two operators on the right-hand side of Eq. (6) must
also be Hermitian.?? In other words, physical consistency
demands that (Lzo0)'=-Lz0 and (Ro)'=Ro. The
first of these identities is readily verified by noting that
(£Lz0) = [Hy 0l = - [H},0"] = ~[Hy,0] since both Hy
and o are Hermitian. To prove the second identity, we
use Eq. (13a) and note that (CiY o) = CXY o by virtue
of Eq. (11). To complete the proof, we substitute these results
into the expression for (R )" obtained from Eq. (10) and then
interchange M and —M in the symmetric sum.

The general physical requirement that the operator Ro
is Hermitian does not imply that the relaxation superoperator
R itself is Hermitian. Since (S7°)" = 7 'ST for arbitrary
superoperators S and 7,'® Eq. (11) yields o' ' = CYX.
Inserting this result into the adjoint of Eq. (10), interchanging
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the dummy variables X and Y, and using Eq. (13b), we find

2
RY=DD D Tey(Mawo) G (14)
X Y M==-2

In view of Eq. (12), this result shows that the relaxation
superoperator is the sum of Hermitian and anti-Hermitian
parts. The Hermitian part is the real part of R, associated
with the ESDF, jxy(Mwy). The anti-Hermitian part is i
times the imaginary part of R, associated with the OSDF,
kxy(Mwyg). Therefore, R is Hermitian only in the EN regime,
where kxy(w) < jxy(w), and in the adiabatic regime, where
Jxyv(W), kxy(w) < jxy(0).

We now consider the effect on R of spin inversion,
spin conjugation, and spin inversion conjugation.'>? The
superoperators, collectively denoted by X, associated with
each of these symmetry operations are unitary and self-
inverse,?® and, for our three-spin system, they can be factorized
as

X=X"=X"=X; Xs Xp. (15)

The spin inversion superoperator acting on /-spin operators is
defined as'>*

Y =explinI,), (16)

with 7, = [I,. . ], soit transforms the spherical spin operators
according to Table I. The spin conjugation superoperator is
usually defined in terms of its action on the shift operators,'>?°

Vi [Im) (In) = (Im) (Inl)' = In) (Iml, amn

and the spin inversion conjugation operation is simply
the combination of the first two operations, ‘W = VY
= Y V.15 The transformation rules in the last two columns
in the upper part of Table I are readily obtained from these
definitions.
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TABLE 1. Spin inversion and conjugation symmetries of operators and
superoperators.

Operator Transformed operator

1o yI lo (VI 1o (WI 1o
I, -1 I. -1

I -1_ I_ -1,
I -1 I, -1
Superoperator Transformed superoperator

N ySsy VSv wWSw
Tat =DMT73, =DM, Tat
e ey ey e’
R R R R

To establish the behavior of the relaxation superoperator
R under these symmetry operations, we first use the explicit
form of the operators T,%,I (X) and the transformation rules for
single-spin operators in the upper part of Table I to obtain
the rules on the fourth row of the table. The rules for the
superoperator Cy, shown in the next row, are then obtained
with the aid of Eq. (11). Finally, we use Eqgs. (10), (13a),
and (14) to obtain the transformation rules for R in the last
row of Table I. We thus find that the relaxation superoperator
is invariant under spin inversion conjugation, whereas it is
invariant under spin inversion and spin conjugation separately
only in the EN and adiabatic regimes, where the OSDF can
be neglected.

C. Spin operator basis and spin modes

As a basis for three-spin Liouville space, we use the 64
irreducible spherical tensor operators (ISTOs) Tg (kiks{K}
kp), constructed by two consecutive couplings of the set of four
orthonormal single-spin ISTOs for each spin, e.g.,

TS (kiks{K}kp) = (1) 17Fs7kp+KQ g 4 1)K + 1)!/2

O=-K qr1=-kr

where K is the rank of the intermediate tensor operator
obtained by first coupling spins I and S. Here, and in
the following, the rank and projection indices are written
in upper case for three-spin ISTOs and in lower case
for single-spin ISTOs. The ISTOs T]%,I(X) appearing in
dipolar Hamiltonian (3) belong to this basis set, e.g., T02(I S)
= TX(11{2}0) = (3L,S, —1-S)/V3, and Eq. (5) follows
directly from Eq. (19) and the fundamental commutation
relation® [, Tx/(1)] = q; To! (D).

i (K kp
—_1\Q
2, D (Q 0-0

1
) = 5 E;, T)()=V2I, T.()=%L, (18)
to obtain3032
K k] kS K k k k

- Ty TS (8) TEP (P, 19
—Q)(qz O-ar _Q> ar(DT5 (ST, 5(P) (19)

The main virtue of the ISTO basis is that the 2K + 1
operators Tg of a given rank K transform according to
the irreducible representation DX of the three-dimensional
rotation group,3%33 leading to selection rules for the relaxation
supermatrix (Sec. II D 2) that greatly simplify the relaxation
problem. In addition, some of the ISTOs have well-defined
parity under spin inversion, spin conjugation, and spin
inversion conjugation, leading to additional selection rules
(Sec. II D 3). Applying the transformation rules in the upper
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part of Table I to Egs. (18) and (19) and using the symmetry
properties of the 3 symbol,*® we find

YTy = (1T (20a)
VTIE =15 = (- 1)K TK) (20b)
WTS = (-DNTS, (20c)

where Ng=k;+ks+kp is the number of single-spin
operators (not counting identity operators) involved in the
basis operator. Equation (20b) is the generalization to
three-spin ISTOs of the familiar conjugation relation, T,f t
=(-1)4T%,, for single-spin ISTOs*** As seen from
Eq. (20c), all 64 basis operators have definite parity with
respect to spin inversion conjugation, being odd (anti-
symmetric) if they involve one or three spins and even
(symmetric) if they involve two spins. In the following,
we refer to basis operators that are odd or even under spin
inversion conjugation as OSIC or ESIC operators, respectively.
In contrast, only the 20 zero-quantum (Q = 0) ISTOs have
definite parity under spin inversion and spin conjugation.
Equation (20a) shows that these basis operators are either even
(for even rank K) or odd (for odd K) under spin inversion,
and Eq. (20b) shows that they are either Hermitian (for even
K + N;) or anti-Hermitian (odd K + Nj).

As we shall see in Sec. II D, the symmetry properties
of the ISTO basis operators under rotation and spin inversion
conjugation ensure that longitudinal relaxation in the three-
spin system can be described, for arbitrary nuclear geometry,
in the subspace of the ten zero-quantum OSIC operators listed
in Table II. (The identity operator also belongs to this category,
but it can be omitted on physical grounds.) Based on their
parity with respect to Y and V, these ten operators fall in two
groups: seven Hermitian operators with odd rank K and three
anti-Hermitian operators with even rank.

For convenience, we index the basis by a single number
n, denoting the basis operators by B,. The basis operators
obtained from Eq. (19) are orthonormal in the sense,

(BulBy,) = Tt{B}B,} = 6,p. 1)
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Because the basis is complete, we can expand the density
operator in spin modes (sometimes called state multipoles),*
defined as o, = (B,| o). Using Egs. (5), (6), and (21), we
find that the zero-quantum spin modes obey the BWR master

equation

_O-n(t) - Z Rnp O-p(t) (22)

since the coherent term —i Q(n) wg o, (t) vanishes for Q = 0.
The relaxation supermatrix elements are obtained from Eq.
(10) as

(23)

2
Rup = (BAIRIB,) = > Z ot Ixv(Ma),
X Y

M=—

with the coefficients Cy;", , = (B,IC};"1B)).

D. Symmetry properties of the relaxation supermatrix
in the ISTO basis

1. Transposition and complex conjugation

According to Eq. (11), the coeflicients in Eq. (23) are
given by

CM np — =Tr {BIL 7;\/;(X) m(Y)JrBP}

= -Tr{(7y(X) B)) (T,{()'B,)},  (24)
where the last form results from the cyclic permutation
invariance of the trace. As shown in Appendix A of the
supplementary material,** all matrix elements C;\Y  are real-
valued in the ISTO basis. It then follows from Egs. (12)
and (23) that the real part of the relaxation supermatrix is
associated with the ESDF and the imaginary part with the
OSDF. While this correspondence was established for the
relaxation superoperator in Sec. II B, it is not true for the
relaxation supermatrix in any basis. Indeed, in a basis of
Hermitian operators, the relaxation supermatrix is real even
though the spectral density is complex.?’

TABLE II. The zero-quantum OSIC basis operators TOK (krks{K Ykp).

cd

n K ky ks kp K VA yb ):

1 1 1 0 0 1 - + %11

2 1 0 1 0 1 - + %SZ

3 1 0 0 1 0 - + 5 P:

4 1 1 1 1 0 - + -5 .5 P,

5 1 1 1 1 1 - + V2[I(S-P)-S.(I-P)]

6 1 1 1 1 2 - + ‘/%[ZPZ(I-S)—3 1.(S-P)-3S.(I-P)]
7 3 1 1 1 2 - + %[5 1.S.P.—1.(S-P)-S.(I-P)- P.(I-S)]
8 0 1 1 1 1 —i%(IxS)P

9 2 1 1 1 1 - '}(Ixsy(sp e.—P)

10 2 1 1 1 2 - i V2[I. (SXP)+S. (IxP)]-e

4Parity under spin inversion.

YParity under spin conjugation.

Identity operators have been omitted.

de denotes the unit vector along the z axis.
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Noting that C;;
that

f/n » is real, we can use Eq. (24) to show

XY= (CxY Y = Te{(B] ToAX) Tr(¥) B,) '}

M,np
= Tre{B] T,{(Y) T31(X) B} = Cof - (25)

By interchanging the dummy variables X and Y in Eq. (23)
and using Egs. (13b) and (25), we obtain

Rnp = ana (26)

showing that (both the real and imaginary parts of) the
relaxation supermatrix is symmetric in the ISTO basis.

Another symmetry property of the relaxation supermatrix
in the ISTO basis can be demonstrated by first using
Egs. (10)—(13) to show that (R A)" = R A" for an arbitrary
operator A and then using this result and the cyclic permutation
invariance of the trace in the definition of the supermatrix
element as follows:

N i
Rnp = TI'{(B:; R BI’) } = TI'{('R BI’)TB”}
= Tr{R B} B.} = T{B, R B} = Ryp,  (27)

where the underlined subscript n denotes the adjoint basis
operator B. This relation is particularly useful in the
zero-quantum subspace, for which Eq. (20b) shows that
the basis operators are either Hermitian or anti-Hermitian.
It then follows from Eq. (27) that relaxation supermatrix
elements connecting two Hermitian or two anti-Hermitian
basis operators are real (R;,, = Ry), whereas matrix elements
connecting basis operators of different conjugation parity
are imaginary (R, = —R,);). Since Jxy(Mwy) is the only
complex-valued quantity in Eq. (23), it is clear that the OSDF
has the effect of coupling odd-rank (Hermitian) and even-rank
(anti-Hermitian) spin modes.

2. Rotational symmetry

Because the superoperator R is ensemble averaged over
the isotropic molecular system, it must exhibit the cylindrical
symmetry of the spin system in the external magnetic
field. According to the Wigner-Eckart theorem,!%2930-32.33
the relaxation supermatrix in the ISTO basis must therefore
be block-diagonal in the projection index Q,

Ruo)p) = 900" Rno)p(0)- (28)

The evolution of the longitudinal magnetization modes o (¢),
05(t), and o3(¢) (Table II) can, therefore, be fully described
within the subspace of the 19 zero-quantum operators
(omitting the identity operator). In the EN regime, where
the Zeeman Hamiltonian may be neglected, the relaxation
superoperator R becomes fully rotationally invariant. The
Wigner-Eckart theorem then implies that the relaxation
supermatrix in the ISTO basis is block-diagonal not only
in the projection index Q but also in the rank index K,'>%

(woTe < 1).
(29)

In the EN regime, rotational symmetry thus reduces the
invariant subspace to the nine rank-1 zero-quantum basis
operators.

Ruk0)p(k'0) = Ok k' 600" Ru(k 0)p(K 0)
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3. Spin inversion conjugation symmetry

As seen from Table I and Eq. (20c), the relaxation
superoperator is invariant and the ISTO basis operators have
definite parity under spin inversion conjugation. According to
the basic orthogonality theorem of group theory,'>** of which
the Wigner-Eckart theorem is a special case, the relaxation
supermatrix in the ISTO basis can, therefore, have nonzero
elements only between basis operators of the same parity (that
is, belonging to the same irreducible representation of the
symmetry group). Among the 19 zero-quantum operators, 10
are OSIC (including the ones representing the longitudinal
magnetizations) and 9 are ESIC. Longitudinal relaxation in a
three-spin system can, therefore, be fully described within the
subspace of the ten zero-quantum OSIC operators in Table II,
corresponding to the three longitudinal magnetizations and
seven zero-quantum coherences (ZQCs).

Since N; is odd for these ten basis operators, Eq. (20b)
shows that the seven odd-rank operators are Hermitian,
whereas the three even-rank operators are anti-Hermitian,
as can be verified from Table II. In view of Eq. (27), it then
follows that the 10 x 10 relaxation supermatrix that governs
longitudinal relaxation has 7 x 7 and 3 X 3 real symmetric
blocks along the diagonal (Fig. 1, top left). The elements in
these two blocks are linear combinations of some or all of the
ESDFs jxy(0), jxy(wo), and jxy(2wy). The seven odd-rank
spin modes are coupled to the three even-rank modes via the
purely imaginary “off-diagonal” 7 x 3 and 3 x 7 blocks (Fig. 1,
top left). The elements of these blocks are linear combinations
of the OSDFs kxy(wq) and kxy(2wy). In other words, the only
effect of the OSDFs is to couple odd-rank and even-rank spin
modes; they have no effect on the odd-rank and even-rank
blocks. If the OSDF is neglected, this coupling disappears
and the longitudinal relaxation is then fully described by the
real symmetric 7 X 7 block associated with the odd-rank basis

only self correlations

Mz
real imag
ZQCs
imag real
Mz
w odd
9) rank odd
S ZQCs
>
[0}
even even
rank ZQCs

FIG. 1. Schematic representation of the 10 x 10 relaxation supermatrix in the
zero-quantum OSIC subspace, comprising three longitudinal modes (Mz) and
seven ZQCs. The effects of removing distinct correlations and/or the OSDF
are shown by shading supermatrix elements that then become identically zero.
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operators (Fig. 1, bottom left). This is the case in the EN
regime, where, in addition, selection rule (29) holds so that
only the six rank-1 modes of this subspace can couple.

To compute the relevant 10 x 10 block of the relaxation
supermatrix from Eq. (23), we need 45 CI)\‘;Y matrices. On
account of symmetry relations (25) and

Ci{z\l/;,np _ (_1)K(n)+K(P) C[)\gf,np’ (30)

which follows from Egs. (13) and (27) and is valid only in
the zero-quantum subspace, there are only 18 unique Cj;
matrices to compute. The details of this straight-forward but
tedious task can be found in Appendix A of the supplementary
material > By combining these matrices, given in exact
analytical form in Appendix A,** with Eqgs. (22) and (23),
the longitudinal relaxation behavior is readily calculated for
any geometrical arrangement of the three spins and for any
motional model.

4. Nuclear permutation symmetry

In the context of spin relaxation, nuclear permutation
symmetry refers to the spectral density functions.'>? For
dipolar relaxation in an isochronous multi-spin system, the
relaxation superoperator R is invariant under permutation (or
interchange) of two nuclei if these nuclei are related by a
symmetry operation of the molecular point group (geometric
symmetry) and if the dipole couplings between each of these
nuclei and any other nucleus are modulated in the same
way by the molecular motion (dynamic symmetry). These
two requirements can be concisely expressed in terms of the
spectral density functions Jxy(w). For our three-spin system,
R is invariant under [ < S interchange if J;p jp(w) = Jsp sp(w)
and Jis p(w) = Jis,sp(w). Similarly, R is invariant under
permutations of all three nuclei if Jg s(w) = Jipp(w)
= Jsp,sp(w) and Jis jp(w) = Jis,sp(w) = Jip,sp(w).

We shall use the conventional spin system notation,
normally based on the static spin Hamiltonian, to label the
three possible types of geometric symmetry or equivalence.
In the A; system, the three nuclei reside at the vertices
of an equilateral triangle and are therefore geometrically
equivalent. In the AyA’ system, the nuclei define an isosceles
triangle. If spin P is at the apex, then spins / and S are
geometrically equivalent. Finally, in the AA’A’" system, all
three internuclear vectors have different lengths so there is no
geometrical equivalence.

For isotropic dynamic models (Sec. IIT), such as spherical-
top rotational diffusion, all dipole couplings are modulated
in the same way (full dynamic symmetry). Geometric
equivalence then implies nuclear permutation symmetry. For
anisotropic rotation models, the lower dynamic symmetry
may reduce or abolish the nuclear permutation symmetry
even though geometric symmetry is present (Sec. IV).

For the isotropic dynamic model considered in Sec. I11, the
relaxation superoperator is thus invariant under permutation
of geometrically equivalent nuclei. For the A; and A,A’
systems, the relaxation supermatrix, therefore, becomes block-
diagonal in a basis of operators that have definite parity
under permutation of equivalent nuclei.'”?* The ISTO basis
operators in Table II are constructed by first coupling spins /
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and S and then coupling the resultant to spin P (Sec. II C).
Accordingly, they have definite parity under interchange of
spins 7 and S, but not under permutations of all three spins.
This basis is, therefore, adapted to the geometric symmetry
of the A,A’ system (with spin P at the apex), but not to the
higher symmetry of the Aj system.

E. Self- and distinct correlations

A relaxation supermatrix element R,, with n#p
describes cross relaxation between spin modes n and p. For
example, n and p might be the longitudinal magnetizations of
two different spins (as in the two-spin Solomon equations'), or
they might represent a longitudinal magnetization and a ZQC.
Both auto-relaxation rates Ry, and cross relaxation rates R,
(n # p) may have contributions from self-correlations (terms
with X = Y) and from distinct correlations (terms with X # Y).
In the literature, these contributions are usually referred to as
auto- and cross correlations, but we prefer the descriptors
“self” and “distinct” to distinguish them from “auto-mode”
and “cross-mode” relaxation. Note that the term “distinct”
here refers to the spin pairs X and Y rather than to the dipole
couplings wp, x and wp,y, which may or may not be distinct.

The role of self- and distinct correlations is illuminated
by the selection rules (derived in Appendix B3*)

XX _
Citnp =0,

XYy _ XX
CM,np - 6XY CM,np’

for n = 1-3 and p = 4-10, (31a)

for n,p = 1-3, (31b)

where the indices n and p refer to the basis operator
ordering in Table II. The first rule shows that cross relaxation
between longitudinal magnetization modes (rn = 1-3) and
ZQCs (p = 4-10) is induced entirely by distinct correlations.
The second rule shows that cross relaxation among the
longitudinal magnetization modes (in the A,A’ and AA’A”
systems) is induced entirely by self-correlations.

If distinct correlations are omitted, the relaxation behavior
simplifies considerably (Fig. 1). According to selection rule
(31a), the self-matrices C,’f,IX are block-diagonal, with a
3 x 3 longitudinal magnetization block and a 7x7 ZQC
block (Fig. 1, top right). The longitudinal self-relaxation is,
therefore, fully determined by the 3 X 3 block, for which
Eq. (30) yields Cf,\),,‘ = CAX,,X . We then obtain from Egs. (12),
(13), and (23)

2
R — Z Z(Z _ 6M0) C]}\;X jXX(MwO)’ (32)
X M=0

where the matrices refer to the 3 X 3 longitudinal magnetiza-
tion block. In the absence of distinct correlations, longitudinal
relaxation is thus at most tri-exponential and the OSDF has
no effect. In other words, the OSDF affects longitudinal
relaxation only via distinct correlations, consistent with
our earlier conclusion (Sec. II D 3) that the OSDF only
affects cross relaxation between odd-rank and even-rank
spin modes. Neglect of the OSDF does abolish the cross
relaxation (induced by self-correlations) between odd-rank
and even-rank ZQCs (Fig. 1, bottom right), but this decoupling
within the ZQC manifold does not impact on the longitudinal
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magnetizations, which are decoupled from the ZQCs in the
absence of distinct correlations.

Substituting the C3/* matrices from Appendix A3 into
Eq. (32), we find

Urs +Jip) Jis jrp
R““=g Jis (is+jép) ise s (33)
irp Jsp Uip +Jisp)

with the familiar auto- and cross relaxation combinations of
(self) spectral densities'®

(34a)
(34b)

Ji = Jjxx(0) + 3 jxx(wo) + 6 jxx(2wp),
Jx = 6jxx(2wo) — jxx(0).

F. Eigenmode decomposition

The time evolution of the total longitudinal magnetization,
o, =01+ 0,2+ 03, after a nonselective excitation, with
0,(0) = 6,1 + 6,2 + 6,3, may be decomposed into eigenmode
contributions as

o (t)
a(0)

10
- Z Crexp(—Ax1). (35)
k=1

The normalized mode amplitudes or weights, some of which
may be zero for symmetry reasons, are given by

1
Ci = §(Vlk + Vap + Vo). (36)

The eigenvalues Ay and eigenvectors {V,x, n = 1,2,...,10}
are obtained by diagonalizing the symmetric 10X 10
relaxation matrix by the similarity transformation

A = VRV, (37

where V is the transpose of the complex orthogonal matrix
V. Note that the defining relation, V = VL for an orthogonal
matrix is the same whether V has real or complex elements.
In both cases, the columns (eigenvectors) vi, of V are
orthonormal in the sense Vi v; = 8y;, which differs from the
normal (Hermitian) inner product v, v; in a complex vector
space. If the OSDF is neglected, as allowed in the EN and
adiabatic regimes, the relaxation matrix R is real symmetric
(Sec. I D 1) so the eigenvalues Ay are real.> In general,
however, the spectral density is complex and R is complex
symmetric. A sufficient condition for a complex symmetric
matrix to be diagonalizable by a complex orthogonal similarity
transformation is that all its eigenvalues are distinct,>> which
is the case whenever R is complex. (Degenerate eigenvalues
do occur in the EN and adiabatic regimes, where R is real,
and at all frequencies for the Az system with isotropic motion
(Sec. III) since nuclear permutation symmetry then cancels the
effect of the OSDF. Because a real symmetric matrix is always
diagonalizable,® these degeneracies do not pose a problem.
Furthermore, in all cases, eigenvalues with nonzero weights Cy
are distinct.) In the dispersive regime, R can have up to three
complex-conjugate pairs of eigenvalues, Ay = Ay £y, and
associated weights, Cy, = ay + i bi. The remaining eigenvalues
and weights are real. By combining any complex-conjugate
pairs, we can express the evolution function in terms of real
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quantities,
Na
o(1)
= cr(t) exp(—Agt), (38)
G ; l(r) exp(=Ax)

where N, < 10 is the number of exponential components with
nonzero weight. For real eigenvalues ¢, = Cy = ax, whereas
complex-conjugate eigenvalue pairs have oscillating weights:
cr(t) = 2 [ay cos(uxt) + by sin(ugt)]. Whereas Ay is always
positive, ay, by, and y may have either sign. Thus, although
Eq. (38) implies that the initial weights ¢x(0) sum up to 1,
some of them may be negative.

The number, N,, of exponential components in Eq. (38)
cannot exceed the dimension of the invariant subspace to
which the longitudinal magnetizations belong. In Table III,
we give N, for the different nuclear geometries and frequency
regimes, with and without distinct correlations. Here, we have
assumed an isotropic motion (Sec. III), so nuclear permutation
symmetry is governed solely by geometry (Sec. II D 4).
For anisotropic motions, N, can be larger (Sec. IV). In the
absence of distinct correlations, N, < 3 (Sec. II E), also for
anisotropic motions. For self-relaxation induced by isotropic
motions, N, equals the number of distinct dipole couplings.
For isotropic motions, the OSDF only affects the longitudinal
relaxation in the dispersive regime and then only for the
less symmetric geometries A,A’ and AA’A”. If the OSDF
is neglected, Ny =5 and 7, respectively, for these cases.
When the OSDF is included, one (A;A’) or one — three
(AA’A”) complex-conjugate eigenvalues occur, which split
into two real eigenvalues in certain frequency ranges, thereby
increasing the number of exponential components by one for
the A,A’ system and by one, two, or three for the AA’A”
system. But these bifurcating eigenmodes have very small
weights.

For the Aj system with isotropic motion, the relaxation
superoperator is invariant under permutation of the three
geometrically and dynamically equivalent nuclei. Because
only three orthonormal odd-rank modes exhibit this invariance
(Sec. Il B), Ny =3 in the dispersive regime. In the EN
regime, selection rule (29) forbids coupling to the rank-3
mode (Sec. III B) so N, =2. For Aj case, the deviation
from single-exponential relaxation is entirely due to motional
correlations between dipole couplings of distinct spin pairs
(with one shared spin).

TABLE III. Number, N ,, of exponential components in different frequency
regimes for longitudinal relaxation in a three-spin system with isotropic
motion.

Frequency regime

Correlations Geometry EN Dispersive Adiabatic
All AA’A” 4 7-10* 2

All AA’ 4 5-6° 2

All Az 2 3 2
Self AA'A 2 3 1
Self A’ 2 2 1
Self Az 1 1 1
4See text.
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In contrast, for the A,A’ and AA’A” systems, multi-
exponential relaxation is caused both by distinct correlations
and by cross relaxation between the longitudinal modes of
nonequivalent spins. For the A,A’ system, there are five
odd-rank and one even-rank mode with I < S interchange
symmetry (Sec. III C), so N, = 6 in the dispersive regime. If
the OSDF is neglected, N, = 5 since coupling between odd-
rank and even-rank modes is then no longer allowed (Sec. 11
D). However, also with a complex spectral density, Ny = 5 in
a limited frequency range where two distinct real eigenvalues
merge into a complex conjugate pair. In the EN regime, where
selection rule (29) only allows couplings within the rank-1
subspace, two of the modes are decoupled so that N, = 4.
The reduction of the invariant spin operator subspace, and
thus of N,, as the various symmetries are taken into account
is presented in graphical form in Fig. 2, which contains most
of the information from Table III. Like Table III, Fig. 2
only applies to the case of isotropic motion, which yields the
maximum nuclear permutation symmetry.

G. Integral and initial relaxation rates

If the longitudinal relaxation does not deviate strongly
from a single exponential, it can be characterized, with little
loss of information, by a single effective rate, defined as

ELE[/ dr
0

‘TZ—([)]_]. (39)

(0)

63

[ isotropic molecular system }
¥

Q=0 19

[ spin inversion conjugation ]

odd parity 10

|
l—[ nuclear permutation symmetry J—l

10 6

J. Chem. Phys. 143, 234201 (2015)

Even when relaxation is markedly multi-exponential, this
integral longitudinal relaxation rate may be useful (at the
expense of some information loss) since it can be measured and
computed under all conditions. By integrating the matrix form
of BWR master equation (28) and applying the nonselective
initial condition, we find

-1
. 1 3 3
R = 522(1{*1)”,, : (40)
n=1 p=1

Alternatively, we can insert the eigenmode expansion (35)
into Eq. (39) to obtain

N -1 Ny o717

el -nE . @
=1 k=1 7k

where ¢; = G = a; for real eigenvalues, whereas c;
=2 A (ar Ag + by, uk)/(/li + ,ui) N for complex-conjugate
eigenvalue pairs. Consequently, R; is always real. The real

weights ¢; sum up to 1, but some of them may be negative.
The initial longitudinal relaxation rate is defined as

! dr | ,(0)
By setting = 0 in BWR master equation (22) and applying
the nonselective initial condition, we find

1 3 3 1 3 3
RO = 52213”1,: §ZZR§;¥, 43)

R -

(42)

t=0

FIG. 2. Reduction of the spin operator
subspace required to describe longitu-
dinal relaxation in three-spin systems
with isotropic motion. To the right of
each operator block is given the number
of basis operators that exhibit all the
symmetries that follow from the prop-
3 erties listed above it. This is also the
| maximum number of exponential com-

[ even spectral density function

} ponents in the relaxation function.

v v

K odd 7 5

[ extreme-narrowing regime

v v

K=1 4 4

[ only self correlations

v v

l,,S,, P, 2 2

A,A



234201-10 Z. Chang and B. Halle
where the last form follows from Eqgs. (23) and (31b). The
initial rate is thus unaffected by distinct correlations (and the
OSDF). Combining this result with Egs. (33) and (34), we
obtain
2
0 N N

R1:§(R{ +RIP + RYT), (44)
where R[S is the relaxation rate for the isolated two-spin IS
system!

'y .
R{* = 2 [ s is(wo) + 4 jis.1s2w0) | . (45)

The initial rate may thus be regarded as the average two-
spin rate, obtained by taking the arithmetic average of the
relaxation rates for three isolated two-spin systems and then
multiplying by 2 since, in the three-spin system, each spin is
dipole-coupled to two other spins.

Although the initial rate R(l) is unaffected by distinct
correlations, it differs, in general, from the integral self-
relaxation rate R?e'f, obtained by substituting R from
Eq. (33) into Eq. (40). In contrast to the initial rate,
R?elf generally involves the zero-frequency spectral densities,
Jjxx(0). Only for the A; system with motional models that
do not violate the dynamic equivalence of the three spins is
R = RY (Secs. I1I B and IV).

lll. LONGITUDINAL RELAXATION
BY ISOTROPIC MOTIONS

In this section, we illustrate the theory developed in
Sec. II by quantitatively examining the longitudinal relaxation
behavior for the Az, A,A’, and AA’A” spin systems in the
special case where the dipole couplings are modulated by
an isotropic motion. (Anisotropic motions are considered in
Sec. IV.) If the motion is isotropic in the molecular frame, the
time correlation functions Gxy(7) defined in Eq. (9) take the
simple exponential form

1
Gxy(r) = 3 P>(cos Bxy) exp(—7/7.), (46)

where Bxy is the fixed angle between internuclear vectors
X and Y, that is, cos Bxy = (rx - ry)/(rx ry). This form is
valid for the spherical-top rotational diffusion model and for
the strong-collision model, with the correlation time 7. being
the rotational correlation time, (6 Dg)™!, or the mean survival
time, respectively. The spectral density function in Eq. (12)
can then be factorized as

Jxy(w) = Dxy J(w), 47)

with the real-valued geometric factor

4 4
Dxy = 7 wp, x wp,y Gxy(0) = — wp,x wp,y P2(cos Bxy),

3 15
(48)
and the complex-valued reduced spectral density function
, . ® . Gxy(7)
J(w) = j(w) + ik(w) = dr exp(i wt
@) =@ +ik@) = [ dr explion 23
TC .

=——7(1+ o) - 49
1 +(wTC)2( foT) “9)
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In Sec. Il A, we examine the deviation from single-
exponential relaxation and in Subsections III B-III D, we
present the complete frequency dependence (dispersion) of
the integral relaxation rate R), the integral self-relaxation rate
ﬁielf, and the initial rate R(l), as well as of the eigenmode
rates Ay and weights cg, for the three spin systems. We also
examine the effect of the OSDF. The numerical results were
computed from the 10 X 10 relaxation matrix defined by Eqgs.
(23) and (47)—(49) and the C}; matrices in Appendix A.3*
All relaxation rates are presented in reduced form, in units
of “’123, ;s Te versus the reduced frequency wo 7. As geometric
parameters, we use the interior angles of the triangle, denoted
by B1, Bs, and Bp. We thus specify Bp = Bip,sp for the A,A’
system, and B; = Bisp and Bs = m — Brs.sp for the AA’A”
system. The remaining dipole couplings are then, for the A,A’
system,

wp,ip = wp,sp = 85in*(Bp/2) wp,s, (50)

and for the AA’A” system,

. 3

wnp = [%;f”] - 51a)
. 3

wnsp = [%;}BS)] s (51b)

A. Non-exponential relaxation

To examine the deviation from single-exponential relaxa-
tion of the normalized longitudinal non-equilibrium magneti-
zation, o,(t)/o,(0), we compare the multi-exponential decay
obtained from eigenmode expansion (38) with the single-
exponential decay exp(—R; ), with the integral longitudinal
relaxation rate R; obtained from Eq. (40) or (41). We define a
deviation function as 6(t) = exp(—§1 1) — Zg ci(t) exp(—Axt).

As noted many years ago,>* the deviation from single-
exponential relaxation is insignificant for the Aj spin
system with isotropic motion. The largest deviation, with
Omax = 0.002, is found in the EN regime. Such small deviations
are certainly beyond experimental detection. For the A,A’
spin system, the deviation from single-exponential relaxation
is more pronounced, as shown in Fig. 3 for Sp = 120°. Again,
the deviation is larger in the EN regime (0 = 0.13) than in
the dispersive regime (0max = 0.05 at wy 7. = 1). If the OSDF
is omitted, the deviations become slightly larger (0yax = 0.14
and 0.06, respectively). The largest deviations are seen for the
AA’A” spin system, as illustrated in Fig. 4 for a geometry
with By = 80° and Bs = 40°. Here, the maximum deviation
Omax 18 0.23 in the EN regime and 0.16 at w7 = 1.

In all cases, the initial decay is faster for o(t)/0(0)
than for the exponential function exp(—R; t). In other words,
the calculations show that R? > El. Since distinct correlations
affect El but not R(l’ (Sec. II G), this observation is consistent
with a slowing down of longitudinal relaxation by distinct
correlations, as can be demonstrated in a general way for the
Aj; system with isotropic motion.* As seen from Eq. (39),
the areas under the two decay curves shown in each panel of
Figs. 3 and 4 are equal by definition. Therefore, o,(t)/0,(0)



234201-11 Z. Chang and B. Halle

1.0 T T T T T T

08 _\ wo T = 0.01 ]

060 \\ §

04l \\ -

magnetization

0.2+ N _

0.8 | - i
06l \ 4

0.4 | i

magnetization

02+ NN ]

0 0.2 0.4 0.6 0.8 1.0
reduced time

FIG. 3. Decay of the longitudinal magnetization, o ,(¢)/0;(0), versus re-
duced time, t><w2D’ 1sTe for the ApA” spin system with Bp=120° and
isotropic motion. The multi-exponential decay obtained from Eq. (38) (solid
curve) is compared with the single-exponential decay exp(—R;t) (dashed
curve).

must decay more slowly than exp(—ﬁl t) at longer times,
leading to a crossover (Figs. 3 and 4). An exponential fit to
the multi-exponential decay is, therefore, likely to yield an
effective rate that is close to the integral rate R;. However, if
the deviation from single-exponential relaxation is substantial,
it may be better to determine the integral rate directly from
the experimental data.

B. Relaxation dispersion in the A; system

For the A3 spin system, the three nuclei are geometrically
equivalent and if the motion is isotropic, as assumed in
this section, the relaxation superoperator is invariant under
permutation of all three nuclei (Sec. II D 4). The spin operator
basis in Table II is not fully symmetry-adapted for this case,
because we have broken the nuclear permutation symmetry by
first coupling spins / and S and then coupling their resultant
to spin P (Sec. II C). However, the ten basis operators in
Table II can be transformed into a fully symmetry-adapted
basis comprising three operators that are even and seven that
are odd under permutations of the three nuclei. In this basis,
the relaxation supermatrix is block-diagonal and longitudinal
relaxation is fully described within the even subspace, spanned
by the following fully symmetry-adapted orthonormal basis
operators (distinguished by an overbar from the operators in
Table 11),"7

J. Chem. Phys. 143, 234201 (2015)
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FIG. 4. Decay of the longitudinal magnetization, o (¢)/o ;(0), versus re-
duced time, twa 1sTe> for the AA’A” spin system with §;=80° and
Bs =40° and isotropic motion. The multi-exponential decay obtained from
Eq. (38) (solid curve) is compared with the single-exponential decay
exp(—R| t) (dashed curve).

B, = %(BI+B2+B3)_%[IZ+SZ+PZ]’ (52a)
B, = %(\/_B4+ZB6)
_ V8
— [I,(S-P)+S,(I-P)+P,(I-S 32b
By;=B;= i [51,S,P,—LI(S-P)-S,(I-P)-P,(I-8)].
V5

(52¢)

Consequently, longitudinal relaxation in the Aj system is in
general tri-exponential. However, in the EN regime, selection
rule (29) ensures that the rank-1 modes 6; and 6, do not
couple to the rank-3 ZQC &3 (Table II). Therefore, longitudinal
relaxation is bi-exponential in the EN regime.

Since all three operators in Eq. (52) are of odd rank,
Eq. (30) shows that C*}, = €}, in the fully symmetry-
adapted basis. It then follows from Eq. (23), which is valid
for any orthonormal basis, and Egs. (12) and (13a), which
yield Ixy(Mwy) + Jxy(—Mwy) = 2 jxy(Mwy), that the OSDF
does not affect longitudinal relaxation in the A3 system with
isotropic motion. (As we shall see in Sec. IV B, this is not
always true if the motion is anisotropic.) The three eigenvalues
Ay of R (and of R) and the associated weights Cy, are, therefore,
real. From Egs. (23), (30), (47)—(49), and (52) and the Cﬁy



234201-12 Z. Chang and B. Halle

matrices in Appendix A,3>* we obtain the relaxation matrix
R in the fully symmetry-adapted basis (Appendix C**), in
full agreement with the results presented by Werbelow and
Grant."”

Figure 5 shows the eigenmode rates A; and the
corresponding nonzero weights c; (=ay) in Eq. (38), obtained
by diagonalizing the relaxation matrix R as in Eq. (37). Here,
and in the following, the eigenmodes are numbered in order
of decreasing absolute real weight |Re{C;}| at w7 = 1.
The rank order of the three eigenvalues is independent of
frequency, but A, exhibits avoided crossings with A3 and A,
at wo 7. = 0.28 and 1.09, respectively, where the weights of
the corresponding eigenmodes are equal. Each eigenmode is
a linear combination of the longitudinal magnetization mode
0 and the ZQCs 05 and &3, but the dominant eigenmode
(different in each frequency regime) is essentially a o mode.

To reconcile the very nearly exponential longitudinal
relaxation in the As system (Sec. III A) with the distinctly
different eigenvalues in Fig. 5, the following observations
can be made. In the EN regime, one eigenmode, which
is essentially a longitudinal mode, dominates strongly
(c3 = 0.9908). In the dispersive regime, two eigenmodes have
equal weight (close to 0.5) at the avoided-crossing frequencies,
but then the corresponding eigenvalues are nearly equal so
the longitudinal relaxation remains almost exponential. One
eigenvalue has a high-frequency plateau, 13 = (9/20) a)lzj’ s Te
for wy 7. > 1, but the corresponding weight is effectively zero
in the adiabatic regime. The weight of the minor adiabatic

0.1t

weight

0.01

1.4 TTTTTI L T

eigenvalue

0 M| Ll L P 1

0.1 1 10
wOTc
FIG. 5. Eigenmode rates A (in units of wlzj-rc) and weights ¢ for the

A3z spin system with isotropic motion versus the reduced Larmor frequency
WO Te.
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eigenmode is not negligible (c; = 0.0412) but A, is close to
Ay for wot. > 1, so, again, the deviation from exponential
longitudinal relaxation is insignificant.

The dipolar relaxation of the total magnetization of two
isochronous spins—1/2 is isomorphic with the quadrupolar
relaxation of a single spin-1. However, because of the
occurrence of distinct correlations, this isomorphism does not
carry over to three or more spins. The longitudinal relaxation
of a single quadrupolar spin-3/2 is bi-exponential in the
dispersive regime and exponential in the EN regime,’® and
the relaxation rates only involve the spectral densities j(wy)
and j(2wp). In contrast, the total longitudinal magnetization
of three equivalent spins—1/2 relaxes tri-exponentially in
the dispersive regime and bi-exponentially in the extreme-
narrowing regime (Table III, Fig. 5). Moreover, the component
rates also depend on the zero-frequency spectral density j(0).
Inserting the inverse of R into Eq. (40), we find, for the
integral relaxation rate,

5 9, jo(63 )1 +256 o) + 18 j + 110 ji jo + 128 3
TR 216 jo+ 63/, + 112, .
(53)

where we have used the short-hand notation ja = j(Mwo).
Although R, depends on jj, this is not a linear dependence that
would give rise to a high-frequency plateau in the dispersion
profile Ri(wy). The jo dependence derives from the auto- and
cross relaxation rates of the ZQCs -, and -3, which couple to
the longitudinal mode & via cross relaxation rates (produced

difference (%)

0% &

-0.8 - =

relaxation rate

0 Ll L

0.1 1 10

FIG. 6. Dispersion of the integral relaxation rate R, and its self-correlation

part ﬁ?slf (both in units of wlzj-rc) for the Az spin system with isotropic

motion. The upper panel shows the relative difference between the two rates.
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by distinct correlations) that go to zero at high frequencies
since they do not involve jo (Appendix C3*).!” This is seen by
rearranging Eq. (53) into

4 , .
R = —wh (j1+4jr-9), (54)

15
and noting that ¢ = j1/64 when wot. > 1. Therefore, at
high frequencies, R; does not exhibit a plateau but goes
to zero as wgz and is then numerically very close to
R = E?elf = (4/15)wd (ji + 4 jo). This behavior is evident
from Fig. 6, which also shows that the distinct correlations
slow down the longitudinal relaxation by at most 0.8%.

C. Relaxation dispersion in the A;A’ system

The ISTO basis in Table II allows us to directly exploit
the I < S interchange symmetry of the A,A’ system with spin
P at the apex and with isotropic motion (Sec. II D 4). Forming
the symmetric magnetization mode o ;s = (07; + 02)/ V2, we
see from Table II that five of the remaining spin modes are
even (invariant) under / < S interchange, while three modes
(n =5, 8, and 9) are odd. Longitudinal relaxation in the AyA’
system can, therefore, be fully described within the invariant
subspace of the six even basis operators. In the EN regime, the
interchange symmetric operators B; and By with rank K > 1
can be omitted on account of selection rule (29), leaving an
invariant subspace spanned by four fully symmetry-adapted
basis operators. In other words, longitudinal relaxation in the
AsA’ system with isotropic motion involves (at most) six

= L ]
2 01
] dA - 4
= : ]
0.0 Lt M B N .
30 ———rrr T

eigenvalue

0.1 1 10
w 0 7—c
FIG. 7. Eigenmode rates A (in units of wlz) 15 Te) and weights ¢ for an ArA’

spin system with 8 p = 120° and isotropic motion versus the reduced Larmor
frequency wo 7.
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exponential components in the dispersive regime, but only
four components in the EN regime (Table III).

Figure 7 shows, for an A,A’ system with Bp = 120°, the
six eigenmode rates A and the corresponding nonzero weights
cx for the four eigenvalues that remain real at all frequencies.
Each of these four eigenvalues exhibit one avoided crossing
and the corresponding eigenmodes are each dominant in some
frequency range (Fig. 7). In contrast to the A3 system, the
OSDF now affects longitudinal relaxation in the dispersive
regime, where the real eigenvalues A4 and A5 coalesce to
a complex conjugate pair at wo7. = 0.80 and then split up
again at wg 7. = 2.70. These two eigenmodes have significant
but not dominant weights, e.g., ¢4 + ¢5 = 0.06 at wo 7. = 0.7
and ¢4,5(0) = 0.12 at wp 7. = 0.9. We also note that the two
eigenmodes (c3 and c;) that have nonzero weights in the
adiabatic regime correspond to eigenvalues without a high-
frequency plateau (due to jo). If the OSDF is discarded, the
eigenvalues A;, A3, and A¢ and the corresponding weights
are hardly affected, but the complex conjugate eigenvalues
A4 5 and the real eigenvalue A, are now replaced by two real
eigenvalues with an avoided crossing. (Note that Fig. 7 shows
a crossing for the real parts of these eigenvalues; the complex
eigenvalues are distinct at all frequencies.) The number of
exponential components in the dispersive regime is thus five
without the OSDF, but five or six (depending on frequency)
when the OSDF is included. In the EN regime (where the

J
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FIG. 8. Dispersion of the integral relaxation rate R\, its self-correlation part
Rﬁclf, and the initial relaxation rate R? (all three in units of wé, ,STC) for
an AxA’ spin system with §p =120° and isotropic motion. The upper panel
shows the relative differences between R and Rbf” (blue), between R flf and

R(l) (black), and between R 1 with and without the OSDF (magenta).
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OSDF is negligible), there are four components: cg, ¢, ¢3
(shown in Fig. 7), and c¢s (corresponding to the larger of the
two bifurcated eigenvalues; ¢4 = 0 in the EN regime).

The only previous theoretical study of relaxation in the
AA’ system over the full frequency range is that of Schneider,
who also included the OSDF.'"* Comparing our numerical
results for Cy and A, with those tabulated by Schneider, we
find agreement to the last quoted decimal in the EN and
adiabatic regimes and essential agreement (nearly always to
the second decimal place in Cy and to the first decimal place
in Ay) in the dispersive regime.

Figure 8 shows the dispersion profiles of the total (R;)and
self—(R?elf) integral relaxation rates and of the initial relaxation
rate (R?). As compared to the A3 system, distinct correlations
have a much larger effect in the A,A’ system, reducing R
by as much as 36% (in the EN regime) as compared to R?,
which is unaffected by distinct correlations (Sec. I G). Unlike
in the Az system, R} is not identical to RY, being 17.5%
smaller in the EN regime. Figure 8 also shows that the OSDF
increases R, by up to 1.5% in the dispersive regime. The
maximum OSDF effect for the AA’ system, 2.6%, is found
for Sp = 108°.

D. Relaxation dispersion in the AA’A” system

As expected, the most complicated relaxation behavior is
obtained when all three dipole couplings are distinct so there
is no nuclear permutation symmetry at all. Then, all ten spin
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FIG. 9. Eigenmode rates Ay (in units of w%) Is 7.) for an AA’A” spin system
with 87 = 80° and Bs =40° and isotropic motion versus the reduced Larmor
frequency wq 7. Shown in separate panels are the four major real eigenvalues
(bottom) and three minor complex conjugate eigenvalues (top).
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modes in Table II contribute and longitudinal relaxation can, in
principle, involve up to ten exponential components. In the EN
regime, there can be at most six components since selection
rule (29) restricts the invariant subspace to the six rank-1
modes (Table II). We illustrate the generic AA’A” relaxation
behavior with results for a specific nuclear geometry with
Br =80° and Bs = 40° (and thus Bp = 60°).

As for the ApA’ system, four eigenvalues (1;—14) are real
at all frequencies (Fig. 9, bottom). However, there are now
three complex-conjugate pairs of eigenvalues (Fig. 9, top). Two
of them bifurcate at both low and high frequencies but further
away from wq 7, = 1 than for the AA’ system (A5 ¢ bifurcates
at wo 7. = 0.0783 and 5.94, 175 at wy 7. = 0.0493 and 18.8),
whereas the third complex-conjugate eigenvalue (A9 10) only
bifurcates in the adiabatic regime (at wg 7. = 62.4), where this
mode has vanishingly small weight. The weights of the four
real eigenmodes are shown in two formats in Fig. 10. These
four modes contribute in the EN and dispersive regimes, but
only the two modes that lack a high-frequency eigenvalue
plateau (Fig. 9) contribute in the adiabatic regime. In the EN
regime, the two additional modes ¢; and cg have negligibly
small weights that decrease gradually to zero as the zero-field
limit is approached. Hence, Table III and Fig. 2 quote N, = 4
(rather than 6) for the AA’A” system in the EN regime.

In the frequency range 0.0783 < wy1. < 5.94, where
there are three complex-conjugate eigenvalues, longitudinal
relaxation involves seven exponential components. The
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FIG. 10. Eigenmode weights cy for an AA’A” spin system with 87 = 80° and
Bs =40° and isotropic motion versus the reduced Larmor frequency wq7e.
Only the four major eigenmodes with real weights and real eigenvalues are
shown. In the top panel, the cumulative weights are shown on a linear scale
so the colored areas correspond to the relative mode contributions.
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influence of the three complex-conjugate modes is the largest
at w7, = 0.57, where their combined weight is —0.11.
Accordingly, the sum of the four real mode weights is 1.11 at
this frequency (Fig. 10, top). Outside this frequency range, one
or more eigenvalues has bifurcated, so the relaxation function
contains eight, nine, or ten exponential components, but the
combined weight of modes ¢s—co then never deviates by more
than —0.01 from zero (Fig. 10, top). If the OSDF is omitted,
there are seven distinct real eigenvalues which maintain their
rank order at all frequencies and exhibit six avoided crossings.
The relaxation function then contains seven components in
the dispersive regime and four in the EN regime. _

Figure 11 shows the dispersion profiles of the total (R;)
and self-(R®) integral relaxation rates and of the initial
relaxation rate (R(l)). Distinct correlations have an even larger
effect than for the AyA’ system, reducing R by as much
as 58% (in the EN regime) as compared to R?. The OSDF
increases R by at most 0.29% in the dispersive regime. Other
AA’A"” geometries yield larger OSDF effects, which, however,
do not exceed the A,A’ maximum of 2.6%.

IV. ANISOTROPIC MOTIONS

The analysis in Sec. III was restricted to the simplest
possible time correlation function, with the single-exponential

k(w)=0
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FIG. 11. Dispersion of the integral relaxation rate E], its self-correlation
part I?’ielf, and the initial relaxation rate R‘l) (all three in units of ‘”]2), 15T
for an AA’A” spin system with 87 =80° and Bs =40° and isotropic motion.
The upper panel shows the relative differences between R and Ridf (blue),
between ﬁﬁe“ and R(l) (black), and between R 1 with and without the OSDF
(magenta).
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form of Eq. (46). However, the relaxation theory in Sec. II is
valid for any motional model as long as the bath is isotropic.
Replacing Eq. (46) by an anisotropic motional model will
obviously affect the results of Sec. III in a quantitative
way. More importantly, if the dynamic symmetry is broken
(Sec. II D 4), the relaxation behavior may also be altered
qualitatively. For the As and A,A’ systems, where nuclear
permutation symmetry reduces the invariant subspace in the
case of isotropic motion (Fig. 2), anisotropic motions may
introduce additional relaxation components and can enhance
the influence of the OSDF on longitudinal relaxation, also in
the Az system. In the following, we examine two anisotropic
motional models, one of which breaks the dynamic symmetry
and one which does not.

A. Axial internal rotation

First, we consider the situation where, in addition to
spherical-top rotational diffusion (as in Sec. III), there is
a statistically independent internal rotational diffusion of
the spin system about an axis perpendicular to the nuclear
plane. In the A3 case, this model might represent a spherical
macromolecule with a methyl group that rotates freely about
its threefold axis. As shown in Appendix D,** the time
correlation function for this model is

1
Gxy(r) = 2 exp(—7/tr) [1 + 3 cos(2Bxy) exp(—7/Tin)]
(55)
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FIG. 12. Eigenmode rates Ax (in units of w%‘rk) and weights ¢y versus
the reduced Larmor frequency wo7R for the A3 spin system modulated by
spherical-top tumbling and internal rotation with 7r = 100 Tjp,.
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with g = 1/(6 Dr) and 7, = 1/(4 Djny). The spectral density
functions now cannot be split into geometric and purely
dynamic factors, as in Eq. (47). Instead, we obtain from Egs.
(12) and (55)

1
Jxy(w) = 15 “D.x @py [Jr(w) + 3 cos(2Bxy) Jim(w)],
(56)

where Jr(w) and Jiy(w) are given by Eq. (49) with 7, replaced
by 7 or (1/1 + 1/7in) ", respectively.

For the A3 system, all dipole vectors are affected in the
same way by the internal rotation so the nuclear permutation
symmetry is not affected. Formally, this conclusion follows
by noting that the factor within square brackets in Eq. (56) is
the same for all self correlations, since Sxx = 0, and for all
distinct correlations, since cos(2 Bxy) = —1/2 for Bxy = 60°
or 120°. For the A,A’ system, the internal rotation does
not affect the dynamic symmetry of the two geometrically
equivalent nuclei / and S, as seen by noting that cos(28;s,sp)
= cos[2(m — Bs)] = cos(2Bs) = cos(2B;) = cos(2Bs,ip) sO
that Jis p(w) = Jis,sp(w). Consequently, internal rotation
about an axis perpendicular to the nuclear plane does not
affect the nuclear permutation symmetry for any of the three
spin systems.

Even though internal rotation does not alter the
relaxation behavior qualitatively, it can have substantial
quantitative effects. For example, Fig. 12 shows the three
eigenvalues and associated nonzero weights for the Aj
system when g = 1007, as might be the case for a
methyl group in a macromolecule. (Here, we depart from
our eigenmode numbering convention in order to maintain
correspondence with the case of isotropic motion.) As in
the isotropic case (Fig. 5), 4, < 4; < A3 at all frequencies,
although the two avoided crossings are not evident on the
scale of Fig. 12. However, as compared to the isotropic
case, the boundaries of the EN and adiabatic regimes,
where the relaxation function changes from tri-exponential
to bi-exponential, move out to much lower and higher
frequencies, respectively. Whereas in the isotropic case each
eigenmode dominates in one frequency regime, now two
of the modes dominate in two separate frequency intervals
(Fig. 12). Moreover, the weight of eigenmode ¢, vanishes
“accidentally” at two frequencies (wo7. = 4.50 and 20.31),
where relaxation becomes bi-exponential. Except at these
frequencies, longitudinal relaxation becomes much more
non-exponential than in the isotropic case (Fig. 13). For
example, Omax = 0.27 at wp7. =1 as compared to 0.0014
in the isotropic case. We note also that the tabular results
reported by Schneider'? for the Aj system and the spectral
density function in Eq. (56) agree quantitatively with our
calculations.

Because the internal rotation is two orders of magnitude
faster than the overall tumbling, the relaxation dispersion
exhibits two well-resolved steps (Fig. 14). The retarding
effect of distinct correlations is modest for the high-
frequency internal-rotation step (—5.4% at wo7. = 10) but
very large for the low-frequency tumbling step (a factor 8 at
wo T = 0.01). For the A; system R* = R, as for isotropic
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FIG. 13. Decay of the longitudinal magnetization, o .(¢)/o0;(0), versus
reduced time, l‘><(4)]2)TR, for the Az spin system modulated by spherical-
top tumbling and internal rotation with 7r = 1007, The multi-exponential
decay obtained from Eq. (38) (solid curve) is compared with the single-
exponential decay exp(—R t) (dashed curve).

rotation (Sec. I G), but for the axial rotation model R!f
= (w3/15) [jr(wo) + 4 jrRQ2wo) + 3 jim(wo) + 12 jin(2w)].

B. Symmetric-top tumbling

The simplest motional model that breaks the nuclear
permutation symmetry in the A3 and A,A’ systems is rigid-
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FIG. 14. Dispersion of the integral relaxation rate R| and its self-correlation

part ﬁj’e‘f (both in units of w%TR) for the Az spin system modulated by

spherical-top tumbling and internal rotation with 7r = 100 7.
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body symmetric-top rotational diffusion. Remarkably, this
simple model, with arbitrary orientation of the principal axis
of the rotational diffusion tensor with respect to the nuclear
plane, does not seem to have been investigated even for the As
system. For the Az system, Hubbard examined the special case
where the principal rotation axis is perpendicular to the nuclear
plane,® in which case the three spins are “scrambled” as in
the axial rotation model considered in Sec. IV A. The nuclear
permutation symmetry is therefore not broken. Hubbard,” and
later Werbelow and Marshall,® also considered, for the A;
system, a principal rotation axis with arbitrary orientation,
but only in the simultaneous presence of internal rotation
about an axis perpendicular to the nuclear plane. Because of
the internal motion, the three spins are again “scrambled,”
so the nuclear permutation symmetry is unaffected and the
relaxation function has at most three components.” Even if
the rate of internal rotation is set to zero, these results do not
reduce to the results for rigid-body symmetric-top rotation,
because rotational symmetry about an axis perpendicular to
the nuclear plane has been imposed in the derivation.

We show in Appendix E** that, for the rigid-body
symmetric-top rotational diffusion model, the spectral density
function in Eq. (12) is a sum of three terms of the same type
as in Eq. (47),

2

Jxy(w) = Z Dxy,n In(w), (57)
N=0

with the real-valued geometric coefficients Dxy, n givenin Eq.

(E.7) of the supplementary material.** The complex-valued

spectral densities Jy(w) are given by Eq. (49), but with the

correlation times®’

70
1+ N2y -1)/6’

where 79=1/(6Dgr,,) and 7y = Dg/Dgr,,. Rather than
pursuing the general case, we shall illustrate the relaxation
behavior for symmetric-top rotation by examining two special
cases of the model.

If the principal axis of the rotational diffusion tensor
is perpendicular to the nuclear plane, Eq. (57) reduces to
(Appendix E**)

™ = (58)

i wp, x Wp,y [Jo(w) + 3 cos(2Bxy) J(w)],
(59)

Ixy(w) =

as previously shown by Hubbard.® This result differs from
Eq. (56) only in the interpretation of the correlation times.
Consequently, the relaxation behavior is qualitatively the same
as for the internal rotation model in Sec. IV A. In particular,
symmetric-top rotational diffusion with the principal axis
perpendicular to the nuclear plane does not break the nuclear
permutation symmetry in the A3 and A,A’ systems. In the
EN regime, the self and distinct spectral densities for the A3
system are obtained from Eq. (59) as

2DRH+5DRL)
Jxx(w) = a)2‘1' _—, (60a)
XX( ) 15 D 0( 2DR’“+DR1J_

4Dg —7Dg 1
J 21 | ————= . 60b
xy(w) = ‘UD 0( 2DR,|I+DR,L ( )
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In the special event that Dg , = (4/7) Dg,, the distinct spectral
density thus vanishes, making longitudinal relaxation single-
exponential, as first noted by Hubbard.®

To illustrate the full scope of anisotropic rotation effects,
we consider the case where the principal axis of the rotational
diffusion tensor lies in the nuclear plane. For this model,
Eq. (57) yields (Appendix E3%)

Txv(@) = —wDXwD yZa Sn0) dg(@x) (@) In(w).
1)

Here, ax = ax + 0, where ax specifies the orientation of the
internuclear vector ry relative to r;s (so a;s =0, ayp = By,
and asp =71 — Bs) and 6 specifies the orientation of the
principal rotation axis (also relative to ryg).

Because of its lower dynamic symmetry, this model
alters the nuclear permutation symmetry for the Az and A,A’
systems (Sec. II D 4). However, if the principal rotation axis
is either parallel with or perpendicular to the internuclear
vector ryg, that is, if 6 =0 or n/2, the I & S interchange
symmetry is not affected. For any other orientation 6, the
I & § interchange symmetry is broken. As a result, the A,A’
system with symmetric-top rotation behaves qualitatively as
the AA’A” system with spherical-top rotation. For the A,A’
system, the number of relaxation components in the dispersive
regime therefore increases from 5—6 for spherical-top rotation
to 7-10 for symmetric-top rotation (Table III).

0.1

weight

0.01

eigenvalue

FIG. 15. Eigenmode rates A (in units of wlijQ) and weights ¢y versus
the reduced Larmor frequency wq7o for the A3 spin system modulated by
symmetric-top rotational diffusion with y = 10 and the principal rotation axis
in the nuclear plane.
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For the Ajz system, symmetric-top rotation with 6 =0
or m/2 leaves only I < § interchange symmetry, so the Az
system with symmetric-top rotation behaves qualitatively as

the A,A’ system with spherical-top rotation. Indeed, Eq. (61)
yields for 0 =0,

Jisis(w) = ] 5 wh Jo(w), (62a)
Jip,ip(w) = Jsp,sp(w)
1
=10 a)D [Jo(w) + 36 Ji(w) + 27 Jr(w)], (62b)
Jis.ip(w) = Jis sp(w) = ~30 w} Jo(w), (62c)
1
Jipsp(w) = 540 % wh [Jo(w) =36 Ji(w) +27 Hh(w)],  (62d)
and for 0 = /2,
1
Jis,is(w) = 5 — wp [Jo(w) + 3 hw)], (63a)
Jip,ip(w) = Jsp, sp(w)
1
= 510 wD [25 Jo(w) + 36 J{(w) + 3 Jh(w)], (63b)
1
Jis,ip(w) = Jis,sp(w) = ~%0 wp [5 Jo(w) =3 hH(w)],  (63c)
1
Jipsp(w) = 740 % wp [25 Jo(w) = 36 Ji(w) + 3 H(w)] . (63d)
1 0 T T T
0.8 Wy Tp = 0.01
s [
= 06|
N
£ L
S 04t
@
E -
0.2 |

magnetization

0 ! !
0 5 10 15

reduced time

FIG. 16. Decay of the longitudinal magnetization, o--(¢)/o -(0), versus re-
duced time, ¢ Xw% 70, for the A3 spin system modulated by symmetric-top
rotational diffusion with = 10 and the principal rotation axis in the nuclear
plane. The multi-exponential decay obtained from Eq. (38) (solid curve) is
compared with the single-exponential decay exp(—R| t) (dashed curve).
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These results show that, for 6 =0 or n/2, the Az system
does not have full nuclear permutation symmetry, but only
I & § interchange symmetry (Sec. II D 4), like the A,A’
system with isotropic motion. This symmetry breaking has
two important consequences. First, the number of relaxation
components increases from 2 to 4 in the EN regime and
from 3 to 5 or 6 in the dispersive regime (Table III). Second,
the OSDF now affects longitudinal relaxation also in the Aj;
system.

For the A,A’ system, the orientations 6 =0 and 7/2
yield the same number of relaxation components (the same
as for isotropic motion), but the eigenmode rates (and the
integral relaxation rate) are quantitatively different for the two
orientations. For the Aj system, on the other hand, these two
orientations yield quantitatively the same relaxation behavior.
This is not obvious from the spectral densities in Eqs. (62)
and (63), which, although the same in the EN regime, differ in
general. In fact, the A; relaxation behavior is quantitatively the
same for any orientation 6 of the principal diffusion axis in the
nuclear plane. For the Ajz system, the relaxation supermatrix
R(6) is related to R(0) by a similarity transformation so the
eigenvalue spectrum is independent of 6.3 (However, this is
not true for R*().) Although the eigenvectors depend on
6, the component weights C; in Eq. (36) do not. In other
words, a less symmetrical orientation of the diffusion axis
not only does not lead to further symmetry breaking (and
additional relaxation components), but it has no effect at all.
Even out-of-plane orientations do not alter the qualitative
relaxation behavior further (as long as the diffusion axis is not
perpendicular to the nuclear plane; see above), although there
are quantitative changes.

To illustrate these results quantitatively, we consider the
Aj system with rotational anisotropy y = 10. The relaxation
rates A; and weights ¢ of the six contributing eigenmodes
are shown in Fig. 15. The two eigenvalues with the smallest
weight, 456, form a complex conjugate pair in the dispersive
regime, which splits up into two real eigenvalues in the EN
and adiabatic regimes. In the EN regime, four components
make significant contributions (the fourth one, not shown in

0.8 ——rrrr——

relaxation rate

FIG. 17. Dispersion of the integral relaxation rate R, its self-correlation part
ﬁje”, and the initial relaxation rate RY (all three in units of w3 7¢) for the A3
spin system modulated by symmetric-top rotational diffusion withy = 10 and
the principal rotation axis along the IS internuclear vector.
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Fig. 15, is ¢s = 0.038), as compared to only two components
for isotropic rotation (Fig. 5, Table III). As a result, the
relaxation function is markedly non-exponential (Fig. 16)
with Opmax = 0.082 as compared to 0.002 in the isotropic
case. In the dispersive regime, there are five relaxation
components (Fig. 15), as compared to three in the isotropic
case (Fig. 5, Table III). However, because the four major (real)
eigenvalues are of similar magnitude (Fig. 15), relaxation is
nearly exponential (Fig. 16) with 6. = 0.008 at wo 7 = 1.
Distinct cq\rrelations now have a substantial effect (Fig. 17),
reducing R; by up to 25%, as compared to 0.8% in the
isotropic case (Fig. 6). Despite the large rotational anisotropy
(y = 10) used here, the dispersion shape is only slightly more
extended than expected for a single correlation time because
the dispersion profiles of the three spectral density functions
Jn(w) in Eq. (61) overlap. The OSDF increases R; by at most
0.02% in the dispersive regime, but this effect becomes more
pronounced for larger rotational anisotropy. For example,
for y = 200, the OSDF increases R; by up to 1.9% for the
Aj system and by up to 22.5% for the AyA’ system with

p=103° and 6 = 7°. For still larger y, the OSDF effect
increases further.

V. NON-ISOCHRONOUS SPINS

For the sake of simplicity and clarity, we assumed at the
outset that the three spins are isochronous. We now remove this
restriction, replacing the Zeeman Hamiltonian in Eq. (1) by

HZ:a)IIZ+u)SSZ+prZ
=wo[l; + (1 +0s) S, + (1 +6p) P.], (64)

with the “chemical shifts” defined with reference to spin I so
6r=0and 6x = (wx — wy)/wy for X = S or P. The analytical
complexity of the non-isochronous three-spin BWR theory
can be avoided by realizing that, within the MN regime (wp 7.
< 1), the spherical-top rotational diffusion and strong-collision
models produce the same relaxation behavior. This must be
so because both models yield the time correlation function in
Eq. (46), albeit with different interpretations of the correlation
time. Moreover, for the strong-collision model, the orienta-
tional part of the stochastic Liouville equation (SLE) can be
solved analytically, thereby allowing the integral relaxation
rate to be obtained with modest computational effort.3®

By a straight-forward extension of the two-spin SLE
theory,>® we can, in full analogy with Eq. (40), compute the
integral relaxation rate as

-1
3 3
1 ,
§y=522mﬁM , (65)
n=1 p=1

where Rg; g is the supermatrix representation of the relaxation
superoperator

RsLg = <(TC_]8 +iLz+i -£D>_l>_] -77'8. (66)

Here, & is the identity superoperator, £ and Lp are the
Liouvillians corresponding to the Hamiltonians in Egs. (64)
and (2), respectively, and the angular brackets signify an
isotropic orientational average. As a bonus, the SLE theory
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FIG. 18. Relative difference (ﬁFWR—ﬁfLE)/ﬁ?LE of integral relaxation
rates computed with BWR and SLE theories, the former with or without
inclusion of the OSDF, for an isochronous AA’ system with Sp =108°,
wp, 15 = 10% rad s71, T = 1077 s, and isotropic motion.

is valid also outside the MN regime, although the strong
collision and spherical-top rotational diffusion models are then
no longer equivalent. Because the relaxation superoperator
R sLg is isotropically averaged, it must reflect the cylindrical
symmetry of the spin system. Consequently, selection rule (28)
applies so we only need to retain the 19 X 19 zero-quantum
block of Rgi g (Sec. II D 2). This is true also outside the MN
regime. Within the MN regime, the relaxation supermatrix
Rg; g must be identical to the supermatrix Rgwg that would
be obtained from the non-isochronous BWR theory, although
this is not obvious from the corresponding superoperators.
Furthermore, because chemical shifts can only break nuclear
permutation symmetry, the non-isochronous BWR relaxation
superoperator Rgwg is still invariant under spin inversion
conjugation. Therefore, within the MN regime, we need only
consider the 10 X 10 block of Rgig, corresponding to the
invariant subspace spanned by the basis operators in Table II.

Before examining the effect of chemical shifts, we shall
use the SLE theory to check our conclusion, based on
BWR theory, that the OSDF affects longitudinal relaxation.

18 LML L ALLL LA DL IR IR I
16 F
1.4
12}
1.0
0.8 |
0.6 |-
0.4
0.2
0 PENERTTIT R R T BTSSRI B SR TITT BTSSRI B 1
102 10* 10° 10% 107 10®8 10°
w, (rad 3'1)

Ry (Sgl)

FIG. 19. Dispersion of the integral relaxation rate R, for isochronous
(dashed) or chemically shifted (solid curves) AA’A” systems with By = 80°
and Bs=40° and isotropic motion. Parameter values: wp,;s= 10* rad s,
7.=10"8s,6p =265 =10% 100, 1, and 0.1 ppm (from left to right).
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If this is true, then RS computed from Egs. (65) and
(66), which implicitly incorporate any effect of the OSDEF,
should agree with R*"R computed with the aid of Egs. (23)
and (47)-(49) provided that the imaginary part of J(w) is
included. As seen from Fig. 18, this prediction is confirmed
quantitatively. Because wp j5 7. = 1073 in this calculation, the
relative difference between RPWR and RS due to the MN
approximation is less than 0.001%.

Using the SLE computational scheme, Egs. (65) and (66),
but with parameter values in the MN regime (wp js 7c = 107%),
we now examine the effect on the integral relaxation dispersion
Ri(wp) of chemical shifts of different magnitudes. We set
0p =20ds so that all three spins have different Larmor
frequencies and we let 6p vary from 0.1 to 1000 ppm
('H shifts rarely exceed 10 ppm). The results in Fig. 19
show that chemical shifts increase R; by up to 17.6% for
an AA’A” system with B; = 80° and Bgs = 40°. Figure 20
shows how the shift effect depends on the nuclear geometry.
For the Aj geometry, the maximum effect is only 0.42% for
s =5 ppm and 6p = 10 ppm, but for the A,A’ and AA’A”
systems the maximum shift effect is larger (19.4% and 17.4%,
respectively) and depends on the triangle angles. (We still
use the spin system notation solely to indicate geometric
symmetry.)

For non-isochronous spins, the relaxation dispersion
profiles are non-monotonic (Fig. 19). This unusual feature
appears because not all of the ISTOs T,%,,(X ) in the dipolar
Hamiltonian (3) are eigenoperators of the Zeeman Liouvillian
corresponding to Eq. (64). For homonuclear spins (so that
ds, 0p < 1), the only effect of this complication is that
each of the superoperators Cp' in Eq. (11) becomes a
(double) sum of superoperators (derived from eigenoperators
of L) multiplied by oscillating factors exp(i wXY¥, ., t) with

MNN’
frequencies wXY ., that are linear combinations of the shifts

MNN’

0s and d p. If this frequency, of order 6 wy, is much larger than
the corresponding “partial relaxation rate,” of order a)%) T, then
the modulated term is effectively cancelled and only terms

with w¥¥ ., = 0 survive. The Larmor frequency where this

20

difference (%)

10*  10° 10%° 10”7 10®  10°

w, (rad s
FIG. 20. Relative difference [ﬁl(és,ép)—ﬁl(o, O)]/ﬁl(O, 0) of integral re-
laxation rates with and without chemical shifts for the A3, AyA’, and AA’A”
systems with isotropic motion. Parameter values: wp, 5= 10* rad s7!, 7.
=1078s, 65 =5 ppm, §p = 10 ppm, Bp = 120° (A2A’ system), and B = 80°,
Bs=40° (AA’A” system).
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“nonsecular decoupling” (NSD) sets in is thus given by

w% T

5
where wp and ¢ characterize the magnitudes of the dipole
couplings and shifts, respectively. For example, for wp = 10*
rad s7!, 7. =108 s, and 6p = 100 ppm, Eq. (67) yields
wxsp = 10% rad s7! (Fig. 19).

For a given pair of dipole couplings X and Y, C A}fIY isasum
of 14 terms. In the general case, where ds # Jp, the number
of terms for which w} \, =0 is six for self-correlations
(X =7Y) but only two for distinct correlations (X # Y). The
NSD thus mainly suppresses distinct correlations, which tend
to slow down relaxation, so an “inverted dispersion,” where
R increases with frequency, appears at wy ~ w nsp (Fig. 19).
The greater susceptibility of distinct correlations to NSD also
explains the very small chemical-shift effect on the Az system
(Fig. 20), where R) is only marginally influenced by distinct
correlations (Fig. 6).

According to Eq. (67), the NSD frequency increases
linearly with the correlation time. When 7 is so long that w nsp
approaches the main dispersion at wy = 1/7, the chemical-
shift effect is diminished (Fig. 21) and when wnsp is far
above the main dispersion, so that § < (wp 7.)%, chemical
shifts do not affect longitudinal relaxation. Outside the MN
regime, where wp 7. 2 1, chemical shifts can therefore safely
be ignored when considering the longitudinal relaxation of
homonuclear spin systems.

Also in the presence of chemical shifts, the relaxation
supermatrix is symmetric (Rp,, = R,,) and the odd-rank
(n = 1-7) and even-rank (n = 8-10) blocks are real-valued
while the mixed odd-even blocks are pure imaginary (Fig. 1).
However, the imaginary supermatrix elements are now caused
by chemical shifts as well as by the OSDF. In fact, the chemical
shifts only affect the imaginary elements. Specifically, they
affect the coupling between odd-rank ZQCs (n = 4-7) and
even-rank ZQCs (n = 8-10). In the isochronous A,A’ system,
the / & § interchange symmetry prohibits coupling between
the symmetric ZQCs o4, 06, and 07 and the anti-symmetric

WNSD ~ (67)

20 ARRLLN IR LLLL LA DL IR I B

15
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difference (%)

104 10° 10®8 107 10%® 10°
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FIG. 21. Relative difference [R1(5s,8p)— R1(0,0)]/R1(0,0) of integral re-
laxation rates with and without chemical shifts for the AA’A” system with
B1=380° Bs=40° and isotropic motion. Parameter values: wp, s = 10* rad
s™!, 65 =5 ppm, 6 p = 10 ppm, and 7. as indicated.
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ZQCs og and 0. In the presence of chemical shifts, the [ < §
interchange symmetry is broken above the NSD frequency,
leading to mixing of these modes. Just like anisotropic rotation
(Sec. IV B), chemical shifts make the AyA’ system behave
qualitatively as an AA’A” system, with up to ten relaxation
components in the dispersive regime. Presumably, the OSDF
affects longitudinal relaxation also in the Ajz system with
isotropic motion if the nuclear permutation symmetry is
broken by chemical shifts. However, without actually solving
the non-isochronous BWR problem, we cannot demonstrate
this particular OSDF effect, which is likely to be small.
For the A;A’ and AA’A” systems, on the othg hand, our
calculations show that the combined effect on R; of typical
proton chemical shifts (of order 1 ppm) and the OSDF is 1-2
orders of magnitude larger than the effect of the chemical
shifts alone.

VI. CONCLUSIONS

We have revisited the problem of longitudinal relaxation
in a dipole-coupled homonuclear three-spin system, first ad-
dressed by Hubbard in 1958.> Nearly all subsequent studies
of this problem have been concerned with the special, but
important, case of three geometrically equivalent, isochronous
spins. In contrast, our treatment is valid for arbitrary geometry.
By formulating the BWR theory in Liouville space and making
full use of symmetry, we establish the number of exponen-
tial relaxation components for all nuclear geometries and for
isotropic as well as anisotropic motions. We characterize the
relaxation behavior with an eigenmode expansion and with
the integral relaxation rate, both of which are examined over
the full frequency range. We also investigate the effect of
chemical shifts on the integral relaxation rate by means of
the stochastic Liouville equation. This is a computationally
efficient approach because the orientational part of the sto-
chastic Liouville equation can be solved analytically for the
strong-collision model, which is equivalent to the spherical-top
rotational diffusion model in the motional-narrowing regime.

The main results of this study are as follows.

(1) Using an irreducible spherical tensor operator basis, we
show that longitudinal relaxation in a three-spin system
interacting with an isotropic bath can be fully described
within an invariant subspace spanned by ten zero-quantum
operators that, like the relaxation superoperator, are invari-
ant under spin inversion conjugation. These basis opera-
tors correspond to the three longitudinal magnetizations
and seven zero-quantum coherences. The 10 x 10 relaxa-
tion supermatrix, valid for arbitrary nuclear geometry and
motional model, is obtained in analytical form.

(2) Contrary to conventional wisdom,'®-2* we find that the odd
spectral density contributes, via distinct correlations, to
longitudinal relaxation in the dispersive regime if the three
spins are geometrically or dynamically nonequivalent.
For the A;A’ and AA’A” geometries with dynamically
equivalent spins, we reproduce the results of Schneider,'3
but we also find that the odd spectral density influences
longitudinal relaxation for the Az system in the presence
of symmetry-breaking motions. For strong rotational
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anisotropy, the OSDF can enhance the integral relaxation
rate by more than 25%.

(3) The symmetric-top rotational diffusion model with
arbitrary orientation of the principal rotation axis has
not previously been investigated for multi-spin systems.
For this model, we find that longitudinal relaxation
in the Az geometry involves up to six exponential
components. In contrast, previous studies of the Aj
geometry, restricted to motional models that do not break
the nuclear permutation symmetry, have found at most
three relaxation components. !’

(4) Chemical shifts break the nuclear permutation symmetry,
thereby increasing the number of relaxation components.
An inverted relaxation dispersion step is predicted at the
frequency where the differential precession rate matches
the relaxation rate. Above this frequency, nonsecular
decoupling preferentially eliminates contributions from
distinct correlations, thereby increasing the integral
relaxation rate. The effect of chemical shifts disappears
when the nonsecular decoupling frequency exceeds
the main dispersion frequency, as is always the case
for homonuclear spin systems outside the motional-
narrowing regime.
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APPENDIX A: THE C;;” MATRICES

Here we show how to evaluate the coefficient matrices C3; that, together with Egs.
(12) and (23), define the relaxation supermatrix in the ISTO basis. We prove that these
matrices are real-valued and we present in explicit form the 10 x 10 C3;” matrices needed
to describe longitudinal relaxation in a three-spin system.

Our starting point is Eq. (24), we may be expressed as

Citnp = T [T5 (hiks { K kp) T, T3y (Lils { L) | [T (U { LY p) T, TS (K ks { K Yep) ]
(A1)
Using Eq. (19) and the single-spin ISTO conjugation relation' Tt = (—1)?T* . we obtain
for the first commutator in Eq. (A.1),

(15 (kiks{ K} kp)T, T3 (Lils{L}p)]
_ (_1)k:f—ks—kp-&-f(-l-lz—ls—lp-&-i-i-M\/g[<2K_’_ 1)(2K+ 1)(2E+ 1)]1/2

y i kr (_1)Q }? /{;P K k’] k’s Rf (A 2)
= QQ-Q Q)\au Q-a —Q
Lo d (L 9 l l L
1M P I S
XMZMZII( 1 (M M — M —M)(rl M—r; —M )Cl’

with

Cr = [TH, (D) T2 () Ty o(P), TH() T, () Ty (P)]

—ar ar—Q

= [Th, (D), TH(D] Ty, (S) T

—9qr

() T (P)TE (P)
+ Th, (D) T [TF 5(9), Tl ()Tl (P)TEr (P)

+ T (D) T T2 o(S) T, ([T o (P), Thy_(P)] .

I

Using the general expression for single-spin ISTO commutators? and noting that, for

spins-1/2, the tensor rank must be 0 or 1, we find
[qua Trrln] = 5]61 6l1 ( ) \/_ q+m ) (A4)
where we have defined the sign function (equal to 0, +1 or —1)
¢(Q>m) = (1 - 5qm) [(1 - 6m0) Sgn(m) - Um0 Sgn(Q)] : (A5)
Combination of Egs. (A.2) —(A.4) yields

[T5 (kiks{ K }kp)t, Thi(ils{L}p)] = Ar+ As+ Ap, (A.6)
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(A7)

K — _
s (_1)Q<I_( 1K )(k, ks K
P — Q Q-Q -Q )\ u Q-ua —Q

o (A.9)
! (L 1 2 L
<3S (" ] b s L
L L M M—M —M rr M—r; —M
M=—Lri=—Ir

< O(Q — Q.M — NI) T, (1) TH (1) T (S) T (S) Th_y1_ g (P)

In the same way, we obtain for the second commutator in Eq. (A.1),

(T3 (LY )T, TG (KR { K Y k)]

= [T (ki { K" hp)!, T3 (1A DY) = Af+ A+ A}
A comparison of Egs. (A.6) and (A.10) shows that A}, A and A% can be obtained from

A, Ag and Ap in Egs. (A.7) — (A.9) by adding a prime to all quantum numbers except

M and taking the adjoint of all five single-spin ISTOs (remembering to invert their order).
Combination of Egs. (A.1), (A.6) and (A.10) yields

(A.10)

Cvp = Tr{A; AT} + Tr{A[AG} + Tr{A; AL}
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Substitution from Eqs. (A.7) — (A.9) and the analogous expressions for the primed quan-
tities shows that the traces factorize into partial traces over products of two, three or four

single-spin ISTOs. The first of these is simply
TH{TITE Y = g g (—1)7, (A.12)

as follows from the orthonormality (21) of the single-spin ISTOs. The trace over a product
of three single-spin-1/2 ISTOs is given by?

Tr{T(;C qu,, Tq’“,:/} — 5q,,’_q_q, (_1)k+k’+k”+1
kKK kK kK (A.13)
x[<2k+1><2k’+1><2k"+1>1”2< ){ 1 }

1
2 2

q ¢ —q—¢ 3
and the trace over a product of four single-spin-1/2 ISTOs is given by?
Tl“{qu qu’/ qu':/ qu’::/} = (5q+q/7—qu_q/,/ (_1)k+k/+k”+k/”+‘I+Q'

x [(2k + 1) (2K + 1) (2k" + 1)(2k" + 1)]'/2

XZ(2A+1)<k KA )( roow ’“) (A.14)

= g ¢ —q—¢ —q"—q" ¢" ¢

k k:/ )\ )\ k// k:l//
Y111 111 (0
2 2 2 2 2 2

where the summation range, A = 0, 1, follows from the triangular conditions on the 67
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symbols.! We can now evaluate the nine traces in Eq. (A.11). For example,
TI'{A[A{S} = 5@@/ 6161,1 (511,1 5]%,71 5%71 <—1)K+R/+E+E/+M
x 30 [(2K 4+ 1)(2K' +1)(2K + 1)(2K" + 1)(2L + 1)(2L' + 1)]V/*
X [(2K) + 1)(20; + 1)(2ks + 1)(2lg + 1) (2kp + 1) (2K + 1)(21p + 1) (20 + 1)]/?

KL (K kK 1 ks K
XZZ(@ Q-Q —@)<qf Q-a —Q)

Q=—-Kaq=-1
K’ K} — _
A K ! K’ d 1 K’
X Z (_1)Q oY kP / kl oY / oY
e @ Q-@ Q)\q @4 -Q

M'=—L' ==}

y i Z’ (1) L:’ 2 nooo1 L_’_ (A.15)
v M M-M —-M e M —ry =M
!/

X ¢(_q17 TI) ¢(q} - le M T,I) 57"1 —qr,77—q} 5M Q.M —Q’

y I kg 1 1 ly Kk
M —r; QI—Q TI—QI+Q—M r—dqr -7 4
ls kg ok,

X{l 1 }{ 11
2 2 2 2

1
XZ (2A+ 1) e ke A _
e M-M Q-Q M-M+Q-0Q

y A K I lp kp

M-M+Q-Q Q-Q M -M T 3

and similar expressions for the other eight traces.

N|— =
N|—= =

l= N

f

It is evident from these expressions that all the coefficients C;”  are real-valued. This

= >
N | $
o~
N[ —= N>
—

may be shown without evaluating the traces by the following arguments. According to
Egs. (A.6) — (A.9) and (A.11), O3, can be expressed as a linear combination, with

real-valued coefficients, of products Z;Z¢Zp of single-spin traces of the form

Zp = T {TH () T2(I) - Tin(D)} (A.16)

qn

with n = 2, 3 or 4. Evaluating the traces in the angular momentum eigenbasis and noting
that?

(Im|THD|Im') = (-1)"7 m(2k+1)1/2< Ik ) (A.17)

-m q m
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is a real-valued quantity, it follows that all matrix elements C’ﬁ};p are real-valued in the
ISTO basis.

From the foregoing expressions, we can obtain the 45 different 63 x 63 matrices C3," .
Because of symmetry relations (Sect. IT D), we only need to compute 18 of these 45
matrices. Moreover, to describe longitudinal relaxation, we only need the first 10 x 10
block of C3;", corresponding to the ten zero-quantum (Q = 0) basis operators (Table II)
with odd spin inversion conjugation parity (Sect. IT D). These 18 submatrices are given in
Eqgs. (A.18) — (A.35) with the spin pairs (X and Y') indexed as follows: 1 = 15,2 =[P
and 3 = SP.
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-3v10/5 —3v10/5 +/30/5 0  —6/5 3/5 V15/5  —/30/5 0
-6 -6 -2 0 V10/5 —V/15/5 -1 V2 0
-3 -3 -1 0 V5/5 —/30/10 —/2/2 1 0
-3 -3 V3 0 —V15/5  3v/10/10 V6/2 -3 0
0 0 —2v/3 0 2v/15/5 —3v/10/5 -6 23 0
0 0 0 0 0 0 0 0 0
0 0 —2V3 0 2v15/5  —3v10/5 -6 23 0
—2v/3 —2v/3 0 0 0 0 0 0 0
0 0 0 -3/2  —=3v/15/10 —3/10/10 V6/2 V3/2 3/2
2v/15/5  2v/15/5 0 3v/15/10 9/10 3v6/10  —3v10/10 —3v5/10 —3/15/10
—3v10/5 —3v10/5 0 3v10/10  3+/6/10 3/5 —/15/5  —/30/10 —3+/10/10
NG NG 0 V6/2 3v/10/10 V15/5 -1 —V2/2 —6/2
—2V73 —2v/3 0 V3/2 3v/5/10 v/30/10 —V2/2 —1/2 —V/3/2
0 0 0 -3/2  —3V15/10 -3v10/10 V6,2 V3/2 3/2
(A.35)
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APPENDIX B: SELECTION RULES

Here we derive the two selection rules

Coop = 0, forn=1—-3andp=4-10, (B.1a)
C’A)%w = Jdxy C’ﬁx for n,p=1-3, (B.1b)

np

where the indices refer to the basis operator ordering in Table II. From the explicit matrices
in Egs. (A.18) — (A.35), it can be verified that these rules are obeyed.

Both selection rules can be derived from the second form of Eq. (24),
Cinp = — T {(TH(X) BL) (T3 (Y)'B,) } - (B.2)

In both selection rules, B, is a single-spin longitudinal basis operator. The first commu-
tator in Eq. (B.2) is then either zero or a sum of products of two single-spin operators
associated with each of the two spins involved in the dipole coupling X.

In rule (B.1a), B, is a three-spin ZQC operator and Y = X. The second commutator
then yields a sum of products of 4 single-spin operators, one of which is not associated
with X. The product of the two commutators is therefore a sum of terms, each of which
contains only one single-spin operator for the spin that does not belong to X. Equation
(B.1a) then follows by noting that the (partial) trace of a single-spin operator is zero, e.g.,
Tr{I,} = Tr;{I.} = 0.

In the selection rule (B.1b), B, is a single-spin longitudinal basis operator, like B,,. If
Y # X, the second commutator is then either zero or a sum of products of two single-spin
operators associated with each of the two spins involved in the dipole coupling Y. Since
the distinct dipole couplings X and Y share one spin, it follows that the product of the
two commutators is a sum of terms, each of which contains only one single-spin operator
for each of the two spins that are not shared by X and Y. Since the partial trace of each

of these two operators is zero, Eq. (B.1b) follows.
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APPENDIX C: A; RELAXATION SUPERMATRIX

For convenience, we reproduce here the known? relaxation supermatrix R for the A5 spin
system in the fully symmetry-adapted basis in Eq. (52). By making use of Eqs. (23),
(30) and (47) — (49), we obtain

4

R =1

w3 > (2 = da0) Car j (Muwp) (C.1)

M=0

where

Cy=Y (cggx iy Cff}) | (C2)

X Y#X
The fully symmetry-adapted basis operators in Eq. (52) are linear combinations of the

basis operators in Table II,
By = Y Uan B, (C.3)

where the coefficients U, are given in Eq. (52). Consequently,

CA)SI?;ﬁ = Z Z Uom Uﬁn C])\SI?:Lp : (C4)
nop

Using Egs. (C.2), (C.4) and the C3;” matrices in Appendix A, we find

. [0 0 0
60=% 0 54  =27v6 |, (C.5a)
|0 —27V6 8l
X [ 80  —2v5 —4y30 |
C, = 0 —2v5 88 416 |, (C.5b)
| —4V30 41v6 222
X [ 320 —8V5  4v30 |
C, = ) -85 28 —146 | . (C.5¢)
| 430 —-14V6 42
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Substitution of these matrices into Eq. (C.1) yields the relaxation matrix R. Like R, it

is a symmetric matrix and the six unique elements are

Rll
R22
R33
R12
R13

Rog

= %wﬁ(y’lwm , (C.6a)
_%w§(27j0+44j1+14j2), (C.6b)
_ ﬁw§(27jo+74j1+14j2), (C.6c)
—F\/iwg(ﬁﬂ“l]é) ; (C.6d)
—gwé(ﬁ —J2) (C.Ge)
—£W§(27JO — 415 +14j,) . (C.6f)

These results agree fully with Eq. (5.5) in the review by Werbelow and Grant.*
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APPENDIX D: AXIAL INTERNAL ROTATION

Here we derive the spectral density function Jxy(w), defined by Egs. (9) and (12),
for a model with rotational diffusion about an axis perpendicular to the nuclear plane
superimposed on spherical-top rotational diffusion of the nuclear plane.

Transforming from the lab frame (with the z;, axis along the By field) to the inter-
nuclear frame (with the zx axis along the internuclear vector rx) via the axial internal-

motion frame (with the z5 axis perpendicular to the nuclear plane), we have'

2

Py(costx) = > Diw(Qua) Dig(Qax) - (D.1)

N=-2

Inserting this expression into Eq. (9) and assuming that the two motions are statistically

independent, we obtain

Gxy (T Z Z Dy (Q1a(0)) Dy (Qa(7))) (DRo(Q2ax(0) Do (Qav (7)) -
N=—2 N'=-2
(D.2)
For spherical-top rotational diffusion,
1
(Don(Q0a(0)) Dir(Qa(r))) = dnne = exp(=7/7r) (D.3)

with the rotational correlation time 7 = 1/(6 Dg). Combination of Egs. (D.2) and (D.3)
yields

Gxr(r) = ¢ expl(—r/m) G (7). (D.4)

with the internal-motion time correlation function
Gl (7) Z (D36(2ax(0)) Do (Quv(7))) - (D.5)

Since the z, axis perpendicular to the nuclear plane,

2

Gt (1) = Y [dio(m/2)]* (exp{iN[ax(0) — ay(n)]}) . (D.6)

N=—2

Introducing the fixed angle, Sxy = ax(7) — ay(7), between internuclear vectors rx and
ry and noting that the angular displacement ¢(7) = ax(7) — ax(0) is the same for all

three internuclear vectors, we can write Eq. (D.6) as

2

Gt (1) = Y [dxo(m/2)]* exp(iN Bxy) {exp[=iNe(7)]) . (D.7)

N=—2

For one-dimensional rotational diffusion,
(exp[—iN¢(T)]) = exp(=N’Din) . (D.8)
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Inserting this result and evaluating the reduced Wigner functions in Eq. (D.7), we obtain
Gi (1) = 1 + cos(26xy) exp(—7/Tmt) , (D.9)

with 7 = 1/(4 Ding)-
The desired spectral density function is now obtained by combining Eqgs. (12), (D.4)
and (D.9), with the result

1
ny(W) = 1_5WD7X WD7y[JR(W) +3 COS(QBX}/) Jint(CU)] s (DlO)
with
Jalw) = — B (1+iwm) (D.11)
t 14 (wrr)? o '
and
TR, int .
Jt(w) = ————— (1 + 1 WTRint) » D.12
) = T (1 ) (D12)
where
TR,int = L (D.13)
TR T Tint
In the absence of internal rotation, Dy = 0 so that Ji(w) = Jr(w) and, since 1 +

3 cos(2Bxy) = 4 Pa(cos Bxy), Eq. (D.10) reduces to the result in Eqs. (47) — (49).
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APPENDIX E: SYMMETRIC-TOP ROTATION

Here we derive the spectral density function Jyy (w), defined by Egs. (9) and (12), for
the symmetric-top rotational diffusion model.

We now transform from the lab frame (with the 2z, axis along the By field) to the
internuclear frame (with the zy axis along the internuclear vector rx) via two intermediate
frames: the rotation frame (with the zg axis along the principal axis of the rotational
diffusion tensor) and the axial frame (with the z, axis perpendicular to the nuclear plane).

We then have!

Py(cosly) = Z Z DE(QLR) D25o(Qra) D2o(Qax) - (E.1)

N=-2 P=

Inserting this expression into Eq. (9), we obtain

GXY Z Z Z Z <D QLR 0N/(QLR(7))>

N=—2 N'=—2 P=—2 P'=—2 (E.2)
X D p(Qra) Divpr (Qra) Do (ax) Dprg(Qay)

where Euler angles without argument are time-independent. For symmetric-top rotational

diffusion,
1
(Don(Qur(0)) Do (Qr(7))) = dnne = exp(=7/7n) , (E.3)
with the correlation times 7y as given by Eq. (58). Combining Eqs. (E.2) and (E.3) and

noting that 7_y = 7, d2y_p(8) = (~1)"~V d3p(8) and Bax = 7/2, we obtain

2

1

20 E (2 = 0no) Hxy,n exp(—7/7n) , (E4)
N=0

ny(T) =

with the real-valued, time-independent, geometric coefficients given by
2
Hxyn = [dio(9)]

— V6 d}o(0) [d3,(0) + d}_,(19)] cos(@x — Gy) cos(@x + ay)

[ @) + [@a0)])} cos2(@x — av)

+ 3d3o (V) dy_o(9) cos[2(ax + ay)] .

(E.5)

Here, ¥ = fra is the angle between the principal rotation axis zg and the nuclear plane
normal z,. Furthermore, ay = ax — va, where 7, is the azimuthal angle of z, in the R
frame and ax is the azimuthal angle of rx in the A frame.

The desired spectral density function is now obtained by combining Egs. (12) and
(E.4), with the result

Jxy (W Z Dxyn In(w), (E.6)
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with

Dxyn = 15 WX @Wpy (2 —0n0) Hxyn , (E.7)
and
™ .
= — " (1 . E.
JN<w) 1 + (WTN)z ( _’_ZWTN) ( 8)

For the special case where the principal rotation axis zg is perpendicular to the nuclear

plane, we have ¥ = 0. Since d%5(0) = dyp, Eq. (E.5) then reduces to

Hxyn = dno + (On2 + dn_2)cos(2Bxy), (E.9)

where we have also noted that fxy = ax — ay = dx — a@y. Combination of Egs. (E.6),
(E.7) and (E.9) then yields

ny(u}) = 1—15 WD, X wD,y[Jo(w) +3 COS(Qﬁxy) JQ((,U)] , (ElO)

which is of the same form as Eq. (D.10) for the axial rotation model.

For the special case where the principal rotation axis zr lies in the nuclear plane
making an angle 6 with the x axis, we have ¥ = 7/2 and 5 = m — . Substituting these
angles in Eq. (E.5) and using Eqs. (E.6) and (E.7), we find

2
4 - -
ny(w) = 1—5 Wp, x wD7yZ(2 — (SN()) d]%,O(aX) d]%m(Oéy) JN((,LJ) y (Ell)
N=0
with ax = ax + 6. Because of the uniaxial symmetry of the rotational diffusion tensor,
we can, without loss of generality, take the x5 axis to coincide with the r;g vector. Then
ars =0, arp = 01, agp = m — Bs and 6 specifies the orientation of the principal rotation

axis in the nuclear plane relative to r;g.
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