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ABSTRACT: When several individuals simultaneously provide for off-
spring, as in families, the effort of any one individual will depend
on the efforts of the other family members. This conflict of interest
among family members is made more complicated by their relat-
edness because relatives share genetic interest to some degree. The
conflict resolution will also be influenced by the differences in re-
productive value between breeders and helpers. Here, we calculate
evolutionarily stable provisioning efforts in families with up to two
helpers. We explicitly consider that the behavioral choices are made
in a life-history context, and we also consider how group sizes change
dynamically; this affects, for example, average relatedness among
group members. We assume two different scenarios: intact families
in which the breeder is 100% monogamous and stepfamilies in which
the breeder shifts mate between breeding events. The average relat-
edness among family members is allowed to evolve in concert with
changes in provisioning effort. Our model shows that an individual’s
provisioning effort is not easy to predict from either its relatedness
to the offspring or its reproductive value. Instead, it is necessary to
consider the inclusive fitness effect of provisioning, which is deter-
mined by a combination of relatedness, reproductive value, and the
reproductive value of the offspring.

Keywords: cooperative breeding, provisioning efforts, load lightening,
family dynamics, ESS, evolutionary conflict.

Cooperatively breeding animals tend to live in families. In
nonhuman animals, these families consist of related in-
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dividuals living together into adulthood and helping to
rear nondescendant young (Brown and Brown 1981; Em-
len 1995, 1996, 1997; Emlen et al. 1995; Cockburn 1998).
However, such a simple definition belies the complexity
of family dynamics. For example, depending on birth,
death, and dispersal events, the number of individuals liv-
ing within a family will vary enormously over time. In
addition, death, divorce, and cuckoldry will alter the de-
gree of kinship both between and within generations. So,
families can be subdivided into “intact” families, in which
both original parents are still present, or “replacement”
families or stepfamilies, in which at least one of the breed-
ers is unrelated to at least some of the offspring in the
group (sensu Emlen 1995). Finally, the environmental con-
ditions experienced by members of a genetic lineage oc-
cupying the same territory will change from year to year.
In concert, these three factors can influence the costs and
benefits to individuals of living within a family and hence
their contributions to caring for the offspring of the group.

Although group size, kinship, and environmental con-
ditions will influence the amount an individual invests in
helping behavior, when studying the evolution of families,
one should not focus on an individual in isolation. By
their very nature, families are the result of dynamic in-
teractions among a number of individuals. To understand
family dynamics, it is crucial to consider that whenever
several individuals simultaneously provide care to off-
spring, the optimal effort of any one individual depends
on the effort of the other individuals (Chase 1980; Crick
1992; Hatchwell 1999; Kokko et al. 2002). An optimal level
of effort is determined by a trade-off between the benefit
for the offspring and the cost in terms of future survival
and reproduction. So, if a helper provides a lot of care,
this enables the parents to decrease their effort and increase
their survival chances while the survival probability of the
young is maintained or even improved (Komdeur 1994).
This effect of helping is known as the “load-lightening”
hypothesis (Crick 1992). However, helping may decrease
the helper’s own chances of survival and reproduction
(e.g., Heinsohn and Cockburn 1994). So, because all family
members generally want the others to provide a greater
share of the care, conflicts are built into the relationships
among care providers. This game of conflict over provi-
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sioning has been thoroughly studied for parents but less
well for cooperatively breeding species (Chase 1980; Hous-
ton and Davies 1985; Lazarus and Inglis 1986; Winkler
1987; Lazarus 1990; Motro 1994; Lessels 1998; Hatchwell
1999; Wright and Dingemanse 1999; Cant and Field 2001;
Khan and Walters 2002). However, although parents are
usually unrelated to each other, family members are usually
relatives and share genetic interest in one another. This
will affect the degree of conflict among members because
the inclusive fitness of all parties now depends on the
fitness of the associated individuals as well. This differ-
entiation between the interparental conflict and intrafam-
ily conflicts makes the general prediction of conflict more
complex in cooperatively breeding groups.

Here, we present a theoretical model of the conflict game
over caring in family groups and its resolution. The model
allows us to examine the inclusive fitness and reproductive
values of family members in intact families as well as step-
families. We treat individuals as having different states,
defined as their position within the family. Any gene in
any individual may change state in the future (e.g., from
a helper to a breeder). These transitions occur with dif-
ferent rates that depend on the mortality and reproduction
rates of family members. We calculate the inclusive fitness
of all states on the basis of these differential rates of gene
transition and find an evolutionarily stable provisioning
effort for all individuals. The model automatically gives
us the effort compensation rule followed by family mem-
bers when the families increase in size. We compare the
pattern in stepfamilies with the pattern in intact families
and examine the variation in reproductive value among
family members.

Simultaneously, we introduce a novel version of the
method of evolutionary analysis where optimal behavior
is automatically linked to the life history it generates (Tay-
lor 1990; Houston and McNamara 1999). Although tra-
ditional life-history-based models use a discrete-time for-
mat, we will use an approach where births and deaths
occur continuously over time. Particularly in applications
to social behavior, the continuous-time approach allows a
significant computational simplification because we do not
have to consider the probability that several births and/or
deaths occur between two computational stages.

In our model, fitness as well as relatedness values are
determined through the dynamics of the population. So,
instead of making direct assumptions at the start of the
analysis about how helping behavior translates into in-
dividual fitness costs and benefits, we let the behavior
create the fitness expression via its effect on life history
and relatedness structure. This leads to a fitness expression
that correctly balances fitness benefits and costs of helping
behavior given the effects of helping on survival and pro-
ductivity (Houston and McNamara 1999).

The Caring Game
Individual States and Decisions

We model a population of a cooperatively breeding species.
The population is structured into floater individuals that
do not breed and individuals that belong to breeding
groups. We focus on “simple families” only (Emlen 1995),
in which a breeding group has only one breeding indi-
vidual and some breeding groups also contain one or two
helpers that do not reproduce. Helpers are assumed to be
offspring that stay at the parental territory instead of dis-
persing to breed independently.

We limit group sizes to a maximum of two helpers by
assuming that families with two helpers produce only dis-
persing floaters. In principle, the model can be extended
for any number of helpers, but this quickly leads to an
exponentially increasing and intractable number of states
to be followed. To limit the complexity of the model, we
therefore restrict our attention to cases where both helpers
benefit from staying, and we assume that group-size reg-
ulating factors exist to make additional offspring benefit
from becoming floaters and thereby leaving voluntarily.
Such factors might be territorial resource limitations
(Brown and Balda 1977; Woolfenden and Fitzpatrick 1984;
Balshine et al. 2001) or small prospects of territory in-
heritance (Kokko and Johnstone 1999; Ragsdale 1999;
Kokko and Ekman 2002).

With our choice of group sizes, an individual may thus
be in one of seven states: B, breeder without helpers; B,,
breeder with one helper; B, breeder with two helpers; H,
helper in a group of two; HD, dominant helper in group
of three; HS, subordinate helper in group of three; or E
floater. The individuals choose a level of caring effort in
every state except the floater state. This effort, x, is assumed
to increase reproductive success of the breeding group
equally independent of the identity of the individual that
makes the effort. The caring effort also increases the in-
dividuals’ mortality rate u(x). We assume that u(0) has a
small positive value corresponding to the mortality rate
without any provisioning effort. Our variable x should thus
be thought of as any costly parental or alloparental effort
that does not include any direct costs of reproduction,
such as egg production. Food provisioning for young is a
clear example of such help effort, and we will use “pro-
visioning effort” and “caring effort” interchangeably to
denote this variable.

To indicate state-specific provisioning effort, we will use
subscripts corresponding to the state (i.e., x,, X, X3 Xy
Xim» Xpys)- 10 shorten expressions, we will also use sub-
scripts to indicate the mortality rate of different states (i.e.,
w, = w(x), u, = ulx,), etc.). We will use u(x) = 0.1 +
kx* as a specific cost function in all our examples and for
all states. Although costs of helping may differ among



Table 1: Notation used in this article

Abbreviation/variable

Breeder without helpers B,
Breeder with one helper B,
Breeder with two helpers B,
Helper in family of two H

Dominant helper in family of three
Subordinate helper in family of three ~HS

Floater F

State-specific provisioning efforts Xi> X5 X35 Xep Xeupo Xias
Summed family effort X

Mortality rate as a function of effort  p(x) = 0.1 + kx*

Mortality acceleration with effort k
Reproduction rate of single breeder,
and with one or two helpers
State-specific reproductive values
Rate matrix for the gene transitions

& & &
V1> Uy Uss Uy Uy Vs

between states Q
Helper-parent relatedness in family

of two 1
Relatedness between parent and

dominant helper r,
Relatedness between dominant and

subordinate helper 7

states (Heinsohn and Legge 1999), our primary interest
here is to examine effects of relatedness and group com-
position, not those of variation in helping costs. The pa-
rameter k measures how fast mortality rate accelerates with
increases in effort. Table 1 provides a summary of the
notation we have used.

Any relation between the total effort of all family mem-
bers (x;) and breeder reproduction rate (g(x;), with
i = group size) can be used in the model, but we will
examine only two different cases. In the first case, the
reproductive rate increases linearly with total effort x,, so
g is the sum of all members’ efforts. For a single breeder,
the reproductive rate is g, = x,; for a breeder with two
helpers, g, = x, + x;; and for a breeder with two helpers,
g5 = X; T xyp T Xy This situation may occur when food
is difficult to find, and offspring regularly starve to death.

In the second case, the marginal increase in breeder
productivity decreases with total family effort. In other
words, the function g increases steeply at low total efforts
but saturates for high total efforts. The specific function
we use is g(x;) = 1 —exp (—x;). With this form, g first
increases with the same slope as in the earlier linear case
but gradually flattens out and reaches a stable level equal
to 1 at high total efforts. This may occur when offspring
starvation rate is low and food is easy to find, so carers
are able to satisfy the chicks’ metabolic needs. Next, we
model how the provisioning efforts determine the rates of
transition between states.
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Gene Flow between States

Important aspects of a social system with many different
states are that individuals may change state with time or
their genes may in the future be found in individuals of
another state. A breeder without helpers may produce one
offspring that, according to our assumptions, stays as a
helper. The breeder thus moves from state B, to B,. Like-
wise, an individual in state B, moves to state B,, which
has two helpers, if it produces an additional offspring that
stays as a helper. A helper (state H) becomes a dominant
helper (HD) if its breeding group increases in size to three
individuals. A helper becomes a breeder without helpers
if the old breeder dies. An HD individual moves to state
H if the subordinate helper (HS) dies or to state B, if the
breeder in the group dies. An HS individual becomes a
helper if either of the two other individuals in the group
dies. Consequently, a randomly chosen gene in any in-
dividual may find itself in another state in the future. These
transitions are results of deaths or reproduction and are
therefore influenced by the reproductive choices made by
all individuals.

The diagram in figure 1 shows all possible transitions
between different states. The transition rates given in the
figure are for a randomly chosen autosomal gene and as-
sume sexual reproduction. We thus take a gene’s-eye view
in the formulation of the model. This is necessary because
the dynamics involve both changes in state of the same
individual and production of new individuals when genes
are transferred via Mendelian inheritance. The rate of gene

Figure 1: Diagram depicting the directions of gene flow in the social
system. A focal gene in an individual in any of the states flows along an
arrow to a different state with the rate indicated by the symbol beside
the arrow. The states are grouped in columns by the breeding group size
to which they belong. The numbers at the top of the graph indicate the
breeding group size. For explanation, see table 1 and the text.
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transition from state B, (breeder without helper) to H is
£/2 because a randomly chosen gene in the parent breeder
is present in the offspring helper with probability 0.5. The
transition rate from B, to HS is g,/2 because this happens
when a breeder with one helper produces and retains one
additional offspring. The rate of gene transition from B,
to floater (F) is, for the same reasons, g,/2. The rate of
gene transition from floater to B, is the same as territory
acquisition rate of floaters, a. When the population size
is stable, floaters occupy new vacancies at the same rate
as the rate of formation of vacancies (app. A).

Reproductive Values

Focusing on any individual, in any state, we may pick a
gene at random and calculate the expected number of
direct descendants of this gene at a time far into the future
(Houston and McNamara 1999). This measure is called
the direct reproductive value of this state. In doing this,
we will make two assumptions. The first is that breeding
occurs continuously over time. Most state-based game-
theoretical models describe state dynamics in discrete time
(e.g., Frank 1998; Houston and McNamara 1999). We have
chosen a continuous-time approach partly because the
model becomes mathematically more tractable when we
measure the transitions with their time-constant rates
rather than their probability. This is because we do not
have to calculate the probability that several transitions
occur between two computational stages, or “observa-
tions” of the system. From a biological standpoint, con-
tinuous time is also a good assumption because many
cooperatively breeding birds are found in the tropics and
subtropics, where breeding can occur almost all year round
(Arnold and Owens 1998). The difference between con-
tinuous and discrete time is described in more detail in
appendix A.

The second assumption is that density dependence acts
to stabilize the population at an equilibrium size. At pop-
ulation equilibrium, the distribution of individuals in dif-
ferent states will be stable. The flow of genes between the
different states can then be described by a linear system.

Let v denote a vector of reproductive values [v,, v,, v,
Vi Vpp Uns Vg) Of different states. The dynamic system
dv/dt = vQ is a system of differential equations that cou-
ples the reproductive values, where Q is a matrix that holds
the instantaneous rates by which a gene in one state flows
to a different state. The rate matrix Q is written out in
appendix A. This system allows us to express the repro-
ductive values in terms of the rates by which genes flow
between states. If we know the transition rates in figure
1, we may calculate the resultant reproductive values at
the equilibrium state where the reproductive values are
constant over time (so dv/dt = 0). This gives us the re-

productive values traced through all possible state tran-
sitions and their rates (see app. A). To calculate the in-
clusive fitness of family members, we must also find the
genetic relatedness among them. These relatedness coef-
ficients are also derived from the family dynamics, as ex-
plained below.

Relatedness in Stepfamilies versus Intact Families

A helper will not always have relatedness 0.5 to the current
breeder even if helpers are always retained offspring. For
example, consider the case where two helpers are pro-
duced, but the breeder mated with different fathers to
produce them. The helpers are thus half-sibs. If the breeder
then dies and one of the helpers now accedes to dominant
status, the relatedness between the new breeder and the
remaining helper is 0.25. The expected value of the relat-
edness between the breeder and helper in a family of two
must therefore be the weighted average of possible relat-
ednesses weighted by the probability that the two-
individual system arose in the various ways: from a group
of size one by reproduction, from a group of size three
by death of breeder, from a group of size three by death
of dominant helper, or from a group of size three by death
of subordinate helper. These probabilities are all directly
affected by the dynamics of state changes. It follows that
if we know the intensities of transition between states, we
can deduce the relatedness among family members (Griffin
and West 2002).

In appendix B, we solve for the stable levels of relat-
ednesses that result from the dynamics associated with a
given set of provisioning efforts {x,, x,, X3, Xy Xip> Xps}-
We do this for two scenarios termed “intact families” and
“stepfamilies.” In intact families, the breeder is 100% mo-
nogamous and never shifts breeding partner, so all its off-
spring have the same parents. We may, for example, imag-
ine an insect female that mates only once and stores sperm
for future use. In stepfamilies, the breeder always divorces
its partner after every breeding event or has a high rate
of extrapair paternity, so all its offspring are half-sibs.
These two cases may be seen as extremes of intact families
and stepfamilies. Although extremes will be biologically
unrealistic in many cases, they will reveal the general im-
pact of reduced relatedness in stepfamilies.

Intact families also introduce a kind of asymmetry be-
tween breeders and helpers in the evaluation of each
other’s fitness. From the helpers’ viewpoint, offspring of
the breeder may often be full sibs and thus be genetically
equivalent to the helpers’ own offspring (Reeve and Keller
1996; Reeve et al. 1998). Conversely, the breeder will never
be related by more than 0.25 to offspring of the helper.
In stepfamilies, the helper can never be full sib to the
breeder’s offspring, and there is thus no asymmetry. This



difference between family types must be taken into account
when calculating the evolutionarily stable provisioning
strategy (see app. C). This strategy is a combination of
efforts such that if the population uses it, it does not pay
for any individual to switch to a different effort level in
any state. A game-theoretical analysis gives us this solution.

Calculation of Fitness

A provisioning strategy specifies for each state the effort
that should be used in that state and can be represented
by a vector x that contains the provisioning efforts in all
states. A requirement for an effort to be the best is that
no other effort will increase the inclusive fitness of that
individual. To understand this, we may imagine that sep-
arate genes determine the effort in every state and that
almost all individuals have identical genes and thus use
the same “resident” strategy x. We also assume that the
frequencies of individuals in different states do not change
over time. For a strategy to be stable, it should be im-
possible for any alternative “mutant” strategy to invade
the resident strategy. To provide an example, we focus on
a breeder without helpers (state B,) that uses an alternative
strategy. The difference from the resident strategy is caused
by a mutant allele that codes for the effort x] instead of
the residents’ effort x, when the individual is in state B,.
To investigate that fate of the mutant allele, we look at the
change in inclusive fitness (IF) corresponding to the
change in behavior. Inclusive fitness is the personal fitness
of the actor plus the sum of the personal fitness of all
relatives of the actor weighted with the corresponding re-
latednesses. The mutant allele can invade if the mutant
behavior results in higher IF (app. C). A discrete-time
model measures the amount of extra IF after some fixed
time unit (Taylor 1990). Because we instead work with
continuous time, fitness is measured at every instant in
time, and we therefore look at the rate of change in IF
over time, dW,/dt.

The provisioning effort x| of the breeder influences only
the rate g(x;) at which a helper is produced to join the
group and the rate u(x;) at which the breeder dies. Both
of these events are associated with changes in inclusive
fitness.

If the mutant breeder dies, the mutant allele loses its
reproductive value (v,). The reproductive value measures
the average number of future offspring and is calculated
from the resident strategy and not the mutant. This will
always correctly predict the direction of selection, which
is what is important for our purposes (for further expla-
nation, see Taylor and Frank 1996; Frank 1998; Houston
and McNamara 1999). Thus, the mutant loses personal
fitness at the rate u(x))v,.

The effect of reproduction on the fitness of the mutant
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gene can be divided into two parts. First, reproduction
results in a new individual with reproductive value v,,. This
is equivalent to 0.5v,; of the breeder’s own reproductive
value, where 0.5 is the breeder’s relatedness to the new
helper. Keeping the gene’s-eye view, we can also say that
0.5 is the probability that the mutant is present in the
helper, and if so, mutant fitness is v,;. Second, reproductive
value of the breeder changes with v, — v, when a helper
is produced, which leads to a personal fitness increase rate
of g (x))(v, — v,) over time. The net rate of change in the
mutant’s IF W, over time is thus

1

dt

(xi) x) = gl(xi)(ﬁz - 61) - ,u'(xi)ﬁl + 05g1(xi)15H (1)

In general, the net rate of change in mutant allele IF
over time can be calculated by first taking the sum of all
changes in fitness directly affected by the gene (i.e., v, —
v, and —v,) weighted with the instantaneous rates at which
they occur over time (g,(x;), u(x}); app. C). Add to this
the changes in the personal fitness of all associated indi-
viduals (vy; Taylor 1996; Taylor and Frank 1996; Frank
1998) similarly weighted with the instantaneous rates at
which they occur and also weighted with the relatedness
between the focal individual and the associated individuals
(app. C). The relatedness coefficients to use in this weight-
ing are those derived from the dynamics of the state tran-
sitions (app. B). Although we assume that, in its decision
about provisioning effort, a breeder weights offspring re-
productive value with 0.5, the actual genetic relatedness
to offspring, we assume that the breeder does not recognize
its own offspring among the adult helpers (app. C). Off-
spring recognition among eggs or chicks does not imply
recognition at other life stages (Komdeur and Hatchwell
1999). A breeder that has one adult helper therefore
weights helper reproductive value according to the statis-
tical average relatedness to helpers, which is calculated in
appendix B.

An evolutionarily stable strategy (ESS) x* is a combi-
nation of provisioning efforts such that no individual is
able to increase its IF by an effort alteration. We used a
numerical best response dynamic procedure (Hofbauer
and Sigmund 1998; Houston and McNamara 1999; app.
C) to find the ESS. The best response strategy maximizes
mutant fitness when all other individuals follow the pop-
ulation strategy. Iteratively replacing elements of x by the
vector of best replies x° eventually leads to the equilibrium
(see app. C).

The Decision to Stay

We have assumed that the upper limit to group size is
three individuals. Group size in cooperative breeders is



400 The American Naturalist

likely to be influenced by availability of resources (Brown
and Balda 1977; Reyer 1984; Komdeur et al. 1995; Balshine
et al. 2001). Also, helpers of low rank have small chances
of eventually attaining breeder status, which further de-
creases the incitement to stay for additional helpers
(Kokko and Johnstone 1999; Ragsdale 1999; Kokko and
Ekman 2002). Although we have not explicitly included
any effects of resource limitation, we assume that a com-
bination of such effects would make staying unprofitable
for a potential third helper, so groups do not exceed the
size of three. There is no significance in the specific choice
of maximum group size; the model and its results apply
to groups of any size.

Given that helpers should be free to leave the breeding
group if they wish, we must make sure that helper IF at
the equilibrium is higher than that of floaters lest the
helpers leave the group voluntarily (East and Hofer 1991,
2001; Komdeur et al. 1995; Kokko and Sutherland 1998;
Kokko et al. 2001; Kokko and Ekman 2002). In appendix
D, we show how to check this. If a helper leaves the group,
the reproductive values of the remaining individuals will
change. The helper is related to the remaining individuals,
so this affects inclusive fitness of the helper. So, by com-
paring a helper’s total IF before and after leaving the group,
we can get a measure of the benefit gained by becoming
a floater. In our examples, we restrict our attention to
cases where this is costly, that is, where leaving would result
in a negative inclusive fitness effect for the first and second
helper (app. D). The assumption that both helpers stay is
therefore consistent.

Results and Discussion

To understand the variation in optimal provisioning effort
among family members, we must consider a large number
of factors. As more individuals participate in providing
care for the offspring, each individual can afford to in-
crease its survival by decreasing its own effort, without
seriously compromising the survival of offspring. This as-
pect of the conflict of interest among family members
(Chase 1980) is the basic reason for an “expected” decrease
in parental and alloparental effort in larger families (e.g.,
fig. 2¢, 24; fig. 3¢, 3d). However, this expected pattern may
be altered by complex interactions between the caring be-
havior and its effects on relatedness and reproductive val-
ues. Furthermore, the mate infidelity shown by the breeder
in a stepfamily is reflected in the evolutionarily stable pro-
visioning efforts of all family members, as we will see by
comparing stepfamilies with the monogamy of intact fam-
ily breeders.

Consider, for example, the case in figure 24, which
shows the stable efforts in a stepfamily where productivity
is a linear function of total effort. Why does a breeder

with one helper spend about as much effort as one without
a helper? This is not intuitively easy to understand, es-
pecially when the breeder decreases its effort once a second
helper joins the group (fig. 2a). The answer lies in com-
paring the effects of producing a subordinate helper on
breeder and helper IF. The relatedness between a breeder
and a subordinate helper is always 0.5, so the breeder
receives an IF benefit of 0.50,, when another, subordinate,
helper is produced. In comparison, the helper will not
increase its inclusive fitness much if a subordinate helper
is produced since stepfamily helpers have different fathers.
The resulting decrease in relatedness is automatically taken
into account by our calculation of relatedness from the
transition dynamics (app. B). In this particular example,
a dominant helper is related to the subordinate helper on
average by only 0.19. In comparison, a helper in a group
of two individuals will not benefit much by producing a
subdominant helper and therefore invests much less than
does the breeder (fig. 2a). If the family consists of three
individuals, floaters are produced with a reproductive
value of one unit. This is much lower than any repro-
ductive value of the family members in figure 2a (they
reach between 12.7 and 4.2 units of reproductive value).
Although the breeder is related by 0.5 to floaters, the float-
ers’ low reproductive value means that breeder IF is not
increased much by producing them. This helps to explain
why breeder effort is lower with two helpers than it is with
one helper. When the breeder decreases its effort, the help-
ers respond by increasing their effort, so the total effort
is still higher when three individuals contribute help (fig.
2a).

We can contrast this with the situation where produc-
tivity reaches a maximum at high levels of effort. In other
words, the marginal increase in productivity decreases at
high efforts (fig. 2¢, 2d). Because of the lower marginal
increase, breeder IF does not increase as much for a given
level of effort compared with the linear case. The optimum
effort for a breeder with one helper is therefore lower, and
this is partly compensated for only by the increased effort
of the helper (fig. 2¢).

All else being equal, helpers make higher provisioning
efforts in intact families (fig. 3) than they do in stepfam-
ilies. Breeders respond to the increased helper effort by
decreasing their own effort and therefore suffer lower mor-
tality in intact families. The total care received by offspring
in intact families is at the same time higher than it is in
stepfamilies (fig. 3; the load-lightening hypothesis: Brown
1978; Crick 1992). The basic reason for this differentiation
between family types is the higher relatedness among intact
family members caused by mate fidelity (app. B). Although
breeders should benefit more from the intact family sit-
uation, this might not be an important selection pressure
for mate fidelity. For example, helpers may not lower their
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Figure 2: Evolutionarily stable provisioning efforts in stepfamilies, where the dynamics are governed by equations (C1). Efforts are shown for all
family members. Mortality rate is given by u(x) (table 1). In a and ¢, the mortality acceleration value (k) equals 0.02, and in b and d, k = 0.04.
Panels a and b show the case where g(x;) = x; (table 1), and in cand d, g(x;) = 1 — exp (—x;), so productivity asymptotically reaches a maximum.
Breeder effort is indicated by a cross, helper and dominant helper effort is indicated by a square, and the black dot shows the effort of the subordinate

helper. The dashed line is the summed family effort.

effort facultatively in response to unfaithfulness of a
breeder. Then if infidelity has an initial advantage, this
behavior will spread in the population, and the smaller
load lightening by helpers might evolve later only once
the whole population of female breeders starts behaving
in this way.

Although relatedness may explain the generally higher
efforts in intact families, an individual’s provisioning effort
is partially explained only by its relatedness to the pro-
duced offspring. For example, in stepfamilies, helpers
make less effort than do breeders, whereas in intact fam-
ilies, helper effort often exceeds breeder effort (fig. 3).
Helpers are, however, always on average less related to the
breeders’ offspring than is the breeder. In contrast, the
breeder is equally related to offspring in both stepfamilies
and intact families. The reason for the big efforts of helpers
in an intact family is that helpers have lower reproductive

value than does the breeder, an effect of the low probability
that the helpers eventually become breeders. Consequently,
death and loss of all prospects of future personal repro-
duction is more costly for the breeder than it is for the
helper. Within family types, the relatedness coefficients do
not vary much with k, the mortality acceleration rate.
However, the different environmental conditions reflected
by the variation in k may result in quite different levels
of effort (fig. 4).

It is paradoxical that when we consider the effect of
relatedness within family types, helper effort may even
decrease when relatedness increases (fig. 4), although re-
latedness does not vary much. This is because of the two
effects of k, the costs of caring, on relatedness and effort.
A decrease in k decreases the mortality rate of all individ-
uals, but the strongest effect is in this example on the
mortality rate of dominant helpers. This means that help-
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Figure 3: Evolutionarily stable provisioning efforts in intact families, where the dynamics are governed by equations (Cla)—(Clc) and (C8). Efforts
are shown for all family members. Mortality rate is given by m(x) (table 1), and mortality acceleration value (k) is 0.02 in a and ¢ and 0.04 in b
and d to make the figure comparable with figure 2. In a and b, g(x;) = x; (table 1), and in c and d, g(x;) = 1 —exp (—x;), so productivity
asymptotically reaches a maximum. Breeder effort is indicated by a cross, helper and dominant helper effort is indicated by a square, and the black
dot shows the effort of the subordinate helper. The dashed line is the summed family effort.

ers tend to outlive the breeder, so family units of one
breeder and one helper are formed more often because of
the death of the breeder in a group of three individuals.
The surviving individuals will often be sibs, and the end
result is therefore that average breeder-helper relatedness
is lowered. A second effect of lowering k is of course to
increase effort levels in general. Together, these effects may
produce a negative correlation between relatedness and
effort (fig. 4).

In families with two helpers, the subordinate helper
makes a larger effort than does the dominant helper (figs.
2, 3). One reason for this is that dominant helpers have
higher reproductive value than do subordinate helpers be-
cause a dominant helper has a higher chance of inheriting
breeder status. With higher reproductive value, dominant
helpers of high reproductive value potentially lose more
fitness by helping (Cant and Field 2001). A second reason

why subordinate helpers provide more care is that they
are on average more related to the breeder and its offspring
than is the dominant helper. This is because the youngest,
subordinate, helper will often be an offspring of the present
breeder, while the mother of the dominant helper will
often have already died (Reeve and Ratnieks 1993; Reeve
et al. 1998). Our approach automatically takes this effect
into account because we calculate the relatedness coeffi-
cients from the group dynamics instead of assuming fixed
relatedness values.

Another difference between family types is that the re-
productive values are higher for all family members in
intact families (fig. 5). This may seem counterintuitive
since intact family helpers should have lower probability
of reproducing in the future when they invest more and
suffer higher mortality. Although this is true, the higher
productivity of intact families more than compensates for
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in a group of two individuals. The open symbols show relatedness and
effort of the helper in a stepfamily, where the dynamics are governed by
equations (C1). The symbols containing dots show the same for an intact
family, where dynamics are governed by equations (Cla)-(Clc) and (C8).
The different symbols denote solutions with the same mortality accel-
eration value (k; table 1). Starting with the uppermost symbol, the se-
quence triangle left, circle, square, diamond, triangle down, and triangle
up denotes k values of 0.005, 0.01, 0.02, 0.04, 0.08, and 0.16. For all lines,
productivity is an increasing concave function of total family effort (i.e.,
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this, so an intact family helper can count on a much higher
reward once it attains breeder status, compared with a
stepfamily helper.

The reproductive value of a breeder may decrease or
increase as the family increases in size (fig. 6). Decreasing
breeder reproductive value may seem paradoxical because
this at first sight seems to indicate that breeders in large
families could increase their expected value of future off-
spring by expelling current helpers. However, this reason-
ing considers only effects on personal reproduction, and
the paradox is resolved once we investigate the full inclu-
sive fitness expression.

Inclusive fitness is the reproductive value of the indi-
vidual in the focal state plus the reproductive values of
the other individuals in the same breeding group weighted
by the relatedness among the individual in the focal state
and the other individuals in the group. So, for example,
the inclusive fitness of a breeder with two helpers is
V5 + r0yp + 0.50, given that it is always related by 0.5
to the second helper. (This does not introduce any “double
accounting” of offspring because the behaviors we analyze
are state specific [Queller 1996] and because reproductive
values measure personal reproduction only.) In all our
calculations, breeders in larger families have higher inclu-
sive fitness (fig. 6). Similarly, a helper in a group of two
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gets higher inclusive fitness if another offspring is pro-
duced, so it attains the status of dominant helper. Pro-
visioning for offspring in order to increase family size can
therefore be favored even when reproductive values of
individual group members may decrease in larger families.

We have introduced a theoretical method for analyzing
evolution in social systems, where we allow the life-history
consequences of the analyzed trait to balance the cost and
benefits in the fitness expression (Houston and McNamara
1999). This is in contrast to a traditional method of in-
vestigating optimality or game-theoretic equilibria in evo-
lutionary analysis. There, one makes a qualified guess at
the start as to how the effects of a specified behavior, or
other trait, translate into inclusive fitness benefits and
costs. The optimum is then found by balancing these fit-
ness effects. The problem with that approach is that the
common currency for fitness benefits and costs is the re-
productive value of the individual, and this depends on
the behavior in question and its effects on the organism’s
life history (Taylor 1990; McNamara 1991). When ana-
lyzing the behavior of social animals, we must also take
into account the relatedness among individuals, which may
also depend on the specified behavior (Griffin and West
2002). So, we cannot specify benefits or costs without
knowing the stable solution to the game.

The way to deal with these ties is to consider the life-
history and population dynamic consequences of the be-
havior (see also Webb et al. 1999). We can then specify
the fitness of a mutant individual with behavior different
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Figure 5: Each point shows the reproductive value of one state in an
intact family and a stepfamily, given that the dynamics are as in figure
4. The diagonal line is the line of equal reproductive value. The different
symbols correspond to different states: cross, B,; plus, B,; circle, B;; asterisk,
H; open square, HD; and dot, HS.
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Figure 6: Examples of the relation between breeder inclusive fitness
(crosses, dashed line) and breeder reproductive value (squares, solid line)
in different group sizes. The case shown is for an intact family where
productivity is an increasing concave function of total family effort,
g(x;) = 1 —exp (—xy). Three different values of mortality acceleration
are shown, from upper to lower pairs of lines: k = 0.005, k = 0.02, and
k = 0.08. When the group size = 1, breeder fitness has no indirect com-
ponents, so breeder direct reproductive value and breeder inclusive fitness
are identical.

from the population norm. This leads to an evolutionarily
stable strategy where the reproductive values, and thus the
fitness benefits and costs, are consistent with the assumed
life history of the species, which is unlikely to be the case
if they are assumed beforehand (Taylor 1990; McNamara
1993; Houston and McNamara 1999).

We have assumed that transitions from floating to
breeding status are limited by the rate at which vacancies
occur in the population. This stabilizes a population in
which territoriality limits the number of breeding oppor-
tunities (Pen and Weissing 2000). A territoriality-limited
population equilibrium is an appropriate context for an
analysis of cooperative breeder behavior because lack of
breeding territory or other constraining factors that limit
the opportunities for independent breeding are often the
reasons why offspring stay as helpers (Stacey and Ligon
1987, 1991; Komdeur 1992; Emlen 1997; Arnold and
Owens 1998; Hatchwell and Komdeur 2000). Because this
makes our solutions consistent with the assumption of a
population equilibrium density, we are confident that mu-
tants would not be able to invade a natural population
following the ESS rule.

Although our model provides a framework for under-
standing family conflicts in a proper, dynamical setting, it
does not take into account the possibility that a particular
family member exploits the behavioral rules of the others.

Theoretically, if one family member is aware of the pro-
visioning rules of its partners, it can take advantage of
them by adjusting its effort (McNamara et al. 1999). For
example, the parent may increase its fitness by decreasing
its effort and thereby force the helpers to increase their
effort. Then, the stability analysis we have used cannot be
expected to lead to a correct result. We have assumed that
the decision process makes such exploitation impossible,
for example, if individuals are unaware of the effort of
their partners within the group or if the provisioning effort
in each state is genetically determined. In other words,
although in our model the behavior of all family members
is adjusted to what the partners are doing, this adjustment
is based on an expectation of the average behavior of the
partners and not on their individual behavior.

We also assume that there is no innate kin recognition,
in that the individuals respond to the average relatedness
among family members and take only their own state into
account. This may be so if an individual knows the po-
sition it has within the family and what family it belongs
to (e.g., via associative learning [Komdeur and Hatchwell
1999; Hatchwell et al. 2001]) but does not know exactly
how the members are related or its exact relatedness to
any family member (Wright et al. 1999). However, our
modeling method could easily be extended to investigate
cases in which there is innate kin recognition (e.g., through
phenotype matching [Komdeur and Hatchwell 1999; see
also Hatchwell and Russell 1996; Painter et al. 2000; Russell
and Hatchwell 2001]). In this case, the number of states
in the model simply increases to account for the different
kinds of families: for example, a family with two half-
siblings is treated as different from a family with two full
siblings, and transition rates are calculated for each one
separately.

Conclusions

We calculate evolutionarily stable provisioning efforts in
simple families (Emlen 1995) with one breeder and a num-
ber of nonreproducing helpers, who all simultaneously
provide for offspring. First, the more members there are
in the family, the less effort each member will make (figs.
2, 3). Second, the breeding system has an influence
through its effect on relatedness among family members.
Alloparental efforts are higher if the breeder is monoga-
mous because helpers are then more related to the
breeder’s offspring than if the breeder shifts mate regularly.
The breeder, in contrast, adjusts its effort to the effort of
the helpers, and breeder effort is therefore lower with mo-
nogamy. An individual’s relatedness to the offspring that
are produced is, however, in itself a poor predictor of that
individual’s effort. Other important factors to consider are
the reproductive value of the offspring that are produced



and the individual’s own reproductive value. If the off-
spring have low reproductive value, as when they are des-
tined to become floaters, the breeders and helpers will
make low efforts. An individual will also make a low pro-
visioning effort if its own future prospects of reproduction
are good, so the potential cost of helping is high.
Life-history parameters may interact with the dynamics
of family size and relatedness to produce counterintuitive
patterns. For example, because we include the family dy-
namics in the model, caring effort and relatedness to off-
spring may be negatively correlated. With decreasing mor-
tality cost of caring, the stable caring effort increases.
Simultaneously, the average relatedness between breeders
and helpers decreases because of increased longevity of
helpers. When helpers tend to outlive their parents, breed-
ing groups are more frequently composed of siblings that
are less related to one another than parents are to offspring.
Helpers enable the breeder to decrease its effort and
thereby increase its survival, an effect known as load light-
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ening (Brown 1978; Crick 1992). In our model, breeders
decrease their investment as the family grows, but this is
not only due to the help received but also due to changes
in offspring reproductive values. Helpers may appear to
lighten the parental load, although the main reason for
the decreasing breeder effort may be the lower reproduc-
tive value of offspring that become low-ranked helpers, or
floaters. Finally, we also show that the reproductive value
of a breeder may be maximized when breeding without
helpers. This apparent suboptimality of breeding with
helpers is explained away when we look at the full inclusive
fitness of the breeder, which is higher in larger families.
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APPENDIX A

Let the vector v hold the reproductive values v,, v,, ..., v; of the different states. We can find the stable reproductive
values from a model of the life history of the organism (e.g., Caswell 2001), but although most published evolutionary
models of this kind use a discrete-time format (see, e.g., Frank 1998; Houston and McNamara 1999), we will use a
continuous-time approach. Here, we will outline how to make the move from discrete time to continuous time. In
discrete time, let A denote a fitness matrix where a; is the average number of i-class offspring per class-j individual
after one unit of time . We choose a time unit that is the same as the time between generations. At equilibrium, the
class frequencies and reproductive values are stable, which means that we can solve the equation v(t + 1) = v(¢)A for
the reproductive values. We thus assume that the reproductive value of an individual in any class is constant in all
generations.

Let us now decide that we “look” at the system with time intervals of length dt instead of every full time unit. We
can then rewrite the system as v(t + df) = v(t)A, where the elements a; of A are now functions of dt because their
value depends on how often we look at the system a; = a;(df). When we observe the system more often (dt small),
A will be closer to I, the identity matrix. We therefore rewrite the model as v(t + df) = v(t)(I + Q(dt)dt), where the
elements g,(dt) of Q(dt) hold the changes per time unit. This is the same as v(t + df) — v(f) = v(1)Q(dt)dt. Dividing
both sides by dr and letting dt approach 0 gives us the equation dv/dt = vQ, where Q is Q(0), the limit as dt approaches
0.

Explicitly, the rate matrix Q is

O~ & Ky 0 M 0 0 a g
& B ™ By — & Pus T Bup 0 M 0 0
0 & “Hs T Kus T Mup 0 0 0 0
Q= &/2 0 0 THu T K & HPus M5t pup 0
0 0 0 & “Hup T M3 T Hus 0 0
0 &2 0 0 0 THMus T M3 T Mup 0

o o 0 g/2 0 0 0 —pe — all

(A1)

where symbols are explained in the text and table 1. We assume that the population strategy is x = [x;, X,, X3, Xy,
Xup» Xys), which defines the values that go into the matrix. Floaters are assumed to attain breeder status at the per
capita rate a, and at the equilibrium, an. = n,u,. This assumption means that floaters gain territories at the same
rate as new vacancies become available via death of single breeders. As explained, the differential equation system
dv/dt = vQ holds for the reproductive values. To normalize the reproductive values, we choose v, = 1. This in no
way limits the options we consider for floater future prospects but merely allows us to compare reproductive values
of different states. At population equilibrium, the reproductive values are stable over time (dv/dt = 0). By solving the
system vQ = 0, we obtain the equilibrium reproductive values v, v,, V5, Uy, Vs, and .

APPENDIX B

Calculation of Relatedness

Four different relatedness coefficients need to be considered. Let r, = the relatedness between the breeder and helper
in a family of two individuals. In a family of three individuals, the relatedness between the breeder and the dominant
helper is called r,. The relatedness between the dominant and subordinate helper is called r,. In addition, we might
want to consider the relatedness between breeder and subordinate helper, but in our simple families, this is always
0.5 because subordinate helpers come to exist only because of breeder reproduction, and breeders are related to their
own offspring by 0.5.

All provisioning effort strategies x produce stable frequencies of the three family types: single breeder (frequency
p1), family of two individuals (p,), and family containing three individuals (p,). We let p, = frequency of floaters. The
frequencies are easily found from the system Mp = 0, where the elements m,; of M represent the rate by which a
family of type j turns into a family of type i.

Although frequencies are stable, individuals continue to change states at the dynamic equilibrium. The rate of losses
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of two families equals the production rate of new such families. Every loss of one r, value is thus “replaced” by a new
relatedness value, and we may write down a differential equation for this process by taking the rate by which new
families are formed minus the rate by which they are lost through deaths or family growth and weighting the rates
with the corresponding relatednesses. For example, families with one helper are lost at the rate p,(u, + py; + &)- This
is exactly balanced by an “inflow” at the rate p, g, + ps(1t, + pup + #us). The weighted expression for the dynamics
is p,g0.5 + pspsrs + psppp0.5 + pspipst, — P, + gy + £)1. We consider two cases. In stepfamilies, each offspring
has a different father, and the dynamics for the relatednesses are

dr,
;; = g P05+ pipirs + pupps0.5 + pyuspst, — P, + py + &)1, (Bla)
dr,
i = &poh = Ps(ps + tpp T Bus)Ts (B1b)
dr,
Z = £0,0.57, = py(ps + Bup T phis) s (Blc)

In the inflow expression of equation (Blc), 0.5, is the product of a subordinate helper’s relatedness to its mother
and the mother’s relatedness to the dominant breeder. The solution is easy to find by solving dr/dt = 0. It is

&Pt Bupps
26 P+ psps T 2pup s

r = 0~5(g1P1 + I’LHDPS) (B2)

26py +opsps t 2:U'HDP3‘

n=r=

To find the solutions in equation (B2), we have made use of the fact that the rate of flow “in” is equal to the flow
“out,” which allows substitution of one expression for the other. In intact families, the breeder mates once and saves
sperm, so all its offspring get the same father. The inflow expression of dr,/dt is then changed to (0.5 + 0.5F)r,, where
F is the probability that the subordinate helper has the same father as the dominant helper. This is the same as the
probability that the helper in a group of two is an offspring of the breeder in that group. This is calculated as

F=1-— Ksps (B3)

&bt uspst pupps + P‘Hsps’

because it is true unless the group is formed because the breeder in a group of three died. These two limiting cases
of intact families versus stepfamilies are the only ones we will use in this model. The solution is now

r=r = &Pt Brunhs
' ’ 26p + psps — wspsF+ 2pppps

— 1 &Pt puops + &P F T puppsF
21280+ psps — pspsF+ 2pupps

(B4)

3

APPENDIX C

The rate by which net inclusive fitness of an individual changes over time = (the rate by which a change of state
occurs) x (the change in inclusive fitness associated with this change of state), summed over all state transitions that
the individual may experience. It will be necessary to consider stepfamilies and intact families separately because they
lead to different relatedness structures.

Stepfamilies

A breeder with one helper may experience three state transitions. First, it dies with rate p,, and this leads to a change
in inclusive fitness that equals 7,0, — v, — vy, where r,, the relatedness to the helper, transforms the helper reproductive
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value to breeder reproductive value “equivalents.” Second, the helper may die (rate u,;), and this leads to a change in
breeder IF equal to v, — v, — rwy. Third, an additional helper is produced with rate g, and the associated change in
IF is v, + 1y, + 0.5045 — ¥, — 10y, Where 0.5 = the relatedness between breeder and subordinate helper. When
reproducing, breeders always weight offspring reproductive value by 0.5. This is because we assume that a breeder
recognizes its own offspring at the egg or chick stage but is unable to distinguish its offspring from among adult
helpers. The weighting must therefore be the average relatedness. The following is the rate of change in IF over time
for each of the six states that provide for offspring:

aw, _ _ - -
dtl (x, x) = — px)v, + g(x)(@, + 0.50, — 1)), (Cla)
dtz (x5, %) = plx)(rw, — v, = roy) + (0, — v, — 1Yy)
+ g, (x5 + x) (05 + gy T 0505 — 0, — 1y), (C1b)
dt3 (x5, x) = u(xl)(rw, + 0.50 — v — 1Wyp — 0.50ys) + pup(®, + 0.50y — U5 — 10yp — 0.50)
+ sV, + 10y = U5 — 1y = 0.504s) + g5(x5 + Xy + X445)0.50;, (Clo
dtH (x> %) = plxp) (v, — no, — vy) + p,(0, = vy — 1w,)
+ &%, + x)(Wpp + 10y + 10, — vy — 11,), (C1d)
AdW,p , , _ - - - _ _ _ _ _ _
7 (Xtp> X) = w(Xup) (10, + 10y = Vup — 105 — HUys) + (0, + 10y — Dup — 105 — 1)
+ sy + 10, — Uy — 10, = 1yg) + €5(x5 + Xip T x455)0.57,05, (Cle)
AWy , _ _ - _ _ _ - - _ _
7(xm, x) = ulxys)(0.50, + 10y — Uys — 0.50; — 1304p) + 0y + 0.50, — Vys — 0.50; — 1304p)

+ 30y + 130, — Uy — 0.505 — 1304p) + £5(%5 + Xpp + X155)0.2505. (C1f)

We search for an uninvadable strategy of provisioning behavior, and therefore the fitness expressions above are given
for mutant behavior, indicated by the prime ().

In the case of the breeder with one helper, a mutant allele can invade if switching to mutant behavior x} instead
of the predominant x, results in an increase in the rate of inclusive fitness gain. The parental effort x, of the breeder
influences two state transition rates: the probability that another helper is produced to join the group and the probability
that the breeder dies.

The difference in rate of IF change over time through production of a new offspring when switching from behavior
x, to x5 is

[g2(x3 + xy) — &0, + x))(05 + 1Vyp + 0.5 Vg — 0, — 1Y) (C2)
The difference in rate of IF change through dying is
[u(x5) = plx,)(ho, — v, — noy). (C3)

Thus, a mutant x can invade if replacing x, by x; leads to a positive IF effect or net change in the rate of IF change
over time, that is, if
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(8,0} + x1) — &(x, + x)I(0; + 10y, + 0.5045 — v, — noy) + [(p(x)) — w(x)(rno, — v, — rvy) >0.

(C4)
If we divide equation (C4) by x), — x, and take the limit as x, — x, decreases to 0, we find that
d |dw,
L 0 C5
dx;[ o (x5, %) > (C5)

is a condition for mutant invasion. Differentiating equations (C1) with respect to mutant behavior therefore gives the
direction of fitness increase, and maximization of each of the six equations gives the best reply (Motro 1994) in one
of the six dimensions. The requirement for a best reply x°, is thus

aw,

S (x%,x) =0 (Co)
dx},
and
aw,
L)’ (x°,x) <0 (C7)

(Maynard Smith 1982; Motro 1994). Collect the best replies for all states in the vector x°. To find the ESS x~, we first
make one initial guess of the resident provisioning strategy. We then proceed iteratively and exchange in each stage s
the resident vector with the vector of best replies x°, using the formula x,,, = px°, + (1 — p)x, (Hofbauer and Sigmund
1998; Houston and McNamara 1999), where p is a proportion. Eventually, the provisioning strategy converges to the
evolutionarily stable provisioning strategy x*. Formally, the iterative procedure demonstrates that the stable point is a
Nash equilibrium (Houston and McNamara 1999), but in our case, the best responses are unique at the equilibrium,
so we can say that it is an ESS. It also demonstrates convergence of the best response adjustment dynamics (Hofbauer
and Sigmund 1998), which can loosely be taken as a version of convergence stability, that is, that the ESS is attainable
(Houston and McNamara 1999).

Intact Families

In our intact families, where females mate once and store sperm for all future offspring, the relatedness structure is
different. Specifically, a breeder may produce full sibs to the helpers. The helpers will consider these sibs genetically
equivalent to their own offspring. Then again, helper offspring can be related by only 0.25 to the breeder, so there is
a built-in asymmetry in the evaluation of offspring. This makes it necessary to change the fitness expressions of the
helpers and take into account that breeder offspring share more genetic material with the helpers. For example, in a
family of two individuals, the breeder values the helper according to the relatedness (r,) times the number of future
offspring of the helper (). The helper’s evaluation of the breeder is relatedness via maternal gametes (r,) times breeder
reproductive value (v,) plus relatedness via paternal gametes (r,) times breeder reproductive value (i.e., 2r,).
The three helper equations become
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aw, _ _ _ _ _ _
dtH (X;q, X) = M(x;{)(zrlvl — oy —2n0,) + /J'z(vl — vy — 21,)
+ g%, + x1)Wyp + 10ys T 2105 — 0y — 2170)), (C8a)
AWyp , , _ - - _ _ _ _ _ - _
T(xHD’ x) = p(xup)2rw, + 10y = Vup — 21505 = 1ys) T ps(0, + 10y — Vyp — 20505 — Tilys)
+ w0y + 200, — Oyp — 21,05 — 1yg) &% T Xpp + Xs) MU (C8b)
daw, _ - - _ _ _ _ _ - _
dtHS (Xss X) = w(oxys) (0, + 10y = Vs — U5 = 104p) + pup(Oy + 0, — Vg — U5 — 730yp)
+ w0y + 10, = Vs — 0 = 1) + &% + Xy + X14)0.505. (C80)

It is not necessary to make any changes in the breeder equations. The evolutionarily stable strategy is then calculated
with the same method as before.

APPENDIX D

The inclusive fitness effect of leaving the breeding group and becoming a floater is simply the difference between the
inclusive fitness of an individual before and after leaving. We call this Aw;. This measure must consider the differences
between family types in relatedness (app. B) and the asymmetry in how breeder and helper evaluate each other’s
offspring (app. C). For helper, dominant helper, and subordinate helper, respectively, Aw; is

Aw,y = 1+ o, — 1, — vy), (D1)
Awp yp = (1 + 10, + 10y — Uyp — 705 — Iilys), (D2)
Awy s = (1 + 0.50, + 1oy — vys — 0.50; — 10yp). (D3)
In intact families, the differences are
Aw, g = 1+ 210, — 210, — vy), (D4)
Awy yp = (142100, + 10y — Uyp — 21,05 — T3ls); (D5)
Awp s = (1 + 0, + 10y — Uyg — U5 — T0yp)- (D6)

For staying as a helper to be net beneficial, these measures must be negative at the evolutionarily stable equilibrium.
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