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Sensorless Kinesthetic Teaching of Robotic Manipulators Assisted by
Observer-based Force Control

Martino Capurso1, M. Mahdi Ghazaei Ardakani2, Rolf Johansson2, Anders Robertsson2, Paolo Rocco1

Abstract— In modern day industry, robots are indispensable
for achieving high production rates and competitiveness. In
small and medium scale enterprises, where the production may
shift rapidly, it is vital to be able to reprogram robots quickly.
Kinesthetic teaching, also known as lead-through programming
(LTP), provides a fast approach for teaching a trajectory.
In this approach, a trajectory is demonstrated by physical
interaction with the robot, i.e., the user manually guides the
manipulator. This paper presents a sensorless approach to LTP
for redundant robots that eliminates the need for expensive
force/torque sensors. The active implementation enhances the
passive LTP by an admittance control in joint space based on
the external forces applied by the user, estimated with a Kalman
filter using the generalized momentum formulation. To improve
the quality of the estimation and hence LTP, we use a dithering
technique. The active LTP has been implemented on ABB YuMi
robot and experimental comparison with an earlier passive LTP
is presented.

I. INTRODUCTION

Nowadays, a high level of automation in manufacturing
plants is essential to guarantee competitiveness in the market.
Apart from the complexity of the tasks, the programming
phase is one of the main obstacles to the wide employment
of robots in small-series productions or production lines that
have to be frequently reconfigured. Often, to program the
tasks that a robot has to accomplish, a teach pendant and/or
3D software are utilized. These methods are generally time
consuming, which implies an increase of the production cost.

An alternative approach is through direct interaction with
the robot, which is called kinesthetic teaching or lead-
through programming (LTP). The aim is to demonstrate a
movement to a robot, i.e., an operator moves the robot
while the trajectory data are being recorded. Evidently, the
robot can not be moved if it has been made stiff by the
position feedback. A solution is to adjust the feedback
based on sensing of external forces. To detect the external
forces, force/torque sensors can be employed. However, the
sensors can be fragile and costly in addition to reducing the
maximum payload of a robot. This is especially the case
when a redundant robot is used and it is desired to measure
forces exerted on any part of the robot, and not only the end
effector.
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For these reasons, various sensorless schemes have been
suggested relying on force estimation techniques. In general,
there are two main approaches for estimating external forces:
using a disturbance observer based on the control error,
or a force observer utilizing in addition the knowledge of
motor torques. Disturbance observers based on joint angle
measurements have been analyzed in [1], [2]. The idea of
force observer for collision detection based on the general-
ized momentum has been introduced in [3]. The generalized
momentum formula is particularly convenient since it does
not require the numerical differentiation of velocity as used
in [4] nor the inversion of the inertia matrix. In [5], a
recursive least-squares estimation of force as well as an
observer-based method based on the generalized momentum
formulation have been discussed and compared. The force
observer approach has further been extended to estimate the
end-effector forces directly in the Cartesian space [6].

Force sensing together with force control can make up an
LTP system. As an example, [7] describes an active LTP,
where the aim is to improve the programming accuracy
using force control, with a sensorless approach, on one
operational space degree of freedom at a time; several limits
and constraints have been applied to ensure safety during
human-robot interaction. In general, the interplay between
the force estimation and force control may cause instabili-
ties in stiff contact situations. Therefore, to allow a stable
interaction with highly stiff materials, a passive approach
(no feedback of interaction force) has been proposed [8].
In this method, the robot is gravity and partially friction
compensated. Using high values for the integral gain in the
internal PID controllers has been suggested for reducing the
effect of stiction before the start of motion.

Although the passive approach solves the instability issues,
the overall performance is limited by the intrinsic mechanical
properties of the robot. On the other hand, when force
feedback is used, the physical properties of the closed
loop system such as inertia and damping can be altered.
The force feedback can be utilized to shape the behavior
of the robot in several ways such as introducing motion
constraints. Therefore, it is worthwhile to investigate if these
two approaches can be combined.

This paper presents a sensorless active LTP which builds
on the passive approach introduced in [8] by adding a force
estimation block and an admittance control architecture.
The external forces are estimated using a Kalman filter in
joint space based on the generalized momentum formulation.
Following the ideas of [9], a dithering signal is added to the
non-rotating joints to reduce the effect of the static friction
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Fig. 1. Control scheme: the estimated external torque is the input of the
admittance control, which generates the references for the PD controller.
The resulting motor torque is then added to the feedforward component
that is the superposition of gravity and friction compensation and dithering
torques. The components specific to the active LTP approach lie below the
dashed line.

and to improve the detection of forces.
The rest of the article is organized as follows. Section II

presents the methods, in which the disturbance observer
and the admittance control architecture are described. In
Sec. III, the experimental results of the observer as well as
the active LTP are illustrated, with particular attention to the
dithering method. A comparison between our active LTP and
a previously implemented passive LTP is also presented. We
discuss the results in Sec. IV and draw conclusions in Sec. V.

II. METHODS

In this section, we discuss different methods required to
implement our active LTP system. The system presented in
this paper extends a passive LTP, realized by compensating
the gravity load and part of the friction present in the
joints. The gravity load on each joint can be calculated
once a dynamic model of the robot is available, then the
compensation torque can be applied in feedforward. The
force control based on the estimated force runs in parallel
with the passive LTP as shown in the overall block diagram
of the system in Fig. 1.

Firstly, the control structure of the active LTP based on
the admittance control is presented. This is followed by the
description of an experimental friction model and our friction
compensation method. Subsequently, the details of the force
observer based on the generalized momentum formulation
is given. Finally, we describe the dithering method that
improves the passive as well as the active LTP.

A. Controller

In this section, the force control architecture using the
estimated external torques is described. As for the force
feedback, we use an admittance control, which receives the
estimated torques in each joint as inputs and calculates the
desired joint velocities [10].

The equations of motion of a manipulator with n degrees
of freedom can be written as

M(q)q̈+C(q, q̇)q̇+G(q)+ τ f ric(q̇,q)+ τext = τ, (1)

where q ∈ Rn denotes the joint angles, τext ∈ Rn are the
external torques on joints, M ∈ Rn×n denotes the inertia
matrix, C ∈ Rn×n the Coriolis matrix, G ∈ Rn×n the gravity

load, τ f ric ∈ Rn the friction torque and τ ∈ Rn the motor
torque on the arm side.

In the active implementation, the motor torque is calcu-
lated as the superposition of the feedforward component and
the feedback component

τ = τ f f + τ f b, (2)
τ f f = G(q)+ ετ̂ f ric(q, q̇)+ τdith, (3)
τ f b = KP(qre f −q)+KD(q̇re f − q̇). (4)

The feedforward component is denoted by τ f f ; the term ε

is an empirical coefficient for a percentage of the modeled
friction to be compensated and τdith denotes the dithering
torque. The feedback component τ f b is the output of a
PD controller. No integral part is employed since the exact
tracking of the reference is not important in the basic
application of LTP. The position and velocity references are
generated by the admittance control algorithm

q̈re f = M̃(q)−1(τ̂ext − D̃q̇), (5)

where τ̂ext is the estimated torque, and the matrices M̃
and D̃ represent the desired inertia and damping matrices,
respectively. These matrices define the desired behavior of
the manipulator and can be tuned. For instance, if the arm is
expected to react as a heavily damped system, a higher value
for the D̃ matrix is chosen. In our experiments, we have set
M̃ proportional to M(q) in (1) and chosen a diagonal matrix
D̃. The position and velocity references can be obtained from
numerical integration of q̈re f .

B. Friction Compensation

The friction model plays a two-fold role in our system.
It is essential for a good estimate of external torques by the
observer as well as it is used to compensate a portion of the
friction torque with a feedforward torque signal.

We regard the friction torque as a known disturbance that
has to be properly modeled. In order to define the friction
model parameters and the friction torque, experimental tests
were carried out on each joint. Similar to the experiments
presented in [11], each joint was moved back and forth with
a square-wave acceleration profile. The outcome of the test
is a velocity-motor torque curve, which after filtering and
gravity compensation, shows a trend due to Coulomb and
viscous friction. As explained in [11], the S-shaped trend
of the friction torque can be well captured by two sigmoid
functions, defined as

τ f ,max(q̇) = τC,min +
τC,max− τC,min

1+ e−A(q̇+B)
+ cq̇, (6)

τ f ,min(q̇) = τC,min +
τC,max− τC,min

1+ e−A(q̇−B)
+ cq̇, (7)

where τC is the Coulomb friction, the parameter A describes
the slope of the sigmoid function, the parameter B is the
width of the area between the curves and finally there is a
linear term cq̇ to model the viscous component.

Once these parameters are identified, a probabilistic fric-
tion model can be obtained as a velocity-dependent random
variable with the mean value equal to the average of these



Fig. 2. Friction model: the blue curves correspond to the measured data
after gravity compensation. The typical trend due to Coulomb and viscous
friction can be noticed. The model consists of a velocity-dependent Gaussian
random variable. The mean value (red line) and the corresponding standard
deviation (dashed line) are illustrated.

bounds. The mean value of the total friction (due to Coulomb
and viscous components) and the uncertainty as a function of
velocity are depicted in Fig. 2. In particular, it can be noticed
that the friction is equal to zero with a large uncertainty in
a small range at almost zero velocity. This is due to the
fact that when the joint is not moving, the magnitude of the
friction can take any value between the minimum and the
maximum of the Coulomb component.

The friction compensation torque has been calculated
similarly to [8], based on the friction model presented in Sec.
II-B. The friction is compensated at non-zero velocities, i.e.,
as soon as the joint starts rotating. Ideally, it is desired to
compensate friction completely, then the arm would be free-
floating with no drifts. In practice, because of uncertainties
and disturbances, only 80% of the modeled friction was
compensated by setting ε = 0.8.

C. Kalman Filter Based on the Generalized Momentum
Existing force estimation schemes relying on the robot

dynamics typically involve computation of joint accelerations
or inversion of the inertia matrix. The former approach
requires numerical differentiation of joint speeds resulting in
the amplification of measurement noise, while the latter may
be computationally costly and prone to numerical issues. A
force observer in joint space based on the generalized mo-
mentum approach, as opposed to the previous formulations,
does not require the numerical acceleration nor the inversion
of the inertia matrix [6].

Recalling the equation of motion of the robot (1), the
generalized momentum is given by

p = M(q)q̇, (8)

and the differentiation with respect to time results in

ṗ = Ṁ(q)q̇+M(q)q̈. (9)

Substituting (9) into (1) results in

ṗ = Ṁ(q)q̇+ τ−C(q, q̇)q̇−G(q)− τ f ric(q̇,q)− τext . (10)

Assuming that the Coriolis matrix is expressed using
Christoffel symbols [12], (Ṁ − 2C) is a skew-symmetric
matrix and with the symmetry of M, we conclude

Ṁ =C+CT .

Accordingly, (10) can be further simplified to

ṗ =C(q, q̇)T q̇−G(q)+ τ− τ f ric(q̇,q)− τext . (11)

The key idea is to combine the description of the manipulator
dynamics based on the generalized momentum with well-
known disturbance observer approaches [6]. To this purpose,
the external torques can be modeled as

τ̇ext = Aτ τext +wτ , (12)

where wτ is the Gaussian white noise (or uncertainty), with
intensity Qτ ; the subscript τ indicates that it is related to
the external torque. Unless a model of external forces are
available, we assume constant torques at the joints by setting
Aτ = 0.

A joint friction estimate τ̂ f ric is assumed to be available,
where uncertainties in friction estimates are modelled as
white noise wp with intensity of Qp

wp = τ̂ f ric− τ f ric. (13)

The subscript p stands for process, since friction is the major
source of uncertainties in the model. The term τ̂ f ric and
the white noise wp are determined using the friction model
defined in Section II-B. Note that the friction model assumes
a velocity-dependent mean and uncertainty.

Substituting (13) into (11), the generalized momentum
dynamics can be expressed as

ṗ = u− τext +wp, (14)

where the term u is defined as

u := τ +C(q, q̇)T q̇−G(q)− τ̂ f ric(q̇,q). (15)

The above equation can be reformulated in the state-space
form by augmenting the states with the external forces
according to (12) and adding a measurment equation

ẋ︷ ︸︸ ︷[
ṗ

τ̇ext

]
=

A︷ ︸︸ ︷[
0n −In
0n Aτ

] x︷ ︸︸ ︷[
p

τext

]
+

B︷︸︸︷[
In
0n

]
u+

w︷ ︸︸ ︷[
wp
wτ

]
y =

[
In 0n

]︸ ︷︷ ︸
C

[
p

τext

]
+ v

, (16)

where u is considered as the input and v is the measurement
noise with intensity R.

The observer corresponding to system (16) is{
˙̂x = Ax̂+Bu+K(y− ŷ)
ŷ =Cx̂

(17)

where K is the Kalman gain matrix calculated as

K = PCT R−1 (18)

and P is the error covariance matrix. The matrix P is in
general time-varying and is obtained by solving the differ-
ential Riccati equation [13]. However, as shown in Fig. 2,
the velocity-dependent uncertainty in the friction can be
approximated by two levels: a constant high value for low
velocities and a lower value for velocities higher than a



defined threshold. Since the system matrices are constant
and noise intensities are not changing over a large range,
two constant values for the gain of Kalman filters K can
be defined for each joint, approximating the solution with
stationary values. Accordingly, we solve the algebraic Riccati
equation (ARE)

AP+PAT −PCT R−1CP+Q = 0, (19)

where the matrix Q denotes the intensity of the state noise

Q = blockdiag([Qp,Qτ ]).

The Kalman gains are calculated off-line and then recalled
during the real-time execution. Finally, the estimate of ex-
ternal torques on joints can be obtained from the estimated
state x̂.

D. Dithering

As can be seen in (17), the inputs of the observer are
the artificial torque u, defined in (15), and the measured
generalized momentum y. It is clear that, if the measured
joint velocity is null both y and τ̂ f ric are zero. This implies
that the estimated torque depends incorrectly on the sum of
the external torque and the static friction (which can be zero).
Therefore, the Kalman filter based on the generalized mo-
mentum can only estimate correctly the forces that overcome
the static friction.

An effective strategy to reduce the required forces to
overcome the static friction and produce rotation of the joint
is using a dithering torque [9]. A torque signal at high fre-
quency with a square wave shape is added to the feedforward
torque when the joint is not moving. The amplitude of the
dithering torque is small enough not to make the joint move,
but at the same time the resulting vibrating effect averages
out the static friction in the harmonic gear box of the joint
improving the estimation quality. The dithering torque is then
deactivated as soon as the joint starts rotating.

III. EXPERIMENTAL RESULTS

All the experiments were done using ABB YuMi robot,
a dual-arm manipulator, with 7 joints for each arm [14].
The robot is designed to operate in a work environment
shared with humans. For this reason, it has power and speed
limitations and soft padding to cover all sharp edges. For the
implementation of the methods in Sec. II, we made use of
the external research interface described in [15], that allows
to interact with and modify the native controller of the robot.

An ATI Mini40 force/torque sensor [16] was mounted on
the flange, which was only used for the validation phase.
The raw measurements in the sensor frame were converted
to the end-effector frame, scaled with the sensitivity of the
sensor, and compensated for the gravity component. The
corresponding torques on joints were calculated as

τext = JT Fext , (20)

where Fext ∈R6 is the vector of wrenches, i.e., the forces and
torques at the end-effector frame and J is the geometrical
Jacobian with respect to the end-effector.

Fig. 3. Measured and estimated torques on joint six. When the joint is
not moving, the observer cannot estimate the external torque. After the
movement of the joint, the estimate converges to the measured value.

In the next sections, the experiments are described. Firstly,
we present the results related to the estimation of external
forces. The importance of the dithering torque at zero-
velocity has been illustrated. Secondly, we present an exam-
ple illustrating the functionality of the active LTP proposed
in this article, and finally a comparison between our active
LTP and a passive LTP [8] is presented.

A. Force Observer

Here, we present the result of the force estimation method
described in Sec. II-C. The wrist-mounted force sensor was
used to verify the results after tuning the observer. In the
first experiment, the feedforward compensation of gravity
and friction was activated. Figure 3 shows the result of the
estimation. The estimation error can be attributed to the
transients of the filters and inaccurate model parameters.
Most importantly, the external force has to overcome the
static friction before being detected by the Kalman filter.
Therefore, in the next experiment we applied a feedforward
dithering torque. A square-wave dithering signal was chosen
with a frequency of 15 Hz and an amplitude equal to 20%
of the modeled friction. The relation between the frequency
and the noise in the measured velocity was evaluated while
ensuring the high responsiveness of the system.

Figure 4 compares the result of moving a joint of the robot
firstly without the dithering torque at almost-zero velocities
and secondly when the dithering was active. It was noticed
that the required torque to overcome the static friction is
almost half of the one without dithering, leading to a smaller
step in the velocity and lower latency between the application
of the external torque and its detection. The dithering torque
was automatically deactivated as soon as the joint started
rotating.



Fig. 4. The effect of dithering: the joint is moved firstly without the
dithering torque at zero velocity (on the left), secondly after it has been
activated (on the right). The measured initial torque required to start moving
the joint is almost half of the first case. The slight oscillation in the velocity
is because of the large amplitude of the dithering signal.

B. Active Lead-through Programming

Several experiments were done to explore the combination
of feedforward and admittance control described in Sec. II-
A. We could tune the matrices M̃ and D̃ in real-time on the
external research interface [15] to modify the response of
force control. However, to avoid possible instabilities, the
desired inertia matrix was chosen higher than half of the
mechanical one. Generally, the feedforward compensation of
friction is applied earlier than the force feedback because of
the time needed by the observer to converge to the external
forces.

In the experiment presented in Fig. 5, a damping matrix D̃
with small values was set, in order to facilitate the handling
of the robot. It can be seen that the admittance control torque
(red line) contributes by smoothing out the movement in
the beginning and the end of the movement and helping
the rotation in the middle. Thus, the motor actively favors
the rotation of the joint. Since this experiment concerns the
wrist joint of the robot (where the tool is mounted), the
order of magnitude of the torques is extremely small, and
for this reason the uncertainties in the friction model and the
resulting error in torque estimation are emphasized.

C. Comparison with a Passive LTP

The active lead-through programming implemented in this
paper was compared to a passive LTP system, in order to
obtain a qualitative idea of the improvements achieved with
the active version. We used the passive LTP implemented
in the Robotics Lab of Lund University as the benchmark.
More details can be found in [8], [11] and [17].

In this test, a joint of YuMi was rotated manually and
the applied force was measured by a force sensor mounted
on the end-effector. The test was repeated twice, once
using the active LTP and the other time using the passive
implementation. The data of the two different experiments

2.5 3 3.5 4 4.5 5 5.5

time [s]

-0.1

0

0.1

0.2

 to
rq

ue
 [N

m
]

torques - joint 7

estimated
measured
admittance ctrl

2 2.5 3 3.5 4 4.5 5 5.5 6

time [s]

0

1

2

ve
lo

ci
ty

 [r
ad

/s
]

velocity

measured
reference

Fig. 5. The contribution of the admittance control in active LTP is
illustrated. The controller contributes by smoothing out and helping the
movement according to the defined mass and damping properties. Note that
the reference velocity is overall slightly higher than the measured one.
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Fig. 6. Comparison between a passive LTP previously implemented on
YuMi [8] and the active LTP. Using the two different implementations, the
external forces (measured with a force sensor) were compared for generating
a similar movement of a joint. The external torque required for the active
LTP is almost half of the passive solution and the joint starts rotating earlier.

have been overlapped in Fig. 6. Since the external torque was
applied by hand, the resulting displacement and velocity are
not identical in these two experiments. However, as it can be
seen in the lower graph in Fig. 6, the resulting velocities are
very similar, hence a similar value of the friction in the joint
during the rotation can be assumed. In this comparison, the
required external torque for rotating the joint in the passive
LTP is almost twice as much as the active implementation.
The onset of motion is also earlier despite a lower level of
external forces in the active implementation.

IV. DISCUSSION

An active lead-through programming system implemented
by an admittance control based on the estimated external
torques has been presented. The combination of admittance



control and feedforward friction compensation has proven
useful, specially as soon as the joints start moving. The feed-
forward torque immediately affects the system. Therefore, it
reduces the nonlinearity of the system and contributes to its
stability. The resulting control torque makes the robot easier
to handle and smoother in the movements. The combination
shows a stable behavior in stiff contact situations (watch
the submitted video). In this paper, we did not address the
step from a demonstration to a program, and analysis of
the stability ensuring the passivity of the components is our
future research.

Since no measurements of external torque are available,
the estimate of the external torques using the Kalman filter
is based on the model of the manipulator. This means that
the quality of the estimated torque depends on the model of
the robot, in particular on the friction model. Therefore, an
accurate friction model and a gravity model are crucial.

The feedforward dithering torque applied at almost-zero
velocity drastically reduces the required initial force to
overcome the static friction. As a result, the motion starts
with a lower force and at the same time the performance of
the observer improves remarkably. Dithering mitigates the
intrinsic limitation of detecting external forces by the model-
based Kalman filter when the joint is not moving.

For modeling external forces (12), a better assumption than
constant forces at the joint space would be constant forces at
the operational space. The corresponding Aτ can be derived
by differentiating (20) w.r.t. time. However, this result in
a state-dependent matrix that requires solving the more
complex state-dependent differential Riccati equation [18].

The force control allows modifying the behavior of the
robot in multiple scenarios and makes it possible to introduce
virtual constraints during the lead-through programming. In
comparison with the passive LTP previously implemented
on the same robot [8], our approach shows improvements
in terms of ease of handling and flexibility. This can be
observed as lower force required to move the joints and
quicker onset of movements.

V. CONCLUSION

In this paper, an active sensorless lead-through program-
ming algorithm, i.e., with a force-feedback control loop
and without any force sensors was presented. The control
architecture consists of an admittance control as well as a
force observer. The force observer provides an estimation
of the external torques, which in turn is the input to the
admittance control. The observer is a Kalman filter based on
the generalized momentum formulation, which is free from
matrix inversion and any numerical differentiation.

Although approaches based on the generalized momentum
formulation suffer from the inability to detect forces at zero
velocity, we showed applying a dithering torque at high
frequency can largely mitigate this problem. This is possible
by practically reducing the static friction in the motor side
of the gear box and putting the robot always on the onset of
the movement.

Our active lead-through algorithm fulfills the expectations
in terms of smoothness and ease of handling, maintaining
stability in critical situations when the arm hits stiff surfaces
or becomes constrained during contact. The advantages of an
active LTP are multiple. In comparison with the passive ap-
proach [8], the interaction forces are reduced almost by half.
Furthermore, it gives the possibility to modify the behavior
of a manipulator depending on the teaching scenario.
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