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Abstract—This paper demonstrates how second-order time-
delayed models adequate for PID controller synthesis can be
identified from significantly shorter relay experiments, than
used in previous publications to obtain first-order time-delayed
models. Apart from having good noise robustness properties,
the proposed method explicitly addresses non-stationary initial
states of the dynamics to be identified, and handles constant load
disturbances.

I. INTRODUCTION

A. Background

PID control is a widespread, well-studied, and well-
understood technology, and its applications include almost all
areas where closed-loop controllers are employed. There exist
several text books (see for example [1]) on the topic, and
several tuning rules, ranging from simple rules of thumb [2],
to optimization-based alternatives like e.g. [3].

All commonly used PID tuning rules rely on dynamic
models of the process to be controlled. These models are
almost always assumed to be linear (or local linearizations
of nonlinear dynamics). Tuning of the PID controller consists
in the choice of three parameters. Due to its low complexity,
the controller is most often used for processes that can be ade-
quately described by low-order models, such as the first-order
time-delayed (FOTD) or second-order time-delayed (SOTD)
models. If the dynamics cannot be adequately approximated by
second order dynamics, it is advisable to use a more advanced
controller type.

Since the tuning of PID controllers is a well-studied prob-
lem, the main challenge is often the acquisition of a model
of the dynamics to be controlled. The main approaches for
arriving at process models are first principle modeling, system
identification, or a combination of the two. The former requires
insight, while the latter relies on proper experiment design. For
these reasons both approaches tend to be expensive, in terms
of (experienced control engineer) man hours.

The above has motivated the development, and subse-
quent success, of automatic tuning procedures, which rely on
automatic generation of a system identification experiment,
matched to the dynamics of the process to be modeled. The
most wide-spread approach is the relay auto tuner, introduced
in [4]. The experiment is achieved by closing a negative
feedback loop over a relay nonlinearity, as illustrated in
Figure 1. In its original form, this provides an estimate
of the critical frequency of the process, and its associated
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Fig. 1: Block diagram of the identification setting, showing
process P , asymmetric relay, filter F , identification input u
and output y, load disturbance d, and measurement noise n.

gain. This information is used to find controller parameters.
Several extensions to the relay experiment procedure have
been proposed to identify FOTD models (and sometimes also
SOTD models) in for instance [5], [6], [7]. By using all data
points, rather than only peak values and associated times, it is
possible to successfully identify the models in a more noise-
robust way. It was demonstrated in [8] that it suffices to use
very short experiments – even under significant measurement
noise – if the experiment starts in stationarity, and executes
in the absence of load disturbances. These assumptions limit
the applicability, as it is hard to ensure perfect stationarity
prior to starting the relay experiment. It is also generally hard
to safeguard for the presence of load disturbances during the
relay experiment.

In this paper we present an identification procedure, which
explicitly takes non-stationary initial states into account. It
also handles the presence of constant load disturbances during
the experiment. Thus, it provides a practically applicable
extension to the relay autotuner, allowing for the identification
of both FOTD and SOTD models under realistic experiment
conditions, while keeping the experiment time short, and the
number of heuristically determined experiment parameters
low. Paired with a PID synthesis method of the user’s choice,
the presented method provides a complete autotuner.

B. Setting and Assumptions

It is assumed that the process dynamics P , to be identified,
can be adequately modeled by an SOTD system P̂ , see (2).

Without loss of generality it can be assumed that y = 0 and
u = 0 at the operating point of interest. Other operation points
can be handled after an affine transformation. We also assume
that the signals are normalized. Usually that refers to both



0 < y < 1 and 0 < u < 1, but since we will be oscillating
around our operating point zero, we instead rescale the interval
to −5 < y < 5 and −5 < u < 5. The time units are also just
a matter of scaling, in this paper we will consider time units
to be seconds, but it could just as well be minutes or hours
depending on the application.

Both u and y are synchronously zero-order-hold sampled,
with period ts. The choice of ts is made so that the total
experiment will consist of approximately 250 samples. This
is done to show that a small data buffer size is sufficient to
perform the experiment, but faster sampling could of course be
used if possible. Effects of discretization are neglected based
on the assumption that a modern AD converter, typically with
at least 16 bit resolution, is used.

II. EXPERIMENT

A. The relay

An asymmetric relay function, as defined in [9] with an
asymmetry level γ = 2, is used in this paper. The experiment
will cause y to vary within an interval around 0. A large
interval increases the signal-to-noise ratio, which is obviously
positive. However, there are several situations where it is not
tolerable to move y arbitrarily far from 0 (due to constraints
on the process state). For nonlinear processes, large variations
may take y outside the interval around 0, within which the
process can be adequately described by linear dynamics.
Ideally, it would therefore be preferable to specify bounds on
the admissible interval. However, this is not possible since
P of Figure 1 is unknown. Consequently, we will instead
specify an admissible interval for u. The relay amplitudes
are set in the startup of the experiment, as in [9], but are
restricted to the admissible interval. In this paper we have
used maximum values of u that correspond to a control signal
interval of umax − umin = 1, i.e., 10% of the control signal
range. Consequently the larger relay amplitude is restricted
to 0.67 and the smaller to 0.33 for the given asymmetry
level γ = 2. For a well-designed process the steady-state
gain between actuator and sensor should be close to unity,
which would result in y varying within 10% as well. The
startup procedure is supposed to take care of the cases where
the process is not as well-designed. However, if the user has
other information or restrictions, it could be used to set the
admissible interval of u accordingly.

The main experiment used throughout this paper starts with
measuring the noise level and setting a hysteresis band, and
is terminated once the relay has switched M = 3 times. The
number of relay switches constitutes a trade-off between input
excitation (both in term of spectral concentration and signal-
to-noise ratio) and experiment duration. A motivation to the
short experiment duration is given in Section IV.

B. Noise and Disturbances

The sensor model consists of an additive noise source n,
which can be regarded stationary and white in the frequency
band of interest for identification. The noise assumption is
motivated by the nature of commonly occurring (thermal)

sensor noise. The noise is measured during the startup of the
experiment, and the hysteresis level h is then set to 3 times
the noise level to prevent the noise from causing the relay
to chatter. Since a sufficiently high signal-to-noise ratio is
required, and the signal is restricted to lie within the admissible
interval, there may be a need of filtering the noise if its
amplitude is too high. This could be done by introducing
a low-pass filter F (s), as in Figure 1. By using the filtered
output signal, together with the input signal run through the
same filter, the identification could be performed in the same
way as for the unfiltered case.

Ever since the introduction of the relay autotuner in [4]
it has been assumed and required that the user starts the
experiment when the system is in steady-state. In [9] it
was shown that small deviations from steady-state did not
deteriorate the resulting models that much, as long as steady-
state was reached during the startup of the experiment. To
ensure that the system is started in total stationarity is not
practically possible, and to know what is a sufficiently small
deviation is hard. Therefore a way of taking care of initial
states separate from zero is added to the identification method
in this paper and described in Section III-D.

Unknown load disturbances are a large problem for relay
experiments. This is the main motivation for keeping the
experiment time as short as possible. This method is, however,
not as sensitive to load disturbances as for instance the one
in [9]. If the constant load disturbance has been present for
a long time it will only change the nominal control signal
level, which will not affect the experiment at all. If the load
disturbance enters just before (or exactly at) the starting point
of the experiment, it will have the same effect as a change
in initial state, which the proposed method handles explicitly.
If, on the other hand, the load disturbance enters or changes
during the experiment it will still cause problems. The risk for
this to occur is limited by the very short experiment duration.

C. Experiment parameters

The parameters used for the experiments in Section IV are
listed in Table I. In addition to the parameters in the table,
initialization of the experiment consists of u = 0 during one
time unit, to characterize measurement noise, followed by u
being exponentially increased towards umax during the next
time unit. Those timings differ from the parameters used in
[9] but are reasonable for these experiments.

The initial state is set to

x0 = −A−1Bv0∆umax, (1)

where v0 is the control signal corresponding to x0 in stationar-
ity, and A and B are the state space matrices of the processes
used in the simulation examples.

III. IDENTIFICATION

A. Model Parametrization

The models we consider in this paper are of the form

P̂ (s) =
b1s

m−1 + b2s
m−2 + ...+ bm

sn + a1sn−1 + ...+ an
e−sL, (2)



TABLE I: Experiment parameters used in simulation.

Parameter Value Description

γ 2 Relay asymmetry

∆umax 1 Control signal interval, umax − umin

M 3 Number of relay switches

N ≈ 250 Number of samples per experiment

ts Sample time, adjusted to get N ≈ 250

h 3 Hysteresis to noise ratio

σn 0.1 Noise standard deviation

v0 0.08 Offset in control signal for initial state x0

where 1 ≤ m ≤ n ≤ 2. The restriction n ≤ 2 allows FOTD
models, SOTD models, as well as second-order time-delayed
models with a zero (SOTDZ). With the chosen parametrization
all these model types could be integrating by setting an = 0.

As motivated in Section II-B, we want to estimate the
initial state(s) x0 in addition to the model parameters, to be
robust toward not starting in total stationarity. The parameters
that will be estimated are therefore θ =

[
b a L x0

]
,

where a =
[
a1 . . . an

]
, b =

[
b1 . . . bm

]
, and x0 =[

x1(0) . . . xn(0)
]
.

B. Output Error Formulation

The output data from the experiment on the process P is
collected in y =

[
y1 . . . yN

]>
, and the corresponding

output data vector for the estimated process P̂ is denoted ŷ.
In this paper an output error (L2) method is employed to

identify a θ, which (locally) minimizes the cost

J(θ) =
ts
2
ε>ε, (3)

where ε = ŷ−y. An interior-point method1 [10] is employed
to find a (local) minimum of (3). Like most local optimization
methods, convergence properties of the proposed method are
significantly improved if exact expressions for the Jacobian

∇J(θ) = tsε(∇ŷ)>, (4)

and corresponding Hessian

∆J(θ) =
ts
2

∆
(
ε>ε

)
= ts(∇ŷ)>∇ŷ + tsε

>∆ŷ, (5)

are available (as opposed to finite-difference approximations).
In the context of this paper, the nabla operator is defined as

∇ =

[
∇b ∇a

∂

∂L
∇x0

]
, (6)

where
∇b =

[
∂

∂b1
. . .

∂

∂bm

]
, (7)

and where ∇a and ∇x0
are defined analogously. The Laplace

operator is defined through the outer product ∆ = ∇>∇.

1The method has been invoked from the Matlab fmincon function with
solvers trust-region-reflective and sqp for results in this paper.

Based on the reasonable assumption that ε and ∆ŷ are
generally uncorrelated, while (∇ŷ)>∇ŷ � 0, it was suggested
in [11] to approximate the Hessian by the positive semi-
definite term, when considering output error L2 problems.
We will adopt this approximation, and with a slight abuse
of notation (re)define

∆J(θ) = ts(∇ŷ)>∇ŷ. (8)

C. State-space formulation

To find the gradients needed for the Jacobian (and Hessian)
for the identification method we will consider a state-space
representation of an augmented system, with output

ŷe =

[
1 ∇b ∇a

∂

∂L

]
ŷ, (9)

that is, a system that in addition to ŷ also outputs its gradients
with respect to the model parameters.

We will be using the notation 0i×j for the zero matrix with
i rows and j columns, and Ii×j for the identity matrix where,
assuming i ≤ j, the last j − i rows have been removed. If
only one index is given, the matrix is assumed to be square.

The un-delayed version of the original system (2) can be
written in state-space form as

 A B

C D

 =


−a 1

In−1×n 0n−1×1

b̃ 0

 , (10)

where
b̃ =

[
01×n−m b

]
(11)

is a zero-padded version of b, matching the dimension of a.
Since the experiment data u and y are zero-order-hold sam-

pled, it will suffice to consider the correspondingly discretized
version of (10), with system matrices {Φ,Γ, b̃, 0}, where

{Φ,Γ} =

{
eAts ,

∫ ts

0

eAtdtB

}
. (12)

Our model is thus given by{
x(k + 1) = Φx(k) + Γud(k), x(0) = x0,

ŷ(k) = b̃ (x(k)− x0) ,
(13)

where ud(k) are elements of

ud = q−kLu. (14)

In (14), q−1 is the (non-circular) backward shift operator, and
kL the integer closest to L/ts.

The contribution b̃x0 from the initial state to the output y
is subtracted, to be consistent with the experiment described
in Section II, which is expected to start with the output of P
being 0.

The initial state estimate x0 lacks interpretation, as gener-
ally, the structure (or even order) of our model (13) does not
match that of the process P to be identified. In fact, the only
use of x0 is to improve the other parameter estimates.



Expressions for the sensitivities with respect to the model
parameters have been presented previously in [12]. Results for
the discrete time counterparts are found in [13]. In this paper,
simplified expressions of those in [12], valid under the equi-
temporal zero-order-hold sampling assumption, are used. To
make the sensitivity computations tractable, we assume that u
is independent of x. This is a fair approximation, given the
experiment of Section II, where the process operates in open-
loop, except at the time instances when the relay switches.

The matrix

ŷe =

[
1 ∇b ∇a

∂

∂L

]
ŷ (15)

is obtained as the output of the system{
z(k + 1) = Φez(k) + Γeud(k),

ŷe(k) = Ce(z(k)− z0) +Dew(k),
(16)

where the extended state vector z is

z =

[
x

−∇ay

]
, (17)

z0 is the zero padded initial model state

z(0) =

[
x0

0n×1

]
, (18)

and the system matrices of (16) are the discretized counterparts
of

 Ae Be

Ce De

 =



A 0n B[
b̃

0n−1×n

]
A 0n×1

C 01×n D[
0m×n−m Im

]
0m×n 0m×1

0n −In 0n×1

r̃ 01×n q


.

(19)
The extended system matrices {Φe,Γe} relate to {Ae, Be} as
{Φ,Γ} relate to {A,B}, see (12). The row vectors q and r̃ in
(19) are used in the computation of ∂ŷ/∂L. They are defined
through the quotient q and remainder r of the polynomial
division, or equivalently the deconvolution, of the vectors[
−b̃ 0

]
and

[
1 a

]
, where r̃ is r with its first element

removed. The origin of these expressions is found in [12].

D. Initial State Sensitivity
By definition ∇x0x(0) = In. The assumption made in

Section III-C, that u is independent of x, results in ∇x0
ud

being uniformly zero, and from the state update equation
of (13) we consequently obtain ∇x0

x(k) = Φk. Combining
this with the output equation of (13), and again utilizing that
∇x0x(0) = In, yields ∇x0 ŷ(k) = b̃Φk − b̃. This expression
can be obtained recursively through simulation of the system{

w(k + 1) = Φ>w(k), w(0) = b̃
>
,

∇x0 ŷ(k) = w>(k)− b̃.
(20)

E. Calculating the gradient expressions

The expressions for the gradients have been previously
derived in [12], but to make it clearer for the readers we
exemplify the calculations in a slightly different way here.
The SOTDZ case, where n = m = 2, gives

Y =
b1s+ b2

s2 + a1s+ a2
Ud, (21)

where the delayed input is defined as Ud = e−sLU . By
introducing the states

X1 =
s

s2 + a1s+ a2
Ud, (22)

X2 =
1

s2 + a1s+ a2
Ud, (23)

(21) can be written on state-space form as ẋ =

[
−a1 −a2

1 0

]
x+

[
1
0

]
ud

y =
[
b1 b2

]
x,

(24)

which corresponds to the system in (10). To find the gradients
we extend the state-space system to get the output vector

ye =

[
y ∇by ∇ay

∂y

∂L
∇x0y

]
. (25)

The gradient with respect to b is given by
∂Y

∂b1
=

s

s2 + a1s+ a2
Ud = X1,

∂Y

∂b2
=

1

s2 + a1s+ a2
Ud = X2,

(26)

hence the state-space representation for the output ∇by is the
same as for y with exception that the C-matrix is now I2.

The gradient with respect to a is given by
∂Y

∂a1
= −s b1s+ b2

(s2 + a1s+ a2)2
Ud = − s

s2 + a1s+ a2
Y,

∂Y

∂a2
= − b1s+ b2

(s2 + a1s+ a2)2
Ud = − 1

s2 + a1s+ a2
Y.

(27)
By introducing the additional states

z1 = − ∂y

∂a1
, z2 = − ∂y

∂a2
,

we get

ż1 = −a1z1 − a2z2 + y = −a1z1 − a2z2 + b1x1 + b2x2

ż2 = z1.
(28)

The state-updates in (28) coincides with those for z in (19),
and since the output equals −z the C-matrix is −I2.

The gradient with respect to L is

∂Y

∂L
= −s b1s+ b2

s2 + a1s+ a2
e−sLU (29)

The numerator can be rewritten as

b1s
2 + b2s = b1(s2 + a1s+ a2) + b2s− b1a1s− b1a2 (30)



resulting in

b1s
2 + b2s

s2 + a1s+ a2
= b1 +

(b2 − b1a1)s− b1a2
s2 + a1s+ a2

. (31)

This gives the following expression for the gradient:

∂Y

∂L
= −b1Ud −

(b2 − b1a1)s− b1a2
s2 + a1s+ a2

Ud

= −b1Ud − (b2 − b1a1)X1 + b1a2X2.

(32)

The quotient b1 becomes part of a direct term, while the
remainder from the polynomial division enters as the C-matrix
of the original states x. Since the polynomial division in (31) is
equal to the deconvolution of the vectors

[
−b̃ 0

]
and

[
1 a

]
this is in accordance with (19).

The gradient with respect to x0 is simulated from a separate
system, as described in Section III-D.

F. Intializing the identification

The identification method needs to be started with an initial
guess of the parameter vector θ. Unfortunately, starting from
the zero-vector, as would be the first attempt, does not always
work out well. Most of the times a good model is found from
that starting vector, but sometimes the algorithm get stuck in
another point. By using two different solvers in the Matlab
fmincon method some of these problems were removed, but
still there is a need for initializing the identification differently.
We have chosen to initialize the system by starting the FOTD
estimation from the zero-vector, as well as a number (in
this study 30) of randomly chosen

[
b a L

]
vectors. The

reason for taking random points instead of a grid of the
parameters, is that some parameters may be more significant
than others, and the random pick gives more options for each
parameter, as described in [14]. The interval for the random
choices were restricted with help from the maximum time
delay Lmax, and normalized time delay τ , which can both
be roughly estimated from the obtained half-period intervals.
Lmax is simply chosen as the shortest duration between two
consecutive relay switches. For the estimate of τ we refer
to [15]. However, that method requires convergence of the
experiment, and does not support x0 6= 0, which suggests
that the value of τ we obtain here is very approximate.

The initialization of the SOTD model is based on the
obtained FOTD model, and the initialization of the SOTDZ
model is based on the obtained SOTD model.

The estimate of the initial state x0 is initialized to zero for
the FOTD model, and then either started from zero, or based
on the obtained x0-estimate, for the higher order models.

G. Model Selection

Both an FOTD, an SOTD and an SOTDZ model are
estimated for each process. The choice of which model to
use is then based on the Akaike Information Criteria (AIC)
[16]. The chosen model is the one with lowest value of

JAIC = log(J) +
2p

N
, (33)

Experiment

• Asymmetric relay function
• 3 switches - really short!
• Possible to start from non-steady

state
• Automated startup and parameter

choices

Identification

• Estimates model parameters and
initial states, θ =

[
b a L x0

]
• Minimizing the cost (3) using an

interior point method, with gradients
obtained from simulation of the
extended system (19).

• Model selection is based on Akaike
Information Criteria.

Outcome
• Datasets of t, u,

and y

Outcome
• Models: FOTD,

SOTD, SOTDZ,
Best

Fig. 2: Schematic summary of the proposed experiment and
identification method.

where p is the number of model parameters and N the number
of data samples. The AIC is known to sometimes choose over-
parametrized models, and there may be better model selection
tools, but that is not the focus of this paper.

IV. SIMULATION STUDY

The proposed method, briefly summarized in Figure 2, is
evaluated by four example processes from the test batch in
[1], namely:

P1 =
1

(s+ 1)(0.1s+ 1)(0.01s+ 1)(0.001s+ 1)
, (34)

P2 =
1

(s+ 1)4
, (35)

P3 =
1

(0.05s+ 1)2
e−s, (36)

P4 =
1− 0.5s

(s+ 1)3
. (37)

These examples were chosen due to their differing properties.
P1 is lag-dominated, P2 is balanced, P3 is delay-dominated,
and P4 is non-minimum phase. P1–P3 have been used as
example processes in several other papers, for instance [15].

The outputs from the experiments are shown in Figure 3.
As can be seen, the experiments are short and noisy, but the
obtained models fit the data very well. It can be seen for
P2 and P4 that the FOTD models do not perfectly fit the
data, while the best models seem to do. The ”best model”
was chosen using AIC, see Section III-G. Figure 4 shows
Bode plots of the different estimated models, together with
those of the processes. The estimated models constitute good
approximations of the processes, for frequencies up to phase
lags of −180◦, which are the relevant frequencies for PID
control. The only exception is that the FOTD model is chosen
as the best model for P1 even though it is seen that the SOTD
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Fig. 3: Outputs from the experiments and identified models.
The different subplots show P1, P2, P3, and P4 from top down.

model follows the magnitude curve much better. This issue
will be discussed further in Section V.

The benefit of using the initial state estimation is demon-
strated in Figure 5. Here the best models obtained when x0

is being estimated are compared to the best models when it
is not. While the assumption that x0 = 0 yields acceptable
results in some cases, the models generally improve when x0

is explicitly estimated.
Estimation of the initial state(s) could introduce problems,

since it adds more parameters to be estimated, and model
dynamics may be wrongly interpreted as initial state(s). There-
fore we also investigated the case where the initial state esti-
mation was active while the experiment started in stationarity.
The results from this test showed a slight deterioration in one
of the obtained models, while the other three were satisfactory.
To avoid this possible problem the models could be identified
both with and without the initial-state estimation active, and
then the best model could be picked according to AIC, as is
done for the different model orders.

Another issue to consider is whether the experiments are
sufficiently long or if the results would improve from longer
experiments. In Figure 6 the obtained results are compared to
those from experiments utilizing 5 relay switches. As can be
seen the difference in obtained models between the different
experiment lengths are very small.
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Fig. 4: Bode plots of the processes and identified models. The
true process is shown in solid black, the FOTD model is shown
in dashed-dotted blue, the SOTD model in dashed cyan, and
the SOTDZ model in dashed-dotted green. The best model
according to AIC is shown in dashed red.
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Fig. 5: Bode plots of obtained models for the example pro-
cesses. The estimation of the initial state(s) x0 was active in
the red dashed model and inactive in the blue dashed-dotted
model. The true process is shown in solid black.
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Fig. 6: Bode plots of the obtained models for the example
processes. The best model from an experiment of 3 switches is
shown in dashed-dotted blue, and 5 switches shown in dashed
red. The true process is shown in solid black.



V. DISCUSSION

The simulation study shows that FOTD and SOTD models
can be very well estimated even in the presence of noise
and non-stationary starting conditions, including constant load
disturbances. The limits for the initial states are mainly that
they cannot be so large that the ”true” nominal level is close to
(or outside) the hysteresis limits. If it is, the output may leave
the hysteresis band on the wrong side, which could cause a
non-oscillating experiment.

The model selection by AIC does not always give the best
result. As shown in Figure 4, P1 gets an FOTD as its best
model, while P2 − P4 get SOTD models. For P1 the plot
indicates that the SOTD model is actually better and should
have been chosen. On the other hand, P3 would be just as
good with the FOTD model, but there the SOTD model is
chosen instead. A large part of the obtained cost is due to
the large noise level, which makes the relative difference
between the obtained models rather small, and sometimes that
results in the ”best” model not being picked. A possible way
to handle this more robustly is to include information about
the normalized time delay in the model choice. In [1] and
[15], it is discussed how delay-dominated systems like P3 are
sufficiently described by an FOTD model, while lag-dominated
systems like P1 could sometimes be much better described by
SOTD models.

One would think that P4 should get an SOTDZ model as
it can capture the non-minimum-phase zero. However, the
cost was exactly the same for the SOTDZ model as for the
SOTD model, and hence not low enough to make it the chosen
model since it has more parameters. Apparently the experiment
is not showing the non-minimum-phase behavior enough, or
its influence is instead interpreted as a different initial state
or included in the time-delay. Since the output data fit of
the SOTD model is already more or less perfect, the feeling
is that it cannot be improved much by the SOTDZ model,
and additional tests on finding zeros from the experiment
are not showing very promising results. Due to this, our
recommendation is to stick to estimating FOTD and SOTD
models only. If an SOTDZ model is really needed, for instance
if the process has slow zeros that need to be cancelled out by
the controller, the experiment needs to be re-designed to better
capture the characteristics of the zeros.

We want the experiment to contain at least an entire
oscillation period, and increasing the experiment length did
not change the obtained models much, which implies that a
duration of three switches is sufficient. The short experiment
length prevents the risk of disturbance changes during the
experiment and is therefore important.

VI. CONCLUSIONS AND FUTURE WORK

The proposed method works well in finding FOTD and
SOTD models from short experiments. The experiments can be
started without waiting for steady-state since we estimate the
initial states, and are ended without waiting for limit cycle
convergence. Constant load disturbances that enter before
the experiment are taken care of, but if something happens

during the experiment we could still be in trouble. That’s why
the really short experiment time is beneficial. The obtained
models are sufficient for PID control. By improving the model
selection, the proposed method could yield even better results.

The proposed experiment and identification needs to be
combined with a tuning method to result in a complete
autotuner. This should then be evaluated and compared to other
autotuners, preferably on real-world processes.
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[11] K. Åström, “Maximum likelihood and prediction error methods,” Auto-
matica, vol. 16, no. 5, pp. 551–574, 1980.
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