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Influences of dietary adaptation and source of resistant starch
on short-chain fatty acids in the hindgut of rats

Åsa M. Henningsson*, E. Margareta, G. L. Nyman and Inger M. E. Björck

Applied Nutrition and Food Chemistry, Center for Chemistry and Chemical Engineering,

Lund University, P.O. Box 124, SE-221 00 Lund, Sweden

(Received 10 January 2002 – Revised 23 September 2002 – Accepted 17 October 2002)

The effect of adaptation time on the concentration and pattern of short-chain fatty acids (SCFA)
formed in the hindgut of rats given resistant starch (RS) in the form of raw potato starch (RPS)
or high-amylose maize starch (HAS) was evaluated. Each starchy material was tested in diets
containing 100 g indigestible carbohydrates/kg DM, and fed for 13, 28 and 42 d. At the end of
each period, the content of SCFA was determined in caecum, distal colon and faeces. The
caecal concentration of total and individual SCFA increased for both diets with increasing adap-
tation time. The concentration of butyric acid was higher in the group fed RPS than in that fed
HAS at all adaptation times. The caecal proportion of butyric acid was low both in rats fed RPS
and HAS (6 and 4 %, respectively) following 13 d of adaptation. However, after 28 d of adap-
tation, the proportion of butyric acid had increased to 19 % in rats given RPS. A longer adap-
tation period (42 d) did not increase the proportion of butyric acid further. With HAS, there was
also a significant (P,0·01) increase in the proportion of butyric acid with longer adaptation
time. However, the increase was much slower and the proportion of butyric acid reached
6 and 8 % after 28 and 42 d respectively. It is concluded that the pattern of SCFA formed
from RS in rats is dependent on adaptation time. It cannot be excluded that the different patterns
of SCFA reported in the literature for RS may be due to the time of adaptation.

Resistant starch: Fermentation: Short-chain fatty acids: Butyric acid: Rats

Short-chain fatty acids (SCFA; mainly acetic, propionic and
butyric acid) are formed during microbial fermentation of
carbohydrates in the colon. There is increasing evidence
that SCFA, especially butyric acid, play an essential role
in the maintenance of the colonic mucosa. Butyric acid is
the main energy substrate for the colonocytes (Roediger,
1982) and has been suggested to play a role in the preven-
tion and treatment of diseases of the colonic mucosa, such
as distal ulcerative colitis (Cummings, 1997) and cancer
(Scheppach et al. 1995). A diminished oxidation of butyrate
in the colonocytes has been suggested to contribute to the
genesis of ulcerative colitis (Roediger, 1980) and enemas
with butyric acid have been associated with reduced symp-
toms in patients with ulcerative colitis (Scheppach et al.
1992). Although butyric acid serves as the primary energy
source for the normal colonic epithelium and stimulates
growth of colonic mucosa, the growth of colon tumour
cell lines has been reported to be obstructed by butyrate
(Whitehead et al. 1986). Butyrate also appears to induce
cell differentiation (Barnard & Warwick, 1993) and to
stimulate apoptosis (Hague et al. 1995) in tumour cell lines.

Starches have been shown to produce high proportions
of butyric acid by in vitro fermentation in human faecal
inocula (Englyst et al. 1987; Weaver et al. 1992; Bradburn
et al. 1993; Casterline et al. 1997). Starch that reaches the
colon has also been shown to increase the faecal concen-
tration of butyric acid in human subjects. Thus, adminis-
tration of an a-amylase inhibitor, acarbose, resulted in a
specific increase in faecal concentrations of butyric acid
in normal subjects (Scheppach et al. 1988; Weaver et al.
1997). Further, when adding the resistant starch (RS)
source high-amylose maize starch (HAS) to the diet, the
faecal concentration (Phillips et al. 1995; Noakes et al.
1996) or daily excretion (van Munster et al. 1994) of buty-
ric acid increased. However, of these studies, only the
study by Noakes et al. (1996) showed an increase in the
faecal proportion of butyric acid. In another study, differ-
ent sources of RS, such as raw starch from potatoes and
bananas and retrograded starch from wheat and maize,
were given to normal subjects (Cummings et al. 1996).
Of these substrates, only raw potato starch (RPS) gave an
increased faecal proportion of butyric acid. However,
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studies in human subjects are scarce. In addition, exper-
imental conditions, such as the intake of indigestible carbo-
hydrates, are difficult to control. Moreover, acarbose,
frequently used to increase starch delivery to the colon
and thus enable studies of SCFA formation from starch,
may affect microbial enzymes involved in fermentation,
as judged from experiments in rats (A Berggren, I Björck
and M Nyman, unpublished results).

Considerably more results on the formation and pattern
of SCFA from fermentation of RS are available in
animals. Studies in rats (Mallett et al. 1988; Gee et al.
1991; Berggren et al. 1995; Monsma & Marlett, 1995)
and pigs (Topping et al. 1993; Brown et al. 1997; Bird
et al. 2000) have shown important variations in fermenta-
tion profiles with different types of RS as substrates. One
explanation could be that the production of butyric acid
may vary between different sources of RS (Annison &
Topping, 1994). RS are generally classified into three
types (Englyst et al. 1992): starch trapped in the cell
wall of plants and thereby physically inaccessible to
a-amylase (RS 1); starch stored in granules in the
native crystalline form that can be made accessible to
enzymes by gelatinisation (RS 2); starch that has been ret-
rograded after cooling of gelatinised starch (RS 3).
Chemically modified starches have been described as RS
4 (Brown, 1996). The distribution between amylose and
amylopectin in the starch molecule may be of importance
for the profile of SCFA formed. Wang et al. (1999)
demonstrated that different bacterial strains are involved
in the degradation of these two molecules.

Another factor that might influence fermentation charac-
teristics is the adaptation time. With respect to dietary
fibre, e.g. wheat bran, pectin, cellulose and guar gum,
even a short adaptation time (between 5 and 7 d) appears
to yield stable fermentation in rats as judged from determi-
nation of extent of fermentation (Nyman & Asp, 1985;
Brunsgaard et al. 1995), whereas retrograded HAS required
a longer intervention period (1 month; Brunsgaard et al.
1995). Concerning the effect of adaptation time on the pro-
file of SCFA from RS, differing results have been obtained
in rats. In rats fed RPS, the proportion of butyric acid in the
caecum increased with time, from 13 to 28 % following 0·5
and 6·0 months adaptation, respectively (Le Blay et al.
1999). In another study, however, no change in faecal pat-
tern of SCFA was found in rats fed RPS or retrograded
potato starch over a 5-month period (Kleessen et al. 1997).

The aim of the present investigation was to study the
pattern of SCFA formed during fermentation of two
types of RS using a rat experimental model. The pattern
of SCFA was measured at different sites along the hindgut,
and the possible influence of the adaptation time was inves-
tigated. Ungelatinised crystalline starches rich in RS 2,
RPS and HASg were chosen as substrates.

Materials and methods

Diets and animals

RPS (Lyckeby Stärkelsen AB, Kristianstad, Sweden) or
HAS (Hi-maizee; Penford Australia, Lane Cove, New
South Wales, Australia) was included into diets at a level

of 100 g indigestible carbohydrates/kg DM. The compo-
sition of the test diets is listed in Table 1. The DM content
of the diets was adjusted with wheat starch, a starch source
that has been shown to be completely digested and
absorbed in the small bowel of rats, and thus does not con-
tributing to hindgut fermentation (Björck et al. 1987).

Male Wistar rats (B&K Universal, Stockholm, Sweden)
with an initial weight of 72 (SD 7) g were randomly
divided into groups of seven. Rats used for the first 13 d
of the study were housed individually in metabolism
cages (Berggren et al. 1993). After 7 d of adaptation to
the diet, a 5 d balance experiment followed when faeces
were collected daily for determination of fermentation of
RS and faecal dry weight. Faeces were kept at 2208C
and then freeze-dried and milled before analysis of
starch. The experimental diets were fed to the rats for
another 24 h, and during this time fresh faeces were col-
lected on dry ice for determination of the faecal excretion
of SCFA (‘13 d’ in Tables 2, 4–5). Rats used for studying
SCFA following 28 and 42 d of ingestion were kept singly
in cages with wire-mesh floors. Faeces were collected the
last 5 h of the experiment, frozen at 2808C and saved
for analysis of the concentration of SCFA. To facilitate
determination of fermentability, the feed intake was
restricted to 12 g DM/d during the first 13 d. The feed
during the longer adaptation was given to the rats ad libi-
tum and found to be between 15 and 17 g DM/d (Table 2).
At the end of the various adaptation periods, the animals
were killed using CO2. The caecum and colon were
removed immediately and the colon divided into a proxi-
mal and a distal part and then kept frozen (2808C) until
analysed for SCFA. The protocol of the animal experiment

Table 1. Composition of test diets (g/kg)

Ingredient* RPS HAS

RPS 157
HAS 168
Wheat starch 515 504
Casein 120 120
Sucrose 100 100
Maize oil 50 50
Mineral mixture† 48 48
Vitamin mixture‡ 8 8
Choline chloride 2 2
DL-Methionine 1 1

RPS, raw potato starch; HAS, high-amylose maize starch.
* RPS (Lyckeby Stärkelsen AB, Kristianstad, Sweden), HAS (Hi-

maizee; Penford Australia, Lane Cove, New South Wales,
Australia), wheat starch (Cerestar, Krefeld, Germany), casein
(Sigma Chemical Company, St Louis, MO, USA), sucrose
(Danisco Sugar, Malmö, Sweden), maize oil (Mazola; Best-
foods Nordic A/S, Copenhagen, Denmark), mineral mixture
(Apoteket, Malmö, Sweden), vitamin mixture (Apoteket,
Malmö, Sweden), choline chloride (Aldrich-Chemie, Stein-
heim, Germany), DL-methionine (Sigma Chemical Company).

† Containing (g/kg): CuSO4.5H2O 0·37, ZnSO4.7H2O 1·40,
KH2PO4 332·10, NaH2PO4.2H2O 171·80, CaCO3 324·40, KI
0·068, MgSO4 57·20, FeSO4.7H2O 7·70, MnSO4.H2O 3·40,
CoCl.6H2O 0·020, NaCl 101·70.

‡ Containing (g/kg): menadione 0·62, thiamin hydrochloride
2·50, riboflavin 2·50, pyridoxine hydrochloride 1·25, calcium
pantothenate 6·25, nicotinic acid 6·25, folic acid 0·25, inositol
12·50, p-aminobenzoic acid 1·25, biotin 0·05, cyanocobala-
min 0·00375, retinyl palmitate 0·187, calciferol 0·00613,
a-tocopheryl acetate 25·00, maize starch 941·25.
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was approved by the Ethics Committee for Animal Studies
at Lund University.

Analysis of starch

An in vitro model (Åkerberg et al. 1998) was used for deter-
mination of RS in the test materials. Six human subjects per-
formed simulated mastication using glass beads for 15 s and
then rinsed their mouths with 5 ml water, and thereafter the
saliva was pooled. Pooled saliva (5 ml) was transferred to a
beaker containing the test product and water. The pH was
adjusted to 1·5 and pepsin (Merck, Darmstadt, Germany)
was added. Thereafter, the samples were incubated at
378C for 30 min. The pH was adjusted to 5·0 after addition
of pancreatin (Sigma Chemical Company, St Louis, MO,
USA) and amyloglucosidase (Boehringer Mannheim,
Mannheim, Germany). The suspension was incubated for
16 h at 408C. Undigested starch was precipitated with etha-
nol and analysed as liberated glucose after solubilisation in
KOH and enzymatic treatment with a thermostable a-amy-
lase (Termamyl 300L DX; Novo Nordisk A/S, Copenhagen,
Denmark) and amyloglucosidase (Roche Diagnostics,
Mannheim, Germany) according to Björck & Siljeström
(1992). Pooled saliva was used instead of an initial chewing
of the sample since the product was not a realistic food item,
but a dry flour. The analysis was performed six times per
sample. Total starch in faeces was analysed as described
earlier (Björck & Siljeström, 1992) and when corrected
for the small amounts of free glucose it was regarded as RS.

Analysis of NSP

NSP in the test materials were isolated using the enzymatic
method of Asp et al. (1983). The composition of the iso-
lated fibre residue was analysed by GLC on a DB-225
column (J&W Scientific, Folsom, CA, USA) for the neutral
sugars as their alditol acetates and spectrophotometrically
for the uronic acids (Theander et al. 1995). Non-starch glu-
cose was calculated as the difference between the total glu-
cose content measured by GLC and the total amount of
starch in the isolated fibre residue. Triplicate samples
were used.

Determination of short-chain fatty acids

The amount of SCFA (acetic, propionic, isobutyric, butyric,
isovaleric, valeric, caproic and heptanoic acid) and succinic
acid in caecum and colon contents were analysed by a GLC
method (Richardson et al. 1989). The intestine content was
homogenised (Polytronw; Kinematica, Luzern, Switzerland)
with 2-ethylbutyric acid (internal standard). HCl was added
to protonise the SCFA, which were then extracted with
diethyl ether and silylated with N-(tert-butyldimethylsi-
lyl)-N-methyltrifluoroacetamide (Sigma Chemical Com-
pany). The samples were allowed to stand for 48 h to
complete derivatisation. Samples were analysed using
GLC (HP 6890; Hewlett-Packard, Wilmington, DE, USA)
equipped with an HP-5 column (Hewlett-Packard), and inte-
grated by Chem Station software (Hewlett-Packard).

Calculations and statistical evaluation

The faecal excretion of RS (%) was calculated as the
amount of starch found in faeces divided with the ingested
amount of RS and multiplied by 100. The caecal pool of
SCFA was calculated by multiplication of the concen-
tration of SCFA in the caecum (mmol/kg) by the total
weight of the caecal contents (kg). The faecal excretion
of SCFA was calculated by multiplication of the concen-
tration of SCFA in the faeces (mmol/kg) by the weight
of faeces (kg) excreted during the last 24 h of the exper-
iment (‘13 d’ in Tables 2, 4–5).

The proportion of butyric acid was calculated as the pro-
portion of butyric acid of the three major SCFA (i.e. acetic,
propionic and butyric acid) and this was calculated for each
rat before statistical evaluation.

Table 2. Feed intake, body-weight gain and caecal wet content in rats fed either raw potato starch (RPS) or high-amylose maize starch (HAS)

(Mean values with their standard errors for seven rats per group)†

13 d 28 d 42 d

RPS HAS RPS HAS RPS HAS

Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

Feed intake (g/d) 12·0 0·0 11·9 0·1 15·7 0·4 15·0 0·3 16·9 0·4 16·8 0·7
Body-weight gain (g/d) 3·5 0·1 3·7 0·1 5·5 0·2 5·3 0·2 5·1 0·2 5·2 0·3
Caecal wet content (g) 2·9*** 0·2 1·7 0·1 6·1* 0·6 4·7 0·3 7·1 0·5 6·5 0·5

Mean values were significantly different from those in the HAS group (one-way ANOVA): *P,0·05, ***P,0·001.
† For details of diets and procedures, see Table 1 and p. 320.

Table 3. Faecal dry weight and fermentability of resistant starch
(RS) in rats fed either raw potato starch (RPS) or high-amylose

maize starch (HAS) following 12 d of ingestion†

(Mean values with their standard errors for seven rats per group)

RPS HAS

Mean SEM Mean SEM

Faecal dry weight (g/d) 1·0*** 0·1 0·5 0·0
Fermentability of RS (%) 54·5*** 6·4 97·4 0·7

Mean values were significantly different from those in the HAS group (one-
way ANOVA): ***P,0·001.

† For details of diets and procedures, see Table 1 and p. 320.
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All statistical analyses were performed with the Mini-
tabw Statistical Software package (version 13.0; Minitab
Inc., State College, PA, USA). In Tables 2 and 3, mean
values were analysed by one-way ANOVA using the Gen-
eral Linear Model procedure according to Minitabw. In
Tables 4 and 5, mean values were analysed by two-way
ANOVA to assess the effects of diet, adaptation time and
interactions between the diet and time on the concentration
of SCFA in caecum and distal colon. The analysis was not
performed on faecal data because some values were miss-
ing. When significant differences were found, individual
means were analysed by one-way ANOVA to assess the
effects of diet at each adaptation time. The level of signifi-
cance was P,0·05.

Results

RPS contained a higher amount of RS (640 g/kg DM) than
HAS (591 g/kg DM). Only HAS contained a measurable
amount of NSP (14 g/kg DM).

The rats tolerated both diets well and there was no
difference in feed intake or body weight gain between
the two diets during any of the intervention periods
(Table 2). However, ingestion of the RPS diet gave a
higher caecum wet weight than the HAS diet following
13 and 28 d of adaptation (P,0·05). Further, the faecal
dry weight measured during the balance experiment was
twice as high for rats fed RPS than for those fed HAS
(P,0·001, Table 3). The two starches were fermented to
various extents. RS in HAS was almost completely fermen-
ted during the balance experiment, and only about 3·0 % of
the ingested amount appeared in faeces. RS in RPS, on the
other hand, was considerably more resistant and 45·5 %
appeared in faeces (P,0·001).

The caecal concentration of SCFA increased with adap-
tation time in rats fed both substrates (Table 4). Further,
the concentration of SCFA was higher in caecum than in
distal colon or faeces, and this difference increased with
prolongation of the adaptation time. The two substrates
gave similar caecal concentrations of total SCFA, as well
as of acetic and propionic acid after all adaptation periods.
Butyric acid formation was, however, dependent on the
diet, and the caecal concentration was significantly higher
(P,0·05) in rats fed RPS than HAS during the entire
experiment. In the distal colon and faeces, the concen-
tration of total SCFA also generally increased with time.

The total faecal excretion of SCFA after 13 d and the
caecal pool of SCFA following 13, 28 and 42 d are
shown in Table 5. After 13 d of adaptation, rats given
RPS had a higher caecal pool of SCFA and faecal excretion
of SCFA than those fed HAS (P,0·01), due to a higher
content of all the three main SCFA. The caecal pools of
SCFA increased linearly with adaptation time for both sub-
strates (RPS R 2 0·71, P,0·001; HAS R 2 0·86, P,0·001).
After 28 d, there was a higher caecal butyric acid pool
(P¼0·0046) with RPS than HAS, but no difference regard-
ing other SCFA. Following 42 d of adaptation, RPS still
gave a higher caecal pool of butyric acid than RPS
(P¼0·0275). In addition, the pool of total SCFA and
acetic acid was also higher in rats given RPS than in
those given HAS at this time (P,0·05).T
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The molar proportion of butyric acid in the caecum was
low with both RPS (6 %) and HAS (4 %) after 13 d of adap-
tation (Fig 1). In rats given RPS, the proportion of butyric
acid increased significantly to 19 % after 28 d of adaptation
(P¼0·0017). A longer adaptation (42 d) did not affect this
proportion further. The pattern of SCFA formed in rats fed
HAS was also affected by adaptation time, but the increase
in the proportion of butyric acid was slower and reached
8 % after 42 d (P¼0·0023). Similar trends were found
also for the proportion of butyric acid in distal colon and
faeces (Fig. 1).

Discussion

Two sources of native RS were used to study the potential
effect of adaptation time on the concentration and pattern
of SCFA in the hindgut of rats. The rat model used has
been shown to correlate well with human experiments
with respect to total fermentation of dietary fibre (Nyman
et al. 1986). Concerning the formation of SCFA, in vitro
incubations with human and rat faeces have been found
to give similar profiles from both dietary fibre (Lupton &
Villalba, 1988; Barry et al. 1995) and starch (Wyatt &
Horn, 1988) and the rat therefore seems to be useful for
comparisons of patterns of SCFA formed from different
carbohydrate substrates. However, previous studies on
rats have indicated that the pattern of SCFA formed from
RS may vary due to the length of the feeding time
(Le Blay et al. 1999). This is important from a methodo-
logical point of view, to enable valid comparisons of
potential differences in the formation of SCFA from
various carbohydrate substrates.

The fermentation of the RS in HAS was very high and of
the same magnitude as in previous studies in rats (Schulz
et al. 1993; De Schrijver et al. 1999). RPS was more resist-
ant to fermentation, which has been demonstrated

previously (Berggren et al. 1995). Accordingly, the
faecal dry weight was higher for rats fed RPS than those
given HAS. In spite of higher fermentation of HAS, the
rats fed this substrate generally had lower caecal pools of
SCFA and lower faecal excretions of SCFA than those
fed RPS. Similarly, others have reported lower caecal
pools of SCFA in combination with lower faecal weights
in rats fed HAS, than rats fed RPS (de Dekere et al.
1995; Ferguson et al. 2000). In these studies, the analysed
RS in the substrates were of the same magnitude as in the
present investigation (618–650 and 650–670 g/kg for HAS
and RPS respectively) and RS was added to yield a level of
about 140 (de Dekere et al. 1995) or about 222 (Ferguson
et al. 2000) g/kg in the diet. These results suggest that RS
may differ in fermentation characteristics and SCFA pro-
duction depending on origin. The in vitro model for RS
determination, used in the present study, has been demon-
strated to yield RS contents in agreement with literature
results obtained in the ileostomy model for several food
products (Åkerberg et al. 1998). However, it cannot be
excluded that the differences in SCFA formation from fer-
mentation of HAS and RPS respectively may have ema-
nated from erroneous estimation of the true amount of
starch delivered to the rat hindgut.

After a short adaptation (13 d), both starch sources gave
similar patterns of SCFA, with low caecal and faecal pro-
portions of butyric acid. The proportion of butyric acid
increased with prolongation of the adaptation time with
both substrates. However, the increase in the proportion
of butyric acid was faster in rats given RPS than in those
given HAS and after 28 and 42 d of adaptation, the butyric
acid formation was shown to be promoted by RPS. This
result is in agreement with previous studies by Le Blay
et al. (1999), where the caecal proportion of butyric acid
increased with adaptation time in rats fed RPS. It is
noteworthy that RPS also caused bloating in the colon

0

5

10

15

20

25

10 15 20 25 30 35 40 45

Adaptation time (d)

M
o

la
r 

p
ro

p
o

rt
io

n
 o

f 
b

u
ty

ri
c 

ac
id

 (
%

)

***

*
**

**

*

Fig. 1. Proportion of butyric acid (%) in caecum (X), distal colon (B) and faeces (O) of rats given raw potato starch and in caecum (W), distal
colon (A) and faeces (K) of rats given high-amylose maize starch (HAS), following different adaptation times. For details of diets and pro-
cedures, see Table 1 and p. 320. Values are means for seven rats per group with standard errors shown by vertical bars. Mean values were
significantly different from those in the HAS group at the same adaptation time (one-way ANOVA): *P,0·05, **P,0·01, ***P,0·001.
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following 28 and 42 d of adaptation, a phenomenon that not
could be seen with HAS or with RPS after 13 d of adap-
tation. Bloating is caused by production of H2 and CO2

during fermentation by some specific bacterial strains.
Interestingly, studies in human subjects have shown that
RPS may produce higher amounts of breath H2 than
HAS (Olesen et al. 1992). Various bacterial species are
known to use different fermentation pathways (Moore &
Holdeman, 1974; Holdeman et al. 1977), and an expla-
nation of the differences in the pattern of SCFA formed
and gas production between starches could be that different
micro-organisms are involved during the fermentation.
Different bacterial strains have also been shown to be
involved in the degradation of amylopectin and amylose
in in vitro studies (Wang et al. 1999). The two starches
differ regarding the granule structure and amylose:amylo-
pectin ratio. Potato starch in its native form exists as rela-
tively large spherical or ellipsoid granules (Gallant et al.
1992) and has a low amylose:amylopectin ratio (0·25).
Instead, HAS granules are small and can be both polyhed-
ric and irregular with a higher amylose:amylopectin ratio
(4·00). Possibly these differences in physico-chemical
properties affect the type of micro-organisms involved in
fermentation and in the production of SCFA.

With HAS, the increase in the proportion of butyric acid
with adaptation time was less significant. However, it
cannot be excluded that the butyric acid formation with
the two substrates would be similar if adaptation were pro-
longed. Thus, the discrepancy in literature regarding buty-
ric acid formation from RS in rat models (Mallett et al.
1988; Gee et al. 1991; Berggren et al. 1995; Monsma &
Marlett, 1995) might be explained partly by the fact that
various starches, when fed as individual substrates, are
affected differently by the length of the adaptation time.
It may be hypothesised that the length of the intervention
period may influence the pattern of SCFA formed from
RS also in studies on human subjects. Another factor that
has been reported to affect the pattern of SCFA formed
from RS is the level of RS in the diet (Mathers et al. 1997).

As butyric acid has been shown to inhibit growth of
colon cancer cells in vitro (Whitehead et al. 1996) and
stimulate apoptosis (Hague et al. 1995), RS (by its ability
to promote butyric acid production) has been suggested to
protect against colon cancer (Hylla et al. 1998). Further,
epidemiological studies have shown a strong correlation
between a high intake of dietary starch and a low incidence
of colo-rectal cancer, whereas no significant relationship
has been found between NSP and colon cancer (Cassidy
et al. 1994). However, in studies investigating the effect
of RS and cancer prevention using rodent models, varying
results have been obtained. Thus, when intestinal cancer
was induced by azoxymethane in rats, both HAS (Caderni
et al. 1994) and RPS (Thorup et al. 1995) were observed
to be protective. In contrast with these results, RPS
enhanced tumourogenesis (Young et al. 1996), whereas
no effect of this starch was noted in the investigation by
Sakamoto et al. (1996). Of the reports mentioned earlier,
only the study by Sakamoto et al. (1996) specified the
SCFA produced from RS. In that study, the butyric acid
concentration in the distal part of the colon did not differ
from the basal group. Recently, Perrin et al. (2001) found

that only dietary fibres promoting a high and stable butyric
acid production in the rat hindgut decreased the rate of aber-
rant crypt foci in rats. It thus appears as if evaluation of
butyric acid formation from various starches is important
in relation to colon diseases. In this context, it is interesting
to note that RPS generally gave higher concentrations of
butyric acid.

In conclusion, the present study shows that the proportion
of butyric acid formed in rats fed RS, in the form of RPS and
HAS, increases with increasing length of adaptation time.
However, the increase in the proportion of butyric acid
with RPS was faster than with HAS. The impact of adap-
tation time may explain the different patterns of SCFA for
RS reported in the literature. More studies are needed in
order to establish steady-state conditions with respect to pat-
terns of SCFA formed from different RS substrates. Poten-
tial differences in butyric acid production between different
RS sources are important to evaluate, as butyric acid has
been suggested to protect against diseases of the colon
mucosa, such as distal ulcerative colitis and cancer.
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