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Abstract

We present a rate equation model for the TGF-β pathway in endothelial cells

together with novel measurements. This pathway plays a prominent role in

inter- and intracellular communication and subversion can lead to cancer,

fibrosis vascular disorders and immune diseases. The model successfully

describes the kinetics of experimental data and also correctly predicts the

behavior in experiments where the system is perturbed.

A novel method in this context, simulated tempering, is used to fit the

model parameters to the data. It provides an ensemble of high quality solu-

tions, which are analyzed with clustering methods and display a hierarchical

structure highlighting distinct parameter subspaces with biological interpre-

tations.

This analysis discriminates between different biological mechanisms to

achieve a transient signal from a sustained TGF-β input, where one mech-

anism is to use a negative feedback to turn the signal off.

Further analysis in terms of parameter sensitivity reveals that this nega-

tive feedback loop in TGF-β signaling renders the system global robustness.

This sheds light upon the role of the Smad7 protein in this system.

Key words: Signal transduction networks, systems biology, dynamical

systems, robustness
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1 Introduction

General Considerations

Mathematical modeling of signal transduction networks using rate equations

is increasingly attracting attention as a powerful tool (see e.g. (1–5)). It is

used to simulate the kinetics of large signaling networks, where one cannot

only rely on biological intuition. In such studies, the aim is to identify and

shed light on the role of key components and modules. Furthermore, such

approaches allow for predicting quantities not yet measured.

Rate equation modeling involves three major steps: (1) Specify the com-

ponents and their interactions and set up the system of equations. (2) Find

values for the kinetic parameters from experimental estimates or by fitting

the model to experimental kinetic data. (3) Analyze the behavior of the

model for extracted parameter values.

Step 2 often presents the main limitation for a pathway modeling ap-

proach. The systems tend to have many parameters where only a few (if

any) have values that represent reliable estimates from experiments. Also,

the experimental kinetic data is typically not sufficient to constrain the pa-

rameter values to a single optimal solution, and multiple parameter sets can

explain the available data. We address this problem by consistently looking

at ensembles of parameter sets, where these sets subsequently are clustered

with unsupervised methods, providing explanatory insights into the data

and related biological interpretations.

A novel tool in this context is developed to deal with the optimization

of parameters, Simulated Tempering (ST), which has previously been used
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to map out thermodynamical properties of protein folding models (6, 7). As

with any other Monte Carlo method, ST naturally provides ensembles of

solutions rather than single ones, subject to analysis by standard clustering

techniques.

In this paper, we apply the rate equation methodology to the Transform-

ing Growth Factor β (TGF-β) pathway in endothelial cells. The members

of the TGF-β superfamily are responsible for many different biological func-

tions, including proliferation, differentiation, apoptosis, embryonic develop-

ment and wound healing. Perturbations in the TGF-β pathway has been

detected in several human diseases, most notably in many forms of cancer

and also in fibrotic diseases of the liver, the kidney and the lung (8). This

pathway is not too large for modeling as there are sufficent number of mea-

surements available to infer the value of the parameters available. Neither

is it small enough to use visual inspection or a simple ON/OFF language as

means to draw conclusions about its dynamics and function. We compare

the models both to existing data (9, 10) and to novel measurements first pre-

sented here. The experiments consist of kinetic (time-course) measurements

following TGF-β stimulation under different conditions; untreated cells and

three cases, where different components of the pathway have been perturbed.

Two of the experiments are used to fit the model parameters and the other

two are left as ”blind test” experiments. In addition, we predict the response

of the system when varying the ligand dosage. Thus we develop a predictive

model that is tested against existing data. Furthermore, we make testable

predictions for further experiments. We also identify among other things a

feedback loop (Smad7) as important for explaining all data sets used and
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for the stability of the model.

To our knowledge, this is the first time the TGF-β pathway including

regulatory aspects is approached with dynamical models. Recently, Vilar

et. al. (5) presented a detailed receptor model for TGF-β signaling, and we

will discuss how this model relates to our simplified receptor description.

The TGF-β pathway in endothelial cells

The TGF-β signaling pathway in endothelial cells (see Fig. 1 for a sim-

plified layout) is triggered by the TGF-β protein, which acts as a ligand,

by binding to and activating a heteromeric complex of type I and type II

serine/threonine kinase receptors. The type I receptor acts downstream of

the type II receptor and the signal is propagated inside the cell as the ac-

tivated receptor complex is internalized and binds to and phosphorylates

a protein of the Smad family, called receptor-regulated Smads or R-Smads

(11–13). The R-Smads include Smad1, Smad2, Smad3, Smad5 and Smad8.

The phosphorylated R-Smads can form complexes with Smad4, also referred

to as Co-Smad (11, 12). These complexes move into the nucleus where they

regulate the transcription of target genes. There is also an inhibitory effect

generated by the inhibitory-Smads (I-Smads), Smad6 and Smad7 (11, 12).

The I-Smads negatively regulate the TGF-β signaling pathway by binding

to the receptors and compete with R-Smads for receptor interaction, by re-

cruiting ubiquitin ligase to activated receptor complexes and thereby target

the receptor for proteasomal degradation or by recruiting phosphatases that

inactivate the type I receptor by dephosphorylation (12–14).

In most cell types, TGF-β signaling is mediated via the type I receptor
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activin receptor-like kinase 5 (ALK5). In endothelial cells it is also mediated

by the similar ALK1 kinase. Endothelial cells make up the endothelium, a

single layer of flattened cells, which are responsible for the formation connec-

tive tissues such as blood cells, blood vessels, etc. Since neovascularization

plays a rate limiting step in cancer progression, research has frequently been

focused on endothelial cells (15).

The two receptor proteins ALK1 and ALK5 give rise to two distinct path-

ways, which in turn induce opposite cellular functions. The TGF-β/ALK5

pathway induces the phosphorylation of Smad2 and Smad3 whereas the

TGF-β/ALK1 pathway is responsible for the phosphorylation of Smad1 and

Smad5. Moreover, ALK5 inhibits migration and proliferation while ALK1

stimulates these processes (9).

The phosphorylated R-Smads also display different behaviors in endothe-

lial cells. It has been shown in (10) that the negative regulation of Smad1/5

is dependent on some newly synthesized protein and that Smad7 is induced

by TGF-β/ALK1 signaling but unaffected by the TGF-β/ALK5 signaling.

An interpretation of this would be that in endothelial cells TGF-b induced

activated Smad1/5 together with Smad4 activates the production of Smad7.

The effect of Smad7 on the two pathways is also different. It has been shown

to inactivate the ligand-bound ALK1 receptor. It can target the activated

receptor for an ubiquitin ligase dependent degradation (14, 16). Smad7 can

also recruit a phosphatase to the activated ALK1 receptor and thus inhibit-

ing further phosphorylation of Smad1/5 (10). It has been shown that only

high levels of Smad7 have an inhibitory effect on phosphorylated Smad2 (10).

This leads to the conclusion that Smad7 negatively regulates the phosphory-



Kinetics and robustness of the TGF-β pathway 6

lation of both Smad1/5 and Smad2 but the strength of the latter interaction

is much weaker.

The putative TGF-β-induced negative feedback from Smad7 is an inter-

esting aspect of the pathway. What is its purpose? If it is merely to shut

off the ALK1 pathway, could this not be controlled by simpler means; for

example in form of creation and degradation? These are two main questions

investigated in our computational analysis of the pathway.

2 Materials and Methods

Use of Experimental Data

Relative concentration levels for phosphorylated Smad1 (PSmad1) and phos-

phorylated Smad2 (PSmad2) are estimated from Western Blot analysis. The

time course data sets are from five different experiments following TGF-β

stimulation, and both novel and existing measurements are used. The data

sets consist of:

I. A non-perturbed experiment (control), where the cells are only stimu-

lated with TGF-β. This new experiment is described below.

II. The cells are treated with the protein synthesis inhibitor cyclohexam-

ide, which is modeled by completely blocking all protein production

(10).

III. The cells are treated with the proteasome inhibitor MG-132, which is

modeled by removing the proteasomal degradation of all proteins (10).
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IV. The cells are treated with the phosphatase inhibitor orthovanadate,

which is modeled by removing the phosphatases from the model (10).

V. An additional non-perturbed experiment, where the dose-response of

phosphorylated Smad1 and Smad2 is measured by varying the amount

of TGF-β (9).

In experiment I-IV the concentrations are measured at times 0, 45, 90, 120,

180 and 240 minutes after TGF-β addition. In order to investigate the early

dynamics of the pathway we have also performed additional measurements

of experiment I at times 0, 5, 15, 30, 45, 60, 120. The dose-responses, exper-

iment V, are measured after 45 minutes only. The doses in this experiment

varied from 0 to 5 ng/ml in 6 steps.

There are many possible ways to fit the model to experimental data,

many of which display non-biological behavior. In order to reduce the num-

ber of possible solutions, we fit to more than one set of experimental data.

For detailed studies, we use experiments I, II, and V for this calibration,

whereas the others are used as “blind test” experiments. In this way the

predictive power of our approach is tested. We also permute the experiments

used for calibration to investigate the effects of such alterations.

Details of new measurements

Kinetics of TGF-β3 induced Smad2 phosphorylation versus TGF-

β3 induced Smad1/5 phosphorylation. Mouse Embryonic Endothelial

Cells (MEEC) were stimulated with 1 ng/ml TGF-β3 for different time

points before lysis, fractionated by 6% SDS-PAGE and blotted. As a positive
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control, 293 cell lysate transfected with either Smad2/constitutively active

ALK5 (PS2) or Smad1/constitutively active ALK1 (PS1) were used. The

filters were incubated with phospho-Smad2 or phospho-Smad1 antibodies,

detection was performed by enhanced chemoluminescence (ECL).

Ligands and cells and Western blot analysis. Recombinant TGF-

β3 were obtained from K. Iwata (OSI Pharmaceuticals, Melville, NY). All

assays were performed with both ligands with essentially the same results.

Recombinant BMP6 was a gift from Dr K. Sampath (Curis, Inc. Cambridge,

MA). MEECs were cultured and Western blot analysis was performed as

described in (9) and shown in Fig. 4C below.

The Model

Our aim is to develop a model versatile enough to be able to explain current

data for the TGF-β pathway in endothelial cells and where the perturbation

experiments described above can be naturally implemented. At the same

time, each individual reaction step should be described as simple as possible

in order to keep the number of parameters low. To this end we model the

TGF-β pathway as described in Table 1 (cf. Fig. 1). All reactions are

assumed to be reversible and constant production and degradation of all the

non-phosphorylated proteins are allowed for.

Receptor dynamics. We only include the Type I receptors explicitly

which are activated by TGF-β, and do not include receptor internalization

and recycling (Fig. 2). This simplistic description of the receptor dynamics

can be compared with a recently introduced rather detailed model for the

TGF-β receptors, which takes into account phenomena such as receptor
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recycling and trafficking (5). This detailed model is capable of describing

different kinds of receptor responses to extracellular ligand concentrations

depending on the situation at hand. We demonstrate that, regardless of the

simplifications, our receptor model behaves strikingly similar to the more

complicated of Vilar et al., at least as long as only one ligand of the TGF-β

superfamily is present (see Supporting Text for details). An explanation

for this similarity is that although our simplistic receptor model has much

fewer parameters it does include variants of the parameters pinpointed as

the most important ones by Vilar et al., which are determining the ratio of

degradation of the unbound compared to the activated receptor. Also, we

do not account for spatial factors for receptor membrane localization, which

has recently been shown to improve receptor models in some situations (17).

Phosphorylation and complex formation. The activated receptors

catalyze the phosphorylation of the R-Smads (Smad1, Smad2), which is

described by a Michaelis-Menten formalism. PSmad1 and PSmad2 can form

complexes with Smad4, and the complex including PSmad1 can move into

the nucleus and induce Smad7 production. We assume a constant volume

difference between the cytoplasm and nucleus, which can be integrated into

model parameters and nucleus concentration unit and hence the volumes

are not explicitly introduced in the model.

Feedback inhibition. As described above, Smad7 has an inhibitory

effect on the signal. This is modeled by recruitment of the phosphatase PA

(PB) to the activated ALK1 (ALK5), which leads to an inactivation of the

receptor. Since an ubiquitin ligase dependent degradation of the activated

receptor leads to a similar inactivation behavior we do not account for this
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process explicitly in the model.

Formalism. The reactions in Table 1 are implemented with standard

rate equations using deterministic ordinary differential equations (Table 2).

This assumes an ample amount of molecules involved and not to rare events.

These conditions are very likely satisfied in the TGF-β case. For all reactions

we use mass action or Michaelis-Menten enzyme kinetics. The complete set

of equations are given in Table 2. As an example the equation for Smad1

concentration is given by

d[Smad1]

dt
= p2 − p2p3[Smad1] + p17[PSmad1] −

p15[Smad1][TA1]

p16 + [Smad1]
, (1)

which can be deduced from rows i and l in Table 1 (cf. Fig. 1). [X] denotes

the concentration of molecule X and the p’s are kinetic parameters. We

have chosen to use the parameterization r(1− 1
l [X]) for the production and

degradation terms where r and l correspond to the production rate and the

equilibrium level for the production/degradation terms respectively. These

equilibrium levels are also used as initial concentrations in the simulations.

Computational Procedures

We use a general computational procedure which can be divided into calibra-

tion and analysis (see Fig. 3). In the calibration part we extract parameter

value sets that describe experimental data well, which results in an ensemble

of solutions. The calibration consists of two parts: (1) Optimization, where

the parameters are adjusted for the model to fit the experimental data and

(2) Filtering, where good solutions from the optimization procedure are
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evaluated against other experimental knowledge. These procedures require

multiple simulations of the model, where the result of the numerical inte-

gration of the ordinary differential equations (ODEs) is compared with the

experimental data. In the analysis part we investigate the behavior of the

solutions following from the calibration step. As a first step, the solutions

are grouped by clustering. The resulting subgroups are further evaluated by

examining the group-averaged behavior. In a validation step the solution

behavior is compared with “blind test” experiments, where the predictive

power of the solutions is investigated. Also, we analyze how robust the

solutions are with respect to perturbation of the parameters.

Solving the system of ordinary differential equations. The effi-

ciency of the differential equation solver is extremely important since this is

where most computational time is spent, in particular since the equations

are often stiff. We use a procedure that adaptively switches between two

methods to minimize the computational load: (1) Fifth order Runge Kutta

method, where the step size is varied in order to keep the local truncation

error constant, using an embedded fourth order method in order to estimate

the truncation error and (2) the Rosenbrock method which is a an implicit

method that uses the same kind of step size control as (1), but is more effi-

cient in the regions of parameter space where the ODEs become stiff. Both

methods are described in (18) and initial parameter values and other details

in this procedure can be found in the Appendix.

Calibration. In the optimization procedure we estimate the parame-

ters of the model by fitting to experimental data. After each solution to

the ODEs in the iterative process, the K parameters p = (p0, . . . , pK−1) are
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adjusted such that the model should more accurately describe the experi-

mental data. The latter consist of N discrete time points t1, t2, . . . tN for

each experiment. As error measure, the quadratic difference is used,

R(p) =
1

N

1

M

tN
∑

t=t1

M
∑

i=1

(xi(t) − x̃i(t))
2, (2)

where xi(t,p) and x̃i(t) denote model points and experimental points re-

spectively and the index i denotes the different molecules (M in total). We

use two experiments in the optimization procedure, and the sum of the two

R values is used as error measure. In order to find good approximate so-

lutions to global minima for Eq. 2, one can for example use Monte Carlo

methods like Simulated Annealing (SA) (19). Here, we employ a related

but more powerful method, Simulated Tempering (ST) (6, 7), where the

fictitious temperature is a dynamic variable, and the system is always kept

at equilibrium for the different temperatures. Solutions are obtained by

”quenching” from the lowest temperature to T = 0 corresponding to a local

search. The underlying idea is to scan sizable parts of the solution space at

different high temperatures and regularly visit low temperature solutions.

In a sense, this optimization method corresponds to SA with multiple ran-

dom starts and it yields ensembles of solutions rather than single ones. The

details of the ST implementation are found in the Appendix.

To further restrict the behavior of solutions included in the analysis, we

select solutions from the optimization step to correctly describe the dosage

experiment V. We run the model for different dosages of TGF-β and cal-

culate a measure similar to R (see Appendix for details). Finally, a small
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subset of these solutions are removed based on an “over-fitted” behavior

(20).

Solution properties. In order to investigate properties and interior

structures of the solution space we use three different methods: (1) Hier-

archical clustering, (2) K-means clustering, and (3) Principal Component

Analysis (PCA). Before this analysis, the data is pre-processed to obtain a

distribution for each parameter with zero mean and standard deviation one

(for details on the implementation see the Appendix).

Robustness. A common method used to analyze the robustness of

a system is to use the derivatives of the molecule concentrations, xi(t,p),

with respect to the different parameters, p, as a direct measurement of the

sensitivity of the system (21). We define a sensitivity vector according to

sj ≡
pj

M

M
∑

i=1

(

N
∑

k=1

[

1

xi(tk)

∂xi(tk)

∂pj

∣

∣

∣

∣

p0

]2
)1/2

, (3)

where the derivative is approximated by a simple finite-difference approxi-

mation, using 1% parameter variations.

3 Results

Calibration. First we generate an ensemble of solutions from fitting to the

control (I) and cyclohexamide (II) experiments. Good solutions are selected

with the criteria R < 0.01 yielding approximately 200 solutions. As can

be seen from Fig. 4, these solutions fit both experiments well. Hence the

parameterization form is appropriate and the optimization method efficient.
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Next we select for those solutions that at the same time successfully describe

the saturated behavior at different TGF-β dosages (experiment V). An

ensemble of 38 solutions pass this filtering step (see Fig. 5), from which

four are removed based on an over-fitting criteria (20). The remaining 34

solutions are used for further investigations.

Solution properties. Individual parameter values varies considerably

in the calibration solution set; most with ranges of several orders of magni-

tude. To analyze the homogeneity of the solutions we cluster the ensemble of

parameter sets using different clustering algorithms and distance measures.

The result for hierarchical clustering with a Pearson correlation distance

measure is shown in Fig. 6A, where two main groups can be identified. Also

K-means clustering with K=2 results in a similar grouping. Fig. 6B shows

the K-means result projected onto the two main directions from a principal

component analysis. As will be shown in a more detailed analysis, the two

groups of solutions define two very distinct biological interpretations of how

the PSmad1 signal is made transient in the case of a sustained TGF-β input:

All the group 2 solutions use the putative Smad7 feedback loop, while the

solutions of group 1 do not. This division of the solutions is very robust to

a variety of settings in the clustering algorithms. Occasionally, a small set

of the solutions emerge as outliers, and also two of the solutions end up in

different clusters depending on method (cf. Fig. 6A and 6B). Although our

analysis does not depend upon the assignment of these two solutions, we

choose not to include them in the further analysis. The parameter values

for these 32 solutions are provided as a Supporting File.

We also performed clustering on a subset of the solutions that do not
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correctly describe the dose response experiment, but still satisfy R < 0.01.

In this case we get equivalent results, with two distinct groups with the

same difference in biologically interpretable behavior with one group using

the Smad7 feedback loop, whereas the other group do not (data not shown).

Prediction. The solutions that were clustered were chosen to accurately

predict the dosage experiment (Fig. 5). To further analyze the predictive

power of the two defined ensembles of solutions we have performed two

”blind test” experiments: Cells treated with the proteasome inhibitor MG-

132 (III) and phosphatase inhibitor orthovanadate (IV) respectively. In

Fig. 7, the model predictions from group 1 and group 2 are shown and

compared with experiments, again for levels of PSmad1 and PSmad2. As

can be seen, the PSmad2 levels are not affected significantly in either of the

perturbed systems as compared to the control experiment (Fig. 4A). This

behavior is accurately predicted by both groups of solutions. In the MG-132

experiment (see Fig. 7A), the PSmad1 signal still appears transient although

the peak is broadened in time. Both groups of solutions predict a transient

PSmad1 signal very similar to the behavior of the control experiment in this

case. This lack of broadening of the peak for all solutions are discussed in

more detail below, where we do optimization on control and MG-132.

It is in the PSmad1 behavior in the Orthovanadate experiment (see

Fig. 7B) where the predictions from two groups distinctly differ. In this

case group 1 predicts a transient PSmad1 signal very similar to the behav-

ior in the control experiment, whereas group 2 predicts a more sustained

signal in closer agreement with the experimental values. This experiment

(and model perturbation) mainly affects the feedback from Smad7 by dis-
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abling the phosphatase to inactivate the activated ALK1 receptor, and the

behavior of group 1 in this case indicates that these solutions do not use the

feedback loop.

It should be noted that these experiments are quite crude and may affect

the cells in ways not feasible to include in our model, which is restricted to

the molecules directly involved in the TGF-β pathway. A much more di-

rect experiment for model prediction would be to perturb a single specific

molecule included in the model, e.g. silencing Smad7 by a siRNA knock-

down. The predicted PSmad1 and PSmad2 behaviors for the two groups

when Smad7 is silenced are shown in Fig. 8. This is particularly interest-

ing since the two solution groups exhibit very different behaviors. Again,

the unchanged PSmad1 behavior of group 1 shows that these solutions do

not need the Smad7 feedback to achieve a transient signal. The prediction

for the feedback model is dependent on the assumption that Smad7 is the

I-Smad active in endothelial cells which is based on experiments. Smad6

could potentially also be active although there is no data for Smad6 be-

havior in endothelial cells. In other cell types, Smad6 has been shown to

be more moderately and transiently induced by TGF-β compared to Smad7

(22, 23). A fair assumption would be that if Smad6 is induced in endothelial

cells its behavior would resemble the Smad7 behavior, which would lead to

similar behavior for a model including Smad6 in all previous experiments

but not for the Smad7 knockdown experiment. Instead the effect of Smad7

knockdown would be less pronounced in such a feedback model.

Robustness. To further illuminate differences between the two groups

of solutions, we computed the sensitivity as defined in Eq. 3. In Fig. 9 the
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sensitivity of the two groups are shown, where the summed derivatives of

PSmad1 and PSmad2 with respect to the parameters for experiments I and

II are displayed. It is clear that the group using the Smad7 feedback loop

(group 2) is more robust than the other group. A Wilcoxon two sample

test on the measure
∑

j sj for the solutions in the two groups gives a p-

value less than 10−6. The largest difference is found in the parameters

governing the production and degradation of Smad1 and Smad4 (parameters

p2 – p5). This indicates that group 1 uses Smad1 and Smad4 production

and degradation in order to achieve the transient PSmad1 signal instead

of using the negative feedback of Smad7. It is indeed very interesting that

the transient signal can be achieved by a pathway with fewer molecular

players, but it appears that the drawback for the cells would be that the

levels and production/degradation rates for the Smad1 and Smad4 need to

be tightly regulated to achieve a robust signal behavior. In contrast to this,

the group that uses the Smad7 feedback shows a low sensitivity in respect

to Smad4 levels (p4,p5), and more or less no sensitivity at all to Smad1

levels (p2,p3). This latter fact, and the lack of sensitivity towards changes

of the Michaelis-Menten constant in the phosphorylation step (p16) indicate

that the Smad1 levels are saturated. A more detailed look at the parameter

values and Smad1 levels reveals that all solutions in group 2 indeed have

saturated levels of Smad1 (data not shown), which hence can be regarded

as a prediction of the model using Smad7 feedback.

Group 1 is insensitive to perturbations in all parameters directly in-

cluded in the Smad7 feedback pathway (p10 – p12, p27, p28, p31, p32), which

agrees with the conclusion that the feedback is not used by these solutions.
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Group 2, on the other hand, shows some sensitivity in these parameters

except for the parameters included in the Smad7 feedback on the activated

ALK5 receptor (p31, p32). Neither of these solution ensembles make use of a

Smad7 feedback for regulating PSmad2 levels, and this part of the network

could have been left out of the model, at least for explaining the current

experiments (cf. (10)).

The most sensitive parameters in group 2 are p1, p9, p15, p17, p22 and

p24, and group 1 is about equally sensitive to these parameters. These

parameters govern the initial ALK1 and ALK5 levels (p1, p9), as well as

the rates of phosphorylation and dephosphorylation of Smad1 (p15, p17) and

Smad2 (p22, p24). The early PSmad1 and PSmad2 kinetics and also (at least

partly) the entire PSmad signals are dependent on these parameters. Hence,

it is expected that the fitting to our kinetic PSmad1 and PSmad2 data is

sensitive to these parameters. A final note is that although the ALK1 and

ALK5 levels are important, the production and degradation rates are not

(p0, p9). A more detailed look at the parameter levels show that these rates

are low (data not shown), and it appears that it is the initial values that are

important for the model to explain data.

Permuting the experiments for the calibration. To further analyze

the model behavior we also permuted the experiments used for calibration.

We used combinations including the control experiment in the calibration

part since this is the only experiment where all the parameters are present.

Also here we applied the dose experiment as a filtering step after optimiza-

tion. The two additional calibration sets used were optimization on control

(I) and MG-132 (III), and on control (I) and orthovanadate (IV) experi-
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ments. The new parameter sets are presented in a PCA-plot in Fig. 10

together with the previously defined parameter sets.

When optimization is performed on control and orthovanadate, the ex-

tracted solutions behave very similar to the ones extracted from optimization

on control and cyclohexamide (see Supporting Text Fig. S4). All these so-

lutions use the Smad7 feedback in the process of truncating the PSmad1

signal, which is expected since the optimization includes the orthovanadate

experiment, which mainly affects the feedback. Also, the robustness analy-

sis on this new data set shows a very similar pattern as for the previously

defined Group 2 (data not shown).

In the case of optimizing against the control and MG-132, the optimiza-

tion procedure works less efficient. Among the solutions provided by the

algorithm only very few resulted in R < 0.01 and among those none passed

the filtering step against the dose experiment (see Appendix for details).

The parameter sets from this case provided in Fig. 10 are solutions with

R < 0.015 which pass the dose experiment filter. These solutions show an

average behavior for the PSmad1 lying in between the experimental curves

for control and MG-132, and with very small change in behavior when pro-

tein degradation is removed (see Supporting Text Fig. S4). None of the

parameter sets use the Smad7 feedback and hence provide a poor predic-

tion of the orthovanadate experiment, while the predictive power is small

for the cyclohexamide experiment since the behavior is very spread out. An

interesting note is that this apparent conflict for explaining the MG-132 to-

gether with the other experiments can be used to direct improvements for the

model. This is illustrated by a slight adjustment of the model perturbation
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for the MG-132 experiment where a decreased inactivation of the activated

receptors is included (simulating reduced ubiquitin-dependent degradation),

which leads to an improved behavior (see Supporting Text Fig. S5).

4 Conclusions and Outlook

We have developed a mathematical model for the TGF-β pathway in en-

dothelial cells and introduced novel computational procedures for finding

and analyzing robust models. This system was chosen given its paramount

importance in diseases like cancer and in developmental processes, even

though the information about concentrations, reaction rates and other pa-

rameters is scarce. To cope with the latter, we generate an ensemble of

solutions rather than a single one when fitting to the data. This also means

that we are less sensitive to noise and, as it turned out, we are able to iden-

tify different solution categories with associated biological interpretations.

We use different kinetic data sets by varying conditions including knock-

downs. Some of the data sets already exist and others are newly generated

and are presented here for the first time. Having access to kinetic data under

different conditions enables us to fit models to a subset of these and use the

remaining sets for ”blind test” evaluations. Our results can be summarized

as follows:

• With efficient ODE solvers and a powerful optimization method, Sim-

ulated Tempering, good solutions are found to the calibration sets.

• The calibrated solutions are found to well reproduce ”blind test” ex-

periments including those, where the external dosage is varied.
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• The resulting solutions are analyzed with unsupervised clustering meth-

ods. Two clusters emerge, one where the Smad7 feedback loop is em-

ployed and one where this is not the case. The group using the Smad7

feedback is better at predicting the “blind test” experiments.

• The robustness is investigated with a gradient method. It is found that

the solutions corresponding to the cluster using the Smad7 feedback

loop are less sensitive to parameter perturbations, indicating that a

role for this loop is to provide robustness to the system.

• Together, the two preceeding items, strongly favours a model that

includes the Smad7 feedback loop.

• Permutation of the experiments used for optimization, resulted in simi-

lar solution sets, but also highlighted the MG-132 experiment as some-

what conflicting for the model to solve. This can be used to direct im-

provements of the model, which is indicated by simulations adjusting

the interpretation of the MG-132 experiment.

In our robustness analysis we have investigated how the dynamical lev-

els of different PSmads change for different parameter perturbations. The

PSmads represent the signal through the pathway, but maybe a more bio-

logically relevant measure is the robustness in cell response. Hence, in the

future one should augment the PSmad concentration measurements with

downstream gene expression data and perform an integrated analysis. In

this context one should also include the effects from cross-talk with ”neigh-

boring” pathways that are part of the TGF-β family.
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Very recently, a detailed model for receptor dynamics was introduced

in the context of the TGF-β pathway (5). It does not target endothelial

cells specifically, but presents a detailed study of receptor dynamics includ-

ing internalization and a specific inactivation of the ligand-bound receptor

complex by degradation. This model is sufficient to explain a transient sig-

nal for PSmad2 after sustained TGF-β stimulation. To relate this to our

more simplistic receptor model, not explicitly including receptor recycling,

we showed that our receptor model has as versatile activation pattern when

a single ligand is presented to the receptor. The behavior of PSmad1 in

endothelial cells when treated with cyclohexamide is to extend the signal,

while the same treatment in HaCaT cells has shown to shorten the PS-

mad2 signal (24). While the detailed receptor model predicts a shortened

activation at cyclohexamide treatment (see Supporting Text Fig. S1) in full

agreement with the PSmad2 data, our full pathway model can indeed explain

the PSmad1 behavior in cyclohexamide treated endothelial cells.

From the behavior of our different solution groups, we argue for a model

where there exists a feedback from TGF-β induced Smad7 to repress the

PSmad1 activation. This is based on indications from several experiments,

which are all reproduced by the feedback model. Needless to say, a more

distinct test of this model would be to perform a dedicated knockdown ex-

periments for Smad7, which is currently in progress in siRNA experiments

targeting Smad7. In this context, also the importance of Smad6 in endothe-

lial cells needs to be investigated.

Our approach is not restricted to systems where all parameter values can

be experimentally estimated. Rather, it allows for several solutions to solve
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a problem, and can account for similarities in behavior of highly conserved

modules such as the TGF-β pathway, although quantitative details differ.

In this study we are confined to experimental data which has not been cal-

ibrated to units of concentration. This lack of knowledge propagates to our

parameters. Also, the measurements are restricted to a few components, and

we have therefore chosen a simplistic description of some of the reactions.

Hence, we have focused on relevant biological behavior of the measured

molecules for different conditions and not attempted to evaluate parameter

values with respect to biologically reasonable ones, which would have been

dependent on further assumptions. Additional experiments, which provide

quantitative estimates of parameters and concentration levels, are impor-

tant and will constrain the solution space for the models. On the other

hand, we demonstrate that the models, can pinpoint experiments that will

provide maximal information given the current knowledge, and the combi-

nation of experiments and modeling provides an effective methodology for

an increased understanding of highly complex biological networks.
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Appendix

Experimental Data. All the experimental data originate from Western

Blot Analysis, where we measure the average intensity in a square on the

inverted blot-images and use these intensities as a relative measure of con-

centration. As it turns out, the size of the square has only a marginal effect

on the estimated concentration levels. The concentrations are normalized

with the actin level measured in the cell, which is fairly constant through-

out the time series. Finally, the concentrations are normalized to give a

maximum value of one for both PSmad1 and PSmad2.

Solving the systems of ODEs. In Table 2 we show the system of

ODEs used in our calculations, in which the following assumptions are made

in the calibration process:

1. The TGF-β level is constant throughout the time series.

2. At t = 0 we have

P1(0) = T1(0) = P2(0) = P14(0) = P24(0)

= T1(0) = T5(0) = T1P (0) = T5P (0) = 0 .

(A1)

3. The system is in equilibrium at t = 0 (for zero TGF-β level), which

with Eq. A1 leads to

A1(0) = 1/p1, S1(0) = 1/p3, S4(0) = 1/p5,

S2(0) = 1/p7, A5(0) = 1/p9 ,

(A2)
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The ODEs are solved using mainly the fifth order Runge-Kutta method,

but in stiff regions of parameter space we switch to the Rosenbrock method

using an adaptive procedure. For details on the ODE solvers see (18).

Parameter estimation. For generating ensembles of solutions we use

Simulated Tempering, where configurations are generated for different fic-

titious temperatures Tj and the system is allowed to move between the

different Tj . In other words, at a given Monte Carlo step one updates the

system by swapping configurations of the systems, or alternatively trading

two temperatures. The method amounts to simulating the joint probability

distribution

P (p, j) ∝ exp (−gj − R(p)/Tj) , (A3)

where the ”energy” R(p) is the error measure of Eq. 2 with its system pa-

rameters p = (p1, . . . , pK). The algorithm parameters gj govern the weights

pj of the different temperatures, Tj . The latter are chosen according to

Tj = Tmin (Tmax/Tmin)(j−1)/(J−1) , j = 1, 2, . . . , J , (A4)

where we used J = 20, T1 = Tmin = 0.0025 and T20 = Tmax = 0.005. We

want to spend roughly the same amount of time on each of the temperatures,

and thus have to choose our gj ’s accordingly, i.e. we want to choose our

g′js such that the weights, pj , are equal for all j. This is done through

trial simulations in a two-step process. First we calculate rough estimates

of the average ”energy” at each temperature, 〈R〉j and put g20 = 0 and

gj−1 = gj − 〈R〉k(1/Tk−1 − 1/Tk). In the next step we perform longer

simulations in order to obtain good estimates of the weights pj , the uniform
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distribution is then obtained by replacing gj with gj + ln pj (7).

The parameters are updated one at a time with pi → r · pi, where r

is a multiplicative factor (r = 1.1 is used) and in 50% of the cases we set

r → 1/r. At T = Tmin, r is allowed to vary freely in the range r ∈ [1 : 2]

individually for each parameter, in order to keep the acceptance ratio above

50%. Updates are accepted according to Eq. A3. For each K number

of attempted parameter updates, K being the number of parameters, we

attempt one update to an adjacent temperature Tj±1 with a probability

also governed by Eq. A3.

The performance of the algorithm is displayed in the table below showing

the number of simulations it takes on average to find a minimum (middle

panel) and the percentage of these minima having R < 0.01 (right panel) for

each of the three sample permutations. These results can be compared with

for example (25) where different optimization algorithms including simulated

annealing are compared. The poor performance on the control+MG-132 set

is discussed in the text and in the Supporting Text.

Sample No.of simulations R < 0.01

control+cyclohexamide 38919 ± 5872 32.9%

control+orthovanadate 26783 ± 4707 25.6%

control+MG-132 33374 ± 3326 1.4%

Calibration. In the first step we merely select for solutions p satisfying

R(p) < 0.01. In the second step we also require the solutions to display

the saturating behavior observed in experiment V. This is achieved by only
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considering solutions p∗ satisfying

1

N

1

M

5.0
∑

C=2.5

tN
∑

t=t1

M
∑

i=1

(x
(C)
i (t,p∗) − x

(1)
i (t,p∗))2 < ǫ , (A5)

where x
(C)
i (t,p∗) denotes the concentration of molecule i at time t given the

parameters p∗ and an initial concentration of TGF-β of C ng/ml. For the

cut-off value ǫ we found ǫ = 0.05 to be appropriate.

Implementation The calibration framework as well as the robustness

analysis are implemented in C++. For the two clustering methods, K-means

and hierarchical clustering, and for the PCA, we used the MATLAB imple-

mentations corresponding to the MATLAB functions dendrogram, kmeans

and princomp respectively (26).
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Figure Legends

Fig. 1.

The TGF-β pathway in endothelial cells. The ligand, TGF-β , binds to

the receptors ALK1 or ALK5, and induces phosphorylation of Smad1/5

and Smad2 respectively which in turn form complexes with Smad4. These

complexes move into the nucleus where they control gene expression. Smad7

expression is induced during this process and negatively regulates the ALK1

pathway. (In the calculations we have also allowed for a negative regulation

on the ALK5 pathway which is not shown here.)

Fig. 2.

Simplified receptor model. The ligand TGF-β binds to a type I receptor

(ALK1 or ALK5) and forms an active complex that mediates the signal via

the phosphorylation of R-Smads. The active receptors are inactivated by

Smad7 which recruits phosphatases to the active receptors. We also allow

for a constant production and degradation of the inactive receptors.

Fig. 3.

Flowchart of the calibration and validation process. Solutions are found

in two steps; optimization followed by an independent test of the solutions

against dose response tests. The solutions surviving these two steps are then

clustered, which results in two distinct groups displaying different behavior.

Group 1 does not use the Smad7 feedback loop whereas group 2 does. The

numbers on the right-hand side show the number of solutions in the different
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steps.

Fig. 4.

Left panel of (A) and (B): Experimental data from Western Blot analysis for

the control experiment (A) and the cyclohexamide experiment (B) (adapted

from (10)). (C) Additional measurements of the control experiment in or-

der to illuminate the early behavior of the pathway. Middle panel of (A)

and (B): An average area intensity in the inverted image is used as a mea-

sure of relative concentration levels. These are given relative to the actin

level measured in the cell, and normalized to a maximal value equal to one

(see Appendix for details). Right panel of (A) and (B): Simulation results.

Concentrations of PSmad1 and PSmad2 as functions of time for the control

experiment (A) and cyclohexamide treated systems (B) (experiments I and

II in Materials and Methods). The curves with error bars correspond to av-

erages and standard deviations for the ensemble of model solutions resulting

from fitting to the data (227 solutions in total).

Fig. 5.

Dose response model predictions of PSmad1 (A) and PSmad2 (B) concen-

trations respectively. Doses scaled to the one used for the experiments in

Fig. 4. Also shown are the corresponding measurements taken after 45

minutes (adapted from (9)). The +, △ and the × symbols refer to the

experimental data points after 45 minutes for 0.025, 1.0 and 5.0 ng/ml re-

spectively. The time series show the corresponding predictions from the

ensemble with standard deviations.
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Fig. 6.

(A) Hierarchical clustering analysis of the solutions determined from experi-

ments I and II (see Fig. 4) subject to the constraints that R < 0.01 and that

the dose experiments in Fig. 5 are well predicted (see text). The left branch

(group 1) corresponds to solutions where the Smad7 feedback loop is not

used, while the right branch (group 2) uses the Smad7 feedback loop. (B)

Results from PCA with the grayscale referring to the groups found in the

K-means clustering. The group on the left is group 1 (gray) and the one on

the right is group 2 (black). The crosses are the two cluster centers found by

K-means clustering using a squared Euclidean metric. The arrows refer to

the two solutions where the clustering algorithms disagree, these solutions

have been left out in the further analysis.

Fig. 7.

(A) Data and model predictions of PSmad1 and PSmad2 concentration when

the cells are treated with the proteasome inhibitor MG-132, which is modeled

by removing the proteasomal degradation of all proteins (experiment III).

The solutions used are those of group 1 and group 2 as defined by the

clustering (see Fig. 6). (B) Data and model predictions of PSmad1 and

PSmad2 concentrations when the cells are treated with the phosphatase

inhibitor orthovanadate, which is modeled by removing the phosphatases

(experiment IV), with the same grouping as in (A). The time series show

the predictions from the two ensembles with standard deviations. All data

are adapted from (10).
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Fig. 8.

Predictions of PSmad1 and PSmad2 concentrations when silencing Smad7

using the solutions of group 1 and 2 respectively, as defined by the clustering

(see Fig. 6). The time series shows the predictions from the two ensembles

with standard deviations.

Fig. 9.

Sensitivity analysis using derivatives of the PSmad1 and PSmad2 concentra-

tion with respect to the different parameters of the model. The sensitivity

measure (Eq. 3) is represented on the y-axis, where group 1 is above the

x-axis (positive direction upwards) and group 2 is below the x-axis (positive

direction downwards). Group 2, which uses the Smad7 feedback loop, is

found to be more robust than group 1. The figure shows group averages

with estimated errors.

Fig. 10.

PCA plot of solutions found when different experiments are used for opti-

mization. The straight line separates the ones that are using the Smad7

feedback loop (right) from those that do not (left) (cf. Supporting Text

Fig. S4). A total of 105 solutions have been used, where 32 solutions are

from optimizing on the control (I) and the cyclohexamide (II) sets, 28 solu-

tions are from optimizing on the control (I) and the MG-132 (III) sets and

45 solutions are from optimizing on the control (I) and the orthovanadate

(IV) sets.
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Tables

∅
p0

⇀↽
p0p1

ALK1 (a)

∅
p4

⇀↽
p4p5

Smad4 (b)

∅
p8

⇀↽
p8p9

ALK5 (c)

TGFβ + ALK1
p13

⇀↽
p14

TA1 (d)

PSmad1 + Smad4
p18

⇀↽
p19

PS14 (e)

TGFβ + ALK5
p20

⇀↽
p21

TA5 (f)

PA + TA1
Smad7
p27

⇀↽
p28

TA1P (g)

PB + TA5
Smad7
p31

⇀↽
p32

TA5P (h)

∅
p2

⇀↽
p2p3

Smad1 (i)

∅
p6

⇀↽
p6p7

Smad2 (j)

∅

PS14N

(p11,p12)
⇀↽
p10

Smad7 (k)

Smad1
(

TA1

p15,p16)
⇀↽
p17

PSmad1 (l)

Smad2

TA5

(p22,p23)
⇀↽
p24

PSmad2 (m)

PSmad2 + Smad4
p25

⇀↽
p26

PS24 (n)

PS14
p29

⇀↽
p30

PS14N (o)

Table 1: The different reactions in the TGF-β pathway model, where pi

(i = 0, 1, . . . , 32) are the rate constants. Reactions with the symbol ∅ model
production and degradation. In reactions (k), (l) and (m) Michaelis-Menten
dynamics is used.
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dA1

dt
= p0(1 − p1A1) − p13TβA1 + p14T1

dS1

dt
= p2(1 − p3S1) −

p15T1S1

p16 + S1
+ p17P1

dS4

dt
= p4(1 − p5S4) − p18P1S4 + p19P14 − p25P2S4 + p26P24

dS2

dt
= p6(1 − p7S2) −

p22T1S2

p23 + S2
+ p24P2

dA5

dt
= p8(1 − p9A5) − p20TβA5 + p21T5

dS7

dt
=

p11P14

p12 + P14
− p10S7

dP1

dt
=

p15T1S1

p16 + S1
− p17P1 − p18P1S4 + p19P14

dP14

dt
= p18P1S4 − p19P14 − p29P14 + p30P14N

dP14N

dt
= p29P14 − p30P14N

dP2

dt
=

p22T1S2

p23 + S2
− p24P2 − p25P2S4 + p26P24

dP24

dt
= p25P2S4 − p26P24

dT1

dt
= p13TβA1 − p14T1 − p27S7PAT1 + p28T1P

dT5

dt
= p20TβA5 − p21T5 − p31S7PBT5 + p32T5P

dPA

dt
= −p27S7PAT1 + p28T1P

dPB

dt
= −p31S7PBT1 + p32T1P

dT1P

dt
= p27S7PAT1 − p28T1P

dT5P

dt
= p31S7PBT5 − p32T5P

Table 2: Model equations of the TGF-β pathway. The abbreviations used
are; Si = [Smadi] i = 1, 2, 4, 7, A1 = [ALK1], A5 = [ALK5], Tβ = [TGFβ],
P1 = [PSmad1], P2 = [PSmad2], T1 = [TA1], T5 = [TA5], T1P = [TA1P],
T5P = [TA5P], PA = [phosphatase A] (responsible for the inhibition of the
ALK1 pathway) and PB = [phosphatase B] (responsible for the inhibition
of the ALK5 pathway).


