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Phase Transition in Vertex-Reinforced Random Walks
on ZZZ with Non-linear Reinforcement
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Vertex-reinforced random walk is a random process which visits a site with
probability proportional to the weight wk of the number k of previous visits.
We show that if wk ∼ kα , then there is a large time T0 such that after T0

the walk visits 2, 5, or ∞ sites when α < 1, = 1, or > 1, respectively. More
general results are also proven.

KEY WORDS: Vertex-reinforced random walks; urn models; Rubin’s con-
struction.

SUBJECT CLASSIFICATION: 60G20; secondary 60K35.

1. INTRODUCTION

Consider nearest–neighbor stochastic process Xn, n=0,1,2, . . . , on Z with
transition probabilities

P(Xn+1 =m+1 |Xn =m)= wL(n,m+1)

wL(n,m−1) +wL(n,m+1)

,

P(Xn+1 =m−1 |Xn =m)= wL(n,m−1)

wL(n,m−1) +wL(n,m+1)

,

where L(n,m) :=∑n
i=1 I {Xi =m} is the number of visits to the site m by

time n, and wk, k ∈ Z+, is a fixed sequence of positive numbers, referred
to as “weights.” Note that the most commonly studied case is when wk =
k +1.
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In the above form, this process, called Vertex-reinforced random walk,
or VRRW for short, has been introduced in Ref. 7, while the notion of
the VRRW dates back to Ref. 6 and makes the contrast to (Edge) rein-
forced random walks defined in Copper smith and Diaconis. Especially
after the publication of Ref. 7, VRRW has been drawing a lot of atten-
tion. In Ref. 11, VRRW on arbitrary graphs has been studied; in Ref. 1
and 2 some properties of more general nonhomogeneous VRRW on Z

were investigated. Finally, 10 proves an important conjecture from Peman-
tle and Volkov(7) (1987, Unpublished manuscript) about the behavior of
linearly-reinforced random walk, while Ref. 8 and references therein pro-
vide a broad review of various reinforced processes.

Now let R ={m∈ Z : Xn =m for some n} be the range and R′ = {m∈
Z : Xn =m for infinitely many n} be the effective range of the VRRW. We
say that the VRRW gets stuck if R is finite. It is also obvious that R′ ⊆R,
and that if R′ is not empty, then it must consist of a sequence of consec-
utive integers.

Throughout the paper, we will write wk ∼kα whenever there exists

0< lim
k→∞

wk

kα
<∞.

Theorem 1. Suppose that wk ∼kα. Then

(a) if α <1 then |R|=∞ and |R′| ∈ {0,∞};
(b) if α =1 and wk ≡k +1 then |R|<∞ and |R′|=5;
(c) if α >1 then |R|<∞ and |R′|=2.

Further we will study three special cases.

2. SUBCRITICAL CASE

Throughout this section we assume that the sequence of weights wk

satisfies the following conditions:

(a) there exists 0<γ ≤1 such that

wn ≥γwk whenever n>k (2.1)

(γ =1 corresponds to increasing sequences);

(b) for any r >1

lim sup
n→∞

w
rn�
wn

<∞; (2.2)
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(c)

∞∑

k=1

1
wk

=∞; (2.3)

(d) for any integer r >1 there is z>0 such that

lim sup
n→∞

∑zn
k=1

1
wk

∑n
k=1

1
wrk

<γ, (2.4)

where γ is the same as in condition (2.1).
Here and further in the text 
·� denotes the integer part.

Remark 1. If wk ∼ kα, α < 1, then the conditions (2.1)–(2.4) are ful-
filled.

Note that the regularity conditions (2.1) and (2.2) are more of a technical
nature and ensure that the sequence of weights does not oscillate wildly,
while (2.4) and especially (2.3) are more crucial. Also, provided (2.2) holds,
both (2.3) and (2.4) follow from a stronger but simpler requirement on
wk’s:

(c-d′) lim sup
n→∞

W(zn)

W(n)
→0 as z↓0, (2.5)

where W(a)=∑
a�
k=1 1/wk. Indeed, if the sum in (2.3) were finite, then the

limit in (2.5) would be always 1. Next, for a fixed integer r > 1 it follows
from (2.2) that there is C =C(r)>0 such that wrk ≤Cwk for all k, conse-
quently

lim sup
n→∞

∑zn
k=1

1
wk

∑n
k=1

1
wrk

≤ lim sup
n→∞

∑zn
k=1

1
wk

∑n
k=1

1
Cwk

=C lim sup
n→∞

W(zn)

W(n)
,

which can be made arbitrary small by choosing small enough z> 0, thus
ensuring (2.4).

Theorem 2. Suppose that the sequence of weights satisfy (2.1)–(2.4).
Then the range R of VRRW is infinite a.s., that is the VRRW does not
get stuck.

We start with auxiliary statements first.
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Proposition 1. Let ξ1, ξ2, . . . be a sequence of independent exponential
random variables with rates λ1, λ2, . . . , respectively, such that

∑∞
k=1 1/λk =

∞, and λn ≥γ λk for any n>k ≥1. Then the sum Sn :=∑n
k=1 ξk satisfies

lim
n→∞

Sn

E Sn

=1 a.s.

Proof of Proposition 1. Since E Sn = ∑∞
k=1 1/λk → ∞, Kolmogorov’s

law of large numbers for independent random variables (see, e.g. Ref. (9),
p. 389) implies that it is sufficient to check that

∞∑

n=1

Var ξn

(E Sn)2
<∞. (2.6)

However,

Var ξn

(E Sn)2
= λ−2

n

(λ−1
1 +· · ·+λ−1

n )2
≤ λ−2

n

(γ λ−1
n +· · ·+γ λ−1

n )2
= 1

γ 2n2

and therefore (2.6) is verified. �

Lemma 1. Consider a Pólya-type urn with green and red balls, with
the probability to choose a ball of certain color being proportional to wk,
where k is the number of the balls of that color. After a green ball is cho-
sen for the kth time, we add 1 green ball to the urn. After a red ball is
chosen for the kth time, we add ηk red balls, where ηk’s are i.i.d. geomet-
ric random variables independent of the state of the urn, with P(ηk =m)=
(1− θ)θm−1, m=1,2, . . . , for some 0<θ <1. Then

lim sup
n→∞

Rn

Gn

<∞ a.s., (2.7)

where Rn (Gn resp.) is the number of red (green resp.) balls in the urn
after the nth ball of either color is chosen, and n=0,1,2, . . .

Proof of Lemma 1. We will use Rubin’s construction for decoupling
of urns. This construction was introduced in Ref. 3, further examples of
its application can be found in, e.g. Refs. 4 and 5. The construction runs
as follows. Consider two weakly increasing right-continuous processes X(t)

and Y (t). Let X(t) be a pure birth process with X(0)=G0 and

P(X(t +dt)=k +1 |X(t)=k)=wk dt
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and Y (t) be a compound birth process with Y (0)=R0 and

P(Y (t +dt)=k +n |Y (t)=k)= (1− θ)θn−1 ×wkdt, n=1,2, . . .

Then the pair (X(t), Y (t) ) considered jointly at the times of the jumps
of either of the processes has the distribution of the urn described in the
lemma, with X ( Y , resp.) corresponding to the number of green (red resp.)
balls.

Next, set t0 = s0 =0 and for k ≥1 let

tk = inf{t : X(t)>X(tk−1)}≡ inf{t : X(t)=G0 +k}
and

sk = inf{s : Y (s)>Y(sk−1)}
be the times of those jumps; the increments ηk = Y (sk) − Y (sk−1) corre-
spond to the numbers of added red balls. Let event Aν be

Aν =
{

m∑

k=1

ηk ≤νm for all positive integers m

}

.

Then by the strong law of large numbers, P(Aν for some ν >0)=1. From
now on we will condition on the event Aν .

Let r be the smallest positive integer exceeding R0 + ν > 1. Since
Y (sm)=R0 +∑m

k=1 ηk, the rate at which the process Y would jump, after
having jumped exactly m times, m≥1, is wf (m) where f (m)=Y (sm)≤ rm.
Consequently, for each m, �m+1 := sm+1 − sm, having an exponential dis-
tribution with parameter wf (m), is by (2.1) stochastically larger than an
exponential random variable �′

m with parameter wrm/γ .
Now we apply Proposition 1 to the sequence of independent exponen-

tial random variables �′
k with λk = wrk/γ which by (2.1), (2.3), and (2.4)

satisfies its conditions. Together with the fact that �k’s are stochastically
larger than �′

k’s, this yields

lim inf
n→∞

∑m
k=1 �k

∑m
k=1 1/wrk

≥γ a.s. (2.8)

On the other hand (2.4) implies that there exists z= z(ν)> 0 and a small
ε > 0 such that for m sufficiently large

∑zm
k=1 1/wk ≤ γ (1 − ε)

∑m
k=1 1/wrk.

Combining this with (2.8) we have for large m

sm =
m∑

k=1

�m ≥γ (1− ε/2)

m∑

k=1

1/wrk ≥ (1+ ε/2)

zm∑

k=1

1/wk.
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Applying similar arguments to the process X(n), we conclude that since
the differences nk+1 − nk have independent exponential distributions with
rates wk+G0 , respectively, by Proposition 1

lim
i→∞

ni
∑i+G0−1

k=G0
1/wk

=1.

Therefore, for m large,

nzm−G0 ≤ (1+ ε/2)

zm∑

k=1

1/wk ≤ sm.

Hence for large m we have X(sm)≥ zm−G0, yielding

lim inf
t→∞

X(t)

Y (t)
= lim inf

m→∞
X(sm)

Y (sm)
≥ lim inf

m→∞
zm−G0

rm
= z/r >0.

Now recall that the event Aν on which we have conditioned, occurs a.s. for
some ν, whence lim supn→∞ Y (n)/X(n)<∞ a.s., and hence (2.7) follows.

�

Proposition 2. Suppose that the site i is visited by the VRRW infi-
nitely often. Let an, bn, cn, and dn (n=1,2, . . . ,) be the local times at the
sites {i −1, i, i +1, i +2}, respectively. Then, on the event

lim sup
n→∞

dn

bn

=M <∞

we also have a.s.

lim sup
n→∞

cn

an

<∞.

Proof. Consider the VRRW at the times n when Xn = i. Then,
for sufficiently large times, between two such consecutive times either an

increases at least by one, or cn increases by a number, which is stochasti-
cally smaller than a geometric random variable with some fixed parameter
θ , depending on M only. Indeed, every timea the walk visits the site i +1 at
time n, the probability to jump right is smaller than wdn/1wbn . And since
for all large n the ratio dn/bn ≤2M =:r, condition (2.2) implies that wdn/wbn

for large n is bounded by θ := 2 lim supm→∞ w
rm�/wm <∞. Therefore, we
can make a stochastic comparison between the pair (an, cn) and the urn

a Note that if the site i +1 is visited finitely many times then the statement of the prop-
osition follows immediately.
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described in Lemma 1, where an is coupled with the number of green balls
and cn is coupled with the number of red balls. Then the number of green
balls will be always smaller than an, while the number of red balls will
be larger than cn. Therefore, by Lemma 1, the ratio cn/an remains smaller
than some finite number as n→∞. �

Lemma 2. The effective range R′ is either empty or infinite.

Proof. Indeed, suppose that R′ = ∅ and yet R′ is finite, then there
are two integers j and k, j <k, such that R′ = [j, j +1, . . . , k]. First, apply
Proposition 2 to the segment [k −2, k −1, k, k +1] to obtain that

lim sup
n→∞

L(n, k)

L(n, k −2)
<∞

since L(n, k + 1) is bounded as n → ∞. Next, apply Proposition 2 recur-
sively to [k − 3 − i, k − 2 − i, k − 1 − i, k − i] for i = 0,1,2, . . . , k − j − 2 to
get eventually that

lim sup
n→∞

L(n, j +1)

L(n, j −1)
<∞,

which contradicts the assumption that {j +1}∈R′ but {j −1} /∈R′.
Proof of Theorem 2. If R is finite, then the effective range R′ ⊆R is

also finite and nonempty, which contradicts Lemma 2. �

3. CRITICAL CASE

Here we suppose that wk = k + 1. Then (2.1)–(2.3) are fulfilled, but
(2.4) is not. The VRRW with this sequence of weights has been introduced
in Ref.(7), where it was proven that:

(a) P(5≤|R′|<∞)=1;
(b) P(|R′|=5)>0.

In the same paper, it was conjectured (partly based on simulations) that
the event in (b) has the probability equal to one; this seemingly “obvious”
but in fact very hard to prove conjecture was finally proven in Ref. 10.
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4. SUPERCRITICAL CASE

In this section, we consider any sequence of weights satisfying

∞∑

k=1

1
wk

<∞. (4.1)

This is a natural counterpart of condition (2.3) of the sub-critical case.

Remark 2. If wk ∼kα, α >1, then (4.1) is fulfilled.

Lemma 3. Suppose that wk satisfy (4.1). Consider an urn model, in
which the probability to choose a ball of certain color (red or green) is
proportional to wk, where k is the number of balls of that color. If a green
ball is chosen, 1 green ball is added to the urn. If a red ball is chosen, a
positive integer number of red balls is put to the urn, this number being
independent of the number of green balls. Then the number of balls of one
of the colors remains bounded as the time goes to infinity.

Proof of Lemma 2. Using Rubin’s construction, we again consider two
birth processes X(t) and Y (t), the latter being a compound birth pro-
cess, with jump rates given by wk. The only distinction from the con-
struction presented in the proof of Lemma 1, is that the distribution of
the increments ηk of the Y process is not specified anymore; nor are they
assumed to be i.i.d. or even independent. Following the last section of
Davis (3), it is easy to see that provided (4.1), both processes X and Y

explode, that is there are two random stopping times τX, τY <∞ such that
X(t) (Y (t) resp.) is defined for all t < τX (τY resp.) but limt↑τX

X(t) = ∞
( limt↑τY

Y (t)=∞ resp.)
Now observe that τX is a continuous random variable which is inde-

pendent of the explosion time of the other process τY (the latter may or
may be not continuous, depending on the distribution of increments ηk’s).
Therefore, P(τX = τY ) = 0 and hence either X(·) or Y (·) reaches infinity
while the other still remains finite, yielding that the number of balls of the
corresponding color will be bounded by a random finite constant. �

Theorem 3. For a VRRW with the weights satisfying (4.1), |R′|=2.

Proof. First we will show that |R′|<∞. Indeed, if Xn starting from
0 reaches site k >0 by time Tk = inf{n>0 : Xn =k}, the probability that it
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will never reach k +1 after Tk (hence, ever) is at least

ν := inf
∞∏

j=1

wkj

wkj
+w0

,

where the infimum is taken over all strictly increasing sequences of positive
integers (k1, k2, . . . , ). However, it is easy to see that

ν =
∞∏

j=1

wj

wj +w0
,

which is a positive constant, due to (4.1). Therefore, by Borel-Cantelli
lemma, the range of VRRW is bounded from above. Similar arguments
show that it is also bounded from below.

Now suppose that |R′| � 3 and let k be the right-most point of R′,
whence (k − 2) ∈ R′. Consider the numbers of visits to k − 2 and k from
k − 1, after k + 1 has been visited for the last time. Let each visit to k

correspond to adding of a green ball, and each visit to k −2 to adding a
red ball. Then the urn process with the balls of these two colors satisfies
the conditions of Lemma 3, and consequently only one of the sites k and
k −2 is visited infinitely often, which contradicts the assumption that both
k and k −2 lie in R′. �

5. REMAINING PROOF AND OPEN PROBLEMS

Proof of Theorem 1. From Theorem 2 and Remark 1, it follows that
when α < 1, then the range of the walk is infinite, hence |R| = ∞, and
Lemma 2 yields |R′| ∈ {0,∞}.

Part (b) immediately follows from Theorem 1.4 of Tarrès(10), and part
(c) from Theorem 3 and Remark 2. �

Now we present a few open problems.

Problem 1. In the subcritical case, is it possible that |R′|=∞ but R′ =Z?

Problem 2. The conditions (2.1)–(2.4) are sufficient to guarantee that
the range of VRRW is infinite. Can this also be proven under milder condi-
tions, especially can (2.1) and (2.2) be replaced by something like condition
(5.1)?

Problem 3. Prove that in the subcritical case the VRRW is, in fact,
recurrent, that is it visits all sites of Z infinitely often.
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Problem 4. We have shown that in most cases |R′| ∈ {0,2,5,∞}. Is
there a sequence of weights satisfying

inf
k∈Z+

wk >0 (5.1)

for which |R′| can take a different value?
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