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Abstract This paper presents several new results on tech-
niques for solving systems of polynomial equations in com-
puter vision. Gröbner basis techniques for equation solving
have been applied successfully to several geometric com-
puter vision problems. However, in many cases these meth-
ods are plagued by numerical problems. In this paper we de-
rive a generalization of the Gröbner basis method for poly-
nomial equation solving, which improves overall numeri-
cal stability. We show how the action matrix can be com-
puted in the general setting of an arbitrary linear basis for
C[x]/I . In particular, two improvements on the stability of
the computations are made by studying how the linear basis
for C[x]/I should be selected. The first of these strategies
utilizes QR factorization with column pivoting and the sec-
ond is based on singular value decomposition (SVD). More-
over, it is shown how to improve stability further by an adap-
tive scheme for truncation of the Gröbner basis. These new
techniques are studied on some of the latest reported uses of
Gröbner basis methods in computer vision and we demon-
strate dramatically improved numerical stability making it
possible to solve a larger class of problems than previously
possible.

1 Introduction

Numerous geometric problems in computer vision involve
the solution of systems of polynomial equations. This is par-
ticularly true for so called minimal structure and motion
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problems, e.g. [11, 29, 42]. Solutions to minimal structure
and motion problems can often be used in RANSAC algo-
rithms to find inliers in noisy data [17, 43, 44]. For such
applications one needs to efficiently solve a large number
of minimal structure and motion problems in order to find
the best set of inliers. There is thus a need for fast and nu-
merically stable algorithms for solving particular systems
of polynomial equations. Recent applications of polynomial
techniques in computer vision include solving for funda-
mental and essential matrices and radial distortion [9], pano-
ramic stitching [4] and pose with unknown focal length [5].

Another area of recent interest is global optimization
used e.g. for optimal triangulation, resectioning and funda-
mental matrix estimation. Global optimization is a promis-
ing, but difficult pursuit and different lines of attack have
been tried, e.g. branch and bound [1], L∞-norm methods
[21,26] and methods using linear matrix inequalities (LMIs)
[27]. An alternative way to find the global optimum is to
calculate stationary points directly, usually by solving some
polynomial equation system [22, 41]. So far, this has been
an approach of limited applicability since calculation of sta-
tionary points is numerically difficult for larger problems.
By using the methods presented in this paper it is possible
to handle a somewhat larger class of problems, thus offering
an alternative to the above mentioned optimization methods.
An example of this is optimal three view triangulation which
has previously not been solved in a practical way [41]. We
show that this problem can now be solved efficiently with an
algorithm implemented in standard IEEE double precision.

Traditionally, researchers have hand-coded elimination
schemes in order to solve systems of polynomial equations.
Recently, however, new techniques based on algebraic ge-
ometry and numerical linear algebra have been used to find
all solutions, cf . [37]. The outline of such algorithms is that
one first studies a specific geometric problem and finds out
what structure the Gröbner basis of the ideal I has for that
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problem, how many solutions there are and what the degrees
of monomials occurring in the Gröbner basis elements are.
For each instance of the problem with numerical data, the
process of forming the Gröbner basis follows the same steps
and the solution to the problem can be written down as a se-
quence of pre determined elimination steps using numerical
linear algebra.

Currently, the limiting factor in using these methods for
larger and more difficult cases is numerical problems. For
example in [41] it was necessary to use emulated 128 bit
numerics to make the system work, which made the imple-
mentation very slow. This paper improves on the state of the
art of these techniques making it possible to handle larger
and more difficult problems in a practical way.

In the paper we pinpoint the main source of these nu-
merical problems (the conditioning of a crucial elimination
step) and propose a range of techniques for dealing with this
issue. The main novelty is a new approach to the action ma-
trix method for equation solving, relaxing the need of ad-
hering to a properly defined monomial order and a complete
Gröbner basis. This unlocks substantial freedom, which in
this paper is used in a number of different ways to improve
stability.

Firstly, we show how the sensitive elimination step can
be avoided, by using an overly large/redundant basis for C[x]/I
to construct the action matrix. This method yields the right
solutions along with a set of false solutions that can then
easily be filtered out by evaluation in the original equations.
Note that this basis is not a true basis in the sense that it is
linearly dependent.

Secondly, we show how a change of basis in the quo-
tient space C[x]/I can be used to improve the numerical
precision of the Gröbner basis computations. This approach
can be seen as an attempt at finding an optimal reordering
or even linear combination of the monomials and we inves-
tigate what conditions such a reordering/linear combination
needs to satisfy. We develop the tools needed to compute the
action matrix in a general linear basis for C[x]/I and pro-
pose two strategies for selecting a basis which enhances the
stability of the solution procedure.

The first of these is a fast strategy based on QR factoriza-
tion with column pivoting. The Gröbner basis like compu-
tations employed to solve a system of polynomial equations
can essentially be seen as matrix factorization of an under-
determined linear system. Based on this insight, we combine
the robust method of QR factorization from numerical linear
algebra with the Gröbner basis theory needed to solve poly-
nomial equations. More precisely, we employ QR factoriza-
tion with column pivoting in the above mentioned elimina-
tion step and obtain a simultaneous selection of linear basis
and triangular factorization.

Factorization with column pivoting is a very well stud-
ied technique and there exist highly optimized and reliable

implementations of these algorithms in e.g. LAPACK [2],
which makes this technique accessible and relatively straight-
forward to implement.

The second technique for basis selection goes one step
further and employs singular value decomposition (SVD) to
select a general linear basis of polynomials for C[x]/I . This
technique is computationally more demanding than the QR
method, but yields somewhat better stability.

Finally, we show how a redundant linear basis for C[x]/I
can be combined with the above basis selection techniques.
In the QR method, since the pivot elements are sorted in
descending order, we get an adaptive criterion for where to
truncate the Gröbner basis like structure by setting a max-
imal threshold for the quotient between the largest and the
smallest pivot element. When the quotient exceeds this thresh-
old we abort the elimination and move the remaining columns
into the basis. This way, we expand the basis only when nec-
essary.

The paper is organized as follows. After a brief discus-
sion of related techniques for polynomial equation solving
in Section 1.1, we give an overview of the classical theory
of algebraic geometry underlying the ideas presented in this
paper in Section 2. Thereafter, in Section 3, we present the
theoretical underpinnings of the new numerical techniques
introduced here. The main contributions in terms of numer-
ical techniques are given in Sections 4, 5 and 6. In Section 7
we evaluate the speed and numerical stability of the pro-
posed techniques on a range of previously solved and un-
solved geometric computer vision problems and finally we
give some concluding remarks.

1.1 Related Work

The area of polynomial equation solving is currently very
active. See e.g. [10] and references therein for a comprehen-
sive exposition of the state of the art in this field.

One of the oldest and still used methods for non-linear
equation solving is the Newton-Raphson method which is
fast and easy to implement, but relies heavily on initializa-
tion and finds only a single zero for each initialization. In
the univariate case, a numerically sound procedure to find
the complete set of roots is to compute the eigenvalues of
the companion matrix. However, if only real solutions are
needed, the fastest way is probably to use Sturm sequences [24].

In several variables a first method is to use resultants [13],
which using a determinant construct enables the successive
elimination of variables. However, the resultant grows ex-
ponentially in the number of variables and is in most cases
not practical for more than two variables. In some cases, a
related technique known as the hidden variable method can
be used to eliminate variables, see e.g. [33]. An alternative
way of eliminating variables is to compute a lexicographi-
cal Gröbner basis for the ideal generated by the equations
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which can be shown to contain a univariate polynomial rep-
resenting the solutions [13]. This approach is however often
numerically unstable.

A radically different approach is provided by homotopy
continuation methods [45]. These methods typically work in
conjunction with mixed volume calculations by constructing
a simple polynomial system with the same number of zeros
as the actual system that is to be solved. The simple system
with known zeros is then continuously deformed into the
actual system. The main drawback of these methods is the
computational complexity with computation time ranging in
seconds or more.

At present, the best methods for geometric computer vi-
sion problems are based on eigendecomposition of a certain
matrices (action matrices) representing multiplication in the
quotient space C[x]/I . The action matrix can be seen as a
direct generalization of the companion matrix in the univari-
ate case. The factors that make this approach attractive is
that it (i) is fast and numerically feasible, (ii) handles more
than two variables and reasonably large numbers of solu-
tions (up to about a hundred) and (iii) is well suited to tun-
ing for specific applications. To the authors best knowledge,
this method was first used in the context of computer vision
by Stewenius et al. [37] even though Gröbner basis methods
were mentioned in [23].

The work presented in this paper is based on preliminary
results presented in [6–8] and essentially develops the action
matrix method further to resolve numerical issues arising in
the construction of the action matrix. Using the methods pre-
sented here, it is now possible to solve a larger class of prob-
lems than previously possible.

2 Review of Algebraic Geometry for Equation Solving

In this section we review some of the classical theory of mul-
tivariate polynomials. We consider the following problem

Problem 1 Given a set of m polynomials fi(x) in s vari-
ables x = (x1, . . . , xs), determine the complete set of solu-
tions to

f1(x) = 0
...

fm(x) = 0.

(1)

We denote by V the zero set of (1). In general V need not
be finite, but in this paper we will only consider zero dimen-
sional V , i.e. V is a point set.

The general field of study of multivariate polynomials is
algebraic geometry. See [13] and [12] for a nice introduc-
tion to the field and for proofs of all claims made in this sec-
tion. In the language of algebraic geometry, V is an affine
algebraic variety and the polynomials fi generate an ideal

I = {g ∈ C[x] : g = Σihi(x)fi(x)}, where hi ∈ C[x] are
any polynomials and C[x] denotes the set of all polynomials
in x over the complex numbers.

The motivation for studying the ideal I is that it is a gen-
eralization of the set of equations (1). A point x is a zero of
(1) iff it is a zero of I . Being even more general, we could
ask for the complete set of polynomials vanishing on V . If I
is equal to this set, then I is called a radical ideal.

We say that two polynomials f , g are equivalent modulo
I iff f−g ∈ I and denote this by f ∼ g. With this definition
we get the quotient space C[x]/I of all equivalence classes
modulo I . Further, we let [·] denote the natural projection
C[x]→ C[x]/I , i.e. by [fi] we mean the set {gi : fi − gi ∈
I} of polynomials equivalent to fi modulo I .

A related structure is C[V ], the set of equivalence classes
of polynomial functions on V . We say that a function F

is polynomial on V if there is a polynomial f such that
F (x) = f(x) for x ∈ V and equivalence here means equal-
ity on V . If two polynomials are equivalent modulo I , then
they are obviously also equal on V . If I is radical, then con-
versely two polynomials which are equal on V must also
be equivalent modulo I . This means that for radical ide-
als, C[x]/I and C[V ] are isomorphic. Now, if V is a point
set, then any function on V can be identified with a |V |-
dimensional vector and since the unisolvence theorem for
polynomials guarantees that any function on a discrete set
of points can be interpolated exactly by a polynomial, we
get that C[V ] is isomorphic to Cr, where r = |V |.

2.1 The Action Matrix

Turning to equation solving, our starting point is the com-
panion matrix which arises for polynomials in one variable.
For a third degree polynomial

p(x) = x3 + a2x
2 + a1x+ a0, (2)

the companion matrix is−a2 1 0
−a1 0 1
−a0 0 0

 . (3)

The eigenvalues of the companion matrix are the zeros of
p(x) and for high degree polynomials, this provides a nu-
merically stable way of calculating the roots.

With some care, this technique can be extended to the
multivariate case as well, which was first done by Lazard
in 1981 [32]. For V finite, the space C[x]/I is finite di-
mensional. Moreover, if I is radical, then the dimension of
C[x]/I is equal to |V |, i.e. the number of solutions [13]. For
some p ∈ C[x] consider now the operation Tp : f(x) →
p(x)f(x). The operator Tp is linear and since C[x]/I is
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finite dimensional, we can select a linear basis B of poly-
nomials for C[x]/I and represent Tp as a matrix mp. This
matrix is known as the action matrix and is precisely the
generalization of the companion matrix we are looking for.
The eigenvalues of mp are p(x) evaluated at the points of V .
Moreover, the eigenvectors of mT

p equals the vector of ba-
sis elements evaluated on V . Briefly, this can be understood
as follows: Consider an arbitrary polynomial p(x) = cTb,
where c is a vector of coefficients and b is a vector of poly-
nomials forming a basis of C[x]/I . We then have

[p · cTb] = [(mpc)Tb] = [cTmT
p b]. (4)

This holds for any coefficient vector c and hence it follows
that [pb] = [mT

p b], which can be written pb = mT
p b + g

for some vector g with components gi ∈ I . Evaluating the
expression at a zero x̄ ∈ V we get g(x) = 0 and thus obtain

p(x̄)b(x̄) = mT
p b(x̄), (5)

which we recognize as an eigenvalue problem on the matrix
mT
p with eigenvectors b(x̄). In other words, the eigenvec-

tors of mT
p yield b(x) evaluated at the zeros of I and the

eigenvalues give p(x) at the zeros. The conclusion we can
draw from this is that zeros of I corresponds to eigenvectors
and eigenvalues of mp, but not necessarily the opposite, i.e.
there can be eigenvectors/eigenvalues that do not correspond
to actual solutions. If I is radical, this is not the case and we
have an exact correspondence.

2.2 Gröbner Bases

We have seen theoretically that the action matrix mp pro-
vides the solutions to a corresponding system of polynomial
equations. The main issue is now how to compute mp. This
is done by selecting a basis B for C[x]/I and then com-
puting [p · bi] for each bi ∈ B. To do actual computations
in C[x]/I we need to represent each equivalence class [f ]
by a well defined representative polynomial. The idea is to
use multivariate polynomial division and represent [f ] by
the remainder under division of f by I . Fortunately, for any
polynomial ideal I , this can always be done and the tool for
doing so is a Gröbner basis G for I [13]. The Gröbner basis
for I is a canonical set of generators for I with the property
that multivariate division by G, denoted f

G
, always yields

a well defined remainder. By well defined we mean that for
any f1, f2 ∈ [f ], we have f1

G
= f2

G
. The Gröbner basis is

computed relative a monomial order and will be different for
different monomial orders. As a consequence, the set of rep-
resentatives for C[x]/I will be different, whereas the space
itself remains the same.

The linear basisB should consist of elements bi such that
the elements {[bi]}ri=1 together span C[x]/I and bi

G
= bi.

Then all we have to do to get mp is to compute the action

pbi
G

for each basis element bi, which is easily done if G is
available.

Example 1 The following two equations describe the inter-
section of a line and a circle

x2 + y2 − 1 = 0
x− y = 0.

(6)

A Gröbner basis for this system is

y2 − 1
2 = 0

x− y = 0,
(7)

from which we trivially see that the solutions are 1√
2
(1, 1)

and 1√
2
(−1,−1). In this case B = {y, 1} are representatives

for a basis for C[x]/I and we have Tx[1] = [x] = [y] and
Tx[y] = [xy] = [y2] = [12 ], which yields the action matrix

mx =
[

0 1
1
2 0

]
, (8)

with eigenvalues 1√
2
,− 1√

2
. ut

2.3 A Note on Algebraic and Linear Bases

At this point there is a potentially confusing situation since
there are two different types of bases at play. There is the
linear basis B of the quotient space C[x]/I and there is the
algebraic basis (Gröbner basis) G of the ideal I . To make
the subsequent arguments as transparent as possible for the
reader we will emphasize this fact by referring to the former
as a linear basis and the latter as an algebraic basis.

2.4 Floating Point Gröbner Basis Computations

The well established Buchberger’s algorithm is guaranteed
to compute a Gröbner basis in finite time and works well in
exact arithmetic [13]. However, due to round-off errors, it
easily becomes unstable in floating point arithmetic and ex-
cept for very small examples it becomes practically useless.
The reason for this is that in the Gröbner basis computa-
tion, leading terms are successively eliminated from the gen-
erators of I by pairwise subtraction of polynomials, much
like Gaussian elimination. This leads to cancellation effects
where it becomes impossible to tell whether a certain coef-
ficient should be zero or not.

A technique introduced by Faugere et al. in [16] is to
write the system of equations on matrix form

CX = 0, (9)

where X =
[
xα1 . . . xαn

]T
is a vector of monomials with

the notation xαk = xαk1
1 · · ·xαks

s and C is a matrix of coef-
ficients. Elimination of leading terms now translates to ma-
trix operations and we then have access to a whole battery
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of techniques from numerical linear algebra allowing us to
perform many eliminations at the same time with control on
pivoting etc.

This technique takes us further, but for larger more de-
manding problems it is necessary to study a particular class
of equations (e.g. relative orientation for omnidirectional cam-
eras [18], fundamental matrix estimation with radial distor-
tion [30], optimal three view triangulation [41], etc.) and use
knowledge of what the structure of the Gröbner basis should
be to design a special purpose Gröbner basis solver [37].
The typical work flow has been to study the particular prob-
lem at hand with the aid of a computer algebra system such
as Maple or Macaulay2 and extract information such as the
leading terms of the Gröbner basis, the monomials to use as
a basis for C[x]/I , the number of solutions, etc. and work
out a specific set of larger (gauss-jordan) elimination steps
leading to the construction of a Gröbner basis for I .

Although, these techniques have permitted the solution
to a large number of previously unsolved problems, many
difficulties remain. Most notably, the above mentioned elim-
ination steps (if at all doable) are often hopelessly ill condi-
tioned [31, 41]. This is in part due to the fact that one has
focused on computing a complete and correct Gröbner ba-
sis respecting a properly defined monomial order, which we
show is not necessary.

In this paper we move away from the goal of computing
a Gröbner basis for I and focus on finding a representative
of f in terms of a linear combination of a basis B, since this
is the core of constructing mp. We denote this operation f
for a given f ∈ C[x]. Specifically, it is not necessary to be
able to compute f for a general f ∈ C[x]. To construct mp,
we only need to worry about finding f for f ∈ pB \ B,
which is an easier task. It should however be noted that the
computations we do much resemble those necessary to get a
Gröbner basis.

A further advantage of not having to compute a com-
plete Gröbner basis is that we are not bound by any partic-
ular monomial order which as we will see, when used right,
buys considerable numerical stability. In addition to this we
introduce an object which generalizes the action matrix and
can be computed even when a true linear basis for C[x]/I
cannot be used.

Drawing on these observations, we investigate in detail
the exact matrix operations needed to compute f and thus
obtain a procedure which is both faster and more stable, en-
abling the solution of a larger class of problems than previ-
ously possible.

3 A New Approach to the Action Matrix Method

In this section we present a new way of looking at the action
matrix method for polynomial equation solving. The advan-
tage of the new formulation is that it yields more freedom

in how the action matrix is computed. It should however be
noted that a fundamental limitation still remains. As is the
case with all other floating point methods, we do not present
an algorithm which is guaranteed to work for all situations.
To some extent, the method relies on heuristics and will only
work if certain conditions can be fulfilled. As we show later,
it does however expand the domain of application compared
to previous methods. We start with a few examples that we
will use to clarify these ideas.

Example 2 In the five point relative orientation problem for
calibrated cameras, cf . [14,29,34,38], the calculation of the
essential matrix using 5 image point correspondences leads
to 10 equations of degree 3 in 3 unknowns. These equations
involve 20 monomials. By writing the equations as in (9)
and using a total degree ordering on the monomials we get a
coefficient matrix C of size 10× 20 and a monomial vector
X = [xα1 . . .xαn ]T with 20 monomials. It turns out that
the first 10 × 10 block C1 of C = [C1 C2] is in general
of full rank and thus the first 10 monomials X1 can be ex-
pressed in terms of the last 10 monomials X2 as

X1 = −C−1
1 C2X2. (10)

This makes it possible to regard the monomials in X2 as rep-
resentatives of a linear basis for C[x]/I . It is now straight-
forward to calculate the action matrix for Tx (the multipli-
cation operator for multiplication by x) since monomials in
the linear basis are either mapped to monomials in the basis
or to monomials in X1, which can be expressed in terms of
the basis using (10). ut

In this example the linear basis X2 was thought of as
a basis for the space of remainders after division with a
Gröbner basis for one choice of monomial order and this is
how these computations have typically been viewed. How-
ever, the calculations above are not really dependent on any
properly defined monomial order and it seems that they should
be meaningful irrespective of whether a true monomial or-
der is used or not. Moreover, we do not use all the Gröbner
basis properties.

Based on these observations we again emphasize two
important facts: (i) We are not interested in finding the Gröbner
basis or a basis for the remainder space relative to some
Gröbner basis per se; it is enough to get a well defined map-
ping f and (ii) it suffices to calculate f on the elements
x · xαi , i.e. we do not need to be able to compute f for all
f ∈ C[x]. These statements and their implications will be
made more precise further on.

Example 3 Consider the equations

f1 = xy + x− y − 1 = 0
f2 = xy − x+ y − 1 = 0,

(11)
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with solutions (−1,−1), (1, 1). Now let B = {x, y, 1} be a
set of representatives for the equivalence classes in C[x]/I
for this system. The set B does not constitute a proper basis
for C[x]/I since the elements of B represent linearly de-
pendent equivalence classes. They do however span C[x]/I .
Now study the operator Ty acting on B. We have Ty[1] =
[y], Ty[x] = [xy] = [x− y + 1] and Ty[y] = [y2] = [xy] =
[x− y + 1] which gives a multiplication matrix 1 1 0

−1 −1 1
1 1 0

 .
An eigendecomposition of this matrix yields the solutions
(−1,−1), (1, 1), (−1, 0). Of these the first two are true so-
lutions to the problem, whereas the last one does not satisfy
the equations and is thus a false zero. ut

In this example we used a set of monomials B whose
corresponding equivalence classes spanned C[x]/I , but were
not linearly independent. However, it was still possible to
express the image Ty(B) of the set B under Ty in terms
of B. The elements of the resulting action matrix are not
uniquely determined. Nevertheless we were able to use it to
find the solutions to the problem. In this section we give gen-
eral conditions for when a set B can be used to construct a
multiplication matrix which produces the desired set of ze-
ros, possibly along with a set of false zeros, which need to
be filtered out.

More generally this also means that the chosen represen-
tatives of the linear basis of C[x]/I need not be low order
monomials given by a Gröbner basis. In fact, they need not
be monomials at all, but could be general polynomials.

Drawing on the concepts illustrated in the above two ex-
amples we define a solving basis, similar to B in Example 3.
The overall purpose of the definition is to rid our selves of
the need of talking about a Gröbner basis and properly de-
fined monomial orders, thus providing more room to derive
numerically stable algorithms for computation of the action
matrix and similar objects.

In the following we will also provide techniques for de-
termining if a candidate basis B constitutes a solving basis
and we will give numerically stable techniques for basis se-
lection in too large (linearly dependent) solving bases, here
referred to as redundant bases.

3.1 Solving Bases

We start off with a set of polynomial equations as in (1) and
a (point) set of zeros V (f1, . . . , fm) and make the following
definition.

Definition 1 Consider a finite subset B ⊂ C[x] of the set of
polynomials over the complex numbers. If for each bi ∈ B

and some p ∈ C[x] we express pbi as a linear combination
of basis elements as

p(x)bi(x) = Σjmijbj(x) (12)

for some (not necessarily unique) coefficients mij and x ∈
V , then we call B a solving basis for (1) w.r.t p. ut

We now get the following for the matrix mp made up of
the coefficients mij .

Theorem 1 Given a solving basis B for (1) w.r.t p, the eval-
uation of p on V is an eigenvalue of the matrix mp. More-
over, the vector b = (b1, . . . , br)T evaluated on V is an
eigenvector of mp.

Proof By the definition of mp, we get

p(x)b(x) =

pb1...
pbr

 =

Σjm1jbj
...

Σjmrjbj

 = mpb(x) (13)

for x ∈ V . ut
As will become clear further on, when B is a true basis

for C[x]/I , then the matrix mp defined here is simply the
transposed action matrix for multiplication by p.

Given a solving basis, the natural question to ask is now
under which circumstances all solutions to the related sys-
tem of equations can be obtained from an eigenvalue de-
composition of mp. We next explore some conditions under
which this is possible. A starting point is the following defi-
nition

Definition 2 A solving basis B is called a complete solving
basis if the inverse image of the mapping x → b(x) from
variables to monomial vector is finite for all points. ut

A complete solving basis allows us to recover all solu-
tions from mp as shown in the following theorem.

Theorem 2 Let B be a complete solving basis for (1) with r
elements and mp as above and assume that for all eigenval-
ues λi we have λi 6= λj for i 6= j. Then the complete set of
solutions to (1) can be obtained from the set of eigenvectors
{vi} of mp.

Proof Due to Theorem 1, we know that the vector of mono-
mials b(x) evaluated on a point in the set of zeros V is an
eigenvector of mp. The number of eigenvectors and eigen-
values of mp is finite. This means that if we compute all
eigenvectors {wi} of mp, then the set of vectors {b(x̄) :
x̄ ∈ V } must be a subset of {wi}. We now consider b(x)
as a mapping b : Rs 7→ Rr and look at the inverse image
b−1(vi). By the requirements, this is finite for all i and ap-
plying b−1 to all wi thus yields a finite set of points which
must contain V . Evaluation in (1) allows us to filter out the
points of this set which are not in V (and hence not solutions
to (1)). ut
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If on the other hand the inverse image is not finite for
some vi so that we get a parameter family x corresponding
to this eigenvector, then the correct solution can typically
not be obtained without further use of the equations (1) as
illustrated in the following example.

Example 4 Consider the polynomial system

y2 − 2 = 0
x2 − 1 = 0

(14)

with V = {(1,√2), (−1,
√

2), (1,
√

2), (−1,−√2), }. Clearly,
B = {x, 1} with monomial vector b(x, y) = [x 1]T , is a
solving basis w.r.t x for this example since 1 · x = x and
x · x = x2 = 1 on V . Hence, b(x, y) evaluated on V is an
eigenvector of

mx =
[
0 1
1 0

]
, (15)

which is easily confirmed. However, these eigenvectors do
not provide any information about the y-coordinate of the
solutions. We could try adding y to B but this would not
work since the values of xy on V cannot be expressed as
a linear combination of x and y evaluated on V . A better
choice of solving basis would be B = {xy, x, y, 1}. ut

At a first glance, Theorem 2 might not seem very use-
ful since solving for x from b(x) = vi potentially involves
solving a new system of polynomial equations. However, it
provides a tool for ruling out choices of B which are not
practical to work with. Moreover, there is usually much free-
dom in the choice of B. In general, B can be a set of poly-
nomials. However, it is often practical to work with a basis
of monomials. We get a particularly convenient situation if
the coordinate variables xi are included in B as seen in the
following straight forward result:

Corollary 1 If {1, x1, . . . , xs} ⊂ B, then all solutions to
(1), can be directly read off from the eigenvectors of mxk

.

Proof Since the monomials {1, x1, . . . , xs} occur in B, they
enter in the vector b(x) and hence the mapping in Definition
2 is injective with a trivial inverse. ut

This fact suggests that we should always try to include
the coordinate variables in B to make for easy extraction
of the final solutions. In practice, this is nearly always easy
to do. And even if for some reason a few variables have to
be left out, we can often still express each variable xk as a
linear combination of the basis elements bi(x) for x ∈ V by
making use of the original equations. We thus again obtain
a well defined inverse to the mapping in Definition 2.

Finally, we show how the concept of solving basis con-
nects to the standard theory of action matrices in the quotient
space C[x]/I .

Theorem 3 If the ideal I generated by (1) is radical, then a
complete solving basis B w.r.t to p for (1) with the property
that all eigenvalues of mp are distinct spans C[x]/I .

Proof Since I is radical, C[x]/I is isomorphic to C[V ], the
ring of all polynomial functions on V . Moreover, since V
is finite, all functions on V are polynomial and hence C[V ]
can be identified with Cr, where r = |V |. Consider now
the matrix B =

[
b(x1), . . . ,b(xr)

]
. Each row of B corre-

sponds to a (polynomial) function on V . Hence, if we can
show that B has row rank r, then we are done. Due to The-
orem 1, all b(xi) are eigenvectors of mp corresponding to
eigenvalues p(xi). By the assumption of distinct eigenvalues
we have p(xi) 6= p(xj) whenever b(xi) 6= b(xj). Since B
is a complete solving basis we have b(xi) 6= b(xj) when-
ever xi 6= xj . This means that the r points in V correspond
to distinct eigenvalues and hence, since eigenvectors corre-
sponding to different eigenvalues are linearly independent,
B has column rank r. For any matrix row rank equals col-
umn rank and we are done. ut
The above theorem provides a correspondence between solv-
ing bases and linear bases for C[x]/I and in principle states
that under some extra restrictions, a solving basis is simply a
certain choice of linear basis for C[x]/I and then the matrix
mp turns into the transposed action matrix.

However, relaxing these restrictions we get something
which is not necessarily a basis for C[x]/I in the usual sense,
but still serves our needs in terms of equation solving. More
specifically, using the concept of a solving basis provides
two distinctive advantages.

(i) For a radical polynomial system with r zeros, C[x]/I
is r-dimensional, so a basis for C[x]/I contains r elements.
This need not be the case for a solving basis, which could
well contain more than r elements, but due to Theorem 2
still provides the right solutions. This fact is exploited in
Section 4.

(ii) Typically, the arithmetics in C[x]/I has been com-
puted using a Gröbner basis for I , which directly provides
a monomial basis for C[x]/I in form of the set of mono-
mials which are not divisible by the Gröbner basis. In this
work we move focus from Gröbner basis computation to the
actual goal of expressing the products pbi in terms of a set
of linear basis elements and thus no longer need to adhere
to the overly strict ordering rules imposed by a particular
monomial order. This freedom is exploited in Sections 5.1
and 5.2.

Finally, (i) and (ii) are combined in Section 5.3.

3.2 Solving Basis Computations using Numerical Linear
Algebra

We now describe the most straight forward technique for de-
ciding whether a candidate basis B w.r.t. one of the variables
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xk, can be used as a solving basis and simultaneously calcu-
late the action of Txk

on the elements of B.
We start by generating more equations by multiplying

the original set of equations by a hand crafted (problem de-
pendent) set of monomials. This yields additional equations,
which are equivalent in terms of solutions, but hopefully lin-
early independent from the original ones. In Example 4, we
could multiply by e.g. {x, y, 1}, yielding xy2 − 2x, x3 −
x, y3 − 2y, x2y − y, y2 − 2, x2 − 1. The general question
of which and how many additional equations to generate is
a tough one and there exist no watertight answers. This has
to do with the fact that computing a Gröbner basis is an NP
hard problem in general. The rule of thumb is to start out
with a small set of equations and then sequentially adding
more equations until the computations go through. However,
some additional insight into the difficulty of the problem can
be obtained by studying it symbolically using a computer al-
gebra system, e.g. Macaulay2 [3].

Given a candidate for a linear basis B of monomials
one then partitions the set of all monomials M occurring
in the equations in to three partsM = E ⋃R⋃B. The set
R = xkB \ B is the set of monomials that need to be ex-
pressed in terms of B to satisfy the definition of a solving
basis and E = M \ (R⋃B) is the set of remaining (ex-
cessive) monomials. Each column in the coefficient matrix
represents a monomial, so we reorder the columns and write

C =
[
CE CR CB

]
, (16)

reflecting the above partition. The E-monomials are not of
interest in the action matrix computation so we eliminate
them by putting CE on row echelon form using LU factor-
ization[
UE1 CR1 CB1

0 CR2 CB2

]XE
XR
XB

 = 0. (17)

We now discard the top rows and provided that enough
linearly independent equations were added in the first step
so that CR2 is of full rank, we multiply by C−1

R2 from the
left producing[
I C−1
R2CB2

] [XR
XB

]
= 0, (18)

or equivalently

XR = −C−1
R2CB2XB, (19)

which means that the R-monomials can be expressed as a
linear combination of the basis monomials. Thus B is a solv-
ing basis and the matrix mxk

can easily be constructed as
in (12). In other words, given an enlarged set of equations
and a choice of linear basis B, the full rank of CR2 is suffi-
cient to solve (1) via eigendecomposition of mxk

. The above
method is summarized in Algorithm 1 and given the results
of Section 3.1 we now have the following:

Result 1 Algorithm 1 yields the complete set of zeros of a
polynomial system, given that the pre- and postconditions
are satisfied.

Proof The postcondition that CR2 is of full rank ensures
that B is a solving basis and together with the preconditions,
Theorem 2 and Corollary 1 then guarantees the statement.
ut

So far, we have given general conditions for when a can-
didate basis B can be a solving basis, but we have not said
anything about how a candidate basis can be chosen. A set
B which is guaranteed to be a solving basis can be found by
fixating a monomial order and then computing a Gröbner ba-
sis symbolically using a computer algebra system. One can
then collect all monomials which are not divisible by any
leading monomial in the Gröbner basis which yields a solv-
ing basis. However, any set which includes these monomials
will also be a solving basis and in applications it turns out
that a somewhat larger set B is often beneficial for numer-
ical stability. A strategy which works well in practice is to
start with the lowest order monomials and then sequentially
add more monomials until enough have been added to make
it a solving basis and to ensure numerical stability.

Example 5 Consider the equations from Example 1. Multi-
plying the second equation by x and y yields the enlarged
system


1 0 1 0 0 −1
1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 1 −1 0




x2

xy

y2

x
y
1

 = 0, (20)

with M = {x2, xy, y2, x, y, 1} and since we chose B =
{y, 1}, we get R = {xy, x} and E = {x2, y2}. After Step
11 and 12 of Algorithm 1 we have CR2 = [ 2 0

0 1 ] and CB2 =[
0 −1
−1 0

]
and inserting into (19) we obtain[

xy
x

]
=
[
0 1

2

1 0

] [
y

1

]
, (21)

which then allows us to construct mx for this example. ut
A typical problem that might occur is that some eigen-

values of mxk
are equal, which means that two or more ze-

ros have equal xk-coordinate. Then the corresponding eigen-
vectors can not be uniquely determined. This problem can be
resolved by computing mxk

for several k and then forming
a random linear combination ma1x1+···+asxs = a1mx1 +
· · · + asmxs

, which then with very small probability has
two equal eigenvalues.

As previously mentioned, computing mp for a larger
problem is numerically very challenging and the predom-
inant issue is expressing pB in terms of B, via something
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Algorithm 1 Compute a solving basis w.r.t. xk and use it to
solve a polynomial system.
Require: List of equations F = {f1, . . . , fm}, set of basis mono-

mials B containing the coordinate variables x1, . . . xs, m lists of
monomials {Li}mi=1.

Ensure: CR2 is of full rank, eigenvalues of mxk are distinct.
1: Fext ← F
2: for all fi ∈ F do
3: for all xαj ∈ Li do
4: Fext ← Fext

S{xαj · fi}
5: end for
6: end for
7: Construct coefficient matrix C from Fext.
8: M← The set of all monomials occurring in Fext.
9: R← xk · B \ B

10: E ←M \ (RSB)

11: Reorder and partition C: C̃ = [CE CR CB ].
12: LU-factorize to obtain CR2 and CB2 as in (17).
13: Use (19) to express xk ·xαi in terms of B and store the coefficients

in mxk .
14: Compute eigenvectors of mxk and read off the tentative set of

solutions.
15: Evaluate in F to filter out possible false zeros.

similar to (19). The reason for this is that without proper
care, CR2 tends to become very ill conditioned (condition
numbers of 1010 or higher are not uncommon). This was
also the reason that extremely slow emulated 128 bit numer-
ics had to be used in [41] to get a working algorithm.

In Sections 4 and 5 we will investigate techniques to cir-
cumvent this problem and produce well conditioned CR2,
thus drastically improving numerical stability. But first we
will look at how to construct the action matrix given a solv-
ing basis for a polynomial system.

3.3 Constructing the Action Matrix

Given a solving basis B w.r.t. xk and the corresponding vec-
tor XB for the polynomial system we wish to solve, it is easy
to construct the corresponding action matrix. In short, this
section fleshes out Step 13 of Algorithm 1. After perform-
ing Algorithm 1, the solving basis property of B together
with (19) guarantees xkB \ B = R and the following:

XR = AXB, (22)

where A is a matrix encoding this relation. To construct
mxk

, we start with mxk
= 0 and sequentially go through

all bi ∈ B. For each of them we perform one of two opera-
tions

1. If xkbi = bj ∈ B, then we simply set position j of
column i of mxk

to 1.
2. Else we have xkbi = rj ∈ R and we need to use (22) to

express rj in terms of B. This implies inserting ATj· (row
j of A transposed) as column i in mxk

.

Hence, given A, constructing the action matrix is a compu-
tationally cheap operation.

4 Using Redundant Solving Bases - The Truncation
Method

As mentioned in Section 3, the sub matrix CR2 which ap-
pears in Equation 17 is a large cause of numerical problems
in the equation solving process. A typical situation with an
ill conditioned or rank deficient CR2 is that there are a few
problematic monomials where the corresponding columns
in C are responsible for the deteriorated conditioning of
CR2. A straightforward way to improve the situation is to
simply include the problematic monomials in B, thus avoid-
ing the need to express these in terms of the other mono-
mials. In practice this means that some columns of CR are
moved into CB. This technique is supported by Theorem 2,
which guarantees that we will find the original set of solu-
tions among the eigenvalues/eigenvectors of the larger mp

found using this redundant basis. The price we have to pay
is performing an eigenvalue decomposition on a larger ma-
trix.

Not all monomials from M can be included in the ba-
sis B while still enabling the calculation of the necessary
multiplication matrices. In general it is a difficult question
exactly which monomials can be used or even if there ex-
ists a set B amongM, which can be used as a solving ba-
sis. One can however see that B has to be a subset of the
following set, which we denote the permissible monomials,
P = {b ∈ M : pb ∈ M}. The permissible monomials P is
the set of monomials which stay inM under multiplication
by p.

An example of how the redundant solving basis tech-
nique can be used is provided by the problem of L2-optimal
triangulation from three views [41]. The optimum is found
among the up to 47 stationary points, which are zeros of
a polynomial system in three variables. In this example an
enlarged set of 255 equations in 209 monomials were used
to get a Gröbner basis. Since the solution dimension r is
47 in this case, the 47 lowest order monomials were used
as a basis for C[x]/I in [41], yielding a numerically diffi-
cult situation. In fact, as will be shown in more detail in the
experiments section, this problem can be solved by simply
including more elements in B. In this example, the complete
permissible set contains 154 monomials. By including all of
these in B leaving 55 monomials to be expressed in terms of
B, we get a much smaller and in this case better conditioned
elimination step. As mentioned above, this leads to a larger
eigenvalue decomposition, but all true solutions can still be
found among the larger set of eigenvalues/eigenvectors. This
is illustrated in Figure 1, where the set of eigenvalues com-
puted from mxk

for one instance are plotted in the complex
plane together with the actual solutions of the polynomial
system.
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Fig. 1 Eigenvalues of the action matrix using the redundant basis
method and actual solutions to the polynomials system plotted in the
complex number plane. The former are a strict superset of the latter.

5 Basis Selection

In the previous section we saw how it is possible to pick a
“too large” (> r elements) linear basis P and still use it to
solve the equations. In this section we show how one can
select a true (linearly independent) basis as a subset of P in
a numerically stable way and thus gain both speed and sta-
bility. In the following, P denotes any subset ofM with the
property that the obtained CR2 is of full rank, thus making
P a solving basis.

Since the set V of zeros of (1) is finite with r points,
P seen as a set of functions on V contains at most r lin-
early independent elements. It should therefore be possible
to choose a subset P ′ ⊂ P such that the elements in P ′ can
be expressed as linear combinations of elements in P \ P ′.
By dropping P ′ from the solving basis, the set B = P \ P ′
would thus constitute a new tighter solving basis w.r.t. the
same multiplier p and ideal I as P .

We now present two numerically stable techniques for
constructing a true basis B from a redundant solving basis
P .

5.1 The QR Method

We start by selecting P as large as possible, still yielding
a full rank CR2 and form [CE CR CP ]. Any selection of
basis monomials B ⊂ P will then correspond to a matrix
CB consisting of a subset of the columns of CP .

By performing Gaussian elimination we again obtain (17),
but withB replaced byP , letting us get rid of the E-monomials
by discarding the top rows. Furthermore, the R-monomials
will all have to be expressed in terms of the P-monomials
so we continue the elimination putting CR2 on triangular
form, obtaining[
UR CP1

0 CP2

] [
XR
XP

]
= 0. (23)

At this point we could simply continue the Gaussian elim-
ination, with each new pivot element representing a mono-
mial expressed in terms of the remaining basis monomials.
However, this typically leads to poor numerical performance
since, as previously mentioned, the elimination might be
very ill conditioned. This is where the basis selection comes
to play.

As noted above we can choose which of the p mono-
mials in P to put in the basis and which to reduce. This is
equivalent to choosing a permutation Π of the columns of
CP2,

CP2Π =
[
cπ(1) . . . cπ(p)

]
(24)

and then proceed using standard elimination. The goal must
thus be to make this choice so as to minimize the condition
number κ(

[
cπ(1) . . . cπ(p−r)

]
) of the first p− r columns of

the permuted matrix. In its generality, this is a difficult com-
binatorial optimization problem. However, the task can be
approximately solved in an attractive way by QR factoriza-
tion with column pivoting [19]. With this algorithm, CP2 is
factorized as

CP2Π = QU, (25)

where Q is orthogonal and U is upper triangular. By solv-
ing for CP2 in (25) and substituting into (23) followed by
multiplication from the left with

[
I 0
0 QT

]
and from the right

with [ I 0
0 Π ], we get[

UR CP1Π

0 U

] [
XR

ΠTXP

]
= 0. (26)

We observe that U is in general not square write U =[
UP′2 CB2

]
, where UP′2 is square upper triangular. We

also write CP1Π =
[
CP′1 CB1

]
andΠTXP1 =

[
XP′1 XB

]T
yielding

[
UR CP′1 CB1

0 UP′2 CB2

]XR
XP′
XB

 = 0. (27)

Finally[
XR
XP′

]
= −

[
UR CP′1
0 UP′2

]−1 [
CB1

CB2

]
XB (28)

is analogous to (19) and amounts to solving r upper triangu-
lar equation systems which can be efficiently done by back
substitution. Given this relation we can now apply the recipe
of Section 3.3 to construct the action matrix.

The reason why QR factorization fits so nicely within
this framework is that it simultaneously solves the two tasks
of reduction to upper triangular form and numerically sound
column permutation and with comparable effort to normal
Gaussian elimination.
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Furthermore, QR factorization with column pivoting is a
widely used and well studied algorithm and there exist free,
highly optimized implementations [2], making this an ac-
cessible approach.

Standard QR factorization successively eliminates ele-
ments below the main diagonal by multiplying from the left
with a sequence of orthogonal matrices (usually Householder
transformations). For matrices with more columns than rows
(under-determined systems) this algorithm can produce a
rank-deficient U which would then cause the computations
in this section to break down. QR with column pivoting
solves this problem by, at iteration k, moving the column
with greatest 2-norm on the last m− k + 1 elements to po-
sition k and then eliminating the last m − k elements of
this column by multiplication with an orthogonal matrixQk.
See [19] for more about QR factorization and column pivot-
ing.

5.2 The SVD Method

By considering not only monomial bases, but more general
polynomial bases it is possible to further improve numeri-
cal stability. We now show how singular value decomposi-
tion (SVD) can be used to construct a basis for C[x]/I as
r linearly independent linear combinations of elements in a
solving basis P .

As in Section 5.1 we start out by selecting an as large
as possible (redundant) solving basis and perform prelimi-
nary matrix operations forming (23), where the aim is now
to construct a linearly independent basis from P . We now
do this by performing an SVD on CP2, writing

CP2 = UΣVT , (29)

where U and V are orthogonal and Σ is diagonal with typ-
ically r last elements zero Σ =

[
Σ′ 0
0 0

]
for a system with r

solutions.
Now multiplying from the left with

[
I 0
0 UT

]
and from

the right with [ I 0
0 V ] in (23), we get

[
UR CP1V
0 Σ

] [
XR

VTXP

]
= 0. (30)

The matrix V induces a change of basis in the space
spanned by P and we write X̃P = VTXP = [ XP′ XB ]T ,
where P ′ and B are now sets of polynomials. Using this
notation we getUR 0 CB

0 Σ′ 0
0 0 0

XR
XP′
XB

 = 0, (31)

where Σ′ is diagonal with n − r non-zero diagonal entries.
The zeros above Σ′ enter since Σ′ can be used to eliminate

the corresponding elements without affecting any other ele-
ments in the matrix. In particular this means that we have{

XP′ = 0
XR = −U−1

R CBXB
(32)

on V , which allows us to express any elements in span(M)
in terms of XB, which makes B a solving basis.

Computing the action matrix is complicated slightly by
the fact that we are now working with a polynomial ba-
sis rather than a monomial one. To deal with this situation
we introduce some new notation. To each element ek of
P̃ = P ′⋃B we assign a vector vk = [ 0 ... 1 ... 0 ]T ∈
R|P̃|, with a one at position k. Similarly, we introduce vec-
tors uk ∈ R|M|, wk ∈ R|B| representing elements of M
and B respectively. Further we define the linear mapping
R : span(M) → span(B̃), which using (32) associates an
element of span(M) with an element in span(B̃). We now
represent R by a |B| × |M| matrix

R =
[−CT

BU−TR 0 I
]
, (33)

acting on the space spanned by the vectors uk.
We also introduce the mappingMp : span(P)→ span(M)

given by Mp(f) = p · f with the representation

(Mp)ij = I(xαi = p · xαj ), (34)

where I(·) is the indicator function.
Mp represents multiplication by p on P . In the basis P̃

induced by the change of basis aV we thus get

M̃p =
[
I 0
0 VT

]
MpV. (35)

Finally, we get a representation of the multiplication map-
ping from B to B as

m̃p = RM̃pL, (36)

where L = [ 0I ] simply interprets the wk ∈ R|B| vectors as
R|P̃|-vectors. The matrix m̃p derived here is the transpose
of the corresponding matrix in Section 3.1.

An eigendecomposition of m̃T
p yields a set of eigenvec-

tors ṽ in the new basis. It remains to inverse transform these
eigenvectors to obtain eigenvectors of mT

p . To do this, we
need to construct the change of basis matrix Vq in the quo-
tient space. Using R and L, we get V−1

q = ΠVTL, where
Π projects from R|P′| to R|B| using (32). From this we get
v = V−Tq ṽ in our original basis.

As will be seen in the experiments, the SVD method is
somewhat more stable than the QR method, but significantly
slower due to the costly SVD factorization.
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5.3 Basis Selection and Adaptive Truncation

We have so far seen three techniques for dealing with the
case when the sub matrix CP2 is ill conditioned. By the
method in Section 4 we avoid operating on CP2 altogether.
Using, the QR and SVD methods we perform elimination,
but in a numerically much more stable manner. One might
now ask whether it is possible to combine these methods.
Indeed it turns out that we can combine either the QR or
the SVD method with a redundant solving basis to get an
adaptive truncation criterion yielding even better stability
in some cases. The way to do this is to choose a criterion
for early stopping in the factorization algorithms. The tech-
niques in this section are related to truncation schemes for
rank-deficient linear least squares problems, cf . [28].

A neat feature of QR factorization with column pivoting
is that it provides a way of numerically estimating the condi-
tioning of CP2 simultaneously with elimination. By design,
the QR factorization algorithm produces an upper triangular
matrix U with diagonal elements uii of decreasing absolute
value. The factorization proceeds column wise, producing
one |uii| at a time. If rank(U) = r, then |urr| > 0 and
ur+1,r+1 = · · · = unn = 0. However, in floating point
arithmetic, the transition from finite |uii| to zero is typi-
cally gradual passing through extremely small values and
the rank is consequently hard to determine. For robustness
it might therefore be a good idea to abort the factorization
process early. We do this by setting a threshold τ for the ra-
tio |u11

uii
| and abort the factorization once the value exceeds

this threshold. A value of τ ≈ 108 has been found to yield
good results1. Note that this produces an equivalent result
to carrying out the full QR factorization and then simply
discarding the last rows of U. This is practical since off-the-
shelf packages as LAPACK [2] only provide full QR fac-
torization, even though some computational effort could be
spared by modifying the algorithm so as not to carry out the
last steps.

Compared to setting a fixed (redundant) basis size, this
approach is beneficial since both rank and conditioning of
CP2 might depend on the data. By the above method we
decide adaptively where to truncate and i.e. how large the
linear basis for C[x]/I should be.

In the context of the SVD we get a similar criterion by
looking at the singular values instead and set a threshold
for σ1

σi
, which for i = rank(CP2) is exactly the condition

number of CP2.

1 Performance is not very sensitive to the choice of τ and values in
the range 106 to 1010 yield similar results.

6 Using Eigenvalues Instead of Eigenvectors

In the literature, the preferred method of extracting solutions
using eigenvalue decomposition is to look at the eigenvec-
tors. It is also possible to use the eigenvalues, but for a prob-
lem with s variables this seemingly requires us to solve s
eigenvalue problems since each eigenvalue only gives the
value of one variable. However, there can be an advantage
with using the eigenvalues instead of eigenvectors. If there
are multiple eigenvalues (or almost multiple eigenvalues)
the computation of the corresponding eigenvectors will be
numerically unstable. However, the eigenvalues can usually
be determined with reasonable accuracy. In practice, this sit-
uation is not uncommon with the action matrix.

Fortunately, we can make use of our knowledge of the
eigenvectors to devise a scheme for quickly finding the eigen-
values of any action matrix on C[x]/I . From Section 2 we
know that the right eigenvectors of an action matrix is the
vector of basis elements of C[x]/I evaluated at the zeros
of I . This holds for any action matrix and hence all action
matrices have the same set of eigenvectors. Consider now a
problem involving the two variables xi and xj . If we have
constructed mxi

, the construction of mxj
requires almost

no extra time. Now perform an eigenvalue decomposition
mxi = VDxiV

−1. Since V is the set of eigenvectors for
mxj

as well, we get the eigenvalues of mxj
by straightfor-

ward matrix multiplication and then element wise division
from

mxj
V = VDxj

. (37)

This means that with very little extra computational effort
over a single eigenvalue decomposition we can obtain the
eigenvalues of all action matrices we need. The observations
in this section also suggest a slightly easier way of filtering
out false solutions obtained using the method in Section 4.
If the coordinate variables xi are present in the basis, they
correspond to both eigenvalues and elements in the eigen-
vectors. Any discrepancy here implies a false solution which
can immediately be discarded.

7 Experiments

In this section we evaluate the numerical stability of the
proposed techniques on a range of typical geometric com-
puter vision problems. The experiments are mainly carried
out on synthetic data since we are interested in the intrinsic
numerical precision of the solver. By intrinsic precision we
mean precision under perfect data. The error under noise is
of course interesting for any application, but this is an effect
of the problem formulation and not of the particular equa-
tion solving technique.

In Section 7.1 all the main methods (the standard method,
essentially what is outlined in Section 3.2, the truncation
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method, and the SVD and QR methods) are tested on opti-
mal three view triangulation first studied by Stewénius et al.
in [41]. They had to use emulated 128 bit arithmetics to get
usable results, whereas with the techniques in this paper, we
solve the equations in standard IEEE double precision. Fur-
thermore, the improved methods are tested on: the problems
of localization with hybrid features [25], relative pose with
unknown but common focal length [39] and relative pose
for generalized cameras [40]. Significant improvements in
stability are shown in all cases. In the localization example
we failed completely to solve the equations using previous
methods and hence this case omits a comparison with previ-
ous methods.

7.1 Optimal Three View Triangulation

The triangulation problem is formulated as finding the world
point that minimizes the sum of squares of the reprojec-
tion errors. This means that we are minimizing the likeli-
hood function, thus obtaining a statistically optimal estimate
given Gaussian noise. A solution to this problem was pre-
sented by Stewénius et al. in [41]. They solved the prob-
lem by computing the stationary points of the likelihood
function which amounts to solving a system of polynomial
equations. The calculations in [41] were conducted using
emulated 128 bit arithmetics yielding very long computa-
tion times and in the conclusions the authors write that one
goal of further work is to improve the numerical stability to
be able to use standard IEEE double-precision (52 bit man-
tissa) and thereby increase the speed significantly. With the
techniques presented in this paper it is shown that it is now
possible to take the step to double-precision arithmetics.

To construct the solver for this example some changes
in the algorithm of [41] were done to make better use of
the changes of basis according to Section 5. The initial three
equations are still the same as well as the first step of par-
tial saturation (w.r.t. x). However, instead of proceeding to
perform another step of partial saturation on the new ideal,
we saturate (w.r.t. y and z respectively) from the initial three
equations and join the three different partially saturated ide-
als. Finally, we discard the initial three equations and obtain
totally nine equations.

This method does not give the same ideal as the one
in [41] were sat(I, xyz) was used. The method in this paper
produces an ideal of degree 61 instead of 47 as obtained by
Stewénius et al. The difference is 11 solutions located at the
origin and 3 solutions where one of the variables is zeros,
this can be checked with Macaulay 2 [20]. The 11 solutions
at the origin can be ignored in the calculations and the other
three can easily be filtered out in a later stage.

To build the solver we use the nine equation from the
saturated ideal (3 of degree 5 and 6 of degree 6) and multiply

with x, y and z up to degree 9. This gives 225 equations in
209 different monomials.

The synthetic data used in the validation was generated
with three randomly placed cameras at a distance around
1000 from the origin and a focal length of around 1000. The
unknown world point was randomly placed in a cube with
side length 1000 centered at the origin. The methods have
been compared on 100,000 test cases and the code has been
made available for download2.

7.1.1 Numerical Experiments

The first experiment investigates what improvement can be
achieved by simply avoiding the problematic matrix elimi-
nation using the techniques of Section 4. For this purpose
we choose the complete set of permissible monomials P as
a redundant basis and perform the steps of Algorithm 1. In
this case we thus get a redundant basis of 154 elements and
a 154×154 multiplication matrix to perform eigenvalue de-
composition on. In both cases the eigenvectors are used to
find the solutions. The results of this experiment are shown
in Figure 2. As can be seen, this relatively straightforward
technique already yields a large enough improvement in nu-
merical stability to give the solver practical value.
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Fig. 2 Histogram of errors over 100,000 points. The improvement in
stability using the redundant basis renders the algorithm feasible in
standard IEEE double precision.

Looking closely at Figure 2 one can see that even though
the general stability is much improved, a small set of rela-
tively large errors remain. It is unclear what causes these
errors. However, by doing some extra work using the QR
method of Section 5.1 to select a true basis as a subset of
P , we improve stability further in general and in particular
completely resolve the issue with large errors, cf . Figure 3.

In Figure 4, the performance of the QR method is com-
pared to the slightly more stable SVD method which selects

2 http://www.maths.lth.se/vision/downloads
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Fig. 3 Histogram of errors for the standard, redundant basis and QR
methods. The QR method improves stability in general and in particu-
lar completely removes the small set of large errors present in both the
standard and redundant basis methods.

a polynomial basis for C[x]/I from the monomials in P . In
this case, errors are typically a factor ∼ 5 smaller for the
SVD method compared to the QR method.
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Fig. 4 Comparison between the SVD and QR methods. The SVD
method improves somewhat over the QR method at the cost of the
computationally more demanding SVD factorization.

The reason that a good choice of basis improves the nu-
merical stability is that the condition number in the elimina-
tion step can be lowered considerably. Using the basis selec-
tion methods, the condition number is decreased by about a
factor 105. Figure 5 shows a scatter plot of error versus con-
dition number for the three view triangulation problem. The
SVD method displays a significant decrease and concentra-
tion in both error and condition number. It is interesting to
note that to a reasonable approximation we have a linear
trend between error and condition number. This can be seen
since we have a linear trend with slope one in the logarith-
mic scale. Moreover, we have a y-axis intersection at about
10−13, since the coordinate magnitudes are around 1000 this

means that we have a relative error ≈ 10−16κ = εmachκ,
where εmach is the machine precision. This observation jus-
tifies our strategy of minimizing the condition number.
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Fig. 5 Error versus condition number for the part of the matrix which
is inverted in the solution procedure.

As mentioned in Section 6, it might be beneficial to use
the eigenvalues instead of eigenvectors to extract solutions.

When solving this problem using eigenvalues there are
two extra eigenvalue problems of size 50 × 50 that have to
be solved. The impact of the switch from eigenvectors to
eigenvalues can be seen in Figure 6. For this example we
gain some stability at the cost of having to perform three
eigenvalue decompositions (one for each coordinate) instead
of only one. Moreover, we need to sort the eigenvalues using
the eigenvectors to put together the correct triplets.
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Fig. 6 Error histograms showing the difference in precision between
the eigenvalue and eigenvector methods.

However, we can use the trick of Section 6 to get nearly
the same accuracy using only a single eigenvalue decompo-
sition. Figure 7 shows the results of this method. The main
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advantage of using the eigenvalues is that we push down the
number of large errors.
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Fig. 7 This graph shows the increase in performance when the fast
eigenvalue method is used instead of the eigenvector method.

Finally we study the combination of basis selection and
early stopping yielding a redundant Gröbner basis for the
three view triangulation problem. The basis size was deter-
mined adaptively as described in Section 5.3 with a thresh-
old τ = 108. Table 1 shows the distribution of basis sizes ob-
tained when this method was used. Since the basis is chosen
minimal in 94% of the cases for the SVD method and 95%
for the QR method the time consumption is almost identical
to the original basis selection methods, but as can be seen in
Table 2 the number of large errors are reduced for the QR
method. This is probably due to the fact that truncation is
carried out only when the matrices are close to being singu-
lar. This effect is not present for the SVD method.

50 51 52 53 54 ≥ 55

SVD 94.0 3.5 0.8 0.4 0.3 1.0
QR 95.0 3.0 0.7 0.3 0.2 0.8

Table 1 Basis sizes for the QR and SVD methods with variable ba-
sis size. The table shows the percentage of times certain basis sizes
occurred during 100,000 experiments.

To conclude the numerical experiments on three view tri-
angulation two tables with detailed error statistics are given.
The acronyms STD, QR, SVD and TRUNC respectively de-
note the standard method, QR method, SVD method and
redundant basis method. The suffixes eig, fast and var re-
spectively denote the eigenvalue method, the fast eigenvalue
method (Section 6) and the use of a variable size basis (Sec-
tion 5.3). Table 2 shows how many times the error gets larger
the some given levels for several solvers. As can be seen, the
QR method with adaptive basis size is the best method for
reducing the largest errors but the SVD method with use of

the eigenvalues is the best in general. Table 3 shows the me-
dian and the 95:th percentile errors for the same methods as
in the previous table. Notable in here is that the 95:th per-
centile is improved with as much as factor 107 and the me-
dian with a factor 105. The SVD method with eigenvalues
is shown to be the best but the QR method gives almost as
good results.

Method > 10−3 > 10−2 > 10−1 > 1

STD 35633 24348 15806 9703
STD:eig 29847 19999 12690 7610
SVD 1173 562 247 119
SVD:eig 428 222 128 94
SVD:fast 834 393 178 94
SVD:var+fast 730 421 245 141
TRUNC 6712 4697 3339 2384
TRUNC:fast 5464 3892 2723 2015
QR 1287 599 269 127
QR:eig 517 250 149 117
QR:fast 1043 480 229 106
QR:var+fast 584 272 141 71

Table 2 Number of errors out of 100,000 experiments larger than cer-
tain levels. The QR method with adaptive basis size yields the fewest
number of large errors but the SVD method with eigenvalues is the best
in general.

Method 95th 50th
STD 1.42 · 101 9.85 · 10−5

STD:eig 5.30 · 100 3.32 · 10−5

SVD 1.19 · 10−5 6.09 · 10−9

SVD:eig 1.20 · 10−6 1.29 · 10−9

SVD:fast 4.37 · 10−6 2.53 · 10−9

SVD:var+fast 2.34 · 10−6 2.50 · 10−9

TRUNC 6.55 · 10−3 1.40 · 10−8

TRUNC:fast 1.87 · 10−3 3.27 · 10−9

QR 1.78 · 10−5 1.06 · 10−8

QR:eig 1.70 · 10−6 2.08 · 10−9

QR:fast 6.97 · 10−6 3.64 · 10−9

QR:var+fast 3.41 · 10−6 3.61 · 10−9

Table 3 The 95th percentile and the median error for various methods.
The improvement in precision is up to a factor 107. The SVD method
gives the best results, but the QR method is not far off.

7.1.2 Speed Comparison

The main motivation for using the QR method rather than
the SVD method is that the QR method is computationally
less expensive. To verify this the standard, SVD and QR
methods were run and the time was measured. Since the
implementations were done in Matlab it was necessary to
take care to eliminate the effect of Matlab being an inter-
preted language. To do this only the time after construction
of the coefficient matrix was taken into account. This is be-
cause the construction of the coefficient matrix essentially
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amounts to copying coefficients to the right places, which
can be done extremely fast in e.g. a C language implemen-
tation.

In the routines that were measured no subroutines were
called that were not built-in functions in Matlab. The mea-
surements were done with the Matlab profiler.

The time measurements were done on an Intel Core 2
2.13 GHz machine with 2 GB memory. Each algorithm was
executed with 1000 different coefficient matrices constructed
from the same type of scene setups as previously. The same
set of coefficient matrices was used for each method. The re-
sult is given in Table 4. Our results show that the QR method
with adaptive truncation is approximately four times faster
than the SVD method but 40% slower than the standard
method. The reason that the redundant basis method is more
than twice as slow as the QR method is the larger eigenvalue
decomposition, which dominates the computation time.

Method Time per call / ms Relative time
SVD 41.69 1

TRUNC 38.11 0.91

QR:var+fast 10.94 0.26

STD 8.03 0.19

Table 4 Time consumption in the solver part for four different meth-
ods. The time is an average over 1000 function calls.

7.1.3 Triangulation of Real Data

Finally, the algorithm is evaluated under real world condi-
tions. The Oxford dinosaur [15] is a familiar image sequence
of a toy dinosaur shot on a turn table. The image sequence
consists of 36 images and 4983 point tracks. For each point
visible in three or more views we select the first, middle and
last view and triangulate using these. This yields a total of
2683 point triplets to triangulate. The image sequence con-
tains some erroneous tracks that we deal with by removing
any points reprojected with an error greater than two pixels
in any frame. The whole sequence was processed in approx-
imately 45 seconds in a Matlab implementation on an Intel
Core 2 2.13 GHz CPU with 2 GB of memory by the QR
method with variable basis size. The resulting point cloud is
shown in Figure 8.

We have also run the same sequence using the standard
method, but the errors were to large to yield usable results
(typically larger errors than the dimensions of the dinosaur
itself).

7.2 Localization with Hybrid Features

In this experiment, we study the problem of finding the pose
of a calibrated camera with unknown focal length. One min-

imal setup for this problem is three point-correspondences
with known world points and one correspondence to a world
line. The last feature is equivalent to having a point cor-
respondence with another known calibrated camera. These
types of mixed features are called hybrid features and were
introduced in [25], where the authors propose a parameteri-
zation of the problem but no solution was given apart from
showing that the problem has 36 solutions.

The parameterization in [25] gives four equations in four
unknowns. The unknowns are three quaternion parameters
and the focal length. The equation derived from the line cor-
respondence is of degree 6 and those obtained from the 3D
points are of degree 3. The coefficient matrix C is then con-
structed by expanding all equations up to degree 10. This
means that the equation derived from the line is multiplied
with all monomials up to degree 4, but no single variable in
the monomials is of higher degree than 2. In the same man-
ner the point correspondence equations are multiplied with
monomials up to degree 7 but no single variable of degree
more than 5. The described expansion gives 980 equations
in 873 monomials.

The next step is to reorder the monomials as in (16). In
this problem CP corresponds to all monomials up to de-
gree 4 except f4 where f is the focal length, which gives 69
columns in CP . The part CR corresponds to the 5:th degree
monomials that appear when the monomials in P are multi-
plied with the first of the unknown quaternion parameters.

For this problem, we were not able to obtain a standard
numerical solver. The reason for this was that even going to
significantly higher degrees than mentioned above, we did
not obtain a numerical invertible C matrix. In fact, with an
exact linear basis (same number of basis elements as solu-
tions), even the QR and SVD methods failed and truncation
had to be used.

In this example we found that increasing the linear ba-
sis of C[x]/I by a few elements more than produced by the
adaptive criterion was beneficial for the stability. In this ex-
periment, an increase by three basis elements was used.

The synthetic experiments for this problem were gener-
ated by randomly drawing four points from a cube with side
length 1000 centered at the origin and two cameras with a
distance of approximately 1000 to the origin. One of these
cameras was treated as unknown and one was used to get
the camera to camera point correspondence. This gives one
unknown camera with three point correspondences and one
line correspondence. The experiment was run 10,000 times.

In Figure 9 the distribution of basis sizes is shown for the
QR method. For the SVD method the basis size was identi-
cal to the QR method in over 97% of the cases and never
differed by more than one element.

Figure 10 gives the distribution of relative errors in the
estimated focal length. It can be seen that both the SVD
method and the faster QR method give useful results. We
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Fig. 8 The Oxford dinosaur reconstructed from 2683 point triplets using the QR method with variable basis size. The reconstruction was completed
in approximately 45 seconds by a Matlab implementation on an Intel Core 2 2.13 GHz CPU with 2 GB of memory.
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Fig. 9 The basis size for localization with hybrid features. The number
of solutions are 36 and since we always add three dimensions to the
truncated ideal the minimal possible basis size is 39.

emphasize that we were not able to construct a solver with
the standard method and hence no error distribution for that
method is available.

7.3 Relative Pose with Unknown Focal Length

Relative pose for calibrated cameras is a well known prob-
lem and the standard minimal case for this is five points in
two views [38]. There are in general ten solutions to this
problem. For the same problem but with unknown focal length,
the corresponding minimal case is six points in two views,
which was solved by Stewénius et al. using Gröbner basis
techniques [39].

Following the same recipe as Stewénius et al. it is pos-
sible to express the fundamental matrix as a linear combina-
tion,

F = F0 + F1l1 + F2l2. (38)
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Fig. 10 The error for localization with hybrid features. The standard
method is omitted since we did not manage to construct a standard
solver due to numerical problems.

Then putting f−2 = p one obtains nine equations from the
constraint on the essential matrix [35]

2EEtE − tr(EEt)E = 0. (39)

A 10th equation is then obtained by making use of the fact
that the fundamental matrix is singular, i.e. det(F ) = 0.
These equations involve the unknowns p, l1 and l2 and are
of total degree 5. The problem has 15 solutions in general.

We set up the coefficient matrix C by multiplying these
ten equations by p so that the degree of p reaches a maxi-
mum of four. This gives 34 equations in a total of 50 mono-
mials.

The validation data was generated with two cameras of
equal focal length of around 1000 placed at a distance of
around 1000 from the origin. The six points were randomly
placed in a cube with side length 1000 centered at the ori-
gin. The standard, SVD, and QR methods have been com-
pared on 100,000 test cases and the errors in focal length
are shown in Figure 11. In this case the QR method yields
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slightly better results than the SVD method. This is proba-
bly due to loss in numerical precision when the solution is
transformed back to the original basis.
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Fig. 11 The error in focal length for relative pose with two semi cali-
brated cameras with unknown but common focal length.

7.4 Relative Pose for Generalized Camera

Generalized cameras provide a generalization of the stan-
dard pin-hole camera in the sense that there is no common
focal point through which all image rays pass, cf . [36]. In-
stead the camera captures arbitrary image rays or lines. Solv-
ing for the relative motion of a generalized camera can be
done using six point correspondences in two views. This
is a minimal case which was solved in [40] with Gröbner
basis techniques. The problem equations can be set up us-
ing quaternions to parameterize the rotation, Plücker repre-
sentation of the lines and a generalized epipolar constraint
which captures the relation between the lines. After some
manipulations one obtains a set of sixth degree equations in
the three quaternion parameters v1, v2 and v3. For details,
see [40]. The problem has 64 solutions in general.

To build our solver including the change of basis we
multiply an original set of 15 equations with all combina-
tions of 1, v1, v2, v3 up to degree two. After this we end up
with 101 equations of total degree 8 in 165 different mono-
mials.

We generate synthetic test cases by drawing six points
from a normal distribution centered at the origin. Since the
purpose of this investigation is not to study generalized cam-
eras under realistic conditions we have not used any partic-
ular camera rig. Instead we use a completely general setting
where the cameras observe six randomly chosen lines each
through the six points. There is also a random relative rota-
tion and translation relating the two cameras. It is the task of
the solver to calculate the rotation and translation.

The methods have been compared on a data set of 10,000
randomly generated test cases. The result from this experi-
ment is shown in Figure 12. As can be seen, a good choice of
basis yields drastically improved numerical precision over
the standard method.
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Fig. 12 The angular error in degrees for relative pose with generalized
cameras.

8 Discussion

We have introduced some new theoretical ideas as well as
a set of techniques designed to overcome numerical prob-
lems encountered in state-of-the-art methods for polynomial
equation solving. We have shown empirically that these tech-
niques in many cases yield dramatic improvements in nu-
merical stability and further permits the solution of a larger
class of problems than previously possible.

The technique for solving polynomial equations that we
use in this paper can be summarized as follows. The orig-
inal equations are first expanded by multiplying the poly-
nomials with a set of monomials. The resulting equations
is expressed as a product of a coefficient matrix C and a
monomial vector X. Here we have some freedom in choos-
ing which monomials to multiply with. We then try to find a
solving basis B for the problem. For a given candidate basis
B we have shown how to determine if B constitutes a solv-
ing basis. If so then numerical linear algebra is used to con-
struct the action matrix and get a fast and numerically stable
solution to the problem at hand. However, we do not know
(i) what monomials we should multiply the original equa-
tions with and (ii) what solving basis B should be used to
get the simplest and most numerically stable solutions. Are
there algorithmic methods for answering these questions?
For a given expansion CX can one determine if this allows
for a solving basis? A concise theoretical understanding and
practical algorithms for these problems would certainly be
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of great aid in the work on polynomial problems and is a
highly interesting subject for future research.
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accuracy of gröbner basis polynomial equation solvers. In Proc.
11th Int. Conf. on Computer Vision, Rio de Janeiro, Brazil, 2007.

8. M. Byröd, K. Josephson, and K. Åström. A column-pivoting based
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calization using hybrid feature correspondences. In The second in-
ternational ISPRS workshop BenCOS 2007, Towards Benchmark-
ing Automated Calibration, Orientation, and Surface Reconstruc-
tion from Images, 2007.

26. F. Kahl. Multiple view geometry and the l∞-norm. In ICCV,
pages 1002–1009, 2005.

27. F. Kahl and D. Henrion. Globally optimal estimates for geometric
reconstruction problems. In Proc. 10th Int. Conf. on Computer
Vision, Bejing, China, pages 978–985, 2005.

28. I. Karasalo. A criterion for truncation of the QR-decomposition
algorithm for the singular linear least squares problem. BIT Nu-
merical Mathematics, 14(2):156–166, June 1974.

29. E. Kruppa. Zur Ermittlung eines Objektes aus Zwei Perspek-
tiven mit innerer Orientierung. Sitz-Ber. Akad. Wiss., Wien, math.
naturw. Kl. Abt, IIa(122):1939–1948, 1913.

30. Z. Kukelova and T. Pajdla. A minimal solution to the autocalibra-
tion of radial distortion. In CVPR, 2007.

31. Z. Kukelova and T. Pajdla. Two minimal problems for cameras
with radial distortion. In Proceedings of The Seventh Workshop
on Omnidirectional Vision, Camera Networks and Non-classical
Cameras (OMNIVIS), 2007.

32. D. Lazard. Resolution des systemes d’equations algebriques.
Theor. Comput. Sci., 15:77–110, 1981.

33. H. Li. A simple solution to the two-view focal-length algorithm.
In Proc. 9th European Conf. on Computer Vision, Graz, Austria,
2006.

34. D. Nistér. An efficient solution to the five-point relative pose prob-
lem. In Proc. Conf. Computer Vision and Pattern Recognition,
volume 2, pages 195–202. IEEE Computer Society Press, 2003.

35. J. Philip. A non-iterative algorithm for determining all essen-
tial matrices corresponding to five point pairs. Photogrammetric
Record, 15(88):589–599, Oct. 1996.

36. R. Pless. Using many cameras as one. In Proc. Conf. Computer
Vision and Pattern Recognition, Madison, USA, 2003.

37. H. Stewénius. Gröbner Basis Methods for Minimal Problems in
Computer Vision. PhD thesis, Lund University, Apr. 2005.

38. H. Stewénius, C. Engels, and D. Nistér. Recent developments on
direct relative orientation. ISPRS Journal of Photogrammetry and
Remote Sensing, 60:284–294, June 2006.

39. H. Stewénius, F. Kahl, D. Nistér, and F. Schaffalitzky. A minimal
solution for relative pose with unknown focal length. In Proc.
Conf. Computer Vision and Pattern Recognition, San Diego, USA,
2005.

40. H. Stewénius, D. Nistér, M. Oskarsson, and K. Åström. Solutions
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