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We propose a new method to reconstruct the electric field of attosecond pulse trains. The phase of the
high-order harmonic emission electric field is Taylor expanded around the maximum of the laser pulse
envelope in the time domain and around the central harmonic in the frequency domain. Experimental
measurements allow us to determine the coefficients of this expansion and to characterize the radiation
with attosecond accuracy over a femtosecond time scale. The method gives access to pulse-to-pulse
variations along the train, including the timing, the chirp, and the attosecond carrier envelope phase.

DOI: 10.1103/PhysRevLett.95.243901 PACS numbers: 42.65.Ky, 32.80.Rm
When an intense laser field interacts with a gas, high-
order harmonics are emitted in subfemtosecond bursts of
light [1,2]. The temporal characterization of this radiation
is of great fundamental interest since it gives insight into
the emission process. In addition, the ultrashort duration
corresponding to a selected bandwidth makes this radia-
tion a unique extreme ultraviolet (XUV) source of interest
for a number of applications.

Individual harmonic pulses can be characterized on the
femtosecond time scale by techniques such as FROG
(frequency-resolved optical gating) [3–7] and SPIDER
(spectral phase interferometry for direct electric field re-
construction) [8,9]. Attosecond pulses are characterized by
recently developed techniques [2,10] such as RABITT
(reconstruction of attosecond beating by interference of
two-photon transition). The latter shows the existence of
a quadratic spectral phase, i.e., a frequency chirp [11,12]
(hereafter called attochirp) [13], for the plateau harmonics.

The RABITT technique, which assumes monochromatic
harmonic components, gives access only to the average
pulse shape in the train. New measurement techniques,
based on extensions of the FROG method, have been
proposed and numerically verified [14–16]. All these
methods imply a scan of an optical delay, and the recon-
struction of a complete attosecond pulse train (APT) de-
mands a temporal accuracy of a few tens of attoseconds
over several tens of femtoseconds, which is difficult to
achieve experimentally.

In this Letter, we propose a new technique that, by
making physically reasonable assumptions, practically re-
moves the high requirement on the experiment. The ultra-
precise scan is replaced by a series of short scan RABITT
measurements performed at different laser intensities. The
reconstruction of the electric field uses a Taylor expansion
of the harmonic phase with respect to frequency and time
whose coefficients have simple physical interpretations.
The method is illustrated by characterizing an APT gen-
erated in neon.
05=95(24)=243901(4)$23.00 24390
We consider a coherent sum of consecutive odd harmon-
ics (from qi to qf) generated when a strong laser field
interacts with a gas. We assume for simplicity that only one
quantum path, selected by either phase matching or an
aperture in the far field [17–20], contributes to the genera-
tion of these harmonics. The electric field resulting from
the superposition of these harmonics can be written as

E�t� �
Xq�qf
q�qi

Aq�t�e
�i�q�t�; (1)

where ! is the laser frequency and Aq�t� and �q�t� are
the amplitude and phase of the qth harmonic field. The
phase �q�t� � q�0�t� ��q�t� ��prop

q includes a contri-
bution from the fundamental field q�0�t�, with �0�t��
!t��0�b0t

2=2 where �0 is the fundamental pulse car-
rier envelope phase (CEP) and b0 a possible frequency
chirp, as well as phase terms originating from the genera-
tion process �q and dispersive propagation effects �prop

q .
jE�t�j2 typically consists of a train of pulses of a few
hundred attoseconds in duration, separated by half the laser
period, spanning over an interval of a few tens of femto-
seconds. Interestingly, in Eq. (1) we treat the two time
scales of the problem differently: the femtosecond struc-
ture is expressed in the time domain, through the (slow)
time variation of Aq�t� and �q�t� � q!t, while the atto-
second structure is here characterized by the spectral varia-
tion of Aq and �q.

Our reconstruction of the APT uses a Taylor expansion
up to fourth order of the phase term both in frequency �,
covering the whole frequency range by discrete steps of 2!
and in time on the femtosecond time scale. The Taylor
expansion is performed around ��; t� � �q0!; 0�, where q0

is the central harmonic order and t � 0 is the maximum of
the laser pulse. The phase term originating from the gen-
eration process �q�t� depends on time via the fundamental
laser intensity envelope I�t� [21]. Assuming that I�t� is
1-1 © 2005 The American Physical Society
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symmetric with respect to t � 0, all odd derivatives around t � 0 are equal to zero. The third and fourth order terms in
��� q0!�, as well as the fourth order terms in t are found to be very small and can be neglected. We use the notation
� � d2I=dt2, at t � 0. For a Gaussian pulse characterized by a peak intensity I0 and a pulse duration �, � �
�8 ln�2�I0=�2. Writing the frequency derivatives as @�=@� � 1=!@�=@q, we obtain

�q�t� � q0!t � �q0
�I0� � q0�0 �
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All the partial derivatives are taken at q � q0 and I � I0.
The effect induced by propagation through a medium is
taken into account by a constant group delay dispersion, �.

All the terms in Eq. (2) have a simple physical inter-
pretation. The first line describes the phase of the carrier of
the APT electric field relative to the envelope of the fun-
damental field. It does not depend explicitly on q and will
be factored out of the sum in Eq. (1). The second line in
Eq. (2) describes the attosecond pulse intensity character-
istics at the peak of the laser pulse. The first term expresses
the delay of the attosecond burst with respect to the fun-
damental envelope and the second gives the variation of
this delay as function of frequency, i.e., the attochirp.
Finally, the last line in the equation describes how the
delay and delay dispersion vary with the laser intensity,
and hence with time, on a femtosecond time scale.
Equation (2) clarifies the degrees of freedom available
for tailoring the APT. The fundamental chirp b0 affects
the spacing of the bursts in the train [7], while the material
group delay dispersion, �, affects the chirp of the atto-
second pulses [17].

Our proposal for reconstruction of the APT is based on
the experimental determination of the spectral amplitudes
Aq�I�, the first derivative of the phase with respect to
intensity, the first and second order derivatives of the phase
with respect to q, and their variation with intensity. These
measurements allow for a complete characterization of the
APT except for a (constant) phase term. Our reconstruction
method assumes that the XUV field is determined by the
local (fs) laser intensity and phase and therefore applies to
relatively long and low intensity generating laser pulses for
which nonadiabatic effects are negligible. The term
@�=@I, which is not required for determination of the
APT intensity profile, can be determined by measurements
giving access to the chirp of the central harmonic of the
generated spectrum [7,8]. The derivatives appearing in the
last two lines of Eq. (2) can all be determined from
RABITT measurements [11,18], performed at different
generating intensities.

In RABITT, atoms are photoionized by a superposition
of the APT and the optically delayed fundamental field.
The photoelectron spectra display, between each one-
photon harmonic line, two-photon sidebands induced by
24390
absorption of one harmonic and absorption or emission of a
laser photon. When scanning the delay, the sidebands
amplitudes oscillate with half the fundamental period and
the phase of each oscillation allows us to retrieve the phase
difference of the corresponding harmonics pair �q�2 �

�q � 2@�=@q. The RABITT reconstruction is based on
the assumption of an infinite driving pulse. Therefore
measurements involving finite pulses intrinsically involve
spatial and temporal averaging over a sufficient number of
oscillations. To test the effect of temporal averaging, we
have simulated a RABITT measurement and reconstruc-
tion, using a typical APT generated with a 45 fs pulse. We
find that the determined derivatives compare well with the
values obtained at a fixed intensity, slightly lower than the
peak intensity.

To verify the consistency of the proposed reconstruction
method, we present results from an experiment carried out
at the LUCA facility in Saclay, using the arrangement
described in Ref. [11]. High-order harmonics were gen-
erated with 45 fs, 800 nm laser pulses. A series of RABITT
measurements were performed in neon over a spectral
range from the 19th to the 37th harmonics at several laser
intensities ranging from 2 to 4� 1014 W=cm2. We plot in
Fig. 1(a) @�=@q values obtained by analyzing the posi-
tions of the oscillations of the sidebands as a function of
harmonic order. Both @�=@q (group delay) and @2�=@q2

(group delay dispersion) are positive and decrease as the
laser intensity increases. In Fig. 1(b), we plot the recon-
structed average pulses, obtained from the RABITT algo-
rithm [2,11], which essentially amounts to neglecting the
time dependence in Aq and �q. The pulse duration, as well
as the delay relative to the fundamental field, decreases
significantly with increasing intensity. As a consequence,
the different pulses of an APT present similar distortions,
since they are generated at different intensities: the pulses
are shorter at the maximum of the train, and the spacing
between them increases along the train. In essence, the
pulses reconstructed at different peak intensities [cf.
Fig. 1(b)] mirror the temporal variation of the pulses in
the train generated at the highest intensity.

Strong field approximation (SFA) [13,21] calculations of
the single-atom response have been carried out by solving
saddle point equations for the experimental conditions.
1-2



FIG. 2. Peak and half-peak sections of an APT in neon cen-
tered around the 27th harmonic of 800 nm with a 15 eV band-
width; (a) generated with a 45 fs-long Fourier transform-limited
field; (b) generated with a positively chirped fundamental field
(to eliminate the spacing change) and passing through a medium
with negative group delay dispersion (to eliminate the attochirp).
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FIG. 1. (a) Variation of the phase derivative @�=@q with
harmonic order q at laser intensities of 2 (light gray), 3 (dark
gray), and 4� 1014 W=cm2 (black) in neon. The markers show
experimental data obtained from RABITT measurements. The
solid and dashed lines are the SFA predictions for the short and
long trajectories. (b) Corresponding reconstructed average atto-
second pulses for harmonics 19 to 37. The pulses have been
normalized to contain the same energy. The dashed line is the
absolute value of the fundamental electric field.
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The results shown by the lines in Fig. 1(a) reveal for the
plateau harmonics two main quantum paths labeled short
(solid line) and long (dashed line). The experimental points
clearly indicate that the short trajectory dominates the
harmonic generation. The agreement between experimen-
tal and theoretical results justifies assigning the measured
values to a constant intensity and shows that the temporal
structure of the APT is dominated by the single-atom
effects.

From the experimental results in Fig. 1(a), we can
determine all the derivatives needed for the reconstruction
of the APT intensity. They compare well with the SFA
predictions, even though a better precision would be ob-
tained with measurements for a larger number of inten-
sities. In order to obtain the APT electric field, mea-
surements of the chirp of the central harmonic are also
needed, which were not performed in the present experi-
ment. In addition, the fundamental field (including the
chirp and CEP) must be determined. Below we present a
reconstruction based on phase terms obtained from SFA
calculations, including the experimentally yet unavailable
term, �q0

, allowing us to discuss the absolute phase of the
APT electric field. For the spectral amplitudes, we assume
here a Gaussian distribution spanning from the 19th to the
37th harmonics, with a full width at half maximum �q �
10. We also assume a Gaussian temporal envelope for both
the infrared (� � 45 fs) and the harmonics, with equal
durations of �=

���
3
p

. We choose �0 � 0.
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Figure 2 shows a reconstruction for a peak intensity of
2� 1014 W=cm2 in two cases: (a) when the pulse train is
generated by a transform-limited laser pulse (b0 � � � 0)
corresponding to the experimental results and (b) when
the train is generated with an appropriately chosen posi-
tively chirped pulse, and passes through a medium of nega-
tive group delay dispersion b0 � �@2�=@q@I � 1:5�
10�3 fs�2, � � �1=!2@2�=@q2 � �1� 10�2 fs2). The
figure illustrates how the timing and duration of the atto-
second bursts vary along the train. As a consequence of the
variation of the delay of the XUV bursts relative to the laser
field, in the train generated with a transform-limited pulse
the spacing between the attosecond bursts slightly in-
creases with time [Fig. 2(a)]. To emphasize the effect,
vertical lines guide the eye for even spacing. The position
of the lines correspond to the maxima and minima of a
transform-limited fundamental field. In the particular case
examined here, where the central harmonic is ‘‘deep’’ in-
side the plateau region, the attosecond bursts appear just
after the maxima or minima of the laser electric field, in
agreement with the experimental result [Fig. 1(b)]. As was
suggested earlier [7], the (small) spacing change can be
corrected by using a fundamental field with a positive chirp
(b0) [cf. Fig. 2(b)]. The attosecond pulses are chirped
[11,12], and the chirp increases symmetrically from the
maximum of the pulse train, the pulses getting significantly
longer on the wings. By propagation through a medium
1-3



FIG. 3. ACEP of the attosecond bursts for trains generated at a
peak intensity of 2� 1014 W=cm2, plotted as a function of the
position of the pulses in the train for a fundamental CEP;�0 � 0
(squares) and �0 � � (triangles).
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with negative group delay dispersion, this attochirp can be
reduced by the same amount for each pulse. In the ex-
ample, we have chosen to compensate the chirp of the burst
at the peak, leading to short, single cycle, 130 as pulses
[Fig. 2(b)]. Even when the attosecond pulse at the peak is
transform limited, as a result of the attochirp variation
throughout the train, the pulses at the wing still show a
small chirp.

For these pulses, close to the single cycle limit [17,22],
the attosecond carrier envelope phase (denoted ACEP) be-
comes an important parameter. In Fig. 3 we plot the ACEP
values of each of the bursts of the APT. The ACEP of the
peak pulse is determined by the phase and group delay of
the carrier component. For an infinite driving pulse, the
ACEP of consecutive pulses in the train varies by a factor
�, leading to two sets of points separated by �. For a finite
IR pulse, there is a significant additional variation of the
ACEP reflecting the variation of the phase and group delay
with intensity. It does not, however, depend on the CEP or
chirp of the fundamental. Mathematically, this is a conse-
quence of the fact that the phase terms containing �0 and
b0t2=2 are multiplied by q. In the conditions of the present
work, i.e., for relatively long IR pulses, the fundamental
CEP change does not modify the harmonic field, it simply
shifts the attosecond bursts—together with the electric
field—in time. Similarly, when a chirp is added to the
fundamental, the position of the bursts changes, but the
ACEP still follows the curves in Fig. 3. The CEP depen-
dence of the ACEP found in [23] is a result of nonadiabatic
effects, not discussed in the present work.

In conclusion, we have studied the behavior of the APT
both on the attosecond and femtosecond time scales and
have shown how the train can be experimentally charac-
terized. A theoretical model is presented, using Taylor
expansion both in time and frequency up to fourth order
with coefficients bearing intuitive physical meaning. This
allows us to discuss in simple terms the different temporal
24390
features, to reconstruct pulse-to-pulse variations of the
APT, and to visualize the associated electric field. The
coefficients, determined by RABITT measurements taken
at different intensities, allow the reconstruction of the APT
intensity. Together with a FROG/SPIDER determination of
the central harmonic chirp and precise characterization of
the fundamental field, it provides—apart from a phase
constant—characterization of the attosecond pulse train
electric field.
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