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Adalbjörnsson, Johan Swärd, Ted Kronvall, Dr. Shiwen Lei, and Prof. Johan

Karlsson, for giving substance to the expression ”the more, the merrier”. Espe-

cially, I would like to thank Stefan for giving me invaluable guidance concerning

research, as well as supplying me with interesting audio books. Also, a special

thanks to Mona Forsler, James Hakim, Joakim Lübeck, Maria Lövgren, and Lise-
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Introduction

This thesis consists of three papers concerned with estimation of multi-pitch sig-

nals, i.e., signals consisting of one or more harmonic, or close-to-harmonic, struc-

tures characterized by a set of fundamental frequencies. Estimation in this context

refers to the task of both finding the number of these structures constituting the

signal, as well as their fundamental frequencies. The first paper considers sta-

tionary signal frames and exploits the assumed perfectly harmonic structure in

order to extract the individual pitches. The second paper, while also relying on

the harmonic assumption, presents a time-recursive pitch estimator, allowing for

non-stationarities such as amplitude and frequency modulation. Lastly, the third

paper presents a relaxation of the harmonic model, allowing the pitches to display

various degrees of inharmonicity and thereby introduces a framework for robust

multi-pitch estimation. The three papers have in common that they all rely on

formulating multi-pitch estimation as a sparse reconstruction problem and utilize

convex optimization techniques in order to produce the estimates.

1 Background

A pitch is defined as a set of sinusoids whose frequencies are integer multiples of a

single frequency, referred to as the fundamental frequency or pitch frequency, i.e.,

the sinusoidal frequencies constituting a pitch with fundamental frequency fk are

contained in the set

Ωk ⊆ { fkℓ | ℓ = 1, . . . ,Lk } (1)

where Lk is referred to as the harmonic order. This type of signal structure appears

in a variety of applications, ranging from audio processing to radar applications

with rotating or vibrating targets [1]. For example, the harmonic structure in (1)

quite accurately captures the voiced part of human speech, e.g., sustained vowels,

although the harmonic structure is in general not perfect due to the phenomenon

of inharmonicity. This can be seen in Figure 1, showing the magnitude of the

short-time Fourier transform (STFT) for a recording of a female voice, i.e., a

1



Introduction

Figure 1: Magnitude of the STFT for a signal consisting of a female voice. The

magnitude, in dB, is illustrated by the color of the plot.

single-pitch signal, sampled at 8 kHz, with the magnitude in dB illustrated by the

color of the plot. As can be seen, at each time instant the power is distributed over

evenly spaced frequencies, with the spacing corresponding to the fundamental

frequency at that particular time instant. In Figure 2, the magnitude spectrum of

a 30 ms excerpt of the full signal is shown, corresponding to the portion between

the dashed lines in Figure 1. In the figure, one may note that the spectral peaks

are separated by approximately 143 Hz, i.e., the fundamental frequency on this

time interval is 143 Hz, although, there seems to be some inharmonicity present

as the frequency of the tenth harmonic is slightly higher than the expected 1430

Hz. In this thesis, this type of harmonic signal is assumed to be well described by

xk(t) =

Lk
∑

ℓ=1

ak,ℓe
i2πfkℓt , (2)

2
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Figure 2: Magnitude spectrum of a signal consisting of a female voice. The loca-

tion of the harmonics are indicated by the vertical lines.

i.e., as the superposition of Lk harmonically related complex sinusoids. Although,

typically, measured signals are real-valued, for ease of notation and computational

efficiency, we will herein instead consider the discrete-time, analytic representa-

tion [2]. From (2), it can be noted that the reciprocal of the fundamental fre-

quency, fk, corresponds to the period of the signal, i.e.,

xk(t) = xk (t + Tk) = xk

(

t + 1/fk
)

. (3)

This is illustrated in Figure 3, showing the (real-valued) time-domain wave-form

for the same signal as before. The zoomed-in portion of the figure corresponds

to the same 30 ms as shown in Figure 2. As can be seen in the figure, the signal

is approximately periodic, completing a bit more than four periods on the 30

ms interval. This observation can be utilized in single-pitch scenarios in order

to estimate the fundamental frequency, fk, based on the autocorrelation of the

signal [3]. In contrast, this thesis is concerned with the more complex task of

3
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Figure 3: Single-pitch signal consisting of a female voice. The zoomed-in portion

corresponds to the spectrum in Figure 2.

multi-pitch estimation, i.e., estimating a set of fundamental frequencies, { fk }K
k=1,

from noise corrupted signal measurements y(t) (for an overview on multi-pitch

estimation, see, e.g., [4]). Specifically, a stationary frame of the signal is assumed

to be well described by

y(t) = x(t) + e(t) (4)

where

x(t) =
K
∑

k=1

xk(t) =
K
∑

k=1

Lk
∑

ℓ=1

ak,ℓe
i2πfkℓt , (5)

and where e(t) denotes an additive noise. The estimators presented in the three

papers in this thesis will not assume any knowledge of the number of pitches, K ,

nor the number of harmonics, Lk, of each pitch and will instead consider these to

be unknowns to be estimated alongside the fundamental frequencies, { fk }K
k=1.

4



2. Maximum likelihood estimation for pitches

2 Maximum likelihood estimation for pitches

Assume that one measures N noise corrupted samples, y(tn), from the model (4),

collected in the vector

y =
[

y(t1) ... y(tN )
]T

. (6)

Also, assume for now that the number of pitches K , as well as the number of

harmonics Lk for each pitch, are known so that only the fundamental frequencies,

{fk}K
k=1, and the complex amplitudes of the harmonics, ak,ℓ, are the unknown

parameters to be estimated. Define the parameter vector θ as

θ =
[

fT aT
]T

(7)

where

f =
[

f1 f2 . . . fK
]T

(8)

a =
[

aT
1 aT

2 . . . aT
K

]T
(9)

ak =
[

ak,1 ak,2 ... ak,Lk

]T
. (10)

Then, one may write y as

y = Z
(

f
)

a + e (11)

where

Z
(

f
)

=
[

Z1

(

f1
)

Z2

(

f2
)

. . . ZK

(

fK
) ]

(12)

Zk

(

fk
)

=
[

z
(

fk
)

z
(

2fk
)

. . . z
(

Lk fk
) ]

(13)

z
(

fk
)

=
[

ei2πfk t1 ei2πfk t2 . . . ei2πfk tN
]T

(14)

e =
[

e(t1) e(t2) . . . e(tN )
]T

. (15)

A common assumption regarding the additive noise component, e(t), is that it

may be well modeled as being a white, circularly symmetric Gaussian noise with

variance σ2. Under this assumption, the probability density function (PDF) of

the sample y is

p
(

y;θ,σ2
)

=
1

(

πσ2
)N

exp

{

1

σ2

∥

∥y− Z
(

f
)

a
∥

∥

2

2

}

. (16)

5
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This yields that the maximum-likelihood estimator (MLE) of θ is the solution to

the non-linear least squares problem

minimize
θ

1

N

∥

∥y− Z
(

f
)

a
∥

∥

2

2
. (17)

Let the minimizer of (17) with respect to f be denoted f ⋆. Then, the minimizing

amplitude vector is given by

a⋆ = Z†
(

f ⋆
)

y (18)

where Z†
(

f ⋆
)

denotes the Moore-Penrose pseudo-inverse of Z
(

f ⋆
)

, which in the

case Z
(

f ⋆
)

is a full rank matrix has the closed-form expression

Z†
(

f ⋆
)

=
(

ZH
(

f ⋆
)

Z
(

f ⋆
))−1

ZH
(

f ⋆
)

. (19)

Substituting this into (17), one may define the cost function

J
(

f ; y
)

=
1

N

∥

∥

∥

(

I− Z
(

f
)

Z†
(

f
)

)

y
∥

∥

∥

2

2
(20)

which only depends on the vector of fundamental frequencies, f. We thus have

the MLEs of f and a according to

f̂MLE = arg min
f

J
(

f ; y
)

(21)

âMLE = Z†
(

f̂MLE

)

y . (22)

However, finding the minimizer of J
(

f ; y
)

is a non-trivial task as J
(

f ; y
)

is non-

convex in f. This is illustrated in Figure 4, showing the values of J
(

f ; y
)

when

evaluated on f ∈ (0, 0.018) for a single-pitch signal with fundamental frequency

fk = 0.01 (in normalized frequency) and Lk = 6 harmonics. As can be seen, the

cost function has a clear global minimum close to the true fundamental frequency.

However, there are also numerous local minima, preventing the use of straight-

forward optimization schemes such as gradient descent. Also, without accurate

prior knowledge of the locations of the fundamental frequencies, using a grid-

search to find fk is only computationally feasible in the single-pitch case as each

evaluation of J
(

f ; y
)

requiresO(N 3) operations for the calculation of the pseudo-

inverse. This makes multi-pitch estimation for K > 1 pitches a computationally

daunting task, as this would require a K -dimensional grid search.

6



2. Maximum likelihood estimation for pitches
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Figure 4: The cost function J
(

f ; y
)

evaluated for frequencies f ∈ (0, 0.018) for a

single-pitch signal with fundamental frequency fk = 0.01 and Lk = 6 harmonics.

2.1 Approximating the MLE

In order to overcome the computational problems of finding the MLE by exact

minimization of the cost function J
(

f ; y
)

, one may instead proceed to use an

approximation. First, assuming that the sampling is uniform, one may note that,

asymptotically

1

N
zH
(

fk
)

z
(

fℓ
)

=

{

1 if k = ℓ

0 if k 6= ℓ
(23)

as N →∞, i.e.,

lim
N→∞

1

N
ZH
(

f
)

Z
(

f
)

= I⇒ lim
N→∞

Z†
(

f
)

=
1

N
ZH
(

f
)

(24)

where I is the identity matrix, assuming that no harmonics of the different pitches

overlap, i.e., fk,ℓ 6= fp,n unless k = p and ℓ = n. Using this approximation,

7
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one may reformulate the cost function, by expanding the expression for J
(

f ; y
)

,

obtaining

J̃
(

f ; y
)

=
1

N

∥

∥

∥

∥

(

I− 1

N
Z
(

f
)

ZH
(

f
)

)

y

∥

∥

∥

∥

2

2

(25)

=
1

N

(

‖y‖2
2 −

1

N

∥

∥ZH
(

f
)

y
∥

∥

2

2

)

(26)

=
1

N

(

‖y‖2
2 −

1

N

K
∑

k=1

∥

∥ZH
k

(

fk
)

y
∥

∥

2

2

)

. (27)

As this cost function is separable in the K pitches, each individual fundamental

frequency can be found as

f̂k = arg max
f

∥

∥ZH
k

(

f
)

y
∥

∥

2

2
(28)

which due to the structure of Zk

(

f
)

can be implemented efficiently using the

Fast Fourier Transform (FFT) [5] together with a grid search. However, when

estimating the fundamental frequencies of mixtures of K > 1 pitches, one has to

be careful not to pick the same maximum of (28) more than once, as it for some

signals is possible that

arg max
f

∥

∥ZH
k

(

f
)

y
∥

∥

2

2
= arg max

f

∥

∥ZH
ℓ

(

f
)

y
∥

∥

2

2
, k 6= ℓ . (29)

As an illustration, consider a signal consisting of two pitches with fundamental

frequencies f1 = 0.01 and f2 = 0.0095, and L1 = 6 and L2 = 4 harmonics,

respectively. Also, let the second pitch have higher power than the first, i.e.,

6
∑

ℓ=1

|a1,ℓ|2 <

4
∑

ℓ=1

|a2,ℓ|2 . (30)

The exact cost function J
(

f ; y
)

for this case is shown in Figure 5, whereas the

approximate cost function J̃
(

f ; y
)

is shown in Figure 6. As can be seen, J
(

f ; y
)

attains its global minimum close to f =
[

f1 f2
]T

, whereas J̃
(

f ; y
)

attains its

global minimum close to f =
[

f2 f2
]T

, due to f2 maximizing both
∥

∥ZH
1

(

f
)

y
∥

∥

2

2

8



2. Maximum likelihood estimation for pitches

0

0.012

1

2
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Figure 5: The cost function J
(

f ; y
)

evaluated for frequencies f ∈ (0.008, 0.012)2

for a two-pitch signal with fundamental frequencies f1 = 0.01, f2 = 0.0095,

having L1 = 6 and L2 = 4 harmonics, respectively.

and
∥

∥ZH
2

(

f
)

y
∥

∥

2

2
. The ground truth fundamental frequencies f1 and f2 are instead

located close to a local minimum of J̃
(

f ; y
)

. Thus, estimating fundamental fre-

quencies by minimizing J̃
(

f ; y
)

requires the use of a scheme for avoiding picking

the same pitch more than once, which is a non-trivial task for the case of noisy

signals and closely spaced pitches. Also, it should be noted that the success of such

a pitch picking scheme depends on the order in which the pitches are selected; in

our two-pitch example, starting with selecting an estimate of f1 will produce the

estimate f̂ ≈
[

f2 f1
]T

, whereas starting with f2 will produce f̂ ≈
[

f1 f2
]T

.

A refinement of this estimate by minimizing the exact cost function J
(

f ; y
)

in a

neighborhood of f̂ would then only be successful in the second case, as the first

case, where the pitches have been swapped, will incur a bias in the estimates due

to the mis-match of the harmonic orders. It should also be noted that J̃
(

f ; y
)

might be a poor approximation of J
(

f ; y
)

for cases in which the sinusoidal com-

ponents of the signal are not approximately orthogonal. This will be the case if

9
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Figure 6: The approximate cost function J̃
(

f ; y
)

evaluated for frequen-

cies f ∈ (0.008, 0.012)2 for a two-pitch signal with fundamental frequencies

f1 = 0.01, f2 = 0.0095, having L1 = 6 and L2 = 4 harmonics, respectively.

the sample size is small, if the pitches are not well separated, or if the fundamental

frequencies are low. The estimator in (28) will be used as a comparison method in

this thesis, where it will be referred to as the approximate non-linear least squares,

abbreviated ANLS, estimator.

2.2 Sub-octaves and model order knowledge

As noted above, the approximate MLE in (28) is non-robust and may produce

erroneous or biased pitch frequency estimates, despite having perfect knowledge

of the number of pitches, K , as well as the number of harmonics for each pitch,

Lk, constituting the signal. However, it should be noted that also the exact MLE

in (21) becomes non-robust if we relax the assumption of having perfect know-

ledge of the number of harmonics. This is illustrated in Figure 7, showing the

10



2. Maximum likelihood estimation for pitches
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Figure 7: The cost function J
(

f ; y
)

evaluated for frequencies f ∈ (0, 0.018) for a

single pitch signal with fundamental frequency fk = 0.01 and Lk = 6 harmonics.

The cost function has been evaluated under the assumption Lk = 14.

cost function J
(

f ; y
)

evaluated evaluated for frequencies f ∈ (0, 0.018) for the

same single-pitch signal as before, i.e., fk = 0.01 and Lk = 6. However, this time,

we have assumed that we only have imprecise knowledge of the number of har-

monics; specifically, we assume that Lk ≤ 14, and thus evaluate the cost function

using 14 harmonics. As can be seen, the cost function J
(

f ; y
)

no longer has a

clear global minimum at f = 0.01, but has a similar minimum at f = 0.005;

in fact, this is the global minimum. Thus, minimizing J
(

f ; y
)

would in this case

yield the erroneous estimate f̂k = 0.005 = fk/2. This is caused by the set of

harmonics of fk being a subset of the harmonics for all divisors of fk, if no upper

bound on the number of harmonics is set. In practice, if the assumed number of

harmonics are more than twice the actual number of harmonics, the estimator in

(21) will be prone to mistake these divisors for the true pitch. This is commonly

referred to as the sub-octave problem due to the relationship between fk/2 and fk

11
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corresponding to the music theoretical concept of an octave. The general prob-

lem of model order selection for multi-pitch signals, i.e., to estimate the number

of pitches and harmonics alongside the fundamental frequencies, is, as can be

imagined, considerably more difficult than for the single-pitch case, disqualifying

approaches such as (21) and (28). The first two papers in this thesis address this

problem by forming convex relaxations of (17), coupled with techniques from

sparse modeling described briefly below.

3 Sparse modeling

As noted above, the problem in (17) is non-convex in the pitch frequencies, f,

whereas it is linear in the amplitudes, a. To arrive at a convex relaxation of (17), let

us therefore first create a set F , containing P candidate fundamental frequencies,

that are so finely spaced that the true fundamental frequencies are contained in F
(see, e.g., [6]), i.e.,

fk ∈ F , k = 1, 2, . . . ,K . (31)

Let f (K ) and a(K ) denote the vectors of the true fundamental frequencies and the

true complex amplitudes, respectively, and let f (P) be the P×1 vector of candidate

fundamental frequencies. Then, letting Lmax ≥ maxk Lk, we have that there exists

an amplitude vector a(P) such that

Z(K )
(

f (K )
)

a(K )
= Z(P)

(

f (P)
)

a(P) , (32)

i.e., it is possible to represent the signal as a linear combination of elements of the

dictionary Z(P)
(

f (P)
)

. Also, as P ≫ K in order to have a fine enough grid, we

expect this representation to be sparse, i.e., only a few elements of a(P) will be non-

zero. In fact, as a(P) is a concatenation of the amplitude vectors corresponding to

each candidate pitch, we expect the sparsity pattern to have a group structure,

i.e., sub-vectors of a(P) corresponding to non-present pitches are expected to be

zero. Having an estimate of a(P) thus yields an estimate of f (K ) by considering the

non-zero sub-vectors of a(P). However, the problem

minimize
a∈CPLmax

∥

∥

∥
y− Z(P)

(

f (P)
)

a
∥

∥

∥

2

2
(33)

is ill-posed due to the dimension of the amplitude vector a being PLmax ≫ N ,

which will cause Z(P)
(

f (P)
)

to be rank-deficient and the solution is therefore not

12



3. Sparse modeling

unique. On the other hand, the fact that a(P) is sparse allows for the use of

ideas from sparse reconstruction in order to form an estimate of the fundamental

frequencies, f (K ). Sparse reconstruction (see, e.g., [7]) refers to the problem of

reconstructing a signal using fewer data points than would in general be possible,

had the signal not had a sparse representation in some basis. In this framework,

we assume that we observe a down-sampled version of the P-sample signal Ψx,

whereΨ is a P × P matrix of basis functions so that only K ≪ P elements of x

are non-zero. The down-sampled signal is then

y = ΦΨx (34)

where Φ is a N × P matrix, where N ≪ P. Assuming that both Φ andΨ are

known, the reconstruction of the signal Ψx is then equivalent to estimating x

from y. Under some conditions on Φ,Ψ, and K (see, e.g., [7]) error free recon-

struction without knowledge of the sparsity level K can (with high probability)

be performed by solving

minimize
x

‖x‖0

subject to y = Ax
(35)

where A = ΦΨ and ‖·‖0 is the ℓ0 pseudo-norm, counting the non-zero elements

of its argument. Due to the ℓ0-norm, this problem is in general combinatorial,

and is therefore often approximated using the convex relaxation

minimize
x

‖x‖1

subject to y = Ax ,
(36)

referred to as basis pursuit [8]. In some instances, the problems in (35) and (36)

are in fact equivalent, in the sense of having the same optimal point [9]. The

corresponding problem for the noise-corrupted signal

y = ΦΨx + e (37)

is

minimize
x

‖x‖1

subject to ‖y− Ax‖2 ≤ δ
(38)

13
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where δ ≥ ‖e‖2. Also, due to Lagrangian duality, there exists a λ > 0 such that

this problem has the equivalent representation

minimize
x

1

2
‖y− Ax‖2

2 + λ ‖x‖1 . (39)

The problem (39) is often referred to as the LASSO [10] and has been used extens-

ively over the years for the estimation of sparse signals from noisy measurements.

Notably, (39) was used for spectral estimation in [11] wherein A constituted an

oversampled discrete Fourier transform matrix, yielding higher resolution than the

one provided by the FFT. This thesis builds on these foundations, and considers

the general formulation

minimize
a∈CPLmax

g
(

y− Z(P)
(

f (P)
)

a
)

+ h (a) (40)

where g(·) is a measure of fit between the signal and the model, and h(·) is a

penalty function inducing structure on the amplitude vector a and provides reg-

ularization as to make the problem well-posed. In particular, h(·) will be chosen

as to impose a sparse pitch structure on a, as well as counter the sub-octave prob-

lem described earlier. Also, in order to allow for the implementation of efficient

solvers, g(·) and h(·) will be chosen so that the objective function is convex.

3.1 Proximal operators

In this thesis, the implementation of efficient solvers of (40) will lead to having

the need to solve sub-problems of the form

minimize
x

1

2
‖y− x‖2

2 + λh(x) (41)

where λ ≥ 0 and h(·) is a convex, non-smooth function. The solution to this

problem is often referred to as the proximal operator of λh(·) [12], denoted as

proxλh(y) = arg min
x

1

2
‖y− x‖2

2 + λh(x) . (42)

Often, it is straightforward to interpret the proximal operator as a Euclidian pro-

jection onto a convex set defined by h(·), i.e., the proximal operator solves

minimize
x

1

2
‖y− x‖2

2

subject to h(x) ≤ γ
(43)

14



3. Sparse modeling

for some γ > 0. As an example, consider the problem

minimize
x

1

2
‖y− x‖2

2

subject to ‖x‖1 ≤ γ
(44)

where both x and y are real vectors of length N , i.e., we want to find the Euclidian

projection of y onto an ℓ1 unit ball, scaled by γ. We here assume that ‖y‖1 > γ
in order to avoid the trivial solution of projecting y onto itself. Note that the

solution x⋆ will be sparse due to the geometry of the ℓ1 unit ball; it has protruding

corners along the coordinate axes, meaning that the level sets of the ℓ2-norm will,

with high probability, tangent the feasible set at points where one or more of the

variables are zero. To verify this, consider the Lagrangian of (44):

L(x, λ) =
1

2
‖y− x‖2

2 + λ
(

‖x‖1 − γ
)

(45)

=

N
∑

n=0

(

1

2

(

yn − xn

)2
+ λ |xn|

)

− λγ (46)

where λ ≥ 0 is the Lagrange multiplier. Computing the sub-differential for

L(x, λ) with respect to xn yields

∂L(x, λ)

∂xn
= −

(

yn − xn

)

+ λsn (47)

where

sn ∈
{

sign(xn) if xn 6= 0

[−1, 1] if xn = 0 .
(48)

Given this, the Karush-Kuhn-Tucker (KKT) conditions (see, e.g., [13]), which,

as the problem is convex, are necessary and sufficient for a point x⋆ to be optimal,

are

−
(

yn − xn

)

+ λsn = 0 , n = 1, 2, . . . ,N (49)

λ
(

‖x‖1 − γ
)

= 0 (50)

‖x‖1 − γ ≤ 0 (51)

λ ≥ 0 (52)
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Noting that the optimal point must lie on the boundary of the feasible set, i.e.,

‖x⋆‖1 = γ, we arrive at the solution

x⋆n =

{

sign
(

yn

) (

| yn| − λ⋆
)

if | yn| > λ⋆
0 if | yn| ≤ λ⋆

(53)

where λ⋆ solves the fixed-point equation

λ =

∑N
n=0 | yn| 1{| yn|>λ} − γ
∑N

n=0 1{| yn|>λ}

(54)

where

1{| yn|>λ} =

{

1 if | yn| > λ
0 if | yn| ≤ λ

. (55)

As λ⋆ is the solution to a fixed-point equation, it can be found by fixed-point

iteration, initialized at λ = 0, or by a one-dimensional search. Thus, we see that

the projection of y onto the feasible set amounts to shrinking each element by λ⋆,

and setting an element to zero if its magnitude is smaller than λ⋆, i.e., x⋆ will be

sparser than y. Also, we see that

x⋆ = proxλ⋆h(y) = arg min
x

1

2
‖y− x‖2

2 + λ
⋆ ‖x‖1 , (56)

which is the LASSO given in (39), using A = I, with parameter λ⋆. When used

in this thesis, h(·) will be chosen as to define feasible sets that induce sparsity in

the solution in ways analogous to (44).

4 Inharmonicity and optimal transport

In what has been presented so far, we have assumed perfectly harmonic pitches,

i.e., that for each pitch k, we have

fk,ℓ = fkℓ , ℓ = 1, 2, . . . ,Lk . (57)

However, in some scenarios, signals may contain sinusoidal components that have

an approximate, but not perfectly harmonic structure. This phenomenon is called
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inharmonicity and is found in, e.g., the sound produced by vibrating stiff strings,

such as piano notes. Specifically, the frequencies of the sinusoidal components of

an inharmonic pitch are [14]

fk,ℓ = fkℓ+Δk,ℓ , ℓ = 1, 2, . . . ,Lk (58)

where Δk,ℓ is the inharmonicity parameter of the ℓth harmonic. In some cases,

there might exist a parametric description of Δk,ℓ, based on the physical proper-

ties of the signal source. For example, an often used model for the frequencies

produced by a piano is

fk,ℓ = fkℓ
√

1 + βℓ2 (59)

where β > 0 is a parameter detailing the string’s stiffness. Realistic values of β are

on the order of 10−3.

As an illustration, Figure 8 shows the estimated magnitude spectrum of a

30 ms excerpt of a single-pitch signal consisting of the piano note B4, having a

fundamental frequency of 493.883 Hz. Also plotted are the frequency locations

of the harmonics assuming the perfectly harmonic model in (57) as well as the

piano model in (59), respectively. For the piano model, an approximate value of

β = 10−3 was chosen using hand-tuning. As can be seen the piano model better

describes the signal, as it accounts for the higher-order harmonics deviating from

the perfectly harmonic model.

Importantly, if not taken into account, inharmonicity might have a detri-

mental effect on the quality of the pitch estimates. To illustrate this, we revisit the

earlier example with a single-pitch signal with fundamental frequency fk = 0.01

and Lk = 6 harmonics. Using the same complex amplitudes for the harmonics

as before, we now alter the frequencies of the harmonics to be detailed by (59),

using β = 10−3, rather than via (57). Figure 9 shows the effect of the inhar-

monicity when estimating fk by the MLE (21), which is constructed under the

assumption of a perfectly harmonic model. As can be seen, the global minimum

of the cost function J
(

f ; y
)

has now been shifted upwards in frequency due to

the shifted locations of the harmonics, causing an upward bias in the estimate

of fk. There have been estimators proposed to handle this type of deviation, but

they are often based on either parametric descriptions of the inharmonicity, sim-

ilar to (59), narrowing their scope of applicability to certain classes of signals, or

only consider the single-pitch case. Although it might be argued that this type of
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Figure 8: Magnitude spectrum of a signal consisting of a piano note. The fre-

quency locations of the harmonics, assuming the perfectly harmonic model (57),

as well as the piano model (59), using β = 10−3, are indicated by the vertical

lines.

bias is only a real concern in cases when highly accurate estimates of the funda-

mental frequencies are needed, it should be noted that inharmonicity might lead

to overestimating the model order, i.e., that an estimator will find more pitches

than the ones actually present in the signal. As noted in (23), Fourier vectors cor-

responding to different frequencies become orthogonal as their lengths increase;

however, even for moderate sample sizes, the Fourier vector corresponding to an

inharmonic overtone might be almost orthogonal to its perfectly harmonic coun-

terpart. This can be see in Figure 8, where the two highest-order harmonics, as

given by a perfectly harmonic model, are located outside the main lobes of the

periodogram of the signal. As can be seen in the figure, these two harmonics are

located close to the nulls of the periodogram, i.e., they are almost orthogonal to

the sinusoidal components of the signal. Thus, inharmonicity, if not taken into
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Figure 9: The cost function J
(

f ; y
)

evaluated for frequencies f ∈ (0, 0.018) for

an inharmonic single-pitch signal with fundamental frequency fk = 0.01 and

Lk = 6 harmonics. The frequency of each harmonic is detailed by (59), using

β = 10−3.

account, might lead to cases where inharmonic overtones are classified as stray

sinusoids not belonging to other found sources. In the third paper of this thesis,

we propose a multi-pitch estimator that is designed to be robust to possibly oc-

curring inharmonicity, without requiring specific knowledge of the structure of

the inharmonicity. The estimator is based on the concept of optimal transport,

briefly described below.

4.1 Optimal transport

Optimal transport is an old subject, first introduced by the French mathematician

Gaspard Monge in the 18th century, with the application being how to optimally

transport building material from quarries to construction sites; that is, given a
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known set of locations at which material is deposited, as well as a set of known

locations to be supplied, the goal is to find the transportation scheme that min-

imizes some measure of cost. The modern formulation of this problem was de-

vised by the Soviet mathematician Leonid Kantorovich, and is called the Monge-

Kantorovich minimization problem. Formally, let X and Y be two spaces, with

probability measures μ and ν, respectively; that is, μ describes the distribution of

mass on X , and ν describes the distribution of mass on Y . Then, given a cost

function c : X × Y → R+ describing the cost of moving one unit of mass from

a point in X to a point in Y , the optimal transport problem is (see, e.g., [15])

minimize
w

∫

X×Y
c
(

x, y
)

dw
(

x, y
)

subject to

∫

X
dw
(

x,B
)

= ν
(

B
)

, ∀B ⊂ Y
∫

Y
dw
(

A, y
)

= μ
(

A
)

, ∀A ⊂ X ,

(60)

where A and B are measurable subsets of X and Y , respectively. Here, the joint

probability measure w describes the association between sets in X and sets in Y ,

i.e., transportation of mass between the spaces. The constraints of the optimiza-

tion problem, requiring that μ and ν are marginals of w, ensures the conservation

of mass. In a discrete, finite setting, i.e.,

X = {xm | m = 1, 2, . . . ,M} (61)

Y =
{

yp | p = 1, 2, . . . ,P
}

(62)

the corresponding problem is

minimize
w

M
∑

m=1

P
∑

p=1

c
(

xm, yn

)

w
(

xm, yp

)

subject to

M
∑

m=1

w
(

xm, yp

)

= ν
(

yp

)

, ∀yp ∈ Y

P
∑

p=1

w
(

xm, yp

)

= μ (xm) , ∀xm ∈ X .

(63)

From this, it can be seen that the optimal transportation problem is a convex, lin-

ear program, as the objective function and the constraints of (63) are linear in w.
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Figure 10: The mapping of seven measured spectral peaks to two fundamental

frequencies by solving an optimal transport problem.

The minimum value of the objective function can be interpreted as a measure of

the distance between two probability measures μ and ν. This idea has earlier been

used to measure the distance between different power spectra [16], as the power

spectral density is non-negative, and has been used for, e.g., the construction of

smooth sequences of spectra [17], [18]. This thesis will expand on the idea of the

objective function as a similarity measure, in order to use the optimal transport-

ation problem for the estimation of inharmonic pitch signals. In our setting, X
will be the set of observed spectrum frequencies in a signal, and Y will be a large

set of candidate fundamental frequencies, i.e.,

X = { fm | m = 1, 2, . . . ,M} (64)

Y =
{

fp | p = 1, 2, . . . ,P
}

. (65)

Also, μ and ν will no longer be proper probability measures; μ
(

fm
)

will be the

spectrum magnitude at frequency fm and ν
(

fp
)

will be the sum of all spectrum

magnitudes associated with the fundamental frequency fp. As the fundamental
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frequencies are not known, νwill also be part of the optimization problem in order

to find an optimal association of spectral energy with fundamental frequencies.

The cost function c(·, ·) will be designed in such a way that this association allows

for inharmonicities. Also, the optimization problem (63) will be refined in order

to encourage sparse solutions. An illustration of the idea is shown in Figure 10,

displaying a measured spectrum containing seven peaks, simulated as a mixture

of two pitches, containing L1 = 4 and L2 = 3 harmonics, respectively. The

fundamental frequencies are f1 = 6.8 · 10−3 and f2 = 8.4 · 10−3, with the

frequencies of the harmonics being detailed by (59) with β = 10−3. Relating

to the problem in (63), the distribution of power, in magnitude, in the observed

spectrum is then described by μ. By solving a more elaborate version of (63),

as will be described in the third paper of this thesis, the distribution of power

among fundamental frequencies, i.e., an estimate of ν, is found. In this example,

the estimated ν is only non-zero for two fundamental frequencies, as can be seen

in Figure 10.
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5 Outline of the papers

Paper A: An Adaptive Penalty Multi-Pitch Estimator with
Self-Regularization

In the first paper, multi-pitch estimation for stationary signal frames is considered.

Estimates are produced by minimizing a cost function of type (40), where the

squared ℓ2-norm of the difference between the observed signal and the model

serves as the measure of fit. The penalty term is designed as to both encourage

few harmonics in the solution, as well as smooth spectral envelopes for each pitch.

By enforcing spectral smoothness, the proposed estimator specifically targets the

sub-octave problem, described earlier, and is shown to yield estimates with sparse

pitch representations. The objective function is minimized by solving a series

of convex optimization problems, with an alternating direction method of mul-

tipliers (ADMM) implementation provided in the paper. Also, as the objective

function contains two tuning parameters, determining the trade-off between the

fit between the signal and the model and the sparseness of the reconstruction, a

scheme for automatic, signal adaptive selection of these parameters is presented.

The proposed estimator is extensively evaluated on both simulated and real audio

signals, and is shown to outperform comparison methods in high signal-to-noise

ratio (SNR) settings. The work in paper A has been published in part as

Filip Elvander, Stefan Ingi Adalbjörnsson, Ted Kronvall, and

Andreas Jakobsson, “An Adaptive Penalty Multi-Pitch Estimator with Self-

Regularization”. Elsevier Signal Processing, vol. 127, pp. 56-70, October

2016.

Ted Kronvall, Filip Elvander, Stefan Ingi Adalbjörnsson, and

Andreas Jakobsson, “An Adaptive Penalty Approach to Multi-Pitch Estim-

ation”, 23rd European Signal Processing Conference, Nice, France, August 31

- September 4, 2015.

Paper B: Online Estimation of Multiple Harmonic Signals

In the second paper, the assumption of stationary frames made in paper A is

relaxed, and an estimator that allows for non-stationarities such as amplitude

and frequency modulation is proposed. The estimator is recursive in the sig-

nal samples, allowing for smooth signal tracking as it exploits the time correlation
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between samples. Inspired by sparse recursive least squares, the estimator is the

minimizer of a time-weighted least squares criterion augmented by sparsifying

penalty terms, where the penalty parameters are signal adaptive as to allow for

dynamic changes throughout the signal duration. The objective function is min-

imized using a proximal gradient algorithm. Also, as the penalty terms induce a

magnitude bias towards zero for the harmonics, a de-biasing step is proposed. The

paper also presents a scheme for adaptively adjusting the frequencies of the pitch

candidates in order to allow for tracking of frequency modulated signals. The

estimator is shown to perform comparably to the estimator in paper A, although

having a lower computational cost due, in part, to its recursive formulation. Also,

experiments on real audio signals suggest that the proposed method is more gen-

eral in its area of applicability than machine learning-type algorithms specialized

on automatic music transcription. The work in paper B has been published in

part as

Filip Elvander, Johan Swärd, and Andreas Jakobsson, “Online Estimation

of Multiple Harmonic Signals”. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 25, no. 2, pp. 273-284, February 2017.

Filip Elvander, Johan Swärd, and Andreas Jakobsson, ”Time-Recursive

Multi-Pitch Estimation Using Group Sparse Recursive Least Squares”, 50th
Annual Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,

USA, November 6-9, 2016.

Paper C: Using Optimal Transport for Estimating Inharmonic Pitch
Signals

In the third paper, an estimator designed to be robust to possibly occurring inhar-

monicities is proposed. In that respect, it differs from the estimators proposed in

papers A and B, as these were derived under the assumption of perfectly harmonic

signal components. Building on the concept of optimal transport, the proposed

method constructs estimates of the fundamental frequencies by mapping found

spectral components to a set of candidate fundamental frequencies. The method

achieves robustness to inharmonicity by solving an extended version of the prob-

lem in (63) where the cost function c(·, ·) is designed as to allow the harmonic fre-

quencies to deviate from perfect integer multiples of the fundamental frequency.

Although being an extension of the problem in (63), the resulting optimization
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problem is still a linear program. When evaluated on simulated inharmonic sig-

nals, the proposed method is shown to be robust to the bias in the fundamental

frequency affecting standard methods. Also, when applied to a real audio mixture

of both harmonic and inharmonic sources, the proposed method is shown to out-

perform the comparison methods. The work in paper C has been published in

part as

Filip Elvander, Stefan Ingi Adalbjörnsson, Johan Karlsson, and Andreas

Jakobsson, “Using Optimal Transport for Estimating Inharmonic Pitch

Signals”. 42nd IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing, New Orleans, USA, March 5-9, 2017.
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Paper A

An Adaptive Penalty Multi-Pitch
Estimator with Self-Regularization

Filip Elvander, Ted Kronvall, Stefan Ingi Adalbjörnsson, and
Andreas Jakobsson

Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract

This work treats multi-pitch estimation, and in particular the common misclassi-

fication issue wherein the pitch at half the true fundamental frequency, the sub-

octave, is chosen instead of the true pitch. Extending on current group LASSO-

based methods for pitch estimation, this work introduces an adaptive total vari-

ation penalty, which enforces both group- and block sparsity, as well as deals with

errors due to sub-octaves. Also presented is a scheme for signal adaptive diction-

ary construction and automatic selection of the regularization parameters. Used

together with this scheme, the proposed method is shown to yield accurate pitch

estimates when evaluated on synthetic speech data. The method is shown to

perform as good as, or better than, current state-of-the-art sparse methods while

requiring fewer tuning parameters than these, as well as several conventional pitch

estimation methods, even when these are given oracle model orders. When eval-

uated on a set of ten musical pieces, the method shows promising results for

separating multi-pitch signals.

Key words: Multi-pitch estimation, block sparsity, adaptive sparse penalty,

self-regularization, ADMM
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1 Introduction

Pitch estimation is a problem arising in a variety of fields, not least in audio

processing. It is a fundamental building block in several music information re-

trieval applications, such as automatic music transcription, i.e., automatic sheet

music generation from audio (see, e.g., [1], [2]). Pitch estimation could also be

used as a component in methods for cover song detection and music querying,

possibly improving currently available services. For example, the popular query

service Shazam [3] operates by matching hashed portions of spectrograms of user-

provided samples against a large music database. As a change of instrumentation

would alter the spectrogram of a song, such algorithms can only identify record-

ings of a song that are very similar to the actual recording present in the database.

Thus, services such as Shazam might fail to identify, e.g., acoustic alternate ver-

sions of rock songs. A query algorithm based on pitch estimation could on the

other hand correctly match the acoustic version to the original electrified one as

it would recognize, e.g., the main melody.

The applicability of pitch estimation to music is due to the fact that the notes

produced by many instruments used in Western tonal music, e.g., woodwind in-

struments such as the clarinet, exhibit a structure that is well modeled using a

harmonic sinusoidal structure [4]. However, for some plucked stringed instru-

ments, such as the guitar and the piano, the tension of the string results in the

harmonics deviating from perfect integer multiples of the fundamental frequency,

a phenomenon called inharmonicity. For some instruments, such as the piano,

there are models describing the structure of the inharmonicity based on physical

properties of the instrument [5]. Such signals require agile pitch estimation al-

gorithms allowing for this form of deviations (see, e.g., [6–8]). In this work, we

will assume such deviations to be small, although noting that one may extend the

here presented work along the lines in [6–8].

Estimating the fundamental frequencies of multi-pitch signals is generally a

difficult problem. There are many methods available, see, e.g., [9], but most of

them require a priori model order knowledge, i.e., they require knowledge of the

number of pitches present in the signal, as well as the number of active harmon-

ics for each pitch.1 Three such methods will be used in this work as reference

estimators. The first method, here referred to as ORTH, exploits orthogonality

1It may be noted that, generally, obtaining correct model order information is a most challen-
ging problem, with the model order estimates strongly affecting the resulting performance of the
estimator.
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between the signal and noise subspaces to form pitch frequency estimates. The

second method is an optimal filtering method based on the Capon estimator,

and is therefore here referred to as Capon. The third method is an approximate

non-linear least squares method, here referred to as ANLS [10–12] (see also [9]

for an overview of these methods). Methods not requiring a priori model or-

der knowledge have also been proposed. For example, Adalbjörnsson et al. [13]

use a sparse dictionary representation of the signal and regularization penalties to

implicitly choose the model order. A similar, but less general, method was in-

troduced in [14], which used a dictionary specifically tailored to piano notes for

estimating pitch frequencies generated by pianos. Other source specific meth-

ods include [15], [16]. In [17], the author proposes a sparsity-exploiting method,

where the dictionary atoms are learned from databases of short-time Fourier trans-

forms of musical notes. A similar idea is used in [18] for pitch-tracking in music.

In [16], [19], pitch estimation is based on the assumption of spectral smooth-

ness, i.e., the amplitudes of the harmonics within a pitch are assumed to be of

comparable magnitude.

Another field of research is performing multi-pitch estimation, often in the

context of automatic music transcription, by decomposing the spectrogram of the

signal into two matrices, one that describes the frequency content of the signal

and one that describes the time activation of the frequency components. This

method makes use of the non-negative matrix factorization, first introduced in

this context in [20] and since then widely used, such as in, e.g., [21]. There are

also more statistical approaches to multi-pitch estimation, posing the estimation

as a Bayesian inference problem (see, e.g., [22]).

The approach to multi-pitch estimation presented in this work is to solve the

problem in a group sparse modeling framework, which allows us to avoid making

explicit assumptions on the number of pitches, or on the number of harmonics in

each pitch. Instead, the number of components in the signal is chosen implicitly,

by the setting of some tuning parameters. These tuning parameters determine

how appropriate a given pitch candidate is to be present in the signal and may be

set using cross-validation, or by using some simple heuristics. The sparse model-

ing approach has earlier been used for audio (see, e.g., [23]), and specifically for

sinusoidal components in [24]. We extend on these works by exploiting the har-

monic structure of the signals in a block sparse framework, where each block rep-

resents a candidate pitch. A similar method was introduced in [13], where block

sparsity was enforced using block-norms, penalizing the number of active pitches.
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As the block-norm penalty, under some circumstances, cannot distinguish a true

pitch from its sub-octave, i.e., the pitch with half the true fundamental frequency,

the method is also complemented by a total variation penalty, which is shown to

solve such issues. Total variation penalties are often applied in image analysis to

obtain block-wise smooth image reconstructions (see, e.g., [25]). For audio data,

one can similarly assume that signals often are block-wise smooth, as the harmon-

ics of a pitch are expected to be of comparable magnitude [19]. Enforcing this

feature will specifically deal with octave errors, i.e., the choosing of the sub-octave

instead of the true pitch, as, in the noise free case, only every other harmonic

of the sub-octave will have non-zero power. In this paper, we show that a total

variation penalty, in itself, is enough to enforce a block sparse solution, if utilized

efficiently. More specifically, by making the penalty function adaptive, we may

improve upon the convex approximation used in [13], allowing us to drop the

block-norm penalty altogether, and so reduce the number of tuning parameters.

In some estimation scenarios, e.g., when estimating chroma using the approach

in [26], this would simplify the tuning procedure significantly.

Furthermore, we show that the proposed method performs comparably to

that of [13], albeit with the notable improvement of requiring fewer tuning para-

meters. The method operates by solving a series of convex optimization problems,

and to solve these we present an efficient algorithm based on the alternating dir-

ection method of multipliers (ADMM) (see, e.g., [27] for an overview of ADMM

in the context of convex optimization). As the proposed method requires two

tuning parameters to operate, we also present a scheme for automatic selection of

appropriate model orders, thereby avoiding the need of user-supplied parameters.

The remainder of this work is organized as follows; in the following section,

we introduce the signal model, followed in Section 3 by the proposed estimation

algorithm. Section 4 summarizes the efficient ADMM implementation whereas

Section 5 examines how to adaptively choose the regularization parameters. Nu-

merical results illustrating the achieved performance are presented in Section 6.

Finally, Section 7 concludes upon the work.
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2 Signal model

Consider a complex-valued2 signal consisting of K pitches, where the kth pitch is

constituted by a set of Lk harmonically related sinusoids, defined by the compon-

ent having the lowest frequency, ωk, such that

x(t) =
K
∑

k=1

Lk
∑

ℓ=1

ak,ℓe
iωkℓt (1)

for t = 1, . . . ,N , where ωkℓ is the frequency of the ℓth harmonic in the kth

pitch, and with the complex number ak,ℓ denoting its magnitude and phase. The

occurrence of such harmonic signals is often in combination with non-sinusoidal

components, such as, for instance, colored broadband noise or non-stationary

impulses. In this work, only the narrowband components of the signal are part of

the signal model, such that all other signal structures, including the signal’s timbre

and the background noise, are treated as part of an additive noise process, e(t).
In general, selecting model orders in (1) may be a daunting task, with both

the number of sources, K , and the number of harmonics in each of these sources,

Lk, being unknown, as well as often being structured such that different sources

may have spectrally overlapping overtones. In order to remedy this, this work

proposes a relaxation of the model onto a predefined grid of P ≫ K candidate

fundamentals, each having Lmax ≥ maxk Lk harmonics. Here, Lmax should be se-

lected to ensure that the corresponding highest frequency harmonic is limited by

the Nyquist frequency, and could thus vary depending on the considered candid-

ate frequency (see also [13]). For notational simplicity, we will hereafter, without

loss of generality, use the same Lmax for all candidate frequencies. Assume that the

candidate fundamentals are chosen so numerous and so closely spaced that the

approximation

x(t) ≈
P
∑

p=1

Lmax
∑

ℓ=1

ap,ℓe
iωpℓt (2)

holds reasonably well. As only K pitches are present in the actual signal, we want

to derive an estimator of the amplitudes ap,ℓ such that only few, ideally
∑K

k=1 Lk,

2For notational simplicity and computational efficiency, we here use the discrete-time analytical
signal formed from the measured (real-valued) signal (see, e.g., [9], [28]).
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Figure 1: The upper picture depicts a pitch with fundamental frequency 100

Hz and four harmonics. The lower picture depicts a pitch with fundamental

frequency 50 Hz and eight harmonics where all odd-numbered harmonics are

zero (marked red dots).

of the amplitudes in (2) are non-zero. This approach may be seen as a sparse

linear regression problem reminiscent of the one in [24] and has been thoroughly

examined in the context of pitch estimation in, e.g., [13, 29, 30]. For notational

convenience, define the set of all amplitude parameters to be estimated as

Ψ = {Ψω1 , . . . ,ΨωP} (3)

Ψωp = {ap,1, . . . , ap,Lmax} (4)

where, as described above, most of the ap,ℓ in Ψ will be zero. Note that Ψ will

be sparse, i.e., having few non-zero elements. Also, the pattern of this sparsity

will be group wise, meaning that if a pitch with fundamental frequency ωp is not

present, then neither will any of its harmonics, i.e.,Ψωp = 0.
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Due to the harmonic structure of the signal, candidate pitches having fun-

damental frequencies at fractions of the present pitches’ fundamentals will have a

partial fit of their harmonics. This may cause misclassification, i.e., erroneously

identifying a present pitch as one or more non-present candidate pitches. This is

the cause of the so-called sub-octave problem, which is mistaking the true pitch

with fundamental frequency ωp for the candidate pitch with fundamental fre-

quency ωp/2. This may occur if the candidate set Ψ is structured such that the

sub-octave pitch may perfectly model the true pitch, which is when Lmax ≥ 2Lp.

This is illustrated in Figure 1, displaying an extreme case with a pitch with fun-

damental frequency 100 Hz and four harmonics as well as its sub-octave, i.e., a

pitch with fundamental frequency 50 Hz and eight harmonics where only the

even-numbered harmonics are non-zero. Relating to music signals, this is the

same as mistaking a pitch for the pitch an octave below it. Thus, when estimating

the elements of Ψ, one also has to take into account the structure of the block

sparsity, in order to avoid erroneously selecting sub-octaves.

3 Proposed estimation algorithm

Consider N samples of a noise-corrupted measurement of the signal in (1), y(t),
such that it may be well modeled as y(t) = x(t) + e(t), where e(t) is a broad-

band noise signal. A straightforward approach to estimate Ψ would then be to

minimize the residual cost function

g1(Ψ) =
1

2

N
∑

t=1

∣

∣

∣

∣

y(t)−
P
∑

p=1

Lmax
∑

ℓ=1

ap,ℓe
iωpℓt

∣

∣

∣

∣

2

(5)

However, setting

Ψ̂ = arg min
Ψ

g1(Ψ) (6)

will not yield the desired sparsity structure ofΨ and will be prone to also model

the noise, e(t). Also, solutions (6) will not be unique due to the over-completeness

of the approximation (2). A remedy for this would be to add terms penalizing

solutions Ψ̂ that are not sparse, for example as
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Ψ̂ = arg min
Ψ

g1(Ψ) + λ||Ψ||0 (7)

where ||Ψ||0 is the pseudo-norm counting the number of non-zero elements in

Ψ, and λ is a regularization parameter. However, this in general leads to a com-

binatorial problem whose complexity grows exponentially with the dimension

ofΨ. To avoid this, one can approximate the ℓ0 penalty by the convex function

g2(Ψ) =

P
∑

p=1

Lmax
∑

ℓ=1

|ap,ℓ| (8)

The resulting problem

minimize
Ψ

g1(Ψ) + λg2(Ψ) (9)

is known as the LASSO [31]. In fact, it can be shown that under some restrictions

on the set of frequencies ω (see also [32]), the LASSO is guaranteed to retrieve

the non-zero indices of Ψ with high probability, although these conditions are

not assumed to be met here. To encourage the group-sparse behavior of Ψ̂, one

can further introduce

g3(Ψ) =

P
∑

p=1

√

√

√

√

Lmax
∑

ℓ=1

|ap,ℓ|2 (10)

which is also a convex function. The inner sum corresponds to the ℓ2-norm,

and does not enforce sparsity within each pitch, whereas instead the outer sum,

corresponding to the ℓ1-norm, enforces sparsity between pitches. Thereby, adding

the g3(Ψ) constraint will penalize the number of non-zero pitches. The resulting

estimator was in [13] termed the Pitch Estimation using Block Sparsity (PEBS)

estimator. However, if we for some p have 2Lp ≤ Lmax, the above penalties have

no way of discriminating between the correct pitch candidate ωp and the spurious

sub-octave candidate ωp/2. However, as the candidates will differ in that the sub-

octave will only contribute to the harmonic signal at every other frequency in the

block, as was seen in Figure 1, one may reduce the risk of such a misclassification

by further adding the penalty
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ğ4(Ψ) =

P
∑

p=1

Lmax
∑

ℓ=0

∣

∣

∣

∣

|ap,ℓ+1| − |ap,ℓ|
∣

∣

∣

∣

(11)

where we define

ap,0 = ap,Lmax+1 = 0 ,∀p (12)

which would add a cost to blocks where there are notable magnitude variations

between neighboring harmonics. Unfortunately, (11) is not convex, but a simple

convex approximation would be

g̃4(Ψ) =

P
∑

p=1

Lmax
∑

ℓ=0

|ap,ℓ+1 − ap,ℓ| (13)

which would be a good approximation of (11) if all the harmonics had similar

phases. This estimator was in [13] termed the PEBS-TV estimator. Clearly, this

may not be the case, resulting in that the penalty in (13) would also penalize

the correct candidate. An illustration of this is found by considering the worst-

case scenario, when all the adjacent harmonics are completely out of phase and

have the same magnitudes, i.e., ap,ℓ+1 = ap,ℓe
iπ with magnitude |ap,ℓ| = r, for

ℓ = 1, . . . ,Lp − 1. Then, the penalty in (13) will yield a cost of g̃4(Ψωp) = 2rLp

rather than the desired ğ4(Ψωp) = 2r. The cost may also be compared with that

of (8), which is g2(Ψωp) = rLp, suggesting that this would add a relatively large

penalty. More interestingly, for the sub-octave candidate pitch, the cost will be just

as large, i.e., if ωp′ = ωp/2, then g̃4(Ψωp′
) = 2rLp provided that Lmax ≥ 2Lp,

thereby offering no possibility of discriminating between the true pitch and its

sub-octave. Such a worst case scenario is just as unlikely as all harmonics having

the same phase, if assuming that the phases are uniformly distributed on [0, 2π).
Instead, the g̃4 penalty of the true pitch will be slightly smaller than its sub-octave

counterpart, on average, and together with (10), the scales tip in favor of the true

pitch, as shown in [13]. One may thus conclude that the combination of g3 and g̃4

provides a block sparse solution where sub-octaves are usually discouraged. How-

ever, it should be noted that such a solution requires the tuning of two functions

to control the block sparsity.
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This work proposes to simplify the PEBS-TV estimator by improving the

approximation in (13), by using an adaptive penalty approach. In order to do so,

let φp,ℓ denote the phase of the component with frequency ωp,ℓ, and collect all

the phases in the parameter set

Φ = {Φω1 , . . . ,ΦωP} (14)

Φωp = {φp,1, . . . ,φp,Lmax} . (15)

The penalty function in (11) may then instead be approximated as

g4(Ψ,Φ) =

P
∑

p=1

Lmax
∑

ℓ=0

|ap,ℓ+1e−iφp,ℓ+1 − ap,ℓe
−iφp,ℓ | (16)

thus penalizing only differences in magnitude, given that the phases φp,ℓ+1 have

been chosen as to offset phase differences between the harmonics. In order to do

so, the phases φp,ℓ need to be estimated as the arguments of the latest available

amplitude estimates ap,ℓ. As a result, (16) yields an improved approximation

of (11), avoiding the issues of (13) described above, and also promotes a block

sparse solution. The block sparsity is promoted due to the introduction of zero

amplitudes in (12). In effect, this introduces a penalty for activating a pitch block.

As a result, the block-norm penalty function g3 may be omitted, which simplifies

the algorithm noticeably. Thus, we form the parameter estimates by solving

Ψ̂ = arg min
Ψ

g1(Ψ) + λ2g2(Ψ) + λ4g4(Ψ,Φ) (17)

where λ2 and λ4 are user-defined regularization parameters that weigh the im-

portance of each penalty function with that of the residual cost. To form the

convex criteria and to facilitate the implementation, consider the signal expressed

in matrix notation as

y =
[

y(1) ... y(N )
]T

=

P
∑

p=1

Wp ap + e , Wa + e (18)

where

W =
[

W1 . . . WP

]

(19)

Wp =

[

z1
p . . . zLmax

p

]

(20)
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zp =
[

eiωp1 . . . eiωpN
]T

(21)

a =
[

aT
1 . . . aT

P

]T
(22)

ap =
[

ap,1 . . . ap,Lmax

]T
(23)

where the powers in the vectors zk
p are taken element-wise. The dictionary matrix

W is constructed by P horizontally stacked blocks, or dictionary atoms Wp, where

each is a matrix with Lmax columns and N rows. In order to obtain an acceptable

approximation of (11), the problem must be solved iteratively, where the last

solution is used to improve the next. To pursue an even sparser solution, a re-

weighting procedure is simultaneously used for g2(Ψ), similar to the one used

in [33]. Redefining the functions gj to operate on matrices, the solution is thus

found at the kth iteration as

â(k)
= arg min

a

1

2

∥

∥

∥y−H(k)
1 a
∥

∥

∥

2

2
+ λ2

∥

∥

∥H(k)
2 a
∥

∥

∥

1
+ λ4

∥

∥

∥H(k)
4 a
∥

∥

∥

1
(24)

where

H(k)
1 = W (25)

H(k)
2 = diag

(

1/
(∣

∣

∣
â(k−1)

∣

∣

∣
+ ε
))

(26)

H(k)
4 = F diag

(

arg
(

â(k−1)
))−1

(27)

where diag(·) denotes a diagonal matrix formed with the given vector along its

diagonal, | · | is element-wise absolute value, arg(·) is the element-wise complex

argument, and ε≪ 1. If the magnitude of a certain component of â(k−1) is small,

the construction of H(k)
2 will ensure that the magnitude of the corresponding

component of â(k) will be penalized harder. This iterative re-weighting procedure

will then be a sequence of convex approximations of a non-convex logarithmic

penalty on the ℓ1 norm of a. The inclusion of ε is made to ensure that a division by

zero is avoided. Also, I denotes the identity matrix, and F is a P(Lmax+1)×PLmax

matrix F = diag(F1, . . . ,FP ), where each block Fp is a (Lmax + 1)× Lmax matrix

with elements

fk,ℓ =























1 if k = ℓ = 1

−1 if k = ℓ, ℓ 6= 1

1 if k = ℓ+ 1

0 otherwise

(28)

41



Paper A

As intended, the minimization in (24) is convex, and may be solved using one

of many publicly available convex solvers, such as, for instance, the interior point

methods SeDuMi [34] or SDPT3 [27]. However, these methods are quite compu-

tationally burdensome and will scale poorly with increased data length and larger

grids. Instead, we here propose an efficient implementation using ADMM. The

problem in (24) may be implemented in a similar manner as was done in [25],

requiring only two tuning parameters, λ2 and λ4. The proposed method com-

pares to the PEBS and PEBS-TV algorithms as improving upon the former, and

requiring fewer tuning parameters than the latter. The proposed method is there-

fore termed a light and improved version of PEBS, here denoted the PEBSI-Lite

algorithm.

4 ADMM implementation

In order to solve (24), we proceed to introduce an efficient ADMM implementa-

tion. To this end, let z ∈ C
PLmax be the primal optimization variable and introduce

the auxiliary variables u1 ∈ C
N , u2 ∈ C

PLmax , and u4 ∈ C
P(Lmax+1) and let

G(k)
=

[

H(k)T
1 H(k)T

2 H(k)T
4

]T
(29)

u =
[

uT
1 uT

2 uT
4

]T
. (30)

Thus, we want to solve

minimize
z

f
(

G(k)z
)

(31)

where

f
(

G(k)z
)

=
1

2

∥

∥

∥
y−H(k)

1 z
∥

∥

∥

2

2
+ λ2

∥

∥

∥
H(k)

2 z
∥

∥

∥

1
+ λ4

∥

∥

∥
H(k)

4 z
∥

∥

∥

1
. (32)

Using the auxiliary variabel u, one may equivalently solve

minimize
z,u

f (u) +
μ

2

∥

∥

∥G(k)z− u
∥

∥

∥

2

2

subject to G(k)z− u = 0

(33)

where μ is a positive scalar, as the added term is zero for any feasible point. The

Lagrangian can be succinctly expressed using the (scaled) dual variable

d =
[

dT
1 dT

2 dT
4

]T
(34)
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where d1 ∈ C
N , d2 ∈ C

PLmax , and d4 ∈ C
P(Lmax+1). By completing the square,

the Lagrangian of the problem can be equivalently expressed as

Lμ(z,u, d) = f (u) +
μ

2

∥

∥

∥
G(k)z− u− d

∥

∥

∥

2

2
− μ

2
‖d‖2

2 . (35)

Also, define

ζ
(

j
)

=
[

ζT
1

(

j
)

ζT
2

(

j
)

ζT
4

(

j
) ]T

(36)

where

ζℓ
(

j
)

= H(k)
ℓ z
(

j + 1
)

− dℓ

(

j
)

, ℓ = 1, 2, 4 . (37)

The Lagrangian (35) is separable in the variables z, u1, u2, and u4, and one may

thus form an updating scheme similar to that in [25], as

z
(

j + 1
)

= arg min
z

∥

∥

∥
G(k)z− u

(

j
)

− d
(

j
)

∥

∥

∥

2

2
(38)

u1

(

j + 1
)

= arg min
u1

1

2
‖y− u1‖2

2 +
μ

2

∥

∥ζ1

(

j
)

− u1

∥

∥

2

2
(39)

u2

(

j + 1
)

= arg min
u2

λ2 ‖u2‖1 +
μ

2

∥

∥ζ2

(

j
)

− u2

∥

∥

2

2
(40)

u4

(

j + 1
)

= arg min
u4

λ4 ‖u4‖1 +
μ

2

∥

∥ζ4

(

j
)

− u4

∥

∥

2

2
(41)

d
(

j + 1
)

= u
(

j + 1
)

− ζ
(

j
)

. (42)

The updates of z and u1 are given by

z
(

j + 1
)

=

(

G(k)H G(k)
)−1

G(k)H
(

u
(

j
)

+ d
(

j
))

(43)

and

u1

(

j + 1
)

=
y + μζ1

(

j
)

1 + μ
(44)

respectively.
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Algorithm 1 The proposed PEBSI-Lite algorithm

1: initiate k := 0, H(0)
1 = I, H(0)

4 = F, and

â(0) = zsave = dsave = 0PLmax×1

2: repeat {adaptive penalty scheme}
3: initiate j := 0, u2(0) = â(k),

z(0) = zsave, and d(0) = dsave

4: repeat {ADMM scheme}
5: z

(

j
)

=
(

G(k)H G(k)
)−1

G(k)H
(

u
(

j
)

+ d
(

j
))

6: u1

(

j + 1
)

=
y+μζ1( j )

1+μ

7: u2

(

j + 1
)

= T
(

ζ2

(

j
)

, λ2
μ

)

8: u4

(

j + 1
)

= T
(

ζ4

(

j
)

, λ4
μ

)

9: d
(

j + 1
)

= u
(

j + 1
)

− ζ
(

j
)

10: j ← j + 1

11: until convergence

12: store â(k) = u2(end), zsave = z(end), and dsave = d(end)

13: update H(k+1)
2 = diag

(

1/|â(k)|+ ε)
)

, H(k+1)
4 = F diag

(

arg
(

â(k)
))−1

14: k ← k + 1

15: until convergence

Using the element-wise shrinkage function,

T
(

x, ξ
)

=
max(|x| − ξ, 0)

max(|x| − ξ, 0) + ξ
⊙ x (45)

where the max function operates on each element in the vector x separately and

⊙ denotes element-wise multiplication, one may update u2 and u4 as

u2

(

j + 1
)

= T

(

ζ2

(

j
)

,
λ2

μ

)

(46)

and

u4

(

j + 1
)

= T

(

ζ4

(

j
)

,
λ4

μ

)

(47)

respectively. The resulting PEBSI-Lite algorithm is summarized in Algorithm 1,

where the solution is given as â = â(kend) with kend denoting the last iteration index
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of the outer loop. The complexity of the resulting algorithm will be dominated by

the computation of step 5 in Algorithm 1. This system of equations can be solved

efficiently by storing the Cholesky factorization of the matrix to be inverted, with

a one-time cost of O
(

p3
)

operations, where p denotes the number of variables

(here, assumed to be larger than the number of data points). Furthermore, at each

iteration, one needs to perform a back solve costing O
(

p2
)

operations.

5 Self-regularization

The quality of the pitch estimates produced by the PEBSI-Lite algorithm depends

on the values of the regularization parameters λ2 and λ4. In general, large values

of λ2 encourage sparse solutions, whereas large values of λ4 encourage solutions

that are smooth within blocks. As the model order is unknown, it is generally

hard to determine how sparse the solution should be in order to be considered

the desired one. Therefore, one often determines the values of the regularization

parameters using cross-validation schemes, making the performance of the meth-

ods user dependent. Instead, one would like to have a systematic and preferable

automatic method for choosing λ2 and λ4, and thereby the model order.

A common approach to solving model order problems is to use information

criteria such as AIC or BIC [35], which measure the fit of the model to the data,

while penalizing high model orders, resulting in a trade-off criterion that should

take its optimal value for the correct model order. For the LASSO problem, there

have been suggestions of appropriate model order criteria [36], [37]. In [13], the

authors suggest a BIC-style criterion for multi-pitch estimation for given regular-

ization parameters. However, this criterion can only be used to determine which

of the found pitches are true and which are spurious, and not to determine the

appropriate regularization parameters. Thus, even if one has an efficient criterion

for choosing between different models, one first has to form a set of candidate

models, in effect running Algorithm 1 for different values of λ2 and λ4. For the

simpler case of the LASSO, the analog is to solve (9) for all λ ∈ R+, for which

there are algorithms such as LARS [38]. There have also been methods suggested

for solving the LASSO for only a finite number of values λ, i.e., only values of the

regularization parameter where the number of active components of the solution

change (see, e.g., [37]). For our problem, the analog is to find solutions for the

set of parameter values

{(λ2, λ4)|(λ2, λ4) ∈ R+ × R+} . (48)
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For the real-variable counterpart of the here considered pitch estimation problem,

known as the Sparse Fused LASSO [39], there have been algorithms suggested for

computing the whole solution surface. In [40], the authors present an elegant

way of finding a solution path for the case of the dictionary W being the identity

matrix, meaning that the estimated amplitude vector is just a smoothed version

of the signal y. The algorithm can be used for general matrices W, under the con-

dition that W has full column rank, something that is not true for dictionaries in

high-resolution spectral estimation applications such as the one considered here.

In [41], the authors present an approach to find the solution path of

minimize
β

1

2
‖y−Wβ‖2

2 + λ ‖Dβ‖1 (49)

for the real-variable case with a general penalty matrix D by considering the solu-

tion paths of the dual variable. Unfortunately, this is only for the one-dimensional

case, i.e., for the case when the minimization has only a single regularization para-

meter.

Despite the above efficient ADMM implementation, it is computationally

cumbersome to conduct a search on (48) in order to find an appropriate model

order, with the computation complexity increasing both in the case of longer

signals, and when using more elements in the dictionary. Instead of constructing

a fully general path algorithm for PEBSI-Lite, we therefore proceed to propose a

scheme for constructing a reduced size signal adapted dictionary that combined

with a parametrization of the regularization parameters (λ2, λ4) will allow us to

form good pitch estimates without having to predefine values of the regularization

parameters, by means of a simple line search instead of searching through (48).

The proposed dictionary construction begins by estimating the frequency content

of the signal without imposing any harmonic structure. This estimation may

be performed by any standard method, such as ESPRIT (see, e.g., [42]). As

the number of sinusoidal components is unknown, estimates corresponding to

different model orders can be evaluated using, for instance, the BIC criterion

(see, e.g., [35])

BICk = 2N log σ̂2
k + (5k + 1) log N (50)

where σ̂2
k is the maximum likelihood estimate of the residual variance correspond-

ing to the model constituted by k estimated sinusoids, in order to choose a suitable

model order. The accuracy of the frequency estimates produced by ESPRIT will
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suffer if a too low model order is determined, whereas it is less sensitive to cases

when the model order is moderately overestimated. Thus, we propose to increase

the robustness of the frequency estimates by using k + δ, δ ≥ 1, estimated si-

nusoids for the case when order k is determined optimal by the BIC. As the only

interesting pitch candidates are those having at least one harmonic corresponding

to a present sinusoidal component, we can then design a considerably reduced

dictionary, containing only pitches with such matching harmonics. If one has

some prior knowledge of the nature of the signal, one could impose stronger as-

sumptions on the candidate pitches in order to reduce the dictionary further, e.g.,

by allowing only pitches whose first harmonic is found in the set of estimated

sinusoids. Using the obtained dictionary, one could then proceed to conduct a

search for λ2 and λ4.

Although considerably cheaper as compared to when performed using a full

dictionary, a complete evaluation of the λ2λ4-plane is still somewhat expensive.

To avoid a full grid search, the following heuristic concerning the connection

between λ2 and λ4 can be used. Assume that we have a single-pitch signal where

all Lk harmonics have equal magnitude r. Further, assume that when setting

λ4 = 0, λ′ is the largest value of λ2 resulting in a nonzero solution, where each

harmonic amplitude is estimated to r0. If we would instead set λ2 = 0, and

consider which value of λ4 that should result in the same solution, this value

should be

λ4 =
Lk

2
λ′ (51)

as this would result in precisely the same penalty as with λ4 = 0, λ2 = λ′. More

compactly, we have that

λ2 = αλ′ , λ4 =
(

1− α
)Lk

2
λ′ (52)

yields the penalty λ′ Lkr0 for all α ∈ [0, 1]. If we assume (52) to be true, we

should, for spectrally smooth signals, expect to see ridges in the solution surface

where the number of pitches present in the solution changes, and the shapes of

the ridges in the λ2λ4-plane should be described by lines similar to (52).

This is illustrated in Figure 2, presenting a plot of the number of pitches

present in the solution for different values (λ2, λ4) for a signal consisting of three

pitches with fundamental frequencies 400, 550 and 700 Hz, and with 4, 8, and

12 harmonics, respectively. The magnitude of each harmonic amplitude has
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Figure 2: Number of pitches, K, present in the solution of PEBSI-Lite for different

values (λ2, λ4) when applied to a three pitch signal with 4, 8, and 12 harmonics,

respectively.

been drawn uniformly on (0.9, 1.1) and each phase has been drawn uniformly

on (0, 2π). The signal was sampled at frequency 20 kHz in a time frame of length

40 ms, generating 800 samples of the signal. The signal-to-noise ratio (SNR),

as defined in (55), was 20 dB. On the plateau with two pitches, the pitch with

four harmonics have been forced to zero, whereas on the plateau with one pitch

present, only the pitch with 12 harmonics is present. Note the shape of the dif-

ferent plateaus: seen in the λ2λ4-plane, the slopes of the ridges seem to be well

described by (52) where Lk = 4, 8, and 12, for the three ridges corresponding to

changes from three to two, from two to one, and from one to zero pitches, re-

spectively. The signal corresponding to Figure 2 has a relatively low level of noise.

Increasing the noise level, the least regularized solutions, i.e., with λ2 and λ4 close

to zero, results in more than three non-zero pitches. Guided by this observation,

one could reduce the search for (λ2, λ4) from a 2-D to a 1-D search by using a
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Algorithm 2 Self-Regularized PEBSI-Lite

1: initiate ℓ = 1

2: repeat {sinusoidal component estimation}
3: ω̂ℓ ← ℓ sinusoidal components from ESPRIT

4: BICℓ ← 2N log σ̂2(ω̂ℓ) + (5ℓ+ 1) log N
5: until BICℓ > BICℓ−1

6: ω̂ℓ+δ ← ℓ+δ sinusoidal components from ESPRIT, where δ ≥ 1 is a safety

margin

7: construct dictionary W from ω̂ℓ+δ

8: L← largest number of active harmonics among candidate pitches in W

9: initiate λ = ε, k = 1

10: σ̂2
y ← Var

(

y
)

11: σ̂2
MLE ← maximum likelihood (least squares) estimate of noise power

12: repeat {regularization parameter line search}
13: λ2 ← λ, λ4 ← L

2λ
14: form amplitude estimate â(k) from Algorithm 1

15: estimate the power of the model residual σ̂2(λ2, λ4)

16: λ← λ+ ε
17: k ← k + 1

18: until
(

σ̂2(λ2, λ4)− σ̂2
MLE

)

> τσ̂2
y

19: â← â(k−1)

re-parametrization. Keeping the plateaus in Figure 2 and our assumption of spec-

tral smoothness in mind, we should expect a desirable solution to correspond to

a (λ2, λ4)-pair with λ2 ≤ λ4. In order to get solutions regularized with respect to

spectral smoothness, while keeping the risk of getting only zero solutions low, the

following parametrization can be used. Let λ denote the only free parameter and

set

λ2 = λ (53)

λ4 =
L

2
λ (54)

where L is the largest number of harmonics among the pitches present in the

signal. Although L is unknown, it can be estimated during the dictionary con-

struction phase using the BIC and ESPRIT estimates, permitting us to conduct a

line search for the value of λ. Having obtained a solution with PEBSI-Lite using
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Estimator SNR (dB) -5 0 5 10 15 20

PEBS-TV

λ2 0.2 0.2 0.2 0.15 0.1 0.1

λ3 0.3 0.3 0.3 0.2 0.2 0.15

λ4 0.1 0.1 0.1 0.75 0.75 0.05

PEBS
λ2 0.2 0.2 0.2 0.15 0.15 0.1

λ3 0.4 0.4 0.4 0.3 0.3 0.2

Table 1: Regularization parameter values for PEBS-TV and PEBS.

the regularization parameter λ, the residual power σ2
λ can be estimated by least

squares. It is worth noting that in low noise environments, it can be expected

that false pitches modeling noise will not contribute much to the signal power.

Thus, the first significant rise in residual power is expected to occur when one of

the true pitches are set to zero. Therefore, we propose keeping only models that

correspond to lower values of σ2
λ and then choosing the optimal model as the one

having the least number of active pitches. The complete algorithm for the dic-

tionary construction, line search, and pitch estimation is outlined in Algorithm 2,

where ε denotes the step size of the line search and τ ∈ (0, 1) is a threshold for

detecting an increase in model residual power. The step size ε can be chosen based

on afforded estimation time, as small values of ε will result in more steps for the

line search. τ can be chosen based on estimates of the noise power, if available.

6 Numerical results

We proceed to examine the performance of the proposed algorithm using signals

simulated from the pitch model (1) as well as synthetic audio signals generated

from MIDI, and measured audio signals.

6.1 Two-pitch signal

We initially examine a simulated dual-pitch signal, measured in white Gaussian

noise at different SNRs ranging from −5 dB to 20 dB in steps of 5 dB. The SNR

is here defined as

SNR = 10 log10

σ2
x

σ2
e

(55)
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Figure 3: The periodogram estimate and the true signal studied in Figure 4.

where σ2
x and σ2

e are the powers of the signal and the noise, respectively. For a

pitch signal generated by (1), under the simplifying assumption of distinct sinus-

oidal components, the power of the signal is given by

σ2
x =

K
∑

k=1

Lk
∑

ℓ=1

|ak,ℓ|2
2

. (56)

At each SNR, 200 Monte Carlo simulations were performed, each simulation gen-

erating a signal with fundamental frequencies of 600 and 730 Hz. As PEBS and

PEBS-TV rely on a predefined frequency grid, the fundamental frequencies were

randomly chosen at each simulation uniformly on 600 ± d/2 and 730 ± d/2,

where d is the grid point spacing, to reflect performance in present of off-grid

effects. The phases of the harmonics in each pitch were chosen uniformly on

[0, 2π), whereas all had unit magnitude. The signal was sampled at fs = 48 kHz

on a time frame of 10 ms, yielding N = 480 samples per frame. As a result, the

51



Paper A

SNR (dB)
-5 0 5 10 15 20

P
er

ce
n

ta
g

e 
w

it
h

in
 ±

2 
H

z 
(%

)

0

10

20

30

40

50

60

70

80

90

100 PEBSI-Lite
PEBS-TV
PEBS
ORTH (oracle)
ANLS (oracle)
Capon (oracle)

Figure 4: Percentage of estimated pitches where both fundamental frequencies lie

at most 2 Hz, or d/5 = 1/50N , from the ground truth, plotted as a function of

SNR. Here, the pitches have [5, 6] harmonics, respectively, and Lmax = 10.

pitches were spaced by approximately fs/N Hz, which is the resolution limit of

the periodogram. This is also seen in Figure 3, illustrating the resolution of the

periodogram as well as the frequencies of the harmonics, at SNR = −5 dB. From

the figure, it may be concluded that the signal contains more than one harmonic

source, as the observed peaks are not harmonically related. Furthermore, it is clear

that the fundamental frequencies are not separated by the periodogram, indicat-

ing that any pitch estimation algorithm based on the periodogram would suffer

notable difficulties. For PEBSI-Lite, the estimates are formed using Algorithm 2

with τ = 0.1 and ε = 0.05. The safety margin for the sinusoidal model order

is δ = 1. For PEBS and PEBS-TV, the estimation procedure is initiated using

a coarse dictionary, with candidate pitches uniformly distributed on the interval

[280, 1500] Hz, thus also including ωp/2 and 2ωp for both pitches. The coarse

resolution was d = 10 Hz, i.e., still a super-resolution of fs/10N . After estima-
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Figure 5: Percentage of estimated pitches where both fundamental frequencies lie

at most 2 Hz, or d/5 = 1/50N , from the ground truth, plotted as a function of

SNR. Here, the pitches have [10, 11] harmonics, respectively, and Lmax = 20.

tion on this grid, a zooming step was taken where a new grid with spacing d/10

was laid ±2d around each pitch having non-zero power. The regularization para-

meter values used for PEBS-TV and PEBS are presented in Table 1. The values

where selected using manual cross-validation for similar signals. Comparisons were

also made with the ANLS, ORTH, and the harmonic Capon estimators, which

had been given the oracle model orders (see [9] for more details on these meth-

ods). The simulation and estimation procedure was performed for two cases; one

where the number of harmonics Lk were set to 5 and 6, and one where Lk were

set to 10 and 11. In the former case, Lmax = 10 and in the latter, Lmax = 20, i.e.,

well above the true number of harmonics.

Figures 4 and 5 show the percentage of pitch estimates where both lie within

±2 Hz from the true values for the six compared methods, for the case of 5 and

6 as well as 10 and 11 harmonics, respectively. In this setting, PEBS performs
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Figure 6: The percentage of the estimates in which the model order choice cri-

terion (50) correctly determines the number of sinusoidal components in the two-

pitch signal, for the case of 5 and 6 harmonics, and 10 and 11 harmonics, respect-

ively.

poorly, as the generous choices of Lmax allow it to pick the sub-octave, as pre-

dicted. As can be seen in Figure 4, PEBSI-Lite performs better than all reference

methods for SNRs above and including 10 dB despite not having the model order

information given to ORTH, ANLS, and Capon, nor having the supervised regu-

larization parameter choices of PEBS and PEBS-TV. Though, in higher noise set-

tings, the performance of PEBSI-Lite degrades and its pitch frequency estimates

are worse than those produced by the reference methods for SNRs below 10 dB.

For the case of 10 and 11 harmonics, PEBSI-Lite performs on par with the ref-

erence methods for SNRs above and including 15 dB, while performing worse in
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Figure 7: The percentage of the estimates in which the model order choice cri-

terion (50) selects a model with too few sinusoidal components for the two-pitch

signal, for the case of 5 and 6 harmonics, and 10 and 11 harmonics, respectively.

higher noise settings. As shown in Figures 6 and 7, the drop in performance for

lower SNRs results from the difficulty of accurately estimating the total number

of sinusoids, as used by the ESPRIT step, for such signals. In Figure 6, the per-

centage of the estimates in which the the BIC criterion (50) correctly determines

the number of sinusoidal components in the signal is presented, whereas Figure 7

shows the percentage of the estimates in which the BIC criterion (50) determines

a too low model order. As is clear from the figures, the model order estimates

strongly degrade for lower SNRs, thus causing the PEBSI-Lite dictionary to be

inaccurate. Clearly, all the other methods here shown using oracle model order

information would suffer drastically from such inaccuracies, although it should be
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Figure 8: Magnitudes for the harmonics of the three pitches constituting the test

signal for the Monte Carlo simulations.

stressed that one may expect these methods to suffer further, as they also need to

perform an exhaustive combinatorial search to determine the number of pitches

given the found number of sinusoids.

6.2 Three-pitch signal

To further examine the performance of Algorithm 2, it was evaluated using a

simulated triple-pitch signal, measured in white Gaussian noise at different SNR

levels, ranging from 0 dB to 25 dB, in steps of 5 dB. Instead of using unit mag-

nitudes of the harmonics, as was the case for the above presented two-pitch set-

ting, the spectral envelopes of the three pitch components were constructed from

periodograms of three different speech recordings. The formants of the three

pitches are displayed in Figure 8. The pitches had fundamental frequencies 200,
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Figure 9: Percentage of estimated pitches where all three fundamental frequencies

lie at most 2 Hz from the ground truth.

350, and 530 Hz, and 7, 8, and 11 harmonics, respectively. At each level of SNR,

1000 Monte Carlo simulations were performed, where the fundamental frequen-

cies were chosen uniformly on 200 ± 2.5, 350 ± 2.5, and 530 ± 2.5 Hz, re-

spectively, and the phase of each harmonic was chosen uniformly on [0, 2π). The

signal was sampled in a 40 ms window at a sampling frequency of 20 kHz, gener-

ating 800 samples of the signal. The algorithm settings were τ = 0.1, ε = 0.05,

and δ = 1. Here, Algorithm 2 was compared to the ANLS, ORTH, harmonic

Capon, as well as PEBS-TV estimators. The three first comparison methods were

given the oracle model orders.

To illustrate the fact that the choice of regularization parameter values is

not universal, the values found using cross-validation for the two-pitch case (see

Table 1) were used for PEBS-TV initially. However, this resulted in such poor

performance that the parameter values had to be slightly altered in order to make

PEBS-TV an interesting reference method. As a compromise, the parameter val-
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Figure 10: Estimated probability of PEBSI-Lite determining the correct number

of pitches for the triple pitch test signal.

ues corresponding to SNR 20 dB in Table 1 were used for all SNRs in this sim-

ulation setting. For the dictionaries of PEBSI-Lite and PEBS-TV, Lmax = 16

was used, well above the true model orders. Figure 9 shows the percentage of the

pitch estimates where all three pitch estimates lie within ±2 Hz of the true values

for the five different methods. As can be seen, the performance of PEBSI-Lite

is again poor for low SNRs while improving considerably for lower noise levels.

The low scoring for PEBSI-Lite for low SNRs is mainly due to the selection of

wrong model orders. This is illustrated in Figure 10, which shows the percentage

of the estimates in which PEBSI-Lite and PEBS-TV select the correct number of

pitches. As can be seen, for an SNR of 0 dB, PEBSI-Lite selects the true model

order in less than 10% of the simulations. Mostly, a too high model order is se-

lected, which is to be expected as the model order choice is based on the power

of the model residual and that the pitch estimates depend on the accuracy of the

initial ESPRIT estimates. Arguably, one could improve on these results by either
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Figure 11: The RMSE for the fundamental frequency estimates for the triple

pitch test signal, as compared to the (root) CRLB. For PEBSI-Lite and PEBS-

TV, only estimates where the number of pitches is found are considered. For the

reference methods ORTH, ANLS, Capon, and PEBS-TV only estimates where

all estimated pitch frequencies lie within 2 Hz of the true pitch frequencies are

considered.

using prior knowledge of the noise level or by estimating it, and based on this

make the model order selection scheme more robust. Figure 11 shows the root

mean squared error (RMSE) for the estimated fundamental frequencies. Instead

of presenting three separate RMSE plots, Figure 11 shows an aggregate version

where the MSE for the three pitches have been summed. In order to compute

relevant RMSE values for PEBSI-Lite and PEBS-TV, estimates where the model

order has not been correctly determined have been discarded. Thus, for an SNR

level of 0 dB, the RMSE values for PEBSI-Lite are based on quite few samples.

However, as PEBSI-Lite finds the correct model order for high SNR levels with
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high probability, the corresponding RMSE values are more trustworthy in these

regions. For the reference methods ORTH, ANLS, Capon, and PEBS-TV, some

of the estimates deviate from the true pitch frequencies with as much as 100 Hz,

resulting in very large RMSE values should all estimates be used in their computa-

tion. Thus, in order to obtain RMSE values comparable to that of the PEBSI-Lite

estimates, only estimates found within 2 Hz of the true pitch frequencies are used

when computing RMSE for the reference methods. With this, as can be seen

in Figure 11, PEBSI-Lite performs worse than the reference methods for SNRs

below and including 10 dB, while outperforming all reference methods except

Capon for SNRs above and including 20 dB. Though, one should bear in mind

that the RMSE values for Capon for these SNRs are based on only 15% respect-

ively 8% of the available pitch estimates, as can be seen in Figure 9, and that the

Capon method has been allowed oracle model order knowledge. Also presented

in Figure 11 is the root Cramér-Rao lower bound (CRLB) for the estimates of

the pitch frequencies. As the frequencies of the harmonics in this case are distinct

and the additive noise is white Gaussian, the lower limit for the variance of an

unbiased pitch frequency estimate f̂k is given by [9]

Var
(

f̂k
)

≥ 6σ2
(

fs/2π
)2

N (N 2 − 1)
∑Lk

ℓ=1 |ak,ℓ|2ℓ2
(57)

where σ2 is the power of the additive noise, ak,ℓ is the amplitude of harmonic ℓ
of pitch k, N is the number of data samples, and fs is the sampling frequency.

In analog with the summed MSE values for the pitch estimates, the root CRLB

curve presented here is the sum of the three separate limits, i.e.,

CRLB =

3
∑

k=1

6σ2
(

fs/2π
)2

N (N 2 − 1)
∑Lk

ℓ=1 |ak,ℓ|2ℓ2
. (58)

As can bee seen in Figure 11, PEBSI-Lite, as well as the other methods, fails

to reach the CRLB. In an attempt to improve the PEBSI-Lite estimates for SNR

levels above and including 15 dB, a non-linear least squares (NLS) search was per-

formed, using the presented algorithm estimate as an initial estimate of all the un-

known parameters, including the model orders. This means that we obtain refined

estimates of the pitch frequencies fk contained in the vector f as (see, e.g, [42])

f = arg max
f

yHB
(

BHB
)−1

BHy (59)
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where B is a block matrix consisting of K blocks,

B =
[

B1 . . . BK

]

(60)

where each block Bj corresponds to a separate pitch and is constructed as

Bj =







ei2πfj/fs t1 . . . ei2πLj fj/fs t1

...
...

ei2πfj/fs tN . . . ei2πLj fj/fs tN






. (61)

Given that the PEBSI-Lite estimates are fairly close to the true pitch frequencies,

we expect the NLS scheme to converge if we solve (59) using routines like MAT-

LAB’s fminsearch initialized with the PEBSI-Lite estimates. However, the success

of such a scheme is not only dependent on good initial frequency estimates, we

also need the true number of harmonics Lj for each pitch.

Figure 12 presents a plot of the average absolute error in the number of de-

tected harmonics for each pitch for the test signal when using PEBSI-Lite. As can

be seen, the number of detected harmonics is only correct for the third pitch even

for the largest SNRs. The errors in number of harmonics for the first and second

pitches are due to the relatively small amplitudes of both pitches highest order

harmonics, as shown in Figure 8, making these harmonics prone to occasionally

being cancelled out by the PEBSI-Lite regularization penalties. Using erroneous

harmonic orders as input to the NLS search, we expect the resulting pitch fre-

quency estimates to be somewhat biased. Indeed, this is what happens. Figure 13

presents a plot of the RMSE of the pitch frequency estimates when the PEBSI-

Lite estimates for SNRs above and including 15 dB have been post-processed

using NLS. As can be seen, the estimator still fails to reach the CRLB, although

the estimation errors have become smaller. Note also that the slopes of the RMSE

curve for PEBSI-Lite and CRLB are now somewhat different, which is due to that

the erroneous harmonic orders induces varying degrees of bias in the estimates.

Considering computational complexity, ANLS and ORTH are by far the fastest

methods, with average running times of 0.03 and 1.6 seconds per estimation cycle

on a regular PC, respectively. For Capon and PEBS-TV, the corresponding run-

ning times are 6.1 and 6.4 seconds for the considered example, respectively, while

running PEBSI-Lite using Algorithm 2 requires on average 40.1 seconds per es-

timation cycle. As a comparison, it may be noted that if one replaces Algorithm 1

in Algorithm 2 to instead use SeDuMi or SDPT3, the computation time for this
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Figure 12: The average absolute error in the number of detected harmonics

(L1,L2,L3) for the three pitches of the test signal when using PEBSI-Lite. Only

estimates where the correct number of pitches is found are considered.

step of Algorithm 2 increases almost tenfold3. Although Algorithm 2 is consid-

erably more expensive to run than the reference methods, it should be noted that

the method does not require any user input in terms of regularization parameter

values. PEBS-TV could arguably be tuned to perform on par with PEBSI-Lite

if one is allowed to change the values of its regularization parameters. However,

PEBS-TV needs the setting of three parameter values and after trying only seven

such triplets, the computational time is the same as running Algorithm 2 in its

entirety.

3For all algorithms, the given execution times are those of direct implementations of the corres-
ponding methods. Clearly, these methods can be more efficiently implemented by fully exploiting
their inherent structures.
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Figure 13: The RMSE for the fundamental frequency estimates where the estim-

ates obtained using PEBSI-Lite have been improved using NLS for SNR levels

15, 20, and 25 dB, as compared to the (root) CRLB. Only estimates where the

number of pitches is found are considered.

6.3 MIDI and measured audio signals

Figure 14 shows a plot of the spectrogram of a signal consisting of three MIDI-

saxophones playing notes with fundamental frequencies 311, 277, and 440 Hz.

The signal was sampled initially at 44 kHz and then down sampled to 20 kHz.

The 311 Hz saxophone starts out alone and is after 0.45 seconds joined by the

277 Hz saxophone and after 0.95 seconds by the 440 Hz saxophone. The image

is quite blurred for the later parts of the signal, but for the first half second, one

can clearly see the harmonic structure of the saxophone pitch. It is worth noting

that a large number of harmonics is present. Figure 15 shows pitch estimates pro-

duced by Algorithm 2, using τ = 0.1 and Lmax = 15, when applied to the same

signal, using windows of lengths 40 ms. As can be seen, the estimates are quite
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Figure 14: Spectrogram for a signal consisting of one, two and lastly three MIDI-

saxophones playing notes with fundamental frequencies 311, 277, and 440 Hz,

respectively.

accurate, with the exception of the beginning of the first tone and for a single

frame where the 440 Hz pitch is mistaken for a 220 Hz pitch. It is worth not-

ing that such errors may be avoided using the information resulting from earlier

frames, for instance using an approach similar to [22]. The figure also shows the

estimated pitch tracks obtained using the ESACF estimator [43]; this estimator

requires a priori knowledge of the number of sources in the signal, but is, given

this information, able to estimate the number of harmonics of each source. Here,

ESACF has thus been provided oracle knowledge of the number of sources, with

each source given the same maximum harmonic order as used by PEBSI-Lite (as

before, the latter also has to estimate the number of sources). As can be seen from

the figure, the ESACF estimator fails to track the pitches in several of the frames.

In particular, it fails to estimate the pitch with fundamental frequency 440 Hz
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Figure 15: Pitch tracks for a signal consisting of one, two, and lastly three MIDI-

saxophones playing notes with fundamental frequencies 311, 277, and 440 Hz,

respectively.

altogether. Furthermore, Figure 16 examines the performance of the PEBSI-Lite

estimator when applied to a measured audio signal. The considered signal consists

of three trumpets playing the notes A4, B4, and C♯4, which, using concert tun-

ing, corresponds to the fundamental frequencies 440, 493.883, and 554.365 Hz,

respectively. However, it should be noted, that as the musicians play with vibrato,

the fundamental frequencies are not constant across the frames, which may also

be seen in the resulting estimates. To facilitate for a comparison, the ground truth

estimates of the fundamental frequencies have been obtained using the joint order

and (single) pitch estimation algorithm ANLS, presented in [11], when applied

to each individual trumpet separately. As a comparison, the figure also shows

the three fundamental frequencies obtained using the ESACF estimator (which

has here, again, been allowed oracle knowledge of the number of sources, but

using the same maximum number of harmonics as used by PEBSI-Lite). As can
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Figure 16: Pitch tracks produced by PEBSI-Lite as well as ESACF when applied

to a triple-pitch signal consisting of three trumpets. The ground truth has been

obtained using ANLS applied to the single source signals.

be seen, PEBSI-Lite accurately tracks each of the three pitches, even catching the

pitch variations caused by the vibrato. As before, it may be noted that the estim-

ates produced by ESACF have lower accuracy as compared to PEBSI-Lite, with

the ESACF estimator here erroneously picking one of the sub-octaves in some of

the frames. The trumpet signal was sampled at 8 kHz. The pitch estimates where

formed in non-overlapping frames of length 30ms.

The performance of PEBSI-Lite and ESACF on real audio was also evaluated

on the Bach10 dataset [44]. This dataset consists of ten chorales composed by

Johann Sebastian Bach. The parts are performed by a violin, a clarinet, a saxo-

phone, and a bassoon, with each piece being approximately 30 seconds long. Each

piece was sampled at 44.1 kHz, then downsampled to 22.05 kHz, and divided

into non-overlapping frames of length 30 ms. Estimates of the ground truth

fundamental frequencies in each frame were obtained by applying YIN [45] to
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Performance measure PEBSI-Lite ESACF

Accuracy 0.499 0.269

Precision 0.631 0.471

Recall 0.609 0.386

Table 2: Performance measures for PEBSI-Lite and ESACF when evaluated on

the Bach10 dataset.

each individual channel. Obvious errors in the YIN estimates were then corrected

manually.

As before, to yield its best possible performance, ESACF was given oracle

knowledge of the number of present pitches and both methods were given a max-

imum harmonic order of 15. For PEBSI-Lite, τ = 0.1 was used. Table 2 presents

the resulting measures of the accuracy, precision, and recall for the dataset, defined

as

Accuracy =

∑I
i=1

∑Ti
t=1 TP(t, i)

∑I
i=1

∑Ti
t=1 TP(t, i) + FP(t, i) + FN(t, i)

(62)

Precision =

∑I
i=1

∑Ti
t=1 TP(t, i)

∑I
i=1

∑Ti
t=1 TP(t, i) + FP(t, i)

(63)

Recall =

∑I
i=1

∑Ti
t=1 TP(t, i)

∑I
i=1

∑Ti
t=1 TP(t, i) + FN(t, i)

(64)

where TP(t, i), FP(t, i), and FN(t, i) denote the number of true positive, false

positive, and false negative pitch estimates, respectively, for frame t in music piece

i. Furthermore, Ti is the number of frames for music piece i, whereas I is the

number of music pieces. Here, an estimated pitch is associated with a ground

truth pitch only if its fundamental frequency lies within a quarter tone, or 3%,

of the ground truth pitch (see also, e.g., [46]). To avoid the most non-stationary

frames, where we cannot expect the estimates produced by PEBSI-Lite and ES-

ACF, nor the ground truth, to be reliable, frames containing note onsets, defined

as frames where one of the ground truth pitches change with more than a semi-

tone, have been excluded when computing the measures. As can be seen from

the table, PEBSI-Lite performs better than ESACF for all of the three considered

measures accuracy, precision, and recall. As PEBSI-Lite does, for now, not incor-
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Figure 17: Pitch tracks produced by PEBSI-Lite when applied to first 15 seconds

of J. S. Bach’s Ach, lieben Christen, performed by a violin, a clarinet, a saxophone,

and a bassoon. The ground truth has been obtained using YIN applied to the

single source signals.

porate information between adjacent frames, these results are most promising for

what might be achievable when extended to include such information.

As an illustration of the performance, Figures 17 and 18 present pitch tracks

produced by PEBSI-Lite and ESACF when applied to the first 15 seconds of

one of the pieces in the dataset, namely Ach, lieben Christen. As can be seen

from the figures, PEBSI-Lite tracks the fundamental frequencies of the violin, the

saxophone, and the bassoon fairly well, while having trouble with the clarinet.

This problem is caused by the shape of the spectral envelope of the clarinet, as

it is dominated by a large peak at the fundamental frequency, with very weak

overtones, and thus deviates from the here used model assumption of spectral

smoothness. It may also be noted that PEBSI-Lite has better performance at the

stationary parts of the signal, while producing more erroneous estimates at note
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Figure 18: Pitch tracks produced by ESACF when applied to the first 15 seconds

of J. S. Bach’s Ach, lieben Christen, performed by a violin, a clarinet, a saxophone,

and a bassoon. The ground truth has been obtained using YIN applied to the

single source signals.

on- and offsets due to quickly changing spectral content. The ESACF estimator

on the other hand has serious problems tracking the violin and clarinet, often

picking sub-octaves estimates instead of the correct pitch, although being able to

track the saxophone and bassoon fairly well.

69



Paper A

7 Conclusions

The proposed algorithm PEBSI-Lite has been shown to be an accurate method for

multi-pitch estimation. The method was shown to perform as good as, or better

than, state-of-the-art methods. As compared to related methods, the presented

algorithm requires fewer regularization parameters, simplifying the calibration of

the method. Furthermore, the work introduces an adaptive dictionary scheme

for determining suitable regularization parameters. Combined with this scheme,

PEBSI-Lite was shown to outperform other multi-pitch estimation methods for

high levels of SNR, while breaking down in too noisy settings. However, even

if this scheme would fail to select the correct model order, the obtained efficient

dictionary facilitates a more rigorous grid search in terms of computational com-

plexity. Such a grid search could also exploit information about the solution

surface obtained from the line search. Using an additional refinement step, the

proposed algorithm is found to yield estimates reasonably close to being efficient,

if considering that the method has not been allowed any knowledge of the model

order of the signal.
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Abstract

In this paper, we propose a time-recursive multi-pitch estimation algorithm using

a sparse reconstruction framework, assuming that only a few pitches from a large

set of candidates are active at each time instant. The proposed algorithm does

not require any training data, and instead utilizes a sparse recursive least squares

formulation augmented by an adaptive penalty term specifically designed to en-

force a pitch structure on the solution. The amplitudes of the active pitches are

also recursively updated, allowing for a smooth and more accurate representation.

When evaluated on a set of ten music pieces, the proposed method is shown to

outperform other general purpose multi-pitch estimators in either accuracy or

computational speed, although not being able to yield performance as good as the

state-of-the art methods, which are being optimally tuned and specifically trained

on the present instruments. However, the method is able to outperform such a

technique when used without optimal tuning, or when applied to instruments

not included in the training data.

Key words: Adaptive signal processing, dictionary learning, group sparsity,

multi-pitch estimation, sparse recursive least squares
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1 Introduction

The problem of estimating the fundamental frequency, or pitch, arises in a vari-

ety of fields, such as in speech and audio processing, non-destructive testing, and

biomedical modeling (see, e.g., [1–6], and the references therein). In such ap-

plications, the measured signal may often result from several partly simultaneous

sources, meaning that both the number of pitches, and the number of overtones

of each such pitch, may be expected to vary over the signal. Such would be the

case, for instance, in most forms of audio signals. The resulting multi-pitch estim-

ation problem is in general difficult, with one of the most notorious issues being

the so-called sub-octave problem, i.e., distinguishing between pitches whose fun-

damental frequencies are related by powers of two. Both non-parametric, such as

methods based on autocorrelation (see, e.g., [7] and references therein), and para-

metric multi-pitch estimators (see, e.g., [2]) have been suggested, where the latter

are often more robust to the sub-octave problem, but rely heavily on accurate a
priori model order information of both the number of pitches present and the

number of harmonic overtones for each pitch.

Regrettably, the need for accurate model order information is a significant

drawback, as such information is typically difficult to obtain and may vary rap-

idly over the signal. In order to alleviate this, several sparse reconstruction al-

gorithms tailored for multi-pitch estimation have recently been proposed, allow-

ing for estimators that do not require explicit knowledge of the number of sources

or their harmonics; for example, in [8], the so-called PEBS estimator was intro-

duced, exploiting the block-sparse structure of the pitch signal. This estimator

was then further developed in [9], such that the likelihood of erroneously select-

ing a sub-octave in place of the true pitch was lowered, while also introducing a

self-regularization technique for selecting the penalty parameters. Both these es-

timators form implicit model order decisions based on one or more tuning para-

meters that dictate the relative weight of various penalties. As shown in the above

cited works, the resulting estimators are able to allow for (rapidly) varying model

orders, without significant loss of performance. Earlier works based on sparse

representations of signals also include works such as [10], which considers atomic

decomposition of audio signals in both the time and the frequency domains.

There have also been methods proposed for multi-pitch estimation and track-

ing that are source specific, i.e., tailored specifically to sources, e.g., musical in-

struments, that are known to be present in the signal. In [11], the authors per-

form multi-pitch estimation on music mixtures by, via a probabilistic framework,

80



1. Introduction

matching the signal to a pre-learned dictionary of spectral basis vectors that corres-

pond to instruments known to be present in the signal. A similar source specific

idea was used in [12], where pitch estimation was performed by matching the

signal to spectral templates learned from individual piano keys. Other methods

specifically designed to handle multi-pitch estimation for pianos include [13–15].

Another field of research is designing multi-pitch estimators based on a two-

matrix factorisation of the short-time Fourier transform, i.e., a non-negative mat-

rix factorization (see, e.g., [16–18]). The method has also been used in the sparse

reconstruction framework, for instance to learn atoms in order to decompose the

signal [19]. A common assumption is also that of spectral smoothness within each

pitch, which may also be exploited in order to improve the estimation perform-

ance (see, e.g., [13, 17, 20, 21]).

In many audio processing applications, pitch tracking is of great interest and

despite being a problem that has been studied for a long time, it still attracts a

lot of attention. Over the years, there have been many different approaches for

tracking pitches; some of the more recent include particle filters [22], neural net-

works [23], and Bayesian filtering [24]. Many of these methods require a priori
model order information, and/or are limited to the single pitch case. The sparse

pitch estimators in [8], [9] are robust to these model assumptions, and allow for

multiple pitches. However, these estimators process each data frame separately,

treating each as an isolated and stationary measurement, without exploiting the

information obtained from earlier data frames when forming the estimates. To

allow for such correlation over time, the PEBS estimator introduced in [8] was

recently extended to exploit the previous pitch estimates, as well as the power dis-

tribution of the following frame, when processing the current data frame [25].

In this work, we extend on this effort, but instead propose a fully time-recursive

problem formulation using the sparse recursive least squares (RLS) estimator. The

resulting estimator does not only allow for more stable pitch estimates as com-

pared to earlier sparse multi-pitch estimators, as more information is used at each

time-point, but also decreases the computational burden of each update, as new

estimates are formed by updating already available ones.

On the other hand, sparse adaptive filtering is a field attracting steadily in-

creasing attention, with, for instance, the sparse RLS algorithm being explored

for adaptive filtering in, e.g., [26–28]. Other related studies include [29], wherein

the authors use a projection approach to solve a recursive LASSO-type problem,

and [30], which introduced an online recursive method allowing for an underly-
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ing dynamical signal model and the use of sparsity-inducing penalties. Recursive

algorithms designed for group-sparse systems have also been introduced, such as

the ones presented in [31–33], but to the best of our knowledge, no such tech-

nique has so-far been applied to the multi-pitch estimation problem. This is the

problem we strive to address in this paper. It should be noted that the here presen-

ted work differs from many other multi-pitch estimators in that it only exploits

the assumption that the signal of interest is generated by a harmonic sinusoidal

model. Recently, quite a few methods for multi-pitch estimation adhering to the

machine learning paradigm have been proposed (see, e.g., [34], [35]). In these

methods, a model is trained on labeled signals, such as, e.g., notes played by indi-

vidual music instruments, extracting features from the training data that are then

used for classification in the estimation stage. As opposed to this, the method

presented here is not dependent on being trained on any dataset prior to the es-

timation.

Our earlier efforts on multi-pitch estimation based on sparse modeling, such

as the PEBS [8] and PEBSI-Lite [9] algorithms, have focused on frame-based

multi-pitch estimation techniques, with PEBS introducing the use of block sparsity

to form the pitch estimates, and PEBSI-Lite refining these ideas and introducing

a self-regularization technique to select the required user parameters. In this work,

we build on the insights from these algorithms, and expand these ideas by intro-

ducing a method that allows for a sample-by-sample updating, in the form of an

RLS-like sparse estimator, thereby allowing the estimates to also exploit inform-

ation available in earlier data samples. The sub-octave problems experienced by

PEBS and later alleviated by PEBSI-Lite, with the use of a total-variation penalty

enforcing spectral smoothness, is here addressed using an adaptively re-weighted

block penalty. Furthermore, we introduce a signal-adaptive updating scheme for

the dictionary frequency atoms that allows the proposed method to, e.g., track

frequency modulated signals, and alleviates grid mismatches otherwise commonly

experienced by dictionary based methods.

The remainder of this paper is organized as follows; in the next section, we

introduce the multi-pitch signal model and its corresponding dictionary formu-

lation. Then, in Section 3, we introduce the group sparse RLS formulation for

multi-pitch estimation, followed by a scheme for decreasing the bias of the har-

monic amplitude estimates in Section 4. Section 5 presents a discussion about

various algorithmic considerations. Section 6 contains numerical examples il-

lustrating the performance of the proposed estimator on various audio signals.
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Finally, Section 7 concludes upon the work.

1.1 Notation

In this work, we use lower case non-bold letters such as x to denote scalars and

lower case boldface letter such as x to denote vectors. Upper case bold face letters

such as X are used for matrices. We let diag (x) denote a diagonal matrix formed

with the vector x along its diagonal. Sets are denoted using upper case calligraphic

letters such as A. If A and B are sets of integers, then xA denotes the sub-vector

of x indexed by A. For matrices, XA,B denotes the matrix constructed using

the rows indexed by A and columns indexed by B. We use the shorthand XA

to denote XA,A. Furthermore, [̄·], [·]H , and [·]T denotes complex conjugation,

conjugate transpose, and transpose, respectively. Also, |A| is the cardinality of the

set A, and |x| denotes the number of elements in the vector x, unless otherwise

stated. Finally, we for vectors x ∈ C
n let ‖x‖ℓ denote the ℓ-norm, defined as

‖x‖ℓ =





n
∑

j=1

∣

∣xj

∣

∣

ℓ





1/ℓ

(1)

and use i =
√
−1.

2 Signal model

Consider a measured signal1, y(t), that is generated according to the model

y(t) = x(t) + e(t), where

x(t) =
K (t)
∑

k=1

Lk(t)
∑

ℓ=1

wk,ℓ(t)e
i2πfk (t)ℓt (2)

with K (t) denoting the number of pitches at time t, with fundamental frequencies

fk(t), having Lk(t) harmonics, wk,ℓ(t) the complex-valued amplitude of the ℓth
harmonic of the kth pitch, and where e(t) denotes a broad-band additive noise.

It should be stressed that the number of pitches, as well as their fundamental

frequencies, and the number of harmonics for each source, may vary over time.

1For notational and computational simplicity, we here consider the discrete-time analytic signal
of any real-valued measured signal.
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It is worth noting that we here assume a harmonic signal, such as detailed in (2);

however, as shown in the numerical section, the proposed method does also work

well for somewhat inharmonic signals, such as, e.g., those resulting from a piano.

We here attempt to approximate the measured signal using a sparse represent-

ation in an over-complete harmonic basis, see, e.g., [36]. Specifically, as in [8], [9],

the signal sources are approximated using a sparse modeling framework contain-

ing P candidate pitches, each allowed to have up to Lmax harmonics, such that

x(t) ≈
P
∑

p=1

Lmax
∑

ℓ=1

wp,ℓ(t)e
i2πfp(t)ℓt (3)

where the dictionary is selected large enough so that (at least) K (t) candidate

pitches, fp(t), reasonably well approximate the true pitch frequencies (see also, e.g.,

[37], [38]), i.e., such that P ≫ maxt K (t) and Lmax ≫ maxt,k Lk(t). It should be

noted that as the signal is assumed to contain relatively few pitches at each time

instance, the resulting amplitude vector will be sparse, although with a harmonic

structure reflecting the overtones of the pitches. Furthermore, it may be noted

that the frequency grid-points, fp(t), are allowed to vary with time, which will

here be implemented using an adaptive dictionary learning scheme. Using this

framework, the pitches present in the signal at time t may be implicitly estimated

by identifying the non-zero amplitude coefficients, wp,ℓ(t).

3 Group-sparse RLS for pitches

Exploiting the structure of the signal, we introduce the group-sparse adaptive

filter, w(t), which at time t is divided into P groups according to

w(t) =
[

wT
1 (t) ... wT

P (t)
]T

(4)

wp(t) =
[

wp,1(t) ... wp,Lmax(t)
]T

(5)

implying that, ideally, only K (t) sub-vectors wp(t) will be non-zeros at time t. In

order to achieve this, the filter is formed as

ŵ(t) = arg min
w

gt(w) + ht (w) (6)
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where ŵ(t) denotes the solution of (6), gt(w) the regular RLS criterion, (see, e.g.,

[39]), formed as

gt(w) =
1

2

t
∑

τ=1

λt−τ
∣

∣

∣y(τ)− wT a(τ)
∣

∣

∣

2
(7)

and ht (w) a sparsity inducing penalty function. Note that a similar adaptive filter

formulation for estimating sparse data structures was introduced in [27]. How-

ever, whereas [27] considered sparse signals, we in this work expand this approach

to also consider block sparsity, and specifically the pitch structure. As a result, the

dictionary is here formed as

a(t) =
[

aT
1 (t) ... aT

P (t)
]T

(8)

ap(t) =
[

ei2πfp(t)t ... ei2πfp(t)Lmaxt
]T

(9)

and λ ∈ (0, 1) being a user-determined forgetting factor. The choice of the for-

getting factor λ will reflect assumptions on the variability of the spectral content

of the signal, with λ close to 1 implying an almost stationary signal, whereas a

smaller value will allow for a quicker adaption to changes in the spectral con-

tent. The sparsity inducing function, ht (w), should be selected as to encourage

a pitch-structure in the solution; in [9], which considered multi-pitch estimation

on isolated time frames, this function, which then was not a function of time, was

selected as

h(w) = γ1 ‖w‖1 + γ2

P
∑

p=1

∥

∥FwGp

∥

∥

1
(10)

where F is the first difference matrix and Gp is the set of indices corresponding to

the harmonics of the candidate pitch p. The second term of this penalty function

is the ℓ1-norm of the differences between consecutive harmonics and acts as a

total variation penalty on the spectral envelope of each pitch. Often referred to as

the sparse fused LASSO [40], this penalty was in [9] used to promote solutions

with spectral smoothness in each pitch, although requiring some additional re-

finements to achieve this. To allow for a fast implementation, we will here instead

consider the time-varying penalty function

ht (w) = γ1(t) ‖w‖1 +

P
∑

p=1

γ2,p(t)
∥

∥wGp

∥

∥

2
(11)
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where γ1(t) and γ2,p(t) are non-negative regularization parameters. This pen-

alty, often called the sparse group LASSO [41] when combined with a squared

ℓ2-norm model fit term, is reminiscent of the one used in the PEBS method in-

troduced in [8], and belongs to the class of methods utilizing mixed norms for

sparse signal estimation (see, e.g., [42]). The second term of this penalty func-

tion, the pitch-wise ℓ2-norm, has a group-sparsifying effect, encouraging solutions

where active harmonics are grouped together into a few number of pitches. As the

frequency content of different pitches may be quite similar due to overlapping, or

close to overlapping, harmonics, the group penalty thus prevents erroneous ac-

tivation of isolated harmonics, while still allowing the different groups to retain

harmonics shared by different sources (see also [8], [9]). In the case of overlapping

harmonics in the signal, i.e., the presence of two pitches which share at least one

harmonic, the ℓ2-norm will favor solutions of the optimization problem (6) in

which the powers of these harmonics are shared among the two pitches. The pre-

cise level of sharing is decided by the relative powers of the unique harmonics of

each pitch so that the pitch having unique harmonics with more power will also be

assigned a larger share of the power corresponding to the overlapping harmonics.

In the case of the the two pitches having unique harmonics with equal combined

power, the power of the overlapping harmonics will also be shared equally. How-

ever, when, as in [8], using fixed penalty parameters γ1(t) and γ2,p(t), the resulting

estimate has been shown to be prone to mistaking a pitch for its sub-octave (see

also [9]). In order to discourage this type of erroneous solutions, we will herein

introduce a way of adaptively choosing the group sparsity parameter, γ2,p(t), as

further discussed below.

We note that gt(w), as defined in (7), may be expressed in matrix form as

gt(w) =
1

2

∥

∥

∥
Λ

1/2
1:t y1:t −Λ

1/2
1:t A1:tw

∥

∥

∥

2

2
(12)

where

yτ:t =
[

y(τ) ... y(t)
]T

(13)

Aτ:t =
[

a(τ) ... a(t)
]T

(14)

and withΛ1:t = diag
([

λt−1 λt−2 ... 1
])

. To simplify notation, define

R(t) , AH
1:tΛ1:tA1:t (15)

r(t) , AH
1:tΛ1:ty1:t . (16)
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With these definitions, the minimization in (6) may be formed using proximal

gradient iterations, (see, e.g., [43]), such that the jth iteration may be expressed

as

ŵ( j+1)(t) = arg min
w

1

2s(t)

∥

∥

∥
ν( j ) − w

∥

∥

∥

2

2
+ ht (w) (17)

where

ν( j ) = ŵ( j )(t) + s(t)
[

r(t)− R(t)ŵ( j )(t)
]

(18)

with s(t) denoting the step-size. We note that this update is reminiscent of the

one presented in [27], which considers the problem of ℓ1-regularized recursive

least squares, although it should be noted that the ℓ1-norm for complex vectors

in [27] is defined to be the sum of the absolute values of the real and imaginary

parts separately, whereas we here use the more common definition, as given by

(1). In [27], the authors motivate their minimization algorithm by casting it as

an EM-algorithm using reasoning from [44], as well as some further assumptions

about properties of the signal. By studying the zero sub-differential equations

for (17), it can be shown that the closed form solution for each group p can be

computed separately as (see, e.g., equations (54)-(55) and (32)-(38) in [8]; for

further details, see also [41])

ν̃( j )
Gp

= S1

(

ν( j )
Gp

, s(t)γ1(t)
)

(19)

ŵ
( j+1)
Gp

(t) = S2

(

ν̃( j )
Gp

, s(t)γ2,p(t)
)

(20)

where S1 (·) and S2 (·) are the soft thresholding operators corresponding to the ℓ1-

and ℓ2-norms, respectively, i.e.,

S1 (z, α) =
max

(

|z| − α, 0
)

max
(

|z| − α, 0
)

+ α
⊙ z (21)

S2 (z, α) =
max

(

‖z‖2 − α, 0
)

max
(

‖z‖2 − α, 0
)

+ α
z (22)

where, in (21), |z| denotes the vector obtained by taking the absolute value of each

element of the vector z, the max function operates element-wise on the vector z,
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and ⊙ denotes element-wise multiplication. Furthermore, as R(t) and r(t) can be

expressed as

R(t) =
t
∑

τ=1

λt−τa(τ)aH (τ) (23)

r(t) =
t
∑

τ=1

λt−τy(τ)ā(τ) (24)

these entities can be updated according to

R(t) = λR(t − 1) + a(t)aH (t) (25)

r(t) = λr(t − 1) + y(t)ā(t) , (26)

when new samples become available. Here, (̄·) denotes complex conjugation.

4 Refined amplitude estimates

In general, the sparsity promoting penalty function ht(w) will introduce a down-

ward bias on the magnitude of the amplitude estimates formed by (6). However,

as the support of ŵ(t) will reflect the fundamental frequencies present in the sig-

nal, we can refine the amplitude estimates by minimizing a least squares criterion.

As this problem only considers amplitudes of harmonics of pitches that are be-

lieved to be in the signal, we do not need to use any sparsity inducing penalties

and can therefore avoid the magnitude bias. This will be analogous to estimating

the amplitudes of each harmonic using recursive least squares assuming that the

support of the filter is known. To this end, let

S(t) =
⋃

p∈A(t)

Gp (27)

A(t) =
{

p |
∥

∥ŵGp(t)
∥

∥

2
> 0
}

, (28)

i.e., A(t) is the set of active pitches determined by the sparse filter ŵ(t), at time

t, and S(t) is the index set corresponding to the harmonics of these pitches. Let

w̆(t) denote the refined amplitude estimates at time t. Given ŵ(t), and thereby

S(t), we update this filter according to
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w̆k(t) = 0 , k /∈ A(t) (29)

w̆S(t)(t) = arg min
w∈C|S(t)|

wH RS(t)w− wH rS(t) − rH
S(t)w

+ ξ ‖w− w̆S(t)(t − 1)‖2
2 (30)

where RS(t)(t) is the |S(t)| × |S(t)| matrix constructed by the rows and columns

of R(t) indexed by S(t) and rS(t)(t) is the |S(t)| dimensional vector constructed

by the elements of r(t), indexed by S(t). The second term of (30) is a prox-

imal term that will promote a smooth trajectory for the magnitude of the filter

coefficients, where the parameter ξ > 0 controls the smoothness. This type of

smoothness-promoting penalty has earlier been used, for instance, to enforce tem-

poral continuity in NMF applications [45]. To avoid inverting large matrices, we

split the solving of (30) into A(t) problems of size Lmax using a cyclic coordinate

descent scheme (see also, e.g., [26]). To this end, define the index sets

Qp = S(t) \ Gp , p ∈ A(t) , (31)

i.e., the indices corresponding to harmonics that are not part of pitch p. Consid-

ering only terms in the cost function in (30) that depend on harmonics of the pth

pitch, we can form an update of the corresponding filter coefficients according to

w̆Gp(t) = arg min
w∈CLmax

wH RGpw− wH r( p ) − r( p )H w

+ ξ
∥

∥w− w̆Gp(t − 1)
∥

∥

2

2

(32)

where

r( p ) = rGp − RGp,Qpw̃Qp . (33)

The vector w̃Qp ∈ C|Qp| contains the (partially updated) filter coefficients that

correspond to other pitches than p, i.e.,

w̃Gq =

{

w̆Gq (t) if updated

w̆Gq (t − 1) if not updated
(34)

for q 6= p. By setting the gradient of (32) with respect to w to zero, we find the

update of w̆Gp(t) to be

w̆Gp(t) =
(

RGp + ξ I
)−1

(

r( p ) + ξ w̆Gp(t − 1)
)

. (35)
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5 Algorithmic considerations

We proceed to examine some implementation aspects of the presented algorithm,

first discussing the appropriate choice of the penalty parameters, then possible

computational speed-ups, as well as ways of adaptively updating the used pitch

dictionary.

5.1 Parameter choices

In order to discourage solutions containing erroneous sub-octaves, we here pro-

pose to update the group penalty parameter, in iteration j of the filter update (17),

as

γ2,p(t) = γ2(t) max



1,
1

∣

∣

∣
ŵ

j−1
p,1 (t)

∣

∣

∣
+ ε



 (36)

where
∣

∣

∣ŵ
j−1

p,1 (t)
∣

∣

∣ is the estimated amplitude of the first harmonic of group p, ob-

tained in iteration j − 1, with ε≪ 1 being a user-specified parameter selected to

avoid a division by zero. In this paper, we use ε = 10−5. As sub-octaves will typic-

ally have missing first harmonics, such a choice will encourage shifting power from

the sub-octave to the proper pitch. Similar types of re-weighted penalties have

earlier been used to enhance sparsity in the estimated signal (see, e.g., [46], [47]).

Studies using many different kinds of pitch signals indicate that the overall per-

formance of the algorithm is relatively insensitive to the choice of the parameter

s(t), which may typically be selected in the range s(t) ∈
[

10−5, 10−3
]

. Here,

we use s(t) = 10−4. The choice of the penalty parameters γ1(t) and γ2(t) can

be made using inner-products between the dictionary and the signal. Letting Δ
denote the time-lag, define

η(t, μ) = μ
∥

∥Λ1:ΔAH
t−Δ:tyt−Δ:t

∥

∥

∞
(37)

where μ ∈ (0, 1). A good rule of thumb is choosing γ1(t) in the neighborhood of

(37) with μ = 0.1, whereas a corresponding reasonable value for γ2(t) is μ = 1.

Empirically, the performance of the algorithm has been seen to be robust to vari-

ations of these choices of μ. This method emulates choosing the values of the

penalty parameters based on the correlation between the signal and the dictionary

in a finite window. Here, the window length, Δ, is determined by the forgetting
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factor, λ, and by how much correlation one is willing to lose as a result from the

truncation. For example, selecting

Δ =
log(0.01)

log λ
(38)

will yield a window such that the excluded samples will contribute to less than

0.01 of the correlation. It should be noted that for smoothly varying signals,

γ1(t) and γ2(t) only need to be updated infrequently.

5.2 Iteration speed-up

As the signal is assumed to have a sparse representation in the dictionary a(t),
one may expect updates of the coefficients of many groups, here indexed by q,

to result in zero amplitude estimates. As such groups do not contribute to the

pitch estimates, these groups would preferably be excluded from the updates in

(17)-(18). If assuming the support of w(t) to be constant for all t, one could thus

sequentially discard such groups from the updating step, and thereby decrease

computation time. However, as generally pitches may disappear and then re-

appear, as well as drift in frequency over time, we will here only exclude the groups

q from the updating steps temporarily. That is, if at time τ, we have
∥

∥ŵGq

∥

∥

2
< ε̃,

where ε̃ ≪ 1, the group q is considered not to be present in the signal and

is therefore excluded from the updating steps for a waiting period, T . After that

period, it is again included in the updates, allowing it to again appear in the signal.

Defining the set U , indexing the groups that are considered active, the group q is

adaptively included and excluded from U depending on the size of
∥

∥ŵGq

∥

∥

2
. If the

signal can be assumed to have slowly varying spectral content, meaning that the

support of w(t) is also varying slowly, the waiting period T may be chosen to be

quite long, as to improve the computational efficiency. In general, choosing T as

to correspond to a few milliseconds allows for a speed-up of the algorithm while

at the same time enabling it to track the time evolution of w(t).

5.3 Dictionary learning

In general, a signal’s pitch frequencies may vary over time, for instance, due to

vibrato. Applying the filter updating scheme using fixed grid-points will therefore

result in rapidly changing support of the filter or energy leakage between adjacent

blocks of the filter, here indexed by p. In order to overcome this problem, and to
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Algorithm 1 The PEARLS algorithm

1: Initialise ŵ(0)← 0, R(0)← 0 , r(0)← 0

2: t ← 1

3: repeat {Recursive update scheme}
4: R(t)← λR(t − 1) + a(t)aH (t)
5: r(t)← λr(t − 1) + y(t)ā(t)
6: j ← 0

7: ŵ( j )(t)← ŵ(t − 1)

8: repeat {Proximal gradient update}
9: ν( j ) ← ŵ( j )(t) + s(t)

[

r(t)− R(t)ŵ( j )(t)
]

10: ŵ( j+1)(t)← arg min
w

1
2s(t)

∥

∥

∥ν( j ) − w
∥

∥

∥

2

2
+ ht (w)

11: j ← j + 1

12: until convergence

13: ŵ(t)← ŵ( j )(t)
14: Determine A(t) and S(t)
15: w̆k(t)← 0 , k /∈ A(t)
16: w̆S(t)(t) = arg min

w∈C|S(t)|

wH RS(t)w− wH rS(t) − rH
S(t)w

+ξ ‖w− w̆S(t)(t − 1)‖2
2

17: Update active set U
18: if t ∈ T then

19: Update dictionary

20: end if

21: t ← t + 1

22: until end of signal

allow for smooth tracking of pitches over time, we propose a scheme for adaptively

updating the dictionary of candidate pitches. This adaptive adjustment scheme

also allows for the use of a grid with coarser resolution than would otherwise be

possible. Let T = {τk}k be the set of time points in which the dictionary is up-

dated. As only groups ŵGp(τk) with non-zero power are considered to be present

in the signal, one only has to adjust the fundamental frequencies of these. As-

suming that the current estimate of such a candidate pitch frequency is fp(τk−1),

one only needs to consider adjusting it on the interval fp(τk−1)± 1
2δf ,k(t), where
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δf ,k(t) denotes the current grid-point spacing. The update can be formed using

the approximate non-linear least squares method in [48], [2], where, instead of

Lmax, one uses the harmonic order corresponding to the non-zero components

of ŵGp(τk). This refined estimate is obtained by first forming the residual, and

adding back the current group of harmonics, whereafter the approximate non-

linear least squares method is applied to update the frequencies. The adjusted fre-

quency fp(τk) is then used to update the dictionary on the time interval
[

τk, τk+1

)

.

After updating the dictionary, the filter coefficient estimates will, due to the re-

cursive nature of the method, be partly based on the old dictionary and partly on

the updated one. It is thus very likely that after the dictionary update the phase

component of the two filter coefficient parts will differ. To avoid this, we instead

incorporate the phase into the dictionary, thus obtaining a filter coefficient with

zero phase. This is accomplished by estimating the phases at the same time as the

frequencies are updated in the dictionary updating step. Each estimated phase is

then multiplied with the corresponding column of the dictionary, thus including

the phases into the dictionary. This update corresponds to changing (8) and (9)

to

a(t,φ) =
[

aT
1 (t,φ1) ... aT

P (t,φP)
]T

(39)

ap(t,φp) =
[

ei2πfp(t)t+iπφp1 ... ei2πfp(t)Lmaxt+iπφpLmax

]T
(40)

where

φ =
[

φT
1 . . . φT

P

]T
(41)

φp =

[

φT
p1

. . . φpLmax

]T
(42)

with φpℓ denoting the phase of the ℓth harmonic of the pth pitch. With this

formulation the phases are incorporated into the dictionary, thus rendering the

amplitudes real valued.

Together with the discussed algorithmic considerations, the presented time-

recursive multi-pitch estimator is detailed in Algorithm 1. The algorithm is

termed the Pitch Estimation using dictionary-Adaptive Recursive Least Squares

(PEARLS) method2.

2An implementation in MATLAB may be found at http://www.maths.lu.se/staff/

andreas-jakobsson/publications/.
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Figure 1: Pitch frequency and pitch norm estimates, i.e., estimates of fp(t) and
∥

∥w̆Gp(t)
∥

∥

2
as produced by PEARLS when applied to a simulated two-pitch signal

with fundamental frequencies 302 and 369 Hz, respectively, deviating from the

original dictionary grid points by 2 and 1 Hz respectively.

6 Numerical results

In this section, we evaluate the performance of the proposed PEARLS algorithm

using both simulated signals and real audio recordings.

6.1 Simulated signals

To demonstrate the effect of the smoothing parameter, ξ, as well as the ability of

PEARLS to smoothly track the amplitudes of pitches, we first consider an illus-

trative example with a two-pitch signal. Figure 1 shows the time evolution of the

pitch frequency and pitch norm estimates, i.e., estimates of fp(t) and
∥

∥w̆Gp(t)
∥

∥

2
,

as produced by PEARLS when applied to a two-pitch signal with fundamental

frequencies 302 and 369 Hz, respectively, where both pitches are constituted
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Figure 2: Respone time for different values of the smoothing parameter ξ.

by 5 harmonics each. Both pitches enter the signal after 90 ms, reaching their

maximum amplitudes momentarily and keeping them for the rest of the signal

duration. The signal was sampled at 11 kHz. The settings for PEARLS was

Lmax = 10, λ = 0.995, and the smoothing parameter was ξ = 104. The original

pitch frequency grid was chosen so that the true pitch frequencies deviated from

the closest grid points by 2 and 1 Hz, respectively. As can be seen from the fig-

ure, the estimate initially, before the pitch signals appear, contains several spurious

pitch estimates, but then quickly finds the pitch signals when these appear in the

data. At this point, the spurious peaks are suppressed and the estimates are seen

to well follow the true pitch envelopes. It is worth noting that both the response

time and the steady state variance of the estimates will be influenced by the choice

of the smoothing parameter, ξ. Figures 2 and 3 illustrate this effect by consider-

ing the response time, defined as the time required for the PEARLS amplitude

estimate to reach 95% of its peak value, and the steady state amplitude variance,
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Figure 3: Steady state variance of the pitch norm estimate for different values of

the smoothing parameter ξ.

respectively. The signal considered is the same as in Figure 1. As can be seen from

the figures, a higher value of ξ implies a longer response time for PEARLS, while

at the same time promoting a more smooth pitch norm trajectory, just as could

be expected.

The PEARLS algorithm is not restricted to form estimates of stationary pitches;

it is also able to cope with amplitude and frequency modulated signals. In Fig-

ure 4, PEARLS has been applied to a two-pitch signal with fundamental frequen-

cies that oscillate according to sine waves with frequencies 2 and 3 Hz on the

intervals 327 ± 2 Hz and 394 ± 3 Hz, respectively. Also, the pitch norms are

not constant, but are amplitude modulated according to a Hamming window. As

can be seen, PEARLS is able to track the two pitches smoothly both in frequency

and in pitch norm. Here, the pitches consisted of 5 and 7 harmonics, respect-
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Figure 4: Pitch frequency and pitch norm estimates, i.e., estimates of fp(t) and
∥

∥w̆Gp(t)
∥

∥

2
, as produced by PEARLS when applied to a simulated two-pitch signal

with fundamental frequencies that oscillate according to sine waves.

ively. The signal was sampled at 11 kHz, with PEARLS using the same settings as

above. As comparison, Figure 5 presents a corresponding plot for the multi-pitch

estimator ESACF [7], using recommended settings. As ESACF only estimates

pitch frequencies, pitch norm estimates have been obtained using least squares,

assuming known harmonic orders. ESACF is a frame based estimator and the

signal was therefore here subdivided into 30ms windows. As can be seen, the

ESACF estimates deviate from the true pitch frequencies, causing the amplitude

estimates to degrade. Figure 6 demonstrates the usefulness of using the dictionary

learning procedure. In this figure, PEARLS is again applied to the signal with

two frequency modulated pitches, but this time the dictionary learning scheme

is excluded from Algorithm 1. As can be seen in the figure, PEARLS is still able

to estimate the frequency content, as well as the pitch norms, but the tracking is

now performed by different elements of w̆(t), as the frequency modulation causes

the different candidate pitches to become activated and then deactivated, with the
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Figure 5: Pitch frequency, i.e., estimates of fp(t), as produced by ESACF when ap-

plied to a simulated two-pitch signal with fundamental frequencies that oscillate

according to sine waves. The pitch norms, i.e.,
∥

∥w̆Gp(t)
∥

∥

2
, have been estimated

by applying least squares to the ESACF pitch frequency estimates using oracle

harmonic orders.

activation-deactivation cycles following the periods of the frequency modulation.

Also, there is some power-sharing between adjacent pitch groups of w̆(t) at time

points where the frequency modulating sinusoids change sign. In contrast, the

dictionary learning scheme allows for a much smoother tracking as the movable

dictionary elements counters the activation-deactivation phenomenon, which can

be observed in Figure 4.

6.2 Real audio

We proceed to evaluate the performance of PEARLS on the Bach10 dataset [49].

This dataset consists of ten excerpts from chorals composed by J. S. Bach, and

have been arranged to be performed by an ensemble consisting of a violin, a cla-

rinet, a saxophone, and a bassoon, with each excerpt being 25-42 seconds long.
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Figure 6: Pitch frequency and pitch norm estimates, i.e., estimates of fp(t) and
∥

∥w̆Gp(t)
∥

∥

2
, as produced by PEARLS when applied to a simulated two-pitch signal

with fundamental frequencies that oscillate according to sine waves. Here, the

dictionary learning scheme is excluded from Algorithm 1.

The algorithm settings for PEARLS were λ = 0.985, ξ = 103, Lmax = 6, and the

dictionary was updated every 10 ms using 45 ms of past signal samples. Each mu-

sic piece, originally sampled at 44.1 kHz, was down-sampled to 11.025 kHz. The

PEARLS estimates were compared to ground truth values with a time-resolution

of one reference point every 30 ms. The ground truth fundamental frequencies

were obtained by applying the single-pitch estimator YIN [50] to each separate

channel with manual correction of obvious errors. The results are presented in

Table 1, presenting values of the performance measures Accuracy, Precision, and

Recall, as defined in [51]. As in [51], an estimated fundamental frequency is asso-

ciated with a ground truth fundamental frequency if it lies within a quarter-tone,

or 3%, of the ground truth fundamental frequency. For comparison, Table 1 also

includes corresponding performance measures for the PEBSI-Lite [9] and ES-

ACF algorithms. The values for PEBSI-Lite and ESACF were originally presen-
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PEARLS PEBSI-Lite BW15 ESACF

Accuracy 0.437 0.449 0.515 0.269

Precision 0.683 0.631 0.684 0.471

Recall 0.548 0.609 0.675 0.386

Table 1: Performance measures for the PEARLS, PEBSI-Lite, BW15, and ESACF

algorithms, when evaluated on the Bach10 dataset.

ted in [9], and the settings for these algorithms are the same as is presented there.

Also presented in Table 1 are performance measures obtained when applying the

method presented in [35], hereafter referred to as BW15, after the authors and

year of publication, to the same dataset. Being trained on databases of music

instrument, this method uses probabilistic latent component analysis to produce

pitch estimates and is specifically tailored to estimate pitches in music signals. The

frequency resolution of the obtained estimates corresponds to that of the Western

chromatic scale, i.e., to the keys of the piano.

As can be seen, PEARLS clearly outperforms ESACF and performs on par

with PEBSI-Lite when considering these measures, although it should be stressed

that PEARLS has significantly lower computational complexity than PEBSI-Lite.

The BW15 methods performs better than the other presented methods, including

PEARLS, for this dataset. This is as the performance of the BW15 estimate was

formed when using an a posteriori thresholding of the obtained estimate, optim-

ally selecting the threshold level as to maximize the performance measures; this in

order to illustrate the best possible performance achievable for BW15. However,

several other choices of possible threshold levels resulted in BW15 performing

worse than both PEARLS and PEBSI-Lite. Furthermore, the BW15 estimator

is sensitive to mismatches between the examined signal and the training dataset

used to construct its priors. This is illustrated by applying the BW15 and PEARLS

estimators to a signal consisting of two (harmonic) trumpet notes and two (inhar-

monic) piano notes. The trumpets are playing the notes A4 and D♭5, corres-

ponding to the fundamental frequencies 440 and 554.37 Hz, whereas the pianos

are playing the notes E4 and G♯4, corresponding to the fundamental frequencies

329.65 and 415.3 Hz. The signal was sampled at 11.025 kHz. The ground truth

pitches can be seen in Figure 7. Here, the amplitude, i.e., the pitch norm, of each

pitch is illustrated by the color of each track. The amplitude has been normalized
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Figure 7: Ground truth for a signal consisting of two trumpets and two pianos.

The amplitude of each pitch, i.e., the pitch norm, is illustrated by the color of

each track. The amplitudes have been normalized so that the maximal amplitude

is 1.

so that the maximum amplitude is equal to one. The corresponding estimates

produced by PEARLS (using the same settings as for the Bach10 dataset) and

BW15 are presented in Figures 8 and 9, respectively.

As can be seen from Figure 8, PEARLS is able to correctly identify both the

trumpet and the piano pitches, despite the pianos being inharmonic and thereby

differing from the assumed signal model, as given in (2). Note that PEARLS is

also able to smoothly track the frequency modulation caused by that trumpets

are playing with vibrato, which can be more clearly seen from the zoomed-in

portions of Figures 7 and 8. In contrast, as seen in Figure 9, BW15 is able to

correctly identify the piano pitches (note that pianos were included in the training

dataset used by the authors of [35]), but instead of identifying the sinusoidal

content corresponding to the trumpets (which are not in the training dataset) as
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Figure 8: Estimates produced by PEARLS when applied to a signal with two

trumpets as well as two pianos. The amplitude of each pitch, i.e., the pitch norm,

is illustrated by the color of each track. The amplitudes have been normalized so

that the maximal amplitude is 1.

originating from only two pitches, several of the individual harmonics are instead

being assigned individual pitches.

It may be noted that the method does not accurately represent the vibratos;

this as the estimates of BW15 are restricted to correspond to the keys of the piano.

It should further be noted that the pitches indicated as being the most significant

by BW15 are not those corresponding to the true fundamental frequencies, but

instead higher order harmonics. This problem is arguably due to the mismatch

between the content of the signal and the database used to train the method.

Thus, for this example, it is not possible to recover the true pitches by thresholding

the solution of BW15, as the thresholding would eliminate true pitch candidates

before getting rid of the erroneous ones. Although the estimates produced by

BW15 could arguably be improved by extending its training data to also include
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Figure 9: Estimates produced by BW15 when applied to a signal with two trum-

pets as well as two pianos. The magnitudes of the estimates are illustrated by

the color of the pitch tracks. The magnitudes have been normalised so that the

maximal magnitude is 1.

trumpets, this example illustrates that basing estimation on exploiting the features

of a signal model, as PEARLS does, can be beneficial in terms of the generality

of the estimator, even in the face of slight deviations from the assumed signal

model, which in this case takes the form of inharmonicity for the pianos. It can

be noted that an interesting future development would be to combine the benefits

from training a hidden Markov model, as is done in BW15, with the more robust

approach in PEARLS.

Another recent method that would be of interest to consider in this respect

would be the one presented in [21], which also exhibits some conceptual similar-

ities with the herein presented algorithm. Notably, the sparsifying role played by

the ℓ1-norm herein is in [21] formed by instead determining the significant spec-

tral peaks using an estimate of the noise floor. The pitch selection, herein formed
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Figure 10: Pitch tracks produced by ESACF when applied to a 25 seconds excerpt

of J. S. Bach’s Ach, Gott und Herr performed by a violin, a clarinet, a saxophone,

and a bassoon.

using the group-wise ℓ2-norm, is in [21] made by matching spectral content with

that of components in a large training data set, which is also used to measure the

power concentration for low-order harmonics, as well as a synchronicity measure.

The relative weighting of these components is selected using training data. Using a

greedy approach, the method in [21] then iteratively adds candidate pitches to the

estimate; the power allocation between pitches that have overlapping harmonics is

resolved using an interpolation scheme utilizing the power of harmonics unique to

each candidate pitch. In contrast, the number of active pitches is herein decided

by the optimal point of (6), where candidate pitches not contained in the signal

should be assigned zero power. It can also be noted that the optimization problem

presented here does not favor spectral smoothness; rather, the ℓ2-norm will favor

collecting as much power as possible into a few candidate pitches. The power of

overlapping harmonics will therefore tend to be allocated to pitches with more
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Figure 11: Pitch tracks produced by PEARLS when applied to a 25 seconds ex-

cerpt of J. S. Bach’s Ach, Gott und Herr performed by a violin, a clarinet, a saxo-

phone, and a bassoon.

prominent unique harmonics. Using a MATLAB implementation of PEARLS on

a 2.68 GHz PC, the average running time for the Bach pieces was 20 minutes.

The Bach pieces were on average 33 seconds long3. For PEBSI-Lite, the average

running time was 54 minutes, with the signal being divided into non-overlapping

frames of length 30 ms.

As an illustration of the performance of PEARLS on the Bach10 dataset, Fig-

ures 10 and 11 present the estimated fundamental frequencies obtained using ES-

ACF and PEARLS, respectively, for the piece Ach, Gott und Herr, as compared to

the ground truth for each instrument. Here, in order to make a fair comparison of

the computational complexities of the estimators, the ESACF estimate was com-

3We note that the current implementation has not exploited that the filter updating step (17)
can be done for all P candidate pitches in parallel. Similarly, the computations for PEBSI-Lite can
also be parallelized, as each time frame can be processed in isolation.
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Figure 12: Pitch tracks produced by BW15 when applied to a 25 seconds excerpt

of J. S. Bach’s Ach, Gott und Herr performed by a violin, a clarinet, a saxophone,

and a bassoon.

puted on windows of length 30 ms, where two consecutive windows overlapped

in all but one sample. Although ESACF can arguably be applied to windows with

smaller overlap, this setup meant that ESACF would produce pitch tracks with

the same time resolution as PEARLS. This resulted in an average running time of

11 minutes per music piece, that is, about half that of PEARLS. As can be seen

from the figures, PEARLS is considerably better at tracking the instruments than

ESACF. In Figure 12, the corresponding results for BW15 are shown. The figure

has been truncated at 1000 Hz to simplify inspection, although pitch estimates

with fundamental frequencies higher than 1000 Hz did occur repeatedly. From

the figure, it is clear that BW15 is better able to track the bassoon (which is in-

cluded in the method’s training data) than either PEARLS or ESACF. It can also

be noted that the discrete nature of the BW15 estimator prevents it from tracking

smaller frequency variations, such as vibratos.
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7 Conclusions

In this work, we have presented a time-recursive multi-pitch estimation algorithm,

based on a both sparse and group-sparse reconstruction technique. The method

has been shown to be able to accurately track multiple pitches over time, in fun-

damental frequency as well as in amplitude, without requiring prior knowledge

of the number of pitches nor the number of harmonics present in the signal.

Furthermore, we have presented a scheme for adaptively changing the signal dic-

tionary, thereby providing robustness against grid mismatch, as well as allowing

for smooth tracking of frequency modulated signals. We have shown that the

proposed method yields accurate results when applied to real data, outperforming

other general purpose multi-pitch estimators in either estimation accuracy and/or

computational speed. The method has further been shown to be robust to devi-

ations from the assumed signal model, although it is not able to yield performance

as good as that achievable by a state-of-the art method being optimally tuned and

specifically trained on the present instruments. However, the method is able to

outperform such a technique when used without optimal tuning, or when applied

to instruments not included in the training data.
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Abstract

In this work, we propose a novel multi-pitch estimation technique that is robust

with respect to the inharmonicity commonly occurring in many applications. The

method does not require any a priori knowledge of the number of signal sources,

the number of harmonics of each source, nor the structure or scope of any possibly

occurring inharmonicity. Formulated as a minimum transport distance problem,

the proposed method finds an estimate of the present pitches by mapping any

found spectral line to the closest harmonic structure. The resulting optimization

is a convex and highly tractable linear programming problem. The preferable

performance of the proposed method is illustrated using both simulated and real

audio signals.

Key words: Multi-pitch estimation, frequency clustering, inharmonicity,

optimal transport distance, convex optimization.
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1 Introduction

The problem of estimating the fundamental frequency, or pitch, of a harmonic, or

close-to-harmonic, signal occurs in a wide range of applications [1–9]. Often, the

problem is complicated by the number of sources being unknown, as is the num-

ber of components detailing each source. Furthermore, some sources, such as,

e.g., audio signals resulting from stringed instruments, exhibit inharmonicity, im-

plying that higher order components may deviate from the harmonic model, often

with increasing deviation for the higher harmonics [10–12]. In such scenarios, a

naive approach exploiting the sinusoidal frequency model in the time domain res-

ults in a cumbersome high dimensional optimization problem, as the uncertainty

due to the inharmonicity will occur in the nonlinear frequency parameter. Previ-

ously, this problem has been approached by approximate optimization in the time

domain [12], [13], approximating the frequency uncertainty with an uncertainty

in the functional form of the sinusoid [10], or via a subspace-based framework

robust to such deviations [14]. For certain applications, there also exists source

specific pitch estimators that rely on the inharmonicity following a parametric

model, see, e.g., [15]. However, such estimators are generally unable to resolve

cases when harmonics from different sources overlap, as commonly occurs, for

instance, in Western music playing in harmony.

In order to handle such situations, while still allowing for an unknown num-

ber of sources, we here formulate the multi-pitch problem such that the estim-

ated pitches are obtained as the ones minimizing a particular (convex) Monge-

Kantorovich optimal transportation problem. These methods have also earlier

been shown useful for problems in signal analysis, e.g., for clustering, tracking,

registration, and robust identification [16–19]. Transport problems have a rich

history going back to questions concerning how to most efficiently transport soil

from one location to another, and has since attracted attention in various fields

(see [20] and references therein). An example of this is the facility localization

problem, where for a set of customers one seeks to determine locations of facil-

ities that minimize the sum of the distances from each customer to its closest

facility. As we will see, the multi-pitch estimation problem can be reformulated

as a facility location problem [20].

In this setting, the harmonic model (facilities) should be selected so that

the spectral components (customers) can be transported to the closest harmonic

model with minimal total cost. In this case, the mass to be moved constitutes the

amplitude of the observed spectral component at a given frequency; as this amp-
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litude may originate from two or more sources which have overlapping harmonics

at the given frequency, we should allow the optimization to transport parts of the

observed amplitude to different harmonic candidates. We further wish to intro-

duce restrictions on the allowed mass transport problem such that ambiguity with

different sub-octaves are avoided, promoting spectrally smooth solutions similar

to those proposed in [2, 3, 21, 22]. As we show in the following, the desired op-

timization problem can be formulated as a linear programming (LP) problem,

for which powerful solvers are available, even for big data applications [23]. In

the numerical section, we illustrate the preferable performance of the proposed

method as compared to several previously suggested methods, for both simulated

and real audio signals.

2 Signal model

Consider N samples of a (reasonably) stationary signal, y(t), that may be well

described as a sum of close-to-harmonic sources, x(t), corrupted by an additive

broadband noise, e(t), such that y(t) = x(t) + e(t), where1

x(t) =
K
∑

k=1

Lk
∑

ℓ=1

ak,ℓe
i2π( fkℓ+Δk,ℓ)t . (1)

Here, K denotes the number of sources, each containing Lk close-to-harmonic

signal components. The constant fk denotes the pitch of the kth source, and the

constants ak,ℓ and Δk,ℓ denote the complex amplitude and frequency deviation,

respectively, of the ℓth harmonic of the kth source. The deviation will thus be

zero for fully harmonic sources, whereasΔk,ℓ otherwise details the inharmonicity.

Depending on the source, one may have models for such inharmonicities, such as

the model used for pianos (see, e.g., [11]). In the frequency domain, the assumed

signal may thus be represented as

X
(

f
)

=

K
∑

k=1

Lk
∑

ℓ=1

ak,ℓδ
(

f − fkℓ−Δk,ℓ

)

(2)

where δ(·) denotes the Dirac delta function. In this work, we aim at estimating

both the number of sources, K , and their pitches, fk, while allowing for unknown

1For computational and notational simplicity, we here use the time-discrete analytical version
of the measured data.
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frequency deviations, Δk,ℓ. In order to do so, we consider the transport cost (see,

e.g., [20]) associated with assigning each spectral component to a set of candid-

ate pitches, i.e., the transport cost of moving the component onto the assumed

harmonic structure related to each candidate pitch.

In order to introduce notation, let F denote the set of observed spectral com-

ponents in the signal of interest, whereasΩ denotes the set of all considered can-

didate pitches. Furthermore, let M and P denote the number of elements of the

sets F and Ω, respectively. Here, the number of candidate pitches are assumed

to be much larger than the number of sources, such that P ≫ K . Finally, each

candidate pitch is assumed to have at most Lmax ≥ maxkLk harmonics.

3 Optimal transport

In order to find an optimal assignment of the amplitudes corresponding to the

observed line spectrum frequencies to the set of pitch candidates, one needs to

define a function describing the cost of a certain assignment and then minimize

this function over all possible assignments. In order to do this, let the function

c
(

f , fp
)

describe the cost of moving one unit of amplitude from the line spec-

tral frequency f to the pitch candidate fp. For example, the cost of assigning all

amplitudes in the line spectrum Y
(

f
)

, defined as

Y
(

f
)

=
∑

fm∈F

afmδ
(

f − fm
)

, (3)

where afm denotes the amplitude of the spectral line at frequency fm, to the can-

didate pitch fp is

∑

fm∈F

∣

∣afm

∣

∣ c
(

fm, fp
)

. (4)

To describe the cost of a general assignment, let C be the P ×M matrix whose
(

p,m
)

th element is equal to c
(

fm, fp
)

. Also, let W be the P × M matrix de-

scribing the amplitude assignment, i.e., the
(

p,m
)

th element of W describes how

much of the magnitude |am| that is assigned to candidate pitch fp. Thus, to en-

sure that all the estimated spectral content is mapped to some pitch, the sum

of the mth column of W must be equal to |am|. With this, the cost of an as-

signment described by W may be expressed as tr
(

CT W
)

, where (·)T denotes the
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transpose, and tr(·) denotes the trace of a matrix. Defining the M × 1 vector

a =
[

|a1| ... |aM |
]T

, and letting 1P be a P × 1 vector of ones, one may

formulate the desired optimal transport problem as

minimize
W,x

tr
(

CT W
)

subject to WT 1P = a, xT 1P = K

W ≤ xaT , W ≥ 0

xi ∈ {0, 1} , i = 1, . . . ,P

(5)

where the inequalities for matrices and vectors should be interpreted element-

wise. The binary vector x here controls whether a pitch candidate fp is present in

the solution or not, i.e., if xp = 1, then fp is present and if xp = 0, then it is not.

However, as xi are binary variables, this problem is not convex. Furthermore, this

formulation assumes precise knowledge of the number of sources, K , which in

general is unknown. In order to remedy this, we consider the convex relaxation

(cf. [16])

minimize
W,x

tr
(

CT W
)

+ λ1T
P x

subject to WT 1P = a, W ≤ xaT

x ≥ 0, W ≥ 0

(6)

with λ > 0. The second term of the objective function in (6) allows for an

implicit choice of the sparsity of x via the regularization parameter λ. However,

using the relaxation in (6), the cost function is unable to distinguish between sub-

octaves, i.e., the row of C corresponding to some f0 that may be greater or equal to

the row corresponding to f0/2. Fortunately, this may be included in the modeling

by considering the structure of the amplitude assignment. Specifically, for each

candidate pitch fp, define an Lmax × M matrix L( p) that describes the mapping

between the line spectral frequencies and the harmonics corresponding to fp. That

is, the (ℓ,m)th element of L( p) is equal to one if fpℓ is the harmonic of pitch fp
that is closest in frequency to the line spectral frequency fm, and zero otherwise.

As each spectral line is mapped to precisely one harmonic, each column of L( p)

has exactly one element equal to one, whereas all the rest are zero. This linear

mapping thus allows for the inclusion of constraints on the relative amplitudes of

each pitch. For example, it may be used to promote spectral smoothness in each
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pitch. In this work, we restrict our attention to only requiring active pitches to

have non-zero amplitude in the first harmonic. As this constraint is then convex

it can easily be included in (6), yielding

minimize
W,x

tr
(

CT W
)

+ λ1T
P x

subject to WT 1P = a, W ≤ xaT

x ≥ 0, W ≥ 0
(

1M − (Q + 1) e1

)T
L( p)
[

W
]T

p·
≤ 0

(7)

for p = 1, . . . ,P. Here, Q > 1 assures that a scaled version of the amplitude

assigned to the first harmonic dominates the amplitude assigned to the rest of the

harmonics, thus enforcing solutions where active pitches have non-zero amplitude

assigned to their first harmonics. In our simulations, we use Q = 3Lmax. Here,

e1 denotes the M × 1-vector with its first element equal to one, and the rest zero,

with
[

W
]

p·
denoting row p of W. It is worth noting that the resulting problem is

an LP, which may thus be solved using standard convex solvers.

4 Choice of transport cost function

To model the amplitude distribution of a pitch, the transport cost function c(·, ·)
should assign the cost of associating amplitude at a frequency fm to a candidate

pitch fp depending on the distance between fm and the closest harmonic of fp, e.g.,

c
(

fm, fp
)

= min
ℓ∈N

∣

∣ fm − fpℓ
∣

∣

2
. (8)

However, this function would too harshly penalize inharmonicity, as the higher

harmonics of inharmonic pitches could typically deviate significantly from integer

multiples of the pitch. We therefore propose to only have harsh penalties for the

pitch, while allowing subsequent harmonics to deviate somewhat more. Specific-

ally, for the first harmonic, let

c1

(

fm, fp
)

= ρs+

(

∣

∣ fp − fm
∣

∣ ,
Δf

2

)ν

(9)

where s+(·) is the soft threshold function defined as

s+

(

x,
Δf

2

)

=

∣

∣

∣

∣

max

(

x −
Δf

2
, 0

)∣

∣

∣

∣

(10)
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Figure 1: Transportation cost for candidate pitch with fundamental frequency

200 Hz.

and Δf is the spacing of the candidate pitch grid. Thus, we allow for a deadzone

corresponding to the grid resolution, while penalizing larger deviances according

to a scaled, highly non-convex, pseudo-norm. To allow for increasing deviations

with higher harmonics, we instead use

cℓ
(

fm, fp
)

= min
(

εℓ
(

fm, fp
)

, ξεℓ
(

fm, fp
)2
)

(11)

where

εℓ
(

fm, fp
)

= s+
(

∣

∣ fpℓ− fm
∣

∣ ,ψfpℓ
2
)

. (12)

Thus, the width of the deadzone is dependent on the harmonic order ℓ as well

as being scaled by a small number, ψ. In our simulations, ρ = 100, ξ = 0.01,

ν = 0.05, and ψ = 0.005. An illustration of the transport cost function is shown

in Figure 1, where the cost of assigning frequencies on the interval (100, 1700) Hz
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Figure 2: Percentage of pitch estimates found within ±3% of the ground truth in

the simulated data case.

is shown for a pitch of 200 Hz. Here, the width of the deadzone scales quadratic-

ally with the harmonic order.

5 Numerical results

We proceed to examine the performance of the proposed method using both sim-

ulated and measured audio signals. In both settings, the line spectrum is estimated

using the MUSIC estimator [24], with M ≫∑

k Lk. The amplitudes am are then

estimated using least squares. Initially, we examine a simulated signal consisting

of two pitches, with pitches f1 and f2, with varying degrees of inharmonicity. The

harmonics of the pitches are modelled using the piano model (see, e.g., [11]),

i.e., fk,ℓ = fkℓ
√

1 + βℓ2, for ℓ = 1, . . . ,Lk and k = 1, 2, where the parameter

β ≪ 1 controls the level of inharmonicity. The frequencies f1 and f2 are drawn
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Figure 3: Expected maximal absolute deviation of pitch estimates from the ground

truth in the simulated data case.

uniformly on the intervals (300, 390) Hz and (400, 540) Hz, respectively. The

harmonic orders Lk are drawn uniformly on [8, 12], whereas the magnitude of

each harmonic is drawn uniformly on (0.75, 1.25), with phases drawn uniformly

on [0, 2π). We thereafter add an additive white Gaussian noise to the signal,

resulting in a signal-to-noise-ratio of 30 dB. The signal is then sampled for 30

ms at 40 kHz. This is done for 500 Monte Carlo simulations and for varying

values of β . Performance is then measured as the percentage of the simulations

in which both pitch estimates are found within ±3% of their respective ground

truths and where no erroneous extra pitch estimates are produced. For the pro-

posed method, we set Lmax = 20 and λ = 15. As comparison, we include

three other types of pitch estimators; the approximate non-linear least squares

estimator (ANLS) (see, e.g., [5]); the autocorrelation-based enhanced summary

autocorrelation (ESACF) estimator [25]; and the method presented in [9], which

is based on probabilistic latent component analysis. The latter method, hereafter
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Proposed ESACF BW15

Accuracy 0.928 0.691 0.366

Precision 0.974 0.984 0.391

Recall 0.952 0.699 0.849

Table 1: Performance measures for the proposed method as well as the ESACF

and BW15 methods.

referred to as BW15, is specifically designed for multi-pitch estimation for music

signals, with pitch estimates restricted to the chromatic Western scale, i.e., to the

keys of the piano. This frequency resolution corresponds precisely to the chosen

accuracy limit of ±3% of the ground truth pitches. The method is based on

extensive training on a database of various forms of signals2. As ANLS requires

knowledge of both the number of sources and the number of harmonics for each

source, it is here provided with oracle model order knowledge. For all methods,

the algorithm settings recommended by their respective authors have been used.

As shown in Figure 2, the proposed method outperforms the other methods for

all considered levels of inharmonicity. It may be noted that the performance of

the BW15 method is not strictly decreasing with the inharmonicity parameter β ;

rather, the best performance is achieved for the value β = 10−3, arguably due

to this being the best match to the method’s training library. We also evaluate

the accuracy of the pitch estimates, measured as the maximum absolute deviation

of each estimate from its corresponding ground truth, conditioned on that the

estimates are found within ±3% of their respective ground truths. The results

are shown in Figure 3, with deviation shown in log-scale. Again, the proposed

method outperforms all comparison methods.

In Figure 4, we study a real audio signal consisting of two harmonic trumpet

signals and two piano signals with some inharmonicity. Specifically, the signal is

composed of two trumpet signals, with pitches 440 and 554.37 Hz, correspond-

ing to the notes A4 and D♭5, and of two piano notes, with pitches 329.65 and

415.3 Hz, corresponding to the notes E4 and G♯4. Ground truth estimates for

the trumpet pitches have been obtained by applying the YIN estimator [26] to the

single channel recordings. Ground truths for the pianos are known as the signals

are simulated using software synthesizers. As can be seen in Figure 4, the proposed

2The implementation used was provided online by the authors of [9].
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Figure 4: Estimated fundamental frequencies for a signal containing two trumpet

notes as well as two piano notes.

method is able to correctly group the frequencies into the correct pitches, with

only small errors during the onset phase, where the frequency content is highly

transient and non-sparse. The recording was sampled at 44.1 kHz and was sub-

divided into non-overlapping estimation frames of length 30 ms. The settings for

the proposed method was Lmax = 10 and λ = 15. Table 1 compares the proposed

method to the ESACF and BW15 methods, while excluding ANLS as exact model

order information of the number of harmonics of each source is unavailable. The

table presents the performance measures Accuracy, Precision, and Recall [27]. As

can be seen, the performance of the proposed method is clearly better than that of

the comparison methods; likely, this results from ESACF having problems with

estimating the pitches of the inharmonic pianos, whereas BW15 suffers from not

being able to accurately estimate the trumpets, perhaps caused by bad match to

its training data set.
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