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On the interior stress problem for elasti bodiesJohan HelsingDepartment of Solid Mehanis and NADA, Royal Institute of Tehnology,SE-100 44 Stokholm, SwedenApril 25, 2000AbstratThe lassi Sherman-Lauriella integral equation and an integral equation due toMuskhelishvili for the interior stress problem are modi�ed. The modi�ed formulationsdi�er from the lassi ones in several respets: both modi�ations are based on unique-ness onditions with lear physial interpretations and, more importantly, they do notrequire the arbitrary plaement of a point inside the omputational domain. Further-more, in the modi�ed Muskhelishvili equation the unknown quantity, whih is solvedfor, is simply related to the stress. In Muskhelishvili's original formulation the unknownquantity is related to the displaement. Numerial examples demonstrate the greaterstability of the modi�ed shemes.1 IntrodutionThe task of omputing the elasti �eld inside an unonstrained body subjeted to externalstress is a basi one in applied mehanis. A variety of numerial methods exist, leading tothe solution of systems of linear equations. Finite element methods and integral equationmethods are two examples. A problem, for any method, is a ertain undeterminay in thesolution { when stress is applied, displaement is not unique.There are standard ways to get a well-posed problem. In a �nite element program onean presribe also the displaement at some points (to prevent rigid body movements). Inthe ontext of integral equations, the integral operator an be ompleted with an extraoperator, ontaining another arbitrary point, whih makes the solution unique. The hoieof partiular representations of the unknown �elds and plaements of arbitrary points will,of ourse, a�et the stability of a numerial ode. With a diret solver and for simpleproblems this may not be an issue. The omputational work only depends on the size ofthe system matrix. With the faster, iterative, solvers used by many engineers today and indiÆult situations, the stability of the ode and the ondition number of the system matrixis suddenly important. The lower the ondition number, the faster the solver will onverge.A stable algorithm an give a solution with better quality.This paper fouses on the Sherman-Lauriella integral equation and an integral equationdue to Muskhelishvili for the interior stress problem in two-dimensional elastostatis. Thelassi way to get a unique solution for these equations is to omplete them with an oper-ator B ontaining an arbitrary point z� (Sherman 1940). We show that the onvergene1



properties of iterative algorithms based on these equations an be sensitive to the plaementof z�. To remedy this situation, we introdue a uniqueness ondition with a lear physialinterpretation. This leads us to a new operator B whih is free from the arbitrary pointz�. We then derive a modi�ation of the Muskhelishvili equation whih is better suitedto ompute stress �elds. Numerial experiments indiate that our modi�ed equations givemore eÆient algorithms.2 Potential representationA �nite, linearly elasti, body oupies a domain D. Its two-dimensional elasti bulk andshear moduli are � and �. The boundary of the body is denoted � and is given positive(ounter-lokwise) orientation. Tration is presribed at �. We would like to ompute thedeformation and the stress �eld inside D.Let U denote the Airy stress funtion. Sine U satis�es the biharmoni equation insideD it an be represented as U = <e f�z�+ �g ; (1)where the potentials � and � are single valued analyti funtions of the omplex variable z =x+ iy. For a thorough disussion of the omplex variable approah to elastiity problems,see Muskhelishvili (1953), Sokolniko� (1956), Mikhlin (1957), and Parton and Perlin (1982).For our purposes it is suÆient to observe a few relations that link the omplex potentialsto quantities of physial interest: The displaement (ux; uy) in the material satis�esux + iuy = � 12� + 1���� 12� �z�0 +  � ; (2)where  = �0. The integral of tration (tx; ty) along a urve (s) an be obtained from therelation Z ss0 (tx + ity)ds = �����ss0i ��+ z�0 +  � ; (3)where s denotes arlength along (s). Complex di�erentiation of the expression (2) alongthe tangent to �(s) givesddz (ux + iuy) = � 12� + 1���� 12� ��� �nnz�0 � �nn	� ; (4)and di�erentiation with respet to arlength in (3) givestx + ity = �n+�n� z�0�n�	�n; (5)where � = �0, 	 = �00, and n = nx + iny is the outward unit normal vetor on �. Theomponents of the stress tensor an be omputed via�xx + �yy = 4<ef�g ; (6)�yy � �xx + 2i�xy = 2(�z�0 +	) ; (7)2



A natural starting point for elastostati problems is to represent the potentials � and , or � and 	, in the form of Cauhy-type integrals�(z) = 12�i Z� !(�)d�(� � z) ; z 2 D ; (8)and  (z) = 12�i Z� �(�)d�(� � z) ; z 2 D ; (9)or �(z) = 12�i Z� 
(�)d�(� � z) ; z 2 D ; (10)and 	(z) = 12�i Z� �(�)d�(� � z) ; z 2 D ; (11)where ! and �, or 
 and �, are unknown layer densities on �. Values of the potentials �, , �, and 	 on � are de�ned as limits of �,  , � and 	 in D as � is approahed. Sine theequations of elastiity now are satis�ed everywhere, it remains only to solve the problemwhih onsists of enforing the boundary ondition of presribed tration (tprx ; tpry ) along �.This an be done in various ways, leading to various integral equations.3 The lassi Sherman-Lauriella integral equationAn lassi hoie for the interior stress problem is to hoose the unknown layer density �of (9) in the following way �(z) = !(z)� �z!0(z) : (12)The hoie (12) makes  of (9) assume the form (z) = 12�i Z� !(�)d��(� � z) + 12�i Z� !(�)d�(� � z) � 12�i Z� ��!(�)d�(� � z)2 : (13)The requirement of preribed tration on � leads, via (3), to the Lauriella integralequation for ! (I +MSL)!(z) = g(z) ; z 2 � ; (14)aompanied with the solvability onditions that g(z) must be single valued andQ1g = 0 : (15)In (14-15) the notation g(z) has been introdued for the integral of tration along � from apoint z(s0) as g(z) = iZ s(z)s0 tds ; z 2 � ;where t = tprx + itpry , and the operator Q1 is a mapping from � to R, de�ned byQ1g = 1S<e�Z� g(z)d�z� ; (16)3



where S is the perimeter of the body, and MSL is a ompat integral operator given byMSL!(�) = 12�i "Z� !(�)d�(� � z) � Z� !(�)d��(�� � �z) � Z� !(�)d�(�� � �z) + Z� (� � z)!(�)d��(�� � �z)2 # : (17)Consider now the integral operator B suggested by Sherman (1940) and de�ned byB!(z) = � 1(z � z�) � 1(�z � �z�) + (z � z�)(�z � �z�)2� 1�i<e�Z� !(�)d�(� � z�)2� ; z 2 � ; (18)where z� is an arbitrary point in D. Parton and Perlin (1982) suggest a simpler operator BB!(z) = 1(�z � �z�) 1�i<e�Z� !(�)d�(� � z�)2� ; z 2 � : (19)Addition of the operator B to the left hand side of (14) gives the Sherman-Lauriella integralequation (I +MSL +B)!(z) = g(z) ; z 2 � : (20)Uniqueness of the solution to (20), with the hoie (18) for B, is proven in paragraph 56 ofMikhlin (1957). Uniqueness, with the hoie (19), is proven in paragraph 19 of Parton andPerlin (1982).One equation (20) is solved for !, various quantities of physial interest an be om-puted. The displaement on �, for example, an be obtained fromux + iuy = 12 � 1� + 1�� (I +M1)!(z)� g(z)2� ; z 2 � ; (21)where M1!(z) = 1�i Z� !(�)d�(� � z) ; z 2 � : (22)From the viewpoint of numerial eÆieny, the hoie between (18) and (19) for B isperhaps not so important. Greenbaum, Greengard and Mayo (1992) use (20) with (18).Greengard, Kropinski, and Mayo (1996) and Strandberg (1999) use (20) with (19). Noauthor omments on the relative merits of the two hoies. The next setion presents yetanother hoie B. As we shall see in the last setion, this new \twist" an make a substantialdi�erene.4 A new operator BEquation (14) with the solvability ondition (15) does not have a unique solution. Theoperator on the left-hand side of (14) is rank-one de�ient. On the unit disk, for example,a null-vetor is !n = iz. We suggest the uniqueness onditionQ1(I +M1)! = 0 : (23)
4



We see, from (16) and (21), that the ondition (23) has a physial interpretation in termsof average tangential displaement on �. Two useful relations areQ1(I +MSL)! = 0 ; (24)Q1in = 1 : (25)We are now in the position to propose a new equivalent formulation for (14) and (23),assuming that (15) holds. The new formulation is based on the hoieB!(z) = in2 Q1(I +M1)!(z) ; z 2 � : (26)This hoie for B di�ers from the hoies (18) and (19) in two respets: it has a learphysial interpretation and, more importantly, it does not involve the arbitrary point z�.The Sherman-Lauriella equation now reads�I +MSL + in2 Q1(I +M1)�!(z) = g(z) ; z 2 � : (27)Equation (27) trivially follows from (14) and (23). To prove the onverse, we apply Q1 fromthe left in (27) and use the relations (24-25) and (15). This gives (23). Subtration of (23)from (27) gives bak (14).Uniqueness of the solution to (27) an be proven using the same tehnique as in para-graph 56 of Mikhlin (1957) and observing the relations�(z) = 12(I +M1)!(z) ; z 2 � ; (28)and Q1iz = 2A=S ; (29)where A is the area of the body.5 A modi�ed Muskhelishvili equationAn interesting extension for the interior stress problem is to let it involve a problem exteriortoD. The exterior problem is one where the presribed tration on � is zero and the stress atin�nity is zero. We shall seek � and 	 suh that the two problems are solved simultaneously.Clearly, � and 	 are zero outside D. This follows from the uniqueness of the solution tothe seond fundamental exterior problem in the plane (Mikhlin 1957), and implies that 
of (10) and � of (11) are boundary values of analyti funtions in D. Now we hoose 
 tobe the value of � on �, and hoose � in suh a way that the tration is zero outside � andjumps a quantity t as � is rossed. The jump ondition makes 	 of (11) take the form	(z) = � 12�i Z� �(�)d��(� � z) � 12�i Z� ���(�)d�(� � z)2 � 12�i Z� �n�td�(� � z) ; z 2 D : (30)The requirement that the tration outside � is zero leads to the following integral equationfor � on � (I �M3) �(z) = �nt(z)2 + �nn 12�i Z� ntd��(�� � �z) ; z 2 � ; (31)5



aompanied with the solvability onditionQ2�nt = 0 ; (32)where Q2f = � 12A<e�Z� f(z)�zdz� : (33)In (31) M3 is an integral operator given byM3�(z) = 12�i "Z� �(�)d�(� � z) + �nn Z� �(�)d�(�� � �z) + Z� �(�)d��(�� � �z) + �nn Z� (� � z)�(�)d��(�� � �z)2 # : (34)Equation (31) an be viewed as the derivative of the onjugate of equation (7) in paragraph54 of Mikhlin (1957). That equation was originally derived by Muskhelishvili.A quantity of physial interest, whih an be omputed one (31) is solved for �, is theomplex tangential derivative of the displaement on �ddz (ux + iuy) = �1� + 1���(z)� �nt2� ; z 2 � : (35)The following Lemma will be useful for proving equation (39) below.Lemma 5.1 Q2i = 1 ; (36)Q2(I �M3)� = 0 : (37)Proof: Equation (36) is proven by applying Gauss' theorem. Equation (37) is proven byexpressing (I �M3)� expliitly in terms of analyti potentials and then applying Cauhy'stheorem. 2Equation (31) with the solvability ondition (32) does not have a unique solution. Theoperator on the left hand side of (31) is rank-one de�ient. Imaginary onstants are null-solutions. For any solution � we an form a new solution as � + i�, where � is a realonstant. See paragraph 54 of Mikhlin (1957) for a similar result for the null-spae of anoperator derived for the potential �. Here we propose the uniqueness onditionQ2� = 0 : (38)We see, from (33) and (35), that the ondition (38) has the same physial interpretation asthe ondition (23).We are now in the position to propose a new formulation for (31) and (38), assumingthat (32) holds.Theorem 1 Given the solvability ondition (32), equation (31) and the uniqueness ondi-tion (38) are equivalent to the the following Fredholm equation of the seond kind(I �M3 + iQ2)�(z) = �nt(z)2 + �nn 12�i Z� ntd��(�� � �z) ; z 2 � : (39)6



Proof: Equation (39) trivially follows from (31) and (38). To prove the onverse, we applyQ2 from the left in (39) and use the relations (36-37) and (32). This gives (38). Subtrationof (38) from (39) gives bak (31). 2Uniqueness of the solution to (39) an be proven using the method of paragraph 54 inMikhlin (1957). First one proves that an assumed homogeneous solution, �0, to (39) hasto be an imaginary onstant. Then (38), whih is implied by (39), gives that this onstantis zero.6 Numerial omparison between formulationsIn this setion we undertake a omparison between algorithms for the lassi Sherman-Lauriella equation (20) with the hoie (19) for B, for the modi�ed formulation (27), andfor the modi�ed Muskhelishvili equation (39). The algorithms are of Nystr�om type based onomposite 16-point Gaussian quadrature and the GMRES iterative solver (Saad and Shultz1986). The iterations are terminated when the residual is as small as it an get, whihtypially means 2 � 10�15. Compensated summation (Kahan 1965; Higham 1996) is usedfor the omputation of matrix-vetor multipliations and inner produts in the GMRESiterative solver. For details on how to regularize the Cauhy-type singular operator M1of (22), see Helsing and Jonsson (1999).For setups with smooth boundaries and analytial solutions, suh as loaded irular orellipti disks, it is hard to say whih equation leads to the best algorithm. Algorithmsbased on the three equations all require only a few GMRES iterations for full onvergene.Non-trivial examples are needed in order to detet di�erenes in performane.When omparing the performane of the algorithms below, we need a referene quantityqref to measure auray against. We have deided to use the L2 norm of the hydrostatistress on �, that is qref = �Z� (�xx(z) + �yy(z))2 ds�12 ; (40)as suh a referene quantity.Example 1: A symmetri star�sh. We �rst onsider a body in the shape of anine-armed star�sh parameterized byz(t) = (1 + 0:36 os 9t)eit ; 0 � t < 2� : (41)The load is hosen as g(z) = z2 : (42)We start out with testing the algorithm for the lassi equation (20) with B as in (19).The star�sh of (41) is symmetri with respet to the origin. A natural hoie for the arbitrarypoint is therefore z� = 0. With this hoie for z� the algorithm for the lassi equation (20)requires 2000 disretization points to reah a relative error in qref of 10�12. Upon inreasedresolution the quality of the solution slowly gets worse. See Figure 1. The number ofGMRES iterations required is 25. The sensitivity to the plaement of the arbitrary point z�turns out to be quite large in this example. When the position of z� = 0 is hanged a tinydistane to z� = 0:01i, whih still is far away from the boundary of the star�sh ontour,the number of GMRES iterations needed for onvergene more than doubles, see Figure 2.7
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Figure 1: Example 1. Convergene of the referene quantity qref of (40), de�ned as theEulidean norm of the hydrostati stress on the boundary, for algorithms based on the lassiequation (20) with z� = 0, the modi�ed formulation (27), and the modi�ed equation (39). Theorret value, qref = 71:79088302407723 was omputed using quadruple preision arithmeti.
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Figure 3: Example 2. Convergene of the referene quantity qref of (40) for algorithms based onthe lassi equation (20) with z� plaed at the enter of gravity, the modi�ed formulation (27),and the modi�ed equation (39). The orret value, qref = 73:451300874308?? was omputedusing quadruple preision arithmeti.The algorithm for the modi�ed formulation (27) gives results whih are almost identialto those of (20) with the optimal hoie z� = 0. See Figure 1. The algorithm for the modi�edformulation requires also about 2000 disretization points for a relative error in result qrefof about 10�12. Solving the system of linear equations takes 24 GMRES iterations, whihis one iteration less than for (20) with the optimal hoie z� = 0. See Figure 2.The algorithm for the modi�ed equation (39) has, by far, the best stability properties inthis example. Like the previous formulations it gives a relative error in qref of about 10�12for 2000 disretization points, but as the resolution is inreased the relative error in qrefdereases further and stabilizes on about 2 � 10�15. Equation (39) also gives the best resultsfor underresolved alulations. See Figure 1.Example 2: An irregular star�sh. The star�sh of (41) has an obvious symmetrypoint z = 0 whih, as we have seen, is the optimal hoie for the arbitrary point z�. Toinvestigate the properties of the three algorithms under more general onditions we perturbthe geometry in the previous example so that all arms of the star�sh have di�erent shapesz(t) = (1 + 0:1 sin t+ 0:36 os 9t)eit ; 0 � t < 2� : (43)The load is hanged to g(z) = z2 � izSQ1z22A ; (44)so that the solvability onditions (15) and (32) still are satis�ed.The onvergene properties for the three algorithms in this example turn out to besimilar to those in Example 1. See Figure 3. The main di�erene is that GMRES now9



requires 105 iterations for full onvergene instead of the 25 iterations in Example 1. Aninrease in the number of iterations ould be expeted sine the irregular star�sh of (43)onstitutes a more diÆult geometry than the symmetri star�sh of (41).The modi�ed equation (39) still gives the most stable onvergene and still performsbest for underresolved alulations. The algorithm for the the lassi equation (20), withreasonable plaements of the arbitrary point z�, still gives results whih are similar to,or only slightly worse than, those of the modi�ed formulation (27). See Figure 3. Onedi�erene is worth pointing out: The number of GMRES iterations needed for onvergenewith the lassi equation (20), and for fully resolved alulations, is less sensitive to theplaement of z� in Example 2 than in Example 1. There seems to be no interior point thatis obviously optimal.7 Conlusions and outlookWe onlude that an algorithm based on the modi�ed formulation (27) has shown to beequally or more eÆient for interior stress problems than an algorithm based on the lassiSherman-Lauriella equation (20). The hief advantage with (27) over (20) is that (27)omits the need for the arbitrary point z�. A non-optimal hoie for z� an in ertainsituations greatly deteriorate the performane of iterative algorithms based on the lassiequation (20). In addition, removal of the arbitrary point z� is an advantage from a odingviewpoint.We, further, onlude that an algorithm based on the modi�ed Muskhelishvili equa-tion (39) shows superior stability properties ompared to both the lassi (20) and themodi�ed (27) Sherman-Lauriella equations and that (39) is best for underresolved alula-tions. This is so, sine in (39) we solve for the stress potential � on � diretly, while in (27)we solve for the density !. The density ! is related to � on � via a transform ontainingdi�erentiation. Di�erentiation is in itself an ill-onditioned operation.In a forthoming paper we intend to apply (39) to the problem of omputing so allednoth intensity fators of loaded retangular speimens.AknowledgementThis work was supported by NFR, TFR, and The Knut and Alie Wallenberg Foundationunder TFR ontrat 99-380. ReferenesGreenbaum, A., Greengard, L., and Mayo, A., \On the numerial solution of the biharmoniequation in the plane," Physia D Vol. 60, pp. 216-225, 1992.Greengard, L., Kropinski, M.C., and Mayo, A., \Integral equation methods for Stokes owand isotropi elastiity in the plane," Journal of Computational Physis Vol. 125, pp.403-414, 1996. 10



Helsing, J., and Jonsson, A., \Elastostatis for plates with holes," Department of SolidMehanis KTH report 99-250, 1999.Higham, N.J., Auray and stability of numerial algorithms, SAIM, Philadelphia, pp.92-97, 1996.Kahan, W., \Further remarks on reduing trunation errors," Communiations of the As-soiation for Computing Mahinery Vol. 8, p. 40, 1965.Lauriella, G., \Sur l'int�egration de l'�equation relative �a l'�equilibre des plaques �elastiquesenastr�ees," Ata Mathematia Vol. 32, pp. 201-256, 1909.Mikhlin, S.G., Integral equations, Pergamon Press, London, 1957.Muskhelishvili, N.I., Some Basi Problems of the Mathematial Theory of Elastiity, P.Noordho� Ltd, Groningen, 1953.Parton, V.Z., and Perlin, P.I., Integral Equation Methods in Elastiity, MIR, Mosow, 1982.Saad, Y., and Shultz, M.H., \GMRES: a generalized minimum residual algorithm for solv-ing nonsymmetri linear systems", SIAM Journal on Sienti� and Statistial ComputingVol. 7, pp. 856-869, 1986.Sherman, D.I., \Sur la solution du seond probl�eme fondamental de la th�eorie statique planede l'�elastiit�e", Comptes Rendus (Doklady) de l'Aad�emie des Sienes de l'URSS Vol. 28,pp. 25-32, 1940.Sokolniko�, I.S., Mathematial Theory of Elastiity, MGraw-Hill, New York, 1956.Strandberg, M., \A numerial study of the stress �elds arising from sharp and blunt V-nothes in a SENT-speimen", International Journal of Frature (in the press), 1999.

11


