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Attosecond dynamics of light-induced resonant hole transfer in high-order-harmonic generation
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We present a study of high-order-harmonic generation (HHG) assisted by extreme ultraviolet (XUV) attosecond
pulses, which can lead to the excitation of inner-shell electrons and the generation of a second HHG plateau. With
the treatment of a one-dimensional model of krypton, based on time-dependent configuration interaction singles
(TDCIS) of an effective two-electron system, we show that the XUV-assisted HHG spectrum reveals the duration
of the semiclassical electron trajectories. The results are interpreted by the strong-field approximation (SFA)
and the importance of the hole transfer during the tunneling process is emphasized. Finally, coherent population
transfer between the inner and outer holes with attosecond pulse trains is discussed.

DOI: 10.1103/PhysRevA.95.023409

I. INTRODUCTION

High-order-harmonic generation (HHG) is a fascinating
nonperturbative phenomenon where high-frequency photons
are produced through the interaction of a low-frequency
intense laser field with atomic or molecular gases [1–3].
The HHG spectrum forms a plateau in the XUV or soft-
x-ray region [4], that ends abruptly at a cutoff energy
3.17Up + 1.32Ip, where Ip is the ionization potential and
Up is the ponderomotive energy of the electron in the laser
field [1]. HHG can be explained by a semiclassical three-step
model, in which the intense laser field distorts the atomic
potential such that the valence electron is tunnel ionized,
accelerated in the continuum, and then recombined to the
ground state with an emitted photon. The broadband property
of the plateau supports attosecond pulse generation so that
the time-dependent measurement on the attosecond time
scale becomes possible [3–8]. In addition, the harmonics
generated from the recombination process contain information
about the interference between the ground state and the
continuum wave packet, and this interference has many ap-
plications for the studies of molecular structure and dynamics
[9–17]. With the progress of laser technology both harmonic
intensity and photon energy will increase, allowing for
controlling strong optical and attosecond-pulse driven electron
dynamics.

One way to manipulate the HHG process is by applying
multicolor laser fields that provide various ways to change the
HHG spectrum. Additional frequencies in combination with
the driving laser field can alter the semiclassical electron tra-
jectories in the continuum, which can give rise to change HHG
intensity by constructive interference of different orbitals. This
idea can be used to enhance the HHG plateau [18,19] or extend
the cutoff energy [20–22]. Another approach to enhance the
HHG is to control the time of ionization by using attosecond
pulse trains to initialize the ionization time via single photon
absorption [19,23–25]. Furthermore, the temporal property of
the generated attosecond pulses can be controlled by varying
the phase difference between the laser field and a second

*jhihan@gmail.com
†nina.rohringer@mpsd.mpg.de

harmonic field [26,27]. If the second harmonic field is weak
it will barely modify the original odd harmonics, but the
symmetry breaking between half optical cycles leads to the
generation of weak even harmonics. These even harmonics
have been used to retrieve emission times of attosecond pulses
and recombination times of the electrons [28–31]. Some ideas
beyond single-active electron approximation have also been
theoretically discussed to extend the HHG cutoff. For example,
nonsequential double recombination, which is the inverse of
single-photon double ionization, leads to a second plateau, but
the probability for this process was found to be extremely
small [32]. Here, we will study a two-electron scheme to
generate a second plateau by inner-shell excitation with an
assisting XUV pulse, as first proposed by Buth et al. [33–36]:
During the excursion of a valence electron in continuum, one
can excite an inner-shell electron to the vacant valence state.
Then, the returning electron recombines into the inner-shell
hole, leading to an increase in energy of the emitted photon.
Besides the creation of a second HHG plateau, this process also
reveals detailed information about the continuum trajectories
of the electrons participating in the HHG process.

In this paper, we study resonant XUV-assisted HHG with
the time-dependent-configuration-interaction singles (TDCIS)
approach of an effective two-electron system to model the
krypton atom with 3d and 4p orbitals. We consider two
different cases—few cycle IR pulse + single XUV attopulse
and flat-top IR field + XUV attosecond pulse train (APT).
In both cases, the HHG process can be controlled by varying
the time delay (or phase delay in the case of IR-APT setup)
of IR and XUV field. A semiclassical model and stationary
phase approximation beyond the strong field approximation
(SFA) is presented to interpret the results, where the XUV
field is treated as a perturbation to explain the hole dynamics
on the subcycle time scale [33–36]. In the few cycle IR
pulse + single XUV attopulse case, the temporal information
of electron trajectories is exhibited. Our studies also reveal
discrepancies between the TDCIS calculation and the SFA
model. We propose a modification of the stationary phase
approximation in the extended SFA model and provide an
understanding of hole transition during the tunneling. In
the flap-top IR field + XUV PT case, the effect of the
repetition of XUV pulses on the inner-shell population is also
discussed.
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This paper is organized as follows: In Sec. II, we present our
theoretical methods: time-dependent configuration interaction
and the semiclassical model, which is a generalization of the
Lewenstein’s model [2,37]. In Sec. III, we compare different
HHG spectra with respect to different time delay for both
flat-top and few-cycle IR pulses. We analyze the discrepancy
between different models. Finally, Sec. IV contains our
conclusions and outlook.

II. THEORETICAL METHOD

In order to model XUV-assisted HHG we need at least two
electrons and the possibility for stimulated transition between
different electronic shells. We consider a two-electron one-
dimensional model system:

H (t) = T1 + T2 + V (z1) + V (z2) + Vee(z1,z2) + Vext(t), (1)

where Ti is the kinetic operator of electron i, V (zi) = −Zeff/√
zi

2 + r2
c is an effective atomic potential [38,39],

Vee(z1,z2) = 1/
√

(z1 − z2) + r2
ee is the one-dimensional (1D)

Coulomb interaction between the electrons, and Vext(t) =
[EIR(t) + EXUV(t)](z1 + z2) is the external potential due to
the laser-electron interaction within the dipole approximation.
Here rc, ree, and Zeff are determined to reproduce the binding
potential and the 3d-4p excitation energy of krypton.

A. Time-dependent configuration interaction

Although solving the time-dependent Schrödinger equation
is possible for a two-electron system, the computation time
increases dramatically in the strong-field regime. A time-
dependent configuration interaction singles approach provides
an efficient and sufficient [40] treatment of different many-
body effects and coupled channels [41]. In TDCIS formalism,
we consider the spin-triplet two-electron Hartree-Fock ground
state |�0〉 and its single excitations |�a

i 〉 based on the one-
particle Fock operator ĤF and its eigenstate |ϕp〉 with energy
εp. Here, indices i,j,k,l, . . . are used for spatial orbitals that
are occupied in |�0〉, and the indices a,b,c, . . . are initially
unoccupied (virtual) orbitals. The ground state is chosen as
a spin-triplet state such that the two active electrons do not
fill the same orbital. In the following, we neglect the spin
because the electric dipole transition does not change the
spin configuration. The many-body wave packet in the TDCIS
approximation is expanded by

|�,t〉 = α0(t)|�0〉 +
∑

i

∑
a

αa
i (t)

∣∣�a
i

〉
, (2)

with initial conditions α0(t0) = 1 and αa
i (t0) = 0. To under-

stand the hole dynamics and the corresponding wave packet
propagating in real space, we introduce a time-dependent
orbital [41] that collects all the excitations originating from
the occupied orbital |ϕi〉,

|χi,t〉 =
∑

a

αa
i (t)|ϕa〉. (3)

For the atomic system interacting with laser field E(t) linearly
polarized along the z axis, the TDCIS equations of motion can

be written as [41]

iα̇0 = −E(t)
∑

i

〈ϕi |ẑ|χi,t〉, (4)

i
∂

∂t
|χi〉 =

1©︷ ︸︸ ︷
(ĤF − εi)|χi〉 +

2©︷ ︸︸ ︷∑
i ′

P̂ {K̂i ′i − Ĵi ′i}|χi ′ 〉

−E(t)P̂ ẑ{α0|ϕi〉 + |χi〉}︸ ︷︷ ︸
3©

+E(t)
∑

i ′
zii ′ |χi ′ 〉︸ ︷︷ ︸

4©

, (5)

where zii ′ = 〈φi |ẑ|φi ′ 〉 is the dipole transition matrix element,
P̂ is the projection operator acting on the subspace composed
of the virtual orbitals,

P̂ =
virt∑
a

|φa〉〈φa| = I −
occ∑
i

|φi〉〈φi |, (6)

and Ĵi ′i and K̂i ′i are, respectively, generalized Coulomb and
exchange operators defined with the direct Coulomb matrix
elements vai ′a′i and the exchange matrix elements vai ′ia′ :

〈ϕa|Ĵi ′i |ϕa′ 〉 = vai ′a′i , 〈ϕa|K̂i ′i |ϕa′ 〉 = vai ′ia′ . (7)

This procedure establishes a system of linear, coupled one-
particle Schrödinger-like equations in Eq. (5) for the orbitals
|χi,t〉 with the initial condition |χi,t0〉 = 0. Different kinds of
coupling are separated in different terms in Eqs. (4) and (5). For
example, term 2© in Eq. (5) represents the channel coupling due
to electron-electron correlation, while term 4© represents the
laser-driven channel coupling between different ionic states.
The transition between the ground state and the electron-hole
wave packet is contained in the left part of term 3© in Eq. (5)
and in Eq. (4). The contribution of a particular pathway can
easily be examined by removing the associated coupling terms.
However, the TDCIS formalism does not allow for double
excitations that may occur by the full Hamiltonian of Eq. (1).

All information, including the physical observables, can
be obtained by calculating α0 and |χi〉. For example, the
expectation value of a one-body operator D̂, such as a dipole
operator or a dipole acceleration operator, can be expressed as

〈�,t |D̂|�,t〉 = |α0|2
∑

i

dii +
∑

i

〈χi,t |d̂|χi,t〉

+
∑

i

dii

∑
j

〈χj ,t |χj ,t〉 −
∑
ii ′

dii ′ 〈χi,t |χi ′ ,t〉

+ 2 Re

(
α0

∑
i

〈χi,t |d̂|ϕi〉
)

, (8)

where d̂ is the related single-particle operator, with matrix
element dii ′ = 〈φi |d̂|φi ′ 〉. We can obtain the HHG power
spectrum by Fourier transforming the time-dependent dipole
in length gauge dl(t) or dipole acceleration da(t),

P (�) =
∣∣∣∣
∫ ∞

−∞
dtei�tda(t)

∣∣∣∣2

=
∣∣∣∣�2

∫ ∞

−∞
dtei�tdl(t)

∣∣∣∣2

. (9)

To unravel the dynamics of ionic states, we can construct the
reduced density matrix of the residual ion by tracing over the
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virtual orbital a [41–43]:

ρ
(ion)
ij (t) ≡

∑
a

αa∗
i (t)αa

j (t) = 〈χi,t |χj ,t〉. (10)

The diagonal term ρ
(ion)
ii is the probability of forming a hole

in orbital |ϕi〉, or in other words, forming an ion from orbital
|ϕi〉. In this work, we will use the notation ρ1(t) and ρ2(t)
as the inner hole population and the outer hole population,
respectively.

B. Semiclassical model

To get more physical insight we also consider a semiclassi-
cal model of XUV-assisted HHG. The XUV field is treated as
a perturbation in connection with Lewenstein’s semiclassical
calculation for an atom in an intense, low-frequency field. The
two-electron Schrödinger equation takes the form,

[Ĥ0 + ĤIR(t) + λĤX(t)]|�(t)〉 = i
∂

∂t
|�(t)〉, (11)

where Ĥ0 = ĥ0 ⊗ 1̂ + 1̂ ⊗ ĥ0 represents the atomic electronic
structure, ĤIR = ĥIR ⊗ 1̂ + 1̂ ⊗ ĥIR = EIR(t)ẑ1 + EIR(t)ẑ2 is
the interaction with the optical laser, and ĤX = ĥX ⊗ 1̂ + 1̂ ⊗
ĥX = EXUV(t)ẑ1 + EXUV(t)ẑ2 is the interaction with an XUV
field that is treated as a perturbation. Here we use capital
letters to represent two-particle operators and small letters to
represent one-particle operators. In this semiclassical model,
we consider uncorrelated dynamics and represent the wave
function as a Slater determinant. The spatial one-electron
states are represented as the core state |1〉 with energy
ε1, valence state |2〉 with energy ε2 (ionization potential
Ip = −ε2), and the continuum states with canonical momen-
tum p and vector potential A(t) associated with EIR at time t

is |k(t)〉 = |p + A(t)〉. The related transition matrix elements
are 〈2|z|1〉 = z12, 〈k|z|1〉 = d1(k), and 〈k|z|2〉 = d2(k). The
relevant two-particle state can be written as the ground state
|1,2〉 = 2−1/2[|1〉 ⊗ |2〉 − |2〉 ⊗ |1〉] with energy E0=ε1+ε2,
the states with one electron in the continuum k and the other
one in the inner shell |1,k〉 = 2−1/2[|1〉 ⊗ |k〉 − |k〉 ⊗ |1〉], and
the states with the electron in the continuum k and the other
one in the outer shell |2,k〉 = 2−1/2[|2〉 ⊗ |k〉 − |k〉 ⊗ |2〉].

To calculate the time-dependent wave function, we treat
the XUV interaction as a perturbation and expand the wave
function into the unperturbed part |�IR(t)〉 and the perturbed
part |�X(t)〉:

|�(t)〉 = |�IR(t)〉 + λ|�X(t)〉. (12)

Here |�IR(t)〉 satisfies the Schrödinger equation without the
XUV field,

i
∂

∂t
|�IR(t)〉 = [Ĥ0 + ĤIR(t)]|�IR(t)〉. (13)

Based on the SFA and the derivation from Lewenstein’s
model [2], the solution of �IR can be written as |�IR(t)〉 =
|�g(t)〉 + |�c(t)〉, where |�g(t)〉 = e−iE0(t−t0)|1,2〉 is the time-
dependent ground-state wave function and

|�c(t)〉 ≡
∫

ak(t)|1,k〉dk (14)

is the time-dependent continuum state wave function with

ak(t) = −i

∫ t

t0

dt1e
−iS̃1(t,t1,p)〈p + A(t1)|ĥIR(t1)|2〉, (15)

where p = k − A(t) is the canonical momentum and is a
conserved quantity in SFA. Here

S̃1(t,t1,p) =
∫ t

t1

dt ′
1

2
[p + A(t ′)]2

+ ε1(t − t1) + E0(t1 − t0) (16)

is the semiclassical action. To get the HHG spectrum, we
need to calculate the time-dependent dipole expectation,
neglecting of the c-c part: [2] 〈�(t)|z|�(t)〉 ≈ dgc(t) + c.c.,
where dgc(t) = 〈�g(t)|z|�c(t)〉. During the integration over
t1 and k, the dipole moment dgc(t) can be simplified by
using stationary phase approximation (SPA) separately due
to the fast oscillation of S̃1, and this approach allows a
straightforward connection to classical trajectories. First, the
contribution from the saddle point p = p(s) of S1(t,t1,p) =
S̃1(t,t1,p) − E0(t − t0) = ∫ t

t1
dt ′{[p − A(t ′)]2/2 + Ip} results

in the classical recollision condition [2],

p(s)(t,t1) = −
∫ t

t1
A(t ′)dt ′

t − t1
, (17)

and we can get

dgc(t) ≈ −i

∫ t

t0

dt1d2(p(s) + A(t1))EIR(t1)

× apr(t,t1)arec(t,t1). (18)

Here

apr(t,t1) =
(

2πi

t − t1

)1/2

e−iS1(t,t1,p(s)),

arec(t,t1) = d∗
2 (p(s) + A(t)) (19)

represent the amplitudes of the propagation and the recombi-
nation process. Then the integral can be furthermore factorized
into several terms (see the appendix),

dgc(t) ≈
∑

ti

1√
i
[aion(t,ti)apr(t,ti)arec(t,ti)], (20)

by implementing the SPA around t1 = t1(s), which is shifted to
the complex plane from the real ionization time ti defined as
p(s) + A(ti) = 0 according to the three-step model [1,37]. Here
aion is the amplitude of the tunneling ionization process orig-
inated from the integration in the semiclassical action along
the imaginary direction S1(ti ,t1(s),p(s)), while S1(t,ti ,p(s)) is
shown in apr(t,ti). More details are given in the appendix.
For each t , the time-dependent dipole is determined by the
discrete semiclassical trajectories with the complex initial
time, where the imaginary part can be interpreted as quantum
tunneling and the real part approximately satisfies the classical
trajectories in the three-step model. The HHG spectrum is then
obtained by the Fourier transform of Eq. (9). The stationary
phase approximation with the saddle point t = tr , which is
the return time of the ionized electron, determines the emitted
photon energy � = Er (tr ) + 1.32Ip [2], in which Er is the
returning kinetic energy. In addition, dgc(t) dominates the
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Fourier transform over its complex conjugate term, which can
be neglected by the rotating wave approximation (RWA).

The wave function of the perturbed part |�X(t)〉 satisfies
the first-order equation:

i
∂

∂t
|�X(t)〉 = [Ĥ0 + ĤIR(t)]|�X(t)〉 + ĤX(t)|�IR(t)〉. (21)

Solving the inhomogeneous differential equation (21) with the
initial condition |�X(t0)〉 = 0, we formally get

|�X(t)〉 = −i

∫ t

t0

dt ′ÛIR(t,t ′)ĤX(t ′)|�IR(t ′)〉, (22)

where ÛIR(t,t ′) is the propagator of the system unperturbed
by the XUV field according to the Hamiltonian Ĥ0 + ĤIR(t).
We assume that the XUV field only couples the states |1〉 and
|2〉, and that the dipole transition matrix element dgx(t) =
〈�g(t)|z|�X(t)〉 can be approximated by stationary phase
approximation,

dgx(t) ≈ −
∫ t

t0

dt1d2(p(s) + A(t1))EIR(t1)

× ãpr(t,t1)ãrec(t,t1)axuv(t,t1), (23)

where the amplitude axuv reads

axuv(t,t1) =
∫ t

t1

dt2z12EXUV(t2)ei�εt2 , (24)

with �ε = ε2 − ε1, and the modified propagation and recom-
bination amplitudes are

ãpr(t,t1) =
(

2πi

t − t1

)1/2

e−iS2(t,t1,p(s)),

ãrec(t,t1) = d∗
1 (p(s) + A(t)), (25)

where S2(t,t1,p(s)) = S1(t,t1,p(s)) + �εt . The physical inter-
pretation is that the outer-shell electron is ionized at t1 by the
laser field and then propagates in the laser-dressed continuum.
At t2, the inner-shell electron is excited to the outer-shell hole,
such that the electronic hole is transferred from outer to the
inner shell. Finally, the electron in the continuum recombines
to the inner-shell hole at time t . The term axuv(t,t1) can
be interpreted as the transition amplitude of the inner-shell
electron to the outer orbital during the excursion of the tunnel
ionized electron is in the continuum. We will analyze how a
given time delay τ (or the phase delay, δ ≡ 2πτ/TIR) between
the XUV and the IR field affects the HHG spectrum. Therefore,
we will write out the time arguments explicitly axuv(t,t1,τ )
where we find it necessary. It can be shown that the maximal
energy of the emitted photons reach 3.17Up + �ε + 1.32Ip

in the XUV-assisted HHG processes.
To incorporate the XUV driven transition in the strong-field

approximation, we redefine the phase factor S2 by moving the
XUV transition matrix element into the exponent:

S2,X(t,t1,p(s),τ ) = S2(t,t1,p(s)) + SX(t,t1,τ ), (26)

where

SX(t,t1,τ ) = i ln axuv(t,t1). (27)

Then, the stationary phase requirement with respect to
the ionization time t1 yields an additional contribution

∂SX(t,t1,τ )/∂t1 = −iη(t1,τ ), so that the condition of station-
ary phase reads

∂SX

∂t1

∣∣∣∣
t1(s)

= − [p + A(t1(s))]2

2
− Ip − iη(t1(s),τ ) = 0, (28)

where

η(t1,τ ) = 1

axuv(t,t1)

∂axuv(t,t1)

∂t1
. (29)

If axuv changes slowly so that axuv(t,t1(s)) ≈ axuv(t,ti) and
η(t1(s),τ ) ≈ η(t1,τ ) � Ip, the contribution of the XUV fields
to the stationary phase equation [Eq. (28)] can be neglected and
axuv can be treated as a constant with respect to t1 in Eq. (23).
The assumption of the slowly varying function axuv mentioned
above can be expressed as∣∣∣∣∂axuv

∂t1
(t,t1 = ti)

∣∣∣∣ �
∣∣∣∣ 1

Im(t1(s))
axuv(t,ti)

∣∣∣∣,∣∣∣∣∂axuv

∂t1
(t,t1 = ti)

∣∣∣∣ � |Ipaxuv(t,ti)|, (30)

which indicates that axuv has to vary slowly on the time
scales of the tunneling time and I−1

p . For XUV pulses
satisfying Eq. (30), the dipole expectation value Eq. (23) can
then be approximated by applying a series of saddle-point
approximations, similar to those that led to Eq. (20). In this
simplified case we get

dgx(t) ≈
∑

ti

aion(t,ti)ãpr(t,ti)ãrec(t,ti)axuv(t,ti). (31)

The XUV resonant excitation has two major implications
for the semiclassical description: the additional phase in ãpr

representing the inner hole propagation and the addition of
transition amplitude axuv, which is a real quantity in the
RWA. If the pulse shape EX of the XUV field EXUV(t) =
EX(t − τ ) cos[ωx(t − τ )] is short, so that Eq. (30) is not
satisfied, a more detailed analysis is required. For example,
if the pulse shape is given by a Gaussian function,

EX(t − τ ) = Exe
−(t−τ )2/τ 2

x , (32)

with central frequency ωx = �ε, then

axuv(t,t1) ≈ z12Exτxe
−iωxτ

2

[√
π

2
− erf

(
t1 − τ

τx

)]
, (33)

where erf is the error function, and its contributed dipole phase,

Re[SX(t,t1,τ )] = −ωτ. (34)

In the above equation, the RWA is applied and only the negative
frequency component of the XUV field is considered:

E
(−)
XUV(t) = 1

2EX(t − τ ) exp[−iωx(t − τ )]. (35)

In the case of attosecond pulses, τx is small compared to the
optical period and the error function grows quickly along the
imaginary direction t1(s) when ionization time is close to the
center of the XUV pulse Re(t1) ≈ τ :

erf

[
i
Im(t1(s))

τx

]
∝ exp

[(
Im(t1(s))

τx

)2]
. (36)
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Therefore, axuv should be considered in the stationary re-
quirement for ionization t1. The stationary phase conditions
are therefore strongly modified when the attosecond pulse
overlaps with the IR-induced ionization time. The effect of the
pulse shape of the XUV field on the stationary phase behavior
and the HHG spectrum will be discussed in the next section.

III. RESULT AND DISCUSSION

We adopt our theory to krypton atoms by matching the
binding energies in our 1D model of the 3d and 4p shells,
which implies an ionization potential Ip = 14.0 eV and
resonant excitation energy �ε = 78.5 eV. In our 1D model
system, the radial dipole transition matrix element is 0.354 a.u.
for the hole transition, while the real 3d-4p transition is
3.9×10−2 a.u. in krypton ions. The optical laser intensity is set
to 1014 W/cm2 at a wavelength of 1064 nm. The XUV pulse
has a Gaussian shape with a central frequency of 67 times IR
frequency, pulse duration 280 as, and a peak intensity of 1012

W/cm2. We study two cases: (a) few-cycle IR field + single
XUV pulse and (b) flat-top IR field + XUV pulse train.

A. Single XUV pulse + few-cycle IR field

When a few-cycle IR field is applied to an atomic gas, the
harmonic peaks in the plateau of the HHG spectrum depend on
the carrier envelope phase (CEP) of the IR field. These CEP-
dependent structures can be explained as the sum of individual
half-cycle bursts and have been observed experimentally
[44–46]. Here, we consider the HHG spectra with a four-cycle
pulse in addition to a single resonant XUV pulse as shown
in Fig. 1(a). The red dashed line shows the HHG spectrum
generated by the driving cos-like IR pulse and an XUV pulse
with time delay τ = 0 defined relative to the peaks of the
IR-pulse envelope. The green dashed line shows the result
by the same pulses with time delay τ = TIR/4, where TIR

is the period of the IR field, and the blue dash-dotted line
shows the result for a sin-like IR pulse and an XUV pulse
with zero time delay, τ = 0. In addition to the normal HHG
plateau, which runs up to approximately 40 harmonic order
and only depends on the CEP of the IR field. In addition, there
is a second plateau that originates from the XUV resonant
hole transition during the HHG process. The second plateau
region is about 3–4 orders of magnitude weaker than the main
plateau and could be enhanced by using higher XUV intensity
because the transition probability of the core electronic to the
valence vacancy is proportional to the XUV intensity [33,34]
as shown in Fig. 1(b). The yields of the second plateau can
be comparable with the yields of the first plateau with the
use of higher XUV intensity such as 1016W/cm2 [the blue
dot-dash line in Fig. 1(b)], but the structure of the first plateau
changes because the high-intensity XUV field results in the
noticeable depletion of the outer-hole ionic state. In addition
to the XUV intensity, the spectrum of the second plateau also
depends on the XUV time delay τ and the electron trajectories
of the HHG process. In Figs. 2(a) and 2(b), we show the 2D
plot of HHG spectra in the second plateau region with cos-like
and sin-like four-cycle pulse as a function of time delay τ in
units of optical cycle (o.c.). Several plateaus are observed with
horizontal-stripe structures.
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FIG. 1. (a) Comparison of the XUV-assisted HHG spectra in
logarithmic scale using different four-cycle driving IR fields and
a single XUV resonant pulse with different time delay τ : cos-like
IR field, τ = 0 (red solid curve); cos-like IR field, τ = TIR/4 (green
dashed curve); sin-like IR field, τ = 0 (blue dot-dash curve). (b)
Comparison of the HHG spectrum using the same cos-like IR field
but different XUV intensity at the fixed time delay τ = TIR/4:
IXUV = 1012W/cm2 (green dashed curve, as the same as the upper
panel); IXUV = 1014W/cm2 (red solid curve); IXUV = 1016W/cm2

(blue dot-dash curve).

For cos-like IR pulse case in Fig. 2(a), the main second
plateau (I) extends up to 110 harmonic for XUV time delays
between −0.5TIR and 0.2TIR, while the region (II) extends up to
100 harmonic for XUV time delays between 0 and 0.7TIR. For
sin-like IR pulses in Fig. 2(b), the second plateau (IV) extends
up to 110 harmonic for XUV time delays between −0.3TIR and
0.5TIR, while the second plateau form a cutoff of harmonic
95 for delay times between 0.5TIR to 0.9TIR (region V).
These structures can be understood analyzing the classical
trajectories. The second plateau can only be generated when
the excursion of the valence electron overlaps with the XUV
pulse. To explain the structures we analyze the recombination
energy as a function of ionization and recombination times
that result from the unperturbed case of an acting IR field
only. Figures 2(c) and 2(d) plot the recombination energy as
a function of a given ionization time by red dots. A classical
trajectory of a given ionization time has also a well-defined
recombination time, i.e., there is a one-to-one mapping of
ionization and recombination times. The recombination energy
as a function of recombination time is plotted by the green
dots in Figs. 2(c) and 2(d). As an example, for the one-
to-one mapping we show the corresponding ionization and
recombination times for the cutoff trajectories of region I of the
highest possible energies, which separate the trajectories into
two sets of groups: short trajectories, in which the electrons are
ionized later and recombine earlier; long trajectories, in which
the electrons are ionized earlier and recombine later. If the
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Time (units of o.c.)

[log    ]10

FIG. 2. The upper panels are power spectra in the second plateau region of HHG for (a) cos-like and (b) sin-like short IR laser field with
single XUV pulse. The lower panels are the return energy (in terms of the harmonic order with recombination to the inner shell) plotted as a
function of the ionization time (red filled circles) and the recombination time (green open circles). The blue curves in the lower panels are the
corresponding IR field: cos-like (left) and sin-like (right). The arrows in (c) and (d) are the classical trajectories mainly allowed and labeled
with I-V.

time delay of the XUV pulse falls in between those times, the
plateau region I in Fig. 2(a) is generated. Likewise the cutoff
trajectories of region II are marked in Fig. 2(c). A similar
analysis holds for the sin-like IR pulse shown in Figs. 2(b)
and 2(d). Therefore, the cutoff energy and the peak structures
of the second plateau reveal directly the excursion time of
the electron trajectories in the strong laser field. Clearly, the
plateau structure depends critically on the temporal shape of
the laser field and one can imagine that the XUV-assisted HHG
spectrum can be used to probe the CEP of a few-cycle pulse
without the emission of photo- or Auger electrons [47].

To understand the structures of Figs. 2(a) and 2(b) in more
detail, we perform the semiclassical SFA treatment for the
cos-like IR field case. The dipole moment calculation with
approximation according to Eqs. (23) and (24) for axuv leads to
Fig. 3(a). The detailed substructures inside the plateaus differ
between the TDCIS calculation and the SFA calculation. In the
case of SFA with Eq. (23) shown in Fig. 3(a), the local minima
of the second plateau show positive slopes as a function of
time delay for delay times around τ = −0.4TIR and 0.1TIR, as
indicated by the regions marked with the black ellipse. In the
TDCIS calculation, shown in Fig. 2(a), there are more complex
substructures. To clarify the origin of the discrepancy between
TDCIS and SFA, we simplify our TDCIS to an independent
particle approximation (IPA) and use short-range potentials
to more closely adapt to the assumptions of SFA. Here we
use two kinds of short-range potential: V (x) = Ze−ax2

with

Z = 5.38 and a = 2.03 resulting in only two bound states
that are occupied by the two electrons [Fig. 3(c)]; V (x) =
Ze−ax2

/
√

x2 + b2 with Z = 1.07, a = 0.01, and b = 0.702
supporting a larger number of bound excitations [Fig. 3(d)].
In the IPA with two bound states only, the pattern within the
region marked by the black ellipse in the Fig. 3(c) is similar
to the one of Fig. 3(a). For example, we compare the HHG
spectrum at τ = −0.4TIR as shown in Fig. 4. Because the
asymptotic behavior rather than the analytical from of the of
the bound state wave function is known (see appendix), the
HHG spectrum in SFA model shows relative photon yields up
to a normalization factor. Here, the data of the SFA model from
Fig. 3(a) (blue dash-dot curve) is normalized to the scale of
the data of the IPA with potential supporting only two bound
states from Fig. 3(c) (red solid curve), and these two curves
fit very well with the same peak structure. On the contrary,
when a potential supporting more than two bound states is
used, a more complex interference structure in the plateaus
is visible, as shown in Fig. 3(d). Thus, we argue that the
complex interferences in the lower energy part of the plateaus
in Fig. 2(a) are due to bound excited state population, while
the more energetic part of the plateaus are well described by
the SFA model and exhibit (i) clear horizontal stripes and
(ii) a positive slope on the left side of the plateaus shown in
Figs. 3(a) and 3(c). Indeed, the HHG spectrum at τ = −0.4TIR

obtained from Fig. 2(a) shown as the black dot curve in Fig. 4
presents complex oscillation along the line representing the
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Time delay (units of o.c.)
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FIG. 3. The 2D plot of HHG spectra in the second plateau region
for the cos-like four-cycle IR laser field with single XUV pulse as a
function of time delay: (a) SFA with SPA for p using Eq. (23); (b)
SFA with SPA for both p and t1 using slowly varying approximation
in axuv; (c) TDCIS in the independent particle approximation with
the use of short-range potential supporting only two bound states;
(d) TDCIS in the independent particle approximation with the use of
short-range potential supporting more than two bound states.

SFA model and the IPA with potential supporting only two
bound states. We have found that the detailed structures in the
plateaus are independent of depletion of the ground state by
direct ionization with the XUV field by setting the XUV field
equal to zero in Eq. (4). Moreover, the fine structure in the
plateaus is not affected by turning off the XUV interaction in
term 3© of Eq. (5) so that we can conclude that the structure is
not resulting by interchannel coupling mediated by the XUV
field. Therefore, any bound excited state population is a result
of strong field excitation by the IR field rather than the coupling
with the XUV field, at least in the considered XUV intensities.

If axuv is assumed to be slowly varying, i.e., if we adopt
the approximation for the dipole moment of Eq. (31), then the
stripes at delay times of around τ = −0.45TIR and −0.35TIR

with positive slopes vanish, as shown in Fig. 3(b). There is
a huge range of orders of magnitude in Fig. 3(b) because
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FIG. 4. The comparison of HHG spectrum at τ = −0.4TIR for
Figs. 3(a)–3(c) and 2(a).

the lack of classical trajectories in certain areas of the plot
makes the background signal weaker. In the region where
the positive slopes vanish such as τ = −0.4TIR, the HHG
spectrum plotted as a green dash curve in Fig. 4 gives different
peak structures compared with the SFA without the slowly
varying approximation (blue dash-dot curve). These time
delays τ are close to the ionization time ti of the classical
trajectories. Clearly, to fully explain the structure of positive
slope structure of positive slopes marked by the black ellipses
in Figs. 3(a) and 3(c), the phase contribution SX(t,t1,τ ) has
to be taken into consideration within the XUV field in the
stationary phase approximation. The solution of the stationary
phase equation including SX yields

t1(s) = ti −
iη2

0 ±
√

−η4
0 − 2

[|E(ti)|2 + i2η3
0

]
[Ip + iη0]

|E(ti)|2 + i2η3
0

,

(37)

where η0 = η(τ,τ ). The values of the solution determined
by the laser parameters we use are t1(s) − ti = 1.91 + 15.2i

and 4.72 − 19.8i, and the one in the upper complex plane
should be chosen so that the integration can turn out a simple
Gaussian integral along a suitable contour, which is parallel to
the real axis. Compared with the original complex ionization
time t1(s) = ti + √

2Ip/|E(ti)|, the new term SX changes both
the real part and imaginary part of the complex ionization
time. Because Re(t1(s)) does not deviate from ti much, we can
assume Re(t1(s)) = ti so that the time integration axuv(tr ,t1(s),τ )
inside SX(tr ,t1(s),τ ) can be split into two parts: axuv(tr ,ti ,τ )
with Arg[axuv(tr ,ti ,τ )] = iωxτ , corresponding the resonant
hole transfer during the outer electron in the continuum; and
axuv(ti ,ti + iIm(t1(s)),τ ), the resonant excitation during the
tunneling process. With the Gaussian shaped XUV pulse of
Eq. (32), this complex transition amplitude can be approxi-
mated by axuv(tr ,t1(s),τ ) ≈ exp(iωxτ )(R + iI ), where

R = τx

√
π

2
+ exp

[
(Im(t1(s)))2

τ 2
x

]
(τ − ti), (38)

and

I = −
∫ Im(t1(s))

0
dt ′1 exp

(
t ′21
τ 2
x

)
. (39)

The additional phase contributed from the resonant excitation
during the tunneling process is equal to

Re[SX(tr ,t1(s),τ )] − Re[SX(tr ,ti ,τ )]

= −π/2 + arctan(R/I ). (40)

In the case τ = ti , R ≈ 10.4 is smaller than the absolute value
of I , which is about 30.5, so we obtain the approximation,

Re(SX(tr ,t1(s),τ )) + ωxτ ≈ −π

2
+ R

I
= −A − B(τ − ti),

(41)

where

A = π

2
+ τx

√
π

2
∫ Im(t1(s))

0 dt ′1 exp
( t ′21

τ 2
x

) (42)
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Time delay (units of o.c.)

Time (units of o.c.)
[log    ]10

FIG. 5. Enlarged region of Fig. 3(a) for delay times of roughly
−0.4 optical cycles. In this region, the stripe structure shows a
positive slope. The dotted curve shows emitted photon energy in
the second plateau as a function of ionization time. Long trajectories,
with ionization times earlier than the cutoff trajectory (trajectory with
maximal return energy) marked in blue, and short trajectories marked
in black. The green dashed lines mark the minima of the interference
pattern predicted by Eq. (44) for τ ≈ ti .

and

B =
exp

[ (Im(t1(s)))2

τ 2
x

]
∫ Im(t1(s))

0 dt ′1 exp
( t ′21

τ 2
x

) . (43)

Therefore, when the XUV pulse is close to the start of the
classical trajectory, there is an additional phase which is linear
to the time delay τ , as accessed in Eq. (41). When the XUV
pulse is applied far from the IR tunnel ionization peaks,
η(t1,τ ) is close to zero so that the stationary phase behavior is
independent of τ .

The interference pattern in the second plateau originates
from the interference between short and long trajectories. In
this case the additional τ -dependent phase in Eq. (41) can be
resolved as shown in Fig. 5 showing a zoomed-in region of
Fig. 3(a). The pointed curves in Fig. 5 indicate the emitted
photon energy as a function of ionization time for long (blue
dotted line) and short (black line) trajectories. When τ is close
to t si the ionization time of the short trajectories, the phase of
the HHG interference pattern is

−�
(
t lr − t sr

) + S2
(
t lr ,t

l
i ,p(s)

)
−S2

(
t sr ,t

s
i ,p(s)

) + As + Bs
(
τ − t si

)
, (44)

where the superscripts l and s label the long and short
trajectories, respectively. Here the resonant excitation does
not happen for the long trajectory due to the nonoverlapping
between the XUV field and t li , so

Re
(
SX

(
t lr ,t

l
1(s),τ

)) = Re
(
SX

(
t lr ,t

l
i ,τ

)) = −ωxτ. (45)

Therefore, the valleys of the HHG signal show a linear drift
with positive slopes Bs/(t lr − t sr ), as indicated by green dashed
lines, which fits well with the local minima of the data shown
in red color and cross the black dot line. When τ is close to t li ,
the interference pattern disappears because the XUV pulse is

applied at a time in the optical cycle, that does not support the
production of the short trajectory.

It is worth noting that if a cw XUV pulse is used, the
XUV resonant excitation mainly happens during the electron
excursion. In this case the slowly varying XUV amplitude
approximation is valid. However, if the XUV pulse is short
and if it overlaps with the start of an electron trajectory, the
effective tunneling time may change and the XUV-assisted
HHG is enhanced [c.f. Figs. 2(a) and 2(b)], where the plateaus
are brighter on the left side, such as τ = −0.5π and 0 in
Fig. 2(a). This effect and the positive slopes of the interference
between short and long trajectories demonstrate the invalidity
of the slowly varying approximation of axuv and it presents a
complication to probe the exact tunneling and return times of
electrons in situ in a strong laser field by a single attosecond
pulse. The situation is quite similar to other cases where
classical pictures are used as a starting point for perturbative
expansions on top of the SFA model. For example, the
one-color SFA was perturbed by a weak second harmonics field
for the purpose of in situ characterization of attosecond pulses.
If one assumes classical trajectories, the second harmonic
contributes only a phase correction in the action [28]. However,
using more refined quasiclassical trajectories, which includes
the imaginary part of the saddle points, shows that also the
tunneling processes is modified by the second harmonic field
and that the behavior of the high-order even harmonics is not
well suited for pulse characterization [29].

B. XUV Pulse train + CW IR field

When an XUV pulse train (PT) is applied in addition to a
driving IR field for the HHG, the periodic interaction with the
XUV pulse can result in a coherent accumulation of the inner-
shell hole population. As common in typical experimental
setups, we suppose that the individual bursts of the XUV-PT
are separated by half the IR laser period (see Fig. 6), with a
relative carrier-envelope offset (CEO) of �φc = π , so that the
electric field of the XUV PT reads

EXUV(t) =
∑
m

EX(t − τm) cos[ωx(t − τm) − m�φc], (46)

where τm = τ + mTIR/2 and m is integer. The resulting second
plateau of the HHG spectrum is shown in Fig. 7(a). Here on
the x axis, we define the phase delay δ ≡ 2πτ/TIR, which is
directly linked to the time delay of the IR peak intensity to
the envelope of the as pulse, in multiples of π . Like the first
plateau, the second plateau also contains only odd harmonic
orders. There is π phase shift of the same pathway with the

FIG. 6. Electric field of the IR field (red dash-dot line) and the
XUV pulse train (blue solid line). If the XUV pulse train is generated
via HHG in atomic gases, then �φc = π and the repetition period is
equal to half cycles of the IR field, Tr = TIR/2.
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FIG. 7. The HHG in the second plateau region with two different
kinds of XUV pulse train, �φc is π (left) and 0 (right), as a function
of delay phase δ. (a) and (b) HHG power spectra in the second plateau
region with acceleration form. (c) and (d) Inner-shell population ρ1(t)
as the function of delay phase δ. The white lines on δ = −0.15π and
δ = 0.15π indicate the local maximum and minimal area of the HHG
spectrum.

opposite kinetic momentum in adjacent half cycles due to sign
change of the monochromatic driving IR field,

EIR

(
t + TIR

2

)
= −EIR(t). (47)

Here, both the dipole transition with the pulse train,

z12E
(−)
XUV

(
t + TIR

2

)
= z12E

(−)
XUV(t)ei�φc , (48)

and the opposite parity between the inner and the outer shell,

d∗
1 (−k′)d2(−k) = −d∗

1 (k′)d2(k), (49)

induce additional π phase shifts in the pathway of the second
plateau in the next half cycle. Therefore, the net phase
difference between the pathway from two adjacent half cycles
is π , which results in destructive interference in the even
harmonics. The HHG spectrum of the second plateau, however,
exhibits a phase-delay dependence: When the peak of the XUV
pulse is in the second and fourth quarter cycle (δ > 0), the
spectrum shows higher intensity as the inner hole population
ρ1(t) shown in Fig. 7(c) also shows higher population in the
same region. This can be understood by analyzing the hole
transition probability |axuv(t,ti ,τ )|2, from the outer to the inner
shell for each trajectory for t ∈ [ti ,tr ]. As the example study
the case for δ = 0.15π and −0.15π , indicated as white lines
in Fig. 7, and the cutoff trajectory, [ti,cutoff = 0.29TIR,tr,cutoff =
0.958TIR]. The classical trajectory with an analysis presented
in Figs. 8(a) and 8(b), showing the transition probability
|axuv(t,ti ,τ )|2 and the XUV field for these two phase delays.
For δ = 0.15π [Fig. 8(a)], there is only one XUV pulse in the
time interval [ti,cutoff,tr,cutoff] corresponding to the excursion
time of the electron in the continuum for the cutoff trajectory,
and the transition probability increases during the XUV field
as shown and |axuv(tr,cutoff,ti,cutoff,τ )|2 ≈ γ , where

γ = 1

4

∣∣∣∣z12

∫ ∞

−∞
dt ′EX(t ′ − τ )

∣∣∣∣2

. (50)

FIG. 8. |axuv(t,ti ,τ )|2 curve (red lines) from t = ti to tr (blue dash
line) for XUV pulse trains (green curves) with �φc = π (left) and
�φc = 0 (right). Here δ is chosen −0.15π and 0.15π (white lines in
Fig. 7). When δ = −0.15π , the parent ion interacts with the XUV-PT
once and both of these two cases show the same curve in (a) and (c).
When δ = 0.15π , the parent ion interacts with the XUV-PT twice
and different CEO values show different features on the curves in (b)
and (d).

For δ = −0.15π , there are two XUV pulses in the time interval
between ionization and recombination of the cutoff trajectory
[ti,cutoff,tr,cutoff]. The final transition probability is the coherent
sum of the transition amplitudes of both contributions and can
be written as

|axuv(tr,cutoff,ti,cutoff,τ )|2 ≈ γ |1 + ei(�φc+�εTIR/2)|2
= γ |1 + ei(�φc+π)|2. (51)

Here π in the second line corresponds to the free propagation
of the holes, and can be canceled by �φc = π . Therefore,
the transition amplitudes resulting from two consecutive XUV
pulses are constructively added so that the time-dependent
transition probability is doubled as compared to the case for
δ = 0.15π . For �φc = 0, the π phase difference due to the
free propagation can not be canceled: For δ = 0.15π , there
is only one XUV pulse in the time interval [ti,cutoff,tr,cutoff]
as shown in Fig. 8(c), so the behavior of the transition
probability is the same as for �φc = π . For δ = −0.15π ,
the transition probability increases during the first XUV pulse
and then decreases during the second XUV pulse as shown
in Fig. 8(d). Therefore, this destructive accumulation reflects
lower HHG yields for δ = −0.15π than at δ = 0.15π as seen
in Figs. 7(b) and 7(d). Moreover, the second plateau consists
of only even harmonics instead of odd harmonics as shown in
Fig. 7(b) since exp(i�φc) = −1 in Eq. (48). Consequently, by
changing the time delay of the XUV pulse, the hole transfer
during the HHG process can be controlled. Moreover, the
HHG process can probe this hole dynamics. The concept of
coherent population transfer in a two-level system with a train
of ultrashort laser pulses has previously been discussed for
different systems [48].

IV. CONCLUSION

We studied HHG spectra produced by a driving IR field
combined with XUV pulses. Our numerical method, based
on a 1D-model atom using TDCIS calculation, shows good
agreement with perturbative calculations based on SFA, with
the production of a second plateau region that maps out
the excursion times of electron trajectories driven by the
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intense laser field. This extended plateau originates from the
recombination of a continuum electron with an inner-shell hole
that is generated by XUV excitation after the tunneling process.
The time delay between the XUV pulse and the IR field sows a
control knob for the population transfer between the different
ionic states. In the case of a single XUV attopulse and a
few-cycle IR pulse, analyzing the second plateau allows for
extracting the temporal information of the HHG dynamics on
a subcycle time scale, such as ionization rate (intensity of the
interference stripes), and ionization and recombination time
of the classical trajectory (the start and end of the plateaus).
In the region of overlapping attopulse and tunnel ionization
time, the plateau as a function of time shows a positive slope
that was attributed to modified effective tunneling time due
to the XUV field. The tunneling time is a concept coming
from the SFA and tunneling happens on the imaginary time
axis. The perturbative XUV fields, when applied close to the
tunnel ionization time, will change the imaginary tunneling
time by introducing an additional delay dependent phase.
This delay dependent phase is uniquely imprinted on the
spectral slope of the second plateau and can be retrieved.
Moreover, we showed that the second plateau can be increased
by applying a combination of IR flat-top pulses and attosecond
pulse trains. The increase of the plateau reveals a coherent
accumulation of the inner-hole occupation in consequent half
cycles. Our proposed XUV-assisted HHG spectroscopy would
be realizable with existing table-top attosecond sources and
will show more sight on attosecond electron dynamics in
strong IR fields and hole dynamics in the residual ion.
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APPENDIX: THE FACTORIZATION OF
THE TIME-DEPENDENT DIPOLE IN SFA

If we apply the first excited state wave function of the 1D
soft potential,

V (x) = − Zeff√
x2 + a2

, (A1)

to the state as the outer most electron wave function, this wave
function has the asymptotic behavior,

lim
|x|→∞

〈x|2〉 ≈ xe−
√

2Ip |x|. (A2)

We use the above approximation for the bound state wave func-
tion because the dominant pole in the bound-free dipole matrix
element is determined by the asymptotic behavior [49,50]. This
dipole matrix element can be approximated as

d2(p + A(t1)) ≈ 1 − 8(p + A(t1))2

((p + A(t1))2 + 2Ip)2
. (A3)

When the canonical momentum is chosen as the stationary
momentum p(s)(t,t1) as shown in Eq. (17), There is singularity
in the denominator and it is exactly located in the saddle
point t1 = t1(s) of S1 (and S2) even though p = p(s)(t,t1) is
chosen:

∂S1(t,t1,p)

∂t1

∣∣∣∣
t1=t1(s)

= − [p + A(t1(s))]2

2
− Ip = 0. (A4)

For a positive Ip, the solutions t1 = t1(s) of the above
equation are moved to the complex plane from three-step
model ionization time t1 = ti , which satisfies p(s) + A(ti) = 0.
Equation (18) can be approximated as∫

dt1
1 − 8(p(s) + A(t1))2

[S ′
1(t,t1,p(s))]2

EIR(t1)apr(t,t1)arec(t,t1)

≈
∫

dt1
[1 − 8(p(s) + A(t1))2]EIR(t1)apr(t,t1)arec(t,t1)

[S ′′(t,t1(s),p(s))]2(t1 − t1(s))2
.

(A5)

The stationary phase approximation with singularity at saddle
point t1 = t1(s) should be modified [49]:∫

C

dt1
g(t1)e−iS1(t1)

(t1 − t1(s))2
= −

√
2π

2
g(t1(s))

(
S ′′

1 (t1(s))
) 1

2 e−iS1(t1(s)),

(A6)

where g(t1) is any slowly varying function, and the variable t

and p(s) are neglected here. In the limit of strong field Up � Ip,
the complex time t1(s) is slightly shifted away from ti . We can
apply the Taylor expansion around t1 = ti to the S1(t1(s)) and
S ′′

1 (t1(s)), the time-dependent dipole moment is factorized as
Eq. (20) and the detailed form of aion is

aion(t,ti) = C(Ip,p(s))E(ti)

|E(ti)| 3
2

exp

[
− (2Ip)3/2

3|E(ti)|
]
, (A7)

where C(Ip,p(s)) is a constant depending on Ip and the
canonical momentum p(s).
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Muller, P. Agostini, and P. Salières, Science 302, 1540 (2003).
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