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AN EFFICIENT NUMERICAL ALGORITHM FOR CRACKS PARTLY

IN FRICTIONLESS CONTACT∗
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Abstract. An algorithm for a loaded crack partly in frictionless contact is presented. The
problem is nonlinear in the sense that the equations of linear elasticity are supplemented by certain
contact inequalities. The location of a priori unknown contact zones and the solutions to the field
equations must be determined simultaneously. The algorithm is based on a rapidly converging
sequence of relaxed Fredholm integral equations of the second kind in which the contact problem is
viewed as a perturbation of a noncontacting crack problem. The algorithm exhibits great stability
and speed. The numerical results are orders-of-magnitudes more accurate than those of previous
investigators.
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1. Introduction. Contact problems often arise in fracture mechanics. They are
regarded as difficult. Suppose that we want to determine the stress field around a
crack in planar linear elasticity. In the special cases of a straight crack or a circular
arc–shaped crack and a load that keeps the crack completely open, there are simple
analytical solutions [9, 11]. In a more general situation the load might be such that
parts of the crack are in contact after its application. The problem is now nonlinear
and an iterative numerical procedure is needed. A common simplification is to ignore
the contact zones in order to save the linear nature of the problem. Such a practice
causes errors. It could even suggest a different nature of the mode of fracture and
lead to great uncertainty about the validity of theoretical models as experiments are
compared to numerical predictions [12].

While finite element methods, involving contact nodes and possibly also penalty
methods, are applicable for contact problems [8], many popular algorithms are based
on complex potentials and integral equations. Chao and Laws [1], in a typical exam-
ple, treat a circular arc–shaped crack under remote uniaxial loading. The setup is
such that a part of the crack is in frictionless contact. The stress field is computed
by iteratively solving a system of singular integral equations supplemented by a con-
tact condition. The authors report several difficulties related to instabilities of their
algorithm, including problems with determination of the actual contact length and
significant computing costs.

Most commonly, contact problems in fracture mechanics are not ill-conditioned.
The difficulty lies in finding a stable iterative numerical algorithm. Instabilities occur
for two reasons: First, a mathematical description of the contact problem naturally
leads to a system of singular integral equations of Fredholm’s first kind. Such equa-
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tions lead to unstable algorithms. Second, the locations of contact zones are the
natural variables for iteration. In order to get a smooth solution one needs to intro-
duce certain weights. Unfortunately, the solution of the naturally occurring integral
equations has an asymptotic shape that is dependent on whether assumed contact
zones have correct locations. Therefore, a weight that is suitable at an early stage of
the iteration may be completely wrong at a later stage of the iteration.

2. Results. This paper presents a stable and efficient numerical algorithm for
the calculation of the stress fields and precise locations of the contact zones for loaded
cracks of general shapes. In an example, where a finite element method gives a 2%
error for the contact zone, our algorithm produces 13 accurate digits in approximately
one second on a regular workstation. See Example 4 in section 11.

Our approach consists of two major steps. The first step is to rewrite the ba-
sic equations as a system of Fredholm integral equations of the second kind. Well-
conditioned Fredholm equations of the second kind can be solved with extreme accu-
racy in finite-dimensional subspaces of low dimension [6] and are, therefore, a preferred
choice for numerical computations [13]. In the case of cracks in frictionless contact,
the main obstacle is that the interaction between the contact zones and the noncontact
zones is too strong to be described by compact integral operators. We solve this prob-
lem by rewriting the contacting crack problem as a perturbation of a noncontacting
crack problem on the entire crack and an easier problem on the contact zones. This
perturbation is small in the sense that the coupling between the two problems is given
by compact integral operators. It is, however, equivalent to the original problem. The
noncontacting problem was solved in [3].

The second step is to enhance numerical quadrature and other basic operations
by introducing weights that compensate the singular behavior of the solution. In our
case, the stress field has inverse square root singularities at the crack tips and square
root behavior near the endpoints of the contact zones [11]. Both these behaviors are
bad for numerics. Here the main problem is that in the iterative process of finding
the exact positions of the contact zones, we encounter intermediate results with very
different asymptotic behavior. This problem has been solved by relaxing the integral
equations while introducing new constraints. In this new formulation all intermediate
results have the same asymptotics as the true solution.

We give
- a reformulation of the integral equations appearing into a system of Fredholm

equations of the second kind, that is, both stable and easy to use in an efficient
way;

- the correct way to handle the asymptotics on the contact zones;
- an efficient algorithm for the problem at hand;
- particularities of the implementation of the algorithm;
- numerical examples with unprecedented numerical accuracy.

The paper is organized as follows. In section 3 we derive the basic integral equa-
tions for our problem. In sections 4 and 5 we reformulate these equations into a
perturbation of a noncontacting crack problem, and in section 7 we derive a formula-
tion as a system of Fredholm integral equations of the second kind. Section 6 contains
some useful identities for the integral operators used. The final algorithm is presented
in section 8. Sections 9 and 10 contain particularities of the implementation of this
algorithm, and section 11 gives some numerical examples.

3. Basic equations. A material consists of an infinite medium with elastic mod-
uli κ and µ which surrounds one crack. We denote the crack by Γ. The starting point



CRACKS IN FRICTIONLESS CONTACT 553

and the endpoint of the crack, the so-called crack tips, are denoted γs and γe. Of
special interest are two a priori unknown interior points on Γ denoted γ1 and γ2. The
crack is open between γs and γ1, in frictionless contact between γ1 and γ2, and open
again between γ2 and γe. The part of the crack that is in contact is denoted Γco. The
normal traction on Γco is negative. The stress state at infinity is σ∞ = (σxx, σyy, σxy).
We will compute the stress and strain fields in this material subject to three different
imposed stresses at infinity, namely σ∞

I
= (1, 0, 0), σ∞

II
= (0, 1, 0), and σ∞

III
= (0, 0, 1).

It can be shown [11] that the stress field σ is given by a biharmonic function U
called the Airy stress function:

σxx =
∂2U

∂y2
, σyy =

∂2U

∂x2
, σxy = −

∂2U

∂x∂y
.(1)

A standard starting point for crack problems in planar elasticity is to represent the
Airy stress function as

U = ℜe {z̄φ+ χ} ,(2)

where φ and χ are single valued analytic functions outside the crack. Following
Muskhelishvili [11] we introduce the potentials ψ = χ′, Φ = φ′, and Ψ = ψ′. It is
natural to represent the uppercase potentials Φ and Ψ as Cauchy-type integrals

Φ(z) =
1

2πi

∫

Γ

ρ(τ)Ω(τ)dτ

(τ − z)
+
α

2
(3)

and

Ψ(z) =
1

2πi

∫

Γ

ρ(τ)Ξ(τ)dτ

(τ − z)
+ β ,(4)

where Ω(z) and Ξ(z) are unknown densities on Γ. In (3) and (4) ρ(z) is a weight
function on Γ, capturing the asymptotic behavior of the solution, and given by

ρ(z) = ((z − γs)(z − γe))
− 1

2 , z ∈ Γ.(5)

To be precise, the weight function ρ(z) is the limit from the right (relative to the
orientation of the crack) of the branch given by a branch cut along Γ and

lim
z→∞

zρ(z) = 1 .(6)

The densities Ω and Ξ of (3) and (4) need not be treated as independent variables.
The requirement of continuity of the traction across the crack allows us to express Ξ
as a function of Ω:

ρ(z)Ξ(z) =
n̄

n
ρ(z)Ω(z) +

n̄

n
ρ(z)Ω(z) − z̄(ρ(z)Ω(z))′ .(7)

Therefore Ψ assumes the form

Ψ(z) = −
1

2πi

∫

Γ

ρ(τ)Ω(τ)dτ̄

(τ − z)
−

1

2πi

∫

Γ

τ̄ ρ(τ)Ω(τ)dτ

(τ − z)2
+ β .(8)

As discussed in [3], for a noncontacting crack problem the ansatz in (3) and (8)
makes the solution Ω a smooth function. The weight ρ also appears in the definition
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of the integral operators below and its use in crack problems goes back to Muskhel-
ishvili [11].

The choice (8) for Ψ was first suggested by Theocaris and Ioakimidis [16] and
subsequently used by Greengard and Helsing [2] and Helsing and Peters [3]. A similar
choice for the potential ψ was suggested by Sherman [15].

The constants α and β in (3) and (8) represent the forcing terms in our formu-
lation. For imposed average stresses σ∞

I
, σ∞

II
, and σ∞

III
, the constants take the values

α = 1/2 and β = −1/2, α = 1/2 and β = 1/2, and α = 0 and β = i. Thus, α can
always be assumed to be real, while β is either a real or an imaginary number.

Once Φ is assumed to take the form (3), the expression (8) for Ψ enforces con-
tinuity of the traction across the crack. The remaining physical requirements on the
loaded crack take the form of the integral equations (14)–(18) below.

First we define the integral operators

M1Ω(z) =
1

πi

∫

Γ

ρ(τ)Ω(τ)dτ

(τ − z)
,(9)

M3Ω(z) =
1

2πi

[∫

Γ

ρ(τ)Ω(τ)dτ

(τ − z)
+
n̄

n

∫

Γ

ρ(τ)Ω(τ)dτ

(τ̄ − z̄)
(10)

+

∫

Γ

ρ(τ)Ω(τ)dτ̄

(τ̄ − z̄)
+
n̄

n

∫

Γ

(τ − z)ρ(τ)Ω(τ)dτ̄

(τ̄ − z̄)2

]
,

Qf =
1

πi

∫

Γ

ρ(τ)f(τ)dτ ,(11)

and note that the crack-opening displacement and the traction along the crack are
given by

δu+ iδv = −

(
1

κ
+

1

µ

)∫ z

γs

ρ(τ)Ω(τ)dτ ,(12)

tx + ity = n(M1Ω −M3Ω) − n̄β̄ + nα .(13)

The physical requirements on the crack are given by the following five integral equa-
tions:

Zero traction on the open parts of the crack:

(M1 −M3) Ω(z) =
n̄

n
β̄ − α , z ∈ Γ − Γco .(14)

Zero friction along the contact zone:

ℑm {(M1 −M3)Ω(z)} = ℑm
{ n̄
n
β̄ − α

}
, z ∈ Γco .(15)

Negative normal traction along the contact zone:

ℜe {(M1 −M3)Ω(z)} ≤ ℜe
{ n̄
n
β̄ − α

}
, z ∈ Γco .(16)

Contact, that is, zero normal crack-opening displacement along the

contact zone:

ℜe

{
n̄

∫ z

γs

ρ(τ)Ω(τ)dτ

}
= 0 , z ∈ Γco .(17)
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Closure of the crack:

QΩ = 0 .(18)

For future reference we also introduce the integral operator M4 given by

M4f(z) =
1

πi

∫

Γ

f(τ)dτ

ρ(τ)(τ − z)
, z ∈ Γ .(19)

The relation of M4 to M1 is thoroughly discussed in [3]. See also section 6.

4. A model problem. To illustrate the idea behind the particular choice of
integral equation in the next section, we solve a simple model problem:

ℜe {M1T} = f ,

ℜe {ρT} = 0 ,

QT = 0 .(20)

Using the analysis in [3] this can be written as

T − iM4ℑm {M1T} = M4f ,

ℜe {ρT} = 0 .(21)

We have the following theorem.
Theorem 1. The system of equations (20) is equivalent to

T − iM4ℑm
{
M1ρ

−1iℑm {ρT}
}

= M4f .(22)

Proof. Equation (22) obviously follows from (21) and therefore from (20). Now
let T be the solution of (22). We then have (see Lemma 3)

M1T − iℑm
{
M1ρ

−1iℑm {ρT}
}

= f(23)

and trivially

M1T − iℑm
{
M1ρ

−1ρT
}

= ℜe {M1T} .(24)

Since the right-hand sides in both (23) and (24) are real, they must be equal. We
conclude that

ℜe {M1T} = f ,(25)

ℑm
{
M1ρ

−1ℜe {ρT}
}

= 0 .(26)

Equation (22) also implies

QT = 0 .(27)

We now map the exterior of the crack conformally onto the exterior of an interval of
the real line. Using complex analytic function theory, it is possible to show that the
problem of solving (26) maps onto a similar problem on this interval. This is nontrivial
in the sense that the conformal mapping does not extend to a unique mapping on the
crack, since we have a so-called welding problem. The new problem on the interval,
together with results from [3], implies

ℜe{ρT} = 0 .(28)

This proves that (22) implies (20).
We point out that numerical algorithms based on integral equations of Fredholm’s

second kind tend to be very stable.
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5. Perturbation of the noncontacting crack problem. Consider now the
system (14)–(18). If we have no contact zone, that is, Γco = ∅, this is a noncontacting
crack problem. The basic idea is to treat the problem at hand as a perturbation of
a noncontacting crack problem, which was solved in [3]. The solution of the noncon-
tacting problem and the fact that the null-space of Q is the image of M4 (see [3])
suggests the following splitting of the solution Ω:

ΩI = M4

(
M3Ω +

n̄

n
β̄ − α

)
,(29)

Ω = ΩI +M4T0 ,(30)

where ΩI and T0 are two new functions along Γ, for which we have to solve.
The system (14)–(18) now takes the form

T0 = 0 , z ∈ Γ \ Γco ,(31)

ℑm {T0} = 0 , z ∈ Γco ,(32)

ℜe {T0} ≤ 0 , z ∈ Γco ,(33)

ℜe

{
n̄

∫ z

γs

ρ(ΩI +M4T0)dτ

}
= 0 , z ∈ Γco .(34)

Equation (34) can be written

n̄

∫ z

γs

ρ(ΩI +M4T0)dτ − iℑm

{
n̄

∫ z

γs

ρ(ΩI +M4T0)dτ

}
= 0 , z ∈ Γco ,(35)

and the following lemma shows that replacing T0 by ℜe {T0} in the second term of
(35) makes (32) redundant.

Lemma 2. If T0 solves the integral equation

n̄

∫ z

γs

ρ (ΩI +M4T0)dτ(36)

− iℑm

{
n̄

∫ z

γs

ρ(ΩI +M4ℜe {T0})dτ

}
= 0 , z ∈ Γco ,

then

ℑm {T0} ≡ 0 .

We define the weight

η(z) = ((z − γ1)(z − γ2))
− 1

2 , z ∈ Γ ,(37)

and, motivated by the final form of the solution given in section 7, we introduce η
and ρ into the equations and write T0 = ρT/η. This makes the solution T a smooth
function on Γco. See section 6 for more details on the weight η. We end up with the
following system of equations:

ΩI −M4M3(ΩI +M4ℜe {ρT/η}) = M4

( n̄
n
β̄ − α

)
, z ∈ Γ ,(38)

ℜe {ρT/η} ≤ 0 , z ∈ Γco ,(39)

n̄

∫ z

γs

ρ(ΩI +M4ρT/η)dτ(40)

−iℑm

{
n̄

∫ z

γs

ρ(ΩI +M4ℜe {ρT/η})dτ

}
= 0 , z ∈ Γco ,



CRACKS IN FRICTIONLESS CONTACT 557

where ΩI is a function on Γ, while T is a function on Γco.

6. Hilbert space formulation of the problem. As in [3] we denote ν = |ρ|
and introduce the Hilbert space of functions along Γ:

L2(ν,Γ) =

{
f :

∫

Γ

|f |2νds <∞

}
.(41)

We also write

L2(ν,Γco) =
{
f ∈ L2(ν,Γ) : f(z) = 0, z ∈ Γ \ Γco

}
.(42)

We will solve the system (38)–(40) for (ΩI , T ) ∈ L2(ν,Γ)×L2(ν,Γco). A short motiva-
tion for using this kind of weighted space is that, since ρ is a Muckenhoupt weight [10],
the Cauchy-type integrals remain bounded while operators such as M3 and Q become
compact; see [3]. For these results to hold it is sufficient that Γ is a C2 curve.

Let M4 be as in (19) and denote

tcr =
γs + γe

2
.(43)

The following lemma was proved in [3].
Lemma 3.

QM4f(z) = 0 , f ∈ L2(ν,Γ) ,(44)

M1 ◦M4f(z) = f(z) ,(45)

M4 ◦M1f(z) = f(z) −Qf ,(46)

M41 = z − tcr .(47)

Similar operators can be defined on L2(ν,Γco). Let η be the weight defined in
(37) and define operators

M5f(z) =
1

πi

∫

Γco

η(τ)f(τ)dτ

(τ − z)
, z ∈ Γco ,(48)

M6f(z) =
1

πi

∫

Γco

f(τ)dτ

η(τ)(τ − z)
, z ∈ Γco ,(49)

and a constant tco

tco =
γ1 + γ2

2
.(50)

We then have the following lemma.
Lemma 4.

M51 = 0 , z ∈ Γco ,(51)

M61 = z − tco , z ∈ Γco ,(52)

M5 ◦M6f(z) = f(z) , z ∈ Γco .(53)

We will sometimes write M5f , even if f ∈ L2(ν,Γ). By this we will mean M5

acting on the restriction of f to Γco. The result will be viewed as a function in
L2(ν,Γco). Also we will need the new weight η(z) for z ∈ Γ \ Γco. See section 9
for further details on the weights and section 10 for particularities of the numerical
evaluation of singular integrals.
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7. Fredholm equations of the second kind. Since we will solve the system
(38)–(40) for (ΩI , T ) ∈ L2(ν,Γ) × L2(ν,Γco), we want to rewrite it as a system of
Fredholm integral equations of the second kind on this Hilbert space. First we note
that M3 is compact while M4 is bounded on this Hilbert space. Therefore (38) is
already of the second kind, and we concentrate on (40).

Let s be the arclength parameter along the crack and write dz = in(z)ds. Differ-
entiating (40) with respect to s implies

ΩI +M4ρT/η(54)

−
1

ρ

d

nds

[
nℑm

{
n̄

∫ z

γs

ρ(ΩI +M4ℜe {ρT/η})dτ

}]
= 0 , z ∈ Γco ,

ℜe

{
n̄(γ1)

∫ γ1

γs

ρ(ΩI +M4ℜe {ρT/η})dτ

}
= 0 .(55)

Since T (z) = 0 for z /∈ Γco, (53) implies that we have M5M4ρT/η = T . We obtain

T −M5

1

ρ

d

nds

[
nℑm

{
n̄

∫ z

γs

ρ(ΩI +M4ℜe {ρT/η})dτ

}]
(56)

+M5M4M3(ΩI +M4ℜe {ρT/η}) = −M5M4

( n̄
n
β̄ − α

)
, z ∈ Γco ,

ℜe

{
n̄(γ1)

∫ γ1

γs

ρ(ΩI +M4ℜe {ρT/η})dτ

}
= 0 .(57)

However, this formulation is not equivalent to (54), (55). The operator M5 has a
kernel consisting exactly of functions that are constant along Γco. This implies that
(56) is equivalent to the following weaker form of (54):

ΩI +M4ρT/η(58)

−
1

ρ

d

nds

[
ℑm

{
n̄

∫ z

γs

ρ(ΩI +M4ℜe {ρT/η})dτ

}]
= c , z ∈ Γco ,

where c is a constant given by a consistency condition. If we add the equation

ℜe

{
n̄(γ2)

∫ γ2

γs

ρ(ΩI +M4ℜe {ρT/η})dτ

}
= 0 ,(59)

which is also implied by (40), then the constant c must be zero. Finally, we replace
ΩI in (58) with the expression given in (29). This gives us the following theorem.

Theorem 5. The system (38)–(40) is equivalent to the following system of Fred-

holm integral equations of the second kind:

ΩI −M4M3 (ΩI +M4ℜe {ρT/η}) = M4

( n̄
n
β̄ − α

)
, z ∈ Γ ,(60)

T +M5M4M3(ΩI +M4ℜe {ρT/η})(61)

−M5

1

ρ

d

nds

[
nℑm

{
n̄

∫ z

γs

ρM4 (M3 (ΩI +M4ℜe {ρT/η}) + ℜe {ρT/η}) dτ

}]

= M5

1

ρ

d

nds

[
nℑm

{
n̄

∫ z

γs

ρM4

( n̄
n
β̄ − α

)
dτ

}]
−M5M4

( n̄
n
β̄ − α

)
, z ∈ Γco ,



CRACKS IN FRICTIONLESS CONTACT 559

and the constraints

ℜe

{
n̄(γ1)

∫ γ1

γs

ρ(ΩI +M4ℜe {ρT/η})dτ

}
= 0 ,(62)

ℜe

{
n̄(γ2)

∫ γ2

γs

ρ(ΩI +M4ℜe {ρT/η})dτ

}
= 0 .(63)

Proof. It remains to prove that in (60) and (61) the perturbations of the identity
are compact operators. This follows by lengthy but straightforward calculations.
The problem is mainly that M5 is an unbounded operator. However, the explicit
form of the kernels of the other operators allows us to show that the composition
of M5 with the various integral operators appearing in (60) and (61) are compact
operators.

Equations (60) and (61) constitute the basis for our numerical algorithm. It is
worth pointing out that we do not implement these equations exactly as they stand.
When M3 is applied to M4ℜe {ρT/η} from the left, it will be difficult to compute
M4ℜe {ρT/η} accurately for target points on Γ\Γco close to γ1 or γ2, unless a smooth
extension of T is known. To this end we extend the domain of validity for (61) and
the support for T a few quadrature panels to the right and to the left of Γco. We also
implement the differentiation operator in a particularly stable way. See section 10 for
details.

We note that the original formulation (54), (55), apart from not being of the
second kind, has the following drawback: If (62) and (63) are not fulfilled, then in
(58) c 6= 0, and (54), (55) has no solution in L2(ν,Γ) × L2(ν,Γco). The iterative
method designed below would therefore have to deal with very singular intermediate
results.

8. The algorithm for the contacting problem. First note that the condition

ℜe {ρT/η} < 0(64)

describes contact under negative normal traction. A nonnegative value of this expres-
sion indicates the splitting of Γco into several zones. We will describe the algorithm
under the assumption of a single contact zone. A generalization to several contact
zones is straightforward.

For given values of the endpoints γ1 and γ2 we solve the system (60), (61) using
the GMRES iterative solver [14]. This can be accomplished with high accuracy and
only a few iterations due to the fact that we use a formulation with Fredholm integral
equations of the second kind. We then evaluate the two functions

f1(γ1, γ2) = −ℜe

{
n̄(γ1)

∫ γ1

γs

ρ(ΩI +M4ℜe {ρT/η})dτ

}
,(65)

f2(γ1, γ2) = −ℜe

{
n̄(γ2)

∫ γ2

γs

ρ(ΩI +M4ℜe {ρT/η})dτ

}
.(66)

The objective is to adjust γ1 and γ2 so that f1 and f2 of (65), (66) both become zero.
This problem is solved using Broyden’s method, which is a simple and effective secant
updating method for solving nonlinear systems. The initial Jacobian approximation
is taken as

J =

[
−1 0
0 1

]
.(67)
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If the initial guesses for γ1 and γ2 are reasonable, Broyden’s method converges to
the correct solution for (60)–(63) and, equivalently, for the original equations (14)–
(18). In our implementation of the algorithm we determine the initial guesses for
γ1 and γ2 by looking at the solution to the noncontacting crack problem (for which
negative crack-opening displacement is allowed). The initial guesses are taken to be
those points on the crack between which the normal component of the crack-opening
displacement is negative.

9. Branch chasing for the contact zone. As in the case of a noncontacting
crack [3], the weight η(z) is defined by

1

η(z)
= χ(z) · Sqrt (z − γ1)Sqrt (z − γ2) ,(68)

where Sqrt () is the principal branch of the square root given by a cut along the
negative real axis and Sqrt (1) = 1. On the contact zone Γco the weight η(z) is
calculated in complete analogy with section 9.1 of [3]. Let η1 and η2 denote the
limiting values of that calculation for the two endpoints γ1 and γ2, respectively, and
define θ1 and θ2 as in [3].

We need to calculate η(z) on the two segments of Γ that are not in contact. For
the first segment set

η̃1 = −iη1 .

The starting value for χ(z), as one goes backward from γ1 towards γs, is given by

χ̃1 =
1

η̃1Sqrt (z − γ1)Sqrt (z − γ2)
(69)

and χ(z) changes sign exactly when θ1 or θ2 passes through an odd multiple of π.
Going from γ2 towards γe, the starting values are

η̃2 = iη2

and

χ̃2 =
1

η̃2Sqrt (z − γ1)Sqrt (z − γ2)
,

and the sign changes according to the same rules as above.

10. Numerical evaluation of singular integrals. Let f be a smooth function
on Γ. We evaluate M4 operating on f :

M4ρf/η(z) =





f(z)(z − tco) +
1

iπ

∫

Γco

(f(τ) − f(z))dτ

η(τ)(τ − z)
, z ∈ Γco ,

f̃(z)(z − tco) +
f̃(z)

η(z)
+

1

iπ

∫

Γco

(f(τ) − f̃(z))dτ

η(τ)(τ − z)
, z ∈ Γ̃co \ Γco,

1

iπ

∫

Γco

f(τ)dτ

η(τ)(τ − z)
, z ∈ Γ \ Γ̃co .

(70)
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Here Γ̃co is an extension of Γco with a few quadrature panels to the left and to the
right, and f̃ is a smooth extension of f to Γ̃co.

Below we will denote by M̃5 and M̃6 the smooth extensions of M5 and M6 to Γ̃co,
that is, the result of a smooth extension of the functions M5f and M6f to Γ̃co. Let
f be a smooth function on Γ. We evaluate M̃5 operating on f :

M̃5f(z) =
1

iπ

∫

Γco

η(τ)(f(τ) − f(z))dτ

(τ − z)
, z ∈ Γ̃co .(71)

Let f be a smooth function with support only on Γco. We evaluate M̃6 operating on
f

M̃6f(z) =





f(z)(z − tco) +
1

iπ

∫

Γco

(f(τ) − f(z))dτ

η(τ)(τ − z)
, z ∈ Γco ,

f̃(z)(z − tco) +
1

iπ

∫

Γco

(f(τ) − f̃(z))dτ

η(τ)(τ − z)
, z ∈ Γ̃co \ Γco ,

(72)

where f̃(z) is a smooth extension of f(z) to Γ̃co.
In terms of the extended operators introduced above, our implementation of (61)

can be written

T̃ + M̃5M4M3(ΩII +M4ℜe{ρT/η})(73)

−M̃5

1

ρ

d

nds

[
nℑm

{
n̄

∫ γ1

γs

ρM4ℜe{ρT/η}dτ

}]

−M̃5

1

ρ

d

nds

[
nℑm

{
n̄

∫ z

γ1

ρM̃6η/ρℜe{ρT/η}dτ

}]

−M̃5

1

ρ

d

nds

[
nℑm

{
n̄

∫ z

γs

ρM4M3(ΩII +M4ℜe{ρT/η})dτ

}]

= M̃5

1

ρ

d

nds

[
nℑm

{
n̄

∫ z

γs

ρM4

( n̄
n
β̄ − α

)
dτ

}]
− M̃5M4

( n̄
n
β̄ − α

)
, z ∈ Γ̃co .

The quantities upon which the differentiation operator in (73) act are smooth if γs

differs from γ1. If it should happen that γs and γ1 are equal, they are not. Therefore,
in the numerical implementation of (73), we also use the substitution

1

ρ

df

nds
=

d

nds

f

ρ
− i(z − tcr)ρf .

With this substitution the differentiation operator acts on a smooth quantity irre-
spective of the location of γs and γ1.

11. Numerical examples. This section presents four examples where (60), (61)
are solved numerically for easily reproduced setups. The algorithm is implemen-
ted using a Nyström scheme, based on 16-point composite Gaussian quadrature, the
GMRES iterative solver [14], and the techniques discussed in section 10. The GMRES
iterations are terminated when the residual is less than 10−14, and that same tolerance
is used as a stopping criterion for f1 and f2 of (65), (66) in the Broyden iterations.
In Table 1 and Figure 5, where we seek highest possible accuracy, the tolerances
are lowered to 5 · 10−16. Compensated summation [4, 7] is used whenever deemed
necessary, for example, in the computation of matrix–vector multiplications and inner
products in the GMRES iterative solver.
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Fig. 1. Example 1: The normal component of the crack-opening displacement versus arclength

parameter −π/2 ≤ t ≤ π/2 for a unit semicircular crack subjected to a uniform stress σ∞
II

at infinity.

Example 1: Circular arc–shaped crack in symmetric contact. As a simple
example we choose a crack parameterized by

z(t) = eit , −π/2 ≤ t ≤ π/2 .(74)

The elastic moduli of the surrounding medium are κ = 2 and µ = 2. A uniaxial
stress σ∞

II
is applied at infinity. This problem is very well conditioned. The GMRES

iterative solver typically converges to a residual of 10−14 in nine iterations irrespective
of the number of discretization points and the placement of the points γ1 and γ2. We
choose γ1 = e−0.4i and γ2 = e0.4i as initial guesses. After six iterations with Broyden’s
method, and with 96 discretization points on Γ, we find that γ1 = e−it and γ2 = eit,
where t = 0.2241658890840, make the solution to (60), (61) satisfy (29) and (32)–(34)
to at least 13 digits; see Figure 1. With 96 discretization points this calculation took
four seconds on a SUN Ultra 10 workstation.

Example 2: Circular arc–shaped crack in asymmetric contact. In a
second example we change the parameterization of the crack to

z(t) = eit , −1 ≤ t ≤ 2 .(75)

This example is about as well conditioned as Example 1. We choose γ1 = e−0.9i and
γ2 = e0.3i as initial guesses. The GMRES iterative solver typically converges to a
residual of 10−14 in 11 iterations. After 12 iterations with Broyden’s method, and
with 176 discretization points on Γ, we find that γ1 = eit1 and γ2 = eit2 , where t1 =
−0.6649345251012 and t2 = 0.1061303707331 make the solution to (60), (61) satisfy
(29) and (32)–(34); see Figure 2. With 176 discretization points this calculation took
15 seconds on a SUN Ultra 10 workstation.

Example 3: Contact in a crack with wavy shape. In a third example we
change the parameterization of the crack to

z(t) = (1 + 0.2 cos 5t)eit , 0.1 ≤ t ≤ 2.3 .(76)
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Fig. 2. Example 2: The normal component of the crack-opening displacement versus arclength

parameter −1 ≤ t ≤ 2 for a unit circular arc–shaped crack subjected to a uniform stress σ∞
II

at

infinity.
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Fig. 3. Example 3: The normal component of the crack-opening displacement versus arclength

parameter 0.1 ≤ t ≤ 2.3 for a wavy crack subjected to a uniform stress σ∞
II

at infinity.

This example is also well conditioned. We choose γ1 = e0.8i and γ2 = e0.9i as initial
guesses. The GMRES iterative solver typically converges to a residual of 10−14 in 17
iterations. After 11 iterations with Broyden’s method, and with 272 discretization
points, we find that γ1 = eit1 and γ2 = eit2 , where t1 = 0.8084089984688 and t2 =
0.8751062182394, make the solution to (60, 61) satisfy (29) and (32–34); see Figure 3.
With 272 discretization points this calculation took 40 seconds on a SUN Ultra 10
workstation.
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Fig. 4. Example 4: The normal component of the crack-opening displacement versus arclength

parameter −π/3 ≤ t ≤ π/3 for a unit circular arc–shaped crack subjected to a uniform stress

(σ∞
I

+ σ∞
II

+ σ∞
III

)/2 at infinity.

Table 1

Convergence of the contact angle η under uniform overresolution. The geometry is the circular

arc–shaped crack in Example 4. The correct value, calculated in quadruple precision arithmetic, is

η = 21.77476653838534.

No. points Contact angle η in degrees
48 21.77447948548968
64 21.77476653838650
96 21.77476653838545
160 21.77476653838534
320 21.77476653838536
640 21.77476653838539
1280 21.77476653838573
2560 21.77476653838509

Example 4: Circular arc–shaped crack with contact at crack tip. In this
last example we change the parameterization of the crack to

z(t) = eit , −π/3 ≤ t ≤ π/3 .(77)

A uniaxial stress (σ∞
I

+ σ∞
II

+ σ∞
III

)/2 is applied at infinity. This corresponds to a
clockwise rotation of the applied field in the three previous examples by π/4. As it
turns out, the solution exhibits γ1 = γs. This example has previously been studied by
Chao and Laws [1]. The GMRES iterative solver typically converges to a residual of
10−14 in 10 iterations. With γ2 = e−0.52i as an initial guess, with seven iterations with
the secant method, and with 64 discretization points, we find that γ2 = eit2 , where
t2 = −0.6671561812487, makes the solutions to (60), (61) satisfy (29) and (32)–(34).
See Figure 4 for a plot of the normal component of the crack-opening displacement,
and Table 1 and Figure 5 for a convergence study of the contact angle η = π/3 +
t2, expressed in degrees, under increased uniform resolution. With 64 discretization
points the calculation took only one second on a SUN Ultra 10 workstation.
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Fig. 5. The relative error in the contact angle η under uniform overresolution. The geometry

is the circular arc–shaped crack in Example 4. The reference value, η = 21.77476653838534, was

calculated in quadruple precision arithmetic. A tolerance of 5 · 10−16 for the residual was used as

a stopping criterion in the GMRES iterative solver and for the function f2 of (66) in the secant

method iterations. Occasionally, larger tolerances had to be accepted in the secant method iterations

in order to ensure convergence.

Note how stable the convergence is in Table 1 and Figure 5. The problem is very
well conditioned and the condition number of the system matrix reflects this (since
we use a Fredholm second kind integral equation formulation). In fact, the condition
number of the system matrix, defined as the ratio of the largest to the smallest singular
value of the system matrix, is around 20. This means that the solution, in theory,
can be computed with a relative error not worse than 20 · ǫmach. In IEEE double
precision arithmetic this is approximately equal to 3 · 10−15. Figure 5 indicates that
our algorithm is close to this ideal.

Comparison with previous numerical results. It is interesting to compare
our result in Example 4 with those of Chao and Laws [1]. These authors present
graphical results for a quantity called “ratio of contact length” ∆. This quantity is
defined in terms of a “polar angle subtended by contact zone” η and a “half-angle
subtended by crack” φ as (Chao and Laws, private communication, 1998)

∆ =
tan (η/2)

tan (φ/2)
.(78)

For the setup in our Example 4, Chao and Laws [1] report ∆ ≈ 0.40, which corre-
sponds to η ≈ 26 degrees. No error estimate is given.

Torstenfelt [17] has developed a general purpose finite element program called
“Trinitas” that is capable of solving frictionless contact problems in linear elasticity.
As an independent test, we asked Daniel Hilding of the Department of Mechanical
Engineering at Linköping University, Sweden, to perform as accurate a calculation as
possible with Trinitas. The finite element method, used by Hilding to solve the fric-
tionless contact problem, is a mixed variational method described in [8]. The method
is shown to give approximations that converge to the solution, as the mesh is refined,
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for an elastic body in contact with a rigid obstacle. The necessary modifications of
the finite element method needed in the present situation are found in [5]. In short,
they can be described as follows.

A mixed variational inequality formulation of the contact problem was used in
which both the displacement and the contact pressure are treated as unknowns. The
displacement is approximated using isoparametric 9-node Lagrangian elements. The
pressure is approximated using Simpson’s rule. The resulting discrete variational
inequality problem is solved using a Newton method, which yields a very accurate
solution of the discrete problem. No special method was used to deal with the singu-
larities. To simulate the infinite region, a square domain (with appropriate boundary
conditions) was used and the crack was placed in the middle. The side of the square
region had a length of about eight times the length of the crack length. The mesh
was of the “mapped” type, with increasingly smaller elements near the crack. A se-
ries of problems with increasingly refined meshes was solved. The solutions to these
problems were compared to give an idea of the error in the final reported result.

Using 15,000 degrees of freedom and 60 seconds of computing time, Hilding reports
21.67 < η < 22.28 degrees. Our result in Example 4, arrived at with 64 discretization
points and one second of computing time, corresponds to η = 21.77476653839 degrees.
See Table 1.
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