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Real perturbation values and real quadratic forms in a
complex vector space

Bo Bernhardsson and Anders Rantzer *

Department of Automatic Control, Lund Institute of Technology, Sweden.
Li Qiu

Department of Electrical Engineering, Hong Kong University of Science and
Technology.

A sequence of real numbers connected to a complex matrix is introduced.
It is shown how these real perturbation values can be computed and that
they have several properties similar to the singular values. The so called
real pseudospectra and real stability radii can be computed using the
real perturbation values. The main result concerns the signature of real
quadratic forms in complex vector spaces.

1 Introduction

For a linear transformation between the complexifications of two finite dimen-
sional Euclidean spaces we introduce in Section 3 two sequences of numbers,
which we call real perturbation values, by modifying the usual definition of
singular values in a way that takes the real structure into account. These defi-
nitions were motivated by the so called real stability radius problem in control
theory, see [3] and [11], and in computation of real pseudo-spectra in numerical
analysis, see [13]. The main point turns out to be a result, proved in Section 4,
on the signature of a quadratic form in a complex vector space, which may be
of interest in other contexts as well. In an earlier version [2| of this paper the
proof was based on the fairly complicated normal forms for pairs of Hermitian
and complex symmetric matrices proved in [4] (see also [1,6-9]). Following a
suggestion by Lars Hérmander we now use only normal forms for generic pairs.

* The first two authors gratefully acknowledge support from contract M-MA 06513-
305 of the Swedish Natural Science Research Council.
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To make the presentation self-contained we give a short complete derivation
of them provided by him.

A flaw of the real perturbation values is that they are not continuous func-
tions everywhere. The continuity properties are discussed in Section 5. Propo-
sition 5.2 1s joint work with Lars Hormander.

2 Singular values

As a preliminary and to introduce notation we present the basic facts on
singular values that lie behind the definition of real perturbation values and
are needed for their study. This section can be ignored by readers familiar
with the singular value decomposition and the rank approximation properties
of singular values such as presented in e.g. [10].

Let H; and H, be two finite dimensional Hilbert spaces, and let T': H; — H,
be a linear map. In this section it does not matter if the scalars are real or
complex. The operator T*T : H; — H; is then nonnegative and self-adjoint
with rank equal to the rank » of T'. Let oy > 03 > -+« > o, > 0 be the positive
eigenvalues of (T*T)%, and let ¢4,...,p, be orthonormal eigenvectors with
T*T¢; = 0ip;. Then ¢; = Tp;/0; are also orthonormal, and

To =Y oi(¢,¢i)m¥i, ¢ € Hi;
1

T*% = Y o0, ¥5)mes, ¥ € Ho.
1

Thus the singular values oj(T) of T are the same as those of T*. We define
o; = 0 when j > r. The maximum minimum principle for T*T gives

THT) = ity o sup [T elm /Nl (2.2)
(T) = inf_||IT . 2.3
o;(T) Sup o fnf 1Tl /el (2:3)

From either (2.2) or (2.3) it follows at once that for every j
|0'J(T1) — O'J(Tz)| S ”Tl — T2|| = 0'1(T1 b Tg), T1, Tz € E(Hl, Hz) (24)
More generally, it follows from (2.2) that

O'J'(Tl) __<__ O'k(Tz)-l-O'l(T]_ —-—Tg), 1fk+l :]-I- 1. (25)



We can rewrite (2.2) in the form

oiT) = _inf_IT S, (22
for if W = Ker S then codim W < j and ||T — SJ| is at least equal to the
norm of the restriction to W, hence ||T' — S|| > ¢;(T). There is equality when
S = PT where P is the orthogonal projection in H, on the space spanned by

P1,...,%j-1, for T — S is then obtained by dropping the first 7 — 1 terms in
(2.1). Equivalently,

o;(T) = inf{||Al|; A € L(Hy, H;),rank(T — A) < 5} (2.2)"

This follows by just writing A = T — S in (2.2)". A similar formula follows
from (2.3),

-1

o3(T) = (inf{||All; A € L(Hy, Hy), dim Ker(Idg, —AT) > 5}) (2.3)

If 0;(T) = 0,i.e.,,rank T < j, then rank(AT) < j, so dim Ker(Idg, —AT) < j.
The infimum in (2.3)' should then be interpreted as +oo and the reciprocal

as 0. To prove (2.3)" we observe that if the kernel W of S = Idg, —AT has
dimension > j, then

el = 1ATellm < |AITelm, » €W,

so o;(T) > 1/||A|| by (2.3). On the other hand, if we define Ay, = ¢y /0o%(T),

k=1,...,7, and Ay = 0 in the orthogonal space, then ¢ — ATy, = 0,
k=1,...,7, and ||A|| = 1/0;(T), so rank(Idg, —AT) < dim H; — j and
|A|| = 1/0;(T), thus inf |A|| = 1/0;(T) as claimed in (2.3)".

In (2.3)" we may replace Idg, —AT by Idg, —TA, for

dim Ker(Idg, —ST) = dim Ker(Idg, —T'S), T € L(Hy,H,), S € L(H,, Hy).
(2.6)

In fact, both sides are equal to the dimension of the kernel of
Hy @ Hz 3 (p,9) — (¢ + S¢,¢ + Tp) € Hy ® Hy,
which projects injectively to H; and H, with the kernels in (2.6) as range.

Another proof of (2.3) follows from the following elementary lemma, which
will be useful for later reference.

Lemma 2.1 Given linear transformations T; : Hy — H;, j = 1,2, there exists

a contraction A : Hy — Hj such that ATy = T, if and only of T;T, < T}Ty.



PROOF. The necessity is obvious, for

1Tl = |ATipllm, < [ Tiellm, » € Ho,

if such a A exists. Conversely, if | Top| i, < ||T1¢]/n,, ¢ € Ho, then Tip — Top
is a contraction defined on the range of 77. It remains a contraction if it is
extended to vanish on the orthogonal complement. n

Let us now see how the lemma gives (2.3)". That a positive number o 1s <
the number defined in (2.3)' means that dim Ker(Idy, —AT) > j for some
A € L(H,, H,) with ||A]| < 1/0o, that is, for some such A and some S with
rank > j we have § — ATS = 0, that is, cATS = ¢S5. By the lemma this is
equivalent to 025*S < S*T*T'S, or equivalently ||Ty|lm, > o|¢||a, for all ¢
in the range of 5, that is, a space of dimension > j. By (2.3) this is equivalent
to a;(T') > o, which proves (2.3)".

For a historical survey of singular values and rank approximation theorems
see [12].

3 The real perturbation values

We assume now that H; and H, are given as complexifications of real Hilbert
spaces hy and hg; thus H; = h; ®g C. Then the set L(H;, H;) of linear
transformations from H; to H, has a real linear subspace L™(H1, H,) consisting
of extensions of maps in L(h1,h,), and every T' € L(Hi, H,) has a unique
decomposition T = ReT + ¢ImT with ReT and ImT € L"(Hy, H;). The
same holds for £L(H,, H,) and L"(H,, H). By analogy with (2.3)' and (2.2)"
we introduce

1

(T) = (inf{||All; A € £7(Hy, Hy), dim Ker(Idg, —AT) > k}) (3.1)
#(T) = inf{||A|l; A € £™(Hy, Hy),rank(T — A) < k}. (3.2)

In case there is no A with the required property we interpret the infimum as
+00, which makes 7,(T") = 0 respectively 7(T') = +oc0. By (2.6) the condition
on A in (3.1) may be replaced by dim Ker(Idg, —T'A) > k, which shows that
e(T*) = m(T); it is obvious that 7 (T™*) = 7(T). It is also obvious that
Tk(T) S O'k(T) S ’f'k(T)

The following theorem gives an approach to computing the real perturbation

values defined by (3.1) and (3.2).



Theorem 3.1 With the preceding definitions we have

w(T) = i ou(T), (3.3)
T(T) = sup 0'2k—1(T—y)7 (3.4)
~v€(0,1]

where

y=

. ( ReT —4ImT

= thi®hy — hy @ hy.
v 'ImT ReT

The first step in the proof is a variant of Lemma 2.1:

Lemma 3.2 Let H;, j = 0,1,2, be complezifications of real finite dimensional
Hilbert spaces hj. Given linear transformations T; : Ho — Hj, j = 1,2, there
ezists a contraction A € L™(Hy, Hy) such that ATy = T, if and only if, with

block matriz notation,

(ReTz Im Tz) (Re Tz Im T2> S (Re T]_ Im Tl) (Re T1 Im Tl) ’ (35)

or equivalently

() (1) < (57 (o) oy

PROOF. Write the equation ATy = Ty as A (Re Ty Im T1> = (Re Ty Im Tz);

here (Re T; Im T,’) is a map from ho @ ho to hj. By Lemma 2.1 (for spaces

over the reals) we conclude that (3.5) is a necessary and sufficient condition
for the existence of a contraction A. Since

s Idg, Idg,
(Tj TJ) = (Re Tj Im TJ) )
i1dg, —ildg,

the extension of (3.5) to the complexification is equivalent to (3.5)". S

Proof of Theorem 3.1 This proof relies on Theorem 4.1, which is stated
and proved in Section 4. We shall first prove (3.3) and indicate afterwards
the modifications required to prove (3.4). Let 0 < 7 < (7). By (3.1) this
means that one can find S € L(H1, H;) of rank > k and A € L7(H,, Hy) with



|A]l < 77! such that (Idg, —AT)S = 0, that is, TAT'S = 7S. By Lemma 3.2

this means precisely that
72 (s ?) (s F) < (Ts T_S) (Ts T_S) : (3.6)

The product in the right-hand side is the operator

S*T*T'S S*T*TS
Hy ® Hy — H, @ H,y,
STTSSTTS

and replacing T by 7 gives the operator in the left-hand side. If we set
A, =TT —7*1dy,, B, =T T —7’ldp,, (3.7)

then (3.6) can be written

S*A.S S*B.5)
, or (3.6)

TBITAE)

(S 0)* (A, B‘,) (s 0)
° i " >o. (3.6)"
05) \B,4,)\05,

Thus 0 < 7 < 7(T') is equivalent to the existence of S € L(H:, Hy) of rank
> k such that (3.6)" is valid. By the equivalence of conditions (i) and (iv) in
Theorem 4.1, to be proved later, we therefore conclude that

A, BB,

BB, A,
nonnegative eigenvalues if |G| < 1. (3.8)

0<7<7(T) ( ) has at least 2k

Here it is not really important to allow complex values for 3, for multiplication
of B by a complex number of absolute value 1 gives a unitarily equivalent
operator. It is therefore enough to take 8 € [-1,0].

Next we prove that the condition in (3.8) is equivalent to
o(T) >1, 0<y<1. (3.9)

First we observe that

. T 0 vy Idg, iy 1dg, Idy, /iy Idg,
T =D, “|E, D,= vy ldg, vy ldg, B, =1 m /17 1dm .
0 T Ide _Ing IdH1 /’I/‘)’ _IdHI



Equation (3.9) states that T’.;‘T,, — 721d g, o, has at least 2k positive eigen-
values. After right and left multiplication by the inverse of E, and its adjoint

this means that
TO TO
. D,’;D., . —'rz(E.,,E;)_1
oT orT

has at least 2k nonnegative eigenvalues. Here

D*D.. = (72 + 1) Ide (72 - 1) Ide
¥ - ?
T \( - 1)ldg, (77 +1)1dg,
(E E*)—l _ (72 + 1)IdH1 (72 - l)IdH1
A —
! \(¥* —1)1dg, (v*+1)1dn,)

If we divide by v2 + 1 and put 8 = (y* — 1)/(7® + 1), the operator becomes
T 0 Idg, Bldg,\ [T O o [ ldm, Bldg, A, BB,
e - ,
0 T") \Bldg, Idg, 0T Bldy, Idg, BB, A,

which proves the equivalence of (3.8) and (3.9) and completes the proof of
(3.3), apart from the proof of Theorem 4.1.

To prove (3.4) we first recall that by the definition of 7 we have 7 > 7 (T')
if and only if rank(T — A) < k for some A € L"(Hq, Hp) with ||A]| < T
The rank condition means that there is some S € L(H;, Hy) with rank § >
dim H; — (k — 1) such that (T' — A)S = 0, that is, (A/7)S = TS/r. By

Lemma 3.2 this is equivalent to
72 <S ?) (S ?) > (TS T_S) (TS T_S) ; (3.11)

The calculations that proved the equivalence of (3.6) and (3.6)” show that

(3.11) is equivalent to
S0 A- B\ [S0O
- . "l <o (3.12)
0S) \Br A,/ \0S



Using Theorem 4.1 as before we conclude that

A, BB,
BB, A,
nonpositive eigenvalues if |3] < 1. (3.13)

2> 7(T) <= ( ) has at least 2(dim Hy; — (k — 1))

The proof of the equivalence of (3.8) and (3.9) shows that (3.13) means pre-
cisely that TT, — 72 Idm, e n, has at least 2dim H; —((2k —1)—1) nonpositive

eigenvalues, which by (2.2) means that oz,_1(7,) < 7. The proof of (3.4) and
Theorem 3.1 is now complete apart from the proof of Theorem 4.1. [

The proof of (3.3) also gives another characterization of 7,(T'), for we saw that
7 < 1(T') was equivalent to (3.6)” which, by Theorem 4.1 (iii), is equivalent
to

(AT(Pi ()O)Hx + Re<BT()07‘p>H1 >0, pE VV,

where W is a complex subspace of Hy, of dimension > k. Explicitly this means
that

(T‘P1 TSO)HZ + Re<T(p, T‘P>H2 - 7'2(90, (P)Hl -7’ Re(go, ()0>H1 >0, peW

Since (¢, ¢)m, + Re(p, o), = 2||Re|}, and since there is an analogous
identity in H,, this means that || Re(T¢)||%, > 72| Re ¢/}, . Hence

— 3 I
W)= s n | Re(To)lm/ | Replm,  (31)

where W is a complez subspace of Hy. This is a close analogue of (2.3).

We get a similar conclusion from the proof of (3.4), for it shows that = > 7, (T')
is equivalent to | Re(T'p)||}, < 7%|| Re p||}, for every ¢ in a complex subspace
W of H with codim W < k. Hence we obtain an analogue of (2.2),

o ,
WIT)= o, swp  [|Re(To)lm/|Replm,  (32)

where W is a complex subspace of H;.

4 Real quadratic forms in a complex vector space

Let H be a finite dimensional complex vector space and let @ be a real
quadratic form in the underlying real vector space. There is a unique decompo-



sition @ = Qo + Q1 where Q; are quadratic forms with Q;(iz) = (—~1)7Q;(z2);
it is given by

Qi(2) = 3(Q(2) + (-1)Q(z)), z€H, j=0,1.
The form Qo can be polarized to a Hermitian symmetric sesquilinear form
(2,w) — Qo(z,w) which is linear in z and antilinear in w, Qo(2,2) = Qo(z),

and Q;(z) = Req(z) where q is a quadratic form with respect to the complex
structure in H,

3
a(z) = Qi(2) —iQu(ez) = 1 Y. Q(e72) /¥, € =e™/4,
0
We can polarize ¢ to a symmetric bilinear form (z,w) — ¢(z,w), such that
q(z)z) = Q(Z)

If we identify H with the complexification of a real Hilbert space h, for example
by introducing complex coordinates zy,..., z, identifying H with C™, then

Qo(z,w) = (Az,w), Regq(z,w)= Re(Bz,w)= Re(Bz,w),

where A* = A and BT = B. This notation is essential in conditions (i), (ii),
(iv), (v) of the following theorem while the others are expressed only in terms

of Qo(+,+) and g(+, ). The following theorem is a generalization of Theorem 2.1
in [5].

Theorem 4.1 The following conditions are equivalent:

(i) There ezists a map S € L(H, H) of rank > k such that

(s 0)* (A E) (S o)
I et e X (4.1)
05/ \7)\ozs

(ii) There exzists a complezx linear subspace W of H of dimension > k such that

(Ap, ) + (BY, @) + (Be,¥) + (A, 9) 20, ¢, € W, (4.2)

or equivalently

(Ap, )+ (AY,¥) + 2Re(Bp,9) 20, ¢, € W. (4.3)

2
(#53) There exists a complex linear subspace W of H of dimension/é such that

(Ap, @)+ Re(Bp,p) 20, @€ W, (4.4)



or equivalently

[(Be,o)| < (Ap, ), @€ W. (4.5)
. ” A BB\ .
(tv) The Hermitian operator | in H® H has at least 2k nonnegative
BB A

etgenvalues for every B € C with |8| < 1, that is, the Hermitian form

(Ap,9) + B(BY,¢) + B(Bp, %) + (A, ¥), ¢, € H,  (4.6)

has at least 2k nonnegative eigenvalues when |3| < 1.
(v) The form (4.6) has at least 2k nonnegative eigenvalues when 3 € [0, 1].
(vi) The quadratic form

(Ap, ) + (A, ¥) + 28 Re(Bp,9), ¢, € H, (4.7)

in H ® H considered as a real vector space has at least 4k nonnegative
eigenvalues when B € [0, 1].

(vit) The quadratic form

(Ap, @) + BRe(Byp,p), ¢ € H, (4.8)

wn H considered as a real vector space has at least 2k nonnegative eigenvalues

if 8 € [0,1].

PROOF. Let us first note a number of fairly trivial implications:
(1) <= (ii) <= (ili)) = (iv) <= (v) = (vi), (iil) = (vii).

Condition (ii) is just condition (i) with W equal to the range of S, and (4.3)
implies (4.4) when we take ¢ = 1. If we replace ¢ by e in (4.4), § € R, then
(4.5) follows. From (4.5) we obtain [(B(p £ v),p £ 9)| < (Al(p £¥), ¢ £ 9),
v,v € W, which implies 4|(By,¥)| < 2(A(p, @) + A, 9)), if ¢, € W,
and proves (4.3) and (ii). From (ii) it follows that the form (4.6) with 8 =1
is nonnegative when ¢ € W and ¢ € W. Replacing ¢ by 8% we conclude
that the form (4.6) is also non-negative for such ¢, when |3| = 1, hence by
convexity when |3| < 1, which proves (iv). That (iv) implies (v) is obvious,
and the converse follows if 1 is replaced by e®®+, § € R. As a quadratic form
in H & H as a real vector space the form (4.6) then has > 4k nonnegative
eigenvalues, which proves (vi). In the same way it is obvious that (iii) implies
(vii). The essential contents of the theorem are therefore the implications

(vi) = (i) and (vii) = (ii). (4.9)

10



When proving them we may strengthen the hypotheses in (vi) and (vii) to
assuming that there are 4k respectively 2k strictly positive eigenvalues, for
this can be achieved by adding a small multiple of the identity to A. Then the
hypotheses remain valid after a small perturbation of A and B, so it will be
sufficient to study the generic case, see Lemma 4.2, for the set of all A, B for
which (ii) holds is closed by the compactness of the set of subspaces of fixed
dimension. We shall postpone the end of the proof of Theorem 4.1 until we
have derived normal forms in the generic situation. ]

In terms of complex coordinates (z1,...,2,) in H we can write

n

Qo(2) = Y. ajuZizk, aj = @rg; Qu(2) =Re Y bjrzjzk, bjr = byj.

Fik=1 Gik=1

Passing to new coordinates 2’ with z; = 37 Tjxz;, we get for the corresponding
matrices

A'=T*AT, B'=T!BT,
where T* is the transpose of T and T* = T". If B is invertible it follows that
C'=T 'CT, where C=TB "4, C'=B4". (4.10)
This implies that
C'C'=T"'CCT, (4.11)

which means that CC is the matrix of a complex linear transformation in H
which is independent of the choice of coordinates.

Lemma 4.2 For a dense set of real quadratic forms Q in H the matrices A
and B are invertible and all eigenvalues of CC are simple.

PROOF. The matrices A and B are invertible if det A det B # 0 which is true
on a dense set. The entries of C'C are polynomials in the entries of the real and
complex parts of B~! and A, so the coefficients of p(}) = det(AId —CC) =
det(AId —C"C") are polynomials in them, and so is the discriminant of p(A).
The eigenvalues are simple if the discriminant is non zero. Now either the
discriminant can be made non zero by small perturbations in A4 and B, keeping
A* = A and B! = B, or else it is identically zero for all such A and B.
However, it does not vanish identically, for if A and B are diagonal then
det(AId —CC) = [I(A—|a;;/bj;|*), so the discriminant is non zeroif |a;;/b;;| #
|k /bre| when j # k. 8

11



The following lemma shows a normal form for a generic real quadratic form.
The generic case is sufficient for our presentation and a proof of Lemma 4.3
is included to make the presentation self-contained. For a complete treatment
of the more difficult general case see [4,6-9]. See also Ch. 4.6 in [10].

Lemma 4.3 If A and B are invertible and the eigenvalues of CC are simple,
then the real eigenvalues are positive, the others occur in complezr conjugate
pairs, and the coordinates can be chosen so that

Q(2) =3 (Njlz5f" + Re22)

r+8
- 3 - 2 2
+ D7 (Njz2jmr-1Zajr + Aj2ajrZajr—1 + Re(23;_ny + 23;_,)).
j=r+1

(4.12)

Here A%, j = 1,...,r, are the positive eigenvalues of CC, and A, j=r+

1,...,7r+ s, are the eigenvalues of CC with positive imaginary part. The first
(second) sum shall be omitted if r =0 (if s =0).

PROOF. Let z # 0 be an eigenvector of CC with eigenvalue p, thus CC2z =
pz. Then CC(Cz) = puCz, hence COCz = jiCz, so Cz is an eigenvector with
eigenvalue fi.

(i) If p is real then Cz must be a multiple of z, thus Cz = Az for some A € C,
and ACz = pz, which implies g = |A|* > 0. Since Az = ABz we have

Qo(z) = (Az,z) = A (Bz, 2). (4.13)
(ii) If Imp # 0 then Cz is an eigenvector belonging to the eigenvalue . Let
A? = p and set Aw = Cz. Then also Cw = Az, thus

Az =ABw, and Aw = ABz. (4.14)

(iii) Let CCz; = p;z; and CCz = pp2g. Then

ui(Bzi,z) = (AB ™ Azj,2) = (25, AB ' Ami) = pe(zj, Baw) = pa(Bzj, ),

which proves that (Bz;, 2;) = 0 when p; # pg. Similarly,

pi(Az;, z) = AB_IZF‘IAz-,zk . z-,AB_IZF_lAzk = pr(Az;, z1),
i\ 125 i j j

12



which proves that (Az;, 2;) = 0 when p; # fix. Thus the eigenvectors corre-
sponding to real eigenvalues and the two dimensional spaces spanned by eigen-
vectors corresponding to complex conjugate eigenvalues of CC are mutually
orthogonal with respect to the sesquilinear scalar product (Az,w) = (z, Aw)
and with respect to the bilinear scalar product (Bz,w) = (z, Bw). It is there-
fore sufficient to examine the structure of these two kinds of spaces.

In case (i) above it follows now from the non-degeneracy of B that (Bz, z) # 0.
Replacing z by a multiple of z we can then attain that (Bz,z) = 1, which by
(4.13) implies that (Az,2) = A. Hence A is real with A\* = p.

In case (ii) above we have (z, Bw) = 0, hence (z,A2) = 0 and (Aw,w) = 0.
Moreover,

A(Bz,z) = (z, Aw) = (Az,w) = A(Bw, w).

Since B is non-degenerate we conclude that (Bz, z) # 0, and we can normalize
so that (Bz,z) = 1, hence (Bw,w) = 1, which implies (Az,w) = A. In the
basis w, z the matrices of the A and B therefore take the form

0A 10
xo0) \o1
which completes the proof of the lemma. [

Lemma 4.4 IfIm A > 0 then the quadratic form
Az7; + Azzi + Re(B(2} + 23)), ze€ C?=RY,

15 positive definite in the subspace where 2z, = 121 and negative definite in the
subspace where z; = —1iz;. Thus the signature is 2,2 for arbitrary B € C.

The proof is obvious.

End of proof of Theorem 4.1 What remains is to prove the implications
(4.9) when B is the unit matrix and with ImA; >0forj=r+4+1,...,7+s

r r+8 _
(Az,2) =3 Ajlzil* + 3. (Njzajor-aZajr + Aj22jrZrjr).  (4.15)
1

j=r+1

In view of Lemma 4.4 the hypothesis (vi) (respectively (vii)) remains valid if we
restrict to the complex linear subspace where 2,425 = 12,4251 for j =1,...,s,
and since the second sum in (4.15) is positive there we need to prove the
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theorem only when

o

(Az,z) = 2::/\j|zj|2, (Bz,z) = Z z;‘?, (4.16)

1

where A\; > A; > -+ > A,. We shall now prove the theorem in this case.

Explicitly the quadratic form (4.7) in H @ H, as a real vector space, is

3 (As((Re 2)? + (Im 2)* + (Rew;)? + (Imwy)?)

=1

+ 28(Rez; Rew; — Im 2z; Im w]-)),

where each term has the eigenvalues A; £ 8 taken twice. The quadratic form
(4.8) in H, as a real vector space, can be written

r

> (Mi((Re ) + (Im 2))%) + B((Re 2))* — (Im 2;)?))

i=1

where each term has the eigenvalues \; + 8. Both conditions (vi) and (vii)
therefore mean that at least 2k of the eigenvalues A; + 8 are nonnegative for
every 8B € [0,1].

To make this condition explicit we let Aq,...,A; be the eigenvalues of A that
are greater or equal to 1; for them we have A; £ 3 > 0 when 8 € [0,1],
which accounts for 2! nonnegative eigenvalues. Eigenvalues A € [0,1) will
always contribute an eigenvalue A + 8 > 0, but the eigenvalue A — 3 be-
comes negative when 8 > A. On the other hand, eigenvalues A € [—1,0) can
contribute a nonnegative eigenvalue only when f > —A. When 8 = 0 we
must have Ay,..., A > 0. If & > [ then disappearing eigenvalues Agy1-, — G,
v=1,...,k —l, must be compensated by eigenvalues Ag;, + O that appear
at least as early, that is,

)\k+1_,, 2 _)"H—U) V= ].,,k—l (4:17)
(Thus 2k — I < r.) Since
Ai(l23)* + [w;l?) + 2Re zjw; 2 0, if A; > 1,

we need to examine only the case of pairs of eigenvalues with nonnegative sum
as in (4.17). Simplifying notation this means that we must examine

(Az,2) = M|z + Az]za)?,  (Bz,w) = 21wy + zow;
where A; + A; > 0. The condition (4.3) becomes

M|z + [wil?) 4+ Aa(]22]? + |wa|?) + 2Re(z1wy + zowz) > 0, 2z,w € W,

14



where W is a complex line in C2. This is true if W = {(z1, 22) € C?;2; = iz, },
since A; + Ay > 0. The proof of Theorem 4.1 is now complete. ]

5 Continuity Properties

By (2.4) singular values oy(T') are Lipschitz continuous functions of T, but
this is not true for the real perturbation values. This is caused by the fact that
in (3.3) and (3.4) the infimum and supremum are taken over a non-compact
set of parameter values v, so it is only clear that 7 is upper semicontinuous
and that 7 is lower semicontinuous. Although it follows at once from (2.4)
that

(T + E)| < ||E||, if E € L™(H, Ha), (5.1)
17(T) — 7(T + E)| < ||E||, if E€ LT(Hy, H,), (5.2)

the continuity properties with respect to the imaginary part of T' are quite
delicate. (When 7(T") = +o0 then (5.2) is only supposed to mean that 7 (7" +
E) = +00 too.) We will discuss only the continuity properties of 7, (T').

We first study the limit when 4 — 0 of the singular values in (3.3) and (3.4).
The following proposition is a special case of Lemma 5 in [11]. To make the
presentation self-contained we include a proof.

i —T; .
c ,C(hl @ h1, hg @ hz) as in The-
’Y_sz Ty

orem 3.1. Then it follows when v — 0 that

Proposition 5.1 Let ’f., =

0o, if 5 <rankTy,

- 5.3
IT\l, 4 =rank Ty + 1. (5:3)

o'j(T'y) - {

Here T = T

KerT: @ PT, where P is the orthogonal projection hy — Ker Ty,
erTy

so (PTy)* = TP has the same singular values as the restriction T

Ker T

PROOF. When j < rank T, the result follows from the fact that oj(yT,) —
0j(T2) > 0 as ¥ — 0. Assume therefore that rank T3 = j — 1. Choose a linear
map G : by — (KerTy)! such that TyGyp + Ty = PTyp for all ¢ € hy. The
subspaces W = Ker Ty @ hy and {p = (¢1 + 7Ge2, ¢2); (¢1,92) € W} both
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have codimension j — 1. Hence we get from (2.2)

ai(Ty) < sup || Ty(p1 +1Gepa, 2)|l/|I(1 + 1Gep2, 02)|| =
0£pceW

= sup |[[(Tu(er +71Gp2) — 722, PTapa)||/ (1 + ¥Gep2, 02) |
0FpeW

— sup |(Tipr, PToa)ll/llell = | T when vy — 0.
0£pecW

If Ker T, # 0 then we can find ¢; € Ker T such that ||Tip: || = ||T1’K 7| and
erT,

le1]] = 1. The subspace V = {po + cp1; po € (Ker T2)*} of h; has dimension
j. Hence we get from (2.3)

(T,) > i T > -1
oi(Ty) 2 tPEVI;I]l|£”=1 Ty(¢,0) 2 zpeVl;Iﬁ£||=1 I(T1(o + cp1), 7™ Taro))|

> _inf  max(c|Tags|| = [ Talllleoll, v~ i1 (T2) | oll)-

T weVillell=1

Since ¢ = (1 — ||¢0]|?)*/? > 1 — ||o|| we have

o3(Ty) > inf max(|Tilkeer, || — 2| Tullllpoll, ¥ o5-1(T2)lloll)

lleoll<1
> || Tilkerrs [/ (1 + 2| T1llv/05-1(T2)) = | Talkerr, || when y — 0.
This bound if obvious if Ker T, = () and by applying it to 7™ we get im O'j(fﬁ,) >
¥—0

17 |

Proposition 5.2 7(T) is continuous at T = T} +1T; when rank T > 2k —1.

PROOF. Let S =T + E where rank T, > 2k — 1 and E € L(H,, H>). Since
T — (T 1s upper semicontinuous it is sufficient to find a good lower estimate
of oax(S,) when E is small. We immediately get o2x(S,) > oax(Ty) — || Byl
We have |yE,|| < ||E|| for 0 < v < 1, for if ,9 € by and |o|? + |[¥]? =1
then

7B (0, )2 = |V Erp — V2 Eo||? + || Bap + v Er9||
< ||Brp — Bx(v9)|1? + || Ba + Ex(v)|12 < 1B |12(ll]1? + Iy lf?) < || B2

We therefore have

ou(5,) > ou(T) — | Ell /7. (5.4)

If oai(T2) > 0 then oa(S2) > 0 if || E|| < oax(Ts). Hence ox(S,) — co when
74 — 0. The infimum 74(T + E) is therefore attained for some 7o € (0,1]. We

16



have 75 1oak(S;2) < azk(gw) = (T + E) since 75 'S is obtained from 570 by
a restriction followed by a projection in the range. This gives

To(T + E) = ou(Sn) 2 7(T) = || E||7a(T + E)/024(S2).
which after rearranging and using oax(S2) > 2x(T2) — || E|| > 0 gives
(T + B) 2 m(T) — || Bl|m(T)/ o2(T2)-
This proves continuity if rank(T>) > 2k.

Now assume that rank(73) = 2k—1. It is necessary to improve the lower bound
(5.4) for small 4 > 0. Put a = 03(5S,). From (2.2) there exists a subspace W
with codim W = 2k — 1 such that

15101 — vS2pa||* + |77 S201 + S1ipa||* < @®lle)l?, @ = (1, 2) € W. (5.5)
This gives
[S2¢all < (152l + a)llell, ¢ €W,
and hence

IT2p1ll < (v(IISell + @) + [ EIDllell, ¢ € W

Now let @1 = 10 + ®11, where ;7 is the component of ¢, orthogonal to
Ker T;. Since ogg_1(T2) is the smallest nonzero singular value of T we have

[l < [ Toprl/oar-1(T2) < bllpll, ¢ €W, (5.6)
where § = (v(||Sz2|| + @) + || E||)/o2k—-1(T2). When § < 1 the map
W 3¢ — (p10,p2) € Ker T @ hy
is invertible since the dimensions of W and Ker T, @ h; are equal and since
lell < [I(10, 2) | + 8lleell,
which gives
lell < ({10, 02)[I/(1 — 6)- (5.7)
If we take @, = 0 then (5.5) gives
ITipsll < (@ + [1EIDlleall, ¢ €W,
and together with (5.6) and (5.7) we therefore have

ITspsoll < (a+ 1] + SIT ) llesoll /(1 - 6), o € Ker Ty,
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This gives a lower bound of a in terms of || T} |ker T, ||- Similar calculations for T
gives the same estimate with || 77|k 1y||. With T’ defined as in Proposition 5.1
we therefore get

(1= OIT| < a+[|E[| + 8] Tull-
We conclude that

a2 (1= 8)|T|| - 1E|| - 8||Txll,
with & = (y(||S2|| + |T]|) + | E||)/o2k—1(T2). This bound is obvious when § > 1
or a > ||T|| and has been proved in the other case. Together with the bound

(5.4) we obtain

inf ou(5,) 2 _inf ou(Ty) - supmin(|Ell /v, BT} + 1T + 121

'Ye(oil] 'y€(0,1]

The minimum can be bounded from above with

oT, ) = QUEN(ITz + Bl + | T/ o2u-1(T2))?
+ 2||Tal[[| Bll/ o2-1(T2) + || ],

which gives
(T + E) > 7(T) - (T, E), (5.8)

where ¢(T, E) — 0 when E — 0. This proves lower semicontinuity and hence
continuity. =]

Remark 1 Note that lower estimates of the form (5.8) can be transformed
into upper estimates of the form

(T + E) <7m(T)+ (T + E,—E).
It is easy to see that the proof gives Lipschitz continuity when rank Ty > 2k.

Remark 2 [t is easy to check that with

. tIdgp_o O
0 1+1e

we have 7(T) =1 if € = 0 and 7(T) = 0 tf € # 0. This gives an ezample of
discontinuity with rank Ty = 2k — 2.
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6 Concluding Remarks

In numerical analysis it is of interest to compute so called pseudospectra (also
called spectral value sets), see [13]. For a given £ > 0 the e—pseudospectrum
of a matrix A € R™*" is a region of the complex plane defined as

sp.(A)= U o(4+E),
Eecnxn
IEfl<e

where o(A + E) denotes the spectrum of A + E. From (2.3)' and (2.2)" it
follows that if complex perturbations E are allowed then

sp(A) = {z;01((zId —A)™') > 7'} = {z;0n(2Id —A) < €}.

In some situations it might however be natural to consider only real pertur-
bations E. It follows now from the definitions that the real pseudospectrum,

sPre(A)= U o(A+E)
lIEl|<e
is given by

sPRo(A) = {z;7((21d —A) ') > 7'} = {z;7n(21d —A) < €}.

The real stability radius of a stable matrix A is given by
rr(A) = min{||E|, E € R***; A+ E unstable}

where “stable” denotes that all eigenvalues are in a prescribed open region C,
of the complex plane. The real stability radius is given by the largest € such
that spg . (A) is contained in Cy. It can be computed as

rr(A) = zél;gg Tu(z1d —A)

where 0C, denotes the boundary of the stability region.
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